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Abstract

This thesis is concerned with investigating the ais&aussian Process (GP) models for
the identification of nonlinear dynamic systemseThaussian Process model is a non-
parametric approach to system identification whikeemodel of the underlying system is
to be identified through the application of Bayesanalysis to empirical data. The GP
modelling approach has been proposed as an altertatmore conventional methods of
system identification due to a number of attracfeatures. In particular, the Bayesian
probabilistic framework employed by the GP moded haen shown to have potential in
tackling the problems found in the optimisationamimplex nonlinear models such as
those based on multiple model or neural networlctires. Furthermore, due to this
probabilistic framework, the predictions made bye tikP model are probability
distributions composed of mean and variance comgsendhis is in contrast to more
conventional methods where a predictive point estnis typically the output of the
model. This additional variance component of theleh@utput has been shown to be of
potential use in model-predictive or adaptive colntnplementations. A further property
that is of potential interest to those working gstem identification problems is that the
GP model has been shown to be particularly effedtividentifying models from sparse
datasets. Therefore, the GP model has been propas#te identification of models in
off-equilibrium regions of operating space, whereren established methods might

struggle due to a lack of data.

The majority of the existing research into modglliwith GPs has concentrated on
detailing the mathematical methodology and thecaktpossibilities of the approach.
Furthermore, much of this research has focusedhe®mpplication of the method toward
statistics and machine learning problems. Thisishes/estigates the use of the GP
model for identifying nonlinear dynamic systemsnfr@n engineering perspective. In
particular, it is the implementation aspects of @ model that are the main focus of this
work. Due to its non-parametric nature, the GP rhatey also be considered a ‘black-
box’ method as the identification process reliesadt exclusively on empirical data, and
not on prior knowledge of the system. As a resié methods used to collect and
process this data are of great importance, ancexiperimental design and data pre-

processing aspects of the system identificationcgmare are investigated in detail.



Therefore, in the research presented here thesiocwf prior system knowledge into
the overall modelling procedure is shown to be mraluable asset in improving the

overall performance of the GP model.

In previous research, the computational implemanrtadf the GP modelling approach
has been shown to become problematic for applicatichere the size of training dataset
is large (i.e. one thousand or more points). Thiglue to the requirement in the GP
modelling approach for repeated inversion of a damae matrix whose size is dictated
by the number of points included in the trainingadat. Therefore, in order to maintain
the computational viability of the approach, a nembf different strategies have been
proposed to lessen the computational burden. Mérilgese methods seek to make the
covariance matrix sparse through the selection sllaset of existing training data.
However, instead of operating on an existing tragrdataset, in this thesis an alternative
approach is proposed where the training datasgtdsifically designed to be as small as
possible whilst still containing as much informatidn order to achieve this goal of
improving the ‘efficiency’ of the training datasehe basis of the experimental design
involves adopting a more deterministic approackexaiting the system, rather than the
more common random excitation approach used forideatification of black-box
models. This strategy is made possible throughatitiwe use of prior knowledge of the

system.

The implementation of the GP modelling approachlfes=n demonstrated on a range of
simulated and real-world examples. The simulateah®tes investigated include both
static and dynamic systems. The GP model is theiieabto two laboratory-scale
nonlinear systems: a Coupled Tanks system wheredheme of liquid in the second
tank must be predicted, and a Heat Transfer systieene the temperature of the airflow
along a tube must be predicted. Further extensmtise GP model are also investigated
including the propagation of uncertainty from omediction to the next, the application
of sparse matrix methods, and also the use of aleres observations. A feature of the
application of GP modelling approach to nonlingastem identification problems is the
reliance on the squared exponential covariancetiimcin this thesis the benefits and
limitations of this particular covariance functicare made clear, and the use of

alternative covariance functions and ‘mixed-mod®aplementations is also discussed.
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Chapter 1: Introduction

1) Introduction

The field of system identification is concerned hwihe development of mathematical
models of real systems or processes using priowkane of the system and empirical
data. However the problems encountered in formingaecurate representation of a
system can be seen to have parallels with othendoof empirical analysis where

information must be gleaned from available datae Troad topic of mathematical

modelling can be seen to exist across almost eftinieal research disciplines with many
different approaches having been developed. Masibhg ideas and techniques from the
fields of statistics and computing have been endatdnto the more engineering-based
discipline of system identification. In many casegethodologies originating from

different research fields can be seen to have aiitids with one another despite being
developed independently. In particular, the leayniask associated with the field of
artificial intelligence or adaptive systems hasrbaeresearch topic for both the machine
learning community as well as those from an autanzamntrol background. Research into
artificial neural networks has led to collaboratigorts between markedly different

fields, such as those from a background in bioklggciences and researchers from

engineering and computing science.

From the fields of mathematics and statistics, dhalysis of probability and error has
given other research disciplines the tools withalhb identify the most likely or optimal
solution, such as regression algorithms, and utéipahe means to assess and validate the
performance of an identified model. The use of pholiy theory and methods is relevant
as it formally introduces the analysis of uncettainto the modelling procedure. As the
purpose of system identification is to investigsystems where knowledge is limited and
of uncertain accuracy, it is therefore sensiblé phababilistic methods are employed. The
Gaussian Process (GP) modelling approach investigat this thesis can be seen to
originate from research into the statistics of sppatata, and in recent years has received
considerable interest in the machine learning reeeeommunity as a tool for nonlinear
regression and classification. In the machine iearsetting, the GP method has been
demonstrated as a viable alternative to more eskednl learning systems such as the

neural-network approach.



Chapter 1: Introduction

The driving factor behind the continued researdio iaternative system identification
methods is the ever-increasing demands of new aisting applications. Mathematical
models of real systems are often required to agsifte design process of a system (e.g.
by simulating performance, cost effectiveness etmy also used as the basis for the
design of automatic control systems. In both thesses, the quality of the identified
model will play a large role in determining the fyaof the final solution. For example,
in order to design a control system that maximeesystems potential performance, the
mathematical model must represent the true sysseatoaely as possible. The increase in
model prediction accuracy provided by a preciseherattical model, can allow the
design of a control system to be performed witheatgr amount of confidence in how the
system will behave when subjected to control inputee further development of
mathematical models through the expansion of tleatimg range accurately represented
can also facilitate the design of control systeha allow more demanding performance
requirements to be realised. An example of thisld/dae the design of modern aircraft
where the development of accurate mathematical mdaes allowed the design of more
sophisticated fly-by-wire controllers, leading tooma agile fighter aircraft that can be
controlled whilst operating in unstable conditidesy. Eurofighter Typhoon). Overall, a
strong demand will always remain for methods tham @émprove the accuracy of a

mathematical description.

The GP modelling approach is of great potentiakeredt in the field of system
identification due to a number of desirable featur® primary motive for the original
surge of interest in GP models in the machine lagricommunity is that through the
model’s application of Bayesian methods some of thificulties associated with
optimising complex learning systems can be bypadkeough the adoption of this
probabilistic approach. Such difficulties can dieoseen to present themselves within the
field of nonlinear system identification as morengex models have been adopted for
use in representing more complex systems. As dtrédsese alternative GP methods have

now been proposed towards problems found in syatentification.

Another feature of the GP modelling approach i$ theough the probabilistic analysis, a
predictive probability distribution rather than mgle predictive estimate is the output
from the model. As a result, the GP model can lea $e provide predictions of nonlinear

system behaviour together with a measure of thenaiaty over each prediction. This
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uncertainty or variance term has been shown tofbgotential value in the design of
adaptive or predictive controllers where the bebaviof a control system may be
modified to reflect the uncertainty associated witl prediction. The variance output of
the GP model can also be utilised to help identfyions of operating space that are not
well described by the empirical data. This is afulseeature for what may be considered

as a ‘black-box’ method of identification.

A further important feature of the GP modelling aggeh is that the method has been
found to outperform alternative learning systemsemghthe amount of empirical data is
limited. In the identification of real systems, #@ount of available data that can be used
to train a model may be limited due to a numberfawtors. Therefore a modelling
approach that can provide useful predictions imagibns where little data or prior
knowledge is present is something worthy of consitlen. For example, in the
identification of many real systems a significamblgem is presented by the lack of
available data in certain (typically off-equilibom) regions of operating space. Without
sufficient data, the identification of an accurat®del in these regions can become
impossible, and this deficiency is also passedmany corresponding control system.
However, as the GP model has been shown to perfgetinon problems where data is
limited, it has been proposed as a potentially uisefethod for identification in off-

equilibrium regions of operating space where mareventional methods can struggle.
1.1) Original Contributions

The application of the GP modelling approach towaite task of identifying nonlinear
dynamic systems can be seen to be in its earlyestagth relatively few dedicated
resources currently available. The majority of &éxasting research into GP models has
concentrated more upon defining the mathematicathodelogy and theoretical
possibilities of the approach. Furthermore, mucthi®f existing research has been focused
towards problems found in machine learning andissicg. As a result many of the
examples investigated in the existing literatur@ehatilised simulated and benchmark
datasets that are not particularly demonstrativiheftypes of problems found in the field
of nonlinear system identification. In particulatatic nonlinearities remain the most

popular example applications for much of the ergstheory.
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The primary contribution of this work is in the gstigation of the GP modelling approach
as a method for nonlinear system identification.ilg¢lin existing research the GP method
has been proposed as an alternative to more ettalimethods, a very limited amount of
research has been devoted to the implementatidheohpproach from an engineering
perspective. As a result, a particular emphasis Ibesn placed on the practical
implementation of the GP model through the idecdiiion of real laboratory systems from
empirical data. In this way the usability of thepegach toward general system
identification problems can be made clear. Theeftine main original contribution of

this thesis has been to provide a general guidieetamplementation of the GP modelling
approach for system identification problems. Otbgginal contributions made in this

thesis are:

* As the implementation of the GP model is the priohgective of this thesis, a
detailed discussion of the most important issuepravided. The properties of
various different covariance functions, and théntegues used to optimise the GP
model are discussed in detail. Furthermore, thragierimental results a detailed
review of the relative strengths and weaknesseth@fmost popular (Squared
Exponential) covariance function is performed. Twential use of the Matern
covariance function to represent less smoothlyiagrglata is also demonstrated.

* The computational implementation of the GP modelissussed in detail. Both the
size and conditioning aspects of the covariancerixnate discussed, and then
related to the training data pre-processing ancmxgntal design aspects of the
system identification procedure (e.g. excitatignals, sampling rate etc.).

* The design of the training dataset used to ideritiey GP modelling approach is
examined closely. In order to meet the size andlitioning constraints of the
method, the training set must be pre-processedutigrelhe most likely source of
ill conditioning in the covariance matrix was iddéietd as the presence of steady-
state data. A random excitation signal that isicieffitly excited is first shown to
provide a good strategy for the identification ofc® model. However, a more
deterministic strategy for the design of the extmtasignal consisting of a number
of small-step inputs is shown to be an attractilterrmative that allows more
information to be included in the training datased smaller space.

* The inclusion of previous inputs/outputs as adddianodel inputs is discussed in

detail and then demonstrated. Due to the limitatipfaced on the size of the
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training dataset, a potential discrepancy betwden gample intervals of the
training and test data can occur. Therefore, thacgss of including previous
inputs/outputs is not as straightforward as in othedelling approaches.

» Alternative ‘mixed-model’ implementations of the @Rkodel where the methods
are combined with other existing methods are dssdisand demonstrated using
the Coupled Tanks system. These proposals are atmetaining the advantages
of the GP modelling approach whilst overcoming saihe disadvantages.

1.2) Thesis Outline

Chapter 2

In this chapter the overall process of system ifleation is reviewed. Important aspects
including the choice of model architecture, theerof prior knowledge, experimental

design, pre-processing of training data, modelnoigaaition and validation are discussed
with references provided. This review is to provateoverview of the field rather than an

in-depth discussion of all the available methods.

Chapter 3

In this chapter the theoretical background andditee of the GP modelling approach is
presented in detail. This chapter begins with adepth discussion of the motivation
behind GP models with reference to some of the imadshitectures discussed in the
previous chapter. The concepts behind Bayesiamitegrare then introduced and the
potential benefits in terms of dealing with modeinplexity issues are made clear. Next,
the process and difficulties of applying a Bayedearning framework are presented, and
the mathematical peculiarities of the Gaussiangs®@re shown to provide a solution to
some of these difficulties. Finally, the task ofings Gaussian processes and Bayesian
learning for the purposes of regression is disalsse

Chapter 4

In this chapter the implementation of the GP madglhpproach is discussed in detail. A
review of the role played by the covariance functie first provided, followed by a
discussion of various alternative covariance fuordi Next, the optimisation of the GP

model is discussed in detail. The computationall@emgntation of the GP model is then
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tackled with the challenges posed by large datasetsnatrix ill-conditioning made clear.
From this discussion the implementation of the G#teh is described using both direct

and approximate methods.

Chapter 5

In this chapter the specific challenge of implenmentGP models for dynamic system
identification purposes is investigated and a warief simulated and real nonlinear

dynamic systems are identified. Notable extenstonthe GP model are first described,
including the propagation of uncertainty and denea observations, together with the
implications for control system design using GP eisdAfter a brief discussion of the

experimental objectives (based on the researckepies in the previous two chapters), the
GP modelling approach is then applied to a numbeainoulated examples. The purpose
of these simulated examples is to demonstrateuvlrl process of implementing the GP
model and its ability to identify nonlinearitiesing relatively few training observations.

Both static and dynamic examples are tackled. atlg on from these simulated

examples, two real laboratory-scale nonlinear systare investigated: a Coupled Tank
system, and a Heat Transfer system. Through themmpes the identification process
using real empirical data is demonstrated with |@mwis regarding the size and
conditioning of the covariance matrix tackled thlghuexperimental design, model

structure definition and training data pre-proaegsltilising these methods, the two real
systems are then identified to a good degree afracyg. Further extensions investigated
include the incorporation of derivative observasioand an alternative ‘mixed-model’

implementation which combines the use of an araditmodel of the Coupled Tanks

system with a GP model. A summary of the experialer@sults is then provided at the

end of this chapter.

Chapter 6

In this chapter the thesis is concluded by discigssiome of the main points raised
through the course of the preceding chapters. Amg¢iguide to the implementation of the
GP modelling approach is then presented. Finallpumber of possible strategies for
improving the GP modelling approach are discussmgkther with recommendations for

the most important areas that should be targetédune research.
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2) Nonlinear System ldentification

System Identification can be seen to be the detertion of a mathematical model
through the use of empirical data together witlorpkinowledge of a particular system’s
characteristics. In this chapter the overall prece$ system identification is to be
discussed where the various choices involved irldging models are examined and the
practical implications are made clear. Furthermarbackground review of the various
types of linear and nonlinear models and optimisattechniques currently being
employed toward the task of system identificati@nimcluded. This discussion is
worthwhile as it provides an insight into where BB modelling approach is to fit in

amongst its alternatives.
2.1) The System Identification Process

The overall objective of the system identificatiprocess is to provide an accurate and
robust approximation to the behaviour of a givestay. In the identification of a
suitable model of system behaviour, an iterativeettgment process is normally
undertaken where a number of design choices mustda® and subsequently refined if
through evaluation they are found to be unsatiefgct

The system identification procedure may be seefoltow the loop detailed in Figure
(2.1) where the process begins with the examinatbnany available ‘a priori’
knowledge of the system. This initial or prior krledge may take the form of a detailed
understanding of system characteristics, such amalytical or physical model derived
from first principles, or merely knowledge as tce thvailability and nature of any
experimental data. Before undertaking the modeliasl, it also of great importance that
the intentions for any identified model are cargfabnsidered so that any performance
requirements such as accuracy, robustness ordégelmplexity can be met.

From a prior (or ‘a priori’) understanding of systecomponents and behaviour, the
human operator or modeller can then make informegstns as to the level of data
required to successfully capture the dynamics efdystem. Utilising this information

can then lead to the creation of any number of ex@atal conditions which may be
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used to record empirical data. The level of pmdormation and availability of data will
then dictate what kind of modelling strategy aneréfiore what kind of model structure
will be the most suitable to formulate our desdoipt It is common for a number of
possible models to be proposed which offer differéevels of description or
performance. Through a ‘criterion of fit' each pibés model must be evaluated and the

A Priori Knowledge

most suitable chosen.

Modelling Intentions & Prior Analysis of System
Required Performance Characteristics

Experimental Choose Model
Design Architecture
Collect Empirical
Data

Pre-Process Data
Validation Training
Data Data

¢ A 4

Optimisation/Learning

A

Parameter & Structure Estimation

v

—

Model
Validation

A 4

A

Figure (2.1) - System Identification Loop

The choice of model type or architecture togethéh vthe level of empirical data
available will then influence the decision of hoesbthe model may be fitted to the data
through a process of optimisation. This is a legagrmprocess where optimum parameters
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and structure are to be identified through the iappbn of machine-learning procedures
to the empirical data (e.g. Least-Squares regmepgsid is often the case that raw
empirical data collected from an experimental setruust be first pre-processed before it
may be used successfully in any optimisation regiifes pre-processed data is then
referred to as training data as it is this inforioratvith which we will train our model.

Finally, any model identified must be validated cessfully before it may be employed
through comparison with the observed system regpdhseparate set or subset of data,
known as a validation or test set, is normally geteel under similar but not necessarily
identical operating conditions to that of the tnaghdata set. Statistical measurements of
model error and likelihood can then be calculatexinfthe comparison of the model
output to the measured system response. The outobrie validation procedure will
then determine whether or not the identified moaelets its required criteria. If the
model is found to be lacking in some aspect, theletier must return to the previous
design conclusions and potentially modify any atpef the adopted model structure,

optimisation or experimental procedure that reqursginement.

Through each step and iteration of the System ifilgatton procedure it is normal that
the prior knowledge associated with the system mumaesstigation is enhanced. This
improved understanding of the system is most delsirand is often a fundamental
objective of the modelling process. If the modekashave practical implementations
such as for the basis of an automatic control desigis useful to have as much
knowledge over the system’s behaviour as posslhlgéhe following sections of this

chapter we will look at different aspects of thesteyn identification process in more
detail. Good sources of information on the gengrpic of System Identification are the
books by Ljung (1999), Sdderstrom and Stoica (1988) Juang (1994). The book by
Unbehauen and Rao (1987) provides very useful nmédion on the identification of

continuous systems using more classical methods bobk by Nelles (2001) details the
system identification field with specific emphasis identifying nonlinear systems using

modern techniques.
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2.2) Role of Prior Knowledge

The level of prior knowledge available is of fundamtal importance in determining how
any modelling procedure should be approached aags vital role throughout the

development of a successful model. For complexineal systems where a physical
analysis of the system is difficult and little ar physical insight or system knowledge is
available, models must be learned solely through ube of experimental data. The
application of learning systems can be seen toceedbe requirement for a detailed
physical knowledge and the use of such methoddelda® the following categorisation

of models based upon the level prior knowledgelalks or employed:

White-Box Models

The model has been constructed entirely from pkimowledge and physical insight.
Typically, models derived from first-principles $uas a nonlinear differential equation
model. White-box models often appear to have aramtadge in overall interpretability,

however for complex systems a resultant model tsmlze seen to be very complex.

Grey-Box Models

Some physical insight is available or used, withaie aspects such as model structure
and parameters being directly estimated from ewrpmErtal data using optimisation or
learning techniques.

Black-Box Models

No physical insight is available or used; modeés@nstructed solely from experimental
data together with the application of learning egst and a chosen model structure.
Black-box modelling can also be referred to as ecgdimodelling.

In practice, a white-box model derived from firstingiples, such as a nonlinear
differential equation model, will rarely fully rapate a real system’s behaviour due to
environmental effects, andxperimental data will often be used to tune patamseor

coefficients of a model. Similarly it is rare thaisolutely no knowledge of the system is
available. Nevertheless, in tackling problems whereor knowledge is seen to be

lacking, the use of learning systems can be seemdrcome this deficiency through the

10
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continuous use of system information in the formcafrent and previous inputs and

outputs.

In the selection of a white-box or black-box moubhgjlstrategy a further consideration is
the time and cost associated with adopting varaternatives. The development of a
white-box form of model of a complex physical pree&an be seen to be a particularly
demanding task. As a result, an alternative apprbased on the application of learning
algorithms to empirical data may be easier andetbez more cost-effective to
implement. Therefore the role of prior knowledgemnst cases is to provide a basis for
the design of an appropriate model structure, ambaeguently to dictate the level of
empirical data required and subsequent experimguiay. In this regard, the use of
prior knowledge allows the modeller to potentiatgduce the learning task through
extending a tangible influence upon what may otiewbecome a interpreted as a
prescribed machine learning or function approxioratialgorithm where data is
submitted without any regard to validity. This prar initial knowledge may take many

forms and is discussed below.
2.2.1) Overall Modelling Objectives

The role of prior knowledge begins with an underdiag of the problem to be solved.
The ultimate purpose of the model will have a giefitience on the kind of model that
will be required. Is the goal of the model merelg provide a basis for
simulation/prediction as an estimator, or is thedelling process to provide further
physical insight and reflect the workings of a @s&? Is the model to be used as the
basis for the design of a control system? What |lese model complexity,
interpretability, accuracy and robustness is dbkfa Another important factor that
should be borne in mind is that if the resultantdeids to be used as the basis of an
automatic controller, this controller may be abbtecbompensate for less than perfect
model accuracy. As a result, it is the robustnasiser than merely the accuracy of the

description that will dictate the quality of thdwoon.

11
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2.2.2) Knowledge of System Characteristics

Any knowledge regarding the characteristics of sligtem can prove invaluable when
deciding upon which modelling approach to adoptormation regarding the type of
nonlinearities involved, such as the dynamic ordkeithe system, or the number of
parameters or interactions between variables daw ghe complexity of any potential
model to be reduced and thereby limit the dimeradignof the problem. For example, in
most fixed-wing aircraft the coupling between Idndinal and lateral directional
variables can be neglected, therefore allowing eéhesbsystems to be modelled
independently. By contrast, in helicopters, sucbodeling is generally not appropriate
in flight mechanics models, except possibly undeme particular flight conditions.
Knowledge concerning any environmental influenceshsas disturbances and noise
effects can also be incorporated into the modeligdesAnother source of prior
knowledge could be any existing models of the systieat have been developed. Such
models can act as a basis for the design of a mgproved model or may even form an
integral part of a new solution. A previous modehymalso be employed as a

performance benchmark for any new development.

2.2.3) Knowledge of Empirical Data or Experimental

Conditions

Prior knowledge of the system characteristics mag axtend to information about the
operating range of the system and the availabdityempirical data. Many systems
primarily operate within limited regions of the patial operating range of that system
and this may be reflected in the overall consttutof the available data. Empirical data
may be scarce in regions where it is difficult &rfprm data collection experiments due
to limitations in the experimental set-up. Constigion the physical operation of the
process, such as operating conditions that cantteddmaging the system itself, can also
lead to an uneven distribution of data across thkedperating range of the system.
Knowledge of such conditions can impact on subssquiesign conclusions, as
modelling approaches that are predominantly ddiaatemay not be possible to pursue

due to the sparsity of available data.

12
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2.3) Experimental Design

The experimental design stage of the system ideatiilbn process is of critical
importance if the chosen modelling approach isejpetd significantly on empirical data.
As well as selection of which variables are be meag the experimental design process
must also consider what kind of excitation sigmeils be necessary in order to gather as
much information about the underlying system asides. More practical considerations
will concern the actual experimental equipmentugefe.g. sensors, calibration, etc.), and
the sampling rate used to record the data. It [gomant to remember that whilst some
design choices can be proposed and examined ahlerglst working away from the
actual system, the experimental design choices ntatgeonly be changed through
conducting new experiments. Therefore, careful iclemation and planning of the
experiment in advance is necessary if potentialistly redesign and repetition are to be
avoided. The previously mentioned textbooks onesgsidentification by Ljung (1999)
and Soderstrom and Stoica (1989) are good stapoigts for general information
regarding experimental design, and further morecaéed sources of information are
Godfrey (1993), Goodwin and Payne (1977), Goodd#8{), and Mehra (1981).

Through the design of a suitable experimental pioce aTraining dataset can then be
created to support the learning or optimisatiorcess from the resultant empirical data.
For the identification of complex systems whereprmformation is limited (black-box
modelling) the accuracy of any model will be enirdependant on the quality and scope
of the training data supplied to the learning syst€Consequently the design and
construction of the training dataset where impdrtalata maybe extracted and
represented appropriately is not a trivial taske ©herall design objectives of any model
and subsequently developed control system mustepé ikto consideration when the
experimental methods are chosen. Experiments nmadtitored to the system under
investigation with the resultant data coveringtld relevant areas of operating space. If
data is not recorded over the full range of operatve wish to model and ultimately
control, the resulting model accuracy in region®erhdata was not recorded is likely to

be unsatisfactory. Important considerations indégign of an experiment include:

13
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2.3.1) Which measurements?

Ideally, open-loop system response data shouldsbd in the modelling process so that
the behaviour of the system can be examined dytddtwever, in some cases this is not
possible due to operational constraints and a dtisap identification approach must be
adopted. An example of this would be a system phates to be unstable under open-
loop operating conditions and through prolongedagen can compromise the safety of
the operator or the system itself. In tackling elb$oop identification, a variety of
methods have been proposed, with the most simpteg bBirect’ methods where the
closed-loop system is treated as if it where opepland the same overall system
identification methods applied. However, a partculproblem in closed-loop
identification is that the process inpuis typically correlated with the output noise
The result of this is that some identification nueth are not well suited to this direct
approach, and a number of ‘indirect’ methods haenlproposed where external signals
measured between the controller and the planthacgporated. For more information on
closed-loop identification, the previously mentidrtextbook by Ljung (1999) provides a
good overall account of the problem, and a reviéwlased-loop identification issues
has been completed by Van den Hof (1997). In thésis we are focusing on systems
where open-loop response data is available, andnateinvestigating closed-loop

identification.

Another potential problem in the design of the expent is the availability, placement,
accuracy and flexibility of any measurement equipm#easurement devices must not
introduce further disturbances or noise to theesgstesponse that would otherwise not
be present. Noise and prevalent disturbances isystem must also be investigated. If a
system is susceptible to particular disturbancegpas of its normal operation, this
behaviour cannot readily be separated from the nyidg system response and its

influence should not be ignored or removed fromTaning dataset.

There are also potential commercial consideratiomslved in conducting a number of
experimental procedures. The investment of time amwhey into equipment and
experienced personnel may be limited. An extremangite would be the prolonged
flight-testing program necessary in the developmehta new aircraft. Expensive

prototypes fitted with measurement devices mustdweloped as well as the experienced

14
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pilots and ground crew needed to support the dperaln this example further costs
would be incurred by extensive wind-tunnel work aimel design and support involved in
ground based experimental-rig set-ups. A moregditerward constraint would be the
potential downtime involved in halting a manufaatgror chemical processes in order to

perform modelling analysis.

If the modelling procedure is to adopt an inclusogerating regime outlook this also
introduces a number of important challenges. Regafrthe operating range where the
model must be most accurate will require sufficielata. These will be regions of
operating space where the model will be requiredperate for most of the time. Such
operating regions may display off equilibrium ogrsficant nonlinearities where large
amounts of data may be necessary to representcaumsplexities or regions of critical
importance. The relative importance of individuatadlsamples must also be examined to
allow the frequency of different situations, noieeels, or definitions between operating
regions, to be incorporated into the model designder certain operating conditions the
system may also likely be damaged or become dangeand the acquisition of data and
successful modelling in these regions may provecdlf. Awareness of the limitations
of the system must be employed in the experimelgsiign.

2.3.2) Excitation Signals

The choice of excitation signals will ultimately tdemine the nature of the system
response data included within the Training set thiedefore plays a crucial role in how
good a representation can be achieved. The seleatio excitation signals is
predominantly specific to the particular applicatend places a great deal of dependence
upon the expertise of the engineer. As system naigk underlying disturbances are
beyond the influence of the modeller, the inputnalgis the only avenue open for

manipulation.

For nonlinear systems with complex dynamics itiist fnecessary to cover the whole

operating rangeu,,, - U..,) of the system by varying the amplitude of theuingignal.

Furthermore, the dynamics of any system may onlgakthemselves under excitations
at certain frequencies. Which frequency dynamiesexcited and therefore likely to be

15
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represented by our resultant model is determinethbyspectrum of our input signal.

Choices of excitation signal include:

Constant
Not readily suitable for identification as no dynamare excited. Only one parameter,

such as the static gain, may be identified.

Impulse
Not readily suitable for identification purposes. pdssible indication of the overall
transient response may be forthcoming, but gain n@ybe estimated with any great

accuracy.

Step

Popular and well suited for identification purpasd@sansient response can be fully
appreciated and good estimations of the static gathlow frequency response can be
obtained. Related to the step input is the ‘Douldetitation signal consisting of an

initial positive step quickly followed by a negatigtep.

Rectangular

In essence this can be scene to have the saméapuab that of the Step input but also
introduces a frequency component allowing a pddicdrequency range to be

emphasized. However this information as to the desgy response is limited to one
frequency, as would any sinusoidal input of a patér wavelength. If a model is to

replicate the behaviour of a system known to opesdt particular frequencies, it is

important that the design of any excitation siga&k this into account (e.g. a mixture of

sine waves or rectangles).

Filtered Gaussian White Noise

If little is known of the process’s frequency dyriasnor even the models intended use, a
good choice for the excitation signal may be a Gianmswhite noise signal put through a
filter so that particular frequencies may be empdeabk to tailor an overall signal

spectrum, and also to curtail signal amplitude iniffredefined limits.
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Pseudo-Random Binary Signal (PRBS)

Another popular general choice for linear systemghe use of the Pseudo-Random
Binary signal that can be seen to be a periodierggnistic signal of constant amplitude
that displays properties in keeping with the wimtese alternative. A range of
frequencies may be emphasized accurately. Howéwethe identification of nonlinear
systems this signal must be adapted to includeggsaim signal amplitude as otherwise
we would have empirical output data restrictedhi® wpper and lower limits dictated by
the original input binary signal. For such reas@maplitude modulated PRBS (APRBS)
can be adopted to allow both the amplitude anduftaqy ranges of the input space to be
investigated.

2.3.2.1) Active Learning

As with the other aspects of modelling processstlection of an appropriate array of
excitation signals can be seen to be dependantionkmowledge of the system and can
involve a significant level of iterative design,rpaps resorting to heuristics or trial and
error, in order to produce a suitable training sletaln the absence of such prior
knowledge, such as for complex systems being ifiedtwith black-box methods, a
common strategy is to endeavour to make the digtab of training data as uniform as
possible across the operating space or even toallisavailable training examples.
However, a non-selective approach where data isngtdal to the learning system
without proper consideration can lead to probleegarding the conditioning of the
training set. Repeated or redundant data examp#sshme included that unnecessarily
increase the size of the training set, or exampbesentrated within non-essential areas
of operating space due to local complexities mainberporated.

A modern approach to the design of excitation $gyirathe machine-learning field has
been the concept of Active Learning. Instead o$tficollecting and pre-processing
empirical data and then employing a suitable legy@lgorithm to identify a model, the
two tasks are brought together by actively acqgimew information about the system
(by searching for an optimal training set by explgrinput space for the appropriate
excitation signals) whilst the process is in opgeratin essence, the learning system is to
interact with the system directly in order to obtand enhance the required training data.
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A conventional Active Learning scheme would endeato optimise the amount of new
information that can be garnered from each subsgqueasurement. Therefore, in order
to determine the most informative data measurengenigthod to determine the model
error associated with any previous measurements$ beusmployed. By examining the
model error associated with each sample we assigveh of curiosity to the Active
Learning algorithm as the excitation signals wal targeted toward the goal of finding
new information close to operating points at whibe model is struggling. As can be
readily appreciated, a potential problem encoudténethe active learning approach is
that although we are seeking to optimise the emt#i@ing set, the searching impetus of
the algorithm can focus too closely and remain iomaf to one local region of operating
space. Such an increase in potential local conylean in turn require an increase in
data with which to identify parameters. Anotheregmial problem associated with this
approach is that the searching algorithm can be slod computationally expensive.
This is especially true if an undirected randonrceéor data is employed.

In processes where active learning has been impitievhilst remaining under normal
day-to-day operations, the effort demonstrated gy $earching algorithm (termed
curiosity component) must be constrained so asotdully disrupt the performance of
the system whilst still seeking new information withich to improve the model. The
research presented by (Cohn et al., 1990), (Co®®4)1 (Thrun, 1992) and (Plutowski,
1994) explores the different details of Active Laag, the work presented by (Murray-
Smith, 1994) explores the use of Active Learninghwiegard to the Local Model
Network learning system, and (Cohn et al., 199 0wshhow Active Learning may be

incorporated with the mixture of Gaussians modaiework.

2.4) Pre-processing Data — Creating the Training Dia
Set

Once the empirical data has been collected, a degfepre-processing is normally
required in order to a construct a suitable sdtadhing data that may be used with the
selected learning system. Through the pre-procgstage the learning task can be made
easier and therefore can allow a greater level ofleh performance to be attained.
Factors such as the size of the training datatlsetdistribution of data examples with
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regard to the whole of the available operating spaed the validity of individual data
examples must be examined before a final Traingtgreay be determined. The sampling
rate of the data acquisition must be fast enougtallow system dynamics to be
accurately reflected, but also not lead to excesamounts of data and therefore increase
level of data pre-processing required. Differentaloeng systems or optimisation
algorithms may involve complex iterative mathematicich can place limits on the size

or length of the Training set due to the computeti@ffort required to find a solution.

Through pre-processing and subsequent analysi©ieofrésultant model error it may
become apparent that certain modifications to th@tation signals and sampling rate
may be required. Furthermore, certain regions td daindividual samples may have to
be omitted as they may cause poor conditioningiwithe training set. This may have
implications with regard to the amplitude range lesgd by our excitation signals. A
further consideration when designing a suitablening set is the minimum hold time
(shortest period of time that the excitation sigre@hains constant) associated with the
excitation signal and response data. If an exomasignal is of a given length, the
minimum hold time will dictate the number of stegstransitions within the signal and
therefore influence the frequency characteristicthe system. For a linear system the
minimum hold time is normally selected to be eqtalthat of the sampling time.
However for nonlinear system identification a desigade-off is introduced. Too small a
minimum hold time can prevent the system reachisgtded or equilibrium state, this
leads to the recorded output data being restrisiéid regard to the potentially available
output amplitude range with the data examples beargentrated within the middle of
the operating range. Too large a time will resttiet number of transitions within the
signal and therefore potentially restrict the numbg operating points that may be
excited by the signal and can overemphasize theoritapce of low frequencies. A
heuristic often employed would be to select theimum hold time to be close to that of

the dominant time constant, see Nelles (2001).
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2.5) Choice of Model Architecture

Perhaps the most fundamental part of the systentifidation process is the selection of
a suitable model architecture or structure withclhio build a representation. A great
range of alternative model structures have beepgsed and successfully implemented
over many years. This section is to provide an aleuide to the various types of
models that are available, rather than a full aotaef the precise details of each

alternative.
2.5.1) Linear and Nonlinear Models

The most fundamental distinction made between uartgpes of model is whether it can
be said to be either linear or nonlinear. Systenesadten categorised as being either
linear or nonlinear, however most real dynamic ayst can be seen to display a level of
non-linearity (e.g. noise). From a logical perspectt would seem that a nonlinear
system would require a nonlinear model to fullyibkhts characteristics. However, it is
common practice that a linear model will be thestfichoice structure with which to
identify a model of a nonlinear system, and thas tourse of action often leads to

satisfactory model fit for its purpose.

One of the primary reason for adopting a linearaagh is the very well understood and
widely adopted methodology of defining a lineausture and utilising a comparatively
simple linear optimisation technique (such as lifeast squares) with which to identify
parameters from data. Nonlinear modelling approadiypically require significantly
more effort due to an increase in complexity andinoigation. Linear modelling
techniques are therefore still used successfullgnmonsidering nonlinear systems and
can often be seen to form the building blocks nbalinear description.

Many system plants are also designed to behavaearly as possible within certain
operating ranges so that they may be operated gasidy. Moreover, a well-designed
feedback controller will also act to contain théeefs of the nonlinearities in the system.
It has also been shown that linear theory can lpdiepto model nonlinear systems

operating at equilibrium points. The mathematiclarapunov showed that the local
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stability of a system in equilibrium where nonlinéas are smooth, and therefore
differentiable, could be predicted through the agapion of linear theory. This has
particular relevance to models identified from tfiinciples in the form of ordinary
differential equations. Such nonlinear descriptiongy facilitate linear models to be
identified through the linearisation of these edprat at particular equilibrium operating

points.

The process of designing a control system for #esyglant is also made significantly
easier if a Linear Time-Invariant (LTI) model carffeciently represent the plant. A well-
established and straightforward methodology fongiasg controllers for LTI systems
has been in existence for many years, with mosoduictory control system design
books covering the basic principles, see Dorf arsthd (2004) and Nise (2003). This is
not the case when dealing with systems that exkignificant nonlinearities, where to
describe the system with a single linear model doutsult in an inadequate
representation of the system’s behaviour. In cagesre significant nonlinearities are
present, a linear model will not accurately descthe real system behaviour away from

the equilibrium region at which it was linearised.

