10 research outputs found

    Rectification, amplification and switching capabilities for energy harvesting systems: power management circuit for piezoelectric energy harvester

    Get PDF
    Dissertação de mestrado em Biomedical EngineeringA new energy mechanism needs to be addressed to overcome the battery dependency, and consequently extend Wireless Sensor Nodes (WSN) lifetime effectively. Energy Harvesting is a promising technology that can fulfill that premise. This work consists of the realization of circuit components employable in a management system for a piezoelectric-based energy harvester, with low power consumption and high efficiency. The implementation of energy harvesting systems is necessary to power-up front-end applications without any battery. The input power and voltage levels generated by the piezoelectric transducer are relatively low, especially in small-scale systems, as such extra care has to be taken in power consumption and efficiency of the circuits. The main contribution of this work is a system capable of amplifying, rectifying and switching the unstable signal from an energy harvester source. The circuit components are designed based on 0.13 Complementary Metal-Oxide-Semiconductor (CMOS) technology. An analog switch, capable of driving the harvesting circuit at a frequency between 1 and 1 , with proper temperature behaviour, is designed and verified. An OFF resistance of 520.6 Ω and isolation of −111.24 , grant excellent isolation to the circuit. The designed voltage amplifier is capable of amplifying a minor signal with a gain of 42.56 , while requiring low power consumption. The output signal is satisfactorily amplified with a reduced offset voltage of 8 . A new architecture of a two-stage active rectifier is proposed. The power conversion efficiency is 40.4%, with a voltage efficiency of up to 90%. Low power consumption of 17.7 is achieved by the rectifier, with the embedded comparator consuming 113.9 . The outcomes validate the circuit’s power demands, which can be used for other similar applications in biomedical, industrial, and commercial fields.Para combater a dependência dos dispositivos eletrónicos relativamente ás baterias é necessário um novo sistema energético, que permita prolongar o tempo de vida útil dos mesmos. Energy Harvesting é uma tecnologia promissora utilizada para alimentar dispositivos sem bateria. Este trabalho consiste na realização de componentes empregáveis num circuito global para extrair energia a partir ds vibrações de um piezoelétricos com baixo consumo de energia e alta eficiência. Os níveis de potência e voltagem gerados pelo transdutor piezoelétrico são relativamente baixos, especialmente em sistemas de pequena escala, por isso requerem cuidado extra relativamente ao consumo de energia e eficiência dos circuitos. A principal contribuição deste trabalho é um sistema apropriado para amplificar, retificar e alternar o sinal instável proveniente de uma fonte de energy harvesting. Os componentes do sistema são implementados com base na tecnologia CMOS com 0.13 . Um interruptor analógico capaz de modelar a frequência do sinal entre 1 e 1 e estável perante variações de temperatura, é implementado. O circuito tem um excelente isolamento de −111.24 , devido a uma resistência OFF de 520.6 Ω. O amplificador implementado é apto a amplificar um pequeno sinal com um ganho de 42.56 e baixo consumo. O sinal de saída é satisfatoriamente amplificado com uma voltagem de offset de 8 . Um retificador ativo de dois estágios com uma nova arquitetura é proposto. A eficiência de conversão de energia atinge os 40.4%, com uma eficiência de voltagem até 90%. O retificador consome pouca energia, apenas 17.7 , incorporando um comparador de 113.9 . Os resultados validam as exigências energéticas do circuito, que pode ser usado para outras aplicações similares no campo biomédico, industrial e comercial

