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Abstract

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a noninvasive method
for creating three-dimensional scans of the human brain. It originated mostly in the
1970s and started its use in clinical applications in the 1980s. Due to its low risk and
relatively high image quality it proved to be an indispensable tool for studying medical
conditions as well as for general scientific research. For example, it allows to map fiber
bundles, the major neuronal pathways through the brain. But all evaluation of scanned
data depends on mathematical signal models that describe the raw signal output and
map it to biologically more meaningful values. And here we find the most potential for
improvement.

In this thesis we first present a new multi-tensor kurtosis signal model for DW-MRI.
That means it can detect multiple overlapping fiber bundles and map them to a set of
tensors. Compared to other already widely used multi-tensor models, we also add higher
order kurtosis terms to each fiber. This gives a more detailed quantification of fibers.
These additional values can also be estimated by the Diffusion Kurtosis Imaging (DKI)
method, but we show that these values are drastically affected by fiber crossings in DKI,
whereas our model handles them as intrinsic properties of fiber bundles. This reduces
the effects of fiber crossings and allows a more direct examination of fibers.

Next, we take a closer look at spherical deconvolution. It can be seen as a generaliza-
tion of multi-fiber signal models to a continuous distribution of fiber directions. To this
approach we introduce a novel mathematical constraint. We show, that state-of-the-art
methods for estimating the fiber distribution become more robust and gain accuracy
when enforcing our constraint. Additionally, in the context of our own deconvolution
scheme, it is algebraically equivalent to enforcing that the signal can be decomposed
into fibers. This means, tractography and other methods that depend on identifying a
discrete set of fiber directions greatly benefit from our constraint.

Our third major contribution to DW-MRI deals with macroscopic structures of fiber
bundle geometry. In recent years the question emerged, whether or not, crossing bundles
form two-dimensional surfaces inside the brain. Although not completely obvious, there
is a mathematical obstacle coming from differential topology, that prevents general tan-
gential planes spanned by fiber directions at each point to be connected into consistent
surfaces. Research into how well this constraint is fulfilled in our brain is hindered by
the high precision and complexity needed by previous evaluation methods. This is why
we present a drastically simpler method that negates the need for precisely finding fiber
directions and instead only depends on the simple diffusion tensor method (DTI). We
then use our new method to explore and improve streamsurface visualization.
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Zusammenfassung

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) ist ein nicht-invasives bild-
gebendes Verfahren, mit dem das menschliche Gehirn räumlich abgebildet werden kann.
Es wurde hauptsächlich in den 1970er Jahren entwickelt und fand ab den 1980ern Einzug
in klinische Anwendungen. Seine Sicherheit und relativ hohe Bildqualität machen es zu
einem unverzichtbaren Werkzeug für medizinische Untersuchungen und wissenschaftliche
Forschung im Allgemeinen. Es erlaubt zum Beispiel die Kartierung von Faserbündeln,
den neuronalen Hauptverbindungen durch das Gehirn. Jede Auswertung von Aufnahmen
ist allerdings auf mathematische Signalmodelle angewiesen, die das rohe aufgenommene
Ausgangssignal beschreiben und mit biologisch bedeutsamen Eigenschaften in Verbin-
dung bringen. Und hier bietet sich uns das größte Potential für Verbesserungen.

In dieser Arbeit stellen wir zunächst ein neues Multi-Tensor-Kurtosis-Signalmodell für
DW-MRI vor. Das heißt, es kann mehrere überlappende Faserbündel erkennen und auf
eine Reihe von Tensoren abbilden. Im Vergleich zu anderen, bereits weit verbreiteten
Multi-Tensor-Modellen, fügen wir jeder Faser außerdem Kurtosis-Terme höherer Ord-
nung hinzu. Dies führt zu einer detaillierteren numerischen Beschreibung der Fasern.
Diese zusätzlichen Werte können alternativ auch per Diffusion Kurtosis Imaging (DKI)
geschätzt werden. Wie wir jedoch zeigen werden, werden diese Werte in DKI durch
Faserkreuzungen drastisch beeinflusst, während sie in unserem Modell als intrinsische
Eigenschaften der Faserbündel behandelt werden. Dies reduziert Verfälschungen durch
Faserkreuzungen und ermöglicht eine unmittelbarere Untersuchung der Fasern selbst.

Danach widmen wir uns der sphärische Dekonvolution. Diese kann als eine Verallge-
meinerung von Mehrfaser-Signalmodellen hin zu einer kontinuierlichen Verteilung von
Faserrichtungen verstanden werden. Zu diesem Ansatz führen wir eine neuartige ma-
thematische Nebenbedingung ein. Wie wir zeigen werden, werden state-of-the-art Me-
thoden zur Schätzung der Faserverteilung robuster und gewinnen an Genauigkeit, wenn
zusätzlich unsere Nebenbedingung gefordert wird. Darüber hinaus ist es im Kontext
unseres eigenen Dekonvolutionsschemas algebraisch gleichbedeutend mit der Forderung,
dass das Signal in einzelne Fasern zerlegt werden kann. Dies bedeutet, dass Trakto-
graphie und andere Methoden, die von der Identifizierung einer diskreten Menge von
Faserrichtungen abhängen, von unserer neuen Bedingung stark profitieren.

Unser dritter, größerer Beitrag zur DW-MRI befasst sich mit makroskopischen Struk-
turen der Faserbündelgeometrie. In den letzten Jahren stellte sich die Frage, ob kreuzen-
de Bündel im Gehirn zweidimensionale Oberflächen aufspannen. Mathematisch gibt es
eine nicht ganz offensichtliche Integrationsbedingung aus der Differentialtopologie, die
von Tangentialebenen erfüllt werden muss, damit sie zu konsistenten Flächen verbun-
den werden können. Für Ebenen, die an jedem Punkt von allgemeinen Faserrichtungen
aufgespannt werden, ist zu erwarten, dass diese Bedingung nicht erfüllt wird. Die Unter-
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suchung der Frage, ob und wie gut diese Integrationsbedingung jedoch in unserem Gehirn
erfüllt ist, wird durch die hohe Präzision und Komplexität behindert, die bisherige Tests
erfordern. Aus diesem Grund stellen wir eine drastisch einfachere Testmethode vor, die
die genaue Bestimmung der Faserrichtungen überflüssig macht und nur auf dem einfa-
chen Diffusion Tensor Imaging (DTI) Verfahren basiert. Unseren neuen Test verwenden
wir dann, um die Visualisierung von Streamsurfaces zu untersuchen und weiterzuentwi-
ckeln.
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1. Introduction

1.1. Motivation

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) gives us a powerful tool to
research the living human body and is one of the most impressive technical achievements
of the 20th century, combining discoveries from quantum mechanics, like nuclear spin
and superconductivity, with data processing capabilities of modern computers. Extraor-
dinary engineering obstacles had to be overcome resulting in the surprising measurement
accuracy and speed of this method.

DW-MRI allows to shed light into the mysteries of the human brain. The brain is
the most complex and still the least well understood organ in the human body. Besides
pure desire for understanding the inner workings of the mind, diseases and disorders
of the brain often have devastating effects. Simple malfunctions can completely alter
someone’s personality, render them unable to move and communicate with the outside
world, or cause death by ceasing vital body functions.

Other research methods brought invaluable information about specific parts of the
brain. Most information into neuronal chemistry was found by experiments performed
in vitro. Other methods, though resulting in valuable information, are more ethically
questionable. The immense value of DW-MRI is its non-disruptive nature. Scans can
be performed on a large group of subjects without any significant risks.

Like any other method, DW-MRI does not come without limitations, though. Cur-
rently, it is only feasible to perform scans of the whole brain at a resolution that is far
too low to observe individual nerve cells. The smallest significant structure this allows
to detect are fiber bundles, directed groups of nerve cells connecting various parts of the
brain and forming its underlying structure. Many diseases affect different properties of
these bundles, making them an enticing subject of research.

Increasing the precision with which these fiber bundles can be detected and measured
will open up the doors for numerous medical applications and is the main focus of
this thesis. We present several methods that yield higher angular accuracy as well as
additional parameters that allow some insight into their microstructure. We also expand
our studies into their geometry on a macroscopic level into previously hypothesized
surfaces formed by intersecting fibers.

Mathematically we are guided on our quest by the powerful allies of tensor algebra
and the calculus and topology of tensor fields. Applying these ideas results in maps of
new scalar measures and more reliable tractography from scanning methods that are
already commonly used.
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Why tensors?

We use tensors mostly to represent directional information in our models. Tensors, and
equivalently spherical harmonics, give a natural representation for functions on a sphere.
Besides having many elegant mathematical properties that make them easy to handle,
they come with an order or degree, which allows us to choose an angular resolution
suitable for our problem.

Tensors also generalize the vector concept and automatically appear in calculations
with vector fields involving derivatives.

For most of this work, tensors, like vectors and matrices, can be seen as a simple list
of numbers without too much loss of understanding. Although especially for chapter 7,
proper introduction into the darker magic of algebra will be necessary.

1.2. Related work

Basic DW-MRI has already been extended in several directions. One of the most basic
models and a starting point for most of these extensions is Diffusion Tensor Imaging
(DTI) (see section 5.3). It takes scans from a single shell of b-values as input and
estimates a field of diffusion tensors with only 6 degrees of freedom for each point inside
the brain. This method, albeit being fast and robust, only allows very limited insight
into the underlying tissue structures from these 6 numbers.

Earlier generalizations include multi-diffusion-tensor approaches [92, 47, 82] and higher-
order tensors like Diffusional Kurtosis Imaging (DKI) [36], requiring multi-shell scans.
Although the goal of the former is to describe multiple fiber bundles that constitute the
brain’s white matter and the latter seeks to fix problems with non-exponential signal
decay between shells, there are also deeper connections between these two directions
(see [35]). Both seek to extract more fine-grained tissue information without making
any assumptions about the expected signals.

Here we present a new model that combines both approaches into a linear combination
of higher-order tensors. Since each fiber bundle is mapped to one tensor, certain scalar
measures of these tensors can give intrinsic properties of the fibers.

Another development is spherical deconvolution. It further generalizes the multi-
tensor approach and can directly detect fiber bundles [89] making it more suitable
for fiber tractography. Its precision benefits from mathematical constraints like non-
negativity [87] and it was shown that the angular resolution required for tractography
is further enhanced by low-rank tensor approximations [70, 41, 99, 68]. Other improve-
ments in this field include multi-shell, multi-tissue deconvolution [40], Diffusion Spectrum
Imaging (DSI) tractography [98, 12] and blind source deconvolution [17].

We expand upon this with a new and stronger non-negativity constraint originating
in abstract tensor algebra. This constraint will be proven equivalent to decomposability
into fiber bundles.

The third major field we will discuss is streamsurface integrability. It may seem like a
natural step from deconvolution and tractography along a single fiber direction to sur-
faces that are tangential to two dominant fiber directions [103]. Although these surfaces
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can only exist when certain mathematical conditions are fulfilled, they are nevertheless
widely used for visualization and spawned a fierce discussion whether or not they exist
as a natural phenomenon in our brains [97, 14, 95]. To explore this question more rigor-
ously, Tax et al. defined the Sheet Probability Index (SPI) [84, 83], a computationally
expensive measure. Some authors have claimed that the question depends strongly on
the particular fiber model used in deconvolution and the restricted angular precision.

Our contribution here is a far simpler method for estimating the SPI. Instead of
requiring complex fiber detection on high precision scans, our method is based on simple
DTI.

1.3. Publications

This dissertation is based upon the following four publications:

• [4]: “Quantifying Microstructure in Fiber Crossings with Diffusional Kurtosis” by
Michael Ankele et al. in proceedings of Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 2015.

• [2]: “Versatile, robust, and efficient tractography with constrained higher-order
tensor fODFs” by Michael Ankele et al. in International Journal of Computer
Assisted Radiology and Surgery, 2017.

• [6]: “A Sheet Probability Index from Diffusion Tensor Imaging” by Michael Ankele
et al. in Computational Diffusion MRI, 2018.

• [5]: “DT-MRI Streamsurfaces Revisited” by Michael Ankele et al. in IEEE Trans-
actions on Visualization and Computer Graphics, 2019.

Additionally, we published [3]: “Fast and Accurate Multi-Tissue Deconvolution Using
SHORE and H-psd Tensors” by Michael Ankele et al. in MICCAI, 2016. This got
extended into [2].

1.4. Outline and Contributions

Chapters 2 and 3 present the mathematical background of tensor algebra, spherical
harmonics and a small amount of differential topology that is required to discuss our
main methods. Since also some rudimentary knowledge about structures expected to be
found in the brain is necessary, chapter 4 gives a small introduction into brain anatomy.
Chapter 5 then shortly explains, how DW-MRI works, how it can quantify water diffusion
in fiber bundles and lists mathematical models that are commonly used to estimate
certain tissue parameters from scans.

The main research of our published papers is presented in chapter 6-9. Chapter 6 starts
with a new model for diffusional kurtosis, resulting in new tissue parameters sensitive to
individual fiber bundle’s microstructure. Compared to similar state-of-the-art models,
our parameters are shown to be less affected by fiber crossings.



12 Chapter 1. Introduction

Chapter 7 improves on stability and accuracy of fiber direction estimation. We intro-
duce a new algebraic constraint for deconvolution methods that can be implemented effi-
ciently in widely available numerical libraries. The model is defined in terms of SHORE
basis functions, allowing its usage beyond the classical multi-shell setup. We also in-
corporate multi-tissue capabilities to model white matter, grey matter and corticospinal
fluid simultaneously.

Lastly, chapter 8 and 9 delve into the analysis of fiber geometry. They give additional
insight into the possible existence of two-dimensional sheet structures discussed in recent
years. For this task, we introduce a new, more efficient and stable method to evaluate
the sheet integrability and show that this method does not require sophisticated fiber
estimation but only uses the simple diffusion tensor.



2. Tensors

The main findings of this thesis will be presented in the language of tensors. This chapter
provides a quick introduction into tensor calculations and the relationship to spherical
harmonics and homogenous polynomials.

2.1. Tensors

Vectors

Even though the pragmatic definition of vectors as tuples of numbers v ∈ Rn is enough
to understand most of this work, giving a cleaner, more abstract definition will help
easing the mind into the theory of tensor algebra.

Definition 2.1. A (real) vector space V is a set with two operations, addition
and scalar multiplication, so that

• (V , +) is a commutative group

• scalar multiplication is distributive and respects multiplication in R

Since we are exclusively concerned with finite dimensional vector spaces, we can
always find a basis, i.e. a set of n vectors {e1, ... , en}, so that any vector v ∈ V can be
decomposed into

v =
n∑

i=1

vi ei (2.1)

with the components vi ∈ R.

Definition 2.2. A symmetric, non-degenerate bilinear map 〈·, ·〉 : V × V → R is
called a scalar product.

In general g = (〈ei , ek〉)i ,k=0...n is a symmetric matrix and the scalar product can take
the form of a matrix product 〈v, w〉 =

∑
i ,k vi gi ,k wk = v t · g · w . A basis (ei ) is called

orthonormal in the special case that 〈ei , ek〉 =

{
1 if i = k
0 if i 6= k

. The right-hand expression

will show up frequently enough deserving its own symbol and is called the Kronecker
delta

δi ,k =

{
1 if i = k
0 if i 6= k

. (2.2)

.

13



14 Chapter 2. Tensors

Definition 2.3. The dual space V ? of V is the space of linear functions f : V →
R.

Given a basis (ei ) of V , the dual basis (e?i ) is defined by e?i (ek) = δi ,k . Especially is
dimV ? = dimV . For f ∈ V ? and v ∈ V , evaluation is simply

f(v) =
∑
i

fi e?i

(∑
k

vk ek

)
=
∑
i ,k

fi vk δi ,k =
∑
i

fi vi (2.3)

and coincides with the canonical scalar product of the component vectors. This allows
to compute basis expansions as

vi = e?i (v), fi = f(ei ) . (2.4)

A scalar product defines a natural isomorphism [ : V → V ? by v[ = 〈v, ·〉.

Tensors

The concept of tensors can be confusing, especially since textbooks from different fields
rarely agree on a consistent definition. Historically, tensors were introduced to represent
certain physical quantities, like material stress, that express linear relationships between
other vectorial quantities. These new quantities can require more numerical measure-
ments to be fully defined than the usual three that are be required for vectors. So tensors
can be seen as a generalization of vectors.

Among algebraists it is popular to define the tensor product V ⊗W of vector spaces
V ,W abstractly by its “universal property”. As elegant as this approach might be, it
is a rather hostile one. We will instead use a more practical working definition given by
the realization as multilinear functions on a fixed vector space V :

Definition 2.4. A covariant tensor TTT ∈ T d = V ? ⊗ · · · ⊗ V ?︸ ︷︷ ︸
d

of order d is a

multi-linear map TTT : V × · · · × V︸ ︷︷ ︸
d

→ R.

The (e?i1 ⊗ · · · ⊗ e?id ) for i1, ... , id ∈ {1, ... , n} form a basis of T d . We conclude that the

space T d has dimension nd . The basis expansion is

TTT =
n∑

i1,...,id=1

Ti1,...,id e?i1 ⊗ · · · ⊗ e?id (2.5)

with the coefficients Ti1,...,id forming a d-dimensional array.

Because of
(

e?i1 ⊗ · · · ⊗ e?id

)
(v1, ... , vd) =

∏d
k=1 vk,ik , function evaluation takes the

simple form

TTT (v1, ... , vd) =
n∑

i1,...,id=1

Ti1,...,id v1,i1 ... vd ,id . (2.6)
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Symmetric tensors

For this work a special class of tensors will be of particular interest:

Definition 2.5. A tensor is (totally) symmetric, if

TTT (v1, ... , vd) = TTT (vσ(1), ... , vσ(d)) (2.7)

for every permutation σ ∈ S(d). For its components this means:

Ti1,...,id = Tiσ(1),...,iσ(d)
(2.8)

The space of all symmetric tensors of order d will be denoted by Symn,d .

A symmetric tensor TTT is already completely determined by its components Ti1,...,id

with i1 ≤ ... ≤ id , the other components can be recovered via eq. (2.8). This also fixes
the dimension of Symn,d to

(n+d−1
d

)
. Our work focuses on low order symmetric tensors

in R3, typical dimensions are:

order d 0 1 2 4 6 8

dim
(
Sym3,d

)
1 3 6 15 28 45

2.2. Polynomials

Indexing

To capture the intuitive indexing scheme for multi-dimensional polynomials like

p(x , y , z) = a2,3,4 x
2y3z4 + a1,5,0 xy

5 + ... (2.9)

an efficient method is needed:

Definition 2.6. A tuple iii ∈ {1, ... , d}n is called a multi-index. We set |iii | =
∑

k iiik
and viii =

∏n
k=1(vk)iiik for an n-dimensional vector v. The values(

iii
)

=
|iii |!∏
iiik !

(2.10)

are called multinomial coefficients.

This allows the elegant notation

Definition 2.7. A polynomial in n variables is an expression of the form

p(x) = p(x1, ... , xn) =
∑
iii

(
iii
)
aiii xiii (2.11)
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with constants aiii .

The arbitrary factor
(
iii
)

in this definition will be justified in the proof of theorem 2.1.

Definition 2.8. A polynomial p is homogeneous or a form of degree d if

p(λx) = λd p(x), ∀λ ∈ R . (2.12)

Forms vs. symmetric tensors

Theorem 2.1. The space of homogeneous polynomials of degree d in n dimensions
is isomorphic to the space of symmetric tensors Symn,d .

Proof. To show this, we need the natural homomorphism that maps a tensor TTT to a
polynomial TTT (x) by setting TTT (x) = TTT (x, ... , x). We’ll show that this is an isomorphism
on Symn,d . Let’s make this map more explicit for a symmetric tensor

TTT (x) =
∑

i1,...,id

Ti1,...,id xi1 ... xid . (2.13)

Since neither Ti1,...,id nor xi1 ... xid depend on the permutation of the indices i , we can
use multi-indices iiik = #{i? = k} instead, counting how many of the is share each
possible value k . Some iiis will appear multiple times in the sum, coming from different
permutations of a tuple i . These multiplicities are d!∏

k #{i?=k}! which is exactly the

multinomial coefficient
(
iii
)

. So we have the non-redundant form

TTT (x) =
∑
|iii |=d

(
iii
)
Tiii xiii . (2.14)

To show that this is an isomorphism: Assuming that the polynomial is TTT (x) ≡ 0, then
all coefficients Tiii have to be zero which means also all Ti1,...,id are zero, resulting in a
vanishing tensor TTT = 0. This shows that the map is injective. For surjectivity note,
that every possible polynomial with coefficients aiii can be the image of a tensor with
coefficients Tiii = aiii .

Remark. Symmetric tensors can also be recovered from polynomials by polarization

TTT (v1, ... , vd) =
1

d!

∂

∂λ1
...

∂

∂λd
TTT

(∑
k

λkvk

)
. (2.15)

Harmonic forms

Some useful preparation for the next section:
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Definition 2.9. The Laplace operator is the second order differential operator

∆ =
n∑

k=1

∂2

∂xk2
. (2.16)

A function f (x) is called harmonic if it solves Laplace’s equation

∆f = 0 . (2.17)

Theorem 2.2. Harmonic forms are equivalent to trace-free symmetric tensors.

To keep the number of indices low and readability high, we’ll show this explicitly in 3
dimensions. The generalization should be obvious.

Proof. First apply a single term of the Laplace operator:

∂2

∂x2
xiii =

∂

∂x
iiix xiii−(1,0,0) = iiix(iiix − 1) xiii−(2,0,0) (2.18)

And so:

∆p =
∑
|iii |=d

(
iii
)
piii

[
iiix(iiix − 1) xiii−(2,0,0) + iiiy (iiiy − 1) xiii−(0,2,0) + ...

]
= q (2.19)

This is a new form of degree d − 2 with the general coefficient qjjj(
jjj
)
qjjj =

[(
jjj + (2, 0, 0)

)
pjjj+(2,0,0)(jjjx + 2)(jjjx + 1)

+
(
jjj + (0, 2, 0)

)
pjjj+(0,2,0)(jjjy + 2)(jjjy + 1) + ...

]
(2.20)

for |jjj | = d − 2. Observing that(
jjj + (2, 0, 0)

)
(jjjx + 2)(jjjx + 1) =

d!

(jjjx + 2)! jjjy ! jjjz !
(jjjx + 2)(jjjx + 1) (2.21)

=
(
jjj
)
d (d − 1) , (2.22)

making all factors equal, allows to factor them out:(
jjj
)
qjjj = d (d − 1)

(
jjj
) [

pjjj+(2,0,0) + pjjj+(0,2,0) + pjjj+(0,0,2)

]
(2.23)

The term pjjj+(2,0,0) + pjjj+(0,2,0) + pjjj+(0,0,2) is exactly the trace of the tensor representing
p, leading to the relation

∆p ∼ d (d − 1) trTTT p (2.24)
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Remark. From this proof it can be seen that the space Symtr=0
n,d of trace-free forms of

degree d ≥ 2 has dimension dim Symn,d − dim Symn,d−2. Applying this recursively even
gives us an identification

Symn,d
∼= Symtr=0

n,d ⊕Symtr=0
n,d−2⊕Symtr=0

n,d−4⊕ ... (2.25)

Especially in our case dim Symtr=0
3,d = 2n + 1.

2.3. Spherical Harmonics

Functions on the sphere

R3 can be parametrized by polar coordinates

r(r , θ,ϕ) = r

sin θ cosϕ
sin θ sinϕ

cos θ

 with
r ≥ 0

0 ≤ θ ≤ π
0 ≤ ϕ < 2π

. (2.26)

For r = 1 we can cover the sphere

S2 = {r ∈ R3 : ‖r‖ = 1} (2.27)

by the two angular parameters θ,ϕ.

This section will examine complex functions f : S2 → C on the sphere with the scalar
product defined by integration

〈f , g〉S2 =

∫
S2

f · ḡ dA =

∫ π

0

∫ 2π

0
f (θ,ϕ) ḡ(θ,ϕ) sin θ dϕ dθ . (2.28)

We will also sometimes use the notation f (u) = f (θ,ϕ) for a unit vector u(θ,ϕ).

Construction

The complex spherical harmonics appear as solutions of Laplace’s equation ∆f (x) = 0
in spherical coordinates when enforcing separability f (x) = R(r) Θ(θ) Φ(ϕ). The rest of
this segment delves into the details of their construction with an eye on their connection
to harmonic forms. This can be skipped when only interested in their applications.

The Laplace operator transformed into spherical coordinates takes the form

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
. (2.29)

Applying this to 0 = ∆f = ∆ (R(r) Θ(θ) Φ(ϕ)) and multiplying both sides by r2

f gives

0 =
2r R ′(r) + r2R ′′(r)

R(r)
+

cos θΘ′(θ) + sin θΘ′′(θ)

Θ(θ) sin θ
+

Φ′′(ϕ)

sin2 θΦ(ϕ)
. (2.30)
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The first term only depends on r while the rest is independent of it. This means it has
to be constant. We can even make the ansatz R(r) = Rl(r) = r l for an integer l ≥ 0
since we want to find harmonic forms. The first term then becomes

2r R ′(r) + r2R ′′(r)

R(r)
=

2r l r l−1 + r2l (l − 1)r l−2

r l
= l (l + 1) . (2.31)

Similarly the third term has the only ϕ-dependence, which also forces Φ′′

Φ to be constant.
The simple guess Φ(ϕ) = Φm(ϕ) = e imφ with m ∈ Z gives

Φ′′m
Φm

=
−m2e imϕ

e imϕ
= −m2 (2.32)

turning eq. (2.30) into a messy but ordinary differential equation for Θm
l (θ):

0 = l (l + 1) +
cos θΘ′(θ) + sin θΘ′′(θ)

Θ(θ) sin θ
− m2

sin2 θ
. (2.33)

This is the general Legendre equation for Θm
l (θ) = Pm

l (cos θ). It is solved by the
associated Legendre polynomials Pm

l (cos θ) for −l ≤ m ≤ l . Technically, these are
no polynomials, but form homogeneous polynomials of degree l when expressed in cos θ
and sin θ:

m = −2 −1 0 1 2

l = 0 – – 1 – –
1 – 1

2 sin θ cos θ − sin θ –
2 1

8 sin2 θ 1
2 cos θ sin θ cos2 θ − 1

2 sin2 θ −3 cos θ sin θ 3 sin2 θ
...

...

Definition

Putting the angular parts together encourages the

Definition 2.10. The complex spherical harmonics are the set of functions

Ym
l (θ,ϕ) =

√
2l + 1

4π

(l −m)!

(l + m)!
Pm
l (cos θ) e imϕ (2.34)

for (l ,m) ∈ N×Z with −l ≤ m ≤ l . The Pm
l (cos θ) are the aforementioned associated

Legendre polynomials.

The alternative choice of Φ(ϕ) =

{
cos |m|ϕ m ≤ 0
sin mϕ m > 0

instead of Φm(ϕ) = e imϕ to solve

eq. (2.32), leads to
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Figure 2.1.: The complex spherical harmonics Ym
l of degree l ≤ 4. Hue represents the

complex phase and the radius is scaled by the absolute value.

Definition 2.11. The real spherical harmonics (SH) are:

Ym
l =


√

2 Re(Y−ml ) m < 0
Y0
l m = 0√

2 (−1)m+1 Im(Ym
l ) m > 0

(2.35)

The awkward constant factor in Ym
l ensures orthonormality

〈Ym
l ,Ym′

l ′ 〉S2 = 〈Ym
l ,Ym′

l ′ 〉S2 = δm,m′δl ,l ′ . (2.36)

This means the integral is one for (m, l) = (m′, l ′) and vanishes otherwise. A direct
result of orthonormality is linear independence, serving as basis elements of certain
function spaces on the sphere.

Their role in solving Laplace’s equation makes them highly prevalent in the physics
of classical field theories like electrodynamics and the heat equation. They also play an
important role in pure math, since for fixed l the tuple (Ym

l ) spans irreducible represen-
tation spaces of the groups SO(3) and SU(2), which is again intimately connected to the
theory of angular momentum and spin in quantum mechanics. A very brief glimpse into
this connection will be given in section 5.1.