No standard or generic response from a nonlinestesywill exist as such systems can
behave in very different ways. For example, nomingystems can display random or
indeterministic behaviour (where the behaviour afystem cannot readily be predicted),
periodic and aperiodic (e.g. chaotic oscillatiomsyillations, and multi-stability (i.e.
alternating between two or more exclusive stat&spsequently, no generic all-purpose
modelling methodology and control design proceduss been established. Therefore
nonlinear modelling and control remains an extrgnegdtive area of research where
various possible solutions have been proposed wé#bhtheir particular strengths and
weaknesses and associated level of complexity. rthdu important categorisation of
models is whether or not they are to operate withifime or Frequency domain.
Obviously a Time-domain model will involve the aysmb of a system or unknown
function with respect to time, and a Frequency-domaill operate with respect to
frequency. In this thesis only problems within ffisme-domain (i.e. time-series data) are

considered.
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2.5.2) Parametric and Nonparametric Models

A classical distinction is often made between paaic and nonparametric models. A
parametric model will consist of an assumed fumaidorm constructed from a limited
number of variable parameters. The function suppdse this approach will then be
optimised through its parameters to fit any recdrempirical data as closely as possible.
Parametric models are the more widely adopted agprcas due to the limited number
of parameters a more interpretable model is oftenresult. In the presence of prior
knowledge of the system characteristics, it isroftessible for a parametric model to be
constructed that directly reflects the relationshyetween particular physical quantities.
A non-parametric modelling approach will not assusnempose a functional form on
the function to be identified. Nonparametric methate often seen to offer a more
flexible approach to the identification task, as preor structure is adopted an infinite
number of parameters may be used to representrduegs exactly. As a predefined
structure is not to be imposed on the unknown fanct greater degree of freedom over
the form of final model is possible. As a resutinrparametric methods are often seen as
ideal tools for the identification of systems wharpriori knowledge is limited such as in

black-box modelling problems.

Although in theory a non-parametric approach mdgran infinite dimension parameter
vector, in practice a limitation on the number odrgmeters will ultimately be
encountered due to the restrictions imposed by @axip and computational constraints.
Furthermore, as prior knowledge is either unavé&la not employed in the modelling
process, non-parametric approaches are often edié@ more dependant on the quality
and quantity (or relative sparsity) of empiricataleClassical approaches to constructing
non-parametric models include Transient Analysisggbiency Analysis, Correlation
Analysis and Spectral Analysis. Further informatiom these classic methods can be
found in the aforementioned system identificatioextbhooks by Ljung (1999),
Soderstrom and Stoica (1989) and Unbehauen and1R8&a).

The GP modelling approach investigated in this ith@say also be categorised as a
nonparametric method as instead of specifying arpatric structure to form the basis of
a description, a prior probability space over fionts is to be specified instead. In order

to specify this space over functions, a kernel-Basenparametric regression method is
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utilised. Further methods of nonparametric regogssinclude kernel smoothing
estimators and Spline-smoothing techniques. Usefikws of these smoothing methods
include Hardle (1990), Eubank (1999) and Wahba @L9Bhese nonparametric methods
are not often deployed toward the task of systeemtification, and instead are more
typically utilised toward statistical problems. Hewver, the GP model can be seen to have
much in common with these alternative nonparameggression methods and a full
discussion of the similarities can be found in Rassen and Williams (2006). A detailed

discussion of the GP modelling approach itselbiotm the basis of the next chapter.

2.5.3) Linear Dynamic Models

A general framework for the description of differdinear dynamic models can be found
in most system identification textbooks, includingng (1999), Soéderstrom and Stoica
(1989), and Nelles (2001). A further useful reseuscthe survey paper by Leontartis &
Billings (1985). The framework allows different &dar dynamic models to be described
through the combination of various transfer functelements. A general form of the

problem can be seen to describe the unknown othipuigh the function
y(t) = f(4(1)) +et) (2.1)

wherey(t) is the output (measured dat&};) the function we wish to model(t) a

vector of adjustable parameters aft) representing noise present in the system. Note,
that in describing the elements present in th@¥alg general model structure, the time
t has been substituted for k, and we make useeofite shift operator q (equivalent to
writing (k -1)).

A general linear model structure was introducedLjmng (1999) and is formed from

decomposing the influences on the model into detestic and stochastic components.
The deterministic model component operates on timeipal that at some given input a
corresponding output response will be generated, that all actions are determined
through preceding events to the exclusion of randd@ments. The stochastic model
component can be seen to introduce randomnesstmdidel structure and therefore

allow unknown or external disturbances (noise) ¢oifcluded. A solely deterministic
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model structure can then be realised through enrgog linear filter G(q) between the
input ) and output y(k). In the same manner, aalirfdter H(q) can be introduced to filter
white noise v(k) and therefore allow noise frequenomponents to be modelled. The
terminput transfer functions used to describe the filter G(q), amalse transfer function

adopted to describe H(g). Both of these transfeictions can then be further
decomposed into a numerator and denominator. Argenedel structure can then be

constructed through the combination of the deteistimand stochastic components:

B9

¢
Aq ¥ Y (22)

y(k)=G(gUR+ H g ¥ k= 5(a)

A further decomposition is normally adopted in tfeneral framework where common
denominator dynamics are identified from G(q) and)Hand given the signifier A(q).

K(q) =F(q)A(g) and IS(q) = D(g)A(q ) with common denominator A(q). The general

model structure can then be written as:

B(q) ,

C(q)
£ + v(k) (2.3)

AQ)y(k) = 5a)

(k)

With the transfer functions composed of polynomass
A =1l+aq’+..+a,q"
B(gY)=bqg*+..+b, g™

(2.4)
C(qY)=1+cq’+...+c g™
etc..
and a parameter vector can then be written as
®=(a...a, b...b, cl...c, etc.) (2.5)

From this general model structure a number of difie linear dynamic models can then
be defined through the combination or omission eftain elements of the general
structure. The simplest model structure would heaglel consisting of either solely
deterministic or stochastic components. Howevererwlxamining real systems it is

highly improbable that uncertainty in the form afise would not extend some influence
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upon the output response. Therefore, a wholly detestic model (e.gy(k) = G(q)u(k))

is not a common structure to employ within the eystdentification field.

With the help of any available prior knowledge nelyjag the nature of the system, the
relevant inputs of any identified model can beioet and incorporated into our chosen
model structure. The inclusion of one or more inpatiables u(k), known as an
exogenousinput (X), allows the deterministic nature of astgm to be incorporated in
that an input will have a determinable influencetlo& system output. These input/output
models can be further categorised by the way theenmmponent is incorporated into
the structure. A distinction can be made betwé&guation Error models (ARX,
ARMAX, ARARX) and Output Error models (OE, BJ, FIR) where for Equation Error
models a common denominator polynomial 1/A(q) caradopted to demonstrate shared
dynamics between the input and output noise. Frbm general framework, the
modelling process would involve the selection of thodel structure most suitable to
identify a particular system. For the sake of thesievity, | refer the reader to the
aforementioned system identification textbooks figu (1999), Nelles (2001),
Soderstrom and Stoica (1989)) for a detailed adcotiwhere the various model types
may be best employed. However, the general apprakem is to first utilise a simple

model structure for the identification task befoomsidering a more complex one.

2.5.3.1) Linear to Nonlinear Dynamic Models

As in this thesis we are expressly concerned viaghidentification of nonlinear systems,
therefore it might seem tempting to dismiss theowsr linear dynamic models discussed
previously. However, the nomenclature used fordigcription of linear dynamic models
(e.g. ARX) crops up frequently in the literature vded to nonlinear system

identification. Furthermore, methods have been ldgesl to extend these linear models
for the purposes of nonlinear modelling. For theeegion to nonlinear model structures,
the ARX model is particularly important (due tositinear in the parameters structure)
and forms the basis of the Nonlinear ARX (NARX) rabdThe NARX model extends

the ARX structure through the replacement of thedr relationship with some unknown

nonlinear functionf (). Therefore, assuming that the model is to be implged on a

digital computer, the discrete-time nonlinear mazkel be stated as:
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y(K) = f(uk =2),...uk —m), y(k =1),..., y(k - m)) (2.6)

Where y(k) is the output, and u(k) the inputs, witlepresenting a time delay, and thus
assuming a multiple input single output (MISO) forModel structures that include

more advanced noise components (e.g. ARMAX) ayapplied for nonlinear system

identification due to the resultant increase in ptaxwity. Thus, simple dynamics

representations that result in input-output mappiage more common for nonlinear
models. For a detailed review of this extensiodirgar system identification methods
toward nonlinear problems, see Leontartis and rigj#li (1985) and Nelles (2001). The
NARX model structure can also be interpreted agppdd-delay-line as depicted in
Figure (2.2).

u(k)

" oD
T Nuk2)
3 Static
a' | ukem) Nonllnear vk
Approximator >
- f()
q
y(k-1)
7y
T 2
A
a* I ykem)

Figure (2.2):- NARX model as Tapped-Delay Line

Furthermore, this approach to nonlinear modellisgalso known as the ‘external
dynamics’ approach due to the separation of theeinsiucture into a nonlinear static
approximator and an external dynamic filter bamde Blelles (2001) for more discussion.
Due to this separation, any nonlinear model archite can then be chosen for the
approximator, such as a nonlinear polynomial or raleunetwork architecture. A

drawback of the external dynamics approach istymatally a large number of inputs are
required by the approximator, leading to the rezaent for the chosen approximator to
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be able to manage high-dimensional mappings forptexnsystems that involve large
numbers of delayed inputs and outputs. Furthernibigcan lead to matrix conditioning
problems in some learning systems as delayed ifquipsits will be highly correlated
with their immediate successors if a high samplatg is chosen. Consequently, the
overall input space of the model may become impéssio cover completely with
training data observations resulting in certain rapeg regions that are difficult to
identify due to a lack of empirical data. This @rgething that may prove problematic for
modelling approaches that rely upon the partitignfi the input space. However, this
restriction of the input space is also somethingt tan become advantageous as the
overall learning task may be reduced.

Whilst the external dynamics approach to nonlinggtem identification is the most
widely used method, an alternative method ternetérnal dynamics’ is also possible.
In contrast to the external approach where the mijcg are handled by a separate
tapped-delay line and then employed as inputsdmtmlinear approximator, the internal
approach does away with external feedback and inéeshal memory and feedback
instead. Thus, the dynamics are to be learned bynitwork itself. The internal
dynamics approach is common within the field ofraénetworks where they known as
recurrent networks with notable implementationsngdhe Hopfield network discussed
in Hopfield (1982), and the Boltzmann machine désaa in Hinton and Sejnowski
(1986). The internal dynamics approach can be sed® an attractive alternative as a
reduction in the dimensionality of the input spéaeroblem with the external approach)
may be realisable. However, they remain less popdilee to the increase in the
complexity of the network, and the lack of intetpt®lity of the internal model states.
Further alternatives for tackling nonlinear probtemclude the inclusion of derivative
information into the model, and parameter scheduipproaches.

2.5.4) Nonlinear Dynamic Models

In the previous section the extension of linearntnlinear dynamic models was
discussed. However, in the implementation of theRXAmethod suitable nonlinear
static model or approximator must also be selectad nonlinear approximator is then

to define a mapping between inputs and outputs.
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Classic parametric methods of modelling nonlinesgitinclude the identification of
polynomial representations of the system characteristicssd heethods can be seen to
be an increase of model order over the linear m¢alal' degree polynomial) and are
often employed for interpolation or curve-fittingoplems of lower dimensions. A
discussion of the Kolmogorov-Gabor (K-G) polynom#dd Volterra-series modelling
approaches that represent a nonlinear model wigubofeedback (as in NARX) can be
found in Nelles (2001). However, this method isyoslitable for low-dimensional
problems as the number of regressors present se tdels grows very quickly with
the chosen degree of the polynomial. Furthermoigh-tegree polynomial approaches
have a tendency toward oscillatory interpolatiohaw@our and unreliable extrapolation
behaviour. Other classic methods of nonlinear n®dstlude theHammerstein and
Wiener approaches. These methods are widely adopteddumstiry and rely upon an
assumption that a separation exists between thantigs and the nonlinearity of the
system. The Hammerstein model structure implemestatic nonlinear model (typically
a polynomial but any model is possible) followedsaries with a dynamic linear model,
and the Wiener model structure is in the revergerimhe implementation of both these
methods relies on prior knowledge of the systent theailitates the inherent structural
assumptions. As a result, they cannot be regardedyemeral purpose modelling
approaches for black-box problems. For more inféionaon Hammerstein and Wiener

models see Ljung (1999).

At this point it is worth pointing out a particulabstacle that is inherent to all modelling
approaches, thecurse of dimensionality. This phrase is often used in describing the
effect of including more input dimensions (and paeters) into the chosen model
architecture. As the number of variables or parameatecessary to represent a particular
function increases, so will the likelihood of o&aibry interpolation (an increase in
variance error). Furthermore, the computational aeinof optimising the parameters of
the chosen model structure will also increase. dfoee, model structures that quickly
grow in complexity as the number of included valesbincreases are not suitable for
high-dimension problems, or for black-box problemisere little is known about the
underlying modelling problem. Model structures tbhah be seen to suffer particularly
from this ‘curse’ include polynomial models, anddgor lattice based approaches that

seek to partition the operating space in a uniforamner such as ‘look-up’ tables.
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Overcoming or bypassing this curse of dimensiopalt one of the most important
driving forces behind some of the modern approathe®nlinear system identification
(e.g. using non-uniform partitions based on prioowledge, mapping inputs onto
different function spaces). Furthermore, in thentdeeation of real systems, the curse of
dimensionality may not manifest itself too detrirtadly due to the peculiarities of the
system under investigation. For example, the mods} be able to be simplified due to
the presence of inputs that are correlated or mahtn smooth regions of operating space
may allow simple models that require less data dpresent, and the presence
unreachable regions of operating space (e.g. dueotwelated data or operational
constraints) may reduce the overall operating spabe identified.

In the identification of black-box models whereioprknowledge of the system is
limited, the model must therefore be identified nircempirical data. This is also
sometimes referred to as ‘empirical modelling’, aadfundamental aspect of this
approach is that the chosen model architecture rHacgitate this learning process.
Furthermore, without prior knowledge of the systeharacteristics, the chosen model
structure must be flexible enough to allow a widage of nonlinear behaviours to be
approximated. A general framework that a large nemdb different model architectures

can be seen to follow is the formulation of a netnaf basisfunctions:
M
y=>.848") (2.7)
i=1

In this formulation, the mapping ()] is to be modelled as a weighted sum\bbasis

functions, whered' are the weighting linear parameters, a#fi are the nonlinear

parameters of the basis functiong). Therefore, for nonlinear models the basis

functions must be nonlinear, and it is also wortiting that linear and polynomial
models can also be interpreted under this basigitunformulation. Furthermore, basis
functions can be described as being either glob&aal. Global basis functions can be
seen to contribute to overall model output acrbssoperating range, whereas local basis
functions only contribute to the model output inadinlocal’ regions of the operating

range.
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2.5.5) Neural Networks

The artificial neural network (ANN) is a black-baxodel architecture that consists of a
large number of interconnected neurons (simpleineat processing units) that act as a
parallel information processor. The origins of theificial neural network approach
come from research into the operation of humambraihere the concept of neurons as
structural elements of the brain was proposed.hé#f human brain is viewed as a
computational device (performing tasks such as mmevet, pattern recognition and
perception etc.) it becomes clear that even thet ma®plex man-made machines are
vastly less capable. Therefore, researchers woikinige fields of machine learning and
artificial intelligence have sought to emulate thest processing power of the brain.
Although the history of artificial neural networkan be seen to stretch back to the work
of McCulloch and Pitts (1943), a great catalysttie modern surge in interest in neural
networks was the work of Rumelhart et al. (198} flopularised the backpropagation
algorithm used for training Multilayer PerceptrollL(P) networks. A good general
resource that details many different types of neoedworks is the book by Haykin
(1994), where a full and interesting account of kth&torical advancements made in
neural networks is also provided. Other good nenedvork textbooks include Bishop
(1995) and Ripley (1996), however much of the distan is focused towards pattern
recognition or classification tasks. Good resources neural networks from an
engineering or system identification perspective #ire books by Brown and Harris
(1994) and Nelles (2001), and the paper by Sjobeed. (1995).

For the purposes of nonlinear system identificatittre most widely adopted neural
network structures areed-forward networks. In this arrangement the informationois t
travel in one direction, from the network inputsth® network outputs. This flow of
information is depicted in Figure (2.3), and theina¢ network structure can be readily
interpreted as a static nonlinear mapping betwdwn input and outputs, and thus
compatible with the previously discussed ‘exterrbinamics’ NARX dynamical
modelling approach.
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Hidden Layer

Input Layer Output Layer

Figure (2.3) — Feed-forward Neural Network

Alternative network structures where delayed infation is passed between neurons are
known asrecurrent networks. As discussed in the previous sectiotyrrent networks
have the potential to reduce the impact of theecofslimensionality, but this increase in
complexity makes the learning task more difficklirthermore, the presence of feedback
in the network brings the possibility for instatyilias discussed in Braham (1998). The
neural network architecture can also be undersasoa network of basis functions where
each basis function (or hidden layer neuron) ishef same type. The two most widely
adopted feed-forward neural network architectureshe field of system identification
are the Multilayer Perceptron (MLP) network and fRadial Basis Function (RBF)

network. In this section a brief description of fheperties of these two networks is

provided.

2.5.5.1) Multilayer Perceptron (MLP) Network

The Multilayer Perceptron network is the most wydahown neural network architecture
and has become synonymous with what is generatignstood to be a neural network.

This feed-forward network utilises a ridge constilut mechanism in order to project the

input vectoru onto a nonlinear parameter vector
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X=0"u=6'u, +6'u +...+ 65 u, (2.8)

The nonlinear parameters are also known as theghi&i of the hidden layer of the

neural networkd" =[w, w, - w1". An activation function exhibiting saturation

behaviour (typically a sigmoid function, e.@(x) =tanhk)) is then applied to the

parameter vectox. This combination of the construction mechanisrd #re activation
function may then be termed asperceptron’. This individual hidden layer neuron can
then be combined in parallel with other hidden fageurons of the network through
connecting the outputs of each neuron to an ‘oulpygr neuron’. This output layer
neuron is most commonly a linear combination oflifdglen layer outputs that are each
weighted by a set of parameters known as the oufyer weightsw;. The overall
network structure can then be written using thasbasction formulation (wher is

the number of hidden layer neurons g@nd the number of inputs) as:

9=iw¢i (iw} (2:9)

j=0

This combination of a single hidden layer of negramd a linear output neuron is the
most simple and common implementation of the MLBvoek. Further complexity can
be achieved by incorporating additional hidden itayer employing a nonlinear output
neuron. Overall, we can control the number of patans in the model by modifying the
number of hidden layer neurons included. Howevgrinbreasing the complexity of the
model structure, the optimisation procedure mayober more demanding. An
alternative to including more hidden layers isrtolide more neurons in a single hidden
layer. As discussed in Nelles (2001), a generdkepeace for one strategy over the other

is difficult to substantiate and is dependent angtoblem at hand.

As the MLP network contains nonlinear parameteréhidden layers (and potentially
the output layer), a nonlinear optimisation procedwill be required if these hidden
layer weights are to be made optimal. The genexablem of model optimisation and
various nonlinear optimisation strategies are dised in more depth in Section (2.6) of
this chapter. However, it is worth stating heret tih@ task of optimising the parameters
and structure of any neural network can becomeayifgiant challenge. The need for
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nonlinear optimisation techniques to be employeadresult in very long training times.
However, some of the resultant computational burdagy be reduced if the output layer
weights of the MLP network are chosen to be lingagrefore allowing more efficient

linear optimisation algorithms to be implemented.

Furthermore, in addition to the optimisation of thieear and nonlinear model
parameters, the overall model structure (i.e. nurobaeurons, number of hidden layers
etc.) must also be optimised. Traditionally, théwmek structure is fixed in advance and
then the model parameters optimised and the peafocenvalidated (i.e. we choose the
number of neurons/layers ‘a priori’). Such an apgtocan obviously become frustrating
as if the model is found to be lacking in some way.a result of this, methods that seek
to regulate the complexity of the network structyegrowing’ or ‘pruning’ the number
of hidden layer neurons have been developed. Tifieully of selecting an appropriate
model structure for the MLP network is also compmeahby the fact that the component
parts of the model structure are not readily imetable. In particular, the individual
hidden layer neurons of the MLP network cannotrterpreted as active in only certain
local regions of operating space (i.e. by changingliminating one hidden layer neuron,
the whole network is affected and model outputlahput regions will possibly change).

So far in this section we have focused on the dliffies of training a MLP network
without detailing the major advantages of the maaehitecture. The main advantage of
the MLP network architecture is that it can be séenbe a universal function
approximator’, which means that the MLP can approximate any simfamction to an
arbitrary degree of accuracy as the number of md@ger neurons is increased.
Furthermore, this facility holds true for MLP netike composed of only one hidden
layer for certain classes of activation functions.(sigmoidal) as proven in Cybenko
(1989) and Hornik et al. (1989). As a result, theRvhetwork can be seen to be a good
general purpose modelling approach that exhibiterg high flexibility that allows a
great range of different function shapes to beasgmted, and thereby may be applied to
any function approximation problem. It is howeveorth noting that this universal
approximation feature is not exclusive to the MLBtwork as other modelling
approaches (such as polynomials) and types of heetaork also demonstrate this
property As the ridge construction mechanism acfgoject the input space onto a lower
dimensional hidden layer space, this allows theat$f of the ‘curse of dimensionality’ to
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be reduced, making the MLP network suitable forhbigdimensional problems. A
further property of the MLP network that makes it attractive method for system
identification and control is the fact that the rben of neurons present in an MLP
network is typically smaller than other neural netkvapproaches (e.g. RBF networks).
The result of this is that the evaluation speed@ated with making predictions is
typically lower than the alternatives. In summahg MLP network is a very powerful

and flexible method of function approximation. Haee this flexibility comes at a cost
due to the need for potentially time consuming emchputationally expensive nonlinear
optimisation methods to be employed. Furthermdne, rhore subtle nature of model
structure optimisation and general lack of intetggodity regarding individual

neurons/weights makes the identification proce$cdit. As a result, the training of

MLP networks can descend into a less than rigoneess of applying various

heuristics or even trial and error.
2.5.5.2) Radial Basis Function (RBF) Network

Radial Basis Functions were originally developed asmethod of multivariate

interpolation (as discussed in Powell (1985)) wlaton to the development of MLP or
other neural networks. The integration of the RB&thndology into the wider field of
neural networks took place after the surge in egein MLP networks, with notable
papers being Broomhead and Lowe (1988), Moody aadkén (1989), and Poggio and
Girosi (1990). Further papers that investigateuse of the RBF network for modelling
purposes are Barnes et al. (1991), Murray-Smiti9Z],9and Pantaleén-Prieto at al.
(1993). The RBF network is a feed-forward architestwhere a radial construction
mechanism is first used to calculate the scaldanic® x between the input vectoand a

centre vectorc=[c, C, - cp]T, with respect to a norm matriX, used to scale and

rotate the input axes.

x=Ju-c], =\(u-c)"% (u-c) (2.10

As in the MLP network, an activation function iethapplied to this new parameter x.
This activation function is normally selected toh#it some kind of local character

around a maximum at =0, with the most popular choice being the Gaussieittfon
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g(x) = exp(—% X ).In the same manner as the MLP network, this inidiai hidden layer

neuron can then be combined in parallel with othidden layer neurons of the network
through connecting the outputs of each neuron t@wtput neuron. This output layer
neuron is again most commonly a linear combinatibtine hidden layer outputs that are
each weighted by a set of parameters known asutmilayer weightsv,. The overall

network structure (composed bf hidden layer neurons) can then be written usirgg th

basis function formulation as:
R M
7= w, (ju-cl, ) @1y
i=0

The RBF network can be seen to consist of threterdiit components or types of
parameter: output layer weights (which are linesameters that determine the height of
the basis functions and the offset value), Cer(issch are nonlinear parameters of the
hidden layer neurons that determine the positiothefbasis functions), and the Norm
matrix (which are nonlinear parameters of the hiddeyer neurons in the form of

standard deviations that determine the widths atations of the basis functions).

The RBF network has also been proven to be a ‘wvs@dunction approximator’, see
Park and Sandberg (1991) for details, but unlike BLP network the prospect of
combining multiple hidden layers in the RBF netwaknot thought to be particularly
useful. As a result the RBF network is normallyyoaimployed with one hidden layer.
One of the attractions of the RBF network over keP network is that through the
radial construction mechanism and local activafigrction, the hidden layer neurons of
the RBF network can be more readily interpretaBkethe basis functions are local, the
effect of changing the parameters of one neurorohfsa small effect for input values
that are far away from the designated centre ofnéwgron. Therefore, each neuron is
predominantly active in a specific region of opemgispace, and the network as a whole
can be interpreted more as a combination of logbtreodels or multiple model. As a
result, employing multiple layers of RBF neurondikely to diminish this interpretable
aspect as the outputs of the first hidden layeeaaly span the input space, leaving
subsequent layers to span the space of some tegsratable intermediary input space.
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The RBF network can be interpreted as a two-lay@waork that is linear in the
parameters if the nonlinearities and RBF centrediest fixed in the hidden layer. As the
output layer weights of the RBF network are lineéae optimisation of these parameters
can be performed through the use of efficient lifézast squares) regression. However,
the nonlinear parameters that determine the poséra character of the basis function
must also be optimised. It is therefore common itst fdetermine the hidden layer
parameters of the RBF network (i.e. place the Hasistions and determine the standard
deviations) before optimising the linear outputdayweights (thus determining the
heights of the basis functions). The task of oing the hidden layer parameters of the
RBF network is also termedéntre placementand it is normal to attempt to exploit the
more interpretable ‘local’ nature of the hiddendayparameters so that the use of
demanding nonlinear optimisation algorithms cambeimised. A variety of different
approaches to the problem of training the hiddgerlgparameters of the RBF network
have been proposed, see Nelles (2001) for a gowwe These include simple
approaches such as Random and Grid Based Centeniéiat, where the basis functions
are centred at random or in a uniform manner. Maghisticated Clustering Methods
have also been developed where unsupervised met{@ds K-means algorithm,
Kohonen’s Self-Organizing Map) can be used to deite basis function centres that
reflect the nature of the training data distribof{ee. many RBFs can be placed in

regions of dense data, and few RBFS can be placexjions of sparse data.

A further alternative to the problem of trainingethidden layer of the RBF network are
constructive methods such as the Orthogonal Legisar8s (OLS) method proposed in
Chen et al. (1991). This forward regression methad be understood as a form of
Subset Selection, where a subset of suitable ce(regressors) is selected from a large
set of candidate or potential basis functions. kénbther methods, this subset selection
uses supervised learning as the OLS algorithm selgcts basis functions on the basis
that they are effective at reducing the model effberefore, a key advantage of the OLS
approach is that the RBF network is trained incrgadey. The main disadvantage of
adopting this incremental or constructive approashthe increased computational
demand that may result in long training times. remnore, the OLS algorithm is still
heuristic in nature, and is unlikely to outperfoanRBF network trained with even more
computationally expensive nonlinear optimisationthods, see Wettschereck and
Dietterich (1992) for information on the applicatiof nonlinear optimisation to RBF
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training. Nevertheless, the OLS method has becopepalar method for training RBF
Networks and is the standard method used in the M¥BT Neural Network Toolbox,
see Demuth and Beale (1998).

2.5.5.2.1) Normalised RBF Networks

A problem associated with the application of clastgtechniques (and RBF networks in
general) is the potential existence dfips’ in the interpolation behaviour. Such
behaviour is normally the result of regions of @tergy space where either no basis
function is present or the standard deviationshefrieighbouring basis functions is too
small. As clustering attempts to place the RBFadcordance with the distribution of the
training data, it is not unreasonable to expect th@me sparser (but potentially
important) regions of operating space are not qefitly covered by the defined basis
functions. Therefore, when the model is asked édligt within such a region, the model
output is likely to be highly inaccurate. For higlmensional input spaces the problem
can become almost unavoidable and these ‘dipslezhto unexpected and undesirable
behaviour in the output. A further potentially usotable property of RBF networks is
that the extrapolation behaviour tends to zero ttug¢he local activation functions.
However, through thenormalisation of the RBF network these drawbacks can be
overcome. The normalisation process results instlre of all the basis functions being
equal to 1, and this property is known gsagtition of unity . Therefore, the partition of
unity ensures that an equal weighting is givenuerye point in the input space, so that
any variation in the output of the network is daeghe weighting parameters of the basis
functions (i.e. no unexpected ‘dips’). As a resthie Normalised RBF network is less
sensitive to poorly chosen basis functions, andoeerall output level can be fixed
without any explicit offset value (unlike MLP andR networks that normally employ a

separate offset or bias weidtt,q)). Further advantages of the Normalised RBF

network are outlined in Werntges (1993).

However, the normalisation of the RBF network caespnt some less than desirable
side-effects as the normalisation introduces icteyas between the basis functions. A
detailed discussion of these side-effects can lbmdan Shorten and Murray-Smith
(1994). Most fundamentally, the basis functions hagg their uniform shape resulting in

the maximums of basis functions being shifted fribmair centres, and the monotonic
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decrease in the basis function as the distance frmmcentre may also be affected.
Furthermore, the basis functions may reactivatdififierent regions of operating space.
Overall, these side-effects are not enough to fuiyinish the advantages of
normalisation, but the interaction between basmtions is undesirable as it may result
in basis functions that are multi-modal and noralo@hese aspects are perhaps the
defining qualities of the RBF network, so withowtre the normalisation of the RBF

network can potentially diminish the local interfatality of the approach.
2.5.6) Multiple Model Networks

In the previous section the advantages of the RB®wark were discussed. In particular,
the locally active basis functions can be seen ffercan advantage in terms of
interpretability and ease of training over the Mbh&ural network. However, whilst the
RBF network may be more interpretable than the NliBrnative, the model still does
not offer much insight into the underlying systerm@ake it particularly straightforward
to incorporate prior knowledge of the system irite identification process. Overall, the
RBF network can be interpreted as a large numblercafly accurate piece-wise constant
(zero-order) models that are placed across theabpgrspace. As a result, these simple
local constant models are not going to offer mublisgcal insight into the underlying
system. Nevertheless, the RBF network and the Basrtion formulation in general,
can be seen to offer a methodology that allowsta&ar& of multiple local models to be
defined.

The concept of developing a multiple model netwodh be seen to be an attractive
prospect as the identification of complex systenay imecome more manageable if the
overall problem can be reduced into a number ofllsmaroblems. Such an approach is
typically known asdivide and conquet, and in the field of system identification this
can understood as dividing or partitioning the afiag space into a number of local
regions or ‘regimes’, and then identifying a looabdel that is accurate for each region.
A global model may then be constructed throughctirabination of these local models,

as depicted in Figure (2.4) on the next page.
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Figure (2.4): General Multiple Model Structure (from Murray-Smith and Johansen
(2997))

A number of different multiple modelling approachesse been proposed to help solve
the problem of nonlinear system identification. Qmable approach is the application
of fuzzy logic (see Zadeh (1965)) to the problem of partitionihg operating range
where a number of rules must be defined. Througth san approach, any prior
knowledge of the system (especially qualitativediealge) can be incorporated directly
into the model through the definition of membershpnctions. An important
development in the application of fuzzy rules fgstem identification problems was the
framework introduced by Takagi and Sugeno (198Bhwn as the TS model. Unlike
linguistic or singleton fuzzy models, the outpufsT& model are functions (normally
linear models) of the system inputs. Thereforeallocodels based on expert qualitative
knowledge can be defined.

However, it is unlikely that qualitative knowledgall provide enough information for a

successful model to be identified, and the inclusad empirical data and learning
methods is typically required. Such combined meshack often referred to as Neuro-
Fuzzy models. In comparison to the neural netwqr@ach, Fuzzy networks can be
seen to have an advantage in interpretability, ewéhe development if good models

may require the meticulous modification of the tajirules that are to define the
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membership functions. Further explorations of #ggroach can be found in Jang and
Sun (1995), Pfeiffer and Isermann (1994), and Bda$id Verbruggen (2003).

An alternative approach to the problem of definthg multiple model networks is the
‘Operating Regime’ based methods developed in Johansen and Foss, (1993,
1995a, and 1997). In this work theocal Model Network (LMN) architecture was
proposed and further examined in Murray-Smith (39urray-Smith and Gollee
(1994), and Murray-Smith and Hunt (1995). There dse links and equivalences
between LMNs, RBF Networks, Takagi-Sugeno fuzzy et®@nd other approaches, and
a good overall review can be found in Murray-Snatid Johansen (1997). A further
related local linear approach to system identiiocatis the Local Linear Model Tree
(LOLIMOQOT) developed in Nelles et al. (2000) and arded on in Nelles (2001). In this
section we are to briefly focus on the Local MoNetwork approach as it can be further
linked to the Gaussian Process modelling approhah is to be investigated in this
thesis, as discussed in Gregjorand Lightbody (2008).

2.5.6.1) Local Model Networks

The Local Model Network can be interpreted as ateresion or generalisation of the
Normalised RBF network where instead of the simpéghts (constant or zero-order
models) used in the output layer, more complexllotadels are to be employed. In
theory, these local models can be of any type, |bcal linear models are normally
employed for ease of implementation and interpi@tatAn advantage of using more
complex local models is that in comparison to teeozorder weights of the RBF
network, each local model can cover a larger portibthe operating space. Therefore,
an LMN network of equivalent accuracy can normakydefined using a smaller number
of basis functions (or validity functions) than tHRBF network, thus improving
computational efficiency and interpretability. Fnetmore, engineers are well used to
using linear models, and engineering systems den afesigned and operated near to
equilibrium operating conditions. Therefore, thdlexiion of sufficient empirical data is
likely to be achievable therefore allowing effidielnear regression methods to be

applied. The local model network can be described b
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§=> @, (d(x ¢a)) f(x W (2.12)

i=1

Where y is the output predictions is the validity function (equivalent to the basis

function of the RBF network, and similar to a memnsbg function of a fuzzy network)

constructed from an adjustable distance functigrand f is a function consisting of the

inputs to the local model and a weighting functian As in the case of RBF networks,
the LMN can be normalised so that a partition afyucan be guaranteed (along with the
potential for undesirable side-effects). The cdmtiion from each local model is
therefore defined by the activation of the corregpiog validity function. Furthermore,
the validity function is also sometimes stated @isidp a function of a scheduling vector,

i.e. ® (¢At)), rather than expressly stated using a distancetibimakin to that of the
RBF network. The scheduling vectgt) must be chosen carefully as it is to represent

the nonlinear properties of the underlying systemg therefore help to define the
operating point of the system so that the cormecallmodel can be used at any one time.
The scheduling vector is typically chosen from at jpd the entire data vector, and in
making this selection the use of prior knowledge peove to be invaluable (i.e. certain
current or delayed inputs or outputs of the sysdbould provide a good indication of the
current operating point of the system). A usefudcdssion regarding the choice of

scheduling vector can be found in Gollee (1994).

The training of the individual components of thecabModel Network can be treated in
a similar manner to that of other basis functioprapches. Firstly, the parameters of the
local linear models can be optimised through linksast squares. However, these
parameters can either be learned globally or lpc#il global learning, the process of
optimising the parameters is to be performed siamalously for all local models, and can
be interpreted as similar to the optimisation of thutput layer weights of the RBF
network. In local learning, the parameters of eémtal model are to be optimised
independently. Overall, a trade-off can be seemxist between achieving an accurate
global model and retaining the local nature of thedels. The parameters of one local
model estimated using the global learning appr@aemnot independent of neighbouring
local models. Therefore, the local models are wotigate linearisations of the system at

the centre of the validity functions. As a resuhiese local models cannot truly be
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interpreted as locally accurate models. Furthermdne global learning method is
computationally expensive in comparison to the lléearning method and is less robust
to over-parameterised or poorly structured localdetonetworks. Therefore, local
learning methods will tend to perform better whieré is insufficient or noisy training
data. However, global learning methods cannot bg fliscounted, as they will tend to
result in more accurate global models when the inettacture is well chosen, the
training dataset is well populated and the undegyionlinearities are smooth. Further
information on the relative merits of local andlwd learning can be found in Murray-
Smith (1994), Murray-Smith and Johansen (1995)yvélénd et al. (1996) and Nelles
(2001). The problem of structure optimisation, vehtire validity (basis) functions are to
be defined, can be tackled in a similar mannerhed of identifying the centres and
standard deviations of the basis functions of ar- RBtwork, e.g. uniform grid-based
methods and clustering techniques such as the ksnedgorithm. Furthermore,
constructive forward regression methods such asetllefined in Murray-Smith (1994)
and Nelles et al. (2000) can also be used to deterthe structural optimisation of the
Local Model Network. In addition, backward regressor ‘pruning’ methods (see Reed
(1999) and Jutton and Fambon (1995)) can also Ipdogned to reduce model complexity
by identifying and removing useless parametersjrarlar and therefore redundant local
models. As with the RBF network, popular activatimmctions include the Gaussian

function and B-splines.

Once the validity functions and parameters of tbeal model network have been
identified, the next problem to be tackled is hogl@bal model is to be constructed from
these local models. This problem can be unders&soohterpolating between the local
models or ‘blending’ them together. Two differenetimods that have been proposed to
tackle this problem ardlending the outputs and ‘blending the parameters. The first
‘blending the outputs’ method implements a simpkighted sum of the local model
outputs in a similar manner to the linear comborawf hidden layer outputs of the RBF
network. The ‘blending the parameters’ method isa#tnactive alternative for cases
where the local models can be seen to share the sémncture across the operating
space. In such an implementation, as the structutiee global model remain consistent
across the operating range; it is the parametetbeofjlobal model that will change in

accordance with the scheduling vector.
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2.5.6.1.1) Off-Equilibrium Dynamics

The Local Model Network architecture offers a partarly good approach to modelling
of nonlinear dynamic systems where both prior syskeowledge and empirical data is
available. In particular, the use of local lineabdals can be seen to be especially
appropriate for systems where prolonged periodspafration (therefore providing an
abundance of data) are to occur near to equiliblursteady-state operating points. As
many engineering systems are designed to operaandy at certain stable operating
points for ease of operation, this means that atgnoportion of the available empirical
data has a tendency to be centred around such tiogeroints. However, in the
investigations of Shorten et al (1999) and Murray8 et al. (1999), this reliance on
local linear models has been found to compromisevtiidity of the LMN architecture

when the off-equilibrium dynamics of the underlyisygstem are considered.