    Circuits and Systems for Energy Harvesting and Internet of Things Applications

    Get PDF
    The Internet of Things (IoT) continues its growing trend, while new “smart” objects are con-stantly being developed and commercialized in the market. Under this paradigm, every common object will be soon connected to the Internet: mobile and wearable devices, electric appliances, home electronics and even cars will have Internet connectivity. Not only that, but a variety of wireless sensors are being proposed for different consumer and industrial applications. With the possibility of having hundreds of billions of IoT objects deployed all around us in the coming years, the social implications and the economic impact of IoT technology needs to be seriously considered. There are still many challenges, however, awaiting a solution in order to realize this future vision of a connected world. A very important bottleneck is the limited lifetime of battery powered wireless devices. Fully depleted batteries need to be replaced, which in perspective would generate costly maintenance requirements and environmental pollution. However, a very plausible solution to this dilemma can be found in harvesting energy from the ambient. This dissertation focuses in the design of circuits and system for energy harvesting and Internet of Things applications. The first part of this dissertation introduces the research motivation and fundamentals of energy harvesting and power management units (PMUs). The architecture of IoT sensor nodes and PMUs is examined to observe the limitations of modern energy harvesting systems. Moreover, several architectures for multisource harvesting are reviewed, providing a background for the research presented here. Then, a new fully integrated system architecture for multisource energy harvesting is presented. The design methodology, implementation, trade-offs and measurement results of the proposed system are described. The second part of this dissertation focus on the design and implementation of low-power wireless sensor nodes for precision agriculture. First, a sensor node incorporating solar energy harvesting and a dynamic power management strategy is presented. The operation of a wireless sensor network for soil parameter estimation, consisting of four nodes is demonstrated. After that, a solar thermoelectric generator (STEG) prototype for powering a wireless sensor node is proposed. The implemented solar thermoelectric generator demonstrates to be an alternative way to harvest ambient energy, opening the possibility for its use in agricultural and environmental applications. The open problems in energy harvesting for IoT devices are discussed at the end, to delineate the possible future work to improve the performance of EH systems. For all the presented works, proof-of-concept prototypes were fabricated and tested. The measured results are used to verify their correct operation and performance

    Analysis and practical considerations of linear and nonlinear piezoelectric energy conversion and harvesting techniques

