12 research outputs found

    Influence of Electromyogram (EMG) Amplitude Processing in EMG-Torque Estimation

    Get PDF
    A number of studies have investigated the relationship between surface electromyogram (EMG) and torque exerted about a joint. The standard deviation of the recorded EMG signal is defined as the EMG amplitude. The EMG amplitude estimation technique varies with the study from conventional type of processing (i.e. rectification followed by low pass filtering) to further addition of different noise rejection and signal-to-noise ratio improvement stages. Advanced EMG amplitude processors developed recently that incorporate signal whitening and multiple-channel combination have been shown to significantly improve amplitude estimation. The main contribution of this research is a comparison of the performance of EMG-torque estimators with and without these advanced EMG amplitude processors. The experimental data are taken from fifteen subjects that produced constant-posture, non-fatiguing, force-varying contractions about the elbow while torque and biceps/triceps EMG were recorded. Utilizing system identification techniques, EMG amplitude was related to torque through a zeros-only (finite impulse response, FIR) model. The incorporation of whitening and multiple-channel combination separately reduced EMG-torque errors and their combination provided a cumulative improvement. A 15th-order linear FIR model provided an average estimation error of 6% of maximum voluntary contraction (or 90% of variance accounted for) when EMG amplitudes were obtained using a four-channel, whitened processor. The equivalent single-channel, unwhitened (conventional) processor produced an average error of 8% of maximum voluntary contraction (variance accounted for of 68%). This study also describes the occurrence of spurious peaks in estimated torque when the torque model is created from data with a sampling rate well above the bandwidth of the torque. This problem is anticipated when the torque data are sampled at the same rate as the EMG data. The problem is resolved by decimating the EMG amplitude prior to relating it to joint torque, in this case to an effective sampling rate of 40.96 Hz

    Machine-In-The-Loop control optimization:a literature survey

    Get PDF

    Principal component based system identification and its application to the study of cardiovascular regulation

    Get PDF
    Includes bibliographical references (p. 197-212).Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2004.(cont.) Our methods analyze the coupling between instantaneous lung volume and heart rate and, subsequently, derive representative indices of parasympathetic and sympathetic control based on physiological and experimental findings. The validity of each method is evaluated via experimental data collected following interventions with known effect on the parasympathetic or sympathetic control. With the above techniques, this thesis explores an important topic in the field of space medicine: effects of simulated microgravity on cardiac autonomic control and orthostatic intolerance (OI). Experimental data from a prolonged bed rest study (simulation of microgravity condition) are analyzed and the conclusions are: 1) prolonged bed rest may impair autonomic control of heart rate; 2) orthostatic intolerance after bed rest is associated with impaired sympathetic responsiveness; 3) there may be a pre-bed rest predisposition to the development of OI after bed rest. These findings may have significance for studying Earth-bound orthostatic hypotension as well as for designing effective countermeasures to post-flight OI. In addition, they also indicate the efficacy of our proposed methods for autonomic function quantification.System identification is an effective approach for the quantitative study of physiologic systems. It deals with the problem of building mathematical models based on observed data and enables a dynamical characterization of the underlying physiologic mechanisms specific to the individual being studied. In this thesis, we develop and validate a new linear time-invariant system identification approach which is based on a weighted-principal component regression (WPCR) method. An important feature of this approach is its asymptotic frequency-selective property in solving time-domain parametric system identification problems. Owing to this property, data-specific candidate models can be built by considering the dominant frequency components inherent in the input (and output) signals, which is advantageous when the signals are colored, as are most physiologic signals. The efficacy of this method in modeling open-loop and closed-loop systems is demonstrated with respect to simulated and experimental data. In conjunction with the WPCR-based system identification approach, we propose new methods to noninvasively quantify cardiac autonomic control. Such quantification is important in understanding basic pathophysiological mechanisms or in patient monitoring, treatment design and follow-up.by Xinshu Xiao.Ph.D

    Modeling with renormalization group and randomization.