As the validity of each local model is restrictedrepresenting the system close to a
defined operating point, in transient regions betwsuch operating points the LMN
model will not usually provide an accurate représgon of the underlying system.
Therefore, each local model will only provide asight into the full model behaviour in
a very small region of operating space. This pnobiioes not tend to explicitly manifest
itself when the operating point and therefore tlsheduling vector change slowly.
However, for faster or more violent transients (epgickly driving the input across the
full operating range) between operating regimes,ojperating point of the system can be
model can be forced far away from the equilibrilegions where the local models were
identified. This may result in unexpected and uirdbte transient effects in the output
that may compromise the stability of the model #metefore prove problematic from a
control perspective. In tackling this problem of-efuilibrium dynamics, local models
may be placed in the off-equilibrium regions. Indieguch a strategy can be seen to be in
keeping with the overall proposal for a multiple debapproach. However, as discussed
in Shorten et al. (1999), it is possible for nongue parameterisations of the model
behaviour to exist (i.e. any identified off-equiitom model may only partially represent
the off-equilibrium region). Furthermore, the modstucture of any identified off-
equilibrium models may end up being significantiffedent from that of the existing
equilibrium local models, thus impacting on the raeinterpretability and transparency
of the global model.
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The problem of retaining transparency in off-eduilim local models has been directly
tackled through the use wélocity-based descriptiongsee Leith and Leithead (1999))

where an analytical framework for relating globghdmic behaviour to local models

was proposed. The original proposal for the appboaof the velocity-based framework

focused on the linearisation of known nonlineateys (Leith and Leithead (1999)), but
further investigations in McLoone et al. (2001) balemonstrated the construction of a
velocity-based Local Model Network using empiricdhta. However, a problem

demonstrated in McLoone (2000) is that whilst theogity-based description may

provide a more accurate representation of the neati dynamics of the system, the
steady-state response of the underlying system ieas accurately modelled.

Furthermore, the velocity-based framework requited the derivative of the input be

available. This is something that may prove to blematic to obtain due to noise and
discontinuities in the input signal (i.e. sharmsignts in the input signal will have near-
infinite gradient and therefore reduced differdntity). However, alternative

implementations of the model may allow differentiatof the input to be avoided.

The problem of identifying off-equilibrium models also compounded by more practical
operational constraints that often lead to a geneack of available off-equilibrium
empirical data. In the identification of real syateit is often not possible or even unwise
to excite the system in such a way to initiate #&requilibrium response due to the
potential damage to the system or even the operatmrefore, if an off-equilibrium
identification strategy is to be implemented, thpaximental design and data collection
process must be considered carefully. Due to tfiewlty of identifying off-equilibrium
models (i.e. lack of interpretability and lack ohgirical data), alternative methods of
identification have been proposed. One such methothe GP modelling approach
discussed in this thesis. The GP model is non-patr&anmodelling approach where the
model is identified almost exclusively from empaiicdata (overcoming the lack of
interpretability problem). Furthermore, a numbeispécific properties of the GP model
make it a good candidate for identification of misdehere empirical data is sparse. The
use of GP models in tackling off-equilibrium iddittation problems was proposed in
Murray-Smith et al (1999), Leith et al (2000), abelithead et al (2000), and further

discussion of this aspect is provided in Sectioh)(5
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2.6) Model Optimisation

A crucial part of the system identification procesghe optimisation or learning task that
must be undertaken in order to fit the chosen mettaktture to the available empirical
data. Within the system identification community,odel optimisation has also
traditionally been referred to as ‘parameter edimnd due to the popularity of
parametric models over nonparametric alternatitesthermore, as applications have
become more demanding, leading to the requirenoennhbre sophisticated models, the
learning task has also grown accordingly. As a ltedbe optimisation procedures
required to identify the overall structure and paegers of these more complex models
has also become more sophisticated. Thereforehanstlection of a suitable model

structure the level of optimisation required is@portant consideration.
2.6.1) Types of Learning

Techniques for optimisation can be categorised ihtee different approaches that are
distinguished by the amount of information or didwat would be required by the chosen
model architecture.

2.6.1.1) Supervised Learning

Supervised learning methods require that both idptd and output data of the process is
available. Typically this would involve empiricabth consisting of matching pairs of
input and output data. The objective of supervisaaning techniques is to identify an
optimal solution through the minimisation of a maasnent of the error between the
model and that of the observed process. In ordprdeide this measurement of the error,
a loss function is employed to analyse the diffeeethetween each possible model
solution and the target output against some ait&tiom a machine learning perspective,
the use of output data can be seen to performotheof a ‘teacher’ and therefore provide
supervision for the learning system. The suppligghat data can therefore be interpreted
as examples of a correct response that allows paeson to be made with the learning
system’s current solution. Most optimisation profdein system identification can be
seen to fall within the domain of a supervisedreay algorithm, as we would typically
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expect the output of real systems to be availdlilerefore, it is supervised learning that

this thesis will focus on.

2.6.1.2) Reinforcement Learning

In reinforcement learning, a degree of informatedrout the quality of the model is
available, but no desired output value is knownédach input. This type of learning is
normally employed toward evaluating the quality different strategies or long-term
goals, rather than evaluating the error of indiaickest (input-output) cases. This kind of
learning has particular relevance in a number diflieations (e.g. robotic control,
dynamic programming and gaming strategies) whaeedifficult to assess the quality of
individual manoeuvres or events, as it is the fomaticome that will determine success or
failure. For more information on this subject, Sagton and Barto (1998) and Kaebling
et al. (1996).

2.6.1.3) Unsupervised Learning

In unsupervised learning, only the input data @dslly available or used. Unsupervised
learning techniques are therefore used to extmragctcampressed information about the
input data distribution. Furthermore, as no outipfirmation is utilised, unsupervised
learning methods are typically employed in conjiworctwith supervised learning

methods in order to obtain an optimal model sofutis a result, unsupervised learning
techniques are predominantly used as tools for platgrocessing. In Nelles (2001), two
main categories of unsupervised learning are dsszlysnamelyPrincipal Component

Analysis (PCA) andClustering techniques.

The goal of PCA methods is to simplify the over&harning problem through
transforming the input axes. In particular, PCA Imoels are used to reduce the
dimensionality of the problem through eliminatingyanput axes that are uninformative
about the data. Therefore, the relative signifieaoteach input axes must be evaluated,
and this is done through assessing the degreer@inea (i.e. high-variance indicating
high significance and vice versa). Such methods Hasen shown to be particularly
valuable for high-dimensional problems, where cotafonal demands and overall

model complexity can be reduced. However, it is angnt to remember that this

46



Chapter 2: Nonlinear System Identification

dimensional reduction is performed through the ymsalof only the input distribution,
and the loss of important information is still pb$s (i.e. there is no reason why a low

input variance should automatically imply a lowrsfgcance of that particular input).

The goal of clustering techniques is to find groopsimilar data samples. A similarity
measure must therefore be defined, where the sbiafiee cluster is to be determined
(e.g. circle, spherical, elliptical etc.). The nuniof clusters can be chosen initially or
determined automatically in more advanced methddstable clustering techniques
include the K-Means algorithm, Gustafson-Kessel ofithm and Kohonen's Self-

Organising Map. For a more detailed discussion lostering techniques, see Ripley
(1996), Kohonen (1990) and Bezdek (1981).

2.6.2) Parameter Optimisation

The overall task of model optimisation can be sphto two parts: parameter
optimisation andstructure optimisation, in this section we focus on the former. The
process of optimising the parameters is also knasvparameter estimation and begins
with the identification of a suitable criterion thdefines the exact mathematical measure
that is to be optimised. This criterion is also coomly termed d.oss function and is

typically a measure of the error between the meaksautput of the system(i), and the

corresponding output of the modef/(i) for a defined training dataset, i.e.

e(i) = y(i) - ¥(i).

In the general system identification literaturegtsas Ljung (1999) and Séderstrém and
Stoica (1989), three different loss functions aseamonly discussed: tHeeast Squares
method (or sum of squared erro)aximum Likelihood method, and th&laximum
A-Posteriori (MAP) estimate. The Least squares method is thet midely adopted
approach and forms the basis for linear optimisaticethods to be discussed briefly
below. The remaining two methods can be categorasegrobabilistic approaches to
parameter estimation. A probabilistic approach mwdelling is relevant as it introduces
the concept of uncertainty into the modelling poge. The maximum likelihood

method is to be employed for the optimisation o BP model and is discussed in
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chapter 4. The MAP estimate can be seen to bena ddBayesian analysis that is to be

discussed in the next chapter.

2.6.2.1) Linear Optimisation

Depending on the nature of the chosen model anthre, the parameter optimisation
procedure can be termed as either linear or narioptimisation. A linear optimisation
problem can be said to exist if the model error lbarcategorised as being linear in the
parameter® and if the sum of squares error (least squares) flonction is employed.

Therefore, a modef/ of the dependent variable y, composed of n indepeindariables

(regressors)xcan written as:

J=6x+0,%+...+6,%=> 6 X (2.13)
i=1
In matrix form can be written a§ = X@, where X =[x X%, - x] is the regression
matrix andg =[6, 6, - 8,]" is the parameter matrix.

Linear optimisation techniques are the most widabjopted parameter estimation
methods due to their interpretability and ease mfliaation. It is also due to these
qualities that linear model architectures remaie freferred method in the field of
system identification as a whole. Further desirajlalities of linear optimisation include
the ability to provide optimum parameters that angque (global), and the speed and
robustness of the optimisation algorithm relativendnlinear optimisation techniques. At
this point it is worth briefly detailing the linedrast-squares algorithm, further details of
which can be found in the majority of system idication and statistical texts. The

model error can be written as=y-y=y-X#, and the sum of square errors loss
. 1 . . .
function can then be stated ¥$6) :EeTe. As this loss function is quadratic ) the

minimum value can be easily computed by settingdémévative of this function to zero.

The least squares estimate can then be stat@g &% ™ X)X Ty.
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Utilising modern numerical software, such as Matl#bis then straightforward to
compute the least-squares estimate of the modelnmmers and then assess the

performance of the identified model. However, itingportant to point out that the
required matrix inversion of the Hessi@X ™ X)™ can prove problematic if the matrix is

ill-conditioned. Such matrix conditioning problentan result if the empirical data

collected from the system and then used to gendhaeregression matrix is not

sufficiently excited. This aspect is mentioned iastsystem identification texts such as
Soderstrom and Stoica (1989). Furthermore, thecdinwersion of these matrices is not
normally carried out due to likelihood for matheroal difficulties and a number of

alternative approaches, such as Gaussian elimmatizholesky decomposition or

singular value decomposition, are normally employestead. Useful resources on
various matrix methods include Barnett (1979) amdu@® and Van Loan (1987). These
matrix computation and conditioning aspects aréqadarly relevant as the same kind of
problems can be seen to present themselves inmplernmentation of GP models. As a
result a more detailed discussion of matrix condiig aspects is to follow in Chapter 4.
However, for linear optimisation implementationggularisation techniques such as
ridge regression have been developed to tackleixnatmditioning problems, see

Tikhonov and Arsenin (1977) and Johansen (1997infmre details.

A further feature of linear least-squares optim@sats that using the regression matrix it
is also possible to generate covariance matricdeeoparameter estimateand model

output y. Utilising the covariance matrix ofy it is therefore possible to generate

measures of variance and therefore errorbars,nifesmformation regarding the noise
distribution is known or assumed. More detailedinfation on this can be found in
Nelles (2001), however it is mentioned here dudh® similarities found in the GP
modelling approach which involves the specificatidra covariance matrix. Therefore, a
more detailed discussion of covariance and coveeiamatrices is found in the next

chapter.

Extensions to the linear least-squares algorithso aiclude the weighted least-squares
implementation, where the contribution of each sgdizerror can be weighted with a
factor. This facility allows knowledge of the reéce or confidence in each data sample
to be incorporated. A further extension is the reise least squares algorithm that

allows the parameter vector to be updated whilshenThis is a useful feature for real-
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time implementations where the model must be updd#ore general information on
linear optimisation techniques can be found in Bragnd Smith (1998) and Wolberg
(2005).

2.6.2.2) Nonlinear Optimisation

If the model function is nonlinear in the parametére. the parameters appear as
functions), a nonlinear optimisation technique mhetapplied to search for optimal
parameters. However, the general goal of nonliopéimisation techniques remains the
same, to find the minimum of a given loss functieith respect to the parameters. A
wide range of nonlinear optimisation techniquesehbgen developed and good general
sources of information and algorithms include SEd#985), Reklaitis et al. (1983),
Vanderplaats (1984) and Press et al. (1992). Neafimptimisation can prove to be a
challenging endeavour due to the potential presehoaultiple local optima. Therefore,
more than one set of ‘optimal’ parameters may leatifled from data and care must be
taken to find the most appropriate solution (i@me optimal parameter values will lead
to better models than others). Furthermore, as nihaie one possible solution can exist,
in contrast to the computationally desirable ‘ohets solution typical of linear
optimisation, nonlinear optimisation techniques &erative in nature and require
algorithms that search for and then converge oalloptima. As a result, nonlinear

optimisation methods are not typically suited fatime application.

Due to the iterative nature of nonlinear optim@atmethods, in order to identify a good
local optimum and speed up the algorithm’s conuwecgdo such a solution, an important
consideration is the choice of initial paramet&#hilst a random or arbitrary choice of
initial parameters may result in the convergeneeatd a suitable optimum, the selection
of a good set of initial parameters (through the ofprior knowledge) can increase the
chances of a good result and speed up the prooestgderably. Furthermore, nonlinear
optimisation methods can also be categorised imtcal and Global methods, as in
Nelles (2001).

Although both methods will converge on local optirtacal optimisation methods tend
to converge on local optima close to the supplretiai conditions as search directions

are obtained from neighbourhood information suckirasand second order derivatives.
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As a result, local algorithms may become stuckaorgdocal minima and more suitable
optima in other regions of parameter space maybeotonsidered. Global nonlinear
optimisation methods are aimed at overcoming thidblpm, and typically rely on the
inclusion of random or stochastic components thiatvathe algorithm to escape from
local optima. Notable global optimisation technigumclude Simulated Annealing,
described in Kirkpatrick et al. (1983) and Laarhmwnd Aarts (1987), and a range of
Evolutionary algorithms such as the Genetic Aldoni see Holland (1975) and
Goldberg (1989) for details. However, as global hods are to search the whole
parameter space (potentially for multiple paranster significant disadvantage is the
high computational demand and slow convergencedspiethese algorithms. As a result,
nonlinear local optimisation methods that are galhefaster to converge remain more
popular. Furthermore, using local methods, it isgile to obtain a more global
optimum through applying a ‘multi-start’ approachheve a number of local
optimisations are performed using different inipalrameters, and the best solution then
chosen. A further option is to combine the use lobgl and local methods, e.g. using
global methods to locate the region around suitéddal optima, and then deploying a

faster converging local optimisation method to juleva more precise local estimate.

The simplest general-purpose nonlinear local ogttion techniques are termed Direct
Search methods. These include Simplex Search an#lddaeleeves methods, and utilise
only loss function values in their search for loogtima. These methods are typically
slow to converge and only used when the derivatiokshe loss function are not

available or require significant computation time ¢tompute. As a result, local

optimisation approaches that make specific useradignt information are amongst the
most widely adopted methods. Notable gradient-basettiods include Steepest Descent,
Newton’s Method, Quasi-Newton, and Conjugate-Gratdneethods. These methods are
reviewed in depth in Scales (1985), but the germyatept of these methods is given by

0,.=0,,-n.pP., With p_, =R_,0,.,- Where the parameter vectéy is to be updated
by the quantity;,_, p,_,, Wherer,_, is a step-size (typically determined by ‘line sdar
methods) that fixes the proportionality of the seadirection p,_,, which is defined by
the gradient directiorg,_, that is rotated and scaled by a direction (ortimtq matrix
R, . The different gradient-based methods of locainoightion algorithms can then be

defined by different choices of step-size and rotamatrix.
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The simplest gradient-based method is the Stedpestent method where the rotation
matrix is taken to be an identitymatrix. This method is notable for its non-reqoment
for second-order derivatives of the loss functibat is typically slow to converge and
has been somewhat made redundant by more soptastiteethods. In Nelles (2001), the
equivalence between the Steepest Descent methodhandamous backpropagation
algorithm used in the training of Neural Networksdiscussed. The Newton’s method
employs the inverse of the Hessian matrix for us¢ha rotation matrix, and therefore
brings a demand for second-order derivatives whiely be computationally expensive
to compute if unavailable analytically. Furthermdsdewton’s method is computationally
demanding due to the need for matrix inversion igntherefore recommended only for
small optimisation problems. The Quasi-Newton metietherefore aimed at reducing
the computational complexity through replacing itineerse Hessian used as the rotation
matrix, with an approximation to this inverse (ke tomputational demands of inversion
can be avoided). A popular formula for definingsttapproximation is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS), as described aleSq1985).

Both Newton and Quasi-Newton methods are typicdégcribed as having very good
convergence properties (i.e. fast convergencermsef number of required iterations
rather than computational demand), but for largibl@ms these methods are still found
to suffer from excessive computational demands. Chejugate-Gradient method is a
further alternative local optimisation method thah be seen to be less computationally
intensive. Rather than attempt to directly appratenthe Hessian, the conjugate-
gradients method employs a rougher approximatiorer&vithe search direction is

computed in a more direct manner gs, = g9,_, — 8 p,_,. Different conjugate-gradients

methods can then be distinguished through the ehofcthe scalap, with popular
choices being the Fletcher-Reeves and Polak-Rilmethods, see Fletcher (1993) for
more precise details. Conjugate gradient methoelsygically found to require a higher
number of iterations than the Quasi-Newton and Mawhethods to converge upon an
optimum, however due to their less demanding coatfmurtal nature, the overall speed of
the algorithm is found to be superior. Thereforenjogate-gradient methods are the
preferred choice for larger optimisation probleimawever they typically require a more
accurate line search to be performed.
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Whilst these general gradient-based methods of muamisation are well established,
further alternative methods can be consideredefltiss function to be minimised is of
the sum of squares type. These methods are knowordear least squares methods
and are typically recommended over the previouslgussed choices if the loss function
is of the required type. The two most common na&admleast-squares methods are the

Gauss-Newton method and the Levenberg-MarquandhadetThe nonlinear least-

squares loss function can be formulated a¥/ @ =(f)f with

f=[fLo) --- f(N,9)], and the gradient ag= J2f whereJ is the Jacobian

matrix (first-order derivatives). For both the GsuUdewton and Levenberg-Marquandt
methods, an approximation can then be introducedrevithe Hessian matrix can be

approximated asH =J'J . This allows the both methods to approximate t#eosd-
order derivatives of the Hessian through the farster derivatives of the Jacobian, which
results in a computational saving. For more infdramaon this approximation and its

assumptions, see Scales (1985). The Gauss-Newtthodnean then be described by

0.=0,,-n..,9,J.)"3..f., and the Levenberg-Marquandt method can be

described byg, =0, , -1, (| J +a ) I f

The Levenberg-Marquandt method can therefore beteelge an extension of the Gauss-
Newton method where the quantityis introduced. This feature can be seen to be
equivalent to the ridge-regression regularisaticgthod employed in linear regression
and acts to overcome matrix-conditioning problerssoaiated with the Gauss-Newton
method. Furthermore, as with the linear regressamse, the inversion of these matrices
would again not be undertaken directly and lesshamaatically problematic methods
such as Cholesky decomposition would be employsiead.

2.6.3) Model Structure/Complexity Optimisation

The task of optimising the structure of a choserdeh@an also be interpreted as the
optimisation of the model’'s complexity. Whilst teeare many different characteristics
that could be used to describe the complexity wioael, the term ‘model complexity’ is
usually generally related to the number of paramgteesent. Therefore, a model is said
to increase in complexity if parameters are addeu] vice-versa. Furthermore, with

more parameters a model is said to increase inbfley, where the variety of possible
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functions that could be described by the modelisequently increased. Fundamentally,
a model that is too simple will potentially fail sufficiently capture the behaviour of the
underlying system, and thus lead to inaccurateigiieds. However, a more complex
model constructed from a large number of parametarsalso perform poorly if the

amount of available training data is insufficient.

Therefore, in order to identify a good model, thmmplexity of the model must be
appropriate for the task. The system should be-determined (especially in complex
regions of the input space) in that more trainiagpdhan model parameters should exist.
The process of optimising the complexity of the wlots normally performed in
conjunction with the model validation stage (todigcussed in the next section) where
the performance of the model is assessed beforenawgifications are made. An
important feature of the model validation procesghat the model’'s performance is
examined on a separate ‘test’ dataset that isrdiffefrom the training dataset. The
importance of this strategy is that in this way ¢lemeralisationability of the identified
model is examined. Generalisation is the ability mbdel to provide an accurate
prediction of the system output when presented witluts on which it has never been
trained. This is a important objective of the mddgl process, as we are interested in
obtaining a model that is robust and performs walla range of new (test) data, rather
than models which perform well on limited rangedata or indeed a memorisation of the
training dataset. In describing the generalisatibility of the model, it is common for
the termaunderfitting or overfitting to be used to describe models that perform poorly.
In cases where the test data is estimated poorlg byodel that would appear to be
insufficiently flexible (i.e. too simple), this generally known as underfitting. For cases
where a complex/flexible model is employed andtthaing set appears to be learned to
a reasonable extent, but the generalisation rempaws, this may be evidence of
overfitting. The model has potentially learned tiase present in the training data, or

has correctly learned the data but the interpaldbietween datapoints is incorrect.

2.6.3.1) Bias/Variance Dilemma

In analysing the generalisation ability of the mipdeuseful strategy is to decompose the

model error into two components, th@as error and thevariance error. In this section
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this decomposition is briefly discussed but a &dtount of this can be found in Nelles
(2001) and Geman et al. (1992). The model errdialhyi be formulated as

E{(y-93=E{( v, -y} € ¥ (2.14)

Where ¥ is the model outputy is the measured system output, agq is the true

output that is uncorrupted by noise. The first pdrthis expression is the model error
between the true system output and the model qugmd the second part of this
expression represents the noise variance. Theretmsuming the model does not
represent the system exactly (where the first warld disappear), and the model does
not influence the noise variance, the model eram be decomposed into bias and

variance parts accordingly:

(model errorj = (bias errdr) + varianegor (2.15)

E(y, -9} v & ¥ &l ¥{BI}°
The bias error can be interpreted as the propodfaine model error that is due to the
fundamental difference between the model strucame the system or process. In real
systems the process may be significantly more cexnplan the class of models that are
to be considered for application. This lack of flekty in the model means that an exact
representation of the system is impossible, argldbviation is known as the bias error.
Therefore in order to reduce the bias error, inégessary to make the model more
flexible which leads to a growth in the number addal parameters. In theory this leads
to a strategy of employing as complex a model aspeaationally feasible, however this
is not normally realisable due to the variancerecaonponent of the model error.

The variance error can be interpreted as the ptiopoof the model error that is due to
differences between the estimated model paramatetgheir optimal values, resulting
from inadequate optimisation. As the identificatioh real systems requires that the
model parameters must be estimated from noisyimgidata that is of limited size, a
difference between the estimated parameters anualullyeoptimal parameters is likely to

be present.
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Therefore, for cases where a high variance errprasent, the optimisation of the model
parameters must be improved. One strategy wouldtobeeduce the number of
parameters, as models containing fewer parametérsypically be easier to optimise
using the same amount training data. Alternativiglgger training sets containing more
information with which to estimate these parameitees method of reducing the variance
error. Fundamentally, the number of parametershen model should not exceed the
number of training data samples, as if they areaktiile model will be fit exactly to the
noisy training data and then generalise poorly iffierént noisy test data. Furthermore,
higher levels of noise present in the data wilules higher variance error, and require
larger training datasets in order to compensatevery complex or flexible models, the

variance error will dominate the model error angl lbres error can become negligible.

Overall, it can be seen that in order to reducebilas error, a model should be made
more complex thus increasing number of parametéosvever, a model composed of
more parameters will result in a larger varianaereunless the training dataset used to
estimate these parameters is also increased. For im@lementations, the data available
for training is limited and the inclusion of moratd is not something that is feasible.
Therefore, the bias and variance components ofrtbdel error can be seen to be in
conflict (hence the ‘dilemma’) and must be traddéflagainst one another in order to
achieve optimal model complexity. The difficulty ine implementation of this trade-off

is that the bias/variance error components are@jlgiunknown.

2.6.3.2) Model Complexity Optimisation Strategies

Given that the chosen model structure should oelya$ complex as necessary, a large
number of different strategies for dealing with goexity have been proposed. In
addition to the potential overfitting problems dissed previously, more complex
structures will typically require a more computaadly demanding parameter
optimisation stage to be completed. Furthermorejoae complex model may have a

detrimental impact on the overall interpretabibfythe model.

If the chosen model architecture is found to ‘ufitléhe test data it is obvious that the
model in its current guise is not sufficiently weljuipped to handle the learning task at

hand, and the addition of further parameters orctmesideration of alternative structures
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may be required. However, before eliminating po&ntandidate models, it must be
clear that the problem lies with the lack of flakilp of the model, rather than with
insufficient training data or a poorly executedgrmaeter optimisation strategy. For the
case of an overly complex ‘overfit’ model, a numbérstrategies exist to help regulate
the complexity of the chosen model architecturethiermore, other approaches have
been developed that seek to reconstitute the legarproblem allowing different and

possibly less complex model architectures to Hesed.

Through the course of this chapter a number ofsdeadealing with complexity have

already been mentioned, however a fundamental ppmemth reiterating is the ‘curse of
dimensionality’, where the learning task becomesiérasolve as the dimensionality of
the input space, and therefore the number of pdaeamencreases. In trying to solve
harder learning problems, more complex modelstseetore required and the potential
for overfitting increases. Therefore, adopting nilig strategies that seek to mitigate
this ‘curse of dimensionality’ may ease the idecdifion of more optimally complex

models. In particular, the various network struesudiscussed previously typically do
not suffer from the same rate of growth in the namif parameters with the number of
input dimensions, as more classical nonlinear nasthd-urthermore, many of the
unsupervised learning methods such as clusteridgoancipal component analysis are

expressly concerned with helping to organise amgléiy the learning problem.

For linear models composed of a number of regressell established subset selection
methods have been developed to help determine wdifithese regressors are the most
important, therefore allowing the number of parargeto be optimised. Important subset
selection techniques include forward selection, kixacd elimination and stepwise
selection; see Nelles (2001) for a full discussibimese methods can also be adopted in
the optimisation of Neural Network based structurd®re basis functions or neurons
can be added to or eliminated from the model (he. network may be ‘grown’ or
‘pruned’ accordingly). Furthermore, the adoption tbe operating regime approach
where a divide and conquer approach is applieldmperating range of the system can
help facilitate the inclusion of prior knowledgéarthe identification process, e.g. local
linear models identified at known equilibrium reggo Another possible approach to
decomposing the input space is the classificatimh r@gression tree (CART) methods
proposed in Breiman et al. (1984).
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Further alternative methods include the use of #tyomodel structures where more
than one type of model are combined together. Tditosuch an approach, the
identification process may be further broken dowto imore manageable components
where a number of simpler model structures can bemore easily identified and then
combined in some arrangement (e.g. additive oraltlical models). In this way,
models that are well suited to representing cerapects of a system’s behaviour (e.g.
an existing model derived from first principles)ncke combined with other methods
(e.g. a sophisticated black-box model derived feampirical data). Another possibility is
the adoption of a ‘projection-based’ approach wheseead of eliminating or partitioning
regions of the input space, the input space iepteg onto a different set of axes and the
learning task redefined. This is the basis of waiernel methods and also the GP
modelling approach examined in this thesis, whegababilistic ‘function space’ is

defined and Bayesian learning is employed towarahrfg optimal model complexity.

So far, these complexity optimisation strategiegehtackled the problem through the
modification of the model structure and are in Bsseattempting to reduce the number
of model parameters to be included. However, aearradtive strategy is offered by
various regularisation methods where instead attempting to reduce thebaurof
parameters included by elimination, the goal igdstrict the overall influence of the
parameters. Therefore, the effect of regularisatomo compel the model behave as
though the model is composed of fewer parametas thactually has. As a result,
regularisation can be seen to reduce the numbieffettive’ model parameters and has
a smoothing effect (reducing variance) on the moaolgput. For linear regression
problems the previously mentioned technique of eidggression is a particularly
prominent method of regularisation, and the sameciple is employed for neural
network type problems under the guise of ‘Weight®g, as discussed in Nelles (2001).
Further methods of regularisation include the is@n of constraints on the parameters
values (e.g. certain parameters are given a fixadevor restricted range, or must be
positive or negative), and ‘staggered’ optimisatimhere instead of attempting to
optimise all model parameters simultaneously, éaening task is split up with subsets of
parameters being optimised in turn. Another notaklgularisation strategy is ‘Early
Stopping’ where instead of allowing the iterativenhnear optimisation algorithm to
converge to a minimum using solely the trainingadat set of test or validation data is
also employed and the iterative optimisation atbomi is concluded when the model
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error on this validation set reaches its minimuimisTs a good strategy to adopt for very

flexible models where the convergence of all patansenay not be desirable.

2.7) Model Validation

Once the selection and optimisation of the modsltdeen performed, a process of model
validation should be completed before the model bwyeclared as ready for use. This
process of model validation is an important buenfbverlooked stage of the overall
modelling process as a whole. In the context ofsystem identification loop discussed
previously, model validation involves the carefubkiation of the model against some
performance criteria. The discussion of theseritis often restricted to the application
of statistical testing of model accuracy (e.g. Msgoare error), but the application of
more subjective reasoning (i.e. using prior knogtdshould also be incorporated. In
this way, the overall suitability of an identifiedodel can be assessed (e.g. is the model
interpretable?). It is normal to find a trade-offists between more complex and
therefore flexible models, and the overall intetplodity of the approximation. If the
model is found to perform adequately then the divetantification process can be said
to be complete, however if some aspects of the tisogerformance are seen to be
deficient, the practitioner should return to premicstages of the modelling process and
consider modifications. Using the information gairfeom the model validation stage,
various strengths and weaknesses of the identiedel can become clearer (e.qg.
particular operating regions where accuracy is poitwus facilitating any necessary

modifications.

Once a model has been identified from a set ofitrgi data, the most straightforward
method of evaluating the performance of the modetoi then test the model on a
different set of data. This concept of splittinge tbverall set of empirical data into
separate training and test datasets is generalyvkrascross-validation For cases
where an abundance of empirical data is availdhle,validation procedure would not
prove to be problematic. However, for cases whbaee amount of empirical data is
limited, the requirement for separate training tesd datasets can be difficult to meet. As
discussed previously, in order for a successful ehtal be identified, the training data

must be representative of the unknown system fonciiherefore, through experimental
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design and data pre-processing, the training datasst attempt to include sufficient
datapoints from the all regions of operating sphes are to be considered. However by
the same rational, if we are to fully evaluate pleeformance of the model, then the test

dataset must also be representative of as mudteagerating range as possible.

Fundamentally, a significant restriction on theestf the training dataset in order to
provide large amounts of test data can be seea tmibnter-productive (even wasteful of
data), as the modeller is of course charged widntifying the best possible model.
Therefore, in cases where empirical data is limi{ed common problem in the
identification of real systems), it is normal forepsure to be put on restricting the
amount of available test data in order to boostaim®unt of training data. As a result,
instead of arbitrarily splitting the available dataore sophisticated validation methods
have been proposed that seek to maximise the ¢éxjpboi of the available data. One
such method is-fold cross-validation where the available empirical data is partitioned
into n sub-samples. Each sub-sample is then employedrinas a test dataset for a
model trained on the othen-Q) sub-samples, with the overall error rate beaigen as
the average of these sub-sample tests. A further alternative Lisave-One-Out-
Validation, where a single observation of the overall dat® ise left out and used as a
test example, and the remaining data used foritigairAs before, this process is then
repeated until each member of the training sefalssbeen used as a test example. This
can be seen to be an extreme case of cross-vahd#tat is only computationally
feasible for small datasets.

As cross-validation schemes can prove to be coripn#dly expensive, the overall
process of model validation can become frustratorgcomplex models. The overall
process involved in testing the model, then poadigtimodifying and retraining the
model, and then retesting it, can prove to be a4onsuming one. Therefore, alternative
methods of evaluating test error that are less coatpnally expensive have been
developed. These include the use of varimm®rmation criteria’ methods, such as
Akaike’s Information Criterion (AIC), and Final Rhetion Error (FPE), see Akaike
(1974). For more information on various model validn strategies, see the
aforementioned system identification texts by Lj{a§99) and Nelles (2001), and also
Leontaritis and Billings (1987).
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3) Gaussian Process Models

The Gaussian Process (GP) model may be regarded ramparametric method of
nonlinear system identification where new preditsiof system behaviour are computed
through the use of Bayesian inference techniquedieapto empirical data. The GP

model may also loosely be considered as a ‘black-bwethod as the identification

process relies heavily upon experimental data. Weweas with other methods of
identification, a priori knowledge such as physiiceight can prove to be invaluable in
the design of the model and experimental procedumnethis chapter we introduce the
theoretical background and literature of the GaumsdProcess modelling approach,

together with a discussion of the motivation beltimelmethods.
3.1) What is a Gaussian Process Model?

Through the course of this chapter the mathematreahework of the GP modelling

approach is to be presented in detail. Howevemrbebeginning an exploration of the
methods it is first necessary to place the GP ntiodelapproach in context with

alternative modelling approaches. From this pdim, motivation behind the proposed
adoption of these methods can then be discussed.

The GP modelling approach is typically describedaasonparametric ‘black box’

method that employs Bayesian learning with whichidentify a model of system

behaviour. Therefore, in order to characterisecGRemodel, it is first important to realise
that the GP approach has much in common with a@tmen nonparametric methods
where identification is performed through the apgiion of learning techniques to
empirical data. In the previous chapter, the Newatwork approach was briefly
described and it is this machine learning appraael the GP modelling approach is
most often compared with. However, an importantii§ion between the two methods
is that unlike the Neural Network’s adaptive bdaisctions, the GP modelling approach
can be thought to employ a fixed basis functiokennel. As will be discussed through
the course of this chapter, this move from adaptwefixed basis functions has
advantages in dealing with the complexity issuesgmeter and structural optimisation)

raised in the previous chapter. Furthermore, thisugh the use of Bayesian inference
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coupled with the mathematical properties of the <S&un process that the GP model will
be shown to be a powerful method for nonlinear esgjon. Therefore, as with other
nonlinear regression techniques the GP modellingrageh can be understood as a

method of interpolation, where a curve is to beditto data.

In order to illustrate the workings of the Gaussirncess modelling approach it is first
necessary to outline the supervised learning pnokie be tackled. Namely, we are
seeking to identify an unknown function y, by consting a model from noisy data with
which we can use to make predictions given newtid@ata. A model for our noisy data

example can be formulated as:

y, = f(x,)+u, (3.1

The input is denoted as with the output or target denoted as y. The input vectorx
dependant on the number of input variables, andalget is continuous data for this
regression case. In essence, the problem can lstood as a multiple-input, single-
output (MISO) arrangement. The noisy training dettd consists of N observations
D={(xi,y)| 1 = 1,...,N}, i.e. N pairs of L-dimensional inpwtectors ¥} and scalar
outputs {y} fori=1...N.

Given the observed behaviour present in the s&tofing data, we now wish to make
predictions from the model for new inputs not seen in the training set. Therefore the
problem is to make predictions for all possibleutgobased on information given a finite
set of training data examples. In mathematical $ettms is known as inductive reasoning
where a general conclusion may be drawn from &sefi premises based on experience

or experimental evidence.

In order to successfully identify the unknown fuantfrom a set of training data, the
more popular and well-established methods of systemtification, such as a parametric
model structure or Neural Network, would seek tokenassumptions or use prior
knowledge with which to simplify the learning tadkurthermore, the modeller must
ensure that any model considered suitably represkatunderlying function, rather than
just providing a valid fit to the observed data.n€iderations such as the likely order of

the underlying function would be used to gaugenbeessary level of complexity of the
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chosen model structure (e.g. would a linear or foweder polynomial model be

sufficient?).

By utilising this parametric approach where a @&nitumber of variables must be
determined through optimisation, we run the risk salecting a model structure
insufficient in its flexibility to be able to safisthe given goal in terms of providing an
accurate representation of the function to be apprated. Consequently, the complexity
of the chosen model structure may need to be isetkaso that the function
characteristics are better recreated. As discussethe previous chapter, the risk
associated with such an endeavour is the posgilmfitoverfitting the model to the
training data. Furthermore, as the number of pararméncreases, the need for a greater

amount of training data may also become apparent.