For this thesis their value lies mostly in forming a basis on S2 and giving a natural
way to approximate and smoothen functions and also to represent them on a computer
as a list of coefficients. The spherical harmonics play a similar role to plane waves in
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Fourier analysis and also allow to easily convolve functions as discussed further down.

Properties

Inversion symmetry:

Ym
l (−u) = (−1)lYm

l (u) (2.37)

That means these functions are symmetric for even degree l and antisymmetric for odd
degree.

They also form a basis of the space of (real) functions on the sphere. This allows to
expand any smooth function f : S2 → R into

f (θ,ϕ) =
∞∑
l=0

l∑
m=−l

f ml · Ym
l (θ,ϕ) (2.38)

with expansion coefficients

f ml = 〈f ,Ym
l 〉S2 . (2.39)

This can be used to approximate functions up to degree lmax

f (θ,ϕ) ≈
lmax∑
l=0

l∑
m=−l

f ml · Ym
l (θ,ϕ) (2.40)

Equivalence to tensors and polynomials

Let’s call SHl the space spanned by (Ym
l )m=−l ...l for a fixed l ∈ N. As discussed before,

the functions r lYm
l for any m ∈ [−l , ... , l ] solve Laplace’s equation ∆

(
r lYm

l

)
= 0. These

functions are called solid harmonics and are homogeneous polynomials by construction.
The radial term r l tells us that the degree is l . Since their construction lead to 2l + 1
independent functions, the whole space of harmonic forms is covered. By Thm. 2.2
these functions are equivalent to trace-free tensors, giving even a natural identification
SHl
∼= Symtr=0

3,l . And so

Sym3,l
∼= SHl ⊕ SHl−2 ⊕ SHl−4 ⊕ ... (2.41)

Convolution

Observation. The Ym=0
l (θ,ϕ) are rotationally symmetric around the z-axis and indepen-

dent of ϕ. Functions f (θ) with this symmetry are sometimes called isotropic or zonal
and can be expanded into

f (θ) =
∑
l

fl Y
0
l (θ) (2.42)

and will find their use as convolution kernels.
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In general, convolution of a function can be seen as a smoothing operation, averaging
the function with a kernel. The kernel needs to be shifted around in the domain of
the original function to get the average everywhere. A clean definition of this process
requires the kernel to be defined on the set of possible shifts. In our case this set is the
group of rotations SO(3) that map the sphere onto itself.

Definition 2.12. The spherical convolution of a function f : S2 → C with a
kernel k : SO(3)→ C is the weighted average over the group of rotations

(k ? f )(u) =

∫
SO(3)

k(R) f (R−1u) dR . (2.43)

The integral uses the invariant Haar measurea with
∫

SO(3) dR = 1.

aIn literature like [21] sometimes a measure with
∫

SO(3)
dR = 8π2 is used leading to a different

constant in the convolution theorem.

Remark. A kernel k : S2 → C can be lifted from the sphere into SO(3) by k̃(R) = k(Rez).

Theorem 2.3. For an isotropic kernel k(θ) the convolution becomes multiplication
of the coefficients

(k ? f )ml =
1√

4π(2l + 1)
kl f

m
l . (2.44)

2.4. Approximation

The spectral theorem states that any symmetric (real) n×n-matrix M can be decomposed
into a sum of n products

M =
n∑

i=1

λi vi ⊗ vi . (2.45)

For positive semi-definite matrices M, the coefficients λi will be non-negative. This can
be used to construct rank-R approximations of M via

M ≈
R<n∑
i=1

λi vi ⊗ vi , (2.46)

including only the terms from dominant eigenvalues λi .

Symmetric tensors TTT of higher order can still be decomposed into a sum of simple
tensor products, as seen in eq. (2.5). But in general, there is no decomposition of non-
negative tensors TTT into

TTT =
∑
i

λivi ⊗ vi ⊗ vi ⊗ ... . (2.47)
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with λi ≥ 0. Also, finding a low-rank approximation for TTT is a very hard problem.
Several heuristic methods can be used, all computationally expensive and accompanied
by many drawbacks[27].

In chapter 7 we introduce a simple criterion for symmetric fourth order tensors in three
dimensions to be decomposable into rank-1 terms like in eq. (2.47). Further information
about the construction that is involved can be found in appendix C.





3. Differential Topology

We won’t need the full power of abstract differential topology here. But some basic
concepts, like derivatives of maps and vector fields, are unavoidable and demand a proper
introduction. Especially, vector field integrability will prove crucial for chapter 8.

3.1. Diffeomorphisms

Definition 3.1. A map φ : Rn → Rn is called a diffeomorphism, if it is smooth
(i.e. C∞ differentiable) and has an inverse map φ−1 that is also smooth.

For any smooth map φ : Rn → Rm we can calculate the Jacobi matrix containing
the first order partial derivatives

Dφ =


∂φ1
∂x1

... ∂φ1
∂xn

...
...

∂φm
∂x1

... ∂φm
∂xn

 . (3.1)

If φ is a diffeomorphism then Dφ is square and has full rank.

Figure 3.1.: φ : Rn → Rm smoothly mapping points p, curves c and tangential vectors
c′.

Now consider a smooth vector field v(p) = vp on Rn. A smooth map φ : Rn → Rm

can be used to push the vectors v forward into Rm by setting

(φ? v)φ(p) = Dφp · vp , (3.2)

25
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which means we take the vector at position p, transform it by Dφp and attach it at
position φ(p). This defines a new vector field φ? v if φ is a diffeomorphism; otherwise a
point in the target might be covered multiple times or not at all. The transformation
by Dφ also ensures that vectors tangential to a curve again yield vectors tangential to
the image of the curve.

Similarly, a dual vector field ωp on Rm can be pulled back along φ via

(φ?ω)p = ωφ(p) ◦ Dφp . (3.3)

3.2. Integral curves

In our every-day lives, wind and water currents are well known examples of phenom-
ena described by vector fields. And from these we carry an intuitive understanding of
movement along these currents and global paths of transport created by local vectors.
Mathematically, this intuitive picture gives rise to:

Definition 3.2. The flow of a vector field v is a map Φ : R× Rn → Rn with

• Φ0 = id

• Φt(Φs(p)) = Φs+t(p)

•
(
d
dt Φt(p)

)
|t=0

= vp

Figure 3.2.: A vector field v and its flow Φt for a specific value of t.

The path passing through a single point p0 at time t = 0 is c(t) = Φt(p0) which is a
curve tangential to v at every image point and usually called an integral curve of v.

By the Picard–Lindelöf theorem the flow is guaranteed to exist uniquely at least in
small regions for vector fields v that are Lipschitz continuous, i.e. if there exists a
constant K > 0 so that for any two points p, q the following condition holds:

‖vp − vq‖ ≤ K‖p− q‖ (3.4)

On compact domains the flow will exist even globally. Also the continuity condition
can be dropped when dealing with vector fields defined on a discrete grid, since it can
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always be interpreted as discretisation of a continuous field and interpolated smoothly.
So, from this work’s perspective there is no constraint on the existence of flows and
integral curves.

In section 8.2 we will find a simplified introduction into Frobenius theory which gen-
eralizes this concept of integral curves tangential to a single vector field to higher di-
mensional surfaces tangential to multiple vector fields. The main message will be, that
these do not exist for arbitrary vector fields and additional conditions have to be met to
form these surfaces.

3.3. Derivatives of Vector Fields

In Rn there is a simple way to define the directional derivative of a vector field. For the
derivative of the field w in the direction of v we can set

(∇vw)p =

(
d

dt
w(p+tvp)

)
|t=0

, (3.5)

which can be expressed via the Jacobi matrix of w(p):

(∇vw)p = (Dw)p · vp . (3.6)

Figure 3.3.: The covariant derivative ∇vw compares wp with the parallel transport of
wp+vdt (dashed).

The operator ∇ (or rather a version generalized to curved manifolds) is called the
covariant derivative because the object∇w = Dw is a linear function in the parameter
v. In general ∇ can be defined for tensor fields TTT resulting in a tensor field ∇TTT with
the covariant order increased by one.

Differential geometry and topology provide an assortment of alternative and non-
equivalent constructions for vector field derivatives. This is unavoidable because our
simple definition will fail in a setup of abstract manifolds. It depends on the ability
to compare vectors at different locations p and p + tv which is not possible when each
location is equipped with its own, distinct tangential vector space. The alternatives arise
from different methods of comparing these vector spaces.
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Another type of derivative is called the Lie derivative Lvw and is defined as

(Lvw)p = lim
h→0

1

h
(wp − (Φh?w)p) (3.7)

with Φ the flow of v. This means we use Φ to transport w along the integral curve of v.
This circumvents the problem of distinct vector spaces by only comparing vectors after
moving them to the same location p.

Figure 3.4.: The Lie derivative Lvw compares wp with the image (dashed) of w along
the flow of v.

The major difference between ∇vw and Lvw is that ∇vw has tensor behaviour in v,
i.e. it only depends on the value of v at one single point. Lvw on the other hand also
depends on the partial derivatives of v. A surprising result is, that even Lvw = −Lwv.

3.4. Lie Bracket

The Lie bracket of two vector fields v and w is often defined as [v, w] = vw − wv using
the inconspicuous notation identifying a vector v =

∑
i vi ei with the first order linear

differential operator
∑

i vi
∂
∂xi

acting on scalar functions f (p). Making this definition
more explicit will prove insightful:

[v, w]f =

(∑
i

vi
∂

∂xi

)(∑
k

wk
∂

∂xk

)
f −

(∑
i

wi
∂

∂xi

)(∑
k

vk
∂

∂xk

)
f (3.8)

=
∑
i ,k

(
vi
∂wk

∂xi

∂f

∂xk
+ viwk

∂2f

∂xi∂xk
− wi

∂vk
∂xi

∂f

∂xk
− wivk

∂2f

∂xi∂xk

)
(3.9)

=
∑
i ,k

(
vi
∂wk

∂xi
− wi

∂vk
∂xi

)
∂f

∂xk
(3.10)

Surprisingly, even though [v, w] was defined as a second order differential operator, both
second order terms cancel each other out and only a first order operator remains. Since
we identify first order operators with vectors, we end up with the vector equation

[v, w] = ∇vw −∇wv . (3.11)
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Another far-reaching classical result is the equivalence with the Lie derivative:

[v, w] = Lvw . (3.12)

This connection between the Lie bracket and vector flows will be further explored in
section 8.2.





4. Brain Anatomy

Before we can discuss the various signal models in the next chapter, a brief introduction
of basic brain anatomy will be helpful. The rest of this work will require an understanding
of the different tissue types of grey and white matter, as well as the corticospinal fluid.
A main topic will also be the shape of fiber bundles in the white matter.

A very good reference is [28]. The images of figure 4.2–4.4 below were adapted from
the 20th edition of this book, which was released into the public domain and is available
online.

4.1. Neurons

The average human brain comprises about 80 to 90 billion neurons and 100 to 500 billion
glia cells. Neurons are connected, forming a complex network that can transmit signals.
This allows for simple signal processing, controlling basic body functions, as well as
higher mental tasks, like memory, decision making, personality and consciousness.

The glia cells are often described as the glue, holding the neurons together, supporting
and maintaining the infrastructure of the brain. Although, recent research also finds
more evidence for their active role in the neurotransmission process.

soma

myelinated
axon

synapsis

dendrites

Figure 4.1.: Simplified neuron structure
and basic synaptic connec-
tions.

Neurons have a cell body, called soma, con-
taining the nucleus. Thin, tentacle-like struc-
tures emerge from the soma. These are called
axons and dendrites. Axons emit signals
from the soma outwards, while dendrites re-
ceive signals. A typical neuron has one axon
and multiple dendrites, both types usually
branching out into complex tree structures
(see fig. 4.1). Most connections between neu-
rons are formed between the axons and den-
drites. These touch in so-called synapses.

Signals are transported in the form of elec-
tric potential. Non-excited neurons main-
tain a negative potential of ca. −70 mV
through exchange of ions with the surround-
ing medium. When excited, the potential
shortly becomes more positive before return-
ing to −70 mV. This pulse travels along the
axon and triggers the release of neurotrans-
mitters in the synapses. These chemicals are

31
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able to cross the gap to connected neurons where they are absorbed and cause an increase
or decrease in its dendrites’ potential. These changes received from multiple synapses
add up. If the overall potential rises above a certain threshold, the neuron also starts
the excitation process.

Figure 4.2.: Examples of more complicated neuron structures. Left : Different layers in
the grey matter. Right : Single neuron in the cerebellum with branching
dendrites.

Axons typically have a diameter between 1 and 15µm. Their length can vary greatly.
Most axons only connect neighboring neurons and are therefore similarly short as the
dendrites. Some axons on the other hand can attain extreme lengths, connecting different
parts of the brain and even running along the spinal cord and reaching the toes.

Longer axons are often coated in myelin, a lipid-rich material from specialized glia
cells. Tissue with a high concentration of myelinated axons is called White Matter
(WM) because of its distinctive white color. White matter will be the main interest of
this thesis. It contains fiber bundles, groups of long axons connecting different regions
of the brain.

4.2. Anatomy

Overview

The brain can roughly be divided into three parts - the hind-, mid- and forebrain. For
humans, the forebrain is by far the largest part and is mostly composed of the two
heavily wrinkled cerebral hemispheres. The hindbrain contains the very fractal looking
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ventricles corpus callosum
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Figure 4.3.: Left : Coronal cut through the brain showing white and grey matter. Right :
Sagittal cut with the corpus callosum in the center.

cerebellum as well as the pons and medulla oblongata. The later two together with the
midbrain form the brain stem which connects to the spinal cord.

Beneath the cerebral hemispheres, the forebrain also contains smaller structures. Most
prominent is the corpus callosum, which acts as a bridge between both hemispheres,
as well as the thalamus and hypothalamus. Also long cavities can be found in each
hemisphere and the central plane between them. These are the ventricles which are
filled with Corticospinal Fluid1 (CSF).

Cerebral hemispheres

The largest structures in the brain are the two cerebral hemispheres. The outer layer is
the cerebral cortex and is formed by Grey Matter (GM) - tissue with a high density
of short-ranged connections with a high degree of branching. The cerebral cortex has a
very distinctive, folded shape - nature’s solution to the problem of fitting a large surface
area of ca. 2 500 cm2 into the small volume of the skull cavity. The protruding ridges
are called gyri, the grooves are the sulci.

Beneath a ca. 2.5 mm thick layer of grey matter comes a larger volume of white mat-
ter. Myelinated axon fibers transport signals between different parts of the cortex. The
majority of connections are confined to each hemisphere. But there are also fibers bridg-
ing the fissure between the hemispheres forming the thin, 10 cm wide corpus callosum

1Also called cerebrospinal fluid.
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and other, smaller commissures.
Deep inside the white matter, one can find nuclei, smaller structures of grey matter.

The thalamus and basal ganglia belong to this category.

Fibers

corpus callosum

cerebral cortex

association fibers

Figure 4.4.: Sagittal cut through the forebrain showing association fibers (red) in the
white matter.

Fiber bundles in the white matter fall into one of three categories:

• Association fibers (fig. 4.4) stay within one hemisphere. Their length varies
greatly as they can either connect neighboring sulci or distant parts of the hemi-
sphere. They run mostly tangential to the surface

• Commissural fibers connect the two hemispheres. They run through the corpus
callosum and the smaller commissures through the center of the brain and spread
out radially in both hemispheres to the surface of the cerebral cortex.

• Projection fibers form connections between the cerebral cortex and other parts
of the brain, like the brain stem. A larger number runs through the thalamus and
the basal ganglia, radiating to the surface.

The next chapter will introduce the diffusion weighted MRI method to measure water
diffusivity in the brain. Even though it is not feasible to scan the whole brain at a
resolution that can resolve single axons on a µm-scale, the dominant direction of fiber
bundles is clearly visible in a typical scan of 1 mm resolution.

Different mathematical tools will be discussed throughout this thesis to estimate fiber
bundle directions from a scan. The goal will be to increase the angular accuracy, espe-
cially in areas where two or three fiber bundles cross. Chapter 6 introduces additional
scalar measures that are influenced by each individual fiber bundle’s shape.



5. Diffusion Weighted MRI

The method of Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI or
DWI or dMRI) has proven to be an invaluable tool in brain tissue research. It allows
acquiring three-dimensional images of living subjects without significant risk. Even
though a compromise between image resolution and acquisition time is necessary, clinical
practice and research of structures within brain has made tremendous progress due to
accessibility of information.

DW-MRI is based on the physical effect of Nuclear Magnetic Resonance (NMR) which
was pioneered around 1940 by Isidor Rabi, Felix Bloch and Edward Purcell. During the
1970s Paul Lauterbur and Peter Mansfield improved on existing imaging techniques
(MRI), laying the foundations for first clinical applications in the 1980s.

5.1. MRI

MRI uses interactions between nuclear magnetic moments of particles with external
magnetic fields to create three-dimensional images. Specifically, the hydrogen nuclei of
water molecules inside the human brain tissue will be of interest. These are made up of

a single proton carrying a property called spin-vector s of length ‖s‖ =
√

3
2 ~ generating

a magnetic moment µ = γs with the reduced Planck’s constant ~ ≈ 1.0546 ·10−34Js and
the gyromagnetic moment γ ≈ 267.5 · 106 rad

sT of protons.
Since this work is not directly concerned with the detailed process of image acquisi-

tion, we will only give a small introduction into the theory behind it. More exhaustive
explanations and be found in the well-written books [52] and [29].

For the rest of this chapter, spin will be described by classical mechanics. The terms
spin and magnetic moment will even be used interchangeably. For the more curious
readers, appendix A presents a brief introduction into the quantum mechanical treatment
of spin and its connections to spherical harmonics from section 2.3.

Spins interacting with magnetic fields

Without an external magnetic field, the spins or magnetic moments of water molecules
inside a volume of material are oriented randomly cancelling each other out. The net
magnetization of a volume V is therefore M = 1

V

∑
µ = 0.

In an external field B, each magnetic moment µ will experience a torque µ × B and
rotate along the axis of B with Larmor frequency ω = γ B. For protons in a typical
field of 1T , this corresponds to a radio frequency f = ω

2π = 42.58MHz.
When applying a constant field B over a longer time, we will observe a second effect.

Each moment’s orientation defines an energy level E = −〈µ, B〉. Due to thermal motion
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Figure 5.1.: Thermal equilibrium spin alignment altered by an external field B (right)
creating net magnetization M.

at room temperature, not all the spins will be aligned with B0, minimizing the energy.
The system will instead end up in a thermal equilibrium with only a very small preference
of spins along B. This results in a small but measurable net magnetization M0 6= 0 in
the direction of B.

Figure 5.2.: Left : magnetization M will precess around an applied B field. Right : addi-
tional relaxation effects as described by the Bloch equation (eq. (5.1)).

The relaxation process into thermal equilibrium is rather complex and is caused by
several effects. Phenomenologically, all this complexity is modelled by the simple Bloch
equation

Ṁ = M× γ B− M⊥
T2
−

M‖ −M0

T1
. (5.1)

It describes the relaxation of the longitudinal and transversal components of M as ex-
ponential decay with the time parameters T1 and T2 respectively. M0 is the equilibrium
magnetization.

Longitudinal relaxation is mostly governed by thermal fluctuations causing energy
exchange with the surrounding material. That is why T1 is called the spin-lattice time
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constant. Common values range from 100 to 1500ms and can depend on B.
Transversal relaxation is also affected by the same processes. Additionally, field in-

homogeneities in B as well as susceptibility differences in the surrounding material can
locally change the Larmor frequency. Since M⊥ 6= 0 requires that the µ exhibit a small
preference for an angular phase due to exterior excitation, this phase preference will
vanish quickly, if the µ rotate with different frequencies. We will come back to this
effect when discussing spin echos. T2 is called the spin-spin time constant and ranges
between 20 and 300ms with typical values of 100ms in brain tissue. We can always expect
T2 ≤ T1.

Radio pulses

Now let us observe the effects of a short radio signal BHF added to the constant back-
ground field B0. To simplify explanations, we will align B0 along the z-axis. The radio
signal is supposed to rotate in the x-y-plane and be of the form

BHF (t) = BHF (t)
[

cos(ωHF t) ex + sin(ωHF t) ey
]

. (5.2)

For the short duration of the pulse, the relaxation terms in eq. (5.1) can be ignored.
Also, the situation simplifies when going from the static laboratory coordinate frame
into the a rotating frame defined by the Larmor frequency ω0 of B0. In this frame,
the effects of B0 are trivial and the radio signal BHF effectively rotates with frequency
ωHF − ω0.

If the radio frequency ωHF matches the Larmor frequency ω0, then the radio field’s
direction is constant in this frame and the magnetization M experiences rotation around
this fixed axis in the rotating x-y-plane. Intensity and duration of the radio pulse can
easily be adjusted to cause a rotation by any given angle, for example pushing M by 90◦

into the x-y-plane.
After such a pulse, the excited transversal magnetization will keep rotating with ω0 in

the static frame until its decay due to T2-relaxation. Since a rotating magnetic moment
emits radio waves, we can detect a signal with a receiver coil tuned to ω0.

Note, that if the frequency ωHF does not match ω0, its effects in the rotating frame
will be more complicated and parts of the rotation will cancel each other out, resulting
in smaller M⊥ and lower signal output.

Gradients

So far, the signal detectable after a 90◦ radio pulse has no spatial information. If
m(x , y , z) is the signal density of the material, then the overall received signal is the
pure integral of all material in the scanner volume

S =

∫
V
m(x , y , z) dV . (5.3)

For imaging purposes, this is bad. There are several common techniques to solve this
problem by adding gradients to the field B0. The intricate details of coil design necessary
for this task will be completely glossed over. For an introduction, see [32].
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Figure 5.3.: Slice selection: A field gradient in the z-direction giving the Larmor fre-
quency a z-dependency. A radio pulse will only be in resonance with a
small slice around z .

A simple gradient in the z-direction accompanying the radio pulse for example results
in a background field B0(z) = (B0 + Gzz)ez and also makes the Larmor frequency
ω0(z) = γ(B0 +Gzz) dependent on the location as seen in fig. 5.3. This allows to select
a thin slice around a specific z-value by tuning the radio pulse ωHF to it. Material
outside this slice is far less affected by the pulse.

Figure 5.4.: Phase encoding: A y-gradient of B changes the rotation frequency ω(y) and
gives phase differences along the y-axis after the gradient pulse.

A second gradient Gx can be applied during the signal readout, giving every x-slice
a different output frequency (fig. 5.4). This is called frequency encoding. A simple
Fourier transform of the received signal allows to separate the signals from each x-slice.

Directly after the initial 90◦ radio pulse, M rotates in the x-y-plane with constant
frequency ω0. Applying another gradient Gy for a short duration causes the magnetic
moments to rotate with different speeds depending on their y -location. Afterwards,
their phase will still show this difference. This is called phase encoding. In complex
notation, it has the effect of multiplying each location’s output signal m(y) by a complex
phase factor before summing to produce the total signal. We recognize that the new
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signal ∫ y1

y0

m(y) dy →
∫ y1

y0

m(y) e i γGyy dy (5.4)

is just the Fourier transform of m(y) for a fixed “frequency” γGy . Repeating the whole
process for enough different values of Gy allows to reconstruct m(y).

Figure 5.5.: Simplified MRI sequence: The radio pulse with a simultaneous gradient Gz

excites spins within a selected z-slice. Afterwards a short Gy pulse shifts
rotation phases to encode the y coordinate. During readout Gx is applied
for frequency encoding.

By combining these three gradient techniques as shown in fig. 5.5, we can produce a
three-dimensional image. NyNz measurements are necessary for a grid of Nx × Ny × Nz

voxels.

Spin echo

As already mentioned, one main contributing factor to transversal relaxation are inho-
mogeneities in B0 and adding gradients enhances this problem even further. Immediately
after the initial 90◦ pulse, the moments µ point into the same direction in the x-y-plane,
their angular phase in the plane is focused, but differences in rotation speed ω0 will drag
the individual phases apart, leading to loss of focus.

This process can be reversed by a second pulse, flipping by 180◦ and thereby inverting
the phases. Performing this ∆t after the 90◦ flip will refocus the phases after another ∆t
(see [30]). Common terminology is that T2 denotes the irreversible part of transversal
relaxation and T ′2 the reversible part due to inhomogeneities. In the Bloch equation
eq. (5.1) the effective relaxation time T ?

2 with

1

T ?
2

=
1

T2
+

1

T ′2
(5.5)

is used.

Similar results can be achieved by inverting the gradient field after ∆t. This creates
a gradient echo if the gradients are the dominant source of inhomogeneities.
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Figure 5.6.: A spin echo is created at t = 2∆t after an initial 90◦ pulse at t = 0 and
a refocusing 180◦ flip at t = ∆t. The blue curve shows the irreversible
T2-relaxation.

5.2. Diffusion

Brownian motion

Diffusion is the transport process of particles in a medium from regions with higher
concentration to lower concentration, not due to the material’s overall momentum, but
rather relative to it. A phenomenological description of this process is Fick’s first law

J = −D∇ρ (5.6)

and the resulting diffusion equation for D = const

ρ̇ = D ∆ρ . (5.7)

ρ(r, t) is the particle concentration, J the flux due to diffusion, and the material’s diffu-
sivity D describes how freely the particles can move through the medium.

It is usually explained microscopically by Einstein’s model[22] of Brownian motion. In
this theory the particles follow random trajectories due to collisions with other particles.
The resulting motion is far too complex to resolve for individual particles, but some
macroscopic conclusions are possible. Each particle will travel a certain distance δr
during a time interval τ . Dealing with a very large number of particles, this gives a
probability distribution P(δr) of displacements. P is also called the propagator, since
it describes the probability of particles at position r to move to position r + δr during τ .

Using kinetic gas theory, Einstein was able to recover the diffusion equation as a low
order approximation of his model and predict concrete values for the diffusivity D. Useful
information can be extracted from an analog of his calculations. We start by formulating
the propagator’s definition as an integral over displacements and performing a Taylor
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Figure 5.7.: Diffusion as a result of random particle motion in a medium.

expansion of ρ in r:

ρ(r, t + τ) =

∫
R3

ρ(r − δr, t)P(δr) dδr (5.8)

=

∫
R3

ρ(r, t)−
∑
i

∂ρ

∂xi
δxi +

1

2

∑
i ,k

∂2ρ

∂xi∂xk
δxi δxk + ...

P(δr) dδr (5.9)

= ρ(r, t) · 1 + 0 +
∑
i ,k

∂2ρ

∂xi∂xk

(∫
R3

δxi δxk
2

P(δr) dδr

)
︸ ︷︷ ︸

=τDi ,k

+0 + ... (5.10)

The last step used normalization of P and its assumed symmetry P(−δr) = P(δr).
Comparing this result to the Taylor expansion of ρ in t gives a generalization of the
familiar diffusion equation:

ρ̇ =
∑
i ,k

Di ,k
∂2ρ

∂xi∂xk
+ higher terms (5.11)

Di ,k are the components of the diffusion tensor which is elegantly predicted by this
theory to be the particle average of square displacements:

DDD =
1

2τ

〈
δr ⊗ δr

〉
P

(5.12)

The simple diffusion equation eq. (5.7) is recovered for isotropic tensors DDD = D111. On
the other hand, eq. (5.11) suggests, that even the anisotropic tensor DDD is just an ap-
proximation to the general diffusion behavior. Even worse. P was assumed independent
of the location r inside the observed volume. Hard boundaries that locally limit the
movement of particles will create indisputable r-dependence.

For D = const the diffusion equation simplifies to eq. (5.7) and can be solved analyti-
cally. Particles concentrated at a single point will dissolve into a Gaussian distribution
around that point after τ . This Gaussian behavior with its exponential decay will be
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studied extensively in chapter 6 where we discuss ways to quantify deviations from this
simple assumption.