    Get PDF
    La décroissance de la consommation électrique des dispositifs électroniques leur a permis une croissance sans précédent. Néanmoins, les éléments de stockage d énergie (piles et batteries), bien qu ayant initialement promus ce développement, sont devenus un frein à la prolifération des microsystèmes électroniques, de part leur durée de vie limitée ainsi que des considérations environnementales (recyclage). Pour palier à ce problème, la possibilité d exploiter l énergie de l environnement immédiat du dispositif a été proposée et a fait l objet de nombreuses recherches au cours des dernières années. En particulier, la récupération d énergie mécanique exploitant l effet piézoélectrique est l une des pistes les plus étudiées actuellement pour la conception de microgénérateurs autonomes capables d alimenter les dispositifs électroniques. Par ailleurs, dans ce domaine, il a été démontré qu un traitement non-linéaire de la tension de sortie de l élément actif permet d améliorer les capacités de récupération de l énergie vibratoire. L une de ces approches, nommée Synchronized Switch Harvesting on Inductor (récupération par commutation synchronisée sur inductance) et consistant en une inversion de la tension de manière synchrone avec le déplacement, s est montrée particulièrement efficace, pouvant augmenter la quantité d énergie récupérée par un facteur supérieur à 10. Cette dernière conduit à un processus cumulatif qui augmente artificiellement la tension de sortie de l élément piézoélectrique ainsi qu à une réduction du déphasage entre tension et vitesse de déplacement ; ces deux effets conduisant à l augmentation importante des capacités de conversion. Néanmoins, l étude des microgénérateurs d énergie s est quasiment toujours faite en considérant une excitation sinusoïdale, ce qui correspond rarement à la réalité. Peu de travaux expérimentaux, et encore moins théoriques, ont été menés en considérant une excitation large bande ; ceci étant d autant plus vrai pour les dispositifs incluant un élément non-linéaire. Ainsi l objectif de cette thèse est d étudier le comportement des récupérateurs d énergie piézoélectriques interfacés de manière non-linéaire. Pour ce faire, différentes approches seront envisagées, en considérant le processus de commutation comme un auto-échantillonnage du signal, ou en appliquant des théories d analyse stochastique pour quantifier les performances du dispositif. Ainsi, plusieurs formes d excitation appliquée au système pourront être analysées, permettant d étudier la réponse du système sous des conditions plus réalistes. Toujours dans l optique d une implémentation réaliste, un autre objectif de cette thèse consistera à évaluer l impact de la récupération d énergie par couplage sismique sur la structure hôte, démontrant la nécessité d envisager le système dans sa globalité afin de disposer de systèmes performants capables de convertir efficacement l énergie vibratoire sous forme électrique pour un usage ultérieur.A nonlinear interface consisting in a switching device has been proved to improve the piezoelectric harvester performance. Although existing works are usually done under single frequency excitation. practical cases are more likely broadband and random. In addition, the coupling effect due to the harvesting process is also an interesting issue to discuss. In terms of energy conversion process in seismic piezoelectric harvesters, mechanical interactions between host structure and harvester is an essential issue as well. The purpose of this work is to analysis seismic type piezoelectric harvesters from a practical perspective and to provide an optimal design of the latter. The broadband modeling based on the concepts of self-sampling and self-aliasing is described under broadband excitations for the nonlinear interface called "Periodic Switching Harvesting on Inductor" (PSHI). For this technique, the switching device is considered to be turned on at a fixed switching frequency. Then stochastic modeling is applied to have mathematical expressions that can describe broadband performance of the harvester with power spectral density (PSD) function of signals. As the switch is turned on at a given frequency, the modeling can be derived using cyclostationary theory. The effectiveness of stochastic modeling is validated with experimental measurements and time-domain iterative calculations, and the harvester performance under a band-limited noise excitation is discussed under bell-curved spectra excitations. An optimal switching frequency slightly less than twice the harvester resonant frequency is proved to have the optimal power output under the optimal resistive load. This switching frequency is however dependent on the electromechanical coupling factor of the harvester. Another part of this work discusses the interaction between the host structure and the harvester. The analysis is conducted with a Two-Degree-of-Freedom (TDOF) model. An energy conversion loop is therefore formed between the host structure and the harvester, within the harvester and the resistive load. The TDOF model is verified with Finite Element model and experimental work. An optimal mass ratio is proved to provide the maximal power output. The modeling is further applied to a practical self-powered Structural Health Monitoring system providing the best design of the harvester. A practical consideration of the broadband excitation is also introduced showing the effect of frequency detuning between the host structure and the harvester. Compared to constant force factor case, the harvester performance with a constant electromechanical coupling factor is surprisingly with very little decreases due to the mismatching of harvester and host structure resonant.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF

    Prédiction et gestion de l’énergie dans un réseau de capteurs sans fil récolteurs d’énergie vibratoire pour les applications industrielles de l’internet des objets