In seeking to solve this problem, the Gaussian éa®cmodel differs from more
conventional system identification methods by atchgpta Bayesian approach to the
learning task. The GP model does not seek to assufaectional form with which to
compute new predictions. Instead, a prior probighid given toeverypossible function
with the most likely function identified throughehuse of Bayesian inference. This
approach would seem to present a significant pnobdes if we are looking at every
possible function, and therefore not discounting particular category of function as in
the parametric case, the task of computing likahctions appears to be almost infinite!
However, it is through the specific use of the meathtical properties of the Gaussian

Process that this computing dilemma can be overcome
3.2) Motivation for GP models

Before going into a detailed description of theottyeand methods associated with the
GP model approach it is worth discussing the matwabehind the recent interest in
Gaussian Process methods. Furthermore, the GP nsochelstly defined in terms of its

relationship to other methods and its applicatidnBayesian inference towards the
problem of nonlinear regression. Therefore, sonmekdr@und discussion is necessary to

provide much of the rationale that lies behindalleption of the approach.
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In the previous chapter, models based around aaN&lgtwork type approach were

described as being of immense potential in progdirtool for universal approximation

that could be applied across a wide range of prabléhe central tenet that a group of
adaptive basis functions, or hidden layers/strestucould be learned from data, allowed
the user the flexibility to approximate complex hoearities and discover patterns in
data that were previously hidden. Through the 198@$ early 1990s Neural Network

techniques became very popular topics of studysacroany research fields and the
underlying understanding of methods and their i@tato existing statistical principles

became apparent. Furthermore, the problems assdomth employing such complex

model structures and the general lack of a stringenifying framework for

implementation became clear.

The problem of optimising the complexity of thesaltiple models remains the biggest
challenge presented to those who employ these aetho tackling this problem, the
principle that a model should only be as complexcaspletely necessary for the
intended application is almost fundamental to ikl fof system identification. In terms
of interpretability, a simple model may often beefprable to a complex one.
Furthermore, the idea that complexity should beimsed also becomes a practical
necessity where the computational demand of idengjfparameters becomes unviable.
This principle of economy also relates to the polghical concept of Occam’s Razor,

which states that assumptions should not be nestglesiltiplied.

As discussed previously in section (2.6.3), theeptal for ‘overfitting’ is significant
when considering a model of high complexity. ThadVariance trade-off dictates that
although a more complex model may be successftédncing the bias error by more
closely approximating the underlying process ocfiom, there may be an increase in the
variance error due to a potential tendency to apprate the function to any random
variation in the training data. Conversely a simpieodel may have a higher bias
(dependant on whether the underlying process astifumis comparably simple), but a
lower variance. The consequence of this tradesotfi@t in order for a complex model to
be identified successfully, without being hamstrumg poor variance error, a large
amount of training data is required. Thereforemfran overall perspective, we are

restricted in our choice of model complexity by #mount of training data available.
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3.3) Dealing with Complexity

For many applications, large quantities of traindl@ja may not be available. Therefore,
if we are to employ large complex networks to idgnthe underlying nonlinear
function, the problem of promoting accuracy whiksstricting model complexity must be
tackled. The various possible choices in architegtuactivation functions and
optimisation procedures discussed in the previtwapter show that whilst solutions to
the complexity problem have been proposed, a gteat of uncertainty remains over
which method would be most appropriate given aagerset of conditions. The
consequence of this doubt has therefore led tostispicion that perhaps the Neural

Network was not the great ‘catch-all’ solution tgsrvised learning problems.

Within the System Identification community, the depment of Neuro-Fuzzy and Local
Linear methods can be seen as a direct responiee tambiguous principles of the
Neural Network approach, and indeed as an integrabf classical methods of
identification (local linear models) and prior syst knowledge into the powerful
adaptive basis function network methodology. Ottmethods such as the inclusion of
penalty functions to the optimisation process halg® been successful in applying a

specific upper limit on the complexity of the raamlt description.

In tandem with this effort to simplify or make momeethodical the Neural Network
identification process, research has continued imwitthe Statistical and Machine
Learning communities on alternative ‘kernel’ metbhodRather than attempt to
approximate a function through the use of large lmens of adaptive basis functions,
these kernel methods approach the learning probbleough the use of fixed basis
functions or ‘kernels’. Whilst this movement frordagtive to fixed basis functions may
be seen to be somewhat of a backward step, it &éas shown that if enough of these
fixed basis functions are used, the problems aatatiwith complexity/overfitting can

be mitigated, and therefore the perceived limitatin flexibility may be overcome.

Furthermore, as there is only one fixed basis fancto optimise, the resultant model

structure can be seen to have an advantage inllosienglicity.
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Many of these kernel methods have been developeaidothe problem of classification,
rather than as a tool for nonlinear regressionh Wit most well known approach being
the Support Vector Machine (SVM), see Vapnik (199%)ese kernel methods rely upon
the implementation of the ‘Kernel Trick’, Aizerm#&h964), where original observations
may be mapped onto a higher dimensional featureesf@y performing this mapping
process, computational savings can be made as ahénear algorithms can be
transformed into linear algorithms. The Supportctde Machine has been further
extended to tackle regression problems as in Druekeal. (1997). Furthermore, the
Gaussian Process model can be seen to be an exafnapkeernel method or machine, as
it relies on the use of a single optimised kerragher than adaptive basis functions.
However, the GP model can be distinguished frommbgority of kernel methods due to

its implementation of Bayesian methods.

3.4) The Bayesian Alternative

An alternative approach to overcoming the probldnowerfitting in complex network
models is to adopt a Bayesian framework. In thdyehd®90s there was significant
progress in the field of adapting Bayesian methodse field of machine learning in an
effort to solve learning problems, see Mackay ()99Ihese Bayesian methods
attempted to address the problems associated wifthoging complex learning systems
through the use of a probabilistic framework. Timpaortance of adopting a probabilistic
approach, where a prior distribution is defined ahdn a posterior distribution is
inferred, is that through these distributions, infation may be gleaned about both the
overall error of the approximation, and the undetyaor likelihood associated with this
error. This new information may then be redeploy@dard the goal of improving the
approximation. In the analysis of identificationsarg from the use of a non-Bayesian

approach, only information regarding the size eféhror may be forthcoming.

The field of Bayesian modelling originates from huit the statistics community where
the probabilities of various events or outcomes tnimgscalculated. The term Bayesian
refers to the use of Bayesian inference, an intéapion of probability that allows the

degree of belief in a hypotheses or event to béd#sés of an estimate of its probability.
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Through the use of Bayes’ Theorem, this prior ‘@egof belief’ can then be revised or

updated upon the discovery of new information, iggva posterior estimate.

The Bayesian interpretation of probability is oftgmoted as being in keeping with the
scientific method, where a rule or hypothesisnst foroposed, and revised upon any new
discoveries. However, the concepts of Bayesian ghiiby remain somewhat
controversial within the statistical community dsey are in contrast to that of the
classical Frequency probability interpretation. tilmee Frequency interpretation, the
probability associated with an event is definedhaslimit of its relative frequency after
observation in a large number of trials (e.g. thseoved frequency of ‘heads’ when
tossing a ‘fair’ coin should indicate that the pabbity of the event equals Y2, given a
large enough number of tosses). In contrast, a Bayavill use a probability distribution
over possible values for an unknown probabilitgxpress this uncertainty, and will then
update this distribution as the outcome of eack tmcomes known using probability
theory.

The introduction of the Prior probability is thenflamental step that allows us to move
from a likelihood function to a posterior probatyildistribution through the application
of Bayes’ Theorem. The adoption of this prior iscathe main source of contention
between Frequentist and Bayesian theorists, achb&e of prior can be viewed as
arbitrary in many respects as the decision is madée absence of experimental
evidence. The counter argument is that the chorzete are often done so on the basis of
some kind of knowledge and are therefore not teulyitrary. Furthermore, it could be
argued that in the Bayesian approach our prioefselire at least stated explicitly, rather

than employed tacitly as in other methods of prdistic analysis.

To support this discussion on Bayesian modelling Hre details of the GP model,
Appendix A contains a brief overview of the mosevant probability definitions. Useful

introductions to the topic of Bayesian statistios Box & Taio (1973), Press (1989) and
Lee (2004). More advanced methods including thdiegmn of Bayesian methods to
regression and classification problems are examine&ull (1988), Gelman et al.

(2004), Congdon (2003) and Denison et al. (2002wéier, the growth of interest in
GP models can be seen to predominantly originae finvestigations into the use of
Bayesian learning in Neural Network implementatidngoortant sources of information
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on this particular aspect are the texts by MackR®@(, 1992a, 1992b) and Neal (1996),

and much of the forthcoming discussion can be seéave its origins in this research.
3.5) Bayesian Learning

The Bayesian approach to the modelling of dataasetd upon the expression of
knowledge in terms of probability distributions. Whas more conventional parametric
modelling approaches would seek to optimise thamaters of a model structure so that
any model error is minimised, a Bayesian approaduldv seek to maximise the
probability of a model given some data. Therefoather than dealing directly with the
error in the model, we are to operate upon the ghitiby of the model given the data.
Consequently, if the goal of the modelling processo obtain a prediction estimate,
rather than directly computing the value of a needjctiony**!, we must first find the

probability of this new predictioR(y"*%).

The Bayesian approach begins in a similar fashwmrthat of a more conventional
parametric modelling approach. From examinatiorammy ‘a priori’ knowledge of the
unknown function, we can speculate upon a numbemititl model structures or
hypothesedH; {i.e. Hi, H> ... H_} that we believe may offer the level of flexibylitor
sophistication (e.g. would a linear model suffice®eded to form an accurate
representation. This set of models can be termedhtpothesis space’ with each model
said to be characterised by a set of parametersvhich are to be identified through

some empirical datB.

This collection of models can be thought to be cetimg with one another to account for
the data we have obtained, with each métiegliming to maximise the plausibility of the
data. In this sense, the Bayesian approach addeteddiffers from other probabilistic

interpretations, as it is the inverse probabiligtifer than forward probability) that is to
be employed through the use of the Likelihood pplec By doing so, the relative

plausibility of these alternative models are todoenputed based on the information
present in the single data set that is to be obsgein the Bayesian framework our initial
model or hypotheseld; would be termed as a ‘prior belief’, and expresasdaPrior

distribution over all possible modef¥H;). These initial beliefs (prior to the arrival of
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any data) about the relative plausibility of thesedels can be thought to be a quantified
list of probabilitiesP(H;), P(Hz), ..., P(H.) which sum up to 1 (a certain event).
Furthermore, we can define a prior distributionrobe parametens; that is conditional

on this initial modeP(w;|H;).
3.5.1) Levels of Inference

After deciding upon our possible models and obsgréxperimental data, the Bayesian
modelling approach has two stages lmvéls of inferenceas described in Mackay
(1991).

3.5.1.1) 1' Level of Inference

In the first level of inference, the task is tod@éch model to the observed data through
applying Bayes’ theorem to infer the parameteref each model. Therefore, this stage
of the Bayesian approach is fundamentally simaother modelling approaches where
the parameters of a proposed model are to be g@thnising information gained from
the empirical data. Therefore, our goal is to indeprobability distribution over the

parameters that is conditional on the data andnibdel/hypothesi®(w;|D,H;).

This first level of inference is performed throutite application of Bayes’ theorem,
where aPosterior distribution is inferred from combining the infoation present in the
Prior P(w;i|H;) with that of the information gained from the dafae information gained
from the data is known as théelihood, P(D|w;i,H;), which gives the probability of the
observed data as a function of the unknown modelnpeters. This probability can be
said to be conditional on the initial model struettl; and parameters;, and is often

expressed as the likelihood functiomik);

Bayes’ Theorem: Posterior = Likelihood x Prior

Evidence

P(D |w,H)P(w | H))

Pw |DH) ===t

(3.2)
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If our set of training data D is, for exampleX{{y™),..., <™ y™)}, the likelihood

function L(w;) can be written as:

L(w) = L(w| (X7, ¥),..., (87, y)

n . ) 3.3
L0 0 PO, Y O, )= ] RCR 919 59

The unknown parameters of the model can now béifaehthrough the optimisation of
this likelihood function, with methods such asaximum likelihood or maximum-

penalised likelihood.

The Posterior distribution can therefore be seen to be the pbdutheLikelihood and
thePrior, with theEvidenceP(D|H;) (also known as the marginal likelihood) actingaas
normalising constant. This marginal likelihood afidence quantity can be somewhat
ignored in the first level of inference. Howevdrjs this evidence quantity that allows
comparisons to be made between the likelihood fiéréint models in thesecond level
of inference’ discussed below.

Note that for more complex models we can adoptesahthical approach to reflect the
hierarchy of the proposed description. For exampeural Networks are often

characterised by a set of parameters to contrahttigidual weights of the hidden layer.
A further set of hyperparameters that control thstridbution of these lower level

parameters may then be defined. To implement thighie first level of inference, the
inference process can be repeated for the hypenetee-level through defining a hyper-
prior distribution over the hyperparameters.

3.5.1.1.1) Getting a predictive distribution
In the first level of inference, a posterior digtriion over the model parameters has been
achieved Rg|x™yY), ..., xX™y™). However, it is the probability of the new outphat

we are ultimately interested in. Therefore, in orteobtain goredictive distribution for

the probability of a new outpu®(y"*?), the Bayesian inference must be completed. This
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is achieved through thimtegration of the model (i.ey™" from parametersy) with

respect to the posterior distribution of the pararse

P( y(n+1) | X(n+1),()<(l), y1))’.”’ ()én) ’ Yn) )

3.4
= [PCY™ [ X7, W) POW (7, §),., (7, §)) e

3.5.1.1.2) From predictive distribution to single-alue prediction

In most modelling tasks, we wish to approximate élgput of underlying system or
process. So far we have formulated a method toigieays with a predictive distribution
over the output, i.e. the probability of the unkmowalue y"™¥. For a single-value
prediction, we must estimate the outgutom this predictive distribution. Thaean of
such a probability distribution is therefore takenthe most probable estimate. Note that
the precise choice of point estimate is dependarihe assessment criteria we are using
to compare model error. For a squared error lasstifon the mean is appropriate, but the
median of the distribution may prove to be a bettavice if the model error is being
analysed as an absolute error, see Neal (1996).

3.5.1.2) 2% Level of Inference

In the first level of inference the parametersof a particular model or hypothedik
were inferred from the observed dafa using Bayes’ theorem, resulting in the
conditionalP(w;|D,H;). Therefore, this process of model fitting is nadically different
from other non-Bayesian approaches to the probléereva model is proposed and then
optimised to reflect the available data. In theoselclevel of inference, the objective is to
compare a number of different models to find thestriikely or plausible model given
the data. As a result, this process has compagalalis to that of model validation, where
a number of proposed models may be assessed dmstiraccordingly.

The second level of inference once again employse8aheorem to find the posterior
probability of these different models given the ad&(H; [D). The existing Prior
probability distributionP(H;) (independent of parameters) over all possible et

employed in this inference. The likeliho®D|H;) represents what the data is telling us
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about the plausibility of each of the modéls and corresponds to the evidence or
marginal likelihood quantity of the first level ofference. A normalising constaR{D)

is once again employed to ensure the probabilityssto unity.

P(D[H)P(H,))

P(H, |D) = P(D)

(3.5)

The goal of this second level of inference is rotdplace or replicate the process of
validation where different models are compared damms of accuracy or error. The
Bayesian approach merely provides a further levielinbormation regarding the

probability of the model. This may then be usedligtinguish between the suitability of

competing models.
3.5.2) Evaluating Integrals

In order to implement the Bayesian approach a nummbmtegrals must be evaluated in
order to compute the posterior distributions oéiast. Specifically, in the first level of
inference, in order to obtain the posterior distibn of any new outpuy™**, we must

integrate over the parameters. Furthermore, inrdaenfer the most likely parameters,

we must evaluate the marginal likelihood or evidetiat is itself an integral:
P(D|H,) = [P(D|w, H)P(w [H,)dw (3.6)

The evaluation of this integral over the parameipace is also important to any
subsequent model comparison undertaken in the ddeweal of inference. Therefore, the
evaluation of the marginal likelihood is of fundame importance to the implementation
of the Bayesian inference as a whole, and is pertiag most distinguishing feature of
the Bayesian approach over more conventional metladdmodel optimisation and

selection.
The constituent parts of this integral are thelililad and prior distributions detailed in

the application of Bayes’ Theorem to the first lew# inference. Both of these

probability distributions can generally be seen e nonlinear functions of the
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parameters. The likelihood may often be expressealsum of a squared error term, and
the prior may be of any form that we have deemegssary to express our beliefs about
the parameter values before any data has beenveldsd@iaken together, this integral can
prove to be analytically intractable and therefompossible to evaluate directly. This is a
significant problem with the Bayesian modelling aggrh and requires the use of

approximation methods in many implementations.

The most general purpose and powerful methods afiating these intractable integrals
rely upon the use of Markov Chain Monte Carlo (MCM@ethods. Other possibilities

include methods based on the use of Gaussian apm@tians to the modes (peak values)
of the posterior distribution. These Gaussian axprations rely upon the assumption
that one or more modes of the posterior distributian be initially located and that the
most of the important information contained withine distribution is to be found close
to these modes. Various methods of implementings&an approximations have been
described in Mackay (1991,1992b, 1992c), Thodb&896) and Hinton and van Camp
(1993).

The approximation schemes based around the use @M®1 methods make no
assumptions about the form of the posterior distiiim under investigation, such as
whether or not it might be approximated by a GaussTherefore these methods are
potentially more powerful and may be used to findltiple modes of the posterior
distribution. However, the main disadvantage of MCIvhethods is the computational
demand many implementations require to convergearioadequate solution. The
approach taken by Neal (1992a, 1993b, 1996) uses$iytorid MCMC method for the

implementation of Bayesian inference in Neural Neks.

For the sake of thesis brevity, a full discussibM&MC methods is not included in this
thesis, but general resources detailing the vagafidonte Carlo methods are Gilks et
al. (1996), Mackay (1998a), and Smith and Robel®98). Furthermore, due to the
reliance of many Bayesian inference implementatiopen such statistical sampling
algorithms, good introductions to MCMC methods d¢enfound in the more general

Bayesian analysis textbooks mentioned before, asachelman et al. (2004)
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3.5.3) What Prior?

Another challenging aspect of the Bayesian approadie determination of suitable
prior probabilities with which to begin the infemnprocess. These prior probabilities
must embody our initial beliefs about the modelobefwe have access to any data. For
examples where a complex initial model is propodkd,task of expressing our prior
beliefs over the model through assigning probabdistributions, perhaps over different
levels of parameter that are in themselves notilseaderpretable, can be seen to be

particularly demanding.

As a consequence of the relative difficulty of ttask, combined with the mathematical
complexities detailed previously, the temptationtasadopt a prior for mathematical
convenience rather than truly expressing our kekdiout the underlying function. This
course of action can be seen to be inconsistertit thi¢ philosophy of the Bayesian
interpretation of probability, as the choice ofgorishould be made irrespective of
mathematical convenience. To proceed otherwise dvthérefore invite questions as to
whether it the methods used may be truly descraseBayesian, therefore placing doubt
over the validity of the approach. To remain caesiswith such formalism, objectivity
must be maintained. A prior placed on an objectukhde determined through prior
knowledge, and to meet the requirements for objigtithose working with the same
prior knowledge should reach the same conclusiomnk therefore propose the same

priors.

Therefore, a balance must be struck between fingimgys that are interpretable and
readily applicable, whilst still reflecting our kwtedge of the system. In practice, it is
therefore common to apply prior distributions the¢ wide in terms of scope so as not to
inherently rule too much in or out (e.g. a unifoomflat prior over models would not
favour one model over another). For Bayesian NeWNatwork implementations
independent Gaussian distributions are often usetha prior distributions over the

parameters, see Mackay (1992b).

A final consideration to be made regarding the obaif priors, particularly priors over
models to be subsequently compared in the secartidéinference, is that if the ‘true’

model is not included within our set of possibled®ls then it obviously cannot be
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included within the comparison. This has been terthe ‘closed hypothesis space’; in
that we can only compare models that have beemdist specified, see Gibbs (1997).

As a result, if no model has been specified thahe® close to the ideal, then the
subsequent inference process will not compensatéhi® inherent flaw, as there is no
Bayesian criterion for assessing the suitabilityhef defined hypothesis space. This is in
keeping with any other modelling paradigm where i€andidate model is inherently
unsuitable for approximating the data, then no arho@ioptimisation will overcome this

fundamental error in model selection.
3.5.4) Relating Back To Complexity

In the previous section we have discussed the Bayapproach to nonlinear regression
and then gone on to discuss some of the difficultaé implementation. However, we
introduced the Bayesian approach as an alternstiigeegy for dealing with the problems
of implementing complex models found in more corniweral methods of model
selection and optimisation. In these more estaitishethods we found that a candidate
model’s complexity may be limited by the quantity tcaining data available to the

optimisation process.

By contrast, if a Bayesian approach is taken towhedgoal of identifying a complex
model, at no point in this procedure (Pricrs Collect Data— Infer Posterior—
Predictions— Comparison) is the complexity of the model modifte meet restrictions
imposed by the amount of training data. Such as®wf action can be seen to be
inconsistent with the Bayesian perspective, as madel or prior are deemed to be
correct for cases where a certain number of datatpa@re observed, they should

theoretically remain correct for cases where mata goints are available.

Unfortunately, although the theoretical principtédgshe Bayesian approach may preclude
the influence of the size of the dataset over tlelehcomplexity realisable, limitations
may still be imposed by more practical consideretid-or example, if data is sparse for
a given application, a simpler model may be deemerk suitable if the advantages of a
more complex description cannot be realised withoahsiderable computational
expense. Furthermore, a moderately inaccurate pigint prove to be a more significant

handicap to the identification process where th&a da insufficient. Therefore, for
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applications where a simple model is not likelyptovide an adequate description, an
appropriate Bayesian approach would be to implertientost complex solution that is

computationally viable, disregarding the size @& training dataset.

3.5.4.1) Occam’s Razor

In the identification of a model of suitable comptg, the principle of Occam’s Razor is
often cited as being relevant. The maxim dictatest in the presence of several
compatible models or hypotheses, no more assungptshrould be made than are
necessary. This leads to a preference for simptdutisns over more complex
alternatives, as they are often founded upon fessumptions. In some circumstances,
this preference for a simple solution may be adisthly motivated by the desire for a
mathematically elegant solution, but it may also dmnstrued as an excuse for
reductionism or mathematical convenience. Nonesiselmvoking this concept towards
the goal of regulating the complexity of a modek h&actical benefits in terms of
computational demand and model interpretability.

Whilst we can employ this preference for simple slsadver more complex alternatives
in any situation where competing models have bdentified, by simply choosing the
least complex model that still meets our accuraguirements. However, the Bayesian
setting outlined in this chapter offers a furth@rdl of information with which to employ
this preference against complexity. Indeed, the eBmyn approach can be used to
automatically apply Occam’s Razor, allowing a sien@olution to become our preferred
choice (rather than purposely having to implema&mhe method of regularisation into
our optimisation procedure that places an arbitigoper limit on complexity). This
automatic implementation of Occam’s Razor reliesrughe examination of the marginal

likelihood or evidence, i.e. the probability of ttiata given the model.

To illustrate this feature, suppose that we have tempeting modelsH; andH,) of
different complexities, withH, being much more complex. Fundamentally, a simple
model may only offer a limited variety of possilégget values for a given set of inputs,
whereas a more complex model has the scope to affader range of possible targets
due to the greater flexibility on offer. This retatship is visualised in Figure (3.1),

which shows the behaviour of the marginal likelilofor the two different model
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complexities,P(D|H;)and P(D|H). This figure and further discussion can be foumd

many of the aforementioned sources, including Ma¢k891, 2003) and Rasmussen and

Williams (2006).
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Figure (3.1): Occam’s Razor from Marginal Likelihood

Interpreting this figure in terms of marginal likedod (a probability distribution over the
data given the model that is normalised to unéy$jmple model will have a large value
of marginal likelihood where the model does acalyaiccount for the data, i.e. a
precise fit to the data, but this distribution wilé narrow (low variance) due to the
limited potential of the simple model. Conversedymore complex model offers the
possibility of accounting for a wider range of d@tégh variance), but the value of the

marginal likelihood for any given model will notaeh the same magnitudes as would be

seen for a simple model.

For cases where both models can be seen to be tiblapaith the data, the simpler
modelH; will have a larger marginal likelihood and themefanay be interpreted as more
probable. Therefore, we may express a preferenceafsimpler solution through
assessing the marginal likelihood of each modelsatecting the most probable model.
Furthermore, we have expressed our predilectionatdsv simpler models without
applying any arbitrary or subjective prejudice agamore complex solutions, such as an
external parameter to govern the trade-off betwesydel complexity and model
accuracy. Consequently, we can utilise the mardikelihood as a tool for selecting an

appropriate model complexity that is well suitedie observed data.
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3.6) Gaussian Process Modelling

In this chapter the primary focus has been on mgld case to support the consideration
of a Bayesian approach to the supervised learnnoplgm. The importance of this
discussion is that by adopting this Bayesian foisnalthe overfitting problem normally
associated with complex networks of a large sizeugsl Networks or Kernel Machines)
may be potentially overcome. In addition to outipithe potential of the Bayesian
approach, the previous discussion highlighted p@tenproblems regarding the
identification of suitable priors, and the possibtEurrence of intractable integrals that
may require the use of time-consuming Markov Chdonte Carlo (MCMC) methods

for solution.

Fortunately, the main advantage of the GaussiaoeBso(GP) modelling approach is that
we can remove some of the mathematical complexgpa@ated with implementing a
Bayesian framework, whilst retaining its featuregarding its approach to dealing with
complexity. Specifically, the mathematical propestiof the Gaussian Process allow the
problematic integrals associated with the evalumatibthe marginal likelihood to become
tractable, and therefore directly calculable thasyding the requirement for MCMC
methods. Furthermore, much of the flexibility anolmer of approximation associated
with the complex adaptive basis function methodshsas the Neural Network can also
be retained through the use of the GP model. Idstéa neural network composed of a
finite number of adaptive basis functions, the Géet will be seen to correspond to an
infinite network of fixed basis functions (or a ket-based method), thus allowing

significant computational savings to be made.

Much of the recent work on Gaussian Process moaoléignates from the work of

Mackay (1991, 1992a, 1992b) and Neal (1993) whdiegppghe Bayesian approach
toward the problems of learning with complex NelMatworks. In particular it was the
research carried out by Neal (1996) into the pdgs#s of implementing infinite

networks using Bayesian inference that lead to mhalisation that, under some
circumstances, a network composed of infinite fidxeis functions corresponds to a
Gaussian process. Specifically, Neal (1996) dematest that under the Bayesian

framework, neural networks with one hidden-layemarge to a Gaussian process as the
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number of hidden layer neurons increases towarfisityy assuming suitable (zero-

mean) priors.

The key outcome of this observation is that inst&astruggling to define different priors
to represent our initial beliefs about the proposetivork (as would be the procedure in
the Bayesian approach outlined previously), wediggttly define a Gaussian Process as
the prior over the possible functions. Due to thethamatical properties of the Gaussian
process this is a significantly more straightforavéaisk. As a result, the explicit use of
Gaussian processes to express our prior beliefspngsosed as a potentially simpler
approach to implementing Bayesian analysis.

This proposal of using Gaussian Processes as #ie foa Bayesian nonlinear regression
was taken up by Rasmussen and Williams (1996) wbwed that the Gaussian Process
models compared favourably to other approachesidinal) Neural Networks and the
Multivariate Adaptive Regression Splines (MARS)Frfedman (1991). In Rasmussen
(1996) the GP method was also contrasted with se®ag Neural Network structure
based upon the methods developed by Neal (1996yvaadound to be significantly less
computationally intensive as MCMC methods wereraquired.

The use of GPs gained further momentum throughvtir& of Mackay (1997) where GP
models were even postulated as a potential repkaefor Neural Networks. Later
versions of this paper with further information adcussion can also be found in
Mackay (1998b, 2003). This work by Mackay was tlmstfgeneral review of the
methods involved in undertaking supervised learmmgghods using Gaussian Processes.
The reviews also contain discussion about how pipecach can be seen to have notable
equivalents and parallels across other learninghoast and indeed in other areas of
research. Important links between Gaussian Prosesgkother methods such as Kalman
filters, Splines, and generalised radial basis tions are made apparent. Furthermore,
the work by Mackay makes the observation that #e of Gaussian Processes for the
purposes of regression can even be stretched baekrk of O’'Hagan (1978), Wiener
(1948) and of the astronomer Thiele working in 188 century as described in Lauritzen
(1981). However, the most interesting was the pelnalade between Gaussian Processes
and the well-established Geostatistics techniqui€riging, which uses the probabilistic
analysis of data for the identification mineral dsits. The methods of Kriging have
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been found to be identical to Gaussian Processessign, with the original research
being conducted by Matheron (1963) and named aftaining engineer D.G. Krige. A
review of these methods can be found in the texCimssie (1994) devoted to statistical

techniques for dealing with spatial data.

Further reviews of GP regression were completeGitmps (1997), Williams (1998) and
Seeger (2004). The latest research into the GP Iheddocused upon overcoming some
of the limitations of the approach and adaptingpward the task of nonlinear system
identification. Precise details of these advancdmand references are to be discussed in
later sections of this chapter and the next. Mucthis previous research has now been
reviewed and brought together into a single vollop&kasmussen and Williams (2006),
which builds on previous reviews and provides ace#i&nt grounding in the theory and
methods required for successfully adopting the @praach. Furthermore, the text by
Rasmussen and Williams (2006) provides a detaidgdparison of the GP method with
other machine learning architectures, such as tip@&t Vector Machine and Spline
smoothing techniques. However, only a very limig@dount of this research into the GP
model has been aimed toward meeting the specifitadds of system identification for
engineering problems that is the main focus of ttesis.

3.6.1) What exactly is a Gaussian Process?

Given that the mathematical properties of a Gand3racess are key to the mechanics of
the Gaussian Process model, it is pertinent toudssthe peculiarities of this complex
mathematical object. Put simply, a Gaussian Proressstochastic process. But what

exactly is a stochastic process?

The concept of a mathematical stochastic processimspired by the need to model
physical stochastic processes, which are proceasesich the measured variable is
governed by probabilistic laws. The most famousngda of a physical stochastic
process would be the Brownian motion of particlaspgnded in a liquid. A

mathematical stochastic process can be defined edlection or family of random

variables. More loosely, a stochastic process mayhbught of as a random function,
with each function value being a random variabtelekd, a random variable can be

thought to have been created by a random or stoclmscess. A further distinction can
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be made between a stochastic process and a raneldmVWhereas a stochastic process
can be thought to be evolving and therefore indexét time (at timet, a random
variableX; is specified), a random field can be seen to talaction of random numbers

whose values are mapped onto any defined spateéiofensions.

Another important definition to consider is the tfélscat a random variable is actually
defined as a mathematical function itself, ratheant a true mathematical variable of
assignable value. A random variable will map thegtle outcomes of an experiment
rather than describe the actual outcome. With earidom variable, a probability
distribution can be defined to describe its quaditii.e. ifX is a random variable, the
corresponding probability distribution assigns to iaterval ;. x] the probability

P[xi<X<xp]. A probability distribution is often further chasterised by a probability
density function (PDF) where integrals are defirma@r an interval to calculate the

precise probability.

Given these definitions, we can more precisely rdefa Gaussian Process to be a

generalisation of the Gaussian (or normal) prolgbitistribution (i.e. random
variableX ~ Normal( o)), where sample functions generated over tidi¢ kave the

property that any linear combination will be noriadistributed (i.e. the process is
Gaussian if all joint distributions are multivagatormal). Put into more mathematically
explicit terms, for any given set of inputgi{..., Xn}, the resultant random variables

{f(x1),..., f (xn)} have an n-dimensional Gaussian distribution:

pE(X0),..., T (X)[X1,..., Xn) = Normaln,X) (3.7)

wherem is then x 1 vector of expected values (or means) &nd then x n matrix of
covariances between all pairs of points. The cavae can be interpreted as a measure
of how much two variables vary together (since arace is a measure of how much a
single variable varies). Two independent varialllesdefined as having a covariance of
zero; therefore two random variables whose coveeais zero are defined as
uncorrelated. For two variables that show a tengiéacvary together (i.e. they can be
seen to display a degree of correlation such tb#t ariables are found to be above an
expected value), a positive covariance will res@lternatively, if two variables are

found to vary in an opposing trend, the covariastuauld be negative.
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The Gaussian or Normal distribution can be charset@ by the following Gaussian

‘Bell’ probability density function:

ex

3.8
o~N 2T 20 (3.8)

f(x 1,0) = — _(X_ﬂ)zj

with meanu corresponding to the expected value of the randgariable, and varianoe®
describing the statistical dispersion around theeeted value, and commonly interpreted
as the width of the probability distribution. Var@e measures are also commonly
converted to standard deviations and presented@sbars, with one standard deviation
(o) of a standard Gaussian distribution correspontting 68% confidence interval, and

26 as a 95% confidence interval.

Given the properties of the Gaussian or normalridigion, one can fully specify a

Gaussian process solely through its mean and @naaifunction:
f(x) ~ GP(M(x),C(xi.x;)) (3.9)

with mean functiorm(x) = E[f(x)], and covariance functio@(x;,x;)= Covff(xi), f(x;)]. In

a probabilistic framework this may also be writéen

m; = E[f(x;)Ixi]
X = Covff(xi), F(x)| xi,x;] = E[f(xi), f(x;)| xi,x] - E[f(x) i1 ELf(x)) ;] (3.10)

A covariance matrixX; can then be generated from evaluating the covegidmnction

given all the pairs of recorded data. Note alsa tjieen the assumed form of yf&)

between inputs x and outputs y, the covariance é@tvinputs;; = Cov(x,%;) = C(%,X),

is also equal to the covariance evaluated at tmeegponding outputs C(y;), where

C(.,.) is some covariance function. The covariamegrix % can then be defined as:
Clx,x) .. C(x,X,)

Z = (3.11)
C(X,,%) ... C(x,,x

n
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The overall result of adopting these mathematioalstructs is that we can calculate the
properties of the Gaussian Process at any finitelbeu of points, and receive the same
answer as if we were to calculate all the pointstha process. This quality of the
Gaussian process is sometimes known asntrgjinalisation property, and it allows us
to overcome the perceived computational impossssli associated with handling
infinite dimensional random objects. This margisailion property is also interpreted as
a consistency requirement that must be fulfilleddigh the use of a covariance function
to specify each entry of the covariance matrixe. (if we are to employ a function that
specifies the entries of an inverse covariance im#ten this property is no longer
satisfied).

Furthermore, from this description of the GausskRwocess, we can see that the
covariance function plays a fundamental role in hbe/resultant Gaussian Process will
be specified. It is this function that generates tlovariance matrix, and therefore
influences how inputs and outputs are to be cdeelavith each other. The user must
select the covariance function used by the GP mau®ktherefore the choice represents a
significant design control over the resultant moddore information on different
covariance functions and how a suitable functiory i@ identified will be given in the
next chapter. However, from a purely mathematieaspective, any function that results
in a positive semi-definite covariance matrix may $een to be a valid choice of

covariance function.

In conclusion, due to the complex random mathemktobjects that make up the
building blocks of the GP model, the descriptiverte used to categorise the approach
(e.g. nonparametric, random variables, stochastcesses, ...etc.) can seem rather
ambiguous, impenetrable and by their very natur@récise, especially for those
uninitiated with probabilistic analysis. However,js important to remember that whilst
the components parts of the GP model may be selea tomplex random mathematical
objects, they may be precisely expressed with pné¢able mathematical functions such

as Normal distributions and covariance functions.
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3.6.2.) From Infinite Networks to Gaussian Processe

As mentioned previously, much of the interest iru§#an Process models was initiated
by the demonstration of a level of equivalence leerwGaussian processes and Bayesian
neural networks composed of an infinite number igéd basis functions, assuming
suitable priors. In the previous section, we hal@saly defined the mathematical
particulars of the Gaussian process, but the oglship to infinite neural networks is
worth exploring in order to complete the pictureorf this point, the task of performing
regression with Gaussian process models becomes imrpretable. For this section
the work of Neal (1996) is referred to again and issalso made of much of the same
theory and notation found in Gibbs (1997) and Madi®98b).

3.6.2.1) Defining Fixed-Basis Function Model

Restating the learning problem to be solved, wegaren a set of N training data-points
Xn, tn) = {x™, t.}, composed of inputg that are vectors of some fixed input dimension
I, and corresponding outputs or targgtsQur task is to infer an unknown functigfx)
assumed to be well represented by the data, andstek to calculate predictions of new

targets Y given a new observed inpxfit*.

Adopting a parametric approach to the modellingk tag aim to approximate the

unknown functiony(x), by a nonlinear functioy(x; w) that may be characterised by
parametersv. If we now choose to adopt a networkrbfixed basis functiongg( X} i,

as our model structure, then we can specify theairasl
H
y(xw) = 3w (X) (3.12)
h=1

Notice that by adopting this structure, the depandebetween the output y and the
parameters w is linear. This is an important poad, we are seeking to identify a
nonlinear functiony(x; w), but we have specified that the relationship leetw the
unknown functiony and the unknown parametessis linear. However, if we specify

basis functions that are nonlinear functions,athen the overall modg(x; w) is said to
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be nonlinear. If we therefore select the nonlinealial basis function centred at fixed

points{c} ., , we can define

_ o (x=c)?
%(X)—exp{ o } (3.13)

For notational convenience, we can define a m&r{d x H) to represent the values of
the basis functiongg( X} ., at the points {£1. We can then define the vectgy to be

the vector of values of(x) at theN points.

Ry = (™)
Yo =D RyW, (3.14)

From an overall perspective we can therefore imétrihis model as being a multilayer
network where only the output weighisare adaptive. The inner connections between

the input layer and the hidden layer are fixed.