But first, diffusion needs to be measured.

Effect on MRI

Ignoring the difficulties of measurement, let’s assume we could record the ratio between
the signal S at t = 0 immediately after the 90◦ pulse and the echo S(t = 2∆) in a simple
spin-echo experiment. This ratio is governed by the exponential relaxation with T2. If
a gradient field is present during this time interval, the echo will decay even further
because some of the water molecules carrying a magnetic moment µ will move due to
diffusion. Movement parallel to the gradient changes the Larmor frequency and reduces
the focusing effect of the 180◦ pulse[85].

Stejskal and Tanner calculated[80] this effect on the spin echo intensity S = S(t = 2∆)
for a sequence of two short gradient pulses of duration δ before and after the 180◦ pulse:

S(g, b) = Sb=0 e
−bD (5.13)

with the diffusivity D in the gradient direction and by setting

b = γ2G 2δ2

(
∆G −

δ

3

)
. (5.14)

∆G is the time between gradient pulses of strength G .
As described before, diffusion processes even in a small volume of tissue can be com-

plex. Different media with different diffusion properties are present and interact with the
tissue’s microstructure. To account for all these effects, eq. (5.13) is still used for complex
materials while D is interpreted as the Apparent Diffusion Coefficient (ADC).

Eq. (5.13) forms the basis of Diffusion Weighted MRI (DW-MRI). It allows to
extract information about tissue diffusion properties and will be crucial to all further
discussions. Also, it will shield us from the gritty engineering details of the MRI process.

Q-space and shells

The main objective is to measure the function D(g, b), or rather the ratio S(g, b)/Sb=0

between diffusion-weighted and non-diffusion-weighted spin echo signals and find good
models for it. Since g is a unit vector and b ≥ 0, these functions can be parametrized
by “b-vectors” b = b g ∈ R3. It is also common to use the alternative scaling

q = q g, with q = γGδ . (5.15)

The space of these vectors is called q-space.
Ideally, one would want to measure S(g, b) on the whole q-space but of course this is

not possible. So there are several commonly used acquisition schemes that sample the
signal at few discrete points while still allowing to get enough useful information. These
schemes range from the bare minimum of 7 measurements for finding the diffusion tensor



5.3. Signal Models 43

to sampling q-space on a large Cartesian grid in Diffusion Spectrum Imaging (DSI).
The gap between these extremes is filled by High Angular Resolution Diffusion
Imaging (HARDI)[92].

Figure 5.8.: Q-space sampling schemes (2d for illustration); Left : multi-shell with two
shells, right : on a Cartesian grid.

Although DSI acquisition requires a large number of measurements making it highly
time-consuming, it offers a big advantage. The signal in q-space is a good approximation
of the Fourier transformed propagator P. This means, DSI allows to reconstruct the
propagator via inverse Fourier transform instead of just giving simple diffusivities.

One very popular category of HARDI schemes uses shells. Besides measurements for
b = 0, a small number of discrete b-values is selected and for each the associated sphere
in q-space is sampled. Single- and multi-shell schemes are differentiated because these
might require different methods for reconstruction.

5.3. Signal Models

To gain any information about the scanned materials, the acquired signal needs to be
interpreted. For some simple structures it is possible to calculate how this signal would
look, this can be fitted to the measurement to extract certain parameters of the material.
Of course creating these mathematical models involves a great deal of simplification and
heuristics.

On the other hand, models do not have to stem from real structures and can be rather
abstract. In most cases the goal is to distinguish and quantify different structures and
one is not directly interested in their underlying details.

Diffusion tensor

The simple second order diffusion tensor from eq. (5.12) yields

S(b, g) = S0 e
−bDDD(g) (5.16)

with DDD(g) =
∑

i ,k Dik gigk .



44 Chapter 5. Diffusion Weighted MRI

Figure 5.9.: Left : Ellipsoid of a diffusion tensor DDD with its eigenvalues λ1,λ2, center,
right : A radial plot of the associated signal for different b-values.

We will denote the eigenvalues of DDD by λ1 > λ2 > λ3. From the physical considerations
in the previous section, DDD can be assumed to be positive definite: λ1,2,3 > 0. Other simple
scalar measures derived from the eigenvalues include the Mean Diffusivity (MD)

D =
1

3
trDDD =

1

3
(λ1 + λ2 + λ3) (5.17)

and Fractional Anisotropy (FA)

FA =

√
(λ2 − λ1)2 + (λ3 − λ2)2 + (λ1 − λ3)2

2(λ2
1 + λ2

2 + λ2
3)

(5.18)

as well as the linear, planar and spherical Westin measures (fig. 5.10)

cl =
λ1 − λ2

λ1 + λ2 + λ3
(5.19)

cp = 2
λ2 − λ3

λ1 + λ2 + λ3
(5.20)

cs = 3
λ3

λ1 + λ2 + λ3
. (5.21)

FA measures the deviation from an isotropic tensor. High anisotropy is often associ-
ated with the presence of a dominant fiber direction. The Westin measures additionally
characterize the type of anisotropy - linear or planar.

Ball-and-stick model

A single diffusion tensor only describes the ideal Gaussian diffusion of a single type of
uniform material and can not accurately describe crossing fibers. A better approach
would be a multi-tensor model with a linear combination of DTI signals:

S(b, g) = S0

∑
i

fi e
−bDDD i (g) (5.22)
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Figure 5.10.: Tensor anisotropy: spherical, linear and planar tensors.

Unfortunately this model has redundant parameters making it unsuitable for fitting.

To get rid of the redundancy, the tensors can be restricted. One tensor is assumed
isotropic (“ball” DDD ∝ 111) while the others are linear (“stick” DDD ∝ v ⊗ v) modeling the
fibers, sharing a common diffusivity parameter:

S(b, g) = S0

(
fball e

−b d +
∑

sticks i

fi e
−b d〈g,vi 〉2

)
(5.23)

with f? ≥ 0 and
∑

f? = 1.

Figure 5.11.: Left : Ball-and-stick model mixing one ball and two sticks and the generated
signal (center, right).

The sticks can be generalized to rotationally symmetric tensors by adding a radial
component −b(d‖〈g, vi 〉2 + d⊥(1− 〈g, vi 〉2)).
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There are also several alternatives for the isotropic part of the signal besides the ball
compartment S/S0 ∝ e−b d . Most commonly used is the dot compartment S/S0 ∝ 1
representing completely constrained particles.

Kurtosis tensor

Another generalization of the diffusion tensor model is the usage of higher order terms,
especially the inclusion of a fourth order tensor as proposed by Jensen et. al[36]:

ln
S(b, g)

S0
= −bDDD(g) +

b2

6
D2

meanWWW (g) (5.24)

with the kurtosis tensor WWW (g) =
∑

i ,k,l ,m Wiklm gigkglgm.

Figure 5.12.: Distribution functions with equal means and variances but different kurto-
sis values.

In statistics (excess) kurtosis quantifies the deviation of a probability distribution from
Gaussianity. In case of diffusion with displacement δr and distribution P(δr) its value
in the direction n is

K (n) =

〈
〈n, δr〉4

〉
P〈

〈n, δr〉2
〉2

P

− 3 . (5.25)

For the kurtosis tensor model eq. (5.24) this evaluates to

K (g) =
D2

mean

DDD(g)2
WWW (g) . (5.26)

Spherical deconvolution

While the ball-and-stick model describes a finite linear combination of fiber signals ori-
ented along the directions vi , it loses accuracy if the fibers are not perfectly focused
inside the measuring volume. This can be solved by the generalization to a continu-
ous integral over an infinite number of fibers. The finite set of weights fi for the fiber
directions is replaced by a continuous density function f (v) on the sphere called the
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Fiber Orientation Distribution Function (ODF or fODF). We demand that f ≥ 0,∫
S2 f dA = 1 and f (−v) = f (v).
For each shell of fixed b-value the signal can also be seen as a discretized function on

a sphere S : S2 → R. Each fiber is then described by a rotated copy of a single kernel
function K : S2 → R on this shell with symmetry around the z-axis. The integral of
rotated copies of K weighted by f is the convolution[75]

S = f ? K . (5.27)

Because of Thm. 2.3 the convolution turns into a simple product when expressing
these functions in the spherical harmonics basis. This also allows to easily invert the
relation to find the fODF f for a given signal S and kernel K . This process is known as
deconvolution. In practice it is more beneficial to express this as a linear least squares
problem and impose additional constraints for f .

It is common to use a SH basis of degree 4 or 8 in calculations. Lower order results in
loss of angular resolution while higher degrees are in most cases too susceptible to noise.

Note that degree n spherical harmonics are equivalent to order n tensors. But although
the higher order tensor models define each tensor for all b-values, here all functions are
only evaluated on a single shell. To describe a multi-shell signal, each shell requires its
own kernel Kb. Section 7.2.1 describes a generalization of this model via the SHORE
basis avoiding the need for a shell structure altogether.

Also, as argued in [70], naive deconvolution inverting eq. 5.27 can lead to artifacts
and negativity. The fODF estimated from the signal of a single discrete fiber would be
a δ-function projected onto the space of low degree SHs. This function exhibits high
frequency ringing around the peak. Deconvolution becomes more stable when altering
the kernel so that it maps the single fiber signal to a rank-1 tensor of order n when using
the SH basis of degree n.
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6. Quantifying Microstructure in Fiber
Crossings with Diffusional Kurtosis

Abstract Diffusional Kurtosis Imaging (DKI) is able to capture non-Gaussian diffusion
and has become a popular complement to the more traditional Diffusion Tensor Imaging
(DTI). In this paper, we demonstrate how strongly the presence of fiber crossings and the
exact crossing angle affect measures from diffusional kurtosis, limiting their interpretabil-
ity as indicators of tissue microstructure. We alleviate this limitation by modeling fiber
crossings with a mixture of cylindrically symmetric kurtosis models. Based on results on
simulated and on real-world data, we conclude that explicitly including crossing geometry
in kurtosis models leads to parameters that are more specific to other aspects of tissue
microstructure, such as scale and homogeneity.

Comment This chapter corresponds to the paper[4]: “Quantifying Microstructure in
Fiber Crossings with Diffusional Kurtosis” by Michael Ankele et al. in proceedings of
Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015. For
more details about the new kurtosis signal model and its relationship to DKI see sec-
tion B.1. Also, a more efficient formula for mean kurtosis MK is given in eq. (B.35) in
the appendix.

6.1. Introduction

Diffusional Kurtosis Imaging (DKI) is a natural and popular extension of Diffusion
Tensor Imaging (DTI) that accounts for the empirically observed non-Gaussianity of
diffusion in biological tissue. Measures of diffusional kurtosis are known to be affected
by factors such as the scale and homogeneity of obstacles to the molecular motion [35],
and therefore provide useful information on tissue microstructure, complementing the
information captured in the diffusion tensor.

Many studies of white matter are motivated by an interest in structural parameters,
such as nerve fiber density or myelination. They use diffusion MRI because it provides
quantities that are affected by such factors, and that are easy and safe to obtain in
vivo. A known limitation of diffusion tensor imaging is the fact that measures such as
fractional anisotropy are sensitive, but not specific to those parameters of interest: The
effect of confounding factors, such as the presence of orientational dispersion or fiber
crossings, can be substantial.

In Section 6.3 of this paper, we discuss an analogous limitation in DKI: We show that
common measures of diffusional kurtosis are not specific to microstructural parameters
of individual fibers, but are heavily affected by the presence, and the exact angle, of fiber
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crossings. This motivates development of a novel computational method in Section 6.4,
in which the impact of those nuisance parameters is greatly reduced. Its building block
is a cylindrically symmetric kurtosis model. In Section 6.5, we present results on simu-
lated data, confirming that our newly derived kurtosis measures are affected far less by
the crossing angle than results of traditional DKI. We also show parameter maps that
demonstrate the effectiveness of our method on real data.

6.2. Related Work

Several recent works have aimed to reduce the effects of fiber crossings and orientational
dispersion on quantitative markers from diffusion MRI. NODDI disentangles the effects
of neurite orientation dispersion and density, but does not model fiber crossings [102].
Spherical deconvolution can be used to quantify fiber properties in a way that is robust
to fiber crossings, either by analyzing the fiber orientation distribution function after
using a fixed deconvolution kernel [62, 19], or by calibrating the kernel itself [69]. Finally,
estimation of per-compartment diffusion parameters can be integrated into crossing-fiber
tractography [48, 63].

Our work is most closely related to a series of approaches that have fitted multiple
diffusion tensors [92, 47, 82]. However, none of them model diffusional kurtosis. We
demonstrate how fiber crossings affect kurtosis measures and propose novel kurtosis
measures whose sensitivity to crossings is greatly reduced.

6.3. How Fiber Crossings Affect Diffusional Kurtosis

It is well-known that fiber crossings strongly affect measures derived from the diffusion
tensor model, such as Fractional Anisotropy (FA). It is unsurprising that the same is
true for measures of diffusional kurtosis. Our first goal is to systematically demonstrate
the exact extent of this dependence.

We have synthesized crossings with varying crossing angles between 0 and 90 degrees,
and created plots of how diffusional kurtosis depends on it. Signal synthesis was per-
formed in a data-driven manner from a subject from the Human Connectome Project
(288 DWIs on shells at b ≈ {5, 1000, 2000, 3000} s/mm2). It is based on 300 voxels
thought to contain a single dominant fiber compartment, given as the voxels with high-
est FA within a white matter mask. The DKI model was fit to the data, and model
parameters were analytically rotated by the desired crossing angle. Diffusion-weighted
signals were computed from the original and rotated model, and averaged. This simu-
lates two fiber compartments that cross at a known angle, with no significant exchange
within the diffusion time. Since we use the full DKI model, it does not impose cylindrical
symmetry.

We performed a constrained least squares fit of the diffusional kurtosis model to the
simulated data [81]. Fig. 6.1 plots mean and one standard deviation of the resulting
mean, axial, and radial kurtosis, over the 300 voxels used to simulate the crossings.
The plots in the top row show that the dependence on the crossing angle is substantial:
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Figure 6.1.: Top: The angle at which fibers cross has a severe impact on the parameters
of DKI. Bottom: The proposed model reduces effects of crossing geometry,
leading to biomarkers that more specifically quantify microstructure prop-
erties.

Compared to the baseline (value for a single fiber compartment, indicated by a green
line), the crossing changes radial kurtosis by a factor of up to 4.23, and axial kurtosis
up to 5.65. A very similar dependence is observed for axial and radial diffusivities
(not shown). Studies that aim to use kurtosis to specifically quantify microstructure
properties, without confounding effects from crossings, should be aware of this problem.
We will now introduce a method to compute novel kurtosis measures, shown in the lower
row of Fig. 6.1, that are less susceptible to the undesired impact of crossing geometry.

6.4. A Mixture of Kurtosis Models

The general strategy of our method is to fit a mixture of kurtosis models to fiber crossings.
In effect, this adds kurtosis to previous methods that have modeled fiber crossings using
multiple diffusion tensors.

6.4.1. A Cylindrically Symmetric Kurtosis Model

The full kurtosis model has six parameters for the diffusion tensor, plus 15 for the
kurtosis tensor. This seems prohibitive for fitting a mixture. We thus constrain the
kurtosis models that will represent the individual fiber compartments in our mixture to
be cylindrically symmetric around the principal diffusion direction.

The same symmetry is frequently assumed in multi-tensor models [92, 47]. It reduces
the 21 parameters in the full kurtosis model to only 7: Two angles that parameterize
a unit vector v indicating the fiber direction, axial and radial diffusivities (λ‖, λ⊥), as
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well as three kurtosis-related parameters: In addition to κ‖ and κ⊥, which are related
to axial and radial kurtosis, the fact that kurtosis is a fourth-order quantity introduced
a third parameter κ�. The resulting signal equation as a function of gradient direction
g and b value is

ln
Scyl(g, b; v)

S0
= −b

[
λ⊥ + (λ‖ − λ⊥)〈v, g〉2

]
+

b2

6

[
κ⊥ + (κ� − 2κ⊥)〈v, g〉2 + (κ‖ − κ� + κ⊥)〈v, g〉4

] (6.1)

To simplify Eq. (6.1), κ∗ absorb the square of the mean diffusivity λ̄ = (λ‖ + 2λ⊥)/3
that usually occurs as a factor in diffusional kurtosis. This means that axial and radial
kurtosis K∗ can be computed from our parameters as

K‖ =
κ‖

λ2
‖

and K⊥ =
κ⊥
λ2
⊥

. (6.2)

Assuming that the fiber is oriented along the z axis, our model parameters translate
to a standard kurtosis tensor via

Wxxxx = Wyyyy = 3Wxxyy =
κ⊥

λ̄
2

, Wxxzz = Wyyzz =
κ�

6 λ̄
2

, Wzzzz =
κ‖

λ̄
2

. (6.3)

This allows computation of mean kurtosis MK using the equations given in [81].
We have used the Bayesian Information Criterion (BIC) to compare our cylindrically

symmetric model with two variants, one with a ball compartment, the other one with a
dot compartment [56], and with the full kurtosis model. Ranking them with respect to
their BIC preferred “symmetric+dot” in 96.3% of all cases, “symmetric” in 3.0%, the
full kurtosis model in 0.7%, and “symmetric+ball” in 0%. Therefore, we include a dot
compartment in all our experiments.

6.4.2. Strategy for Fitting the Final Mixture

Our final signal equation results from using Eq. (6.1) to model each of k crossing fiber
compartments and adding the dot compartment:

S(g, b) = S0

[
fdot +

k∑
i=1

fiScyl(g, b; vi )

]
(6.4)

Volume fractions f∗ are constrained to be non-negative, and to add to one. We ensure
numerical stability in evaluating Eq. (6.2), and force vi to align with a principal diffusion
direction, by constraining λ⊥ ∈ [0.01λ‖,λ‖] and λ‖ > ε. We also impose the same
constraints on our kurtosis parameters as Tabesh et al., 3/(bmaxλ) ≥ K ≥ 0 [81]. As
in the widely used ball-and-stick model [9], the diffusion and kurtosis parameters of all
compartments are coupled. Trying to obtain stable estimates without this constraint is
a topic for future work.
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Kurtosis Tensor Model Our Kurtosis Mixture Model
SNR MK K‖ K⊥ MK K‖ K⊥
∞ −0.15± 0.17 −0.09± 0.22 −1.69± 1.60 −0.00± 0.07 0.02± 0.07 −0.20± 1.01

40 −0.15± 0.28 −0.09± 0.21 −1.75± 1.76 0.01± 0.31 0.02± 0.08 −0.14± 1.62

30 −0.15± 0.28 0.17± 0.38 −1.95± 1.36 0.16± 0.40 0.20± 0.50 −0.36± 1.48

20 −0.04± 0.45 0.35± 0.51 −1.89± 1.35 0.42± 0.84 0.52± 1.00 −0.27± 1.95

10 0.49± 1.18 0.83± 0.96 −1.43± 2.02 1.79± 5.05 1.61± 2.52 1.88± 14.90

Table 6.1.: Statistics on the difference between kurtosis estimates in simulated crossings
and the single fiber voxels from which they were generated quantify the extent
to which we reduce the impact of crossings. At low SNR, neither model gives
useful results.

Even though Eq. (6.4) is relatively straightforward conceptually, fitting it to a given
set of measurements amounts to a difficult non-convex optimization problem. We have
developed the following strategy for solving it: A suitable initialization is obtained from a
diffusion tensor fit, by setting λ‖ to the largest eigenvalue and λ⊥ to the mean of the two
smaller ones. Fiber volume fractions fi and directions vi are initialized by discretizing
an orientation distribution function from spherical deconvolution, as proposed in [75].
The kurtosis parameters and fdot are initialized to zero.

The fitting itself is performed with constrained Levenberg-Marquardt optimization.
We found that it can be accelerated greatly by re-parametrizing diffusivity and kurtosis
parameters. The actual parameters visible to the optimizer are ln(λ‖), λ⊥/λ‖, 1000κ‖/λ‖,
1000κ⊥/λ⊥, 1000κ�/λ‖. Moreover, we observed that convergence benefits from splitting
the parameters into two blocks, and alternating between their optimization. The first
block contains the volume fractions and directions, which we parameterize using elevation
and azimuth angles. The second block optimizes diffusion and kurtosis. Despite these
optimization, processing a slice of 174 × 145 voxels on 6 cores of a 3.4GHz i7 takes 6
minutes.

6.5. Results

6.5.1. Simulated Data

As an initial validation of our model and fitting procedure, we applied it to the simulated
data that was described in Section 6.3. The results are shown in the bottom row of
Fig. 6.1. They confirm that our crossing model succeeds in absorbing a significant part
of the variation in kurtosis measures which is otherwise caused by crossing geometry.
The results remain much closer to the baseline, which is indicated by the green line.
Note that differences between the baselines in both rows are due to the presence of the
dot compartment.

For a quantitative summary, we have taken the difference of kurtosis parameters esti-
mated in the crossing by the two models, and a baseline, computed by the same method
from the single-fiber voxel that was used to simulate the fiber crossing. Table 6.1 reports
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(a) DKI (b) Our Model (c) CSD

Figure 6.2.: Our mixture of cylindrically symmetric kurtosis compartments (b) results
in principal fiber directions that agree well with constrained spherical de-
convolution (c). In contrast to the traditional kurtosis model (a), it leads
to measures that disentangle the effects of microstructure and crossing ge-
ometry.

the mean and standard deviation of this difference over all 300 voxels and all crossing
angles. It confirms that our model greatly reduces the impact of crossings, in particular
in case of radial kurtosis. The relatively low standard deviations indicate that fitting
works reliably. Table 6.1 also shows the results of adding Rician noise to the simulation,
indicating that our fitting starts to degrade around SNR ≈ 20. At this point, even values
from the full model start to exhibit a noticeable bias.

6.5.2. Real Data

In addition to the quantitative validation on simulated data, we have verified that our
model produces plausible results on real human brain scans by fitting it to data from
the human connectome project. In each voxel, the BIC has been used to select between
models with a single, two, or three cylindrically symmetric kurtosis compartments.

A detail of the result on a coronal slice, in the region where fibers from the corpus
callosum, corticospinal tract, and superior longitudinal fasciculus cross, is visualized in
Fig. 6.2 using superquadric glyphs [23] for the diffusion tensor part of the kurtosis model.
Glyphs have been scaled with the volume fraction of the respective compartment, and
color coded with directional kurtosis. In contrast to the traditional kurtosis model in (a),
directions of crossing fibers are immediately apparent from our result (b).

A comparison to the widely used constrained spherical deconvolution model [87], which
we fitted to the subset of measurements with b ≈ 3000 s/mm2, is shown in Fig. 6.2 (c).
The agreement of principal fiber directions and relative volume fractions confirms that
the individual kurtosis compartments in our model successfully capture the dominant
fiber populations in real crossings.

However, our main interest is in the kurtosis measures themselves, which are mapped
in the bottom row of Fig. 6.3 and compared to the corresponding ones from standard
kurtosis imaging in the top row. MK and K‖ are mapped with range [0, 2]; K⊥ is mapped
with range [0, 5]; FA is shown with range [0, 1].

Within the white matter, our model measures a much lower K‖ than the classical DKI
model, close to that of free diffusion. In gray matter, our K‖ remains high, providing a
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(a) DKI MK (b) DKI K‖ (c) DKI K⊥ (d) DKI FA

(e) Our MK (f) Our K‖ (g) Our K⊥ (h) Our FA

Figure 6.3.: Differences in MK and K‖ between our model and standard DKI appear to
be due to including a dot compartment, while those in K⊥ and FA are more
strongly affected by the reduced impact of fiber crossings.

clear contrast between the two tissue types. This correlates with the volume fraction of
the dot compartment; after factoring it out, MK is nearly uniform over the brain tissue
(Fig. 6.3 (e)).

K⊥ and FA have been computed from the diffusion tensors of both models. There
is a clear visual similarity between structures in Fig. 6.3 (c) and (d), which is much
reduced in the corresponding Fig. (g) and (h): While the FA from our model remains
high throughout the white matter (in agreement with the results in [69]), confirming the
reduced impact of fiber crossings, our radial kurtosis still shows substantial variation,
which reflects more subtle aspects of tissue architecture. We believe that the similarity
between Fig. 6.3 (c) and (d) is caused by the fact that, in standard DKI, FA and K⊥ are
both reduced in regions of fiber crossings, and that factoring out the effect of crossings
emphasizes the information specific to diffusional kurtosis.

6.6. Conclusion

In this work, we have demonstrated how strongly measures from diffusional kurtosis
are affected by fiber crossings, which limits their interpretability as indicators of tissue
microstructure. To alleviate this, we have explicitly accounted for crossings by adding
a cylindrically symmetric kurtosis term to the popular multi-tensor model. Results
on simulated data confirm that the resulting model remains tractable, and successfully
disentangles the effects of crossings and per-compartment tissue parameters.

In real data, the maps from our model differ significantly from standard diffusional
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kurtosis imaging; we believe that they more specifically indicate factors such as scale and
homogeneity of tissue microstructure. As a next step, we plan to use additional simula-
tions and a systematic comparison to other MR-derived quantities to gain more insight
into the exact interpretation of these maps. We also plan to use spatial regularization
to achieve stable fitting on noisy data.



7. Versatile, Robust, and Efficient
Tractography With Constrained
Higher-Order Tensor fODFs

Abstract

Purpose Develop a multi-fiber tractography method that produces fast and robust re-
sults based on input data from a wide range of diffusion MRI protocols, including high-
angular resolution diffusion imaging (HARDI), multi-shell imaging, and clinical diffusion
spectrum imaging (DSI).

Methods In a unified deconvolution framework for different types of diffusion MRI
protocols, we represent fiber orientation distribution functions (fODFs) as higher-order
tensors, which permits use of a novel positive definiteness constraint (H-psd) that makes
estimation from noisy input more robust. The resulting directions are used for determin-
istic fiber tracking with branching.

Results We quantify accuracy on simulated data, as well as condition numbers and
computation times on clinical data. We qualitatively investigate the benefits when pro-
cessing suboptimal data, and show direct comparisons to several state-of-the-art tech-
niques.

Conclusion The proposed method works faster than state-of-the-art approaches, achieves
higher angular resolution on simulated data with known ground truth, and plausible re-
sults on clinical data. In addition to working with the same data as previous methods
for multi-tissue deconvolution, it also supports DSI data.

Comment This chapter corresponds to the paper[2]: “Versatile, robust, and efficient
tractography with constrained higher-order tensor fODFs” by Michael Ankele et al. in
International Journal of Computer Assisted Radiology and Surgery (2017). The paper
heavily uses a matrix HT associated to tensors or polynomials. See appendix C for more
information about this matrix and further analysis of its spectrum.

7.1. Introduction

Tractography algorithms reconstruct the trajectories of major fiber bundles based on
data from diffusion MRI (dMRI), and are now firmly established in neurosurgical plan-
ning [15] and studies of brain white matter [97]. It has long been known that tractography
based on diffusion tensor imaging [51, 8] is unable to deal with the large number of voxels
in which multiple fiber populations cross or fan out. Constrained spherical deconvolution
[87] is a widely used alternative that successfully reconstructs fiber crossings from high
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angular resolution diffusion imaging (HARDI) data.
For each voxel, spherical deconvolution computes a fiber orientation distribution func-

tion (fODF). While local fODF maxima are often taken as indicators of main fiber
directions [87], previous work from ourselves and other groups [70, 41, 99, 68] suggests
that mathematically representing fODFs as higher-order tensors and performing a low-
rank approximation reproduces fiber directions with increased accuracy, especially when
fibers cross at small angles.

Our present work significantly extends this higher-order tensor based approach by
applying a constraint that was first introduced in our recent conference publication
[3]. We name this constraint H-psd, since it requires positive semidefiniteness (psd)
of a matrix H that is related to the Hankel form of the higher-order tensor. It can be
imposed on fODFs to make their estimation more robust, especially when only relatively
little or noisy dMRI data is available. Its benefit is analogous to the addition of a non-
negativity constraint [87] to the original spherical deconvolution approach [89], which
has greatly increased its practical utility. However, our H-psd constraint is stronger
than non-negativity, and its exact mathematical motivation and implementation are
substantially different. This is the first part of our technical contribution.