    Get PDF
    La question de l’autonomie énergétique des capteurs sans fil (WS pour Wireless Sensor), indispensables pour l’automatisation de nombreux procédés industriels, est aujourd’hui une limite fondamentale dans l’atteinte des objectifs de l’industrie 4.0. Pour surmonter cette limite, la piste de solution la plus prometteuse est celle de la récolte de l’énergie ambiante (EH pour Energy Harvesting). L’EH consiste à identifier une source d’énergie primaire (soleil, vibrations, ondes radiofréquences, chaleur, etc.), disponible dans l’environnement immédiat du capteur et de la transformer en énergie électrique pour son alimentation. Cette thèse est une contribution dans ce domaine de recherche en pleine expansion, pour des applications dans l’environnement industriel. Les vibrations qui abondent dans la plupart des procédés industriels sont considérées comme source d’alimentation des WS capables de remplacer les capteurs filés actuellement utilisés. Prenant en considération le caractère aléatoire de la quantité d’énergie récoltable, deux contributions majeures sont proposées dans cette thèse à savoir la conception d’un Prédicteur de l’Énergie Récoltable des vibrations (PERV) et la mise en place d’une solution permettant de gérer efficacement l’énergie récoltée à travers un Protocole Hiérarchique à Équilibrage d’Énergie (PHEE). La conception du PERV est basée sur des données de vibrations enregistrées à 12 emplacements différents, et ce pendant un mois, sur le processus de concassage des minerais par un broyeur semiautogène. La périodicité observée dans les signaux est exploitée pour minimiser la quantité de données devant être stockées pour l’estimation de la puissance à un instant donné. Les performances du PERV sont ensuite comparées à un prédicteur de l’état de l’art le EWMA (Exponentially Weighted Moving-Average qui utilise l’historique des données d’énergie pour estimer les quantités d’énergie récoltable dans le futur) et il est obtenu que l’erreur quadratique moyenne pour les 12 points de mesure subie des améliorations allant de 10 % à 90.5 % comparé au prédicteur EWMA. Le PERV permet ainsi d’augmenter la précision dans la prédiction tout en réduisant la quantité des données devant être stockées. Sous la base de l’énergie prédite, le PHEE est conçu avec pour objectif d’optimiser à la fois la Qualité de Service individuelle de chacun des noeuds, mais aussi celle du réseau en entier. De façon plus spécifique, sous la base de l’énergie prédite, les noeuds capteurs contrôlant le procédé sont capables d'opérer de façon perpétuelle lorsque le coût énergétique par cycle de mesure est inférieur à 160

    Modeling And Development Of A MEMS Device For Pyroelectric Energy Scavenging

    Get PDF
    As the world faces an energy crisis with depleting fossil fuel reserves, alternate energy sources are being researched ever more seriously. In addition to renewable energy sources, energy recycling and energy scavenging technologies are also gaining importance. Technologies are being developed to scavenge energy from ambient sources such as vibration, radio frequency and low grade waste heat, etc. Waste heat is the most common form of wasted energy and is the greatest potential source of energy scavenging. Pyroelectricity is the property of some materials to change the surface charge distribution with the change in temperature. These materials produce current as temperature varies in them and can be utilized to convert thermal energy to electrical energy. In this work a novel approach to vary temperature in pyroelectric material to convert energy has been investigated. Microelectromechanical Systems or MEMS is the new technology trend that takes advantage of unique physical properties at micro scale to create mechanical systems with electrical interface using available microelectronic fabrication techniques. MEMS can accomplish functionalities that are otherwise impossible or inefficient with macroscale technologies. The energy harvesting device modeled and developed for this work takes full benefit of MEMS technology to cycle temperature in an embedded pyroelectric material to convert thermal energy from low grade waste heat to electrical energy. Use of MEMS enables improved performance and efficiency and overcomes problems plaguing previous attempts at pyroelectric energy conversion. A Numerical model provides accurate prediction of MEMS performance and sets design criteria, while physics based analytical model simplifies design steps. A SPICE model of the MEMS device incorporates electrical conversion and enables electrical interfacing for current extraction and energy storage. Experimental results provide practical implementation steps towards of the modeled device. Under ideal condition the proposed device promises to generate energy density of 400 W/L

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources

    Ferroelectrics

    Get PDF
    Ferroelectric materials exhibit a wide spectrum of functional properties, including switchable polarization, piezoelectricity, high non-linear optical activity, pyroelectricity, and non-linear dielectric behaviour. These properties are crucial for application in electronic devices such as sensors, microactuators, infrared detectors, microwave phase filters and, non-volatile memories. This unique combination of properties of ferroelectric materials has attracted researchers and engineers for a long time. This book reviews a wide range of diverse topics related to the phenomenon of ferroelectricity (in the bulk as well as thin film form) and provides a forum for scientists, engineers, and students working in this field. The present book containing 24 chapters is a result of contributions of experts from international scientific community working in different aspects of ferroelectricity related to experimental and theoretical work aimed at the understanding of ferroelectricity and their utilization in devices. It provides an up-to-date insightful coverage to the recent advances in the synthesis, characterization, functional properties and potential device applications in specialized areas