3.6.2.2) Define (Zero-Mean) Prior

In keeping with the Bayesian approach, after defjnihis initial model structure, we
must now define a prior probability distributionesvthe unknown parametens of this
model. In the absence of any data, a possible ehoicprior could be a Gaussian

distribution of zero mean.
P(w) = Normal©,o’1 ) (3.15)

As we have defineg as being a linear function of, we can therefore deduce tlyawill
also be Gaussian distributed, with a mealy],&jf zero. The covariance matr@ of y

can then be defined as
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Q =E[(y —ElyD(y —Ely) ]
Q=)= (Ruw'R") = (| R

(3.16)
Q=0¢.RR"
Giving the prior distribution oy as:
P(y) = Normal©,Q)= NormalQ ¢ZRR" (3.17)

Therefore, for any selected number of poikig the vector of function valueg will
always have a Gaussian distribution. As a resudisstiming a Gaussian zero-mean prior,
we have therefore recreated the defining propeftyhe Gaussian process in that a
probability distribution of a function y(x) is a Gssian process for any finite selection of
points {x™}, the probability density B(x?), y(x*?), ..., y(X™)) is also Gaussian.

Looking more closely at the covariance ma@ixthe individual §, n") element o is
Qu=[7iRR"] =03 a,x"p,(x™) (3.18)
h

The covariance matrix) describes the covariances of the function valudscations
Xn, but we must also describe the covariance at tityguo or target values.tAssuming

each target,tdiffers from the corresponding function value bwuSsian distributed

additive noiseo?, then the targets will also have a Gaussian piigiribution

P(t) =NormalQ Q + o7l ) (3.19)
Therefore, denoting the covariance matrix of thigdts t by C:

C=Q+0’l =d’RR" + I (3.20)

Looking more closely at the covariance ma@ixthe individual §, n’) element ofC may

be shown to be
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Qu =02 g (XM (xM) + 3, (3.21)
h

3.6.2.3) Move to Infinite Basis Functions

If we now consider the model based upon an infirather than finite number of basis
functions H - «), the summation over the basis function af §’) becomes an
integral. We can simplify the form &, by assuming that the basis functions are to be
uniformly spaced, with each basis functiorcentred on the poink = h. Additionally,

the variance componemt’ can be scaled so as not to diverge with the isangad, by

redefining it as a constaBtdependent on the number of basis functions pédemyth of

the x-axis.
M
Qu =S| a(x™)g(x™) dh (3.22)
Pin
hmax n n' _
Q. =S| eXp{%} exr{(%z)r—zﬂ df (3.23)
Pin

Setting the limits of integration to«, this integral becomes:

Q.. =mr? Sexp[%} (3.24)

From this expression describing the individual eritrn’) of covariance matrixQ, we
can generalise to form a covariance function desggiall entries with the constant terms

grouped together to form the hyperparaméter
(M) _ ()
C(X”, Xy =g, exp{%} (3.25)
r

Therefore, for any valid covariance function, wa ckefine the covariance matr@} for

N function values at location¥éy to be:
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Q=C(x™,x™) (3.26)

And assuming Gaussian additive noise, the covagiamatrixC for the correspondindy

target values is:
C=Cc(x",xX"™)+a?0,, (3.27)
3.6.2.4) Where does this leave us?

The consequence of increasing the number of fiesiiskfunctions of the model towards
infinity is that effectively a prior may now be d&#d using a covariance function that is
equivalent to the prior specified in terms of bafisctions and priors over the
parameters. In essence we have simplified the psooé defining a suitable prior as
instead of defining individual priors over the typé model or function, parameter
values, and noise beliefs, we can combine evemythinmough defining aGaussian
Process Priorthat may be specified through the choice of carare function C.

Furthermore, as well as making the task of defirpnigrs easier, the subsequent steps
required to complete the inference and obtain ptedis also become easier to
implement. Previously, the presence of intractablegrals made the evaluation of
different components (particularly the marginaklikood) of the Bayesian framework
difficult to achieve without the use of iterativeethods. Through the use of the Gaussian

process, these integrals become tractable andheagfdre be treated analytically.
3.7) Regression with Gaussian Processes

The previous sections have provided an accounbvwflie can use a Gaussian process to
represent our prior beliefs for Bayesian learniBg.using a Gaussian process prior, we
can alleviate much of the difficulty of identifyinguitable priors over the type of
functions and parameters if a more conventionalrmaetric structure were to be
employed. Therefore, to employ a Gaussian processua prior we must specify its
defining characteristics, namely the mean of tleeg@ss, and a covariance mattixhat

reflects the correlations found in the trainingedseét.
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A common choice for GP models is to specify a zeeman Gaussian process as our
prior. In reality, the choice of a zero-mean Gaarsgprocess may not be particularly
representative of the underlying data, but thisas seen as a drastic limitation as our
posterior process is not confined to zero. Forgpecification of the covariance matrix

C, a suitable covariance functionXC§’) must be applied to the training data. Various
choices of covariance functions are possible (si@ 4.3), and the most appropriate
candidate must be selected on the basis of priowkatlge. As a result, the choice of

covariance function is fundamental to the GP maatplapproach as it dictates how the
data is to be transformed into a matrix that réflélceir correlations.

After selecting an appropriate covariance functittre parameterg of this function
(known as hyperparameters due to the similar ridgepl by the upper-level parameters
of neural network approaches) must be identifiemnfrthe training data in order to
optimise this covariance function. This proces®ibe discussed in the next chapter, but
for the moment we can assume that an optimisedrieona function has been identified
and that our Gaussian process prior has been ok dht this point, we wish to discuss

how predictions can be made using this Gaussiatepsoprior.
3.7.1) Making Predictions

To initiate Bayesian learning, after defining th@op of our Bayesian model, the next
stage is to infer the posterior and ultimately makedictions given a new inpoty:1.
However, due to the nature of our prior, insteadfafowing the procedure of the
Bayesian approach outlined previously, we can bigmass some of these steps. In the
Bayesian framework outlined, the inference of atgro@r distribution with which to
make predictions relied upon the application of &iytheorem. However due to the
nature of our prior we have in effect explicithattd the probability of the data (i.e the
marginal likelihood) in one step. Therefore, we céain the predictive distribution of
tn+1 from the straightforward application obnditional probability instead of applying
Bayes theorem. As a result, it could be said thatGP modelling approach is not truly
Bayesian due to the absence of Bayes’ theorenadty the prior placed upon the space
of functions comes from the very probabilistic matof the model (a Gaussian process

being a random function) instead through the explse of Bayes’ formula.
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Restating the regression problem, we are given taoseN training data points

D=(X,t), composed of inputs that are vectors of some fixed input dimensioa. (i.

multiple inputs), and their corresponding scalapats or target valuds(single output):

Inputs: Xy =Xy Xy, Xy ] (3.28)

Targets: ty =X, t(X,), ..., t(X )] (3.29)

The regression task at hand is to predict a newubudr targety.1, given the new input
Xn+1. However, due to the probabilistic nature of th® @odelling approach, the
regression process will involve the computationaoposterior probability distribution

over k.1, and subsequent determination of a singular ptiediestimatet,,,, based upon

the mean of this distribution.

Utilising the GP modelling approach, we are to ffiyea Gaussian process prior
distribution over the space of functions. As disads previously, the GP prior is a
collection of random variables that are assumebaie ajoint multivariate Gaussian
distribution, thus allowing it to be fully specifidby its meam and covariance matrig.

As the Gaussian process is a collection of randarables, we can explicitly state the

probability of the target data as the joint disitibn
P|C.Xy)= |_l P(t [C&k,, x,0).&.} (3.30)

The probability of the target data is conditionaltbe covariance matrix and input data,

P(t|C,X, ). This joint distribution can then be rewritten as

P(tIC,XN)=%eXF{—%(—/JTC'l(—ﬂ)j (3.31)

where C is the covariance matrix defined by the paramsdericovariance function

C(x,,,X,;0) applied to the input datgy is the mean of the process, addis a

normalising constant. Furthermore, we can realiseptior belief regarding the Gaussian

process having zero-mean,= 0, allowing us to rewrite the Gaussian process s
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P(t, IC, ,xN):Ziexp[—g (e )j (3.32)

N

The regression task is now to infer the predictips, using this Gaussian process prior
and a new input observation.1. Therefore the predictive distribution we desiaed be
interpreted as a conditional probability distrilouti over f{.,, written as

P(ty. 1 D,Cy Xys1), WhereD = (X, t ) -

If we briefly adopt a more concise notational forfwhere our priorP(t, |C, ., X ) IS
denoted a$(tn), and the desired posteridt(t,,, | D,C, . X,\,,) IS denotedP(tn+1)) we
can interpret this conditional probability as

F’(tN+1ItN)=M (3.33)

P(ty)

Therefore we must find the joint probabiliBfty.1ty) of the new input and the existing
prior probability. Reverting back to the previougtation, we can restate this conditional

probability as

tN+1|C:N’X N’X N+1)
I:)(tN |CN'>< N)

P
Pty |D.Cy X)) = ( (3.34)

where the conditional probabilityP(t,,, |C\ . X X n.) N the numerator of this
expression is equivalent to the joint distributi®ftn.i tn). Therefore, before finding the
conditional distributionP(t,,,|D,C, X.,), we must first define the joint distribution
Pty ICy: Xy X 1) This can be done by treating the new input olzeEm as a

continuation of our Gaussian process, where weapaty the covariance function to the
new observation and therefore update the covariarateéx fromCy to Cy.1, giving the

joint distribution:

1 1 _
P(tN+1 |CN X N X N+1):Z_ ex;{—z (Tmp hﬂ I\Hl)j (3-35)
+1

N
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At this stage we can introduce the mechanics of th@acovariance matri€y+1, is to be
updated through the introduction of a new inpubrfithe training seXy, the covariance
matrix Cy was determined. For predictions, a new covariana#ix (incorporating the

new input dataln+; of size N+1) x (N+1) is obtained from

Cyur = HE% {/k(ﬂ (3.36)

Where the sub-matriX =| C(X,Xy,;:0) ...,C(X Xy )| is the vector of covariances

between the new test point and existing trainingesaandx =C(XN+1’XN+1;9) is the

variance of the individual test case.

Returning to the task of obtaining the conditiomabbability P(t,.,|D,C X y.u)

, : el . :
remembering the relationship that- =e*™, we can write
e 2

P(tN+1 | D'CN X N+1):[Zl Z_]i\lj exp{(—% (Lﬂc _Nl+1t N+1 ))_(_% t(Tr\C _r\t N )jj (3-37)

P(tN+1 | D.Cy X N+1) :ZZ_N eXF(_% I:TN+1C _AH: ne1 L Tl\(r: _rt N)j (3.38)

N+1

At this point we can see that in order to comptis posterior distribution to find the
probability of the new targeft;, we would need to already have observed i.e. the

very quantity which we are hoping to predict. Thall, through the use of some
mathematical substitution made possible by usinditipmed inverse equations, see
Bartnett (1979), we can move forward. These paréd inverse equations allow the

specification of Cy,, in terms of C, and Cy, and thereby allow us to effectively

implement a model where the number of basis funstimay be much larger than the
number of observed data poiris This can be seen to be a computational savirgy (th

matrix inversion isNxN, rather than N+1) x (N+1)) as we can in effect fix the

computational demand to that©¢N °).
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The precise details of this mathematical manipoitatand the derivation of the GP
predictive equations have been omitted here forstie of thesis brevity, but may be
found in Appendix B. Utilising these expressionsaa@ specify the posterior probability
of in terms ofCy andk, thereby allowing computation. The result of threcess is that

we can define the posterior distribution in a rgeutiterpretable Gaussian form:

_1 (tyss = Even)
P(tN+1| D,CN’XNH)_EeXF{_%J (3.39)

fN+].
where the mean and variance are defined as:

fy. =KN.Crt n (3.40)

0% =K =K1, CoK s (3.41)

Therefore, we have arrived at the point where aiptien of the outputi,,, has been

obtained, together with the uncertainty over thadption that may be interpreted using

error bars.

In the next section a more visual interpretationttkdé GP modelling approach is
provided, however it is worth pointing that an altive Wweight-space mathematical
interpretation of the GP framework has also beeweldped, see Rasmussen and
Williams (2006). In this chapter the ‘function-spamterpretation of the GP method has
been presented. Through the weight-space-viewGGtenodelling approach can be seen
to be equivalent to the Bayesian linear regresg\sthe two interpretations can be seen
to result in the same predictive framework, thecfion-space viewpoint has been

preferred solely due to being more intuitive in experience.
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3.8) Demonstration of Gaussian Process Modelling

To provide a better understanding of the GP maugllapproach, a simple one-
dimensional regression problem is considered, it x and output f(x). This example
is aimed at providing a more visual interpretatdmthe method.

3.8.1) Defining a Gaussian Process Prior

The first step in any application of Bayesian iefeze is to define a Prior distribution
over the kinds of function we expect to observeolefany data is presented. For a
Gaussian Process model, we employ a Gaussian Brimcdsfine our Prior to represent
our prior beliefs over the underlying function. Rbrs example, a zero mean Gaussian
process with a point-wise varianks0,1) has been taken as our Prior. In Figure (3v2),
can see the assumed space where we believe thgofurgto exist on a chart of the

output y (= f(x)) versus input x.

=

M A

Input, x

Figure (3.2): Prior Distribution over functions with 5 sample functions
A number of sample functions from the Gaussian &s®dave also been drawn onto

Figure (3.2) to show a number of functions thatldquossibly be close to what we are

searching for. Note that these sample functionsjusEepossibilities drawn at random,
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and do not involve prior knowledge or representipalarly likely candidates that are to
be corrected in the next step. These sample furstizerely provide a visualisation as to
the variety of possible functions that exist over function space. The dotted lines aty =
-2, 0, and +2, can be seen to represent the Pheresthe average value of the sample
functions at each x is zero (at this point in thecpss we have no data to assume
otherwise), together with 2 times the point-wiseiarace (i.e. 2 = +/- 2) that we have
used as an indicator as to the variability of tlngle functions. Furthermore the

Gaussian process used has specified a prior varthat is independent of the input x.

In Figure (3.2), the sample functions are drawmaatdom from the Prior distribution
over functions. A further assumption has been thioed that implies that the underlying
function will vary in a smooth manner. The samp&#®wn in Figure (3.2) are all
characteristically similar in that they have beeawh from a Gaussian process defined
from the same Covariance function with identicapénparameters. A random element
has been introduced to show a few different possfbhctions based on the same
Covariance function and hyperparameters. More im&ion on different covariance
functions and the influence of their hyperparangeierto follow in the next section.
Again, these are sample functions drawn from ther Rlistribution over functions for
the purposes of visualisation, not the Prior itsBlbrmally, we are not interested in
generating random samples from the prior, but imegating a posterior and then making

predictions.

3.8.2) Compute Posterior

Following the template for Bayesian inference, ie&t stage is to compute the Posterior
distribution. In order to make this happen, we nhaste some observed data to combine
with our Prior distribution over functions. Theredoconsider that we are now given a
small dataset comprised of 4 pairs of input-outpataD = {(X1,Y1), ..., (X,VYa)}, @s
shown in Figure (3.3).
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Figure (3.3): Observed Data (4 data points)

Visually, the idea is to move from our Prior spaser every possible function, to now
considering functions that pass through or closeh® observed data. We are not
‘correcting’ the previous sample functions of FigyB8.2), but identifying new functions

from our function space that are consistent withdhserved data.

In Figure (3.3) the observed dataset is displayedant values, and in Figure (3.4) the
Posterior distribution over functions is displayéd.Figure (3.4), a number of possible
functions (in dashed lines) consistent with theeobsd data are displayed, together with
the predicted mean of the posterior distributiasli¢sline) that is normally taken as the
overall prediction estimate of the GP model. Fig@8e4) also displays error bars
showing twice the standard deviatiors)2hat provide an estimate as to the uncertainty
of the predicted mean relative to the input x. Fribb@se error bars we can see that the
variance of the prediction is markedly reduced elts the observed values, indicating
that we are more certain in these regions and ftirerenore confident in our model’s

accuracy.
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Input, x

Figure (3.4): Posterior Distribution with 4 sample functions (dashed lines) and
Predicted Mean (solid line) & & Errorbars

If the size of observed dataset is increased, &gure (3.5), we can see the mean of the
posterior is further adjusted to remain consistetth the data, together with a further
decrease in variance close to the observed valuesto the increase in the number of
data points, we have more evidence with which t@lyse the correlations between the
different data points. As a result, we can be noargain of our model’s accuracy over a
greater range of the input space. Furthermorerdfg®ns where data is sparser become
ever more pronounced through the analysis of theemainty/errorbars that is made

readily possible in the GP modelling approach.
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Figure (3.5): Posterior Distribution (20 data point) with Predicted Mean (solid line)

& 26 Errorbars

Note that in this demonstrative example, the choaofe covariance function or
hyperparameters has not been discussed. A reasdiitaiol the underlying function was
achieved primarily because the observed data paewet® random points that were
themselves generated from a Gaussian processs#lglmatching hyperparameters. For
the identification of unknown functions, a suitaldevariance function composed of
identified hyperparameters must be determined fthen available training data. The

details of this identification process are to becdssed in the next chapter.
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4) Implementation of GP models

In the previous chapter the theoretical backgrotmthe GP modelling approach was
discussed together with the mathematical framewwm&essary to facilitate nonlinear
regression. In this chapter, we are to look moosally at the details of exactly how the
GP method is to be implemented. Of fundamental mapoe to the GP modelling

approach is the specification of a covariance foncthat allows us to represent
successfully the correlations between differenihing data observations. Furthermore,
in order to provide accurate predictions of systeemaviour, the parameters of this
covariance function must be optimised using thelavia observations. In practice, both
of these objectives are subject to mathematicalcancputational difficulties relating to

the size and conditioning of the covariance matkbethods aimed at tackling these

implementation difficulties are then discussedetad.
4.1) Role of the Covariance Function

As a Gaussian Process prior is specified by itsnmaad covariance matrix, the
covariance function used to generate this covasiamatrix will therefore play a
fundamental role in the GP modelling approach. @quently, the covariance function
must be chosen to reflect our prior assumptionsiati@ function or system we wish to
identify, and ultimately instil these assumptiontithe covariance matrix. Through the
selection of the covariance function, we are attemgpto fix the properties of the
functions that are to be considered for inferemk®.a result, this stage of selecting a
covariance function is somewhat analogous to tHecsen of a parametric model
structure. For an example, referring back to trevipus demonstrative example, where
the sample functions in Figure (3.2) are all smaott stationary (informally, stationary
means that the functions will look similar at:allocations). These are properties that are
defined by the chosen covariance function of the @&Rer covariance functions that

exhibit other properties are possible.

Typically, a covariance function will be construtteut of a number of ‘free’ parameters
0 that may be used to adjust the properties of #@s&an process prior. The parameters

of the covariance function are more often refen@ds hyperparameters due to the
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similar role they play to that of the upper-levargmeters of neural network structures.
Therefore, the problem of supervised learning in i@&dels can be seen to be to the
problem of identifying suitable hyperparameters tbe covariance function. The
hyperparameters of the covariance functibbrmust therefore be identified from the
observed training data. This learning process @&raxed in the next section, but before
hyperparameters can be determined a suitable eoxea&ifunction must first be selected.
Furthermore, before discussing the nature of varioovariance functions it is first
worthwhile underlining a number of assumptions nehé in the underlying regression

problem:

* As the covariance function is directly applied te training data, in order for the
resultant covariance matrix to reflect the naturéhe correlations between inputs
and outputs of the underlying function, the tragnatata collected must therefore
adequately reflect the characteristics of the ugohgy function. This is of course
common sense, but the GP approach presents partiauathematical

requirements that may cause difficulties in adlgetonthis principle.

* For most nonlinear regression problems, and edpediaose found in the
identification of real systems, the observed daeduor training is likely to have
been corrupted by noise. As a result, a noise maaeild be an appropriate

feature to incorporate into our chosen covariancetfon.

* An important assumption made in most supervisednieg problems is that
similar inputs should result in similar outputs.iassumption further manifests
itself as an expectation that two data points ctogether in input space are likely
to have a greater correlation than two points #natdistant. Furthermore, as we
assume that similar inputs are likely to resultsimilar target values, we can
assume that training points (input and output paiesar to a test point (input)
should be informative about the desired predict{ontput). Therefore this
concept of nearness or similarity is something #ilatregression methods are
founded upon. In the context of GP models, it es¢hvariance function that is to

define the nearness or similarity of the individdata points.
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Taking this final assumption concerning the neanas similarity of individual data

points, it is now useful to reiterate this concepterms of covariance. Remember that
the covariance measures the similarity between tavmlom variables, where a high
covariance is representative of two random vargbtat are closely related, and a low
covariance is representative of those that are lwealated. Furthermore, leaving aside
the mathematics used to define different covaridmoetions and the GP model as a
whole, it is worthwhile first attempting providenaore descriptive interpretation of how
the covariance function is to define the charasties of the functions that are to be

considered.

From a purely mechanical point of view, in ordeiidentify our model we have a set of
training cases of input and output data, but fadmtion we will only have an input.
Therefore, we must build our GP model so that gi@eninput we can generate an
appropriate output. The result of this is that we maot interested in the covariance
between inputs and outputs, nor are we expressiyerned with the covariance between
different inputs. Instead we are interested intiajpthe covariance between the inputs to
that of the outputs, and this is achieved throdghdovariance functiof. As a result,
the covariance between the outputs or targets earritten as a function of the inputs.

coV(f (). f (,))=C X, X,) (4.1)

Under our initial assumption, two data points e close together in input space are to
be informative about each other’s respective targbus reflected in a high covariance.
Similarly, for two distant points thought to be ofurmative, the covariance is to be low.
Note that this initial assumption may not necedsdme the case for all problems (e.g.
periodic functions where relationships betweentinadly distant datapoints must be
considered). Nevertheless, we can more closelynedfie role of the covariance function
to be that of a model of how the covariance ishange as the distance between different

inputs changes.

To demonstrate this visually we can display thatrehship between the covarianke

and the distance between inputs;|x—x'|, for two different covariance functions as in

Figure 4.1(a). For both these covariance functidhs, covariance approaches unity
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between variables whose corresponding inputs aseclese, and decreases as the input
distance is increased. However, for the dasheddixample, the rate of decay in the
covariance as the input distance is increased ishnalower than that of solid-line
example. Note that both of these covariance funstiare in fact of the same squared-
exponential form, see Section (4.3.1.1), but wiffecent hyperparameters.

In combination with an assumed a zero-mean, thedeimed covariance functions of
Figure 4.1(a) can be thought to have each defin€&wassian process prior. Therefore,
we can gain a further understanding of the rolggaaby the covariance function through
drawing sample functions from each Gaussian prooess In Figure 4.1(b) two sample
functions have been drawn from the GP priors ofdashed and solid-line covariance
functions of Figure 4.1(a). Immediately we can s$eat the more rapidly decaying
covariance function of the solid line example resul a sample function that varies far

more rapidly, thus resulting in a less smooth psece

. . . . . , , , . . . . . . . .
0 0.5 1 1.5 2 25 3 35 4 4.5 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
Input Distance, r Input, x

(a) (b)
Figure (4.1): Chart (a) shows two different covariace functions where the
covariance k varies against the input distance r. Rart (b) shows random functions

drawn from the Gaussian process with the same covance functions as Chart (a).

Relating the smoothness characteristics of the kmrghown in Figure 4.1(b) to the
covariance functions displayed in Figure 4.1(a), wan understand that for the
covariance function that decays more rapidly asdib&ance in input space is increased,
the degree of similarity between nearby input®isesduce more quickly. As a result, the
random sample function generated from the priol malve the capacity (remember that

we are specifying a space over functions rathem @ra actual function) to vary more
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quickly, as each generated point of the sampletimmevill have a weaker relationship to
those points immediately preceding them. This i@hship between the distance
between inputs and the potential for the sampletfon to vary more rapidly (or become
more ‘wiggly’) can be understood as ttigaracteristic length scaleof the process, and
is one of the possible properties of the GP primat twe can control through the

hyperparameters of a chosen covariance function.

Returning to our system identification remit, wev@aeen that through the manipulation
of the covariance function, the length-scale prgpef the resultant functions can be
modified. As a result, for an underlying systemttisaknown to vary in a smooth
manner, the covariance function and accompanyirmgeimarameters can be chosen to
reflect this prior knowledge through manipulatiohtbe length-scale property of the
Gaussian process prior. Similarly, for systems #natknown to vary in a less smooth or
more abrupt manner, the covariance function anthyferparameters can be altered to
reflect this prior knowledge. Overall, in this silagxample (where we have restricted
the discussion to the length-scale property) we see how the properties of our
Gaussian process prior can be fixed through thécehaf covariance function and its
hyperparameters to suit the identification taskaatd.

4.2) Choice of Covariance Functions

In order to identify a GP model, a suitable couvare function that reflects our prior
knowledge of the underlying system must be seleckedthermore, the process of
selecting or defining a suitable covariance funtian also be seen to be the process of
constructing a valid Gaussian (stochastic) procAssa result, any arbitrary function
cannot be chosen for use as a covariance funcsothe construction of stochastic

processes places particular demands on the nétthis dunction.
4.2.1) Validity of Covariance Functions

In the selection of an appropriate covariance fongtan important constraint exists over
the validity of any possible function. This consitastates that the covariance function

must generate @ositive semi-definite (or non-negative definite) covariance matrix.
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Therefore, any arbitrary function of input pairsamd x’ will not in general be a valid
covariance function. To more accurately define whiaheant by a positive semi-definite
matrix, consider a set of input points We can apply our chosen covariance function, or
more generally a ‘kernel’ to this data to genethi® matrixK = k(x,x’). The matrix
generated from the application of a kernel is kn@srtheGram matrix, where if k is a
valid covariance function the matrix K can be tednaecovariance matrix. Whilst a Gram
matrix generated from a kernel function need nopbstive semi-definite, a covariance

matrix must adhere to this constraint.

Mathematically, a reahxn matrix K is said to be positive semi-definite (PSDit
satisfies the conditionQ(v) =v'Kv >0 for all vectors wherevOR", and Q is a

guadratic form. This can possibly be better undedtoy stating that for a PSD matrix,
the eigenvalues of the matrix must be non-negalifie. positive definiteness of a matrix
can also be described in terms of the sign of therchinant of the matrix. As the
determinant is a scalar function of the matrix, mhmatrices are symmetric (as is the
case for covariance matrices), the positive defimass of the matrix will only remain if
the matrix and every principal submatrix (formedrbgnoving row-column pairs) have a

positive determinant. A matrix that does not mbet tondition is not positive definite.

4.2.1.1) Why does Positive-Definiteness matter?

The mathematical descriptions of positive defirg®ndo not provide any great deal of
information as to why this constraint exists upte thoice of covariance function.
Therefore, perhaps further comment on the reasopéignd this constraint would be
worthwhile, as it offers further insight into howet GP modelling approach actually

works.

Fundamentally, the requirement for positive senfiniteness originates from the
mathematics employed in the construction of staahasocesses. Remember that we are
attempting to construct a stochastic (Gaussiangga® with which to apply Bayesian
inference. In general, the properties of a stoehgsbcess or random field may be
described by a set of finite-dimensional distribos. For a Gaussian process or Gaussian
random field, these finite-dimensional distribuscere multivariate normal distributions.

This property allows them to be specified by a maad covariance as described in the
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previous chapter. For the specification of non-Gausrandom fields, the definition of
finite-dimensional distributions is not as strafghtvard, hence the appeal of Gaussian

processes.

These finite-dimensional distribution§ , can therefore be defined at any available

training data points or coordinateg, ...,t,}, and then utilised to construct our

stochastic (Gaussian) process. Note that thes¢e-filmnensional distributions are

cumulative distributionsF, | (x,...,x)=P{X < X,..., X, < x}, and must therefore

be right-continuous and non-decreasing. From thistesn of finite-dimensional

distributions, a valid random field or stochastimgess is said to exist if certain
symmetric and compatibility conditions are met. sSThe known as Kolmogorov’'s

Existence theorem (also known as Kolmogorov’'s Esitam). Taken together, the
conditions concerning symmetry and compatibility ¢ee regarded as requirements for
consistency over the finite-dimensional distribonto Therefore, the question is how do
we ensure this consistency over the finite-dimemaidistribution and therefore create a
valid stochastic process. This is where the comgtfar positive-definiteness comes into
it:- a positive-definite covariance function wilhgure a positive-definite covariance

matrix, which in turn safeguards the existence wéled Gaussian process.

4.2.2) Types of Covariance Function

In this chapter we are focusing on describing theperties of a number of existing

covariance functions. Therefore, a full and preeseount of the methodology involved
in the construction of stochastic processes, amd davariance functions can be derived
has not been included. This is a complicated afeprabability/statistics that more

detailed resources on this particular subject ateebplaced to cover. Therefore, | refer
to the texts by Adler (1981), Billingsey (1986), @ (1953), and Papoulis (1991).
Fortunately a number of valid covariance functidrvave been already defined in the
existing literature and identified as being pafacly suitable for use in the GP

modelling approach. In particular, reviews of diffiet covariance functions can be found
in Abrahamsen (1997), Stein (1999), Mackay (199&b)J] Rasmussen and Williams
(2006). These references also include detailednmdtion as to how various covariance
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functions can be derived. In the forthcoming sexjoa number of these different

covariance functions are to be discussed.
4.2.2.1) Stationary & Non-stationary Covariance Funtions

In describing the properties of different covarntunctions the most important
distinction is whether or not the function may besdribed as stationary or non-
stationary. Stationary covariance functions carsden to be functions of—x' and are
therefore said to be invariant to translationshi@ input space. Loosely, this means that
sample functions drawn from a stationary GP pridr laok or behave similarly at ak
locations (i.e. the process does not depend orottagion of the observer). For non-
stationary covariance functions, this is not theecand sample functions may vary wildly

in terms of variable smoothness over the input ep&urthermore, if a covariance

function is a function ol1x—x'| then it may be described @&sotropic and therefore

invariant to all rigid motions. Therefore, for stettary isotropic covariance functions, the

guantity r introduced as the ‘input distance’ at the starttto§ chapter can be more

specifically defined as the Euclidean distance,x - x .

At this point a possible parallel between statignand non-stationary covariance
functions and static and dynamic systems may beaparent. For dynamic systems
where the output response is to vary significaothgr the defined input space, it might
be thought that a non-stationary covariance functimuld seem most appropriate.
Nevertheless, stationary covariance functions areremcommonly used for

implementation and interpretability reasons. Furtiere, existing research has
demonstrated that excellent models of dynamic systenay be identified using

stationary GPs. However, one issue to consideesifsa stationary covariance function
is adopted for a case in which the underlying sysie prone to change its behaviour
during operation (e.g. some systems may heat-gpa¥fdown influencing the response).
As a result, in such a case the operating respohsglkee system may not be seen to
behave consistently across the input range andnastationary covariance function

might be a better choice.
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4.2.2.2) Smoothness Properties

A further consideration in the selection of a dulgacovariance function is the resultant
smoothness properties of the defined Gaussian gsgmeor. In the opening section of

this chapter, the role of the covariance functionnfluencing the characteristics of the
sample functions drawn from the resultant GP psias introduced. In particular, it is the

smoothness characteristics of the resultant sampletions that can be seen to be a
fundamental differentiator between different coaade functions. In order to describe
the relative smoothness of functions, mathematscaften employ the terms ‘continuity’

and ‘differentiability’. In simple terms, if a fution that approaches an infinite gradient
(i.e. vertical) it can be thought of as being drggwuous and non-differentiable at that
point. The occurrence of such sample function dtarestics can therefore be seen to be

symptomatic of a rough or non-smooth Gaussian ggoce

Therefore, through the selection of a suitable dawae function we are endeavouring to
select the appropriate smoothness properties dedssed by the relative
continuity/differentiability of the sample functien However, relating the smoothness
properties of sample functions to a chosen coveedunnction is not mathematically
straightforward, and different properties known dke ‘mean-square’ (MS)
continuity/differentiability are normally employedMS properties are more easily
derived and are directly related to the derivatiwethe covariance function and moments
of spectral distribution. Unfortunately, these Mi®gerties are less interpretable than the
sample function properties as we can more readitige the nature of the sample
function continuity visually, as in Figure (4.1Db).

The difference between sample function continuitigcentiability and their MS
counterparts is the level of continuity display&&mple function continuity is a much
stronger property than mean-square continuity, issodtinuities can be allowed under
the weaker MS properties. Therefore, in generaBnysgjuare continuity does not imply
sample path continuity, and vice versa. HowevaerJaussian random fields such as the
GP we are defining, mean-square continuity is aessary and almost sufficient
condition for continuous sample paths. Furthermareandom field can be seen to be

continuous in mean square a&t, if and only if its covariance functiok(x,x") is

continuous at the poink =x'=x*. For stationary covariance functions this can be
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reduced to checking continuity lgD), where0 signifies a vector of all zeros. As a result,
it is the properties of the kernel arouddhat determine the smoothness properties of a
stationary process. For a more in-depth discussibthe geometrical properties of
stochastic processes, see Adler (1981), Stein {1899 Abrahamsen (1997). The thesis
by Paciorek (2003) also contains useful informatoth specific regard to smoothness

properties in terms of sample function continuéther than mean-square continuity
4.3) Examples of Covariance Functions

General Form of Covariance Function

In the application of the GP modelling approachptactical system identification
problems, a degree of noise is likely to be presenthe empirical data. Therefore, only
noisy function values are typically available, iye= f(x) + . If the assumption that this

noise is additive independent identically distrémiGaussian noisewith variances’, a

general form for the covariance function can be&estas

C..=C(X,X0)+0°0 (4.2)

mr

wherednmn is a Kronecker delta which is one if and onlynf= n and zero otherwise. Due

to this independent noise assumption, in comparieoca noise-free implementation, a
diagonal matrix is added (i.e. K(x,x) &’1). Other noise models where independence

from the input is not assumed are also possible.
4.3.1) Stationary Covariance Functions

In Table (4.1) a number of stationary non-degeeecatvariance functions have been
given. Note that instead of displaying the genéoain (covariance function C with or

without noise), we are to concentrate on discussiagoroperties of the different kernels

k. Furthermore, the variabie=|x—x'| is the input distance measure, aidis the

characteristic length-scale hyperparameter. Thegrties of these covariance functions

are now to be discussed below.

108



Chapter 4: Implementation of GP Models

Covariance Function Expression
2
Kee(r) =expl ——
Squared Exponential se(!) p( ZKZJ
K (r)= 2 (Jr VK (@r)
Matérn Matern - r(V) / v /
r
k(r)= exp(——j
Exponential ¢
r y
v-Exponential k() =exp _(ZJ
r2 )
Rational Quadratic Kro(r) = (:H 2012

Table (4.1): Table of stationary covariance functias
4.3.1.1) Squared Exponential Covariance Function

The most widely adopted choice of covariance fumctaund in the GP literature is the
squared exponential shown in Table (4.1). This famctigenerates a Gaussian
distribution shape and can be seen to be equividethie radial basis functions used in
other modelling approaches. The squared exponestiariance function is infinitely

differentiable and therefore has mean-square derasof all orders. As a result, a GP
defined by this covariance function will be verymuth in terms of the sample functions
drawn from it. The squared exponential covarianeetion is often implemented in an
anisotropic form where each input dimension (D) dam assigned a different

hyperparametef/ } to control the characteristic length-scale. Thisnf@f the squared

exponential covariance function may be written as

C(x,x"0) =6, exp{—%iw} +6, (4.3)

2
R

wherexq is thed™ component ok, a D-dimensional vector, and hyperparamefers(d:,

02, {{ 4 ). As this is the most popular covariance functibms worth discussing in more
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depth the role of these different hyperparamefeng.f, hyperparameter can be seen to
define the vertical scale of the possible variaiaf the defined function, thé,,
hyperparameter can be seen to be a bias termlkinatdhe whole function to be offset
from zero by some unknown amount. As mentioned @pav separate length-scale

hyperparametef/} has been defined for each input dimension, andoeathought of

as determining the distance in that particular afioe over which the outpuy is

expected to vary significantly. Therefore, if atparar input is to be given a very large
length-scale hyperparameter, this input can bedhibaf as being irrelevant (or at least
non-contributory) to the output y, as the outpuéxpected to be a constant function of

this input.

At this point it is pertinent to introduce a feawf the GP modelling approach known as
Automatic Relevance Detection (ARD) This feature was first introduced in Mackay
(1994) and Neal (1996) in the context of Bayesiaaral network implementations. The
ARD facility utilises the anisotropic format of thequared exponential covariance
function (or indeed any stationary isotropic coaade function) to assess the relative
importance of contributions made by each inputublothe comparison of their length-
scale hyperparameters. Therefore, during the ogditioin of the GP model (to be
discussed in section (4.2)) where the hyperparamefethe chosen covariance function
are to be identified, we can also employ the AREits to help optimise the structure of
the model. As a result, the ARD feature can be sedie of particular value for system
identification purposes where there is a lack adrpknowledge regarding the nature of
suitable inputs. This is one of the attractive dea¢ of the GP modelling approach, as
due to the probabilistic optimisation we can depebo greater understanding of how
different inputs can influence the model. On a ficatlevel we can see that this facility
can be utilised to tune the overall model structemgloyed, where unimportant inputs
can be eliminated from the model structure and etherimprove computational
efficiency and ultimately model interpretability.

The squared exponential function embodies the prppdat points that are close
together in input space are strongly correlated lzgmice give rise to similar values of
targett. The strong smoothness properties can be demtatstsg drawing some sample
functions from the defined GP prior. In Figure @.2a number of different squared

exponential covariance functions have been definsithg different hyperparameter
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values, and the impact on the sample functions mirlram the prior can be seen in
Figure (4.2b).
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Figure (4.2): Chart (a) shows three different Squaed Exponential covariance

0

functions where the covariance k varies against thmput distance r. The Chart (b)
shows random functions drawn from the Gaussian proess with the same

covariance functions as Chart (a).