Spherical deconvolution has recently been extended to work with multi-shell data,
i.e., dMRI data which has been acquired at multiple levels of diffusion weighting [40].
In regions of partial voluming between white and gray matter or corticospinal fluid, this
makes it possible to isolate the part of the dMRI signal corresponding to white matter,
which makes tractography in those regions more robust. As a second contribution, we
present a unified framework that allows us to apply this idea also to diffusion spectrum
imaging (DSI). The traditional algorithms used to perform tractography based on DSI
data [98, 12] are different from those commonly used on HARDI and multi-shell data,
and our experimental results provide a direct comparison.

7.2. Methods

Our proposed method supports single-tissue, as well as multi-tissue deconvolution. Sec-
tion 7.2.1 describes our unified framework that permits multi-tissue deconvolution even
in cases where measurements include multiple levels of diffusion weighting, but are not
organized on shells. Our H-psd constraint, which makes deconvolution numerically more
robust, is explained in Section 7.2.2, with mathematical details given in an appendix.
Finally, Section 7.2.3 describes the fiber tracking algorithm used in our experiments.

7.2.1. A Unified Deconvolution Framework

Single tissue deconvolution is based on the assumptions that, up to rotations that account
for differences in orientation, all fibers within a voxel give rise to the same dMRI signal,
and that signals from differently oriented fibers add up linearly. Under these conditions,
in voxels that contain only white matter, the measured dMRI signal can be expressed
as a convolution integral on the sphere. In particular, a fiber orientation distribution
function (fODF) that captures the fraction of fibers in each direction is convolved with a
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kernel that reflects the common dMRI response from a single, coherently oriented fiber
compartment [89]. fODFs are antipodally symmetric and do not indicate the direction
of signal transmission along the bundle; in accordance with the literature, we use the
terms “direction” and “orientation” interchangeably.

Multi-tissue deconvolution involves multiple tissue response functions [40, 17]. It has
mostly been used to separate out signal contributions from gray matter (GM) and cor-
ticospinal fluid (CSF), which have been modeled as isotropic, and therefore only add
respective volume fraction parameters, rather than additional fODFs. These tissue types
are distinguished based on differences in how their dMRI signal is attenuated at differ-
ent levels of diffusion weighting, which are commonly quantified as b values. Previous
approaches [40, 17] employ separate response functions for each tissue and each distinct
b value. This is well-suited for multi-shell data, in which the full space of orientations
is sampled for each of a small number of different b values.

When using Diffusion Spectrum Imaging [96], or some recently proposed dMRI pro-
tocols that distribute samples freely in q-space [46, 57], many different b values are
available, but with few or even only a single orientation each. In this case, modeling
independent spherical functions for each b value results in an unreasonably large num-
ber of model parameters. An immediate consequence is that the previously proposed
method for response function estimation [40] cannot be used on such data.

Therefore, our unified framework for multi-tissue deconvolution instead builds on a
continuous model of functions F (q = qu) in q-space, using the SHORE basis functions
[50]

φlnm(q) =

[
2(n − l)!

ζ3/2Γ(n + 3/2)

]1/2(
q2

ζ

)l/2

exp

(
−q2

2ζ

)
L
l+1/2
n−l

(
q2

ζ

)
Ym
l (u) (7.1)

with the associated Laguerre polynomials Lαn , the real spherical harmonics Ym
l , and a

radial scaling factor ζ = 700. We use maximum radial and angular orders four, which
leads to a fixed number of 6 parameters to describe a cylindrically symmetric white
matter response function, while per-shell modeling as in [40], even when reducing the
angular order to four, would still require 1 + 3× B parameters, where B is the number
of unique non-zero b values, e.g., B = 16 in the DSI data used in our experiments.

Let K (q) =
∑

ln Kln φln0(q) be the white matter single-fiber response, with m = 0 due
to cylindrical symmetry. The signal from an fODF f is then modeled by a convolution
on the sphere, S(q) ≈ K ?S2 f [16]. For a given K and signal vector Si = S(qi ), finding
the spherical harmonics coefficients f via deconvolution becomes a linear least squares
problem:

argminf ‖Mf − S‖2 (7.2)

with convolution matrix

M(i)(lm) =
∑
n

1

αl
Kln φlnm(qi ). (7.3)

Tournier et al. [87] constrain the optimization in Equation (7.2) by requiring f to be
non-negative and define the αl in Equation (7.3) from the truncated spherical harmonics
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transform of the unit delta function. Our method improves numerical stability by making
these two choices differently, as will be explained in Section 7.2.2.

Multi-tissue support is added by concatenating individual tissue matrices

M = [MCSF,MGM,MWM] , f =

fCSF

fGM

fWM

 . (7.4)

Since CSF and GM are isotropic, MCSF and MGM are single-column matrices. Given
single-shell data, multiple tissues cannot be estimated. In this case, we simply replace
the SHORE with the spherical harmonics basis, which leads to omission of the radial
parameter n from Equation (7.3).

Tissue response functions are estimated in close analogy to a previous method for
multi-tissue deconvolution [40]: Initial masks for WM, GM, and CSF are created from
an intensity-based tissue segmentation of a coregistered T1 image [104], thresholded at
95% for each tissue type. These masks are refined based on Fractional Anisotropy (FA)
from a diffusion tensor fit, by restricting them to FA > 0.7 for core white matter, and
FA < 0.2 for GM and CSF. SHORE coefficients of the three response functions are
obtained by fitting and averaging within the respective masks. Due to the stringent
FA threshold, the core white matter mask is thought to contain voxels with a single
dominant fiber in each. They were aligned by rotating the principal eigenvector of the
diffusion tensor to the z axis, which was achieved by rotating the B matrix before the
SHORE fit.

7.2.2. Constrained Higher-Order Tensor fODFs

In a previous work [70], we proposed to describe fODFs f by fully symmetric fourth
order tensors:

f (v) = T (v) =
3∑

i ,j ,k,l=1

Tijkl vivjvkvl , v ∈ S2 (7.5)

Such fODF tensors T are obtained by deconvolution in the Spherical Harmonics basis,
as in Equation (7.2), and subsequently changing to the monomial basis, which can be
done using a nonsingular linear transformation [53]. In the higher-order tensor frame-
work, it is natural to represent a single fiber contribution with volume fraction λ in unit
direction u as a rank-one tensor λu ⊗ u ⊗ u ⊗ u, which can be achieved by setting the
αl in Equation (7.3) to the spherical harmonics coefficients of a unit rank-1 tensor. In
the resulting representation, k principal fiber directions for deterministic tractography
should be extracted from an fODF by performing a symmetric rank-k approximation,
rather than using the k dominant peaks of the fODF function [70, 41].

A key technical contribution of our current work is to formulate a constraint which we
call H-psd. It is the suitable higher-order tensor counterpart of the nonnegativity con-
straint on f that is commonly imposed in Equation (7.2) [87]. It can be enforced in an
exact, simple, and efficient manner using standard optimization packages, and it is theo-
retically well-founded in the sense that it can be shown to be equivalent to the condition
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that a valid fODF should represent a mixture of non-negative fiber compartments. It
is more rigorous than non-negativity in the sense that any H-psd fODF is non-negative,
but the reverse may not be true: Intuitively, some non-negative fODFs are so sharp that
they cannot possibly arise from a non-negative mixture of fiber compartments, which
have a minimum width in the higher-order tensor framework.

Since the exact mathematical derivation of the H-psd constraint will only be relevant to
part of the intended audience of our work, we present it in an appendix. The main result,
which also explains the name H-psd, is the fact that the matrix H in Equation (7.18),
which is composed of the coefficients of T , has to be positive semidefinite (psd).

In practice, this constraint can be imposed on Equation (7.2) using the quadratic cone
program (QCP)

argminf
1

2
〈f ,Pf 〉+ 〈q, f 〉 subject to (Gf ) psd (7.6)

with f , M and S as in Equation (7.2), P = MTM, q = −MTS , and a matrix G that
first maps f from spherical harmonics to the monomial basis, and then to its H matrix
from Equation (7.18), Gf = Hf . In multi-tissue deconvolution, additional non-negativity
constraints are enforced for fGM and fCSF.

The QCP is solved using the routine coneqp in the publicly available software package
cvxopt, which requires the above-mentioned vectors and matrices as its only input.
Details on its implementation are given in [93], and are beyond the scope of our paper.

7.2.3. Deterministic Tractography with Branching

Similar to previous work [98, 70, 20, 88], deterministic multi-fiber tractography has been
implemented with Euler integration. In each of the local fiber directions at a given seed
point, a streamline is extended bi-directionally with an integration stepsize that was set
to 0.5 mm in our experiments. In each integration step, a local fODF is interpolated
trilinearly, and a set of fiber directions is extracted from it. In case of multiple options,
the fiber direction that leads to lowest tract curvature is selected.

Streamline integration stops when no fiber is found within a given turning angle (exact
values specified below), after a maximum number of integration steps (400), or when the
white matter volume fraction was below 0.5. This volume fraction is estimated by the
multi-tissue deconvolution itself or, in case of single-shell data, using a coregistered T1

tissue segmentation.

In order to capture the effect of fiber dispersion, we implement branching. In par-
ticular, when multiple directions are permissible, the tract branches out, i.e., a new
streamline is seeded in the direction leading to the second lowest curvature. In order
to avoid excessive branching, streamlines that result from branching are not allowed
to branch again, and the original ones can only branch again after some number of
integration steps (4 mm).

In our framework, main fiber directions are extracted using low-rank approximation,
which requires deciding on a suitable number k of local fiber compartments. As discussed
more formally in the appendix, k amounts to the numerical rank of the fODF tensor,
which coincides with the rank of the same matrix H that underlies the H-psd constraint.
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Therefore, we estimate k as the number of eigenvalues of H above some threshold θ. Since
we are not aware of any regions where more than three fiber tracts cross, we impose a
maximum of k ≤ 3. We found that the exact values of θ that lead to plausible results
depended on the acquisition scheme and regularization. We set it by visually inspecting
the spatial maps of the number of fiber compartments resulting from different choices,
and report values for the individual experiments below. Rank-one terms with scaling
factor λi < 0.15 were discarded.

For comparison, we also created results using methods that take local fODF maxima
as estimates of main fiber directions. In this case, we first roughly localize local maxima
on a discretization of the sphere (321 unique directions), and subsequently refine their
exact positions using gradient ascent. Peaks with magnitude below 0.1 were discarded.

7.3. Results

We report results of our method on two clinical dMRI datasets, and on data that we
synthesized from one of them, as described in Section 7.3.1. Motion correction was
performed in a pre-process using the tools available in FSL [1].

The first dataset, clin-2-sh, is a two-shell dataset from a healthy volunteer, measured
on a 3T Skyra (Siemens, Germany) with 96 × 96 × 50 voxels of 2 mm isotropic size,
TE/TR = 89/9100 ms. Three images were taken at b = 0, 30 DWIs at b = 700, and
64 at b = 2000 (all b values in s/mm2). Some experiments only use the data from
the inner or outer shell (clin-700 and clin-2000, respectively). We note that traditional
single-shell deconvolution does not make use of the b = 0 images.

The second dataset, clin-dsi, was kindly provided by Katrin Sakreida and Georg Neu-
loh (RWTH Aachen University Hospital). It was acquired on a 3T Prisma (Siemens,
Germany) with 136 × 136 × 84 voxels of 1.5 mm isotropic size, TE/TR = 69/11600 ms.
One b = 0 image and 128 DWIs with b values up to b = 3000 were taken on a Cartesian
grid.

7.3.1. Simulation Experiment

In order to quantify the accuracy of our method, we generate dMRI data for which vol-
ume fractions and orientations of crossing fiber compartments are known. Crossings are
simulated based on resampling the clinical data clin-2-sh. This process avoids potentially
oversimplifying assumptions in mathematical models of water diffusion and noise.

Data was generated based on the same voxels used to estimate response functions for
the three tissue types, as explained in Section 7.2.1. The respective white matter voxels
are thought to contain a single fiber compartment, whose orientation was estimated via
the diffusion tensor model.

For each simulated fiber crossing, we averaged the signals from two randomly chosen
single fiber voxels, after applying a random rotation to them, and one voxel from either
the gray matter or CSF mask. The respective volume fractions were selected randomly,
and normalized to sum to one. In the presence of noise, we cannot expect any algorithm
to reconstruct the orientation of fibers with a very small volume fraction. Therefore,
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Figure 7.1.: Average errors of fiber directions and individual fiber volume fractions re-
constructed from two-fiber crossings that have been simulated from clinical
two-shell data. The proposed method is SHORE-4 rank-1 H-psd, the current
state-of-the-art is SH-8 delta nonneg. Results from several hybrid methods
are shown to assess the impact of individual factors.

we discarded samples in which the weaker fiber contributed less than 20% to the white
matter, or in which both fibers combined accounted for less than 50% of the voxel.

We used different deconvolution approaches to reconstruct the fiber directions and
volume fractions from the resulting data, and compared the results to the known values,
which were recorded during the simulation. Figure 7.1 plots the average angular error in
the reconstructed fiber directions (top) and the average absolute errors in their estimated
volume fractions (bottom), each as a function of the ground truth crossing angle between
the two fibers.

The scaling parameters λi of the low-rank approximation were directly taken as esti-
mates of the corresponding fiber volume fraction, as motivated in Section 7.2.2. When
extracting fiber directions from ODF peaks (in “SH-4 delta nonneg” and “SH-8 delta
nonneg”), volume fraction estimates were obtained by dividing the magnitude of the
corresponding peak by the peak magnitude observed when applying constrained decon-
volution of the same order to the single fiber response.

The main comparison is between our proposed method (“SHORE-4 rank-1 H-psd”)
and the previous state-of-the-art [40] (“SH-8 delta nonneg”). We note that, for an-
gles smaller than approximately 55◦, the latter method no longer reliably resolved the
crossing, with two significant fODF peaks being detected in less than 50% of the cases.
We continue to show fiber direction errors based on the remaining few cases as isolated
markers.

In order to investigate the effects of individual factors that make up the difference
between our method and the previous state-of-the-art, we also performed experiments
with several hybrid methods, including one that combines lower order with peak finding
(“SH-4 delta nonneg”), ones that use traditional per-shell signal modeling instead of
the SHORE basis (“SH” variants of “SHORE”), or replace our H-psd with a traditional
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clin-700 clin-2000 clin-2-sh clin-dsi

Proposed Method 1m49s 1m26s 2m10s 4m45s
Order-8 CSD [87] 3m08s 3m19s N/A N/A
MSMT Deconvolution [40] N/A N/A 4m10s N/A

Table 7.1.: Computation times for deconvolution of whole-brain data using different ap-
proaches, all implemented in the same optimization framework. This does
not include tractography, whose computational cost is also reduced by using
low-rank approximation.

nonnegativity constraint in 300 discrete directions [87].

7.3.2. Single-Shell Deconvolution

Similar to Tournier et al. [87], who demonstrate that their non-negativity constraint
allows them to produce plausible results even with relatively low b value and few gradient
directions, we test our H-psd constraint by applying it to clin-700 (30 DWIs at b = 700).
Figure 7.2 visualizes the resulting fODFs and a deterministic streamline tractography in
the brainstem region.

Unlike the standard diffusion tensor model, which is shown for comparison, combining
spherical deconvolution with low-rank approximation allows us to reconstruct pontine
crossing tracts even with this limited b value and number of gradient directions (maxi-
mum turning angle 40◦; θ = 0.35 for unconstrained, θ = 0.1 for H-psd). Negative values
of the fODFs are shown in white in Figure 7.2 (b). They are removed, and fODFs in
adjacent voxels become more similar, when enforcing the H-psd constraint.

For comparison, Subfigure (e) shows results based on clin-2000 (64 DWIs at b = 2000;
θ = 0.1), which is commonly considered a more suitable input for spherical deconvolu-
tion [87]. Subfigures (d) and (f) provide a direct comparison with classical constrained
spherical deconvolution (CSD).

Table 7.1 compares the times for whole-brain deconvolution, measured on a worksta-
tion with a six-core CPU at 3.4 GHz, and using the same optimization package (cvxopt)
for all methods. Our method takes only about half as long as CSD, mostly due to our
use of a lower model order. In Figure 7.2, this is reflected in the increased smoothness
of our fODFs. Despite this, applying low-rank approximation allows us to obtain very
similar tractography results.

In addition to the reduced computational effort for whole-brain deconvolution, trac-
tography is also less costly when using order-4 low-rank approximation, compared to
order-8 peak finding: In our implementation, one integration step with the former took
16 ms on average, while one step with the latter took around 125 ms.

While the H-psd constraint improves the results of fourth order tensor based decon-
volution, Figure 7.2 (b) shows that we achieve useful results even without it, even on
the clin-700 data. This is in contrast to standard order-8 deconvolution, whose results
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(a) Diffusion Tensors,
30 DWIs, b = 700

(b) Tensor-based fODFs, unconstrained,
30 DWIs, b = 700

(c) Tensor-based fODFs, H-psd,
30 DWIs, b = 700

(d) Classical CSD fODFs,
30 DWIs, b = 700

(e) Tensor-based fODFs, H-psd,
64 DWIs, b = 2000

(f) Classical CSD fODFs,
64 DWIs, b = 2000

Figure 7.2.: Unlike diffusion tensors (a), fODFs allow us to resolve the pontine crossing
tracts. In (c), our H-psd constraint reduces the impact of noise and removes
negative fODF lobes, shown in white in the left part of (b). Even though it
is possible to reconstruct fiber crossings even from few gradient directions
at low b values, cleaner results are obtained when HARDI data is available,
as shown in (e) and (f). We achieve similar tractography as classical CSD,
at a reduced computational cost.
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clin-700 clin-2000 clin-2-sh clin-dsi

Proposed Method 189 7.86 458 536
Order-8 CSD [87] ∞ 3.22× 106 N/A N/A
MSMT Deconvolution [40] N/A N/A 1.02× 107 N/A
Order-4 CSD / MSMT 1.18× 104 478 1.47× 103 N/A

Table 7.2.: The condition numbers of the matrices defining the quadratic optimization
problem in our method are much lower than in competing ones. This indicates
its intrinsic numerical stability, and explains why constraints are less crucial
than in traditional deconvolution.

without enforcing non-negativity were dominated by noise so severely, even in the clin-
2000 data, that it did not make sense to present them. This is explained by inspecting
the condition number of the matrix P that defines the respective quadratic optimiza-
tion, listed in Table 7.2. Estimating order-8 fODFs from clin-700 is an underdetermined
problem, represented symbolically in Table 7.2 by an infinite condition number. As we
saw in Figure 7.1, order-4 variants of standard deconvolution do not provide a useful an-
gular resolution. We still include them in the final row of Table 7.2 to illustrate that the
improved conditioning of our method is only partially explained by the reduced model
order. Using a rank-1 representation of single fibers, as it was introduced in Section 7.2.2,
also improves conditioning considerably.

In theory, our H-psd constraint forces fODFs to be nonnegative everywhere, while
standard CSD [87] only enforces nonnegativity in 300 discrete directions. We quantified
to which extent our numerical implementations of both constraints satisfy nonnegativity
in practice. This was done by evaluating ODFs along a dense set of 1281 unique direc-
tions, and taking the minimum of all results. Computed over the whole brain estimates
in clin-700, a minimum of −1.38 × 10−7 indicated a negligible numerical inaccuracy in
enforcing the H-psd constraint. Even though we used the capabilities of cvxopt to
enforce nonnegativity in 300 directions as hard constraints, as opposed to implementing
soft constraints as proposed in [87], the minimum ODF value observed for classical CSD
was much more substantial, −0.164.

7.3.3. Multi-Shell Deconvolution

Using all data from clin-2-sh, we compared results from state-of-the-art multi-shell multi-
tissue deconvolution [40], which involves order-8 fODFs based on the truncated delta
peak and a non-negativity constraint, to our proposed method, which uses a fourth-
order tensor representation of fODFs with our H-psd constraint.

We found the tissue volume fraction maps from both methods, shown in Figure 7.3,
to be quite similar. Averaged over a brain mask, the mean absolute difference was 0.005
in CSF, 0.026 in gray matter, and 0.025 in white matter. As in Figure 7.2, our fODFs
are less sharp compared to the ones from the existing approach [40]. The bottom row of
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CSF using [40] CSF, our method

GM using [40] GM, our method

WM using [40] WM, our method

fODFs using [40] fODFs, our method

Directions using [40] Directions, our
method

Figure 7.3.: On two-shell clinical data, very similar tissue volume fraction maps are ob-
tained using a state-of-the-art approach (left column) and ours (right col-
umn). Our fODFs (fourth row) are smoother, which accounts for the im-
proved speed and conditioning of our method. The final row (right column)
shows that low-rank approximation allows us to reliably resolve crossing
fibers directions despite the smoothness of our fODFs.
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Figure 7.3 shows that low-rank approximation allows us to resolve two- and three-fiber
crossings despite the smoothness of our fODFs. Averaged over the white matter, the an-
gular deviation, weighted by volume fractions, was 8.24◦ when comparing fiber directions
from order-8 fODF peaks to the results of fourth-order low-rank approximation.

Similar to previous work on crossing fiber tractography [70, 49], we compared the
ability of different fiber tracking algorithms to reliably reconstruct transcallosal fibers
from seeds in the corpus callosum near the mid-sagittal plane. The left column of
Figure 7.4 shows results from our own implementation of deterministic tractography
with branching (maximum turning angle 45◦, θ = 0.02). It finds many lateral projections
when using fiber estimates from fourth-order low-rank approximation (top), but only
very few based on the peaks in traditional order-8 fODFs (bottom).

For comparison, we re-processed the same data with the software package MRtrix3
[88], which includes a reference implementation of the original multi-shell multi-tissue
deconvolution approach [40]. In order to make the results of tracking methods with and
without branching more comparable, we varied the number of tracts per seed voxel to
achieve a similar final number of displayed fibers (around 4 400) in all cases. We used
the recommended default step sizes with MRtrix, which depend on the algorithm.

Since the deterministic tracking in MRtrix does not implement branching, it finds
even fewer lateral projections (bottom right). However, it includes a probabilistic trac-
tography approach [86] that is based on sampling the fODFs rather than finding their
maxima, and extracts lateral fibers similar to the ones found by our deterministic tech-
nique (top row), albeit with the increased wiggling that is characteristic of probabilistic
tracking.

7.3.4. Clinical DSI

After applying our variant of multi-tissue deconvolution to clinical DSI data (clin-dsi),
we evaluated the extent to which the resulting fODFs allow us to reconstruct the cor-
ticospinal tract from seeds in the internal capsule. A similar task was recently used by
others to evaluate crossing-fiber tractography [15]. The results are shown in the top row
of Figure 7.5, and are compared to results from standard DSI reconstruction [98], as
implemented in the open source software package dipy [26].

In contrast to the fiber ODFs (fODFs) from our method, traditional DSI reconstruc-
tion results in diffusion ODFs (dODFs) that reflect the fraction of diffusion that happens
in each direction, as opposed to the fraction of fiber bundles. As can be seen in the cen-
ter row of Figure 7.5, dODFs are generally less sharp then fODFs. Canalez-Rodŕıguez
et al. [12] have used deconvolution to compute sharper ODFs from DSI data. The re-
sults from their method, again using the publicly available implementation from dipy, is
shown in the right-hand column of Figure 7.5. We note that in contrast to our method
and related ones [40], their deconvolution approach avoids assumptions on the response
of single fiber compartments, and therefore does not produce fODFs.

All tractography results in Figure 7.5 have been obtained with the algorithm from
Section 7.2.3 (maximum turning angle 50◦). It is using fiber estimates from low-rank
approximation (θ = 0.02) in case of our fODFs, and local maxima in case of dODFs, as
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Deterministic tracking with low-rank
approximation (order 4)

Probabilistic tracking (order 8)

Deterministic tracking with peak finding and
branching (order 8)

Deterministic tracking with peak finding,
reference implementation (order 8)

Figure 7.4.: Our deterministic tractography based on low-rank approximation success-
fully reconstructs transcallosal fibers from seeds near the mid-sagittal plane.
Using previously available tools, we only managed to reconstruct them with
probabilistic tracking. As shown on the bottom row, deterministic tracking
based on peak finding reconstructs much fewer of them, both with our own
implementation (left) and a publicly available one (right).
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Proposed Method Standard DSI DSI With Deconvolution

Figure 7.5.: Our method can also be applied to clinical DSI data, and reconstructs more
lateral projections than standard DSI tools when tracking the corticospinal
tract from seeds in the internal capsule. The reason for this becomes appar-
ent when comparing fODFs from our method to dODFs from DSI (middle
row), and the directions resulting from low-rank approximation or peak find-
ing, respectively (last row).
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is customary in standard DSI tractography [98]. Corresponding directions are visualized
in the final row of Figure 7.5. In all cases, streamlines that cross the mid-sagittal plane
have been removed in a post-process.

7.4. Discussion

Our proposed method differs from the previous state-of-the-art in several aspects, which
we will discuss separately.

7.4.1. Unified Deconvolution Framework

The main benefit of our unified deconvolution framework is the fact that it allows us to
perform multi-tissue deconvolution also on dMRI data that include multiple b values,
but is not organized on shells. The comparison in Figure 7.5 confirms that this extension
of multi-tissue deconvolution produces plausible results on clinical DSI data, and com-
pares favorably to standard DSI processing in its ability to reconstruct also the lateral
projections of the cortico-spinal tract from seeds in the internal capsule.

In Figure 7.5, a previously proposed method for DSI deconvolution led to an implau-
sibly low number of secondary fiber directions in a known fiber crossing region, and
decreased our ability to reconstruct branching fibers. This might indicate that the char-
acteristics of the clin-dsi data, which include fewer measurements and lower maximum
b value than the data used by Canalez-Rodŕıguez et al. [12], might be less suitable for
that approach. Due to the long computational times of its dipy implementation, we
only tried it with default parameters.

The simulation results in Figure 7.1 indicate that, in case the input data is organized on
shells, it makes very little difference whether we model the response functions per-shell,
as in [40, 17], or with our unified framework. Despite the fact that the angular part of the
SHORE basis in Equation (7.1) consists of spherical harmonics, i.e., the same basis that
is otherwise used for per-shell modeling, this result is not trivial: Our approach reduces
the number of parameters needed to represent the response function by assuming that
radial and angular parts factorize, which is not enforced by the more flexible per-shell
modeling. The fact that both methods produced almost identical results suggests that
this assumption is not violated to an extent that it would impair the deconvolution.

7.4.2. H-psd Constraint

A theoretical benefit of our H-psd constraint is the fact that it is easy to enforce exactly,
while non-negativity is either approximated by enforcing it on a discrete set of points on
the sphere [87], or requires a costly Riemannian gradient descent [16]. It was confirmed
visually and quantitatively in Section 7.3.2 that enforcing H-psd removes nonnegative
fODF lobes, and makes the fODFs and resulting tractography more regular.

Even though this constraint is beneficial, Figure 7.1 suggests that it results in an
increased accuracy mostly at small crossing angles. Clearly, constraining deconvolution
based on fourth-order tensors is not as crucial as enforcing non-negativity in order-8
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CSD. This can be understood from the greatly reduced condition numbers, which were
presented in Table 7.2, and which are made possible not only by the reduction in model
order, but also by representing single fibers as rank-one tensors rather than truncated
delta peaks.

A direction that we would like to follow in our future work is the use of our H-psd
constraint to prevent overfitting of misspecified deconvolution models, e.g., ones that
assume a response function that has been derived from healthy tissue, and may not
match the true response in regions that suffer from demyelination [69].