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Precision Control of a Sensorless Brushless Direct Current Motor System

    Get PDF
    Sensorless control strategies were first suggested well over a decade ago with the aim of reducing the size, weight and unit cost of electrically actuated servo systems. The resulting algorithms have been successfully applied to the induction and synchronous motor families in applications where control of armature speeds above approximately one hundred revolutions per minute is desired. However, sensorless position control remains problematic. This thesis provides an in depth investigation into sensorless motor control strategies for high precision motion control applications. Specifically, methods of achieving control of position and very low speed thresholds are investigated. The developed grey box identification techniques are shown to perform better than their traditional white or black box counterparts. Further, fuzzy model based sliding mode control is implemented and results demonstrate its improved robustness to certain classes of disturbance. Attempts to reject uncertainty within the developed models using the sliding mode are discussed. Novel controllers, which enhance the performance of the sliding mode are presented. Finally, algorithms that achieve control without a primary feedback sensor are successfully demonstrated. Sensorless position control is achieved with resolutions equivalent to those of existing stepper motor technology. The successful control of armature speeds below sixty revolutions per minute is achieved and problems typically associated with motor starting are circumvented.Research Instruments Ltd

    Implementation of gaussian process models for non-linear system identification

    Get PDF
    This thesis is concerned with investigating the use of Gaussian Process (GP) models for the identification of nonlinear dynamic systems. The Gaussian Process model is a non-parametric approach to system identification where the model of the underlying system is to be identified through the application of Bayesian analysis to empirical data. The GP modelling approach has been proposed as an alternative to more conventional methods of system identification due to a number of attractive features. In particular, the Bayesian probabilistic framework employed by the GP model has been shown to have potential in tackling the problems found in the optimisation of complex nonlinear models such as those based on multiple model or neural network structures. Furthermore, due to this probabilistic framework, the predictions made by the GP model are probability distributions composed of mean and variance components. This is in contrast to more conventional methods where a predictive point estimate is typically the output of the model. This additional variance component of the model output has been shown to be of potential use in model-predictive or adaptive control implementations. A further property that is of potential interest to those working on system identification problems is that the GP model has been shown to be particularly effective in identifying models from sparse datasets. Therefore, the GP model has been proposed for the identification of models in off-equilibrium regions of operating space, where more established methods might struggle due to a lack of data. The majority of the existing research into modelling with GPs has concentrated on detailing the mathematical methodology and theoretical possibilities of the approach. Furthermore, much of this research has focused on the application of the method toward statistics and machine learning problems. This thesis investigates the use of the GP model for identifying nonlinear dynamic systems from an engineering perspective. In particular, it is the implementation aspects of the GP model that are the main focus of this work. Due to its non-parametric nature, the GP model may also be considered a ‘black-box’ method as the identification process relies almost exclusively on empirical data, and not on prior knowledge of the system. As a result, the methods used to collect and process this data are of great importance, and the experimental design and data pre-processing aspects of the system identification procedure are investigated in detail. Therefore, in the research presented here the inclusion of prior system knowledge into the overall modelling procedure is shown to be an invaluable asset in improving the overall performance of the GP model. In previous research, the computational implementation of the GP modelling approach has been shown to become problematic for applications where the size of training dataset is large (i.e. one thousand or more points). This is due to the requirement in the GP modelling approach for repeated inversion of a covariance matrix whose size is dictated by the number of points included in the training dataset. Therefore, in order to maintain the computational viability of the approach, a number of different strategies have been proposed to lessen the computational burden. Many of these methods seek to make the covariance matrix sparse through the selection of a subset of existing training data. However, instead of operating on an existing training dataset, in this thesis an alternative approach is proposed where the training dataset is specifically designed to be as small as possible whilst still containing as much information. In order to achieve this goal of improving the ‘efficiency’ of the training dataset, the basis of the experimental design involves adopting a more deterministic approach to exciting the system, rather than the more common random excitation approach used for the identification of black-box models. This strategy is made possible through the active use of prior knowledge of the system. The implementation of the GP modelling approach has been demonstrated on a range of simulated and real-world examples. The simulated examples investigated include both static and dynamic systems. The GP model is then applied to two laboratory-scale nonlinear systems: a Coupled Tanks system where the volume of liquid in the second tank must be predicted, and a Heat Transfer system where the temperature of the airflow along a tube must be predicted. Further extensions to the GP model are also investigated including the propagation of uncertainty from one prediction to the next, the application of sparse matrix methods, and also the use of derivative observations. A feature of the application of GP modelling approach to nonlinear system identification problems is the reliance on the squared exponential covariance function. In this thesis the benefits and limitations of this particular covariance function are made clear, and the use of alternative covariance functions and ‘mixed-model’ implementations is also discussed