As expected, through increasing the size of thegtlescale hyperparameterf
(comparing the solid line versus the dotted lin@) ean see that the sample functions
have a tendency to vary much more slowly. Furtheemibirough reducing the size of the
61 hyperparameter we can be seen to restrict thécakescale of the variations of the
sample functions (comparing dashed line versusl swid dotted lines). Overall, the use
of the squared exponential covariance function iesphn assumption that the function to
be identified exhibits smooth and continuous betavwith a high correlation between

outputs and inputs in close proximity.

4.3.1.2) Matérn Class of Covariance Functions

Whilst the squared exponential function can be seebe the most widely adopted
covariance function, due to the infinitely diffeteble nature of this function there is an
implicit assumption that the underlying functiontes be smoothly varying. This is a
strong assumption that must be substantiated firoon knowledge of the system or from
empirical data. Therefore, a facility that allowkeas stringent prior assumption over the

smoothness or differentiability of the underlyingétion can be seen to be an attractive
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possibility. A control over the relative smoothnessdifferentiability of the GP prior

probability is a feature of the Matérn class ofaance functions, sees Table (4.1).

The Matérn class of covariance functions is giverthe expression in Table (4.1) where

v and ¢ are positive parameters, atq is a modified Bessel function. The parameter

v can be seen to control the differentiability oé tsample functions. Ag — o the
Matérn form approaches the squared exponentiahifielfy differentiable) covariance
function discussed above. In the text by Rasmusseh Williams (2006) the most

interesting cases for machine learning purposestated asy =3/2 andv =5/ 2:

K, (r) = (1+g] ex;{—%) (4.4)
K,=s/2(F) =(1+§+%§] ex[{_gj (4.5)

In Figures (4.3) and (4.4), both of these covarafunctions (forv =3/2 andv =5/2)
are displayed with two different length-scale hyaeameters, together with sample
functions drawn from their respective priors. Agaithe manipulation of the
characteristic length-scale hyperparameter canee@ $0 have a great effect on the
overall smoothness of the resultant sample funstidn comparison to the squared
exponential covariance function, the covariancelmmade to decay much more rapidly
resulting in sample functions that can become 8aamtly less smooth and therefore less
differentiable. Furthermore, as the hyperparameter is increased from=3/2 to

v =5/2 there is a slight reduction in the roughness efgample functions. This is in
keeping with the earlier statement that as» « the Matern form will become
equivalent to the squared exponential. In RasmuasdrWilliams (2006) it is stated that
for cases where >7/2 the processes will be difficult to distinguishfrane another,
and indeed that of the squared exponential.
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Figure (4.3): Chart (a) shows two different Matérn (v=3/2) covariance functions
where the covariance k varies against the input diance r for two different length-
scales. The Chart (b) shows random functions drawifrom the Gaussian process

defined by the same covariance functions as Charay
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Figure (4.4): Chart (a) shows two different Matérn (v=5/2) covariance functions

where the covariance k varies against the input diance r for two different length-
scales. The Chart (b) shows random functions drawifrom the Gaussian process

defined by the same covariance functions as Charay

Thus, it can be seen that through the use of th&mdacovariance function we can
express a lack of prior knowledge about the sanfphetion differentiability. This

proposal for more control over the relative differability of the covariance functions is
supported in the text by Stein (1999), where th®ngt smoothness assumptions
embodied by the squared exponential covariancditmare questioned from a practical

and asymptotic perspective.
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4.3.1.3.) Exponential, y-Exponential, and Rational-Quadratic

Covariance Functions

In the case wherer =1/2, the Matérn form can be seen to be equivalentht t
exponential covariance function also given in Table (4.1). Asresult, the sample
functions drawn from a process defined by the eegptial function can be made to be
highly non-smooth and therefore non-differentiabfgéom the exponential class of
covariance functions the Ornstein-Uhlenbeck proeessd to model the velocity of a
particle in Brownian motion can also be definedfiu&her class of covariance functions
given in Table (41) is thg-exponential This class of function is equivalent to the
previously discussed Squared-exponential covariéumeetion wheny=2, but is not MS

differentiable for y<2. As a result, Rasmussen and Williams (2006) stia&¢ this

family of covariance functions is less flexible thine Matérn class.

The Rational Quadratic (RQ) covariance functionegivn Table (4.1) is an interesting
covariance function as it can accommodate sevéralacteristic length-scales. Due to
this property, the RQ covariance function can herpreted as a scale mixture or infinite
sum of squared exponential covariance functions$ wlifferent characteristic length-
scales. The RQ covariance function exhibits the esaniinitely MS differentiable
properties of the squared exponential covarianoetion.

4.3.2) Non-stationary Covariance Functions

The most simple non-stationary covariance functi@meussed in Mackay (1998b) is the

one corresponding tolmear trend.
D
Kin (X, X{0,,, ) zza\/zvxdxd-i-ai (4.6)
d=1

This linear covariance function can also be gerssdlinto Dot Product covariance
functions as discussed in Rasmussen and Willia®@36(2 where polynomial covariance

functions can then be defined:
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K(X,X") = (XeX") = (ZD: X x'djp 4.7)

However, this polynomial is not thought to be pararly useful for regression

problems, as the prior variance will become vergdawith |x| as|x|>1.

One of the inherent assumptions of the previousbcu$sed stationary covariance
functions is that the length-scale is to be fixadall directions. This is obviously not
going to be the case for all systems and a norestaly covariance function with the
ability vary the length-scale as a functionxofias been proposed in Gibbs (1997). This
spatially varying length-scalecovariance function defines an arbitrary posifivection
£,(x) of the input:

N N THES) %~ Xo)
k(x'x)'ﬂ(ef,(x)wﬁ(%)j ’{ Z; d(><)+zd(><)j (4.8)

A further alternative non-stationary covariance cdtion is the neural network
covariance function discussed in Williams (1998) &asmussen and Williams (2006),

but based on the Bayesian neural network reseatstdfin Neal (1996). In defining this
function, the input vector is augmented &s=(1,x,...,% ), and the hidden layer
transfer function used is the error functibfz) = erf( 2, rather than a more common

sigmoid neural network function such th(z) as this is not found to be positive

definite,

(4.9)

oToo
kNN(x,x'):Esin‘l( X 2X j
T

(1+ X ZX)(1+ K T5K )

This covariance function can also be of use inltagkoroblems where the length-scale
is to vary across the input space. In RasmussenWitihms (2006) this function is
successfully applied to a static step data prolflenslow varying steady-state followed

by a rapid input transition).
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In the research of Paciorek and Schervish (200dhdu non-stationary covariance
functions are proposed that are generalisation&ibbs’ spatially varying covariance
function. Furthermore, a non-stationary versiorthef Matérn covariance function was
outlined, thus allowing control over sample funntidifferentiability to be combined

with control over length-scale variance.
4.3.3) Combining Covariance Functions

Due to the properties of the Gaussian process jpossible to combine different
covariance functions in order to define new statrgnand non-stationary covariance
functions. As a result, different aspects of thalimearity of the underlying function can
be treated by individual kernels and combined imtglobal covariance function. This
facility is discussed in both Mackay (1998b) andsiRassen and Williams (2006).
Furthermore, an informative example is providedRasmussen and Williams (2006)
where a number of covariance functions are combtoadirds the identification of a

complex nonlinearity composed of a number of défercontributing nonlinearities.
4.3.3.1) Sum of Covariance Functions

Fundamentally, a sum of kernels can be seen to kel itself. If a random process

f(x)=f,(x)+ f,(xX) where f(x) and f,(x) are independent, then the kernels that
generate them can also be combir€d,x’) =k (x,x")+ k,(x,x") and be considered a

valid covariance function. This construction candsen to be particularly useful for
application in nonlinear problems where a numberdiffierent characteristic length-
scales can be observed, and therefore has simgarib the Rational Quadratic

covariance function.
4.3.3.2) Product of Covariance Functions

Similarly, a product of two kernels can be seebddkernel. Ifk (x,x") andk,(x,x") are

covariance functions on the same input space thmy tcan be combined as

k(x,x") =k (x,x")k, (x,x"). For covariance function over different spackgx,x") and
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k,(y,y"), a product space can be definedzs(x,y), and the covariance functions

C(z,2) =k (x x)+ k,(y,y") andC,(z,z") = k(X X)Kk,(y,y") may then also be defined.

Further discussion of these possibilities can bmdoin Rasmussen and Williams (2006),
but from an overall perspective we can see thiscéd with complex nonlinearities, the
possibility exists to break the problem down intmstituent nonlinear contributions and
devote an individual covariance function to tackdEch component. From this point an
additive model may be defined through utilising iwdual covariance functions as
building blocks for a more global representatiors & result, this feature of the GP
modelling approach can be seen to be particularlkeeping with the divide-and-
conquer approach that has been adopted in othehodgtof nonlinear system

identification.
4.3.3.3) Vertical Rescaling and Convolution

A straightforward method of transforming a giveatsmary covariance function into a
non-stationary version is to introduce another fiamc a(x), giving

C(x,x)=a(x)k(x,xYa(x". This method can also be used to normalise kernels

Furthermore, Mackay (1998b) discusses the poteakimts to convolve (or ‘blur’) an

existing covariance function to generate a new tmeugh integration with an arbitrary

kernel h, ieC(x x)=[dydy I x Ykyy oy *

4.3.3.4) Nonlinear Mapping (Warping)

A further alternative method of implementing a rstationary solution is to employ an
arbitrary nonlinear mapping (also known as warpmwighe inputu(x) to handle the non-
stationary nonlinearity of the function in tanderithnaa stationary covariance function to

operate inu-space.
C(x,x) = k(u(x),ux)" (4.10)

As the original input spaceneed not exhibit the same dimensionality as th#te@new

u-space, we are free to use whatever input mapgimgast conducive to identifying a
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satisfactory model. This facility is demonstratadMackay (1998b) to define a periodic
random covariance function. Examples of this stpatean be found in the paper by
Sampson and Guttorp (1992), and in Gibbs (1997 yevtiee nonlinear mapping strategy
is contrasted with the previously mentioned spigtighrying length-scale covariance
function. A more in-depth analysis of ‘Warping’ cafso be found in Snelson et al.
(2004) Snelson (2007). Furthermore, in Girard (9Gpirical data collected from a Ph
Neutralisation plant is first modelled using a &nenodel, with the subsequent residual is
then modelled by a stationary GP model defined withsquared exponential covariance
function. In this example, the strategy taken i$ twoactively 'warp’ the covariance
function to identify a new covariance function, hatmodify the input space data in a
manner that allows the easier implementation aflsssquent GP model (i.e. to define a

set of latent input variables).

Through the use of this nonlinear mapping strateégg, potential exists for the GP
modelling approach in its most common form (i.estationary GP defined using a
Squared Exponential) to be combined with other Miodestrategies to form a hybrid
representation. Such a hybrid approach may becp&tly useful for problems where an
existing but somewhat inaccurate model (such aanatytical model derived from first
principles) can be combined with the powerful déti&en approach of the GP model. As
a result, the overall interpretability of the origl description may be somewhat retained
and then combined with the simplest and most ineé¢aiple form of the GP model acting
as a corrective device. This may be an attractiterrative to the use of more complex
non-stationary covariance functions, which may dss linterpretable and more difficult

to train due to the potential for a greater nundfdryperparameters.
4.4) GP Model Optimisation

Due to the probabilistic nature of the GP modek topular model optimisation

approach where model parameters, and possiblytlasmodel structure, are optimised
through the minimisation of a loss function definederms of model error (e.g. mean
square error), is not readily applicable. Furtheen@as GP modelling has also been
described as a Bayesian probabilistic method, bagtnitistic approach to the optimisation

of the model would seem appropriate. Fortunatelg, ave already discussed the
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framework for Bayesian learning in the previous ptea Essentially, instead of
minimising model error, it is the probability ofeghmodel that is to be maximised.
Therefore, after the selection of an appropriateradance function, it is the
hyperparameters of this function that must be apBoh to accurately reflect the

correlations present in our observed training data
4.4.1) Optimising Hyperparameters

The overall problem of learning unknown parametéem data can be seen to
correspond to the first level of Bayesian inferedseussed previously. The overall goal
of this first level of Bayesian inference was totab the predictive distribution

P(ty. |ty Xy » Xy ) Of the new targeits given the training data (t, X) and a new input

Xn+1. 1N order to realise this posterior distributioa, prior distribution over the

hyperparameters can first be defin®@é|t,, X, ), followed by the integration of the

model over the hyperparameters
P(tyan tys X Xa) = [ Plus 16,80, Xy, %01 )PE 4, X)) @ (4.11)

As discussed in the previous section on Bayesiadettiog, the computation of such
integrals can prove difficult due to the intraceblature of the nonlinear functions. One
solution to the problem of intractable integralsasadopt numerical integration methods
such as the Monte-Carlo approach. These numericathads offer considerable
flexibility and accuracy of approximation. Unforately, significant computational
expense may be required in order to achieve acsiftiy accurate approximation. An
alternative approach based on the Maximum Likelthoptimisation method has also
been developed and is applied to maximise the malrdikelihood or evidence.
Therefore, by searching for hyperparameters thaimise the probability of the training
data, we are optimising the properties of the Gangsrocess prior that is to be used to
generate new predictive distributions. Both of &éhesethods are discussed below,
beginning with the Marginal Likelihood maximisatiapproach.
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4.4.2) Marginal Likelihood (Evidence) Maximisation

This method of optimisation is based upon the appibn of Bayesian inference and is
commonly referred to as Marginal Likelihood or ‘Hgnce’ maximisation, see Mackay
(1992c), Rasmussen (1996) and Gibbs (1997). THisnmation strategy dispenses with
the need for potentially time-consuming or compatslly intensive MCMC methods of
numerical integration with the computational burdealing linearly with the number of
hyperparameters. Instead, an approximation tontiegial is made through the use of the

most probablevalues of hyperparameteigp.
Ptyar [ty Xy X pa)= Pty 0 et w Xy X 1) (4.12)

The basis for the approximation is the assumptibat tthe posterior distribution
P@@|t,,X,) is sharply peaked arourfil,r relative to the variation in the predictive
distribution P(t,,, |t , Xy Xw.1.8). Therefore, this optimisation strategy relies uplos

identification of the most probable hyperparamefesm the training data, signified by
the posterior distributionP(@|t,, X, ). The inference of this posterior probability is

performed through the straightforward applicatib®Bayes’ theorem:
POty X )UPt, X\ 0)PO) (4.13)

where P(t, |X,0) is the marginal likelihood or evidence (or prolipiof the data),
and P(0) is a prior over the hyperparameters. Note tha pusterior probability has

been expressed as proportionality, rather than fasicion due to the omission of the

denominator that is independent of the hyperpararset

Overall, this Bayesian method of determining thpdrparameters can be seen to offer
significant advantages over other model selectiwh @ptimisation methods utilised by
alternative modelling approaches. In particular,peyforming optimisation through the
analysis of the marginal likelihood, the automatigplementation of Occam’s Razor
detailed in the previous chapter can be used talag complexity of the model and

thereby curtail overfitting.
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4.4.2.1) Marginal Likelihood Loss Function

The marginal likelihood componerf(t, |X,,0) of the previous proportionality has

been discussed in the previous chapter on Bayésaamng, and (assuming a zero-mean)

may be stated as:

P(ty ICy . {x}) =Ziexp(—§<tkc‘¢t N>] (4.14)

If we ignore the Prior over the hyperparamet(®) for the moment, we can restate the
marginal likelihood as a loss function that is ® rhaximised. The log of the marginal
likelihood is first taken for numerical scaling poses (note that the negative log

transforms this into a minimisation), resultinge loss function
L(®) = —%IogQCN |)—i2LtT\,C;1t . —ﬂz log(2r7) (4.15)

The three components of the log marginal likelihdaaction have interpretable roles as

described in Rasmussen and Williams (2006). Thg component that includes the

observed target data is%tLC;]t y and can be interpreted as a ‘data-fit’ term. Terent
—%Iog(]CND is dependent only on the choice of covariancetfanand the input data,

and may be interpreted as ‘complexity’ penalty. Tihal component—%log(Zﬂ) acts a

normalisation constant. The discussion exampleasniissen & Williams (2006) shows
that the ‘data-fit' term can be seen to decreasenatomically as the length-scale
increases. This is what would be expected, as arease in length-scale would be
symptomatic with a loss of flexibility in the modeBy contrast, the negative
‘complexity’ term will be seen to increase with mtrease in length-scale due to the

model becoming ever less complex.

Furthermore, the marginal likelihood itself will tieme more peaked as the number of

included training data points is increased. Thisnisagreement with what would be
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expected, as with more available data a betteglmsnto the underlying function will be
forthcoming, resulting in a more likely approxinmati Relating the marginal likelihood
to the length-scale, for problems where few poares available, the slope of the log
marginal likelihood is shallow as both short anttimediate values of the length scale
can be considered as consistent with the dathelid@ngth-scale increased to be larger
than 1, the marginal likelihood can be seen to etz rapidly as the model no longer
provides a good approximation to the data. Witgdaamounts of data, the ‘complexity’
term of the loss function becomes more severe lagr@fiore acts to discourage adoption

of length-scales that are too short, and theregjaseds against overfitting.
4.4.2.2) Gradient Calculations

The next stage is to find the maximum/minimum ak tloss function and therefore
locate the most probable hyperparameters. As weeardkavouring to locate the
maximum of the log marginal likelihood, this proses therefore equivalent to locating
the Maximum A-Posteriori (MAP) estimate of thissglibution. Therefore, given the
nonlinear loss functioh(8), we can analytically express the partial derixediof the log

marginal likelihood with respect to hyperparametess follows:

oL 1 ,0C 1 4,0C, _
% = _EtraCdCNl aHN ) +—2th Nla_HNC th N (416)

In order to perform these gradient calculationspalinear (local) optimisation algorithm
is required. Furthermore, it is important to ndtattthe calculation of the derivative of
the likelihood again relies upon the efficient céétion of the inverse covariance matrix.
As stated previously, the inversion of large masigs a computationally expensive
process of the orddD(N®). Therefore, to ensure that a viable optimisat®achieved,
the size of the covariance matrix to be inverted (Hnerefore the size of the training set)
must not be unfeasibly large. Once the inversioa been computed, the remaining
components of the log likelihood and its derivasiage less computationally demanding
being of the orde®(N?).

To perform the nonlinear optimisation, a conjuggtadients approach to the problem

has been successfully implemented to locate a lowtimum of the log marginal
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likelihood. In this thesis we follow the same implentation as Rasmussen (1996) where
a Polack-Ribiere version of the conjugate gradieméshods is utilised in tandem with
the Wolfe-Powell stopping conditions. Further imf@tion on various different types of
conjugate gradients methods can be found in Flet¢h@87, 1993). Compared with
methods relying upon MCMC integration, this conjigggradients approach can find a
reasonable approximation to a local maximum aféatively few function and gradient

evaluations.

4.4.2.3) Multiple Local Maxima

As with any nonlinear local optimisation based ba identification of local maxima, the
MAP estimation through the conjugate gradients wetmay be subject to problems
where the marginal likelihood is multi-modal. Incbucases the algorithm may become
stuck in bad local maxima that ultimately resultsa poor estimation of the most
probable hyperparameters. Fortunately, other reBees into the GP model, (Rasmussen
(1996), Gibbs (1997)) have found that for simplear@ance functions, the scale of the
problem presented by multiple local maxima is mhething that cannot be overcome if

a degree of care is taken over the optimisatioogatore.

Furthermore, it is worth remembering that thesera#itive local maxima are merely

different interpretations of the data. Therefooe,dpplications where the training dataset
is relatively small, a large number of potentiakenpretations of the data (and therefore
local maxima) will be possible as relatively litilgformation has been presented to the
optimisation procedure. However, given sufficierdtaj a more acute or obvious

interpretation of the data should begin to emergsulting in a local maximum that is

significantly larger than alternative modes. Aseault, we can then dismiss other local
maxima (interpretable as alternative models) asdo&ss likely. This can be seen to
relate back to the previous discussion regardiegatitomatic Occam’s Razor effect that
is inherent with optimisation through the margikletlinood.

In addition, further links between the type of coaace function being optimised and the
propensity for encountering problematic multipledbmaxima can be made. As more
complex covariance functions (consisting of mor@drparameters) are likely to offer

greater model flexibility, and therefore more pbssinterpretations of the training data,
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the potential for more local maxima should incredserefore, this might lead to further
problems finding the ‘most probable’ hyperparangtesing the marginal likelihood

maximisation technique. Thus, an alternative oation strategy, such as MCMC
methods detailed below, may be required for det@ngithe hyperparameters of more

complex covariance functions.

Nevertheless, we can outline strategies aimed ainmsing problematic multiple local
maxima. One possible strategy is to attempt maltiphs of the optimisation algorithm
utilising different initial values for the hyper@aneters. As the algorithm is dependant
on the evaluation of the partial derivatives of thkelihood, unsuitable initial
hyperparameter values that result in very smallivdéve values may cause
computational difficulties. Therefore, differentitial conditions could be either be
selected at random, or deterministically where va mpurposely avoid initial points of
the training data (or regions of operating spaba} have proven to be problematic.
Performing multiple runs of the optimisation prooszl may also prove useful if more
than one set of training data is available. In sagkere a number of viable alternative
sets of hyperparameters have been obtained, theds@tection of hyperparameters can
then be performed through analysing the performasfceach model through model

validation.

A further option for improving the optimisation medure is make use of the Prior

component of the Bayesian inference. So far, tha @ver the hyperparamete?(0)

has been ignored, and the marginal likelihood uasdin Maximum Likelihood
optimisation. Therefore, the role of the prior olgperparameters had been relegated to
merely being a set of initial values féyr. From a certain perspective, this dismissal of
the Prior distribution from the optimisation proceel can be seen to be somewhat
contrary to the spirit of Bayesian inference, athwait the inclusion of prior knowledge,
possible values for the most probable hyperparamdige that are incorrect or
inconsistent with the data or covariance functicayroe allowed. However, as discussed
in the previous chapter, the determination of &lgtgprior distributions based on ‘a
priori’ system knowledge is a difficult task. Onesgibility discussed in the research by
Neal (1996) and Gibbs (1997) is to employ Gammailigions as priors ovelyp.
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4.4.3) Monte-Carlo Alternative

Another possible optimisation strategy is to perfdhe integration ove# is through
using numerical MCMC methods as described in Wilkaand Rasmussen (1996), and
Neal (1997). The MCMC approach employs a Markovircha approximate the integral
together with sampling methods to calculate an @ppration to the overall predictive
distribution, as described by:

l T Al
P(tN+1 |XN+1’X NEY 1C(-)):?z P(tN+1 [ w1 X nb o C ()9 t, (4.17)
t=1

where thed; are samples drawn from the posterior distributwerd, P(0| X, t,C(.).

The resultant accuracy of the MCMC approximationrdé&pendent on the number of
samples taken from the posterior distribution dyeand as each term in this summation
is a Gaussian distribution, the MCMC approximatitm the desired predictive
distribution can be termed a mixture of Gaussi&usthermore, as we are sampling from
the posterior ove®, prior distributions over the hyperparamete®) will be required as

in the previous strategy based on the maximisatiadhe marginal likelihood.

Typically, in order to facilitate a good approxineet to the integral, a large number of
samples must be taken from the posterior. Therefttre adoption of the MCMC
approach carries a potentially high computatioradt,cespecially for problems where
large numbers of observations are included in thi@ihg set and must be stored as the
algorithm proceeds. As a result, methods to imptbeeefficiency of the algorithm may
be required. In particular, the method used to $armpm the posterior distribution over
0 will influence the efficiency of the approach, the samples taken from the posterior
must adequately represent the underlying distidiouti-or example, if a particular region
of @ space is not adequately sampled, the overall appadion to the integral will
suffer, especially if this region has a high asst@d probability.

A further step toward improving the efficiency betMCMC method for use in Gaussian

processes found in the work presented by Williamd Rasmussen (1996) and Neal
(1997), is the adoption of the Hybrid Monte-Carl@thod developed by Duane et al.

125



Chapter 4: Implementation of GP Models

(1987). The key objective of adopting this part@sumethod of MCMC is to avoid
random walk behaviour of the more popular Gibbs lslletiopolis sampling approaches.
The Hybrid MCMC is a stochastic dynamics samplingoathm that introduces an
auxiliary momentum vector (gradient information}iwivhich to move across the sample
space in larger steps and thereby sample fromdsepor more efficiently and converge

more rapidly to the target distribution.

4.4.4) Which Optimisation Method?

In the existing literature on GP models, a prefeeeffior the optimisation through
marginal likelihood maximisation has been indicatdd a result, it is the method
adopted in this thesis. Although this method fundatally relies upon an approximation,
and may be prone to difficulties associated witHtiple local maxima, given a decent
set of training data this method has been provepréwide very good estimates for
optimal hyperparameters. Furthermore, as well awiging sufficient training data
conducive to obtaining a good estimation of the tmm®bable hyperparameters, a
number of possible strategies (multiple restariferént initial conditions or express
priors) exist so that the problems associated withtiple local maxima may be
mitigated. Furthermore, the fundamental result pfirisation through the marginal
likelihood, where a set of most probable hyperpa&tans are obtained, is an attractive

result in itself, as it can provide the user withiasight into the data being modelled.

The marginal likelihood maximisation has a furthedvantage over the MCMC

alternative when examined in computational ternsoriuthe completion of the algorithm

only one set of final hyperparameters exist, legnarsingle covariance matrix that must
be stored and subsequently inverted in order toenpa&dictions. If further training data
points are to be included at a later date, only omwerse covariance matrix must
therefore be updated using the partitioned invergeations detailed previously. This is
not the case for the MCMC method where all the ig@enatrices must be stored if new
points are to be included, thus adding to the p@tecomputational expense of the
MCMC approach.

However, in terms of overall accuracy and flextlilithe MCMC method has potential

advantages. As the MCMC method gradually buildsosenexact approximation of the
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integral, for problems where more complex covamafumnctions are being employed the

MCMC may provide a better result. Furthermore, pooblems where the size of the

training set is relatively small and therefore #meount of matrices to be stored does not
prove to be infeasible, the performance of the MCME&thod may be preferable to that

of the marginal likelihood maximisation method.

4.5) Mathematical & Computational Implementation

In the identification of a GP model, we wish to styact a covariance matrix that defines
a Gaussian process with which to infer new tediptiens. This covariance matrix is to
be specified through the application of a covamarionction to a set of training
observations. In the discussion so far, we havetioreed the various choices of
covariance function that are available to us, togetvith strategies for the determination
of optimum hyperparameters from our set of trairdiaga. What has not been discussed
are issues relating to the actual training datésetf. Therefore, in this section the
requirements for this training dataset are to sewdised together with the computational
implementation of the GP model.

4.5.1) Size of the Covariance Matrix

As can be seen from the predictive equations (ZaAd)(3.41), the identification of a GP
model revolves around the specification and maaiput of the covariance matrix. As a
result, the GP modelling approach can be seen tpdptcularly susceptible to any
mathematical or computational difficulties found emhperforming matrix manipulation.
In particular, it is the inversion of the covarianmatrix that has been proven to be the
main source of difficulty in the GP modelling apach. The inversion of large matrices
is a well-established computational problem encenaat across many research fields
where large amounts of data must be analysed amdpuiated. Consequently, the
potential size of the covariance matrix to be itegris something that any researcher
must be conscious of. Furthermore, as the sizéetraining data set (N) dictates the
size of the resultant covariance matrixx{¥y, the number of observed data points
included in the training set must therefore be k&phin reasonable limits if the GP

model (as prescribed by the predictive equationg) be implemented directly.
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From a more fundamental perspective, we can aksdhsd by placing limits on the size
of the covariance matrix, we are also potentiadistricting the amount of information we
can include in the training dataset. Therefores thathematical constraint can be seen to
impact the potential flexibility of the GP modeltirapproach, e.g. for complex nonlinear
problems where thousands of data-points are nagetsadequately characterise the
system. Therefore, in recent years a variety ofhoug aimed at overcoming this
constraint on the size of the covariance matrixehla®en proposed. These strategies are

often referred to as Approximate Methods, and ateetdiscussed in Section (4.5.5).

4.5.2) Conditioning of the Covariance Matrix

Another implication of the mathematical framewofklte GP modelling approach is that
in order for the inversion of the covariance matri® remain accurate and
computationally viable, the matrix to be invertedsnnot be ‘ill-conditioned’. The term

‘ill-conditioned’ matrix relates to the condition number of a matwhich provides a

measure of stability or sensitivity of a matrix dertain numerical operations (i.e. how
numerically ‘well-posed’ is the problem?). A low ratition number is indicative of a

problem that is ‘well-conditioned’, ‘too large’ awedition number is indicative of ‘ill-

conditioning’, and an infinite condition numberimlicative of a matrix that is singular
and therefore does not have an inverse. A furtbpe@ to the conditioning requirements
placed upon the covariance matrix has been outiimélde previous section detailing the
theory of various covariance functions. In order & valid Gaussian process to be
defined and subsequently used as a Prior with wiaichfer predictions, the covariance
matrix must be Positive Semi-Definite (PSD) in orde ensure consistency. In the
simplest terms the constraint for PSD can be masi\yeinterpreted as the requirement

that the eigenvalues of the covariance functiontrhesion-negative.

Therefore, we have a constraint fundamental td@Retheory that the covariance matrix
must be conditioned to be PSD, and a practical tcmins on the conditioning of the
covariance matrix that it may be suitably condi@dnfor numerical manipulation.
Furthermore, these two conditioning requirements ¢ seen to be somewhat
complimentary, and therefore difficult to decoufslan one another upon examination of
the matrix. However, by ensuring positive semi-diéfiness we should also go some way

to ensuring a well-conditioned and therefore inbéEtmatrix.
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One aspect of ensuring that the covariance mairappropriately conditioned to meet

the PSD requirement is to employ a valid covaridnoetion as described in the opening
sections of this chapter. However, the charactesisif the training data to be utilised by
the chosen covariance function also play an imporiae in determining whether or not

the resultant covariance matrix is suitably coodiéd. Furthermore, as well as ensuring
that the type of data included in the training datas conducive to the construction of a
valid GP model, the training data collected musbaheet the demands of the system
identification task to be undertaken. Thereforeanigg an appreciation of the potential

problems associated with the inclusion of particulpes of data (e.g. steady-state,
rough, smooth, oscillatory etc.) in the trainingag®t would be a useful step in ensuring

the successful implementation of a GP model.

4.5.2.1) Dealing with Non-Positive Definite Matrice

As discussed previously, the covariance matrixdogbnerated from the application of
the covariance function to the training data muestPlositive Semi-Definite in order to
meet the consistency requirements of the GP mdadether words, the eigenvalues of
the covariance matrix must be non-negative. Theeefib we can identify the cause of
negative eigenvalues in the covariance matrix we hagpefully take steps to eliminate
their presence and ensure a suitably conditiongdxna good resource for dealing with

this problem of Non-positive definite matrices ioifke (1993).

4.5.2.1.1) Negative Eigenvalues from Problematic bm

One of the principal causes of negative eigenvalaed therefore matrices that are not
positive definite, is the presence of unsuitabl&ada the training set. In particular, the
presence of equilibrium or constant data in thenimg dataset can be a major
contributory factor in the definition of a not ptwge definite matrix. If a variable can be
seen to remain almost constant (such as when iliagattte steady-state response of the
system under identification), it will exhibit zenariance and result in a covariance
matrix that may be non-positive-definite. Furthevariance matrix problems may also
be encountered where a near perfect linear depepden correlation) exists between
two variables. Therefore, from an overall perspective can see that the conditioning

requirements placed upon the covariance matrix haotential implications for the
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nature of the types of system response data weeeally utilise. This in turn will have

implications for the experimental design aspecthefsystem identification process.

4.5.2.1.2) Eigenvalue Decomposition

A possible strategy for diagnosing the cause ofrimatonditioning problems is to
perform an eigenvalues decomposition of the comagamatrix. Through this analysis,
we may be able to locate problematic training casektherefore make adjustments to
the training dataset more easily. Furthermore,goeting such eigenvalue decomposition
may also be of interpretable benefit if the GP nhagléo be viewed through the weight-
space interpretation of Rasmussen and Williams gROGGoftware development
environments such as Matlab, should allow the gitéorward computation of the
eigenvalues of a given matrix. Furthermore, thedd@mn number of a matrix may also
be computed and thus establish whether or not aixmigt indeed ill-conditioned.
However, the size and dimensions of the matrix éocbmputed may impact on the

viability of conducting this kind of analysis repedly.

4.5.2.1.3) Training Data Pre-processing

As an alternative strategy to performing eigenvalaeomposition, it may be possible to
identify problems in the training dataset by simphaintaining an awareness of the
empirical data that is to be included. Therefarepay be possible to tackle conditioning
problems that result from problematic data (sucpraknged steady-state response data)
directly without resorting to further computationalanipulation. However, for more
complex implementations where the nature of a mualé of inputs must be accounted
for, it may not be particularly straightforward detect exactly the cause of conditioning
problems, or determine possible remedies. One Ipessirategy would be to add each
input dimension to the covariance matrix in turilgt maintaining an awareness of the

conditioning of the matrix at each stage.

Moving forward, once a problematic region of da#s been identified, the next stage to
be tackled is to determine what course of actiomukh be taken. The most
straightforward approach would be simply to remawy data points from the training
dataset that are causing conditioning difficulti¢aurthermore, as we also have
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constraints on the overall size of the trainingadat to meet, this may prove to be a
sensible approach. In the case of equilibrium datd as that resulting from a prolonged
steady state response, these training cases cantebgreted as repeated and therefore
redundant data, and therefore prime candidatesefmnination. However, before
removing any data from the training dataset therallverinciple that we are also
potentially removing relevant information from tmeodelling process must also be
appreciated. For the case where we wish to elimimguilibrium data, the potential
exists to be too aggressive with the removal p®ceesulting in the loss of important

information in the transition between transient atehdy-state operating regions.

A further option in attempting to improve the cammhing of the covariance matrix is to
gain an appreciation of the noise level of the ulydeg system or function. For a system
response that exhibits a high level of noise, prgéml periods of constant or repeated
data would seem to be improbable. As a result, rdmultant conditioning of the
covariance matrix may not be as adversely affelbjeperiods close to equilibrium. This
is something that can be used to our advantageighrthe introduction of a random
element or ‘jitter’ to the raw empirical data whehe level of noise present in the data
can be increased so as to combat any conditiomhegseencountered. The addition of a
small ‘jitter’ term or ridge adjustment to the disal elements of the covariance matrix
acts to attenuate the estimated dependency betvwar@bles, and has been shown to
improve the overall conditioning of the covariamoatrix in Neal (1996). Furthermore,
this strategy can be seen to be equivalent toitlye regression regularisation methods
that are often used in other modelling approadBésourse by introducing noise, we are
also potentially introducing error into the modékrefore such a ‘jitter’ term should not
be inappropriately large and be in keeping with tékative magnitude of transitions
observed in the system under investigation.

Overall, we can see that the specification of adgtaining dataset can prove to be a
challenging aspect of the GP modelling approach thay involve significant pre-
processing of the empirical data. Not only must tilaéning dataset be of a reasonable
size, but also appropriately conditioned so as teetmthe requirements of the
mathematical framework of the GP model. Furthermorne can see that such
requirements have significant implications for ehgerimental design procedure utilised
to collect the training data in the first place.
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4.5.3) Implications for Experimental Design

At this point we have established the impact that peculiarities of the mathematical
framework of GP models can have on the size anditon of the covariance matrix.

Furthermore, such requirements can be seen to dexteeir influence into the

experimental design process that is to be adoptedder to generate the training data. In
much of the current literature devoted to the GRl@tiomg approach this is an aspect that
has not been discussed in great detail. This isginy due to the statistics and machine
learning origins of the method where the desigrthef training data set may not be
something that the researcher has complete comiesl However, the objective of this

project has been to provide guidance for the implalation of GP models towards
system identification tasks, and as a result th&gdeof experimental procedures to

collect data is something that is of fundamentadantance.

In the previous discussion, the size of the comagamatrix has been identified as a
potential source of implementation problems dueht® algorithm’s need for repeated
matrix inversion. As the size of the covariance nrais dictated by the size of the
training dataset, this constraint can be seen @ laadirect influence on the choice of
sampling rate employed in the collection of datarfra system. Through the existence of
an upper limit on the size of the covariance matne may be forced into choosing a
sample rate that would be lower than normally revemded by standard system
identification procedures (e.g. rules of thumb lbase the limits associated with Nyquist
sampling theory) so as not to include excessiva.dafurther pressure on the choice of
sampling rate comes from the knowledge that largentities of equilibrium or repeated
data can have a detrimental effect on the conditgof the resultant covariance matrix.
This result can be due to an overly high samplatg where a large number of points are
collected resulting in data points so close togethat any variance is diminished,

therefore affecting the conditioning of the covada matrix.

Nevertheless, the choice of sampling rate must ladsadequate to meet the demands of
the system identification task. Fundamental in ttask is that we retain enough
information within the sampled data so as to adedyarepresent the underlying
function, i.e. we can capture the dominant nonliiea exhibited. Furthermore, another

important facet to the development of a good matitma model is that, through the
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experimental design process, we attempt to gatheruch information about the system
as possible. In essence, we would wish the traidiaigset to cover as much of the
operating range of the system as possible. Therefermust balance the demands for a
reasonably sized training dataset with the requergmthat as much of the operating
range be included, and indeed sampled in a mamas 40 adequately represent the

behaviour of the system.

