532 research outputs found

    Design of a 14-bit fully differential discrete time delta-sigma modulator

    Get PDF
    Analog to digital converters play an essential role in modern mixed signal circuit design. Conventional Nyquist-rate converters require analog components that are precise and highly immune to noise and interference. In contrast, oversampling converters can be implemented using simple and high-tolerance analog components. Moreover, sampling at high frequency eliminates the need for abrupt cutoffs in the analog anti-aliasing filters. A noise shaping technique is also used in DS converters in addition to oversampling to achieve a high resolution conversion. A significant advantage of the method is that analog signals are converted using simple and high-tolerance analog circuits, usually a 1-bit comparator, and analog signal processing circuits having a precision that is usually much less than the resolution of the overall converter. In this thesis, a technique to design the discrete time DS converters for 25 kHz baseband signal bandwidth will be described. The noise shaping is achieved using a switched capacitor low-pass integrator around the 1-bit quantizer loop. A latched-type comparator is used as the quantizer of the DS converter. A second order DS modulator is implemented in a TSMC 0.35 µm CMOS technology using a 3.3 V power supply. The peak signal-to-noise ratio (SNR) simulated is 87 dB; the SNDR simulated is 82 dB which corresponds to a resolution of 14 bits. The total static power dissipation is 6.6 mW

    Technology aware circuit design for smart sensors on plastic foils

    Get PDF

    Oversampled analog-to-digital converter architectures based on pulse frequency modulation

    Get PDF
    Mención Internacional en el título de doctorThe purpose of this research work is providing new insights in the development of voltage-controlled oscillator based analog-to-digital converters (VCO-based ADCs). Time-encoding based ADCs have become of great interest to the designer community due to the possibility of implementing mostly digital circuits, which are well suited for current deep-submicron CMOS processes. Within this topic, VCO-based ADCs are one of the most promising candidates. VCO-based ADCs have typically been analyzed considering the output phase of the oscillator as a state variable, similar to the state variables considered in __ modulation loops. Although this assumption might take us to functional designs (as verified by literature), it does not take into account neither the oscillation parameters of the VCO nor the deterministic nature of quantization noise. To overcome this issue, we propose an interpretation of these type of systems based on the pulse frequency modulation (PFM) theory. This permits us to analytically calculate the quantization noise, in terms of the working parameters of the system. We also propose a linear model that applies to VCO-based systems. Thanks to it, we can determine the different error processes involved in the digitization of the input data, and the performance limitations which these processes direct to. A generic model for any order open-loop VCO-based ADCs is made based on the PFM theory. However, we will see that only the first-order case and a second order approximation can be implemented in practice. The PFM theory also allows us to propose novel approaches to both single-stage and multistage VCObased architectures. We describe open-loop architectures such as VCO-based architectures with digital precoding, PFM-based architectures that can be used as efficient ADCs or MASH architectures with optimal noise-transfer-function (NTF) zeros. We also make a first approach to the proposal and analysis of closed loop architectures. At the same time, we deal with one of the main limitations of VCOs (especially those built with ring oscillators), which is the non-linear voltage to- frequency relation. In this document, we describe two techniques mitigate this phenomenon. Firstly, we propose to use a pulse width modulator in front of the VCO. This way, there are only two possible oscillation states. Consequently, the oscillator works linearly. To validate the proposed technique, an experimental prototype was implemented in a 40-nm CMOS process. The chip showed noise problems that degraded the expected resolution, but allowed us to verify that the potential performance was close to the expected one. A potential signal-to-noise-distortion ratio (SNDR) equal to 56 dB was achieved in 20 MHz bandwidth, consuming 2.15 mW with an occupied area equal to 0.03 mm2. In comparison to other equivalent systems, the proposed architecture is simpler, while keeping similar power consumption and linearity properties. Secondly, we used a pulse frequency modulator to implement a second ADC. The proposed architecture is intrinsically linear and uses a digital delay line to increase the resolution of the converter. One experimental prototype was implemented in a 40-nm CMOS process using one of these architectures. Proper results were measured from this prototype. These results allowed us to verify that the PFM-based architecture could be used as an efficient ADC. The measured peak SNDR was equal to 53 dB in 20 MHz bandwidth, consuming 3.5 mW with an occupied area equal to 0.08 mm2. The architecture shows a great linearity, and in comparison to related work, it consumes less power and occupies similar area. In general, the theoretical analyses and the architectures proposed in the document are not restricted to any application. Nevertheless, in the case of the experimental chips, the specifications required for these converters were linked to communication applications (e.g. VDSL, VDSL2, or even G.fast), which means medium resolution (9-10 bits), high bandwidth (20 MHz), low power and low area.El propósito del trabajo presentado en este documento es aportar una nueva perspectiva para el diseño de convertidores analógico-digitales basados en osciladores controlados por tensión. Los convertidores analógico-digitales con codificación temporal han llamado la atención durante los últimos años de la comunidad de diseñadores debido a la posibilidad de implementarlos en su gran mayoría con circuitos digitales, los cuales son muy apropiados para los procesos de diseño manométricos. En este ámbito, los convertidores analógico-digitales basados en osciladores controlados por tensión son uno de los candidatos más prometedores. Los convertidores analógico-digitales basados en osciladores controlados por tensión han sido típicamente analizados considerando que la fase del oscilador es una variable de estado similar a las que se observan en los moduladores __. Aunque esta consideración puede llevarnos a diseños funcionales (como se puede apreciar en muchos artículos de la literatura), en ella no se tiene en cuenta ni los parámetros de oscilación ni la naturaleza determinística del ruido de cuantificación. Para solventar esta cuestión, en este documento se propone una interpretación alternativa de este tipo de sistemas haciendo uso de la teoría de la modulación por frecuencia de pulsos. Esto nos permite calcular de forma analítica las ecuaciones que modelan el ruido de cuantificación en función de los parámetros de oscilación. Se propone también un modelo lineal para el análisis de convertidores analógico-digitales basados en osciladores controlados por tensión. Este modelo permite determinar las diferentes fuentes de error que se producen durante el proceso de digitalización de los datos de entrada y las limitaciones que suponen. Un modelo genérico de convertidor de cualquier orden se propone con la ayuda de este modelo. Sin embargo, solo los casos de primer orden y una aproximación al caso de segundo orden se pueden implementar en la práctica. La teoría de la modulación por frecuencia de pulsos también permite nuevas perspectivas para la propuesta y el análisis tanto de arquitecturas de una sola etapa como de arquitecturas de varias etapas construidas con osciladores controlados por tensión. Se proponen y se describen arquitecturas en lazo abierto como son las basadas en osciladores controlador por tensión con moduladores digitales en la etapa de entrada, moduladores por frecuencia de pulsos que se utilizan como convertidores analógico-digitales eficientes o arquitecturas en cascada en las que se optimizan la distribución de los ceros en la función de transferencia del ruido. También se realiza una aproximación a la propuesta y el análisis de arquitecturas en lazo cerrado. Al mismo tiempo, se aborda una de las problemáticas más importantes de los osciladores controlados por tensión (especialmente en aquellos implementados mediante osciladores en anillo): la relación tensión-freculineal que presentan este tipo de circuitos. En el documento, se describen dos técnicas cuyo objetivo es mitigar esta limitación. La primera técnica de corrección se basa en el uso de un modulador por ancho de pulsos antes del oscilador controlado por tensión. De esta forma, solo existen dos estados de oscilación en el oscilador, se trabaja de forma lineal y no se genera distorsión en los datos de salida. La técnica se propone de forma teórica haciendo uso de la teoría desarrollada previamente. Para llevar a cabo la validación de la propuesta teórica se fabricó un prototipo experimental en un proceso CMOS de 40-nm. El chip mostró problemas de ruido que limitaban la resolución, sin embargo, nos permitió velicar que la resolución ideal que se podrá haber obtenido estaba muy cercana a la resolución esperada. Se obtuvo una potencial relación señal-(ruido-distorsión) igual a 56 dB en 20 MHz de ancho de banda, un consumo de 2.15 mW y un área igual a 0.03 mm2. En comparación con sistemas equivalentes, la arquitectura propuesta es más simple al mismo tiempo que se mantiene el consumo así como la linealidad. A continuación, se propone la implementación de un convertidor analógico digital mediante un modulador por frecuencia de pulsos. La arquitectura propuesta es intrínsecamente lineal y hace uso de una línea de retraso digital con el fin de mejorar la resolución del convertidor. Como parte del trabajo experimental, se fabricó otro chip en tecnología CMOS de 40 nm con dicha arquitectura, de la que se obtuvieron resultados notables. Estos resultados permitieron verificar que la arquitectura propuesta, en efecto, podrá emplearse como convertidor analógico-digital eficiente. La arquitectura consigue una relación real señal-(ruido-distorsión) igual a 53 dB en 20 MHz de ancho de banda, un consumo de 3.5 mW y un área igual a 0.08 mm2. Se obtiene una gran linealidad y, en comparación con arquitecturas equivalentes, el consumo es menor mientras que el área ocupada se mantiene similar. En general, las aportaciones propuestas en este documento se pueden aplicar a cualquier tipo de aplicación, independientemente de los requisitos de resolución, ancho de banda, consumo u área. Sin embargo, en el caso de los prototipos fabricados, las especificaciones se relacionan con el ámbito de las comunicaciones (VDSL, VDSL2, o incluso G.fast), en donde se requiere una resolución media (9-10 bits), alto ancho de banda (20 MHz), manteniendo bajo consumo y baja área ocupada.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Michael Peter Kennedy.- Secretario: Antonio Jesús López Martín.- Vocal: Jörg Hauptman