    Ferroelectrets: from material science to energy harvesting and sensor applications

    Get PDF
    The purpose of this thesis is to develop innovative ferroelectrets that can be used in energy harvesting devices as well as mechanical sensors. In the first stage, the focus lies on the application of ferroelectrets as energy harvesters. The inability to control the environment where the energy harvesters will be applied, requires the use of materials that can be utilized in harsh environment such as high temperature or humidity. Therefore, new ferroelectrets based on polymers with excellent electret properties, such as fluoroethylene propylene (FEP) are developed. Two types of ferroelectrets are considered, one optimized for the longitidunal piezoelectric effect and the other one optimized for the transverse piezoelectric effect in these materials. Hereby, new void structures are achieved through thermally fusing such films so that parallel tunnels (parallel-tunnel ferroelectrets) are formed between them, or by fusing round-section FEP tubes together so that they form a band or membrane. The FEP tube configuration is optimized based on a finite element model showing that implementing a single tube structure (25 mm × 1.5 mm) as the energy harvester exhibits the largest output power. By building the energy harvester and modeling it analytically, it is demonstrated that the generated power is highly dependent on parameters such as wall thickness, load resistance, and seismic mass. Utilizing a seismic mass of 80 g at resonance frequencies around 80 Hz and an input acceleration of 1 g (9.81 m s−2), output powers up to 300 μW are reached for a transducer with 25 μm thick walls. The parallel-tunnel ferroelectrets (40 mm × 10 mm) are characterized and used in an energy harvester device based on the transverse piezoelectric effect. The energy harvesting device is an air-spaced cantilever arrangement produced by additive manufacturing technique (3D-printing). The device is tested by exposing it to sinusoidal vibrations with an acceleration a, generated by a shaker. By placing the ferroelectret at a defined distance from the neutral axis of the cantilever beam and using a proper pre-stress of the ferroelectret, an output power exceeding 1000 μW at the resonance frequency of approximately 35 Hz is reached. This demonstrates a significant improvement of air-spaced vibrational energy harvesting with ferroelectrets and greatly exceeds previous performance data for ferroelectret energy harvester of maximal 230 μW. In the second stage of the dissertation, the focus is shifted to develop ferroelectrets for chosen applications such as force myography, ultrasonic transducer and smart insole. Hereby, new arrangements and manufacturing methods are investigated to build the ferroelectret sensors. Furthermore, and following the recent requirements of eco-friendlier sensors, ferroelectrets based on polylactic acid (PLA) are investigated. PLA is a biodegradable and bioabsorbable material derived from renewable plant sources, such as corn or potato starch, tapioca roots, and sugar canes. This work relays a promising new technique in the fabrication of ferroelectrets. The novel structure is achieved through sandwiching a 3D-printed grid of periodically spaced thermoplastic polyurethane (TPU) spacers and air channels between two 12.5 μm-thick FEP films. Due to the ultra-soft TPU sections, very high quasistatic (22.000 pC N−1) and dynamic (7500 pC N−1) d33-coefficients are achieved. The isothermal stability of the d33-coefficients showed a strong dependence on poling temperature. Furthermore, the thermally stimulated discharge currents revealed well-known instability of positive charge carriers in FEP, thereby offering the possibility of stabilization by high-temperature poling. A similar approach is taken by replacing the environmentally harmful FEP by PLA. Large piezoelectric d33-coefficients of up to 2850 pC N−1 are recorded directly after charging and stabilized at about 1500 pC N−1 after approximately 50 days under ambient environmental conditions. These ferroelectrets when used for force myography to detect the slightest muscle movement when moving a finger, resulted in signal shapes and magnitudes that can be clearly distinguished from each other using simple machine learning algorithms known as Support Vector Machine (SVM) with a classification accuracy of 89.5%. Following the new manufacturing route using 3D-printing, an insole is printed using pure polypropylene filament and consists of eight independent sensors, each with a piezoelectric d33 coefficient of approximately 2000 pC N−1. The active part of the insole is protected using a 3D-printed PLA cover that features eight defined embossments on the bottom part, which focus the force on the sensors and act as overload protection against excessive stress. In addition to determining the gait pattern, an accelerometer is implemented to measure kinematic parameters and validate the sensor output signals. The combination of the high sensitivity of the sensors and the kinematic movement of the foot, opens new perspectives regarding diagnosis possibilities through gait analysis. By 3D-printing a PLA backplate and using it in combination with a bulk PLA film, a new possibility to build ultrasonic transducers is presented. The ultrasonic transducer consists of three main components all made from PLA: the film presenting the vibrating plate, the printed backplate with well-defined groves, and the printed holder. The PLA film and the printed backplate build together the ferroelectret with artificial air voids. The printed holder clamps the film on the backplate and fixes the ferroelectret together. The resulting sound pressure is measured with a calibrated microphone (Type 4138, Bruel & Kjaer) at a distance of 30 cm. The biodegradable ultrasonic transducer exhibits a large bandwidth of approximately 45 kHz and fractional bandwidth of 70%. The resulting sound pressure at the resonance frequency can be increased from 98 dB up to 106 dB for driving voltages from 30 to 70 V. respectively. The obtained theoretical and experimental results are an excellent base for further optimizing ferroelectrets to be accepted in the field of energy harvesting and mechanical sensors, where flexibility and high sensitivity are mandatory for the applications

    Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference

    Full text link
    The 6th ECCOMAS Young Investigators Conference YIC2021 will take place from July 7th through 9th, 2021 at Universitat Politècnica de València, Spain. The main objective is to bring together in a relaxed environment young students, researchers and professors from all areas related with computational science and engineering, as in the previous YIC conferences series organized under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Participation of senior scientists sharing their knowledge and experience is thus critical for this event.YIC 2021 is organized at Universitat Politécnica de València by the Sociedad Española de Métodos Numéricos en Ingeniería (SEMNI) and the Sociedad Española de Matemática Aplicada (SEMA). It is promoted by the ECCOMAS.The main goal of the YIC 2021 conference is to provide a forum for presenting and discussing the current state-of-the-art achievements on Computational Methods and Applied Sciences,including theoretical models, numerical methods, algorithmic strategies and challenging engineering applications.Nadal Soriano, E.; Rodrigo Cardiel, C.; Martínez Casas, J. (2022). Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. https://doi.org/10.4995/YIC2021.2021.15320EDITORIA

    Micro-générateurs piézoélectriques pour des applications de récupération d'énergie

    Get PDF
    This PhD thesis focuses on the thermal energy harvesting at microscale to propose an alternative to thermoelectric materials. The aim is to conceive, fabricate and characterize a microscopic harvester to take profit of the increase of thermal exchanges and oscillation frequencies with the downscaling. It is based on a double-step transduction: thermo-mecanical one thanks to the thermal buckling of a bilayer plate initially curved, and piezoelectric.Rectangular structures of different sizes composed of AlN and Al have been fabricated and characterized. The transverse curvature of the rectangular plate being to high, optimized structures having a butterfly shape have also been fabricated and characterized.Le sujet de ce travail de thèse s'inscrit dans la récupération d'énergie thermique à l'échelle microscopique pour proposer une alternative aux matériaux thermoélectriques. L'objectif est de concevoir, fabriquer et caractériser un récupérateur microscopique pour tirer profit de l'augmentation des échanges thermiques et des fréquences d'oscillations avec la réduction d'échelle. Il est basé sur une double transduction, thermo-mécanique grâce au flambage d'une poutre bi-couche initialement courbe, et piézoélectrique.Des structures rectangulaires de différents tailles à base d'AlN et d'Al ont été fabriquées et caractérisées. La courbure transverse des plaques rectangulaires étant trop importante, des structures optimisées en forme de papillons ont par ailleurs été fabriquées et caractérisées
    corecore