We can now move on to consider the impact of thelitmning requirements of the GP
approach on the experimental design component efsttstem identification process.
Previously we have pointed to the potential forilgium or steady-state data to cause
conditioning problems in the covariance matrix. Foe identification of engineering

systems this would appear to be a serious prokdsnthe empirical data gathered from
such applications routinely includes both equiliomi and transient behaviour as the
system is moved through various operating pointgthérmore, many systems are
explicitly designed to remain in relatively staldperating regions so as to facilitate
manual or even automatic control. These operationastraints therefore present further

challenges to the design of the training dataset.

Furthermore, the types of excitation signals tmatraadily employed to gather response
data are also very likely to include periods ofstant or equilibrium data as, in seeking
to identify nonlinear dynamic systems, researclaten design inputs that elicit a
response that takes a significant time to devdtopexample, in response to a step input,
a system may have an initial transient or oscillatzehaviour, leading eventually to a
steady-state response. For the identification ©f $lystem, all of this information will
need to be captured in order to fully charactetigesystem response. Similarly, many
engineering systems may exhibit a delay in theaesp to an input (dead-time), or a
saturation of the output in response to an inpualll of these cases, the potential for the
inclusion of steady-state or constant data inthi@ihg set is great, especially if previous
inputs or outputs are to be utilised as regres3angs, whilst the presence of equilibrium
data in the training dataset and the impact onctmgitioning of the covariance matrix
may be easy to identify, strategies to overcome pinoblem whilst holding true to the
demands of the system identification task are rekefleis problem is not something that
IS unique to identification using GP models as mantlger modelling approaches
(including linear regression) are also subject &irm conditioning problems that result
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from incompatible training data. The main soluttonthis problem is to ensure that the
experimental procedure employed endeavours toesiod system sufficiently so as to
ensure the empirical data collected does not aorgeslonged periods of steady-state
data. In the next chapter the problems associatidtine pre-processing of training data
and its impact on experimental design procedurescabe investigated with a number of
practical examples. However, at this point, the potational implementation of the GP

model is to be discussed.
4.5.4) Direct Implementation of the GP model

If we now assume that a well-conditioned covariamegrix has been constructed we can
look into the direct implementation of the GP modelthe direct implementation of the
GP model the goal is to compute the predictive ggos (3.40) and (3.41) exactly.
However, as discussed previously, the size of therance matrix as dictated by the
number of included training points (N) can prové&computationally challenging. This
is due to the repeated multiplication and inversidrthe potentially large covariance
matrix that is required not only by the predicteguations, but also by the optimisation
techniques discussed previously. A number of dffer'approximate’ methods have
been proposed that deal directly with the size twams of the GP modelling approach

and these are discussed in the next section.

Before discussing the precise details of the dimplementation it is also first useful to
discuss the computational limits that have beeabdished for this direct implementation
of the GP model. For the GP modelling approach,otferall computational burden for
the direct implementation has been estimated@¢®) by Rasmussen and Williams
(2006). This has led to the recommendation thatdige problems (N>10000), further
approximation methods (described in the next sertshould be adopted. Earlier texts
by Mackay (1998b) and Gibbs (1997) put a feasitohgt lof (N<1000) points upon the

size of the covariance matrix. In my own experiemg@king with data sets for the

identification of dynamic engineering applicatioriee lower limit of (N<1000) data

points is more realistic for those working with eage desktop PC computational

facilities.
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An exact implementation of the GP model predictaepiations outlined in Gibbs and

Mackay (1997) is as follows:

The predictive equations to be computed are

tN+1 = kL+1C_l\l]t N

2 _ o, LT ~-
JN+1 =Kk -k N+1C le N+1

Given a new test inpuiy.1, to calculate a single predictidg,,, the following procedure

can be followed:

1) Construct the vectok,, = [C(xl'x N+1;9) oo ,C(x nX Nﬂ;ﬂ)}

2) Invert covariance matri>xCy
3) Calculate the vecton =C't
4) For the mean prediction, find the dot proddgt, =k7,,v

5) Evaluate covariance of test inpit, = C(X,,,; X.,:0)

6) Calculate the scalak,,,C 1K .

7) Subtract for variance predictiody,, = K =K 1,,C K .1

For subsequent test inputsy., and so on, to calculate new predictions only the/ n
vectorkys, need be constructed, as the veetavill not have changed. Therefore, after

the initial test input (where the matrix must fitet invertedCy" and applied to a vector
tn), the calculation of the remaining prediction zon requires only the evaluation of
the dot product, i.efy,, =k},,v, to be repeated, therefore reducing the remaining

computational demand to around thaOgN).

With regard to the implementation of the Margingkdlihood maximisation algorithm
used to find the most probable hyperparamefiges, we can also see that that each
calculation of the gradient of the log likelihooeuires the inversion of the covariance
matrix. Gibbs and Mackay (1997) break down eacHuewi@n so that they require 4
matrix to vector applications, and 1 dot produdtuiation. However the evaluation of
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4, 0C : .
trace(Cy; 66';) can be seen to avoid a full calculation@f as the trace operator only

requires diagonal elements.
4.5.4.1) Using Matrix Decomposition

Whilst this direct method of implementing the GPdabhas significant computational
disadvantages due to the need for the repeatedciéxplhersion of the covariance
matrix, a further disadvantage is that through tmsersion and the subsequent
application and dot product computations involvihig matrix the overall accuracy and
computational stability of this method can becommpromised. This is due to potential
for ill-conditioning in the covariance matrix, ascussed earlier. As a result alternative
methods for the direct implementation of the prisdicequations have been developed
so as to avoid the need for the explicit inversabrine covariance matrix. Rather than
attempt the direct inversion of matrices (involvitige definition of an adjugate matrix
divided by the determinant), alternative methods tkly upon the decomposition of the
covariance matrix can be adopted to help mitigdie potential for numerical

inaccuracies and ultimately lessen the computatiexyaense.

The LU matrix decomposition method applied in Gilsl Mackay (1997) allows a
square matrix to be decomposed into upper and Iormgrgular matrices (of identical
size), allowing more rapid inversion of these spralmatrices and subsequent
multiplication (i.e. C' = U'L™). Furthermore, the authors reported that numegnalrs
were reduced through the adoption of this decontiposi Nevertheless, such
decomposition still employs inversion techniqueatthan prove time-consuming for
large datasets. A further alternative is to takeaathge of the requirement that the
covariance matrix must be symmetric and positivenisiefinite, and implement
Cholesky decomposition of the covariance matrixead. The Cholesky decomposition
is a special case of LU decomposition that alldwesdecomposition of a square positive
Hermitian matrix into the product of the lower trgular matrix and its transpose (i.e.
C=LL"). The use of Cholesky decomposition has been remmed in Rasmussen and
Williams (2006) as it has been shown to be bottefaand more computationally stable.
Furthermore, through the implementation of Cholediegomposition in development

environments such as Matlab, a check on the comdityy of the covariance matrix can
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be performed. Therefore, the underlying softwarg generate a potentially informative

error message when the conditioning of the covaeanatrix has deteriorated.

The text by Rasmussen and Williams (2006) has geavihe following useful guide for

implementing the GP predictive equations using €$lof decomposition:

Applying Cholesky decomposition, we can generate=LCholeskyK). For the

calculation of the predictive meafy,(, =k },,,Cut ) we first simplify this equation into
the form {,,, =k].,0 where a=Cgt,. Then through substituting the Cholesky
decomposition C,, =LL") and solving fore, we find a=L"\(L\t,). We can then
express the predictive mean gs, =k|,,a. For the predicted variance, we can make
further use of the Cholesky decomposition and @efir L\k ,,, and then express the

variance awr;,, =k -V'V.

4.5.5) Approximate Implementations of the GP model

In the direct implementation the GP model the ovemmputational demand can be seen
to scale with the size of the training datasethe order ofO(N°). As a result, the

implementation of this direct approach presentgyaifscant difficulty for those working

on problems that involve large quantities of d&arthermore, the computational load
required by the method may prove to be beyonddhasers with access only to average
desk-top computing facilities. Therefore the depetent of methods aimed at reducing
the computational demands of the GP modelling atrdhave received a great deal of

attention and remain a focus of ongoing research.

As discussed previously, the predictive equatiohshe GP model involve both the
storage and inversion of a potentially large cavuage matrix. Furthermore, the

implementation of the direct method can be seemetmlve around the problem of

solving the linear systeniK +¢?l)v =y for v, (Note that for consistency with existing

literature we have substituted tiiis + 1) for the previously use@y which assumes

Gaussian independent noise, grdr targetdy).
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In tackling this problem of reducing the computatibdemand, a number of different
approaches have been developed. Useful reviewlsesttapproximate methods can be
found in Seeger (2003), Rasmussen and Williams@R88d Quinonero-Candela et al.
(2007). The review paper by Quinonero-Candela.ef28l07) builds upon that found in

Rasmussen and Williams (2006) in providing a unifyview of the techniques used to
approximate the GP model for regression. The forpegper states that the various

options can be generally categorised into two tbfieapproaches to the problem:

1) Using Fast matrix-vector multiplication method¥l(M ) to approximate the
direct implementation of the GP model.

2) UsingSparsematrix methods to approximate the covariance matri

In this section an overview of the main ideas beéhirese approaches has been provided,
rather than a full mathematical exploration.

4.5.5.1) Fast Matrix Vector Multiplications (MVM)

The primary cause of the demanding computationguirements of the direct
implementation of the GP model has been isolateétie@seed for the repeated inversion
of the potentially large covariance matrix (or tlelution to the linear system

(K +0?l)v =y forv). As a result, efficient computational methods eihat solving this

problem and therefore speeding up GP regressioa hagn proposed. The fast MVM
methods proposed in Wahba (1995) and Gibbs and &§a(1997) tackle this problem
through the use of iterative methods such as catgugradients. The paper by Gibbs and
Mackay (1997) takes its inspiration from the methpdoposed by Skilling (1993), and
provides a detailed resource for the reconfigurabb the GP predictive equations and
the maximum likelihood optimisation loss functionta expressions that avoid the
explicit inversion of the covariance matrix. Ovérahe number of iterations of the
conjugate gradients method completed can be sedictie the computational demand
of the fast MVM method. Every iteration of the cogate gradients method has a
computational demand of the order ®n?), however an approximate solution can be
arrived at if the algorithm is terminated aftettdrations, giving an overall computational
demand oD(kn?).
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With regard to the overall task of improving themguutational efficiency of the GP
model, the reviews of Quinonero-Candela et al. 208nd Rasmussen and Williams
(2006) are somewhat dismissive of this option. Tikigorimarily due to the overall
computational demand incurred by the deploymernthese methods still being seen to
scale nonlinearly a®©(n?), and thus not offering the computational savitlyst are
desired. As a result, the fast MVM methods havenbstated as being of the most

potential benefit for problems where the numbenptit dimensions is relatively small.

4.5.5.2) Sparse Matrix Methods

The most straightforward method of reducing the potational burden of the GP
approach is to restrict the size of the trainintaset and therefore reduce the size of the
covariance matrix. This most obvious of stratedias been named the Subset of Data
(SOD) approach and entails the definition of a stib§the training dataset for use in the
construction of the covariance matrix. This apphoiacto be discussed below, but suffers
from the fundamental drawback that through the ielaton of training data from the
training dataset we are of course potentially thngnwaway valuable information about
the underlying system and therefore compromising plerformance of the resultant

model.

Therefore alternative methods to “sparsify” the axtance matrix have been proposed.
The idea here is somehow to retain the bulk ofittiermation contained in the full

training dataset, but reduce the rank (i.e. thebmof linearly independent rows) of the
resultant covariance matrix so as to facilitate ess| computationally demanding
implementation of the GP model. These sparse mstland to approximate the full

posterior and therefore the predictive equationghef GP model through the use of
expressions that involve matrices of lower rank n (wherem is the rank of the sparse

covariance matrix, analis the rank of the full GP covariance matrix).

In Rasmussen and Williams (2006) the discussiompgroximate methods for large
datasets begins with a proposal for a method f@rawing computational efficiency
through the eigendecomposition of the GP model élerids a result of this
eigendecomposition, a method of reducing the ramkamgance matrix may then be
forthcoming. However the discussion points out tiat problem of approximating the
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kernel in terms of eigenvalues and eigenvectoes gemputationally demanding one in
itself, and may therefore negate any resulting fieimethe subsequent implementation
of the GP model prediction framework. Therefore,thods aimed at reducing the
computational demand of eigendecomposition areqa®eg as a possible way forward.
One such method is the Nystrom approximation desdrbelow, but before examining
the details of the various methods, a discussidhetubset selection procedures used to

define each sparse method is required.
4.5.5.3) Subset Selection

In constructing a reduced rank or sparse versighetovariance matri (note that due
to the potential modification of the covariance nxait may be more correctly termed as
the Gram matrix) the first step is the selectioma&ubset of datapoints. The selection of
this ‘included’ or ‘active’ subset of data can bees to be something common to all
Sparse methods, where the included latent variabskedo be treated exactly by the GP
model framework and the remaining variables arebéo approximated by a less
computationally demanding method. This means tinalike the previously mentioned
Subset of Data (SOD) method, the data not includethe subset is not going to be

completely eliminated from the approximation.

This subset of data is to be of sime< n, wheren is the size of the overall training
dataset, and is denoted kgas in ‘included’ datapoints) in Rasmussen andlisyiis
(2006), with the ‘remainingh— mdatapoints then said to form the &etlf the training
datapoints are then assumed to be ordered in aenanorthat the subskt@ppears first,

the matrixK can be partitioned without loss of generalitytasfbllowing:

K K
K=[ ™ i j (4.18)
(K(n—m)m K(W m( " m

where the topmx n block can also be denoted tokas, and its transpose &S,

In the review by Quinonero-Candela et al. (2008)ightly different perspective is taken
where the active set is known as a set of ‘inducuagiables. This review paper builds
on the previous account by Quinonero-Candela argmBsasen (2005) that sought to
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provide a unified view of the various sparse matngthods that had been developed.
This is achieved through the reinterpretation & Yarious sparse methods as “exact
inference with an approximate prior”, rather th&we tmore common interpretation of
“approximate inference with the exact prior”. Asresult the ‘effective’ prior being
employed by each algorithm can be computed fromathedysis of the posterior. The
overall objective of this reinterpretation is toopide a means of direct comparison

between the various sparse matrix methods.

As only the active set is to be treated fully ire teparse model, the process of
determining which datapoints are to be includedcrigical to the success of the
approximation. One possible strategy is to cargfollild the subset of data through the
manual selection of datapoints based on ‘a pricidwledge of the underlying system
characteristics. This method of selecting an optmitaining data subset can be seen to
be particularly in keeping with the system identaiion process where the pre-
processing of empirical data is often an imporstage. However, for implementations
where ‘a priori’ knowledge is limited, or for congx nonlinearities composed of
multiple dimensions, the determination of a sugadlibset may become a challenging
problem. As a result, a simple strategy such asahéom selection of datapoints may be

a suitable course of action.

As an alternative, more iterative approaches tostlection of the active set have also
been proposed. In particular, ‘Greedy Approximdtimethods have been shown to be of
great potential where the active set is selectedugmlated according to some criterion.
Such an algorithm would initiate with an empty aetisetl with the remaining seR
containing all indexed training observations. Thesjng an iterative method, each
indexed training example is added to the activeirsétirn and the selection criterion
evaluated. If the criterion is met, and the acte¢ can be seen to be further optimised,
the training example under review will be includedhe active set. As a result, many of
these algorithms can be seen to have significardllpls with the ‘active learning’
methods briefly mentioned in Section (2.3.2). Ntitat the computational expense of
considering all training examples with respecth® ¢riterion in one sitting may prove to
be prohibitive and therefore working subsets ofidany also need to be defined, see
Rasmussen and Williams (2006) for a general dasmipf the Greedy Approximation
algorithm.
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The next question that arises is what kind of gmeccriteria should be used to
determine the active subset of data. Various methade been proposed including the
‘Informative Vector Machine’ (IVM) of Lawrence el.g2003), the ‘Informative Gain’

criterion of Seeger et al. (2003), the online l@agnalgorithm of Csato and Opper
(2002), minimisation of the residual sum of squaasesn Luo and Wahba (1997), and
maximising the effective posterior instead of thiféeaive marginal likelihood as in

Smola and Batrtlett (2001). A further method couddtbe maximisation of the marginal
likelihood (i.e. the same optimisation used to tdgrhyperparameters) with respect to
the inducing inputs as described by Snelson andh@haani (2006). In addition, the

selection of the active set of data can also berparated into the existing optimisation

of the hyperparameters as in Seeger et al. (2003).

A final aspect to consider in the determinatioracfuitable active set is that there is no
fundamental reason why the subset has to be cliomarthe training dataset itself. The
review by Quinonero-Candela et al. (2007) statas shbset selection from a disjoint of
the training dataset may be a viable alternatine, points to the paper by Snelson and
Ghahramani (2006) where the discrete selectiomanfihg/test cases has been replaced
by an algorithm more in keeping with continuousimgation. After determining a
suitable subset of data, we can now turn our attertoward describing some of the

various sparse methods that have been proposed.

4.5.5.4) Subset of Data (SoD)

The Subset of Data (SoD) method can be seen thebmost straightforward method of
sparse matrix approximation, where an active sutiséatam is to be selected from the
whole training dataset. The existing predictive equations and optimisagxpressions
remain unchanged by this method, resulting in aaralls computational demand of
O(m’), wherem< n. As discussed previously, the Subset of Data agmation method
would seem to be fundamentally handicapped in coisga to alternative sparse
methods, as training data that is not includedhm dctive subset is simply discarded
rather than approximated. However, in comparisorth® more sophisticated sparse
methods, the computational demand of the SoD metisodndependent ofn.
Furthermore, through the use of carefully selectath or the greedy selection methods
discussed previously, the resultant active subsdbet used by the SoD method can
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become more optimised. As a result, the SoD metmay still provide a good
approximation to a ‘full’ GP model and should na Wwholly discounted in favour of

more sophisticated sparse methods.

4.5.5.5) Nystrom Approximation

The Nystrom approximation method involves the asialyand approximation of the
eigenfunctions and eigenvectors of the kernel. Nj&trom method is described in Press
et al. (1992), and has been proposed as a spatbedrier GP regression in Williams
and Seeger (2001). This method allows the covagignc more generally the Gram)
matrix K to be approximated by a reduced rank or sparssove that can then be
substituted into the GP predictive equations. Bgnthchoosing the number of
eigenvalues/vectors to be included in the approtionao be the same as the size of our
defined subsdt the Nystrom approximation &f can be written as:

K=K, K3 (4.19)

m mr

This approximatiorK can then be substituted figrin the main GP predictive equations.

Note that it is only the matriK that is to be substituted, the covariance fundtisnot

going to be to be substituted ly The computation demand associated with the method
is O(m?n) for the required matrix computations, &gh) andO(mn) for the evaluation of
the predictive mean and variance respectivelyhénpaper by Williams et al. (2002), the
experimental results point out that the Nystromhaodtperforms poorly relative to other

methods when the size of the active set m is sriaatthermore, due to the fact that the

covariance function is not completely replaced hyapproximationk , numerical errors

may be encountered.

4.5.5.6) Subset of Regressors (SoR)

The Subset of Regressors (SoR) method takes adeaofaan equivalence between the
GP model’'s mean predictor and that of a finite-disienal generalised linear regression
model. This method originates from Wahba (1990) Bodgio and Girosi (1990), and
has been adapted for use in Sparse GP models bka Smd Bartlett (2001). Therefore
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the SoR model is a finite linear-in-the-parametadel with a particular prior on the

weights. For any input x*, the corresponding fuotvalue f* is given by:
f(x.) =D ak(x,x) with a priora ~ Normal@Q,K™) (4.20)
i=1

In order to formulate an approximation to this modely a subset of regressors are

considered so that:

for(X) = Zaik(x ,X;) with a priora,, ~ NormalQ,K ) (4.21)

i=1

We can then formulate the predictive distributiorthe same manner as described in the
‘weight-space’ interpretation of the GP model (Rassen and Williams, 2006), to find

the mean and variance:
fer(X) =k ()T (K K 0K 7Ky (4.22)

Var[ fSR(X*)] = Uﬂ( n(X*)T( K mrl< nm+ O-ZIK rT)‘n_lk (%(*) (423)

From these predictive equations we can see thatbntrast to the SoD method, the SoR
method is to employ atl datapoints of the training set in the approximatidowever, a
major disadvantage of the SoR method is that dudstdasis upon a linear-in-the-
parameters model, the GP model becomes degenéfatker the unifying view of
Quinonero-Candela et al. (2007) where methods eseribed in terms of approximate
priors, the degenerate nature of the SoR modelbeaseen to restrict the variety of
possible functions that will be plausible under gasterior. Furthermore, as the SoR
model can be seen to have onlydegrees of freedom, this implies the restrictiuat tve
can only drawm linearly independent functions from the prior, Wwdubsequenm+1

functions being a linear combination of the pregidunctions.

The main consequence of this degeneracy is thakthdtant predictive distributions can

become unreasonable. For covariance functionggwy as the distance between inputs
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increases, we would expect that the predictiveanae to increase as the distance
between inputs is increased, thus indicating arease in uncertainty. Unfortunately, the
due to the restrictions placed by the SOR modeherapproximate prior over functions,
the predictive distribution can in some cases haverior variance. This can result in
predictive distributions in which the variance tertd zero for far apart inputs (i.e. the
opposite of what would be desired). Overall, whiltsd SOR method can be seen to be a
useful approach in terms of approximating the GRmgrediction, the accompanying
predictive variances can at best be described asanfident, and at worst absurd. The
computation demand associated with the SoR meth@{ri‘n) for the initial matrix
computations, and(m) and O(n¥) for the evaluation of the predictive mean and

variance respectively.

4.5.5.7) Further Sparse Methods

A number of other sparse matrix methods have begooped in recent years that can be
seen to overcome the main weakness of the SoR »apm@ate method, i.e. the greatly
reduced scale and therefore usefulness of thencarieutput. Notable methods discussed
in the review by Quinonero-Candela et al. (200®ude the Deterministic Training
Conditional (DTC) Approximation (that is equivaletot the method of Projected Latent
Variables (PLV) proposed in Seeger (2003) and amswussed in Rasmussen and
Williams (2006) as Projected Process Approximati@®PA)), and the Partially
Independent Training Conditional (PITC) and Fulhdépendent Training Conditional
(FITC) (also known as the Sparse Pseudo-input Gaugzrocess (SPGP) which was
proposed by Snelson and Ghahramani (2006) ancefudibcussed in Snelson (2007)).

These different sparse methods are more complexviahdut fully exploring the unified
view of sparse methods proposed in Quinonero-Caretehl. (2007), where each sparse
method is interpreted through their effective mjat is difficult to provide a detailed
explanation of these methods. In essence, the DICSaR sparse approximations can
both be seen to impose a deterministic relationbleipveen the training and inducing
latent variables that results in inducing traingognditionals where the covariance matrix
has been set to zero. For the PITC and FITC spaethods, the approximation to the
training conditional is to include a portion of theue covariance matrix (a block-

diagonal in the case of PITC) and set the remaimiegnents of the matrix to zero.
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Overall, the computational demand of these differ@ethods has been found to be
similar atO(n’n). As a result, it is difficult to draw conclusiors to which method

would be the preferred choice for a given applarati

4.5.6) Which Approximation Method?

As many of the sparse methods have been estimatbdvang a similar computational

demand, it does not appear immediately obvious agtch method should be preferred.
Furthermore, the reviews of Quinonero-Candela et(2007) and Rasmussen and
Williams (2006) also present final conclusions tlaaé somewhat inconclusive and
recommend further empirical investigations. Howegeich an evaluation of the various
methods on offer can be seen to be a challengsigw&ere many contributing factors
can determine the suitability of a particular apjmate method, together with numerous
possible measures of approximation accuracy anguatational efficiency. Issues such
as the complexity of the underlying function, dirsiemality of the model input, and the
degree of noise present on the targets have beatifidd as being potentially influential

in determining the suitability of a chosen approaiion (e.g. the SoR method is
degenerate which may limit flexibility). For assegsthe predictive performance of an
approximation, measures such as such as mean sguareor negative log likelihood

may be utilised, and for computational performative time taken for testing, pre-
computation (i.e. operations required before tesediptions are made), and
hyperparameter learning may all be useful measofegfficiency. Overall, some

approximate algorithms may be seen to perform batteder some criteria, and

comparatively worse under others.

For the more complex varieties of sparse matrixhoes proposed (i.e. discounting the
SoD method), as the computational demand would seerbe similar, the most
important distinguishing feature between them waaighear to be how the predictive
variance is to be treated. Therefore, the seleaifaan appropriate approximate method
could be based upon the need for an accurate epied®n of the variance of the
prediction. In some applications, this measure ofdggtion uncertainty may be
considered superfluous (see Seeger (2004) forcasisn as to the worth of the variance
output from a machine learning perspective), and the predictive mean that we are

interested in. As a result, the SoR method may rheca strong candidate due to the
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relative straightforward nature of the approximatiti the predictive variance is to be of
great importance, the more sophisticated approemedthods of the PP/DTC, PITC and
FITC should be considered. However, before makimg @ncrete recommendations it
must be pointed out that due to the vagaries pteddry current empirical evidence, a
more simple SoD method may still prove to be coitiget Referring to the results of
the empirical example presented in Rasmussen aridams (2006), the measure of
model error (for a fixed subset size) can be sedmetreduced if more complex sparse
methods (SoR and PP/DTC) are adopted in compatisthre SoD method. However, the
results point to the fact that the overall ‘meantime’ (indicative of the computational
load) associated with the more complex sparse rdsti®substantially higher than the
equivalent SoD method. As a result, a more simple §pproximate constructed from a
larger subset of data can remain competitive inhbptedictive accuracy and
computational load, than a more complex sparseodatbmposed of a smaller subset of
data. Note that the authors do not present thdeece as a definitive result, but merely
as indicative of the problem of assessing the ivelaperformance of competing

approaches.

In the selection of an appropriate approximaticiurégher consideration is the intended
implementation or application of the GP model. artigular a significant proportion of
the computational demand of the GP model can be $seebe take place before
predictions may actually be computed (i.e. the gmeputation involving the inversion
of the covariance matrix and application to thgéawvector, and the optimisation of the
hyperparameters). In some applications it is realslento assume that the time taken for
pre-computation and training is not of great concand it is the speed of prediction that
is of overriding importance (e.g. real-time impleraions involving a trained GP
model). In contrast, other applications may reqthag the identified GP model must be
adaptable, where the speedy re-training of the tpgrameters takes precedence over the
speed of prediction (e.g. implementations wheratiradly few predictions are computed,
but the model must be modified or updated repegtedis a result, it is the practical
demands of the problem under investigation thattndistate whether or not any

approximate methods are required, and ultimatelighvimnethod would be preferable.
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4.5.6.1) Implications for System Identification

Returning to the specific demands of system ideatibn, further comment on the
overall usefulness of these approximate method®rthwhile. The primary objective of
these methods are to reduce the computational dewfarime GP model, either through
optimising the covariance matrix through sparse rimaimethods, or through
reconfiguring the mathematical implementation oé& tmodel through fast (MVM)
methods. However, none of these methods are ait@aalding the matrix conditioning
problems also discussed. Therefore, regular systemtification issues such as the
design of experiments and collection of data tlzat be seen to directly influence the
conditioning of the covariance matrix must alsocoasidered before any approximate
methods are employed.

In the discussion concerning the matrix conditignaspects of the GP model the need
for significant pre-processing of the training sets identified as being likely for system
identification problems. Furthermore, we can ses through the pre-processing of the
training set and potentially removing problematitadwe are in fact adopting a Subset of
Data (SoD) sparse approximate method even befotévelgc considering the
computational load. As a result it may be the ¢aséthrough the pre-processing of the
training data, the final subset of data to be employed may be of a size that is
computationally feasible. This in turn may diminishe need for more exotic
approximate methods to be employed. In essencejtpkementation strategy should
first endeavour to pre-process the training datdaatkle any conditioning problems,
before then considering whether or not any furiparoximate methods are required.

The potential need for the pre-processing of thaiimg data to meet the conditioning
requirements of the GP model can also be seergestithat a more manual or “hands-
on” approach to subset selection may be prefetaltlee use of more random or iterative
selection methods where datapoints are greedilyadgon evaluation against some
criteria. In this way, any prior knowledge of thaderlying system can be utilised in
avoiding conditioning problems as well as meetitg tdemands of the system
identification task and regulating the overall siethe subset of data. Furthermore,
through the manual pre-processing of the trainiataskt any specific issues such as

ensuring the inclusion of particularly importangiens of operating space can be tackled
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directly. After all, the most important issue to lbberne in mind is whether or not any
sparse method employed can be seen to impact éetaity on the overall integrity of

the training data to be employed in the constractiba GP model. Therefore, in the first
stages of pre-processing, a more manual approaculiset selection of the training
dataset would seem to be a sensible strategy. &fterstage, a more iterative selection
approach could then be employed to further imprtdwe subset. For example, by
carefully adding more points to increase the aayudd the model, or through carefully

removing points to increase the computational igficy.

Nevertheless, for some applications such a detaii@aual pre-processing of the training
dataset may not be viable. In cases where theaosilee initial training dataset is very

large, or where prior knowledge is limited, a ramdor iterative approach to subset
selection should be considered. However for thatikaly simple nonlinear dynamic

systems considered in the next chapter, this thedis adopt the subset of data (SoD)
approximation where the selection or pre-processinaining data is to be performed
by hand. As a result, the general guideline thattie direct implementation of the GP

model the training dataset should contax1(000) is to be followed.

4.5.6.2) Further Possibilities

As has been discussed previously, the direct imgieation of the GP model has been
shown to be problematic due to the need for theergion of a potentially large
covariance matrix. To tackle this problem, the spamatrix methods discussed in the
previous section attempt to reduce the computdtifmadprint of the covariance matrix
through approximation, whilst endeavouring to met@s much information as possible in
the modified covariance matrix. In tackling the lempentation difficulties of the GP

model a further two possibilities have been prodaaad are worthy of discussion.

4.5.6.2.1) Multiple GP models

An obvious alternative to this problem of squeezsgmuch information into as small a
space as possible is to split up the informatida mumber of smaller spaces. In essence,
the idea would be to follow the precedent laid outother forms of mathematical

modelling where a ‘divide and conquer’ approachaiken, and a multiple model or
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network of models are specified in place of a ®mglbbal model. Such a scheme could
follow the previously discussed Operating Regim@raach, see Murray-Smith and
Johanson (1997), where the operating range of ysterm under investigation is
partitioning into a number of local regions. Usiampirical data collected from each
local operating region a local GP model could theridentified. As each individual GP
model would be identified from a subset of the alleset of training data, the resultant
size of each covariance matrix will then be siguaifitly smaller and therefore easier to

implement.

The next stage to consider is how this group oéll&P models are to be combined into
a global representation of the system. In partrcuikee switching between individual GP
models is something that must be considered cdyehd in addition to the prediction
estimate each GP model is to provide a predictareance. The paper by Rasmussen and
Ghahramani (2002) proposes a scheduler or maniagepttobabilistically assigns points
to each local expert model. The paper by Shi et(2003) utilises a probabilistic
approach with a hierarchical arrangement to strecaumixture of GP models. In both of
these papers, the inference required the use of MI@Mthods to maintain the validity
of the Bayesian framework.

A further example that specifically aims to implarha ‘local model network’ comprised
of local GP models is the paper by Gragorand Lightbody (2007). In this paper a
global GP utilising the squared exponential covarga function is first identified to
divide the operating range of the system into laegimes composed of clusters of
training data. This is achieved by examining thearece output of the global GP model
where a low variance is taken to be indicative stiable region for the identification of
a local model due to the presence of sufficienadiditus providing the centres for local
validity functions. Subsequently, a linear covacenfunction is then employed to
identify a local linear model in each operatingimegy The problem of ensuring that the
variance output of this multiple GP model remaindicative of model uncertainty is
solved through blending the different local mod&l®ugh their parameters, rather than
blending the multiple models through their respectutputs. Overall, this prospect of
employing the GP model within the well developeditiple modelling strategy would

appear to be a promising avenue for further rebearc
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4.5.6.2.2) Derivative Observations

A further alternative to the previously discusse@timds of approximation is to

incorporate derivative observations into the GP ehaak in Leith et al. (2002) and Solak
et al. (2003). The idea behind this approach sutamarise any training data that is close
to an equilibrium point by defining a local lineaiodel to cover this region of operating
space. Therefore, standard linear regression eahkit{i.e. linear least-squares) can be
used to estimate a derivative observation fromupleation data in the vicinity of an

equilibrium point. After obtaining a set of deriweg observations, these can then be
combined with the existing training data (functavservations) in the covariance matrix.

Therefore, through the identification of a numbérderivative observations we can
potentially summarise a significant proportion bé ttraining data very concisely, and
utilise the remaining space (i.e. the majorityha#f tovariance matrix) for the inclusion of
function observations collected in off-equilibriuragions. Therefore, this strategy of
utilising derivative observations for equilibriunegions and function observations for
off-equilibrium regions, can also be thought ofbesng in keeping with the divide and
conguer methodology of the multiple model approadiere the derivative observations
can be interpreted as local linear models. This pasdicular relevance in the
identification of nonlinear dynamic systems whezal rapplications can often be seen to
exhibit prolonged periods of operation near to Kopiim points, with off-equilibrium
data being comparatively sparse. As a result, theefits of incorporating derivative
information can be seen to be particularly relevemtthe system identification and
engineering applications considered in this themigl are therefore to be discussed in

greater detail in the next chapter, see sectiat).(5.
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5) Nonlinear Dynamic System Identification with
GP models

In the previous two chapters, the mathematical dfpacknd and computational
implementation of the GP modelling approach has lkkgcussed. In this chapter, we are to
investigate the application of the GP modellingrapph for the specific task of identifying
nonlinear dynamic systems. Notable extensions ¢oGR framework that are particularly
relevant for nonlinear system identification (Unieérty Propagation and Derivative
Observations) are also discussed. To support thisstigation, a number of simulated
example systems are first identified with the GRdelling approach. Finally, a number of
real laboratory-scale nonlinear systems are todbatified from empirical data. Through
utilising these different examples, the implemeataof the GP model from a practical
engineering perspective can therefore be discudsedhermore, rather than focussing
solely on judging the accuracy of the identified @®dels (as is common in machine
learning applications of the method), the robustrasalities of the identified models are
also to be assessed. As the main overall objeofitke system identification process is to
provide both an accurate and robust approximatotihé underlying system (especially if
the model is to be ultimately used for control msgs, see Section (2.2.1)), the ability of
the identified GP models to represent the full en§behaviour exhibited by the example

applications must be judged carefully.
5.1) Background of GP models in System Identificabin

The recent interest in the GP modelling approachaamethod for nonlinear system
identification can be seen to originate from theassl presented in Murray-Smith et al
(1999), Leith et al (2000), and Leithead et al (0Qn these papers, a non-parametric
modelling approach was proposed for use in thetiiieation of local models (as part of a
multiple model type structure) in off-equilibriunegions. In such operating regions, the
popular strategy of identifying local linear modélas been shown to be fundamentally
limited, as discussed in Shorten et al (1999). Moththe difficulty associated with
representing such off-equilibrium regions is due the potential absence of prior
knowledge, coupled with a lack of sufficient datahvwvhich to identify local models. To
combat this lack of prior knowledge, non-parametmpirical modelling methods have
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therefore been proposed as a solution. However taltiee scarcity of the available data,
such data-based modelling approaches may also gitrug identify a meaningful

description.

The reason why the GP model offers a viable altermas the fact that due to the Bayesian
probabilistic nature of the approach, the relasigarcity of the empirical data (or density of
data) can be reflected in the approximation throilnghvariance output. In addition, the GP
model is to directly use whatever data is availableomputing each prediction (i.e. the
covariance matrix is directly defined from applyitigg covariance function to the training
data), rather than rely solely on parameters ddftheough optimisation. As a result, the
GP modelling approach has been shown to perforrhiwéentifying models from small
datasets as the number of structural parameterpelpgrameters of the covariance
function) to be identified is typically less thamat of other complex learning systems (see
Kocijan et al (2003a) for a practical comparisontleé GP modelling approach with a
Neural Network alternative). Further good genemlrses of information on applying the
GP modelling approach toward dynamic system ideatibn problems are Grego¢ and
Lightbody (2002), Murray-Smith et al. (2002), Kauij et al. (2003b), Wang et al (2005),
AZzman and Kocijan (2007), Kocijan and Azman (20@f)d Kocijan and Likar (2007). In
Gray et al (2003), and Thompson and Murray-Smitb0@&), some of the more practical
implementation issues associated with the GP madehlso discussed, with some of this

research forming the basis of this thesis.

A further motivating factor behind the GP modelliagproach are the possibilities that
exist for the incorporation of the GP methods it well established ‘divide and conquer’
multiple modelling strategy discussed previouslg. #iated above, the paper by Murray-
Smith et al. (1999) proposed the use of local GRletsoto identify off-equilibrium
operating regions, and then combining these lo€ahtdels with local linear models used
to identify equilibrium regions. A further strategy keeping with this desire to retain the
local linear modelling approach and combine it wilie GP model is the incorporation of
derivative observations into the GP modelling applo (as mentioned in Section
(4.5.6.2.2)). This extension to the GP modellingrapch takes advantage of the fact that
as differentiation is a linear operation, the datilve of a GP remains a GP. As a result, as
long as the derivative of the covariance funct®employed, these derivative observations

can be handled by the same predictive framewotkeasormal functional observations.
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As derivative observations can be thought of asivetgnt to linearisations about an
equilibrium operating point, through incorporatidgrivative observations we can develop
a global model built out of multiple local linearontels that can be blended almost
seamlessly with any off-equilibrium functional obsgions. Whilst in certain applications
direct access to derivative observations may béadla (e.g. sensors measuring speed and
acceleration), it is also possible to generate ttieough the application of standard linear
regression techniques to any available equilibriunctional observations. An important
outcome of adopting this approach is that significanprovements in the computational
efficiency of the overall GP modelling approach nb@yrealised. By using computationally
efficient linear regression techniques to identirivative observations from (commonly
abundant) equilibrium data, the more computatignakpensive standard GP methods can
then be reserved for the more scarce off-equilibrdata. This divide and conquer strategy
based on the combination of functional and deneatbservations is discussed in more
detail in a forthcoming section, and previous dethsources include Leith et al (2002),
Solak et al (2003) and Kocijan et al (2003c).