    Mismatch-Immune Successive-Approximation Techniques for Nanometer CMOS ADCs

    Full text link
    During the past decade, SAR ADCs have enjoyed increasing prominence due to their inherently scaling-friendly architecture. Several recent SAR ADC innovations focus on decreasing power consumption, mitigating thermal noise, and improving bandwidth, however most of those that use non-hybrid architectures are limited to moderate (8-10 bit) resolu- tion. Assuming an almost rail-to-rail dynamic range, comparator noise and DAC element mismatch constraints are critical but not insurmountable at 10 bits of resolution or less in sub-100nm processes. On the other hand, analysis shows that for medium-resolution ADCs (11-15 bits, depending on the LSB voltage of the converter), the mismatch sizing constraint still dominates unit capacitor sizing over the kT/C sampling noise constraint, and can only be mitigated by drawing increasingly larger capacitors. The focus of this work is to extend the scaling benefits of the SAR architecture to medium and higher ADC resolutions through mitigating and ultimately harnessing DAC element mismatch. This goal is achieved via a novel, completely reconfigurable capacitor DAC that allows the rearranging of capacitors to different trial groupings in the SAR cycle so that mismatch can be canceled. The DAC is implemented in a 12-bit SAR ADC in 65nm CMOS, and a nearly 2-bit improvement in linearity is demonstrated with a simple reconfiguration algorithm.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138630/1/ncolins_1.pd

    Feasibility of a 16bit, 3MSPS multibit per stage pipeline ADC using digital calibration

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and, Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1988.Includes bibliographical references (p. 115-116).by Matthew Louis Courcy.B.S.M.Eng
    corecore