7.4.3. Model Order and Low-Rank Approximation

An obvious factor that contributes to the improved conditioning and speed of our method
is the fact that we use a lower order representation of fODFs, i.e., order-4 with just 15
degrees of freedom, compared to the more common order-8 models with 45 degrees of
freedom. It is well-known that lower orders lead to better numerical behavior, while
higher orders are commonly selected to increase angular resolution, defined as the min-
imum angle at which two crossing fiber populations can still be reliably distinguished
[87].

At this point, the use of low-rank approximations to extract fiber directions from
fODFs is the key ingredient of our method. It can be seen from Figure 7.1 that low-rank
approximation of a fourth-order fODF leads to an even higher angular resolution than
extracting peaks of an order-8 fODF, and that reducing the order in a peak finding ap-
proach would lead to unacceptably poor resolution. Even though we demonstrated this
benefit of low-rank approximations before [70], we previously compared to filtered spher-
ical deconvolution [89], while our current work shows that the advantage is maintained
compared to state-of-the-art constrained deconvolution [87].

It was shown in Fig. 7.1 that fiber volume fraction estimates from low-rank approx-
imation are more accurate than ones based on ODF peak magnitudes. The reason for
this is the same as for the increased angular resolution: Unlike simple maximum find-
ing, low-rank approximation amounts to an optimization that correctly accounts for the
interference of ODF peaks from mixing fibers [70]. We note that, in any case, volume
fraction estimates derived from deconvolution will be affected by potential mismatches
between the deconvolution kernel and the actual tissue characteristics [62].

As shown in [70], it is possible to generalize the tensor-based approach to orders
higher than four. According to Equation (7.26) in the appendix, the corresponding
H-psd constraints are stricter than requiring non-negativity of the fODF, but no longer
ensure that the fODFs will be a mixture of non-negative fiber contributions. Preliminary
experiments, whose results are not shown, indicate that the additional benefits of taking
the tensor-based approach to higher orders appear to be marginal, while the increase in
computational effort is significant. Future work might investigate this in more detail.
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7.4.4. Multi-Fiber Tractography

Several approaches to multi-fiber tractography are based on the idea that estimating
multiple fiber directions in each voxel independently is not reliable enough, and should
be regularized by using information from spatial neighborhoods. Examples include un-
scented Kalman filters [49, 15] or global optimization frameworks [64]. Other authors
have argued that a larger number of plausible tracts can be reconstructed by moving
from deterministic to probabilistic tractography [88].

Our results have been achieved by improving the per-voxel estimates used within a de-
terministic streamline-based tractography algorithm whose benefits include its simplicity
and speed. In Figure 7.4, the improved angular resolution of our technique allowed us to
reconstruct deterministic tracts that otherwise would have required probabilistic track-
ing. A comprehensive comparison of deterministic branching and probabilistic tracking
as strategies for capturing the full extent of dispersing bundles will require a separate
study. Similarly, it is an obvious question for future work to which extent results can
be further improved by integrating our refined per-voxel estimates into more complex
tractography algorithms.

Of course, many of the well-known limitations that are shared by all dMRI-based
fiber tractography approaches also apply to our proposed method, and results should
be interpreted with due care [43]. This includes the possibility of false positives and
false negatives, i.e., missing or spurious fibers. While theoretically justified constraints
such as our H-psd can contribute to reducing them, and to generating tractography
that is more helpful for neurosurgery and scientific investigation, it is unclear whether
this fundamental issue can be fully resolved, given the gap in spatial scales between
individual axons and MR image resolution.

7.5. Conclusion

We have introduced a multi-fiber tractography method that is based on a unified de-
convolution framework for HARDI, multi-shell, and diffusion spectrum imaging data,
and makes use of fourth-order tensor based deconvolution with a novel and theoretically
justified H-psd constraint. Results indicate that our method is faster and numerically
more robust than previous alternatives, achieves higher angular resolution on simulated
data, and compares favorably to existing techniques in qualitative comparisons on clin-
ical data. Despite the promising results, more extensive validation should be performed
before our method is used in clinical practice.

Appendix: Mathematical Derivation of H-psd Constraint

This appendix presents the formal definition of our H-psd constraint (Definition 4), based
on a matrix representation H of higher-order tensor fODFs (Definition 3). According
to Corollary 1, H is positive semidefinite if and only if the corresponding fODF can
be decomposed into a non-negative weighted sum of rank-1 terms, which correspond to
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single fiber compartments in our framework. This provides the theoretical justification
of our H-psd constraint, whose practical effectiveness is demonstrated in the main part
of the paper.

We represent fODFs as forms or symmetric tensors p of even degree d = 4 in n = 3
dimensions. In tensor notation:

p(x) = p(x, ... , x︸ ︷︷ ︸
d

) =
∑

i∈{1,...,n}d
pi1,...,id xi1 ... xid , x ∈ Rn . (7.7)

We will call the set of these forms Fn,d . Symmetry allows us to use a different, non-
redundant indexing scheme

p(x) =
∑

i∈I (n,d)

(
d

i

)
pi x

i (7.8)

with multi-indices i ∈ I (n, d) = {i ∈ N0
n|
∑

k ik = d}, multinomial coefficients
(d
i

)
=

d!∏
ik ! and monomial terms x i =

∏n
k=1(xk)ik .

Our constraint stems from the relations of three subsets of Fn,d :

Pn,d = {p ∈ Fn,d : p(x) ≥ 0,∀x ∈ Rn} “positive semidefinite” (7.9)

Σn,d = {p ∈ Fn,d : p(x) =
∑
k

hk(x)2} “sums of squares” (7.10)

Qn,d = {p ∈ Fn,d : p(x) =
∑
k

〈ak , x〉d} “sums of d-th powers” (7.11)

Here, the hk(x) denote forms of degree d/2, ak denote the individual vectors that define
the rank-1 terms of a non-negative decomposition.

As shown in [65], these three subsets obey

Qn,d ⊂ Σn,d ⊂ Pn,d . (7.12)

These sets cannot be vector spaces, since if p 6= 0 is positive, −p is not. So the concept
of vector spaces has to be weakened:

Definition 7.1. A convex cone is a subset C of Fn,d that obeys:

• p, q ∈ C ⇒ p + q ∈ C

• p ∈ C ,λ ≥ 0 ⇒ λp ∈ C

Pn,d , Σn,d and Qn,d are closed convex cones.
The definition of our constraint and its properties depend on the choice of a scalar

product for forms.
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Definition 7.2. A scalar product on Fn,d can be defined as

[p, q] =
∑
i

(
d

i

)
pi qi . (7.13)

For Qn,d this scalar product has a particularly simple form:

Lemma 7.1. For p =
∑

k〈ak , ·〉d ∈ Qn,d and q ∈ Fn,d we have

[q, p] =
∑
k

q(ak) . (7.14)

Proof. By the multinomial theorem:

〈a, x〉d =

(
n∑

i=1

ai xi

)d

=
∑

i1+···+in=d

(
d

i

)
ai x i (7.15)

And so

[q, p] = [q,
∑
k

〈ak , ·〉d ] =
∑
k

[q, 〈ak , ·〉d ]

=
∑
k

∑
i

(
d

i

)
qi · (ak)i =

∑
k

q(ak) .

Also note that [·, ·] corresponds to the usual scalar product for tensors and [p, p] is
the square of the Frobenius norm ‖p‖F .

In order to derive a matrix representation, we want to reduce a form of even degree
d = 2s to d ′ = 2. For this we need

L(x, t) =
∑
i

x i ti (7.16)

with a vector of variables t indexed by i ∈ I (n, s). For fixed t, this is a Fn,s form in x.
For fixed x, this is a linear form in t.

Definition 7.3. For p ∈ Fn,2s the Hankel form is the quadratic form

Hp(t) = [p, L2(·, t)] =
∑
i ,j

pi+j ti tj ∈ F|I (n,s)|,2 . (7.17)

We can put this into matrix form as Hp(t) = tTHp t. For p ∈ F3,4 the matrix is
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Hp =



pxxxx pxxxy pxxxz pxxyy pxxyz pxxzz
pxxxy pxxyy pxxyz pxyyy pxyyz pxyzz
pxxxz pxxyz pxxzz pxyyz pxyzz pxzzz
pxxyy pxyyy pxyyz pyyyy pyyyz pyyzz
pxxyz pxyyz pxyzz pyyyz pyyzz pyzzz
pxxzz pxyzz pxzzz pyyzz pyzzz pzzzz

 . (7.18)

Definition 7.4. A form p with positive semidefinite Hp will be called H-psd.

Hn,d = {p ∈ Fn,d : Hp(t) ≥ 0 ∀ t} (7.19)

The method we propose enforces the H-psd constraint on fODFs during deconvolution.
In the rest of this section we will discuss some properties of the set Hn,d that are

relevant to our method. The main tool will be duality:

Definition 7.5. The dual cone of a convex cone C is the set

C ? = {p ∈ Fn,d : [p, q] ≥ 0, ∀ q ∈ C} . (7.20)

If C is a closed convex cone then (see Reznick [65])

C ?? = C . (7.21)

Theorem 7.1. Pn,d and Qn,d are dual to each other:

Qn,d
? = Pn,d , Pn,d

? = Qn,d (7.22)

Proof.

p ∈ Qn,d
? ⇐⇒ 0 ≤ [q, p] = [

∑
k

〈ak , ·〉d , p] =
∑
k

p(ak), ∀ q ∈ Qn,d

⇐⇒ 0 ≤ p(a), ∀a ∈ Rn

⇐⇒ p ∈ Pn,d

The second equation is a consequence of Qn,d
?? = Qn,d .

In the special case of (n, d) = (3, 4) the H-psd constraint is equivalent to decompos-
ability into rank-1 terms. This can be shown with the following two theorems:

Theorem 7.2. (Hilbert)
Pn,d = Σn,d (7.23)

if and only if n = 2 or d = 2 or (n, d) = (3, 4).
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Theorem 7.3.
Σn,d

? = Hn,d (7.24)

Proof. Observe that t 7→ L(x , t) is a bijection between vectors t ∈ R|I (n,s)| and forms in
Fn,s . So:

p ∈ Σn,d
? ⇐⇒ 0 ≤ [p, q] = [p,

∑
k

h2
k ] ∀ q ∈ Σn,d

⇐⇒ 0 ≤ [p, h2] ∀ h ∈ Fn,s

⇐⇒ 0 ≤ [p, L(·, t)2] = Hp(t) ∀ t ∈ R|I (n,s)|

A direct consequence for (n, d) = (3, 4) is:

Corollary 1. p ∈ F3,4 is a sum of fourth powers iff it is H-psd, since

Q3,4 = P3,4
? = Σ3,4

? = H3,4 . (7.25)

For higher degrees the relation is weaker:

Q3,n ( H3,n ⊂ P3,n (7.26)

Another property of the H matrix is that it can be used to estimate the number of
fibers in an fODF.

Definition 7.6. The rank of p ∈ Qn,d is the smallest integer rank(p) = r for which
a1, ... , ar ∈ Rn can be found with

p =
r∑

k=1

〈ak , ·〉d . (7.27)

For the cases in Hilbert’s theorem 7.2, the ranks of p and Hp are equal as shown in
theorem 4.6 in [65]. In general rank(p) ≥ rank(Hp).
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8. A Sheet Probability Index from Diffusion
Tensor Imaging

Abstract A sheet probability index (SPI) has recently been derived from high angular
resolution diffusion MRI to quantify the hypothesis that white matter tracts are organized
in parallel sheets of interwoven paths. In this work, we derive the DTI-SPI, a variant
of the SPI that can be computed from the widely available, simple, and fast diffusion
tensor imaging, by considering the normal component of the Lie bracket of the major
and medium eigenvector fields. We observe that, despite the fact that DTI does not allow
us to infer crossing fiber orientations, the DTI-SPI has a meaningful interpretation in
terms of sheet structure if the largest pair of eigenvectors spans the same plane as the two
dominant fibers. We report empirical results that support this assumption. We also show
a direct comparison to the previously proposed SPI on data from the human connectome
project, and demonstrate that major features in maps of our DTI-SPI remain recognizable
in standard clinical DTI data.

Comment This chapter corresponds to the paper[6]: “A Sheet Probability Index from
Diffusion Tensor Imaging” by Michael Ankele et al. in Computational Diffusion MRI,
2018. The paper introduces a simple method for numerical estimation of the Lie bracket
of certain vector fields. For additional experiments evaluating this method on synthetic
tensor fields see chapter 9.

8.1. Introduction

Do white matter fiber tracts cross in such a way that they form two-dimensional sheets,
similar to pages in a book? This hypothesis was first suggested a few years ago by Wedeen
et al. [97]. Based on inspecting streamlines from diffusion spectrum imaging tractog-
raphy, which they performed on humans and on four nonhuman primates, and sup-
ported by additional numerical experiments, they claimed that, independent of species,
fiber orientation, and curvature, crossing pathways formed well-defined two-dimensional
sheets. They point out that it is highly unlikely a priori that two independent families
of 3D curves should form such surfaces, and claim that their finding therefore reveals a
previously unknown organizational principle of cortico-cortical pathways.

The sheet structure hypothesis has been a subject of controversial debate. In a techni-
cal comment, Catani et al. [14] focus on the fact that its original formulation contained
frequent references to the “near-orthogonality” of the claimed grid structure. Based on
results from constrained spherical deconvolution, they demonstrate that fibers cross at
a wide range of angles, with no specific preference for orthogonality. As part of their

81
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response, Wedeen et al. [95] emphasize that they consider integrability in terms of the
Frobenius theorem to be at the core of their hypothesis, and that integrability does not
depend on orthogonality.

Clearly, more formal and quantitative experiments are required to settle this dis-
pute. In particular, visual inspection is an error-prone way of assessing sheet structure,
since even nonintegrable curves might appear to form a surface from certain viewpoints.
Therefore, Tax et al. [84, 83] recently proposed a sheet probability index (SPI) as an
objective measure of the local presence of sheet structure in crossing fiber tracts.

Given that crossing tracts are at the core of the sheet structure hypothesis, it is
unsurprising that all previous works on this topic have been based on crossing fiber
models, and some have even emphasized the differences between specific alternatives
[14, 24]. In this paper, we argue that, even though it is widely known that the diffusion
tensor model is unable to resolve the orientations of crossing fibers, it is still possible to
derive an informative measure of sheet structure from it. Our main argument is based
on

1. the mathematical observation that, in order to quantify the extent to which cross-
ing fibers form a sheet, it is enough to know the plane spanned by them, we do
not require their exact orientations within that plane (cf. Section 8.2);

2. experimental evidence in support of a previously formulated hypothesis stating
that, in voxels that contain two main fibers, the diffusion tensor provides an accu-
rate estimate of the plane spanned by them (cf. Section 8.3).

Based on this line of reasoning, we derive the DTI-SPI, a variant of the SPI that can
be computed from the widely available diffusion tensor imaging (Section 8.4). We also
describe an algorithm to compute the DTI-SPI, visually compare it to the established
SPI, and demonstrate structures in its maps that can be reproduced across subjects
(Section 8.5).

8.2. Theoretical Part of Our Argument

To formalize the hypothesis that two given tracts form a two-dimensional sheet, let v and
w denote vector fields that locally indicate the directions of the tracts, and assume that
they are linearly independent. We call v and w integrable if there exists a surface whose
tangential plane at every point p is given by ∆p = span(vp, wp). Similar to previous work
[84, 83], we count non-integrability of v and w as evidence against the sheet structure
hypothesis.

Interestingly, standard references on differential geometry [79, Chapter 6] formulate
Frobenius integrability theory not in terms of vector fields, but rather in terms of a
field of tangential planes ∆. In this context, such a field is called a two-dimensional
distribution. This clarifies that integrability depends only on the planes spanned by the
crossing tracts at each location, their orientations within that plane do not play any role
for integrability. Even though Wedeen et al. [95] previously clarified that orthogonality is
not a requirement for integrability, the mathematical fact that the fiber orientations are
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indeed irrelevant for integrability as long as they remain in the same plane is not widely
appreciated, as can be seen from recent claims such as “Without an accurate estimation
of the intravoxel fiber distribution, any statements about sheet structure, however they
are formulated, will be relatively meaningless.” [24]

The exact condition of integrability is in terms of the Lie bracket [∆, ∆]

[∆, ∆] ⊂ ∆ (8.1)

The definition of the Lie bracket is well-known in differential geometry, and has been
explained in an accessible manner in related work [84, 83]. We repeat it in Appendix 8.7
to make our paper self-contained. In terms of the vector fields v and w, integrability
requires that

[v, w] ∈ ∆ ∀v, w ∈ ∆ . (8.2)

As in the previously defined sheet probability index [84, 83], we use the normal com-
ponent of the Lie bracket

[v, w]N =

〈
[v, w],

v ×w

‖v ×w‖

〉
(8.3)

as a measure of nonintegrability, since v, w describe a surface iff [v, w]N = 0.

8.3. Empirical Part of Our Argument

In the previous section, we argued that it does not matter which specific pair of vector
fields we use to test integrability: As long as two pairs span the same planes at all points
of the domain, one pair will be integrable if and only if the other pair is integrable. We
will now argue that this allows us to formulate a meaningful measure of sheet structure
from the diffusion tensor model, even though we cannot derive the exact orientations of
crossing fibers from it.

The key of our argument is that, in voxels in which two or more fiber compartments
cross, the dominant two fibers will lie in the plane spanned by the major and medium
eigenvectors of the diffusion tensor. We consider this assumption to be quite natural,
and we note that it has been used by others to constrain two-fiber tractography [58]; the
resulting method has been validated with the help of functional MRI [61].

We provide additional evidence for this assumption by demonstrating a close agree-
ment, in eight subjects from the human connectome project (HCP) [78], between the
planes spanned by the major and medium DTI eigenvectors, and the planes spanned by
the two dominant fibers as estimated by a crossing fiber model. In particular, we use
constrained higher order tensor-based multi-tissue deconvolution [3]. It represents fiber
orientation distribution functions (fODFs) as fourth-order tensors, and finds the two
dominant fiber directions via a rank-two approximation [70]. This method has recently
been shown to produce similar crossing-fiber tractography as standard constrained spher-
ical deconvolution [40], while enabling faster and numerically more stable computation
[2].
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Figure 8.1.: The distribution of angles between the minor eigenvector from DTI and the
normal vector from a crossing fiber model indicates a strong agreeement of
the two.

For all eight subjects, Figure 8.1 shows the distribution of angles between the minor
eigenvector and the vector orthogonal to the two dominant fiber directions from the
crossing fiber model. It only makes sense to compute this angle when both vectors
are uniquely defined, at least up to their signs, which we discard after taking their
dot product. This requires that the crossing fiber model found at least two fibers,
and that the smallest eigenvalue has multiplicity one. We enforce the latter condition
by computing diffusion tensor planarity cp, as defined in terms of sorted eigenvalues
λ1 ≥ λ2 ≥ λ3 by Westin et al. [100],

cp :=
λ2 − λ3

λ1
, (8.4)

and restricting our computation to a mask in which cp > 0.2.
As shown in Figure 8.1, our assumption that the two vectors should coincide is met

in all subjects, up to an average deviation between 2.3◦ − 4.1◦. Since this is below
the expected reconstruction error of crossing fiber directions (5◦ − 10◦ according to [3],
depending on the crossing angle) and since the plot does not indicate any notable outliers,
we conclude that our assumption is met with reasonably high accuracy.

Of course, this assumption is limited to the regions where two main fiber directions
are dominant. Both above-mentioned conditions together were met in 54%− 64% of all
white matter, which is a quite similar range as the fraction of two-fiber voxels estimated
in a previous study by Jeurissen et al. [39]. As shown in Figures 8.2, 8.3 and 8.4, our
DTI-based measure of sheet structure can be computed even outside of this mask. While
it is certainly not obvious how it should be interpreted in regions with only one tract,
it might retain a meaningful interpretation in terms of the two strongest fibers in some
regions where a third fiber is close to perpendicular to them, and has a sufficiently
low volume fraction. We hypothesize that, in these cases, the third fiber will not have
a strong effect on the eigenvectors of the diffusion tensor. However, we leave a more
detailed investigation as a potential topic for future work.

In any case, it is clearly beyond the possibilities of DTI to study crossing sheet struc-
tures, which might arise where three significant bundles cross, and for which Tax et al.
[84] have demonstrated one example based on crossing fiber tractography.
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8.4. Quantifying Sheet Structure With DTI

8.4.1. Brief Review of the Existing Sheet Probability Index

Tax et al. [84] define their sheet probability index (SPI) as the local probability that the
normal component of the Lie bracket is within a symmetric interval [−λ,λ], where λ is a
tunable parameter. This probabilistic formulation accounts for the fact that we cannot
expect the normal component of the Lie bracket to be exactly zero, since it is estimated
from noisy measurements.

They proposed two different algorithms to compute the SPI in practice [84, 83]. Since
diffusion MRI measurements are so time consuming that it is not feasible to repeat them
many times, both implementations are based on a bootstrapping technique [18, 38]
that estimates the measurement noise from model fitting residuals in a single set of
measurements.

In each bootstrapping iteration and each voxel, the first algorithm [84], named flows-
and-limits, approximates the Lie bracket of any pair of local fiber directions using cross-
ing fiber tractography. The approximation is obtained by integrating several quadri-
laterals, similar to those in Figure 8.5 right, for each fiber pair, and consolidating the
results in a least squares fit.

The second algorithm [83], named the coordinate approach, first derives a multi-vector
field, in which each point is assigned up to three local fODF peak directions, and then
clusters it into three separate fields that isolate different tracts. The definition of the
Lie bracket in terms of vector field derivatives (cf. Eq. (8.6)) is then evaluated using
normalized convolution, which accounts for missing peaks and sufficiently large spatial
neighborhoods.

In both cases, computational effort is reduced by taking relatively few bootstrap real-
izations (50 in [84], 20 in [83]), and fitting a Gaussian to the results. The final estimate
of the SPI is computed based on that Gaussian; no SPI is computed in voxels where the
samples fail a statistical test for Gaussianity.

8.4.2. The Normal Part of the Lie Bracket in DTI

According to our argument, a meaningful variant of the sheet probability index can be
derived from the diffusion tensor model, based on the normal part of the Lie bracket of
the major and medium eigenvector fields. We will denote this normal part as ζ. Since the
three eigenvector fields, which we will sort in descending order of associated eigenvalues
and refer to as X, Y, Z, are orthonormal, Eq. (8.3) simplifies to

ζ := [X, Y]N = 〈[X, Y], Z〉 . (8.5)

A simple and efficient algorithm for practical computation of ζ, based on evaluating a
few closed-form equations, can be derived by expressing it in terms of partial derivatives
of the tensor field D, and the eigenvectors and -values of D. It is given in Appendix 8.8.
Alternatively, ζ can be expressed exclusively in terms of the minor eigenvector field, as
demonstrated in Appendix 8.9.
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8.4.3. A DTI-Based Sheet Probability Index

Our DTI-SPI is defined from ζ, i.e., the normal part of the Lie bracket in the diffusion
tensor field, in analogy to the standard SPI: It equals the probability of ζ falling into
the interval [−λ,λ]. We also use the same bootstrapping approach to estimate the
distribution of tensor fields given the measurement noise. However, in each iteration,
the equations from Appendix 8.8 allow us to compute ζ in closed form, without having to
perform any tractography, clustering, or convolution over large neighborhoods. Rather,
we compute derivatives using a computationally efficient B-spline approximation [54],
whose continuous nature also makes it easy to compute DTI-SPI maps at a resolution
that exceeds the one of the original data (in our results, factor 4 along both axes).

Due to the greatly reduced computational cost of evaluating the Lie bracket, we can
afford not just higher resolution, but also a much larger number of iterations, which
makes it possible to estimate the DTI-SPI nonparametrically, i.e., by simply counting
the fraction of bootstrap samples in which ζ ∈ [−λ,λ]. Shown results use 1000 iterations,
but we found that maps had visually converged already at 100. Based on inspecting
histograms of ζ at different locations, it did appear to approximately follow a Gaussian
distribution in most cases. However, not making an explicit assumption about this
simplifies the algorithm, and allows us to compute the DTI-SPI in all voxels.

8.5. Results and Discussion

8.5.1. Impact of λ and Comparison to Traditional SPI

Depending on its λ parameter, the SPI might either give the impression that sheet
structure is rare or very common in the brain. This is illustrated for our DTI-SPI in
Fig. 8.2 (b)–(d), but also applies to its original definition. In the light of previous claims
that “no brain pathways were observed without sheet structure” [97], one notable obser-
vation is that there are certain white matter structures that are persistently classified
as nonintegrable, even with rather large λ.

Tax et al. compute their SPI for each pair of peaks. According to Section 8.3, we
expect our DTI-SPI to be most comparable to their SPI when it is computed from the
two dominant fiber directions. The authors of [83] kindly provided such a map to us,
shown in Fig. 8.2 (a). It has been computed using the coordinate approach on the same
HCP subject (101006) as our own maps. Locations at which the SPI has not been
computed, due to a lack of a second fODF peak or a violation of Gaussianity, are shown
in green.

We found the similarity to be highest when comparing to the DTI-SPI with λ = 0.01
(λ = 0.008 is used in [83]). Several regions of high or low SPI in Fig. 8.2 (a) can be
recognized in (b), marked by red and blue arrows, respectively. However, the agreement
is not perfect, and the fragmented nature of Fig. 8.2 (a) makes a more detailed compar-
ison difficult. Unlike the traditional SPI, our DTI-SPI can be evaluated everywhere in
the brain. As noted in Section 8.3, interpretation in regions with more than two tracts
requires additional investigation, and might account for some of the differences observed
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(a) SPI from [83] (b) DTI-SPI with λ = 0.01

(c) λ = 0.1

(d) λ = 0.2

Figure 8.2.: Our DTI-SPI with λ = 0.01 (b) reproduces several salient regions of high
(red) or low (blue arrows) values in the previous SPI [83], computed from
the two largest fODF peaks (a). The effect of different settings of λ on our
DTI-SPI is shown in (b)–(d).

in Fig. 8.2.

Most of the brighter regions in Fig. 8.2 (b) exhibit texture-like patterns, at the scale
of the voxel resolution. They indicate that ζ fluctuates around zero in those regions.
The exact configuration of these patterns probably carries no anatomical significance,
and they get merged into uniform regions with increasing λ.

8.5.2. Comparison of Subjects and Acquisition Schemes

For a more detailed investigation of those white matter regions in which our DTI-SPI
indicates nonintegrability, we set λ = 0.1, and thresholded DTI-SPI < 0.5. In Figures 8.3
and 8.4, the results are overlaid (in red) on white matter segmentations that provide
anatomical context.

We compare results on three HCP subjects (90 DWIs with b = 1000, 18 references
with b = 5, spatial resolution (1.25 mm)3) to another subject that has been scanned
with the default DTI protocol on a clinical 3T Philips Achieva (32 DWIs with b = 1000,
one reference with b = 0, (2 mm)3). All data remains in the respective scanner space,
but we selected anatomically corresponding slices.

The most salient structure in Fig. 8.3 is a region of low DTI-SPI that extends over
part of the region where projection fibers and the corpus callosum merge, as well as
the boundary towards the superior longitudinal fasciculus (SLF). It is marked by arrows
in (a), but is present also in the other subjects, and remains recognizable even in data
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(a) HCP 101006 (b) Clinical

(c) 100408

(d) 101107

Figure 8.3.: Our DTI-SPI indicates nonintegrability in part of the region where the cor-
pus callosum merges with projection fibers, and at the interface towards the
SLF. This is highlighted by yellow arrows in (a), but visible also in other
HCP subjects (c/d), as well as in a subject that has been scanned with a
clinical DTI protocol (b).

that was acquired under clinical conditions. We inspected results from tensor-based
spherical deconvolution [3] on HCP subject 101006 to confirm the presence of two domi-
nant fibers in a large part of these regions, so interpreting our DTI-SPI as an indication
of nonintegrability should be justified.

The axial slices in Fig. 8.4 confirm that the low values of DTI-SPI in regions of merging
tracts, as well as at the interface between corticospinal tract and SLF, are not limited
to the particular coronal slice in Fig. 8.3, but have a significant spatial extent in all
subjects.