    Non-Parametric Bayesian Methods for Linear System Identification

    Get PDF
    Recent contributions have tackled the linear system identification problem by means of non-parametric Bayesian methods, which are built on largely adopted machine learning techniques, such as Gaussian Process regression and kernel-based regularized regression. Following the Bayesian paradigm, these procedures treat the impulse response of the system to be estimated as the realization of a Gaussian process. Typically, a Gaussian prior accounting for stability and smoothness of the impulse response is postulated, as a function of some parameters (called hyper-parameters in the Bayesian framework). These are generally estimated by maximizing the so-called marginal likelihood, i.e. the likelihood after the impulse response has been marginalized out. Once the hyper-parameters have been fixed in this way, the final estimator is computed as the conditional expected value of the impulse response w.r.t. the posterior distribution, which coincides with the minimum variance estimator. Assuming that the identification data are corrupted by Gaussian noise, the above-mentioned estimator coincides with the solution of a regularized estimation problem, in which the regularization term is the l2 norm of the impulse response, weighted by the inverse of the prior covariance function (a.k.a. kernel in the machine learning literature). Recent works have shown how such Bayesian approaches are able to jointly perform estimation and model selection, thus overcoming one of the main issues affecting parametric identification procedures, that is complexity selection. While keeping the classical system identification methods (e.g. Prediction Error Methods and subspace algorithms) as a benchmark for numerical comparison, this thesis extends and analyzes some key aspects of the above-mentioned Bayesian procedure. In particular, four main topics are considered. 1. PRIOR DESIGN. Adopting Maximum Entropy arguments, a new type of l2 regularization is derived: the aim is to penalize the rank of the block Hankel matrix built with Markov coefficients, thus controlling the complexity of the identified model, measured by its McMillan degree. By accounting for the coupling between different input-output channels, this new prior results particularly suited when dealing for the identification of MIMO systems To speed up the computational requirements of the estimation algorithm, a tailored version of the Scaled Gradient Projection algorithm is designed to optimize the marginal likelihood. 2. CHARACTERIZATION OF UNCERTAINTY. The confidence sets returned by the non-parametric Bayesian identification algorithm are analyzed and compared with those returned by parametric Prediction Error Methods. The comparison is carried out in the impulse response space, by deriving “particle” versions (i.e. Monte-Carlo approximations) of the standard confidence sets. 3. ONLINE ESTIMATION. The application of the non-parametric Bayesian system identification techniques is extended to an online setting, in which new data become available as time goes. Specifically, two key modifications of the original “batch” procedure are proposed in order to meet the real-time requirements. In addition, the identification of time-varying systems is tackled by introducing a forgetting factor in the estimation criterion and by treating it as a hyper-parameter. 4. POST PROCESSING: MODEL REDUCTION. Non-parametric Bayesian identification procedures estimate the unknown system in terms of its impulse response coefficients, thus returning a model with high (possibly infinite) McMillan degree. A tailored procedure is proposed to reduce such model to a lower degree one, which appears more suitable for filtering and control applications. Different criteria for the selection of the order of the reduced model are evaluated and compared

    Modelling of an automotive natural gas engine for A/F control investigations

    Get PDF
    In this thesis, the problem of A/F ratio control in a natural gas, internal combustion engine is addressed, with the global objective of reducing exhaust emission pollutants. A review of some mechanical approaches to exhaust pollutant reduction are assessed. It is found that many techniques aid the reduction of exhaust pollutants, but the most effective is the 3-way catalytic converter. To maintain conversion efficiency, the A/F ratio must be strictly controlled within the catalyst window limits around the stoichiometric operating point. In order to investigate possible control techniques, a mathematical model is developed to simulate the physical behaviour of the engine processes. This approach allows a quick turn-around in terms of cost and time, for control investigations. The model demonstrates close trend-wise approximation of the engine states with previous modelling studies, however, a full validation study was not possible. The model is then used to conduct investigations into A/F ratio control through the process of simulation. Conventional Pl-closed-loop control is assessed for steady-state and transient engine conditions, and for varying microprocessor sampling rates. It is found that Pi-control effectively removes state estimation errors, but is unable to remove A/F ratio excursions under transient operation. An open-loop compensation control structure is then developed as an extension to the IM-controller action. Simulation results show this approach to drastically reduce A/F ratio excursions for a number of typical driving scenarios. Potential problems that could well be encountered in the “real” engine environment are then investigated, and the practicality of the new controller assessed. A new approach to control is simulated that affords the most appropriate state estimation for the modelled system. This is shown to improve A/F ratio control upon that of the conventional approach but cannot match the compensation controller ability
    corecore