8.6. Conclusion

Based on a mathematical and an empirical observation, we argue that the diffusion tensor
model can be used to study the sheet structure hypothesis despite its inability to indicate
crossing fiber directions. Consequently, we have derived a novel sheet probability index
from diffusion tensor imaging (DTI-SPI), and presented an algorithm for computing it.

A theoretical insight from our work is that, in a substantial part of the brain, the
assumptions required to infer sheet structure from diffusion MRI are weaker than it has
been thought previously [83]: In the presence of two dominant tracts, we do not have
to assume that fODF peaks directly indicate their directions; it is enough if we are able
to deduce the planes in which the crossings happen. Practical benefits of our DTI-SPI
are the facts that it is simple and fast to compute, and that it imposes more modest
requirements on the data acquisition. The price we have to pay for this is the inability
to investigate crossing sheet structures, which have been shown to occur in voxels with
more than two tracts.
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(a) HCP 101006 (b) Clinical

(c) 100408

(d) 101107

Figure 8.4.: Extended regions of low DTI-SPI that occur at the interfaces of tracts, or
where fibers from different tracts merge, can be observed also in these axial
slices. They are again reproduced in all subjects.

A preliminary comparison indicates several similarities to the standard SPI from the
two major fibers [83]. A more detailed anatomical interpretation and comparison to the
traditional SPI are planned for our future work. We also found salient features in our
maps that were reproducible across subjects and acquisition protocols. This suggests a
potential application of ζ as a biomarker that is simple to evaluate, and complementary
to the commonly used DTI-based measures, such as Fractional Anisotropy or Mean
Diffusivity. In the future, we plan to apply statistical hypothesis testing to investigate
if age, gender, or disease may have an effect on sheet structure as quantified by ζ.

8.7. Definition and Intuition of the Lie Bracket

Our test of integrability makes use of the Lie bracket [X, Y] of differentiable vector fields
X and Y, which is formally defined as

[X, Y] = ∇XY −∇YX (8.6)

=
∑
i ,j

(X i∂i )(Y jej)− (Y i∂i )(X jej) (8.7)

=
∑
i ,j

(X i ∂iY
j − Y i ∂iX

j)ej , (8.8)

with ej indicating the canonical basis vectors.
One interpretation of this bracket comes from the flow Φ of a vector field X [79,

Chapter 5], which maps each point p to its integral curve Φt(p), i.e. Φ0(p) = p and
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Figure 8.5.: Left: The flow Φ of a vector field X and a specific integral curve. Right: A
loop of vector field integral curves failing to close due to non-vanishing Lie
brackets.

everywhere tangential to X, see Figure 8.5 (left). Then, given two vector fields X and
Y with corresponding flow Φ and Ψ and a step size h, we can start at point p and first
move along Φh, then from the new point along Ψh, then backwards along Φ−h and finally
backwards along Ψ−h (right subfigure).

This will form a closed loop if Φ and Ψ commute, that is if

[X, Y] = 0 . (8.9)

The difference between p and the end point q can be given in terms of the bracket:

q− p = h2[X, Y] + O(h3) (8.10)

8.8. Practical Computation of the Lie Bracket

The diffusion tensor D can be rotated into its eigenbasis vi :

RDRT = Σ = diag(λ1,λ2,λ3) (8.11)

with

R =

v1
T

v2
T

v3
T

 , RT =
(
v1 v2 v3

)
=
(
X Y Z

)
. (8.12)

Define the matrices

Mi ,jk = 〈∂ivj , vk〉 . (8.13)

These are antisymmetric for every i since

0 = ∂i 〈vj , vk〉︸ ︷︷ ︸
0 or 1

= 〈∂ivj , vk〉+ 〈vj , ∂ivk〉 (8.14)

so we can write them as

Mi = (∂iR)RT =

 0 ci −bi
−ci 0 ai
bi −ai 0

 (8.15)
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with

ai = 〈∂iY, Z〉 bi = 〈∂iZ, X〉 ci = 〈∂iX, Y〉 (8.16)

a = ∇Y · Z b = ∇Z · X c = ∇X · Y . (8.17)

Rotating the partial derivatives ∂iD of the tensor field then yields

R(∂iD)RT = ∂i (RDR
T )− (∂iR)DRT − RD(∂iR

T ) (8.18)

= ∂iΣ− (∂iR)RTΣ− ΣR(∂iR
T ) (8.19)

= ∂iΣ− (∂iR)RT · Σ + Σ · (∂iR)RT (8.20)

= ∂iΣ−MiΣ + ΣMi (8.21)

=

 ∂iλx ci (λ1 − λ2) bi (λ3 − λ1)
ci (λ1 − λ2) ∂iλ2 ai (λ2 − λ3)
bi (λ3 − λ1) ai (λ2 − λ3) ∂iλ3

 . (8.22)

This leads to the following closed-form equation for ζ:

〈[X, Y], Z〉 = 〈∇XY, Z〉 − 〈∇YX, Z〉 (8.23)

= 〈∇XY, Z〉+ 〈X,∇YZ〉 (8.24)

= X · ∇Y · Z + Y · ∇Z · X (8.25)

= 〈X, a〉+ 〈Y, b〉 (8.26)

with

ai =
1

λ2 − λ3

[
R(∂iD)RT

]
2,3

(8.27)

bi =
1

λ3 − λ1

[
R(∂iD)RT

]
1,3

(8.28)

where the square bracket notation [·]i ,j denotes taking the (i , j)th component of a matrix.

8.9. Expression in Terms of Minor Eigenvector Field

Since the eigenvectors are orthonormal, it is obvious that a surface is everywhere tangen-
tial to the major and medium eigenvectors if and only if its surface normal is everywhere
parallel to the minor eigenvector. This can be illustrated by the following derivation of
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an alternative expression of ζ, that only involves the minor eigenvector field Z:

ζ = 〈∇XY, Z〉 − 〈∇YX, Z〉 (8.29)

= −〈Y,∇XZ〉+ 〈X,∇YZ〉 (8.30)

= −
∑
j ,k

Y k X j ∂jZ
k +

∑
j ,k

X k Y j ∂jZ
k (8.31)

=
∑

j ,k,l ,m

X l Ym(−δljδmk + δlkδmj)∂jZ
k (8.32)

=
∑

i ,j ,k,l ,m

X l Ym εilm εikj ∂jZ
k (8.33)

=
∑
i ,j ,k

Z i εikj ∂jZ
k (8.34)

= −〈Z, rot Z〉 (8.35)

with the Kronecker delta

δij =

{
0 if i 6= j ,

1 if i = j .
(8.36)

and the totally antisymmetric Levi-Civita symbol

ε123 = ε231 = ε312 = 1 (8.37)

ε321 = ε132 = ε213 = −1 (8.38)

εother = 0 . (8.39)



9. DT-MRI Streamsurfaces Revisited

Abstract DT-MRI streamsurfaces, defined as surfaces that are everywhere tangential
to the major and medium eigenvector fields, have been proposed as a tool for visualiz-
ing regions of predominantly planar behavior in diffusion tensor MRI. Even though it
has long been known that their construction assumes that the involved eigenvector fields
satisfy an integrability condition, it has never been tested systematically whether this con-
dition is met in real-world data. We introduce a suitable and efficiently computable test
to the visualization literature, demonstrate that it can be used to distinguish integrable
from nonintegrable configurations in simulations, and apply it to whole-brain datasets of
15 healthy subjects. We conclude that streamsurface integrability is approximately sat-
isfied in a substantial part of the brain, but not everywhere, including some regions of
planarity. As a consequence, algorithms for streamsurface extraction should explicitly
test local integrability. Finally, we propose a novel patch-based approch to streamsurface
visualization that reduces visual artifacts, and is shown to more fully sample the extent
of streamsurfaces.

Comment This chapter corresponds to the paper[5]: “DT-MRI Streamsurfaces Re-
visited” by Michael Ankele et al. in IEEE Transactions on Visualization and Computer
Graphics (2019).

9.1. Introduction

Streamlines and streamsurfaces are among the first and most fundamental visualization
techniques for diffusion tensor MRI [103, 73]. While streamlines are defined as curves
that are everywhere tangential to the major eigenvector field, and are used in “linear”
regions where the major eigenvalue is clearly dominant, streamsurfaces have been pro-
posed for “planar” regions, in which the major and medium eigenvalues are similar in
magnitude, but larger than the minor eigenvalue. They have been defined as surfaces
that are everywhere tangential to the major and medium eigenvector fields [103].

Despite the close analogy between streamlines and streamsurfaces, there is an im-
portant difference between them: Any generic vector field can be integrated to form
streamlines, but a pair of vector fields defines a consistent surface, even locally, only if it
meets a specific integrability condition, which is formulated in the Frobenius theorem,
one of the fundamental theorems of differential geometry and topology [79].

Even though this fact has been pointed out already when streamsurfaces were first
introduced to DT-MRI visualization [103], its consequences for visualization have re-
mained controversial. Some authors have reported that they were able to compute
streamsurfaces without visible artifacts [103], and conclude that, therefore, the integra-
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bility condition is likely met in practice. A recent textbook [59] introduces streamsurfaces
without even mentioning the caveat of integrability. Other authors have concluded that
streamsurfaces are unsafe, based on a counter example in which the integration result
strongly depended on arbitrary choices during their extraction, which they attributed
to the fact that the eigenvector fields did not define a surface locally [72].

The key contribution of our work is to investigate the following questions, which we
consider to be critical for DT-MRI streamsurfaces as a visualization tool:

Q1 How can we test whether the integrability condition, which is a crucial assump-
tion of DT-MRI streamsurfaces, is satisfied at a given point in a given DT-MRI
dataset? The relevance of such a test was already mentioned in the original paper
on streamsurfaces, which stated: “We have yet to test if the condition is satisfied
by the first two eigenvector fields because calculating the Lie bracket is nontrivial.”
[103]

Q2 Is the failure case of DT-MRI streamsurfaces that was reported in [72] an iso-
lated incident, or do diffusion tensor fields from different subjects and acquisition
protocols contain significant regions in which streamsurfaces cannot be used for
visualization?

Q3 DT-MRI streamsurfaces have been proposed primarily to visualize regions of planar
diffusion. Is the integrability condition reliably met in regions of planarity?

Q4 Do insights on streamsurface integrability suggest changes to existing algorithms
for streamsurface extraction and rendering?

Section 9.3 answers Q1 by introducing a measure of non-integrability that we denote
as ζ. Section 9.4 investigates Q2 and Q3 by computing ζ on an ensemble of 15 healthy
subjects and correlating it with anatomical structures and regions of planarity. Finally,
Section 9.5 discusses practical consequences for DT-MRI visualization and suggests an
alternative, patch-based algorithm for streamsurface rendering (Q4), before Section 9.6
concludes our paper.

9.2. Related Work

In the visualization literature, the word streamsurface is used to refer to two different
mathematical concepts. Our paper is concerned with the definition that was first pro-
vided in Zhang et al.’s work on the visualization of diffusion tensor MRI [103]. Here,
streamsurfaces are defined as surfaces that are everwhere tangential to two eigenvector
fields, and an algorithm is introduced that grows them from a single seed point. Sonder-
shaus and Gumhold prefer to call these surfaces diffusion surfaces [77] to reduce the risk
of confusing them with the second definition of streamsurfaces, which is discussed below.
Vilanova et al. [94] propose an algorithm that switches between creating streamlines and
streamsurfaces in a data-adaptive manner.

Our work relies on the Lie bracket of the first two eigenvector fields. This goes back to
well-known results from differential topology [79] and its relevance for DT-MRI stream-
surfaces was pointed out already by Zhang et al. [103]. However, this test has never been
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performed in practice, nor have its implications for DT-MRI visualization been studied.
Our work is inspired by papers outside of visualization, which used the Lie bracket to
define a Sheet Probability Index [84, 83] in the context of the sheet structure hypothesis,
which states that fiber bundles in the brain form parallel sheets of interwoven paths [97].
These works did not compute the Lie bracket for the major and medium eigenvector
fields, but for different pairs of vector fields that result from a multi-fiber model and
may be non-orthogonal. In our own recent work, we argue that, even though DT-MRI
cannot resolve fiber crossings, it can be used to derive an alternative Sheet Probability
Index [6]. Unlike this prior work, our present paper investigates DT-MRI streamsurfaces
as a visualization technique. Section 9.5.1 will put our present main findings into context
of those from [6].

In vector field visualization, the word streamsurface refers to surfaces that are gen-
erated by advecting a given seeding curve along a vector field [33]. In the context of
stress tensors from geomechanics, this concept has also been applied to the visualization
of eigenvector fields [37]. The problem of integrability, which is at the core of our paper,
does not affect streamsurfaces in this second sense, due to their completely different def-
inition. However, as we will discuss in more detail in Section 9.5.2, our work is related
to attempts of finding surfaces that are as perpendicular as possible to 3D steady vector
fields [76].

9.3. Testing DT-MRI Streamsurface Integrability

This section addresses Q1 by introducing the normal part of the Lie bracket, which
we denote ζ, to the visualization literature. It is relevant for DT-MRI streamsurface
visualization because it can serve as a measure of surface nonintegrability.

We start with examples that illustrate the problem of DT-MRI streamsurface integra-
bility (Section 9.3.1). To make our paper more self-contained, Section 9.3.2 introduces
the involved mathematical concepts, before Section 9.3.3 goes into detail on the detec-
tion and practical computation of ζ. Section 9.3.4 establishes a novel theoretical result
on the sign of the Lie bracket of eigenvector fields, which is relevant to our experiments
later on.

9.3.1. The Problem of DT-MRI Streamsurface Integrability

When Zhang et al. introduced DT-MRI streamsurfaces, they described them as “the
approximation of the surface that extends along both the major eigenvector field and
medium eigenvector field. At any point on a streamsurface, the major and medium
eigenvectors lie in the tangent plane to the surface” [103]. Most subsequent publications
simply defined streamsurfaces as the surfaces that result from the previously proposed
algorithm for their extraction [77, 94], or assumed that they are intuitively understood
[59].

In order to discuss the problem of DT-MRI streamsurface integrability, we require a
more formal mathematical definition. Based on the explanation above, the following
definition seems natural:
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Definition 1: Given a smooth symmetric 3D tensor field D : Ω → R3×3
Sym defined on

Ω ⊂ R3, a DT-MRI streamsurface S seeded at point p ∈ Ω is a two-manifold that is
embedded in Ω, includes p, and is locally tangent to the major and medium eigenvector
fields of D at all points on S.

An obvious problem with this definition arises at tensor degeneracies: When the
smaller two eigenvalues are equal, λ2 = λ3, the corresponding eigenvectors can be ro-
tated freely within a two-dimensional subspace. Thus, the tangential plane specified
in Definition 1 is no longer unique. Since streamsurfaces were introduced to visualize
regions of planarity, this problem can be avoided by restricting Ω to a subdomain on
which diffusion tensor planarity, as defined by Westin et al. [100]

cp :=
λ2 − λ3

λ1
(9.1)

is greater than a suitable threshold.
However, even in regions of high cp, the problem of surface integrability might remain.

It refers to the fact that a given pair of vector fields may not permit a surface whose
tangential plane includes both vectors everywhere. This is true even if the pairs of
vectors are everywhere orthogonal, as in the case of eigenvector fields derived from the
same symmetric tensor field.

We present an initial experiment that introduces and illustrates this problem along
with several implications that will be discussed more formally and in more detail later
on. In particular, we illustrate the problem of surface integrability by integrating two
sets of curves whose tangents remain within the plane spanned by the two eigenvectors,
and which will form a grid on 1 cm2 large streamsurface patches if the underlying vector
fields permit such a surface. Even though this exact patch size is arbitrary, we chose
its order of magnitude in the spirit of a necessary condition for the practical utility of
DT-MRI streamsurfaces based on typical voxel sizes in DT-MRI data (≈ 2 mm in clinical
data) and our opinion that a clear failure to integrate streamsurfaces across even just a
few neighboring voxels should discourage their use.

The corresponding curves are shown in Figure 9.1, and are created by the following
algorithm:

1. Determine the major and medium eigenvector directions X and Y at a given seed
point p.

2. Starting at p, use the numerical method whose details are given in Step 4 to
integrate seed curves that are as straight as possible, while remaining tangential
to the plane spanned by the local major and medium eigenvectors. Extend these
curves for 5 mm in steps of 0.25 mm, starting in positive and negative X and Y
directions.

3. At each vertex of each seed curve found in Step 2, determine a vector v that
is within the plane spanned by the local major and medium eigenvectors, but
orthogonal to the tangent of the curve. Use the numerical method from Step 4
to integrate curves that start at each vertex of the seed curves in positive and
negative v direction, again for 5 mm and in steps of 0.25 mm.
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(a) CR (b) Sulcus

(c) CC x CST (d) Random Field

Figure 9.1.: The problem of streamsurface integrability can be illustrated by tracing
curves that will form a grid if a surface can be integrated from the major
and medium eigenvector fields, as it is approximately true in (a) and (b).
Otherwise, horizontal and vertical curves will diverge, as it can be seen
especially in the lateral views (bottom row) of (c) and (d). Colors indicate
|ζ|, our proposed measure of nonintegrability, from 0 (integrable, blue) over
0.1 (white) to 0.2 or greater (red).
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4. Numerical integration is performed using second-order Runge-Kutta [60]. The
tensor field is interpolated with a cubic B-spline kernel [54], and the propaga-
tion direction is given by the most recent tangent of the curve, projected to the
plane spanned by the major and medium eigenvectors, and renormalized. To avoid
artifacts in regions of singularities (λ2 = λ3), integration is terminated if cp < 0.2.

Step 4 of this algorithm is analogous to the integration in standard DT-MRI stream-
surface algorithms [103, 94]. Note that the resulting curves are not streamlines of the
major and medium eigenvector fields. Rather, they are defined in such a way that they
will intersect each other in a grid if major and medium eigenvector fields permit a stream-
surface according to Definition 1. In Figure 9.1 (a) and (b), this is (approximately) the
case. The bottom rows of the subfigures show the same patches as the top rows, but
from the side, to make it easier to see whether the curves actually intersect, or bend
away from each other, as it happens in Figure 9.1 (c) and (d).

In generic tensor fields, we cannot expect to find streamsurfaces according to Def-
inition 1 since, in the absence of further constraints, it is extremely unlikely that a
pair of eigenvector fields will permit a surface that is tangential to both eigenvectors
at all points. This fact will be formally discussed in Section 9.3.4, and is illustrated in
Figure 9.1 (d), which shows results from a random tensor field. It was generated by
drawing eigenvalues in range [0, 1] uniformly at random, and a random orthonormal set
of eigenvectors, at each vertex of a provisional voxel grid. A final smooth tensor field
was created by upsampling the result by factor 10 with a cubic B-spline kernel [54]. In
this case, our set of curves clearly does not form a common surface, and the shown result
is representative of different random seeds.

Despite this, at least some seed positions in a real-world DT-MRI dataset lead to
(approximate) streamsurface patches, such as those shown in Figure 9.1 (a) and (b).
Small deviations are still present, but should be seen in the context of Section 9.4.1,
which will show that we have to admit small deviations between the tangent planes of
S and the eigenvector fields to account for measurement noise even in cases where the
underlying physical phenomenon (e.g., brain anatomy) might constrain the tensor field
in such a way that streamsurfaces in the sense of Definition 1 emerge.

Subfigure (a) is from a crossing fiber region in the Corona Radiata (CR); Figure 9.9
presents a crossing fiber visualization in that same region. In this example, the fact
that the curves approximate a grid might be attributed to the observation that they are
relatively straight overall. The patch in Subfigure (b), which has been extracted from a
seed point near a sulcus in the temporal lobe, exhibits more substantial curvature, which
is reflected equally in both sets of curves, so that again only moderate deviations occur
between them. However, even in DT-MRI data, emergence of streamsurface patches is
not universal: The curves in Subfigure (c) are seeded in a region in which the Corpus
Callosum (CC) and Corticospinal Tract (CST) cross. They very clearly bend away from
each other, despite the fact that our algorithm stops integration when cp < 0.2.

We emphasize that the diverging behavior in Subfigures 9.1 (c) and (d) is dominated
by the fact that the underlying vector fields do not form a consistent surface, not by
numerical errors. It cannot be fixed by using higher-order Runge-Kutta or smaller
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Figure 9.2.: Left: An integral curve in a vector field X (dashed) and the corresponding
flow Φ. Right: A non-vanishing Lie bracket of two vector fields indicates
that their flows do not commute, i.e., a loop of integral curves fails to close.

integration steps.

9.3.2. Introduction to the Lie Bracket

Our test for whether or not the major and medium eigenvector fields can locally be inte-
grated into a streamsurface relies on concepts from differential geometry and topology,
where the condition under which a surface can be constructed from any pair of differen-
tiable vector fields X and Y has been established by Frobenius integrability theory [79].
It uses their Lie bracket [X, Y], which is defined as

[X, Y] = ∇XY −∇YX (9.2)

=
∑
i ,j

(X i∂i )(Y jej)− (Y i∂i )(X jej) (9.3)

=
∑
i ,j

(X i ∂iY
j − Y i ∂iX

j)ej , (9.4)

with canonical basis vectors ej .
An intuitive interpretation of the bracket can be given in terms of the flow map Φ,

which is a well-established concept in the visualization literature [25, 66], and illustrated
in Figure 9.2 (left): Given a vector field X , the corresponding flow Φ maps each point p
to its integral curve Φt(p), which is everywhere tangential to X and starts at Φ0(p) = p.

Now, given two vector fields X and Y with corresponding flows Φ and Ψ, consider the
attempt of forming a loop of integral curves, as indicated in Figure 9.2 (right): Starting
at point p, we first move along Φh for a given step size h, then follow Ψh from the new
point, then backwards along Φ−h, and finally backwards along Ψ−h.

This will result in a closed loop if Φ and Ψ commute, which is indicated by a vanishing
Lie bracket:

[X, Y] = 0 (9.5)

In fact, the difference between starting point p and end point q can be approximated
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based on the bracket as [79]:

q− p = h2[X, Y] + O(h3) (9.6)

9.3.3. The Normal Part of the Lie Bracket as a Measure of Nonintegrability

Assuming that X, Y are linearly independent, we want to know if a surface exists with
∆p = span(Xp, Yp) as its tangential plane at every point p. According to Frobenius
integrability theory [79, Chapter 6] such a surface exists iff

[X, Y] ∈ span(X, Y) . (9.7)

This makes the normal component of the Lie bracket

[X, Y]N =

〈
[X, Y],

X× Y

‖X× Y‖

〉
(9.8)

a natural measure of nonintegrability, since X, Y describe a surface iff [X, Y]N = 0.
In the special case that X = v1, Y = v2, Z = v3 are the three orthonormal eigenvector

fields of a symmetric second order tensor field D, we have

[X, Y]N = 〈[X, Y], Z〉 =: ζ . (9.9)

In the remainder of this paper, we will use ζ as our measure of nonintegrability. An
equation for its practical computation is derived in Appendix 9.7. We note that ζ only
depends on the change of orientation of the spanned planes and is measured in units
of length−1. Equation (9.6) allows us to give an intuitive meaning to its value. For
ζ = 0.1 mm−1, trying to follow a path around a square of area 1 mm2 leads ≈ 0.1 mm
into the normal direction. Because Equation (9.6) is quadratic in h, an area of 1 cm2

already leads ≈ 1 cm outwards.

9.3.4. Interpreting the Sign of ζ

In this section, we argue that the sign of ζ is uniquely defined, and has a clear inter-
pretation: According to Equation (9.9), it indicates whether the normal part of the Lie
bracket is parallel or anti-parallel to the third eigenvector Z. Since Z itself lacks an
intrinsic orientation, i.e., Z and −Z equally satisfy the eigenvector equation DZ = λ3Z,
it might at first seem that the sign of ζ is arbitrary also. However, we will show that, as
long as we require the three orthogonal eigenvector fields to form a right-handed system,
inverting the sign of Z necessarily inverts the sign of the Lie bracket. Thus, the overall
sign of ζ is preserved, since it reflects the relative orientation of these two vectors. We
state this as

Theorem 1: Assuming that the eigenvector fields are defined so that they form a
right-handed system, ζ has a well-defined sign, and is continuous almost everywhere.

The proof is based on the observation that, even though picking the eigenvector fields
to be right-handed does not orient Z, it makes it impossible to invert the sign of Z in
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isolation, since that would make the system left-handed. Rather, we will have to invert
the sign of exactly one other eigenvector field also.

Now, we observe that Equation (9.28) reformulates ζ as a sum of two products, each
of which involves each eigenvector field, or its derivative, exactly once. This means that
signs introduced when flipping pairs of eigenvectors will cancel out during computation
of ζ.

Moreover, Appendix 9.7 computes ζ as a continuous function of the derivatives of
a smooth tensor field, as well as its sorted eigenvalues and eigenvectors. Eigenvalues
and eigenvectors are locally continuous functions of the tensor field almost everywhere,
except at the singularities that arise when at least two eigenvalues are equal [44]. It
is known that these singularities generically occur along curves in 3D symmetric tensor
fields [105]. Away from these singularities, ζ is a continuous signed quantity. �

We emphasize that our theorem does not follow directly from Theorem 1 in [55], which
states that, on any simply-connected component on which tensors are sufficiently planar,
Z can be converted into a continuous vector field. The key issue is that this conversion
is not unique: It still leaves us with the choice of inverting the sign everywhere on the
component. Our theorem states that this remaining ambiguity does not affect ζ. In
Section 9.4.3, this allows us to compare ζ (as a signed quantity) across different sub-
jects without having to worry about how to consistently orient eigenvectors in different
datasets.

Note that the fact that the three eigenvector fields are everywhere orthogonal simplifies
computation of ζ, but does not restrict its sign or value. This implies that, in a generic
tensor field, we have to expect that ζ will fluctuate freely. This in turn indicates that
generic tensor fields do not contain streamsurfaces in the sense of Definition 1, as it has
been illustrated with the random tensor field in Section 9.3.1.

Theorem 1 also has an important consequence for correctly interpreting spatial maps
of |ζ|, which will be shown in Section 9.4.2: Even when the eigenvector fields are nonin-
tegrable everywhere, we have to expect that zero isosurfaces will show up in such maps,
since ζ is signed and continuous almost everywhere. These zero isosurfaces do not corre-
spond to integrable surfaces in the eigenvector fields, since the eigenvectors will generally
not be tangential to them. Rather, streamsurface integrability in a given region should
be indicated by the fact that ζ is zero throughout that region, not just along isolated
surfaces.

9.4. Systematic Study of Streamsurface Integrability

After introducing ζ as a nonintegrability measure for DT-MRI streamsurfaces, we will
now use it to study the applicability of streamsurface visualizations in real-world data
much more systematically than in previous works, which only highlighted individual
cases where trying to integrate streamsurfaces seemed to work well [103], or where it
resulted in visible artifacts [72].

Section 9.4.1 confirms the practical applicability of ζ via a quantitative evaluation
in simulated data. We then study question Q2 based on whole-brain maps of ζ in a
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group of subjects. Section 9.4.2 shows qualitative results on a representative subject,
Section 9.4.3 reports quantitative results from a statistical group analysis. Proceeding
to question Q3, Section 9.4.4 clarifies how tensor planarity in the sense of Equation (9.1)
relates to streamsurface integrability. Finally, Section 9.4.5 shows that our main findings
are replicated on data from a different scanner and measurement setup.

9.4.1. Quantitative Evaluation on Simulated Data

We established that no streamsurfaces can be expected in generic tensor fields. However,
it has been observed previously that constraints from the underlying neuroanatomy make
diffusion tensor fields behave differently than purely random tensor fields [71]. This might
explain why Figure 9.1 (a) and (b) still suggest that meaningful streamsurfaces exist in
real-world DT-MRI data. However, even if we assume an exact value of ζ = 0 based on
the underlying structures, we have to expect that measurement noise will induce small
deviations from zero. In order to establish a threshold |ζ| < Θ that characterizes regions
in which we consider nonintegrability to be low enough to still use streamsurfaces for
visualization, we have to assess the expected effect of measurement noise on ζ.

To this end, we constructed perfectly planar tensors (λ1 = λ2 � λ3) from two or-
thonormal sets of three eigenvector fields X, Y, Z, so that the tangential planes of the
intended streamsurfaces would be spanned by X and Y. Based on these tensors and mea-
surement settings from a clinical protocol, we simulated DW-MRI data sets (30 DWIs).
After adding varying levels of noise, diffusion tensors were fitted, and we compared the
values of ζ computed from the equations in Appendix 9.7 to their analytical ground
truth.

Integrable Case: Concentric Spheres

When choosing the normal field to be the normalized radial field

Z(p) =
p

‖p‖
, (9.10)

the X-Y-planes are tangential to concentric spheres around the origin. This configuration
is obviously integrable and we expect ζ ≡ 0. Figure 9.3 shows average empirical values
of |ζ| as a function of the radius (left), as well as, for a fixed radius, mean and standard
deviation of ζ for different levels of added noise (right).

Based on these plots, computed values of ζ appear unbiased (i.e., close to the ground
truth value of zero on average). Unsurprisingly, variance increases with the level of
measurement noise in the data. For small radii, we observe errors in the computed
values of ζ even in the noise-free case. This can be explained by the onset of discretization
artifacts as the streamsurface curvature increases.



9.4. Systematic Study of Streamsurface Integrability 103

Figure 9.3.: Empirical values of ζ on the simulated “concentric spheres” data with dif-
ferent levels of noise. Left : The mean absolute error |ζ| plotted over the
radius of a 3D Cartesian grid. Right : For each noise level, the mean and
standard deviation of ζ at a fixed radius r = 4.8.

Nonintegrable Case: Linear Rotation Field

A nonintegrable configuration can be constructed by rotating the standard frame ex , ey , ez
by an angle θ(x) = θ′x around the x-axis:

X = ex (9.11)

Y = cos θ ey + sin θ ez (9.12)

Z = cos θ ez − sin θ ey . (9.13)

In this case, the analytical ground truth is ζ = θ′, as derived in Appendix 9.8. The
results of estimating ζ from fields with varying rotation speed θ′ and different levels of
added noise can be seen in Figure 9.4. Again, empirical values are reasonably centered
on the ground truth, with a variance that depends on the level of measurement noise,
as well as on errors from spatial discretization, which increase with rotation speed θ′.

Given the observed standard deviations at realistic noise levels (e.g., SNR=20), we
can expect that empirical values of ζ will allow us to reliably distinguish between the
integrable case shown at the bottom of Figure 9.3, and the nonintegrable one at the
bottom of Figure 9.4. However, Figure 9.3 also illustrates that, even in cases where neu-
roanatomy would induce streamsurfaces in high-quality data, high levels of measurement
noise might make it impossible to observe them.

In the remainder of our paper, we will use |ζ| < 0.1 as a threshold for streamsurface
integrability. This is motivated in two ways: First, it is clear from Figure 9.3 that,
even if the anatomical structures that are reflected in a diffusion tensor field induce
integrable surfaces, we have to expect deviations on this order of magnitude because of
the measurement noise. Second, we visually explored a large number of patches with the
algorithm from Section 9.3.1 and used different values of ζ as an additional termination
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Figure 9.4.: Empirical values of ζ on the simulated “linear rotation field” data. Left :
The average absolute deviation from the ground truth value (|ζ − θ′|) as a
function of the rotation speed θ′. Right : For each noise level, the mean and
standard deviation of ζ at a fixed speed θ′ = 0.26, with the ground truth
value ζ = θ′ indicated in green.

criterion. We found that |ζ| < 0.1 limited deviations on a 1 cm2 patch to a level where
the curves still formed visually plausible surfaces.

Based on its definition, ζ is measured in units of [length]−1, so thresholds on |ζ| should
only depend on the level of noise in the data, not on the spatial resolution of the sampling
grid, as long as derivatives are computed with respect to the proper physical units of
length.

9.4.2. Spatial Extent of Nonintegrability

To investigate where in the brain integrable or non-integrable behavior can be found,
we color mapped ζ on whole-brain DT-MRI datasets from 15 healthy subjects, which
were taken from the publicly available Human Connectome Project (HCP) database [78].
The diffusion MRI acquisition scheme of the HCP includes 90 diffusion-weighted images
each at b values of b ≈ {1000, 2000, 3000} s/mm2, as well as 18 images with minimal
diffusion weighting, b ≈ 5. The spatial resolution is (1.25 mm)3 isotropic. Since the
diffusion tensor model [7] has been designed for b values up to b ≈ 1000, we only used
the corresponding part of the data to estimate the tensors.

ζ is a nonlinear function of the tensor field and its derivatives. Similar to ridges and
valleys in tensor invariants [45, 91], it contains much higher spatial frequencies than the
underlying tensor field itself. For this reason, we sampled it on a grid that, along each
axis, was four times as fine as the original voxel grid. As before, upsampling used cubic
B-splines.

Figure 9.5 presents results from a representative subject. To provide anatomical con-
text, the left column shows a standard XYZ-RGB color coding of the principal eigenvec-
tor direction, indicating left-right as red, anterior-posterior as green, and superior-inferior
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Figure 9.5.: In the left column, standard XYZ-RGB color maps of the principal eigenvec-
tor are shown for three orthogonal slices of a DT-MRI dataset. In the right
column, the absolute value |ζ| of our nonintegrability measure is overlaid
in black (transparent if |ζ| = 0, α = 0.5 for |ζ| ≥ 0.1). Even though |ζ|
masks out several regions where we cannot expect to integrate meaningful
streamsurfaces, substantial regions remain in which streamsurfaces can be
used for visualization.
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as blue. In the right column, |ζ| has been overlaid in black, with linearly increasing opac-
ity so that |ζ| = 0 is shown transparent, |ζ| ≥ 0.1 with opacity α = 0.5. The resulting
maps show several extended regions where |ζ| is consistently low and streamsurface in-
tegration may reasonably be attempted. However, there are also many regions that
indicate high values of |ζ| or exhibit a fine-grained texture, indicating high amplitude
oscillations around zero. As explained in Section 9.3.4, this indicates that trying to
integrate streamsurfaces in those regions would lead to strong artifacts, as illustrated in
Figure 9.1 (c) and (d).

9.4.3. Between-Subject Variability

When visually comparing all 15 subjects, we observed similar overall patterns in maps
of ζ. In particular, we noticed extended anatomical regions in which |ζ| appeared to be
high in all subjects. This motivated a more formal statistical analysis, whose results are
presented in Figure 9.6.

We brought the maps from different subjects into anatomical correspondence using
the established and publicly available nonlinear registration algorithm fnirt, which is
part of fsl [34]. In particular, we registered brain extracted Fractional Anisotropy (FA)
maps from all subjects to the fmrib58 fa template provided with fsl, and applied the
same transformations to the maps of ζ, which warps them to a common reference space
with 1 mm isotropic voxel size.

In this common space, we performed a voxel-wise one-sample t-test of the null hypoth-
esis that the local mean of ζ across subjects is zero. This null hypothesis is justified by
observing that ζ is intrinsically signed (cf. Theorem 1) and there is no reason why noise
should perturb it more frequently or more strongly in one direction than the other. If the
mean across subjects deviates from zero despite this, the t-test judges the significance
of this deviation by relating it to the number of included subjects, and the observed
variability between them. We accounted for the multiple comparisons (one per voxel)
by imposing a false discovery rate (FDR) of 5% [10].

Red regions in Figure 9.6 (a) indicate locations where the null hypothesis was rejected,
overlaid on the FA template. We identified several spatial clusters, which arose symmet-
rically in both hemispheres. Two of the clusters are marked with arrows, an anterior one
in light blue, a posterior one in yellow. To identify the tracts that these clusters belong
to, we warped the clusters back into the image space of one particular subject, and used
them as seeds for fiber tractography.

Since a large fraction of white matter voxels contain more than a single dominant fiber
orientation, and diffusion tensor tractography is known to be unable to accommodate
this fact [90], tractography is based on a state-of-the-art deconvolution approach that
makes use of all available diffusion measurements in the HCP data [2]. Results are
shown in Subfigures (b) and (c). They suggest that the anterior region is part of the
anterior thalamic radiation; in the posterior region, fibers from the corpus callosum and
the corticospinal tract mix.

Concerning Q2, we conclude from this experiment that the previously observed fail-
ure case of DT-MRI streamsurface integration [72] is not a rare and isolated problem.
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(a) Results of the statistical hypothesis test

(b) Tracts, light blue region (c) Tracts, yellow region

Figure 9.6.: We coregistered maps of ζ from 15 healthy subjects and applied a one-sample
t test to identify regions in which statistically significant nonintegrability
occured in this population. Results with false discovery rate 5% are shown
in red in (a). In one of the subjects, we performed tractography starting in
the regions that are highlighted with light blue and yellow arrows. Results
are shown in (b) and (c), respectively.
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Rather, our results clearly identify anatomical regions in which streamsurface integra-
bility is violated in a statistically significant sense, in a whole group of subjects.

9.4.4. Correlation with Diffusion Tensor Planarity

We now turn to question Q3. Given that streamsurfaces have been proposed for regions
of sufficiently large diffusion tensor planarity cp, we should clarify whether regions of
nonintegrability, as they were shown in the previous subsections, may be restricted to
regions of low cp, which would make the issue less relevant for visualization.

Figure 9.7 visualizes the relationship between cp and |ζ| with a bivariate color map
that is adapted to the thresholds used throughout our paper. Fully saturated green in-
dicates cp ≥ 0.2, i.e., regions where we consider planarity large enough for streamsurface
integration. Fully saturated magenta stands for |ζ| ≥ 0.1, i.e., regions where noninte-
grability is so large that no meaningful streamsurfaces exist. In fact, green and magenta
dominate the maps, indicating that nonintegrability mostly affects regions of low tensor
planarity.

We also confirmed this quantitatively, based on the joint histogram in the bottom
right corner of Figure 9.7. It shows values from the full volume, and the full range of
cp and |ζ|, whose infinite range has been compressed using the arctan. The Pearson
correlation between arctan |ζ| and cp is ρ = −0.41.

However, despite this negative overall correlation, there are non-negligible regions
that show up in black in the slice images, indicating significant nonintegrability even
though cp is above our threshold. In these regions, we may be tempted to integrate
streamsurfaces even though they are not meaningful. This settles Q3: The integrability
condition is not reliably met in regions of planarity. We believe that this insight needs to
be accounted for in streamsurface visualizations, and will suggest specific consequences
in Section 9.5.

9.4.5. Impact of Data Acquisition Protocol

All experiments above used data from the Human Connectome Project, which has higher
quality than the data on which DT-MRI streamsurfaces have been reported in the lit-
erature previously. In particular, it has been acquired with a highly modified Siemens
3T Skyra scanner that was specifically optimized for diffusion MRI, and provides higher
spatial and angular resolution than typical clinical data [78]. We verified that our main
findings still hold when using data that has been acquired on a widely used clinical MR
scanner (3T Philips Achieva) with a standard DT-MRI protocol: 32 diffusion-weighted
directions with b = 1000, one reference scan with b = 0, spatial resolution (2 mm)3

isotropic.

Results on this clinical data are shown in Figure 9.8. Structures in the brain map (left)
have a coarser appearance than in Figure 9.7, reflecting the reduced spatial resolution.
Despite this, our main findings carry over: Beside regions that are either non-planar
and nonintegrable (magenta) or planar and integrable (green), we still observe non-
negligible regions in which streamsurfaces are ill-defined despite high cp (black). The
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Figure 9.7.: Comparing nonintegrability |ζ| and diffusion tensor planarity cp with a bi-
variate color map reveals that most regions exhibit either high planarity
(green) or nonintegrability (magenta). However, there clearly exist regions,
shown in black, where the major and medium eigenvector fields are noninte-
grable despite high cp. A joint histogram of both measures, computed over
the full volume, confirms these observations.
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Figure 9.8.: Nonintegrability ζ can also be computed from data that has been acquired
with a standard clinical DT-MRI protocol. Also in this case, bivariate color
mapping and a joint histogram clearly indicate regions of nonintegrability
despite high cp, shown in black in the sagittal map on the left (please refer
to Figure 9.7 for a full legend)

joint distribution of arctan |ζ| and cp (right) exhibits a similar pattern as in Figure 9.7.

9.5. Consequences for DT-MRI Visualization

Adressing Q4, we will now propose a novel, patch-based approach to DT-MRI stream-
surface visualization. However, we believe that another issue is at least as important
as algorithmic aspects, and should be discussed first: When and how should DT-MRI
streamsurfaces be used, and how might they be interpreted?

9.5.1. Streamsurfaces in Visualization: When, How, and Why

Three important insights from our analysis can be summarized as:

I1 There are brain regions in which the extent of nonintegrability is small enough that
it might be attributed to the effects of measurement noise. In these regions, major
and medium eigenvector fields define small streamsurface patches with a visually
satisfactory accuracy (cf. Sections 9.3.1, 9.4.1 and 9.4.3).

I2 There are other, non-negligible regions where, despite high values of diffusion
planarity cp, the major and medium eigenvector fields do not define meaning-
ful streamsurfaces, not even on relatively small (1 cm2) patches (cf. Sections 9.3.1
and 9.4.4).

I3 Even small amounts of nonintegrability will accumulate rapidly over larger dis-
tances (cf. quadratic dependence in Equation (9.6)).

From these, we draw three main conclusions on when and how to use streamsurfaces
for DT-MRI visualization:
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C1 When they are used to visualize small patches in certain brain regions, we consider
streamsurfaces to be a meaningful visualization technique despite the failure case
reported in [72].

C2 Algorithms for integrating streamsurfaces should not only check that cp is suffi-
ciently high, as it has been done previously [103, 94], but also that nonintegrability
|ζ| is sufficiently low. Appendix 9.7 can be used for practical computation of ζ,
and Section 9.4.1 as well as Figure 9.1 support its applicability.

C3 When interpreting visualizations of larger streamsurfaces, users have to account
for the potential consequences of accumulating nonintegrability.

We emphasize that C3 is more fundamental than the problem of accumulating inte-
gration errors that also affect the widely used streamline visualizations [42]. At least, we
know that white matter contains curve-like anatomical structures (fiber tracts), and the
question is merely whether streamlines correctly follow them. When showing stream-
surfaces, we are not even certain that surface-like anatomical structures exist that they
could correspond to.

What might be a valid interpretation of DT-MRI streamsurfaces in terms of brain
anatomy? Zhang et al. point out that planar diffusion anisotropy “could result from
a surface structure, a boundary between different materials, or a crossing of multiple
linear features” [103]. This is true, but applies to the microscale, which is probed by the
diffusion. It does not necessarily imply that surface structures exist at the macroscopic
scale, at which DT-MRI streamsurfaces are extracted. Considering this, and the nonin-
tegrability of generic tensor fields (Section 9.3.4), Zhang et al.’s observation that they
could construct streamsurfaces without visually obvious errors is quite remarkable, and
could have deeper implications than they might have realized.

We believe that there is a close link between this early observation in the visualization
literature and the sheet structure hypothesis, which has started to attract significant
interest outside of visualization about a decade later [97, 14, 95, 84, 83, 24, 6]: It claims
that fiber tracts cross in such a way that they form surfaces. We note that the original
publication by Wedeen et al. [97] additionally called the crossings “near-orthogonal”,
which has been challenged in a technical comment by Catani et al. [14]. In their re-
sponse, Wedeen et al. [95] emphasize the aspect of integrability, and the fact that it
is independent from orthogonality. Due to the well-known limitations of the DT-MRI
model, it cannot be used to conclude anything about crossing angles; our discussion will
therefore focus entirely on the aspect of integrability.

In examples such as Figure 9.9, we observed that, when seeding crossing fiber trac-
tography [2] on streamsurfaces, the resulting streamlines tend to remain close to the
surface. We emphasize that the streamlines in Figure 9.9 are not derived from the diffu-
sion tensor, and are not constrained to cross at any particular angle. The fact that they
approximately form a surface locally supports the sheet structure hypothesis. The fact
that this surface can be approximated as a DT-MRI streamsurface supports our own
conjecture, which states that there are regions in the brain where DT-MRI streamsur-
faces represent the sheet-like crossings postulated by Wedeen et al. This assumes a close
alignment between the planes in which the two dominant fiber tracts cross (possibly
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Figure 9.9.: We observed that seeding crossing fiber tractography on DT-MRI stream-
surfaces often results in streamlines that remain close to the surface, which is
shown here in gray. This specific example shows part of the corona radiata.

non-orthogonally) and the planes spanned by the major and medium DT-MRI eigen-
vectors. In a recent paper [6], we provide quantitative evidence for such an alignment.
We believe that, even though the results in [6] and Figure 9.9 leave room for further
investigation, our conjecture is relevant to visualization because it suggests a potential
anatomical interpretation of DT-MRI streamsurfaces.

9.5.2. Patch-Based Rendering of Streamsurfaces

The most recent algorithm for streamsurface extraction is the one by Vilanova et al. [94].
It assumes a fixed topology (disk with holes), with a prespecified regular connectivity of
potential vertices whose positions are found by integrating them in an order that forms
a spiral starting at the seed, as shown in Figure 9.10.

Figure 9.11 (a) shows a result from this algorithm, with a red sphere indicating the
seed point. Nonintegrability of the involved eigenvector fields causes vertices that are
connected by the prespecified topology to end up far away from each other, which intro-
duces spurious connections (marked in cyan). Moreover, cusps in the surface (marked
with arrows) arise where the positions of adjacent vertices have been determined along
different integration paths.

Following C2, we modified this algorithm to use |ζ| ≥ 0.1 as an additional termination
criterion. The results are shown in Figure 9.11 (b). As expected, the new termination
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Figure 9.10.: A fixed streamsurface topology is assumed by the algorithm in [94]. The
red vertex indicates the seed, blue arrows the order in which vertices are
placed. Neighboring vertices might take very different integration paths,
which leads to the artifacts illustrated in Figure 9.11.

criterion eliminated parts of the surface. Somewhat paradoxically, it also added new
parts elsewhere, highlighted in (b) by coloring vertices orange if they are far away from
the surface in (a). This is a side-effect of the spurious connections: Since the algorithm
assumes that the respective vertices are close to each other, it does not attempt to grow
the surface any further in these locations. Thus, the additional termination criterion
may free up some of the available vertices to sample parts of the streamsurface that were
previously not accessible to this algorithm. Cusps and some spurious connections remain
in (b), which is unsurprising given the quickly accumulating effects of nonintegrability
(I3). Therefore, it is necessary, but not sufficient to use a termination criterion based
on |ζ|.

As a consequence of C1, which asserts the value of small streamsurface patches as
a visualization technique, and C3, which casts doubt on the interpretability of larger
streamsurfaces, we propose a novel, patch-based approach to streamsurface visualization,
whose results are shown in Figure 9.11 (c) and (d). It is based on rendering a set of
small (4 mm × 4 mm) streamsurface patches. They can be extracted with the modified
algorithm from (b), which works well when constrained to sufficiently small surface
patches in regions of sufficiently low |ζ|.

Since manually seeding a large number of patches would be tedious and unlikely to
yield a visually informative overall arrangement, our method automatically places addi-
tional seeds for neighboring patches based on an original one, which can be specified by
the user. This process uses the same grid-like integration that was described in detail
in Section 9.3.1. From each original and new seed point, curves are extended in all four
directions. Integration terminates when cp < 0.2, |ζ| ≥ 0.1, or at the boundary of the
domain. The endpoints of these curves are only added to the seed pool if they are suffi-
ciently far away from all existing seeds, which guarantees that this procedure terminates
even for complex overall surfaces, including ones that might loop back on themselves.

In Figure 9.11 (c), patch sizes are slightly larger than the maximum integration dis-
tance used for seed placement, which makes them overlap and, when rendered together,
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(a) Algorithm from [94] (b) [94] with |ζ| < 0.1

(c) Patch-based with overlaps (d) Patch-based with gaps

Figure 9.11.: When using established algorithms for streamsurface integration (a), non-
integrability of the eigenvector fields can lead to visual artifacts such as
spurious connections (cyan) and cusps (arrows). Since these effects ac-
cumulate over larger distances, they are not fully avoided by using non-
integrability |ζ| as a termination criterion (b). We therefore propose to
render an automatically seeded set of small patches, which can either be
made to overlap (c), or to leave gaps as a visual reminder that large-scale
streamsurfaces are not well-defined mathematically, and their anatomical
interpretation remains controversial (d).
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gives the visual impression of a single surface. In regions of stronger nonintegrability, or
at high zoom levels, small gaps between the patches can still be seen. They help avoid
the accumulation of visual artifacts that otherwise occur when trying to integrate a not
fully integrable pair of vector fields over larger distances.

Compared to the traditional approach [94], our patch-based technique removes the
spurious connections and the related inability to fully sample the surface. It also greatly
reduces surface cusps related to nonintegrability. A remaining limitation is the fact that
the global shape of the (apparent) surface is still not well-defined, since our automated
seeding scheme is still affected by accumulating nonintegrability, so that changing the
integration order could alter the placement of patches. As a visual reminder of the
challenges in interpreting larger streamsurfaces, which are intrinsic to the problem and
not specific to any particular algorithm (C3), one might deliberately leave gaps between
the patches by making them slightly smaller, as in Figure 9.11 (d).

In vector field visualization, Schulze et al. [76] have formally defined surfaces that
are globally “as perpendicular as possible” to a given vector field. This could also
be applied to DT-MRI streamsurfaces, by optimizing surfaces so that they become as
perpendicular as possible to the minor eigenvector field. This would reduce the visual
effects of accumulating nonintegrability. However, as a tool that we hope will contribute
to the ongoing scientific debate about whether or not fiber bundles form surface-like
anatomical structures (Section 9.5.1), we prefer a visualization that is “visually honest”
in the sense that it will not hide the effects of nonintegrability if it is present in the data.

Finally, Figure 9.12 (b) presents a particularly large patch-based streamsurface that
our proposed algorithm has grown from a single seed point, and that we have not been
able to reproduce using the traditional algorithm (a). It extends over the whole length of
the left hemisphere, illustrating both the ability of our approach to visualize structures
at this scale and the striking fact that the brain indeed contains such large and connected
regions in which diffusion tensor eigenvectors remain locally near-integrable.

9.6. Conclusion

Streamsurfaces have been introduced early on to DT-MRI visualization, but are known
and used less widely than streamlines or glyphs. Discovering a potential link to the
recently proposed hypothesis that crossing fiber tracts in humans and nonhuman primate
species form sheet-like structures [97] motivated us to revisit them as a visualization
technique.

We focused on the issue of streamsurface integrability, which we studied with a suitable
combination of mathematical reasoning, simulations, and an empirical investigation into
an ensemble of real-world datasets, using both visual and statistical tools. This has led
us to new conceptual insights and conclusions concerning the role of streamsurfaces in
DT-MRI visualization (Section 9.5.1), as well as to a novel approach for streamsurface
extraction (Section 9.5.2).

Our work proposes a measure ζ that quantifies the expected error up to which the
major and medium eigenvector fields can locally be integrated into a surface. It can be



116 Chapter 9. DT-MRI Streamsurfaces Revisited

(a) [94] with |ζ| < 0.1

(b) Patch-based with overlaps

Figure 9.12.: A large-scale patch-based streamsurface visualization (b), colored so that
|ζ| = 0 is white, |ζ| = 0.1 fully saturated red. In comparison, the traditional
algorithm (a) was unable to fully grow the surface.
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used as a termination criterion in streamsurface integration, and it can be color coded to
convey the local degree of nonintegrability. An important open issue concerns quantifi-
cation of the accumulated uncertainty on streamsurfaces. For streamlines, there exists a
wealth of techniques for probabilistic tractography, along with corresponding visualiza-
tion methods [74]. Probabilistic construction of streamsurfaces is left as a challenge for
future work.
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9.7. Computing the Lie Bracket from Tensor Field Derivatives

To apply ζ in practice, we want to calculate it from the eigenvectors and the gradient of
the tensor field D. The local diffusion tensor D can be rotated into its eigenbasis vi :

RDRT = Σ = diag(λ1,λ2,λ3) (9.14)

with

RT =
(
v1 v2 v3

)
=
(
X Y Z

)
. (9.15)

As building blocks for computing the Lie bracket, we define matrices

Mi ,jk = 〈∂ivj , vk〉 (9.16)

which are antisymmetric for every i since

0 = ∂i 〈vj , vk〉︸ ︷︷ ︸
0 or 1

= 〈∂ivj , vk〉+ 〈vj , ∂ivk〉 . (9.17)

Thus, we can write them as

Mi = (∂iR)RT =

 0 ci −bi
−ci 0 ai
bi −ai 0

 (9.18)

with

ai = 〈∂iY, Z〉 bi = 〈∂iZ, X〉 ci = 〈∂iX, Y〉 (9.19)

a = ∇Y · Z b = ∇Z · X c = ∇X · Y . (9.20)
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The rotated tensor gradient then becomes

R(∂iD)RT = ∂i (RDR
T )− (∂iR)DRT − RD(∂iR

T ) (9.21)

= ∂iΣ− (∂iR)RTΣ− ΣR(∂iR
T ) (9.22)

= ∂iΣ− (∂iR)RT · Σ + Σ · (∂iR)RT (9.23)

= ∂iΣ−MiΣ + ΣMi (9.24)

=

 ∂iλx ci (λ1 − λ2) bi (λ3 − λ1)
ci (λ1 − λ2) ∂iλ2 ai (λ2 − λ3)
bi (λ3 − λ1) ai (λ2 − λ3) ∂iλ3

 . (9.25)

This leads us to the desired closed-form equation for ζ:

〈[X, Y], Z〉 = 〈∇XY, Z〉 − 〈∇YX, Z〉 (9.26)

= 〈∇XY, Z〉+ 〈X,∇YZ〉 (9.27)

= X · ∇Y · Z + Y · ∇Z · X (9.28)

= 〈X, a〉+ 〈Y, b〉 (9.29)

with

ai =
1

λ2 − λ3

[
R(∂iD)RT

]
2,3

(9.30)

bi =
1

λ3 − λ1

[
R(∂iD)RT

]
1,3

(9.31)

where square brackets [·]i ,j denote the (i , j)th component of a matrix.

9.8. Analytical Lie Bracket of Linear Rotation Field

To calculate ζ for the linear rotation field from Section 9.4.1, we first need to evaluate the
Lie bracket. To do so, we note that the bracket can be written as [v, w] = vw−wv using
the inconspicuous notation identifying a vector v =

∑
i vi ei with the first order linear

differential operator
∑

i vi
∂
∂xi

acting on scalar functions f (p). Making this definition
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more explicit will prove insightful:

[v, w]f =

(∑
i

vi
∂

∂xi

)(∑
k

wk
∂

∂xk

)
f

−

(∑
i

wi
∂

∂xi

)(∑
k

vk
∂

∂xk

)
f

=
∑
i ,k

(
vi
∂wk

∂xi

∂f

∂xk
+ viwk

∂2f

∂xi∂xk

−wi
∂vk
∂xi

∂f

∂xk
− wivk

∂2f

∂xi∂xk

)
=
∑
i ,k

(
vi
∂wk

∂xi
− wi

∂vk
∂xi

)
∂f

∂xk
(9.32)

Surprisingly, even though [v, w] was defined as a second order differential operator,
both second order terms cancel out and only a first order operator remains. Since we
identify first order operators with vectors, Equation (9.32) is equivalent to the definition
that was previously given in Equation (9.2).

With this notation, we proceed to compute [X, Y] for X, Y as defined in Equations (9.11)
and (9.12):

[X, Y]f = XYf − YXf

=
∂

∂x

(
cos θ

∂

∂y
f + sin θ

∂

∂z
f

)
− cos θ

∂

∂y

∂

∂x
f − sin θ

∂

∂z

∂

∂x
f

= − θ′ sin θ
∂

∂y
f + θ′ cos θ

∂

∂z
f (9.33)

Thus, the value of ζ is given as

〈[X, Y], Z〉 = θ′ sin2 θ + θ′ cos2 θ = θ′ (9.34)





10. Conclusion

10.1. Contributions

Kurtosis

The first achievement of our work on this topic was demonstrating that fiber crossings
affect the diffusion and kurtosis parameters found by the DKI model. To circumvent
this problem we introduced a new per-fiber model, generalizing the ball-and-stick model
by adding an axially symmetric kurtosis tensor term. This proved to reduce the effects
of crossing angles on scalar kurtosis measures for simulated fiber crossings.

Our model includes a dot compartment to represent isotropic portions of the signal.
This term was chosen because it greatly outperformed other alternatives like the ball
compartment in BIC model selection experiments.

On real data our model predicts fiber directions that agree with CSD. In contrast,
DKI does not directly give any fiber directions. As for the kurtosis measures, K‖ is
strongly reduced in white matter compared to DKI, giving contrast between WM and
GM in our model. Our model also reduces the effects of fiber crossings on FA and K⊥,
as well as reducing the correlation between these two measures. We hope this allows to
infer more subtle tissue properties from these maps.

Deconvolution

We introduced a multi-tissue deconvolution method using the SHORE basis and the
H-psd constraint, a new positivity constraint for fODF tensors. This method allows
the use fourth order tensors, increasing numerical stability and reducing time consump-
tion compared to the widely used order 8 approach while maintaining the high angular
resolution, as demonstrated on simulated fiber crossings.

Using the SHORE basis instead of per-shell spherical harmonics not only reduces the
complexity of computations but also makes the method applicable to DSI and other
data sets that are not organized into shells. Experiments on clinical DSI data sets
found more fiber directions than state-of-the-art deconvolution and cleaner results than
standard DSI methods without deconvolution.

The method also showed benefits for tractography. We implemented a deterministic
fiber tracking scheme with branching ability. In experiments this scheme was able to
find a higher number of transcallosal fibers and lateral projections, comparable only to
probabilistic approaches, but without the drawback of noisy or jiggly fibers.
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Integrability

Our first contribution to this subject was the formulation and empirical proof of the
hypothesis that the two dominant fiber lie in the same plane as major and medium
eigenvectors of the diffusion tensor. This allowed us to define our DTI-SPI measure, a
much faster and simpler alternative to SPI, which only depends on the diffusion tensor
and does not require any fiber estimation. Its accuracy and reliability was demonstrated
on synthetic data sets with varying noise levels.

Evaluating DTI-SPI on 15 subjects revealed persistently nonintegrable WM structures.
Particular areas of low surface integrability were found where projection fibers and corpus
callosum merge. Even experiments with lower quality clinical data recovered the same
features.

On the visualization side DTI-based ζ was found to improve surface integration when
used as an additional termination criterion. This led us to state general rules for surface
integration (sec. 9.5.1) and the implementation of a new patch-based integration method.

10.2. Future work

Our symmetric kurtosis model left several questions unanswered. Decoupling the pa-
rameters of individual fibers seemed to break the optimizer’s convergence in quick ex-
periments. It should be tested if there is a deeper reason behind the divergences or if
a better implementation could fix the problem. Also a closer examination of the dot
compartment would be helpful.

Another problem that deserves further analysis is overfitting of diseased tissue with
response functions from healthy patients. Here we expect better prevention with our
new deconvolution method. Also, since our constraint does not generally imply de-
composability in tensor orders higher than four, a challenge would be to find a tighter
constraint for these cases. On the other hand the H-matrix already proved useful in
higher orders for estimating the local number of fibers (see sec. C.1) and its ability to
clean up fODFs needs more investigation. We also expect that both the kurtosis model
and deconvolution might benefit from spatial regularization.

We also consider the DTI-based ζ to be a highly promising candidate as a new
biomarker due to its reliability and low computational cost. Extensive evaluation on
a large set of subjects will be required to map typical ranges of values for healthy sub-
jects and correlate deviations to diseases.
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A. Appendix - Spin

The following chapter is meant as additional backstory, giving more details about the
behaviour of spin and quantum mechanics, while also illustrating the deeper connection
between spin and spherical harmonics mentioned in section 2.3.

As already mentioned at the beginning of section 5.1, particles have a quantum me-
chanical property called spin s - a special type of angular momentum. Its absolute
value

‖s‖ =
√
j (j + 1)~ (A.1)

can be expressed with a spin-number j ∈ {0, 1
2 , 1, 3

2 , ... } and is a constant (at least for
single electrons). For each particle’s type this value can be derived from its equation of
motion. Electrons and protons have spin-number j = 1

2 .

Spin 1
2

First a quick disclaimer about quantum mechanics[67] that needs to be recognized but
not necessarily completely digested:

Definition A.1. In quantum mechanics the current state of a system is ab-
stractly described by a complex vector Ψ with ‖Ψ‖ = 1.

To get any specific information about the system (for example a particle’s position
or speed) one needs to perform a measurement. The rules are:

• For each type of measurement an associated Hermitian matrix M can be found.

• The result of the measurement can only be one of the eigenvalues {λi} of M.

• Nature picks one of the eigenvalues λi randomly with probability |〈Ψ, mi 〉|2
with the eigenvectors {mi}.

• Immediately after the measurement the system changes its state into the cor-
responding eigenvector Ψ′ = mi .

The last rule is the famous ”observation changes a system” statement.

Remark. Even though results are random, probabilities for certain values can be higher
than for others, if the state is already close to an eigenvector. And directly after a
measurement, when the state is exactly equal to an eigenvector, its probability even
becomes 1.
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In the case of a spin-1
2 particle the possible spin/magnetization states can be described

by two-dimensional complex vectors Ψ ∈ C2. The matrices associated to measuring the
components of the magnetic moment are proportional to the Pauli matrices:

µx =
γ~
2

(
0 1
1 0

)
, µy =

γ~
2

(
0 i
−1 0

)
, µz =

γ~
2

(
1 0
0 −1

)
. (A.2)

As dictated by the weird rules of def. A.1, measuring µz can only give one of two

results µz = ±1
2γ ~ and move the system into the respective eigenvector Ψ ∝

(
1
0

)
or(

0
1

)
. Repeating this measurement would give the same result with absolute certainty

and does not change the state. But performing either µx or µy afterwards would give
completely random results and change the state again because the eigenvectors of the
different matrices are not compatible.

For our MRI setup, one could argue that the component µz is being measured con-
stantly because it interacts with the background B field, turning it into physical infor-
mation of the particle, although “quantized” - meaning, it can only take on one of two
values. On the other hand, the state space is not large enough to also carry information
about the other components.

This interpretation only works for single particles. When measuring information about
multiple particles simultaneously, the exact behaviour will be far more complex but can
be approximately described by classical mechanics again when averaging over a large
enough number of particles as stated by the Ehrenfest theorem[31].

General spin

Spin and angular momentum have their roots in rotational symmetry with a deep con-
nection to representation theory: A physical system can be transformed by a rotation
matrix R ∈ SO(3). No changes will be measurable if the system is rotationally symmet-
ric. Let Ψ ∈ Cn then be the original state and Ψ′ the state after rotation. The mapping
D(R)Ψ = Ψ′ is assumed to be linear and should respect

D(R1) · D(R2) = D(R1 · R2) . (A.3)

The theory of pure representation theory tells us, that the n×n matrices D(R) are built
up from a fundamental set of pre-defined matrices Dj(R) for j = 0, 1

2 , 1, 3
2 , 2, ... . These

fundamental matrices Dj(R) have dimension (2j+1)×(2j+1) and can be found explicitly
from properties of the group1 SO(3) without any information about the physical system
(see next section). A particular version of these matrices was constructed by Eugene
Wigner[101] and is often called Wigner D-matrices.

1To be more precise, the group SU(2) is used instead of SO(3). Also see next section.
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Another observation is required to define a particle’s spin: Rotations can be created
from “infinitesimal” rotations. I.e. there are three generator matrices

rx =
d

dϕ
R(ex ,ϕ)|ϕ=0 =

0 0 0
0 0 −1
0 1 0

 , ry =

 0 0 1
0 0 0
−1 0 0

 , rz =

0 −1 0
1 0 0
0 0 0


(A.4)

so that a general rotation of angle ϕ around axis n is given by

R(n,ϕ) = e iϕ (rxnx+ryny+rznz ) = e iϕ r·n . (A.5)

Also generators Ljx ,y ,z for the representations Dj can be found, meaning Dj(R(n,ϕ)) =

e iϕ Lj ·n. The Pauli matrices in eq. (A.2) are the special case of Lj=
1
2 . Also, for any j the

Ls fulfill (
Lj
)2

=
(
Ljx
)2

+
(
Ljy
)2

+
(
Ljz
)2

= j (j + 1) 111 , (A.6)

which explains the relation eq. (A.1) between absolute spin value and spin-number j :
Applying additional physical knowledge, it turns out, the matrices ~ ·Ljx ,y ,z are exactly

the measuring matrices for angular momentum and spin. And as the total system
rotation matrix D(R) can be split into fundamental parts Dj , the state vector Ψ can
be split into parts that have constant total angular momentum

√
j (j + 1)~ because of

eq. (A.6).
Again, the 2j + 1 eigenvalues of Ljz can be measured, but the eigenvectors are not

compatible with Ljx ,y leading to random measuring results for the x- and y-components.

Spinors

The theory of spin and representations has another surprising link to the tensor algebra
via the dark magic of spinors[13].

The components of a vector v = (x , y , z)T can be encoded in the Hermitian matrix

V =
∑
i

vi σi =

(
z x − iy

x + iy −z

)
(A.7)

with the aforementioned Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 i
−1 0

)
, σz =

(
1 0
0 −1

)
. (A.8)

The length of v is then encoded in the determinant of V because

detV = −z2 − x2 − y2 = −‖v‖2 . (A.9)

With a similar procedure one can also find a 2× 2 analogon of rotation matrices. For
any R = R(n, θ) ∈ SO(3) define the unitary matrix

R = e iθ/2
∑

i niσi = sin
θ

2
111− i cos

θ

2
M(n) . (A.10)

With this the matrix V ′ associated to the rotated vector v′ = Rv obeys the transforma-
tion law

V ′ = R? V R . (A.11)
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Definition A.2. The complex two-dimensional vectors ξ =

(
ξ1

ξ2

)
∈ C2 that are

transformed by ξ′ = Rξ are called spinors or spin vectors.

Using the previous vocabulary, spinors with the matrices R form the two dimensional
representation of R = Dj=1/2. Also the two dimensional state vectors of spin-1

2 particles
are spinors.

Remark. Eq. (A.10) defines a mapping from SO(3) into SU(2). Actually both ±R
correspond to the same R since both perform the same vector rotation according to
eq. (A.11).

As with regular vectors, one can build tensors ξ ⊗ ρ from spinors. Symmetric spin
tensors τabc... = ξa ξb ξc ... are particularly simple, since products of n copies of ξ only
have n+ 1 independent components (ξn1 , ξn−1

1 ξ2, ... , ξn2 ). These symmetric products form
exactly the higher spin representations Dj for 2j = n.

Spin tensors form another equivalent alternative to tensor algebra. Calculations done
with regular tensors or spherical harmonics can also be done in the world of spin tensors.
Spinors have the additional property, that a regular vector is represented as a second
order tensor in the spinor world. This mysteriously turns spinors into the square roots
of vectors.

Spherical harmonics

Spinors and spherical harmonics, besides both being connected to the tensor algebra,
also share a more direct link as demonstrated by an elegant calculation in [11]:

The sum
∑l

m=−l ξ
l−m
1 ξl+m

2 Ym
l (u) for l ∈ N and a spinor ξ is rotationally invariant2.

Since ξl−m1 ξl+m
2 are components of a symmetric spin tensor of order l which transforms

with the unitary matrices Dl , the spherical harmonics have to transform inversely:

Ym
l (Ru) =

∑
m′

Dl
m,m′(R)Ym′

l (u) (A.12)

The spherical harmonics can even directly be found in the matrix elements of the Dj :

Dl
m,0(α,β, 0) =

√
4π

2l + 1
Ym
l (β,α) (A.13)

when using Euler angles α,β, γ to parametrize rotations R.

2The scaling of Ym
l in [11] might differ from the convention in this thesis.



B. Appendix - Kurtosis

B.1. Cylindrically Symmetric Kurtosis Tensor

The general kurtosis tensor is

WWW (v) =
∑

i ,k,l ,m

Wiklm vivkvlvm (B.1)

= Wxxxxx
4 + Wyyyyy

4 + Wzzzzz
4

+ 4
(
Wxxxyx

3y + Wxyyyxy
3 + Wxxxzx

3z + Wxzzzxz
3 + Wyyyzy

3z + Wyzzzyz
3
)

+ 6
(
Wxxyyx

2y2 + Wxxzzx
2z2 + Wyyzzy

2z2
)

+ 12
(
Wxxyzx

2yz + Wxyyzxy
2z + Wxyzzxyz

2
)

(B.2)

Projection

To project WWW onto the subspace of tensors symmetric around the z-axis, we can average
it over rotations around the z-axis:

2πWWW (v) =

∫ 2π

0
WWW (Rz,ϕv) dϕ (B.3)

=

∫ 2π

0
WWW (x cosϕ+ y sinϕ,−x sinϕ+ y cosϕ, z) dϕ (B.4)

=

∫ 2π

0

[
(x cosϕ+ y sinϕ)4Wxxxx + (−x sinϕ+ y cosϕ)4Wyyyy + ...

]
dϕ (B.5)

=
3π

4
(x2 + y2)2Wxxxx +

3π

4
(x2 + y2)2Wyyyy + 2πz4Wzzzz

+ 4 (0 + 0 + 0 + 0 + 0 + 0)

+ 6
[π

4
(x2 + y2)2Wxxyy + π(x2 + y2)z2Wxxzz + π(x2 + y2)z2Wyyzz

]
+ 12 (0 + 0 + 0) (B.6)

resulting in

WWW (v) = (x2 + y2)2 3

8
(Wxxxx + 2Wxxyy + Wyyyy )︸ ︷︷ ︸

:=W⊥

+z4 Wzzzz︸ ︷︷ ︸
:=W‖

(B.7)

+ (x2 + y2)z2 3(Wxxzz + Wyyzz)︸ ︷︷ ︸
:=W�

. (B.8)
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Components

Identifying this expression with the basis decomposition of the tensor WWW gives us

W xxxx = W yyyy = W⊥ (B.9)

3W xxyy = W⊥ (B.10)

W zzzz = W‖ (B.11)

6W xxzz = 6W yyzz = W� . (B.12)

All the other components are zero.

Signal parameters

The signal of the kurtosis tensor model contains the term D
2
WWW (g). Choosing our signal

parameters to be

κ‖ = D
2
W‖, κ⊥ = D

2
W⊥, κ� = D

2
W� , (B.13)

the signal term becomes

D
2
WWW (g) = κ‖ a

4 + κ� a
2(1− a2) + κ⊥ (1− a2)2 (B.14)

with the scalar product a = 〈g,µ〉 between the gradient g and the symmetry axis µ.
Because of the relationship

K (g) =
D

2

DDD(g)2
WWW (g) (B.15)

between kurtosis K and kurtosis tensor WWW , radial and axial kurtosis simply become

K (µ) = K‖ =
κ‖

D2
‖

, K⊥ =
κ⊥
D2
⊥

. (B.16)

The parameter κ� is needed to calculate K (g) in any other direction.

B.2. Mean Kurtosis for Cylindrically Symmetric Fibers

In this case the kurtosis is

K (θ) =
D

2

DDD(θ)2
WWW (θ) =

κ‖ cos4 θ + κ� cos2 θ sin2 θ + κ⊥ sin4 θ

(D‖ cos2 θ + D⊥ sin2 θ)2
. (B.17)

Mean Kurtosis is the average over the unit sphere:

K =

∫
S2 K dA∫

S2 1 dA = 4π
(B.18)

=
1

4π

∫ 2π

0
dϕ

∫ π

0
dθ
κ‖ cos4 θ + κ� cos2 θ sin2 θ + κ⊥ sin4 θ

(D‖ cos2 θ + D⊥ sin2 θ)2
sin θ (B.19)

=
1

2

∫ π

0
dθ
κ‖ cos4 θ + κ� cos2 θ sin2 θ + κ⊥ sin4 θ

(D‖ cos2 θ + D⊥ sin2 θ)2
sin θ (B.20)
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Complex variables

We can turn this real integral into a complex integral over the upper half of the unit
circle S+ = {z : |z | = 1 ∧ Im z ≥ 0} , substituting z = e iθ ⇒ dz

dθ = ie iθ = iz .
Analytical continuation on C gives us:

cos θ =
1

2
(e iθ + e−iθ) =

1

2
(z +

1

z
) (B.21)

sin θ =
1

2i
(e iθ − e−iθ) =

1

2i
(z − 1

z
) , (B.22)

resulting in

K =
1

2

∫
S+

dz
κ‖

1
16 (z + 1

z )4 − κ� 1
16 (z + 1

z )2(z − 1
z )2 + κ⊥

1
16 (z − 1

z )4

(D‖
1
4 (z + 1

z )2 − D⊥
1
4 (z − 1

z )2)2

1

2i
(z − 1

z
)

1

iz
(B.23)

= −1

4

∫
dz

(κ‖(z
2 + 1)4 − κ�(z4 − 1)2 + κ⊥(z2 − 1)4)(z2 − 1)

z2(D‖(z2 + 1)2 − D⊥(z2 − 1)2)2
(B.24)

Divisor

N(z) = z2
(
D‖(z

2 + 1)2 − D⊥(z2 − 1)2
)2

(B.25)

= z2
(
z4(D‖ − D⊥) + 2z2(D‖ + D⊥) + (D‖ − D⊥)

)2
(B.26)

We need the roots of N(z) and substitute y = z2:

y± =
−(D‖ + D⊥)± 2

√
D‖D⊥

D‖ − D⊥
(B.27)

giving

N

(D‖ − D⊥)2
= y (y − y+)2(y − y−)2 = z2 (z − z+)2(z + z+)2(z − z−)2(z + z−)2 (B.28)

with z± =
√
y±. Because of D‖ > D⊥ > 0 we know that

y+ ∈ (−1, 0) y+ ∈ (−∞,−1) y−y+ = 1 z+ ∈ (0, i) z− ∈ (i , i∞) . (B.29)

Logarithms

The formula now looks like this:

K = κ‖

∫
p‖(z)

N(z)
dz + κ�

∫
p�(z)

N(z)
dz + κ⊥

∫
p⊥(z)

N(z)
dz . (B.30)

Each integrand is a rational function and will contain logarithm terms ln(z ± z±) after
integration. To evaluate these integrals along the path S+, one needs to find a branch of
ln that consistently covers the whole path and then take the difference at the endpoints.



132 Appendix B. Appendix - Kurtosis

We can use the knowledge from eq. (B.29) about the position of the poles and draw the
following image:

This gives the following integrals:

[ln(z + z+)]S+ = iπ − 2i arctan |z+| (B.31)

[ln(z − z+)]S+ = iπ + 2i arctan |z+| (B.32)

[ln(z + z−)]S+ = iπ − 2i arctan |z−| (B.33)

[ln(z − z−)]S+ = −(iπ − 2i arctan |z−|) (B.34)

Result

Putting it all together we get the following formula for the mean kurtosis in the radially
symmetric model:

K =
C‖κ‖ + C�κ� + C⊥κ⊥

4(D‖ − D⊥)2
(B.35)

with

C‖ = 3(y− + 1)A + 4
y2
− + 1

(y− − 1)2
+ 2 (B.36)

C� =

(
−3(y− + 1) +

4

y+ + 1

)
A − 6 (B.37)

C⊥ =

(
3(y− + 1)− 8

y+ + 1
− 16

y+

(y+ + 1)3

)
A + 6− 8

y−
(y− + 1)2

(B.38)

A = 2|z+| arctan |z+| (B.39)

y− =
−(D‖ + D⊥)− 2

√
D‖D⊥

D‖ − D⊥
(B.40)

y+ = 1/y− |z+| =
√
−y+ (B.41)

In the special case that D‖ = D⊥ =: D, the integral simplifies to

K =
3κ‖ + 2κ� + 8κ⊥

15D2
. (B.42)



C. Appendix - H-Psd

C.1. Spectrum and fiber estimation

Idea

At the end of section 7.5, we mentioned, that for fourth order tensors the rank of its
H-matrix is equivalent to the rank of the tensor. In the context of our deconvolution
model, this is equivalent to the number of fibers described by the fODF tensor. The
connection between tensor rank and H-matrix was only shown in [65] for a special class
of tensors that includes order four but might not be exact for higher orders. Also because
of noise and anatomical complications H can always be expected to have full rank, albeit
some eigenvalues will be close to zero.

This section will explore the feasibility of a simple machine learning approach to
estimate the number of fibers from the spectrum of H.

Experiment

Figure C.1.: Evaluation of the machine learning method to estimate fiber numbers from
the spectrum of H for varying levels of noise.

For training we created tensors of order 4, 6, 8, 10 with 0 − 3 fibers. Tensors with k
fibers were built from a random linear combination of k powers of random direction
vectors. 25 different levels of noise ranging from snr 100 to 5 were then added to an
intermediate DWMRI signal, produced via convolution and deconvolved to estimate fiber
tensors again. Each class of order/fibers/snr included 2000 tensors.
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As the learning method we used random forests from the python package sklearn.
The largest five eigenvalues of H were used as features. For evaluation the same classes
and numbers of tensors were created.

The result can be seen in figure C.1. For low noise, orders 6, 8, 10 can correctly label
fibers in at least 95% of the cases, with higher orders performing better, but order 4 still
being in the 90% range. Orders 6, 8, 10 only drop below 90% for SNR ≤ 15.

Repeating the experiment and allowing up to four fibers does not change the accuracy
for low noise. At SNR 10, tensor orders 4 and 6 drop by 10 percentage points compared
to figure C.1 while order 10 does not change.

C.2. Invariant spectrum

Figure C.2.: The spectrum of Hp for a random form p(x) of degree 6 continously rotated
around a fixed axis.

Observation. The spectrum of the matrix Hp is not rotationally invariant. The eigen-
values as well as their ratios change when rotating p(x), as can be seen in figure C.2.

The problem stems from the function L(x, t) as defined in equation (7.16) and its

interactions with the space of t ∈ R(n+s−1
s ). L can be seen as an isomorphic mapping from

parameters t ∈ R(n+s−1
s ) into the space of forms Symn,s . Both spaces have a natural scalar

product - R(n+s−1
s ) has the canonical scalar product while Symn,s has the product of forms

- but L does not preserve these scalar products. This leads to undesired effects because
the definition of eigenvalues for this type of matrix implicitly assumes the canonical
scalar product.
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New version

To fix this problem we can find an orthonormal basis of Symn,s = R(n+s−1
s ) and define a

unitary version of L(x, t):

Lu(x, t) =
∑
iii

xiii
(
iii
)1/2

tiii (C.1)

The new mapping preserves the scalar product

〈Lu(·, t), Lu(·, v)〉 =
∑
iii

(
iii
) tiii(

iii
)1/2

viii(
iii
)1/2

= 〈t, v〉 . (C.2)

Using Lu, a modified H-matrix can be defined:

Definition C.1. The “covariant” H-form of p(x) is

Hcov
p (t) = 〈p, Lu(·, t)2〉 =

∑
iii, jjj

piii+jjj

(
iii
)1/2(

jjj
)1/2

tiii tjjj . (C.3)

Its matrix can be found via

Hcov
p iii, jjj = Hp iii, jjj

(
iii
)1/2(

jjj
)1/2

. (C.4)

Properties

To make life easier, we need two results about multinomial coefficients. The first one
parallels the rule of Pascal’s triangle

(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)
for multi-indices:

Lemma C.1. (
iii
)

=
∑

r=x ,y ,z,...

(
iii − 111r

)
(C.5)

Proof. ∑
r=x ,y ,z,...

(
iii − 111r

)
=

(|iii | − 1)!

(ix − 1)! iy ! iz ! ...
+

(|iii | − 1)!

ix ! (iy − 1)! iz ! ...
+ ... (C.6)

=
(|iii | − 1)!

ix ! iy ! iz ! ...

(
ix + iy + iz + ...

)
︸ ︷︷ ︸

|iii |

=
|iii |!

ix ! iy ! iz ! ...
=
(
iii
)

(C.7)
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Lemma C.2. For kkk with |kkk | = d and 0 ≤ s ≤ d∑
iii+jjj=kkk

|iii |=s

(
iii
)(

jjj
)

=
(
kkk
)

(C.8)

Proof. For s = 0 the lemma states 1 ·
(
kkk
)

=
(
kkk
)

which is trivially true. The rest follows

by induction over s using lemma C.1 in the induction step:∑
|iii |=s

(
iii
)(

kkk − iii
)

=
∑

r=x ,y ,z,...

∑
|iii |=s

(
iii − 111r

)(
kkk − iii

)
(C.9)

=
∑

r=x ,y ,z,...

∑
|i ′i ′i ′|=s−1

(
i ′i ′i ′
)(

kkk − i ′i ′i ′ − 111r
)

(C.10)

=
∑
|i ′i ′i ′|=s−1

(
i ′i ′i ′
)(

kkk − i ′i ′i ′
)

(C.11)

(for the purpose of clearity, multinomial coefficients
(
iii
)

are assumed to vanish for neg-

ative components, allowing us to ignore complications with the range of sums)

Now to the two main properties of the new H-matrix:

Theorem C.1. TTT p and Hcov
p have the same Frobenius norm:

‖Hcov
p ‖F = ‖TTT p‖F (C.12)

Proof.

‖Hcov
p ‖2

F =
∑
iii, jjj

(
Hcov
p iii, jjj

)2
=
∑
iii, jjj

p2
iii+jjj

(
iii
)(

jjj
)

(C.13)

=
∑
kkk

p2
kkk

∑
iii+jjj=kkk

(
iii
)(

jjj
)

(C.14)

=
∑
kkk

p2
kkk

(
kkk
)

= 〈p, p〉 = ‖TTT p‖2
F (C.15)

(C.16)

Theorem C.2. The spectrum of Hcov
p is invariant under rotations p(x) 7→ p(Rx).
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Proof. For any rotation R ∈ SO(3) there exists a matrix R so that

Lu(x, t) = Lu(Rx,Rt) . (C.17)

A similar matrix could also be found for L(x, t), but by construction of Lu(x, t) we get
the nice property R ∈ SO(

(n+s−1
s

)
). This leads to the simple transformation behavior:

〈t,Hcov
p v〉 = 〈p, Lu(·, t)Lu(·, v)〉x (C.18)

= 〈p, Lu(·, t)Lu(·, v)〉Rx (C.19)

= 〈p ◦ R, Lu(·,RT
t)Lu(·,RT

v)〉x (C.20)

= 〈RT
t,Hcov

p◦R R
T
v〉 (C.21)

or in short
Hcov
p = R · Hcov

p◦R · R
T

. (C.22)

Let λ ∈ R be an eigenvalue of Hcov
p . Then there is a v so that

λ〈t, v〉 = 〈t,Hcov
p v〉 ∀t . (C.23)

The transformation formula allows to rewrite this as

λ〈RT
t,R

T
v〉 = λ〈t, v〉 = 〈t,Hcov

p v〉 (C.24)

= 〈RT
t,Hcov

p◦R R
T
v〉 ∀t . (C.25)

This means, λ is also an eigenvalue of the Hcov-matrix of p(Rx).





Bibliography

[1] Andersson, J.L.R., Sotiropoulos, S.N.: An integrated approach to correction for
off-resonance effects and subject movement in diffusion mr imaging. NeuroImage
125, 1063–1078 (2016)

[2] Ankele, M., Lim, L.H., Groeschel, S., Schultz, T.: Versatile, robust, and efficient
tractography with constrained higher-order tensor fODFs. Int’l J. of Computer
Assisted Radiology and Surgery 12(8), 1257–1270 (2017)
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