This overall synergy between the methods emplogetthhe multiple model approach and
that of the GP modelling approach is further désctiin the review by Gregét and
Lightbody (2004, 2008). Furthermore, as discusgesection (4.5.6.2.1), another paper by
Gregori¢ and Lightbody (2007) proposed another interedbuigrelated alternative where
local linear GP models (in this case linear covaréa functions are used) in the
development of a local model network model struetéiurther notable contributions to the
field of GP modelling for dynamic system identifiicen include the consideration of non-
Gaussian noise models as discussed in Murray-SanithGirard (2001). In the previous
section discussing covariance functions (SectiaB))(4the general form of covariance
function assumed additive independent identicalbyridbuted Gaussian noise. However, in
the identification of real systems it is not unlikghat noise is dependent on other
variables. A further important development in GP dele for system identification
purposes is the development of more a complex ratdp ahead prediction method where
the uncertainty over one prediction can be promabgdab the next prediction. This
‘Uncertainty Propagation’ or ‘Prediction with Unt&n Inputs’ was first proposed in
Girard et al (2002) and expanded on in Girard (2084d will be discussed in more detail

in a forthcoming section.
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5.1.1) Control with GP models

In this thesis the problem of applying automatiaitcol to nonlinear dynamic systems
identified by GP models has not been investigdtknvever, it is worthwhile to provide a
brief overview of the existing research into thépect, as one of the primary drivers behind
the development and maturation of any system ifieaiion approach is whether or not the
methods are well suited to solving existing congpobblems or if new control design

strategies are made possible.

One application of the GP model used in the contéxtontrol is the development of
Nonlinear Model Predictive Control (NMPC) strategieas described in Kocijan and
Murray-Smith (2004) for a Ph Neutralisation proce$te general idea behind MPC
strategies is to employ an explicit model of thegass to predict the future behaviour of
the process up to a chosen prediction horizon,tled optimise the manipulated variable
against some cost function to obtain an optimalrkitprocess response. This input
information is then directed to the process, ardctimtrol horizon is then completed before
the whole sequence is repeated again. For moreaenérmation on NMPC, see the
reviews by Henson (1998), Qin and Badgwell (200@) Allgdwer and Zheng (2000). In
the paper by Kocijan and Murray-Smith (2004), theeiiesting development is that the
NMPC algorithm is implemented with constraints pld®n the variance output of the GP
model. Therefore, the process can be controlle@ irobust manner that prohibits the
operation in regions of operating space that thar@®Bel deems ‘unsafe’ as designated by
a high variance output. This exploitation of theiaace output of the GP model for control
purposes is one of the main attractive featureth@fGP modelling approach, as variance
information is not normally so readily availableirther papers that have also investigated
control using GP models include Murray-Smith e{(2003) where the variance output is
used to implement ‘cautious’ control, Murray-Smahd Sbarbaro (2002), Sbarbaro and
Murray-Smith (2005), and Likar and Kocijan (200Furthermore, the incorporation of
derivative observations into the control systendiscussed in Kocijan and Leith (2004),
and the application of ‘Fault Detection’ using GPRduals is discussed in Juii¢ and
Kocijan (2006).
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5.2) Applying the GP Model

In applying the GP modelling approach, we are suage a Multiple-Input-Single-Output

(MISO) model structure, where the inputsare to be mapped to a single outgutFor the

identification of dynamic systems, we are intergsteutilising information from previous
states to provide information about future stafdserefore, regressors such as previous
inputs and outputs are important quantities thanwest build into our model. As a result,
the simple NARX (Nonlinear ARX) model structure alissed in Section (2.5.3.1) can be

seen to be an appropriate choice for the overaitsire of the GP model:
y(k)= f(Uk-1), (k-2),..., (k- D, Uk, Uk 2),.,Uk Dre (5.1)
Where ¢ is white noise, anllis used to denote a consecutive number of datalsamp

The selection of appropriate regressors is a kagesof the optimisation of any model
structure. In order to make this selection prioowtedge of the system can prove to be an
invaluable resource in tackling this problem. Farthore, through a model testing and
validation stage it may become clear which inpugsraost important. However, a further
facility of the GP modelling approach that can ldiin the selection of inputs is the
Automatic Relevance Detection (ARD) feature of @@ricovariance functions. This feature
was briefly discussed in Section (4.3.1.1) in relatto the most popular Squared
Exponential covariance function. The ARD facilityoas the relative importance of each
input dimension to be assessed through the relaixe of the corresponding trained
hyperparameter, and therefore allows any redundanhon-contributing inputs to be

identified and then eliminated from the model stnpe.
5.3) Multi-Step Ahead Prediction

After the identification of the GP model hyperpasdets, the next stage to consider is how
the model is to be employed for prediction. A saddapproach to implementing multi-
step (ork-step) ahead prediction is to make repeated omeadtead predictions up to the
desired prediction horizon, whilst all the time deey back the predictive mean (model
output) as part of the model input. This ‘iteratiaproach can be contrasted with a
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‘direct’ approach where the model is designed &djmt a certain numbel) (of steps into
the future. The direct approach suffers from tlgrrement that the model must include all
the required inputs to begin with (i.e(k), u(k+1),...,u(k+ I-1)), thus resulting in an
increase in the dimensionality of the input spdéerthermore, such a model can only
predict exactly steps ahead and cannot be readily employed incafiphs where previous
outputs are required, thus restricting the flexipibf such an implementation. However, an
important drawback of the iterative one-step ahpeetliction method is that it is an
approximation, where the prediction relies on poasi predictions that may result in an
accumulation of prediction error. Neverthelesss tprediction method is the standard

approach used in most modelling problems.
5.3.1) Uncertainty Propagation

An alternative method of iterative multi-step ah@aediction has been proposed for use in
the GP modelling approach where the uncertaintyasiance over each prediction is fed
back along with the predictive mean at each tirep.dh this method the input at which we
wish to calculate the prediction becomes a nornmdiljyributed random variable, therefore
allowing the uncertainty over each prediction tgpbegpagated onto subsequent predictions
by updating this input random variable. The resiltadopting this strategy is that the
variance over each prediction can potentially belenanore informative, resulting in less
constrained (or wider) error bars where the modsl Ireen asked to repeatedly predict in
regions where the amount of training data is lichifiee. a previous prediction with a high
corresponding variance (high uncertainty) can besrtainto account when calculating
subsequent predictions). This method is discuseethare detail below and was first
proposed in Girard et al (2002) and is expandedno&irard (2004). In this section a
summary of the overall method has been providetullAmathematical derivation of this
extension can be found in Girard (2004), and ahliignore concise version is also given
in Kocijan et al. (2003c).

Firstly, given a set of training dat@ ={x, t},, we are to employ a zero-mean GP with
covariance functionC(x;,X;) to model the input/output relationship=y, +¢&, where

y, = f(x;), & is white noise of zero-mean and variangeand inputsx, are noise free. As

discussed previously, given a new test ingufnote that the previously used notation of
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x* is replaced for simplicity), the predictive disution of the corresponding output

y= f(x) can be readily obtained using the previous meam \@@riance predictive
equations (3.40) and (3.41). Rewriting these eqnatin the same form as Girard (2004),

and adopting8 =K~ , the predictive equations become:

Hx) =3 AC(x.X) (5.2)
g’ (x) =C(x,X) —i K; 'C(x,% )C(X,X; ) (5.3)

i=1
This predictive distribution can also be describgd p( y| D,x) = Ny(,u(x),a2 (x))

At this point we wish to consider a new input tietorrupted by noise (i.e. an uncertain

input), such thatx=u+g, where ¢ ~N(0,X, ). Therefore, the input can now be

considered a random variable that is normally ithsted. In order to make a new

prediction at this random inpwt~ N(u,X, ), the existing predictive distribution must be

integrated over this new input distribution:
p(y|D,u,E,)=[ p(y DX) pix|u E, ) & (5.4)

As p( y| D,x) is a nonlinear function (as given by equation Yj3d8 x, the new predictive

distribution p(y| D,u,X,) is not Gaussian and cannot be readily integratétiout

resorting to methods of approximation. In Girard0OG2), a number of different
approximation strategies are discussed and can rbadly categorised into either
numerical or analytical approximations. The proposed numerical approxionatelies on
the use of Markov-Chain Monte Carlo (MCMC) techrégwith which to sample&' from
the Gaussian input distributiorx ~ N(u,X, ), whilst the analytical approximations are
dependent on the choice of covariance function Ghassian (Squared Exponential) and
linear covariance functions are shown to resulnhiegrals that may be computed exactly,
thus allowing theexact mean and variance to be calculated. In other casms

approximation to these integrals is proposed whefaylor approximation to the selected

158



Chapter 5: Nonlinear Dynamic System Identificatrath GP Models

covariance function is utilised. From this approation to the covariance function, an

approximate mean and variance of the predictive distributian be obtained.
5.3.2) When to use Uncertainty Propagation?

The uncertainty propagation extension to the GPeitiod approach has been primarily
discussed and implemented for the identificationnohlinear dynamic systems, and
especially for the purposes of control. In theréitare dedicated to machine learning, the
application of uncertainty propagation for GP made not given much consideration.
Therefore, as this proposed extension can be seaddt a further level of complexity it is

worth discussing when uncertainty propagation & benployed.

The main outcome of including the uncertainty pggigon extension is an overall
‘flattening’ effect on the output predictive digtution. Therefore, in comparison to the
standard or ‘naive’ implementation of the GP moded predictive distribution is wider
(increasing the variance) and the mean value caonbe less pronounced. As the
predictive distribution is wider (and may also lesd uniform Gaussian shape if the
numerical Monte-Carlo approximation is calculatetlie location of the mean of the
predictive distribution can be found to be slightlifferent to that found with the ‘naive’
implementation. In the examples presented in Gi(a@®d4), this discrepancy between the
means found in the naive and non-naive cases isamptally huge, and at some points in
the prediction horizon either implementation maynae accurate (i.e. closer the recorded
output). Therefore, it is difficult to argue foretiinclusion of uncertainty propagation purely

in terms of improving the quality of the mean potidin.

Where the uncertainty propagation extension dofs pbtential advantages is the effect
on the variance prediction. As the predictive disttion is wider, the variance output is
therefore boosted and is thus less constrainddetonean. For systems where the model is
found to represent the data very accurately, irstngathe scale of the variance output is
perhaps not something that appears to be partigularthwhile. However, for systems
that are less accurately modelled, if the modéb ibe tested on a long prediction horizon
and previous outputs are to be used as futuresnfius clear that a growth in uncertainty
over the predictions is to be expected. Furtherpaespite the best intentions, the potential
remains for certain areas of operating space arctsditions not to be reflected in the
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training data of the model (especially in a metkdgere pressure exists to reduce the size
of the training set). In addition, for the idertdiion of real-systems the potential exists for
unexpected disturbances or some low-level nonestaty behaviour to introduce some
differences between previously recorded and tekiaweur. Therefore, it is perfectly
plausible for the model to make mean predictiorsedaon evidence in the training dataset
that are not as accurate as the variance outputdwsuggest (i.e. the variance output
(depicted as error-bars) does not fully envelope réal recorded response). Therefore,
through the use of uncertainty propagation, thesteab variance output will have a far

greater chance of enveloping the real response.

Fundamentally, this potential discrepancy betwesh and training data is something that
all data-driven modelling approaches have to detd and is known as the generalisation
ability of the model. However, whereas most modgllapproaches have only an output
prediction to consider, the GP modelling approash has a variance output that should
ideally reflect the potential error in the modelhefefore, reflecting this growth in

uncertainty through the variance output of the nhatlews the GP model to become more
informative. Furthermore, it is worth noting thdtist growth in the uncertainty as the
prediction horizon extends is not unbounded or agptial, the capability exists to ‘catch’

the system (reducing the variance) at later teisitpas reported in Girard (2004).

Another aspect to consider regarding the use oémi@iaty propagation is that the method
adds further level of complexity to the predictiramework of the approach, and thus
potentially adds further computational expense. r@li;ewhilst the expressions for mean
and variance are slightly more complex, and a &urthput covariance matrix (defined by
the size of the input vector) must be computedhassize of the main covariance matrix is
not increased and that the repeated inversion isfgbtentially large matrix is the main
computational bottleneck, the additional computatlo expense of implementing
uncertainty propagation does not appear to be tachmof a problem. Nevertheless, whilst
no additional large-scale matrix inversion is regdj it is likely that by including the
propagation of uncertainty the evaluation speethef GP model will be further slowed.
This has implications for the on-line applicatidritlte GP model, and with the exception of
a small number of papers outlining model-predicteatrol with GP models (see Section
(5.1.1)), there have been little dedicated invesitogs into the real-time implementation of

the GP model (with and without uncertainty propemgtand how it compares to other
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black-box methods. Such a comparison would be &wuhile future direction for research
as it may more clearly define the types of problemwhich the GP model is most
appropriate (e.g. RBF networks are typically fouodbe slower to evaluate than MLP
networks, a significant disadvantage in certainiagfions).

Overall, the concept of taking into account theeastainty of the input (and propagating
output uncertainty to subsequent predictions) wadem to be eminently sensible for
applications where time-series data is to be medelfurthermore, due to the probabilistic
nature of the GP model, implementing this consia@meof input uncertainty is something
that is more feasible than in other modelling apph®s. However, most modelling
approaches or implementations of multi-step aheadigtion do not seek to include the
uncertainty over the input, and it is merely unteyd that the accuracy of the model may
reduce as the prediction horizon is extended. Toerethe uncertainty propagation can be
seen to be a useful but perhaps unnecessary extehsinly the mean prediction is to be
used. But if the variance is to be actively emptbye some manner, such as in the design
of control systems (see Section (5.1.1)), the uasdy propagation may prove to be an
important addition. As this thesis is investigatihg use of GP models for identification
purposes, rather than actively seeking to emplew#riance output, we are more interested
in the accuracy of the mean predictions. As a tethe application of this propagation of
uncertainty extension has not been a priority, tedexamples investigated have employed
the standard or ‘naive’ implementation of the GRieio
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5.4) Derivative Observations

The concept of incorporating derivative observaiomo the GP model framework has
been previously discussed in Section (5.1). Ovetladl proposal is particularly interesting
for system identification purposes as it offers athmd to efficiently include derivative

information (either directly available from data,generated from identified linearisations)
into the GP modelling approach. The main advantdgais proposal is the compatibility

with the divide-and-conquer strategy of other npldtimodel approaches, where local
linear models (in the form of derivative observatip can be combined with functional

observations to form a global representation.

Furthermore, in the identification of real nonlinegstems, it is often the case that much of
the available empirical data is found close toaasiequilibrium operating points, with the
availability of off-equilibrium transient data beintypically scarce (see Section (2.5.6.1.2)
for more discussion on this point). As one of thainmdifficulties of the GP modelling
approach is the heavy computational demand asedciith inverting the covariance
matrix (the size of which is dictated by the sike training dataset), any method that can
reduce this demand is worthy of consideration (gg.sparse matrix methods discussed in
Section (4.5.5)). The incorporation of derivativieservations is an attractive extension as
the typically abundant equilibrium empirical datancbe summarised using derivative
observations identified from computationally eféiot linear optimisation, thus leaving the
remaining off-equilibrium data to be treated asnmalr function observations by the GP

model.

In addition, as discussed in Section (4.5.2), thesgnce of prolonged periods of steady-
state data can have a negative effect on the c¢onitiy of the covariance matrix.
Therefore, as steady-state response data canreffeth from operating near to equilibrium
points, summarising such data in the form of awdéire observation through local
linearisation would appear to be an attractivera#teve to deleting this problematic data all

together.
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5.4.1) ldentifying Derivative Observations from Dah

Whilst in certain applications derivative obsergas may be directly available from
empirical data, it is also possible to identifythérom applying simple linear regression
techniques to the training data. Therefore, dameatbservations can be generated for any
system using linearisation around suitable opegatpoints. In order to perform
linearisation, small signal or perturbation datasel to this operating point is required as
local linearity is only guaranteed near to the wiedi operating point of continuous systems.
Although it is possible to identify linearisatiorsd any point, as with other modelling
approaches based on local linear models (e.g. Lbalel Networks) it is normal to
identify linearisations at equilibrium points. Ebjoiium operating points are important
when considering the stability of the system, whislrefore has implications for control

purposes.

The linearisation at an equilibrium operating paah be achieved through applying the
Taylor series approximation (i.e. a function at=a can be approximated by
y= f(a)+ f'(a(x- 9, for a £ order Taylor approximation where the higher orgems
can be ignored by ensuring small scale perturbastioom a). Therefore, the linearisation
involves the calculation of the slope or gradiatgrivative) of the linear modey = X@,

through applying standard linear regression (i.eadignt can be found by

0=(X"X)"X"y, variance fromo’ =%(§/- X0")?, and local linear covariance matrix

from = =0g?(XTX)™).
5.4.2) Gaussian Process Derivatives

Fundamentally, as differentiation is a linear operg the derivative of a Gaussian Process
remains a Gaussian Process. Therefore, in ordactoporate derivative observations, the
covariance function to be employed for function eseations must be differentiated, and
this derivative covariance function used to hartdéederivative observations. For the most
popular Gaussian (Squared Exponential) covariangcetibn, the existing covariance

function relating any two data points in the casgwo functional observations is:
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1 D
. )=vexs 33w (f, - f 7| 55)
d=1
For the case ahixed set of derivative and functional observations:
0x; _ 13
C(_!Xj)__VV\é(){jd_){‘)ex __z W(?gd_ )]g)z (5.6)
ox 245

In the case of twalerivative observations, (wher@, , is a Kroneckor operator between

thee™ component derivative ix, and thed™ component derivative in vectox, ):

ox, 0X; B ) ) 1 5 )
C(a_)ﬁ’a_xj)_\/\/\é(ded wy( %= X)X, )?))exp[ 2; w( §, )Jq)z} (5.7)

In the existing literature, only the Gaussian c@ase function has been considered for this
extension to the GP model. However, it is cleart thay covariance function that is
differentiable may offer a suitable alternative.idtalso worth noting that although the
covariance function is altered through differemdiat no new hyperparameters are defined
so the optimisation procedure is unchanged byekisnsion. As a result, the dataset used
for training need not include the derivative obséions.

Furthermore, although we are to employ a derivatgeariance function to handle the
derivative observations, the overall covariancerixas still to be populated in a manner
that allows the existing GP predictive equationdbéoapplied for output predictions. In
addition, the previously discussed proposal foremt@inty propagation is something that
can also be incorporated with the derivative obetgosns extension. In this next section we
will briefly cover the incorporation of derivativebservations in the standard or ‘naive’
multi-step ahead implementation of the GP modelt tali details of incorporating
combining uncertainty propagation and derivativeastations can be found in Kocijan et
al. (2003c) and Girard (2004).
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5.4.3) Incorporating Derivative Observations

Using the same notation as Kocijan et al. (2003bg incorporation of derivative
observations can be achieved in the following manAgossible for the grouping of the
data in the input matriX and the target vectorns:

Y,

oedl
Yoeq U oeq ~ YEQ
Yeg Ueg _of
Y U oy(k
X — :eq :eq and t -t y.( )_ (5.8)
Yeg Ueg - of
. | u(k) |

Where:

Yo.eq IS @ vector of target response points out of éuyial
Y .eq IS @ vector of input response points out of efidi
U, is @ matrix of input points out of equilibria

U,, is @ matrix of equilibria input points

Y., IS @ vector of equilibria response points

oot ] o .

a—(k) Is a vector of derivative observations of resporm@ponent (vector of a

L OY(K) ]

linear model coefficient in different points).

Coof | . o . .

a—(k) is a vector of derivative observations of inputmpmnent (vector of a
u

linear model coefficient in different points).

Therefore, the target vectbmow contains derivative observations rather thest putput
measurements, and the input maiixhas also been extended to include the valueseof th
regressors associated with each derivative obsenvaturthermore, in this model

- . f of
structure, a derivative observation vectc{#?—} and {

oy(k) ou(k)

}), exists for each
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component of the input matrix. Therefore, the disien of the input space is
(n+ D0, )*x D and the dimension of the target vector(s+ Dh,) %1, whereD is the
number of derivative observation vectands the number of function observations (input-

output training data), andp is the number of derivative observations (inputpoti

equilibrium training data).

From this organisation of the input matrix and &irgector, a corresponding organisation

of the covariance matrix is given by:

c _C 0X; _C 0X;
[ (Xi’xj)] I (Xi '0_)(1) » I (Xi’a_xj) e
{C(%X)} BT B PV TR
K=l Lox oy ) Lo, |69)
0x; ox 9%; ox, 0%;
{C(a_x'x")lm {C(W’ 0 )} {0(6& 10X )}
[_C(xi,x)] ]
C(%,x)
0% " Jya
k(x)=| "~ : - (5.10)
SR
o
k(x) =[C(x,x)] = v (5.11)

Therefore, utilising these matrices, the standaPdp®dictive equations can be computed
to give the mean and variance components of theubptedictive distribution.
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5.5) Experimental Methods and Objectives

In the remaining parts of this chapter, a numbesiofulated and experimental example
systems are to be identified using the GP modebipgroach. Therefore, before delving
fully into the specific characteristics of the gyt to be identified, a brief discussion of
what precise aspects of the GP modelling approaeticabe investigated is worthwhile.
Furthermore, this section is to provide a meangiterate some of the main findings of the
previous sections, and therefore justify some ef ithplementation methods and model
design choices that are to be made in the procksdentifying the example systems

investigated.
5.5.1) Implementation of GP Models

One of the more overlooked aspects within thedttee of GP models is how best to
implement the approach for a given application.sTis partly due to the application
specific nature of any system identification task, what will work on one problem, may
not work on another. Nevertheless, a more pracgoade to the implementation of GP
models to for a variety of nonlinear systems wolbdda useful addition to the field. In
Chapter 4, a detailed discussion of the implememtaaspects of the GP modelling
approach was presented. In this section we focusamne of the main points of this

discussion that are to be investigated in the fomhing examples.

In the development of a suitable mathematical model of the key stages of the system
identification process is to select an appropnmtelel order. However, as the GP model is
a nonparametric method, this component of the ifiestion process is not required.

Instead the GP model is to be completely defineduilih the selection of an appropriate
covariance function together with a suitable setrahing data. The choice of covariance
function will impact heavily on the types of nordarity that the resultant GP model will be
able to represent effectively, and the design efttiaining dataset will have a profound

bearing on the relative accuracy of any identifife model.

With regard to the design of the training dataset,this component will contain the
information with which to identify the GP model,etlselection of an appropriate set of

inputs or regressors will play an important rolethe development of an accurate model.
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Therefore, for complex systems where a large nunobeegressors will be required to
characterise the system, the identification of ehesgressors is an important part of the
identification process. For the relatively simpbeample applications examined in this
thesis the identification of suitable regressors Wand to be quite straightforward as the
number of regressors required was quite low (tyfyiazssed only a single input variable
together with a few delayed input and output vdesp However, for more complex
systems the task of identifying suitable regressoay become more challenging and the
use of delay-embedding theory (see Takens (198ay)le of particular relevance in order
to identify the nonlinear mapping through dynamecanstruction of the observed time-

series data.

5.5.1.1) Choice of Covariance Function

For the choice of covariance function, any covar@afunction that results in a positive
semi-definite covariance matrix may be employedweler, whilst a number of different

covariance functions and even combinations of damae functions have been proposed,
see Section (4.3), a limited amount of practicakegch is available with which to select an
appropriate covariance function. As a result, thestmpopular squared exponential or
Gaussian covariance function has become almosbrany adopted in the GP modelling

approach. The use of this stationary function inegatie assumption that the input-output
data to be approximated varies in a smooth andistens manner. In the case of real
engineering systems such qualities are common, @& neal systems are designed to
operate smoothly for ease of use.

However, it is also clear that many systems wilhibk responses that fail to meet this
assumption of smooth and stationary behaviour. &fbes this reliance on the squared
exponential function can be seen to be limiting plogential flexibility of the GP model.
Nevertheless, the squared exponential covariamuifun has been used successfully in the
identification of a variety of systems, so a furthevestigation into the flexibility and
ultimate limitations of the Squared Exponential diion is worthwhile. Therefore, in the
experimental results presented in this thesis tiwce of covariance function has been
initially restricted to the popular Squared Expararfunction. From this point we can then
move onto identifying the potential limitations thhis choice imposes, and then seek to

offer alternatives.
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A further reasoning behind the selection of thegBed Exponential covariance function is
that it is well known from other approaches (e.BFRNetworks), and the hyperparameters
can be interpreted more easily than for other gamae functions. In addition, some of the
extensions (uncertainty propagation and derivamservations) to the standard GP
modelling approach have been proposed with thisutance function specifically in mind.

Whilst other covariance functions can be used tidse extensions (i.e. an approximation
based upon a Taylor-series expansion for unceytpir@pagation), as yet very few further

developments or experimental investigations haes Ipeesented.

5.5.1.2) Design of Training Dataset

The design of a suitable training dataset is patarhim the successful identification of any
model developed primarily from empirical data. kec8on (4.5), the size and conditioning
aspects of the covariance matrix and its implicetitor the design of the training dataset
were discussed in detail. In the forthcoming exaspive are to investigate some of the

issues raised in this discussion.

In particular, as the size of the training databetates the size of the covariance matrix, in
order to ensure that the identified GP model resmmaomputationally viable, the number of

datapoints included in the training set should m®too large. In Section (4.5.4) an upper
limit of ~1000 datapoints was proposed as beintablg for the direct implementation of

the GP model for system identification purposesavarage desktop PC facilities and a
number of approximate methods have also been pedpésr larger datasets. In the

examples presented here, we are to stick to tmg 6f ~1000 datapoints, and therefore
investigate the identification of GP models usiratively small datasets. Therefore,

important issues such as the choice of samplirgganadl the design of the input signal are to
be discussed. Furthermore, any aspects wherekmavledge of the system can be utilised
are to be made clear.

Given this constraint over the size of trainingadet, the task of creating a dataset that
captures the essence of the underlying procesariesca significant challenge to ensure
that we make the most of the space available. diitiad, the choice of covariance function
can be seen to extend an influence toward thehslityaof any training dataset, i.e. the

squared exponential function’s requirement for stinlyovarying data. Furthermore, during
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the optimisation of the hyperparameters and uliéyahe computation of new predictions,
the covariance matrix built from this combinatioihcovariance function and training data
must be inverted many times. Consequently, not oslyhe size of the training set
important, but the conditioning of the resultanttmxamust also be appropriate in order to
allow efficient and accurate inversion. Furthermaxs discussed in Section (4.5.3), the
requirement for a well conditioned covariance nxatias implications for the design of the

data collection experiments.

In section (4.5.2) one of the most likely causes@fariance matrix ill-conditioning was

identified as the presence of large amounts ofdgtstate data in the training dataset.
Therefore, one of the main experimental designtegras that can be employed is to
endeavour to keep the system excited (i.e. notatipgr under equilibrium conditions) for

the duration of the experiment. Such an approachbeaundertaken through the use of
random excitation signals. However, as will be dssed in the forthcoming examples it is
also necessary to allow the system to approachdystgate in order to include this

information in the training dataset. As a resutie excitation signal used to collect the
training data must be considered carefully. Furtteee, in some of the examples presented
in this thesis it has also been necessary to mignwethove prolonged periods of steady-
state data from the training dataset. Through tbimoval of problematic steady state

datapoints it could therefore be construed thabsynchronous approach to sampling is
being taken. However, the approach taken was t@veroertain sections of data and then
reconstruct a complete training dataset from thé@t of the overall dataset that are to be
kept. As a result, a uniform sample interval (syondous sampling) was maintained in the

training dataset.

An alternative approach to tackling the problenille€onditioning caused by steady-state
data is to employ some method of regularisatiormastioned in Section (4.5.2.1.3). Such
an approach would add a further level of noisejitter’ to the data so that prolonged
periods of steady state data can be made moreblgriee Tikhonov and Arsenin (1977).
However, for the examples presented in this thessare to concentrate on the pre-
processing of the training dataset without the afssuch regularisation techniques. In this
way, the problems encountered with the data carstéed more clearly and therefore
tackled directly, rather than masked through thaiteh of an artificial noise component.
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5.5.1.3) Further Developments

The initial experimental results presented are $eduon presenting the capabilities of the
most straightforward implementation of the GP modbken applied to relatively simple
nonlinear static and dynamic systems. However,utjfitothe selection of a particular
covariance function (Squared Exponential) and #wsdriction of the number of training
points included in the covariance matrix, the po&rlexibility of the approach has been
compromised somewhat. As a result, through the seowf this chapter a number of
potential strategies have been investigated wiiew to providing a solution to some of

the problems encountered.

In order to tackle the constraints over the sizéheftraining dataset, in Section (4.5.5) a
number of approximate methods were discussed. émnttre, is Section (5.4) an
alternative method based on the use of derivativeeiwations was discussed. In the
forthcoming results, some of these methods arestmbestigated. In the final part of this
chapter, the proposals for ‘mixed model’ impleméotes of the GP model are also to be
demonstrated. Overall, these methods are aimedeat@ming some of the weaknesses in

the GP modelling approach that have been encouhtere

5.5.2) Examining Performance of the GP model

In order to support the proposal for considering rG&tels as a tool for nonlinear system
identification, it is necessary to demonstrate #eturate models of system behaviour can
be obtained. From a fundamental perspective, therdd be not much point in persevering
with the GP modelling approach, let alone recomnmend, if the resultant predictive
performance is poor. Consequently, careful valaafprocedures conducted on separate
test datasets (i.e. cross-validation), must be tedom order to provide evidence of the
accuracy of the identified models. This is espécimhportant to provide a feel as to the
performance of the GP model, as no direct numedoaiparison of the GP models with
other different modelling procedures is to be pnése in this thesis. A detailed numerical
comparison between the GP modelling approach aner ahachine learning methods is
provided in Rasmussen (1996), and a more pracisiem identification comparison can
be found in Kocijan et al (2003a).
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For the evaluation of the GP modelling approachualer of different measures of
performance can be utilised. These include thedsrahquantitive measures of model
accuracy that can be used to evaluate the meanctwed such as Mean Square Error
(MSE) and Mean Relative Square Error (MRSE):

N
MSE:%ZQZ (5.12)

i=1

(5.13)

Where y. is the system outputy. is the model output and= Y - y is the prediction or

model error at théh case of the test dataset (of d¥e

Furthermore, as the GP model is a probabilisticr@ggh, where an output predictive
distribution is provided, it is also possible tcalate the performance of the model using
more probabilistic measures. For the GP modelndgative Log Predictive Density (LPD)

and negative Log-Likelihood (LL) have been used vatuable indicators of model

performance:
_1 1< 2y, &
LPD—Elog(27T)+EZ‘ logE; )+? (5.14)
LL :%Iog|K|+%yTK B +E2Iog(2n) (5.15)

The LPD estimate (smaller or ‘more negative’ thetdsg¢ accounts for the model
uncertainty (variance output), and trades it offiagt the accuracy of the model. As a
result, this measure of performance is to espgcialllicate when the predictions are
‘overconfident’ (high model error & low variancegther than predictions that are ‘good’
(low model error & low variance) or ‘bad’ (high melderror & high variance). The
negative LL estimate (smaller or ‘more negatives thetter) is the same loss function used
to train the hyperparameters of the covariancetioncand provides an overall indication

as to the probability of the model. As a resulg thh measure is less useful for assessing
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model performance as it will be modified every tithe training dataset and model setup

are changed.

Along with these quantitative measures of modefqgoerance, of further importance is to
assess the model in more subjective or qualitaéxas. In this way, the model validation
stage can ensure that the identified model is dit ifs intended purpose. Therefore,
important aspects such as the overall plausibditg interpretability of the model can be
assessed. Furthermore, together with close scratirtpe prediction error, the variance
output of the GP model can provide some valuald@in as to the model performance in
local operating regions (e.g. a high variancekislyi to be due to a lack of training data in a

particular region).

As the variance output of the GP model is one efrttost potentially attractive features of
the approach, the characteristics of this extrawtunformation must also be investigated.
In an ideal situation, the location and magnitudehe variance output would exactly
mirror that of the prediction error between the elodnd the process. In this way, we
would then have a measure of the model error thatvailable at all times or ‘online’,
rather than only when validation tests are beingmeted. As discussed earlier, this extra
information could then be integrated into some faimmodel-based predictive control or
fault detection implementation. However, fundamiytanodel error is not what the
variance output signifies; instead it is a meas@mnof uncertainty over each prediction,
not a measure of the error itself. In other wotte, level of agreement between the test
data and the information found within the trainidgtaset is what governs the resultant
variance output. Therefore, test data present#ltetGP model that does not fall within the
boundaries of the training set, or shows signifilkadifferent characteristics, should result
in a potentially inaccurate prediction estimateetbgr with a marked increase in the
magnitude of the variance output. Therefore, somegtthat should be closely examined for
each example application is the relationship betwtee level of the variance output and
the degree of model error.

Of further interest in the examination of the vagda output, is the proposal for uncertainty
propagation from one prediction to the next, seeti®e (5.3). Overall, the idea that the
uncertainty surrounding one prediction should therreflected in subsequent predictions

appears to be sensible. However, as discussed atio®e(5.3.3), the uncertainty
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propagation algorithm is primarily of use in apptions where the variance output is to be
actively employed in some manner. As this thesmimarily concerned with identification
and not control, the uncertainty propagation extanshas not been implemented.
Furthermore, as the outcome of adopting this extans well understood to be an overall
‘flattening effect’ on the output predictive didution, rather than an increase in the

accuracy of the GP mean prediction, there is natgeason to repeat this demonstration.
5.6) Simulated Examples

Before tackling the identification of the real lahtwry based nonlinear systems from
experimental data, the GP modelling approach ist fio be applied to some initial
simulated examples. These examples are aimed abrorating the power of the GP
modelling approach when confronted with the taskidentifying strongly nonlinear
mathematical functions from a small number of iragnobservations. Furthermore, these
examples are intended to demonstrate the full ggoeéapplying the method. The previous
demonstrative example, see Section (3.8), was aimatectonveying the theoretical
procedure, where the hyperparameters were notifiéeintfrom the training data. Instead,
the posterior was generated using the same randooegs as the datapoints. In these
simulated examples and for the experimental resaltsome, the hyperparameters of the
covariance function are to be identified from thening data. A further intention of these
simulated examples is to highlight the differenbetween implementations of the GP
modelling approach where static nonlinearitiestarbe identified, such as those found in
the regression or interpolation problems found gxchine learning and statistics, and the
more typical dynamic time-series problems foundngineering which are the focus of this
research.

5.6.1) ‘Smooth’ Data - Static Nonlinear Example

In this opening example we are to consider one-dgo@al static nonlinearities. Consider

the following smoothly varying nonlinear mathematitunction:

_sin(x)
T X

y (5.16)
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In this example we are to attempt to identify tiiknown y from a number of observed
inputs and outputs {x, y} and therefore build aitnensional mapping from x to y so that

when presented with a different set of inputs x& may be able to predict the resultant

outputs. For this static nonlinear problem, we samply define an input rangex,D[O Zq

and calculate the resultant outputs. To make thslightly more realistic, some random
noise can be added to the function. For the inttéat of this opening example the noise is
to be kept very low, however it will be increasadai later example. A number of training
observations can then be selected through sampfirige original function calculations
(every 2 seconds, resulting in 10 datapoints)n&sgure (5.1).

1.2

0.8+
0.6

> 0.4+

0.2

0.2+ *.
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2 4 6 8 10 12 14 16 18
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Figure (5.1): Shows one-dimensional simulated exar® function, with 10 evenly
spaced training observations marked

The next stage of the GP modelling process is lexsan appropriate covariance function
with which to generate the covariance matrix thpcefies the Gaussian process prior. As
indicated earlier, the most popular choice of carare function is the Squared Exponential
function and it is this one that we are to employ this problem. Furthermore, as the
choice of this function implies a smoothly varyifuspction, it would seem appropriate for
this simulated example. Lastly, this covariancecfiom is to be combined with the simple

noise model as described in section (4.3).
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The task is now to perform maximum likelihood opsation to identify a set of optimal
hyperparameters for the covariance function. Is gimple one-dimensional example we
are to find three hyperparameters of the Squar@diential covariance function: a vertical
variance or amplitude hyperparamet@r, a length-scale parametéh, and a noise
parameterds. For this example, a set of default initial valuEsthese hyperparameters
(log(-1) for all 3) were selected, equivalent tafarm priors over each hyperparameter. By
applying the methods detailed in Section (4.4.2¢, hyperparameters were calculated as
Ovp.= (1= 2.76770,= 0.4566,03 = 0.0023) Following the identification of a setagtimal
hyperparameters, the covariance matrix K may therfiubly specified. The next stage is
then to employ the predictive equations (3.40) @d1) toward the goal of predicting new

output target values given a series of test inptits

Regarding the choice of data to be employed tothesGP model, it is at this point that we
can define the major difference between the staiidinear mapping problems considered
here, and the more conventional dynamic time-setéga examples found in engineering
applications. As we have collected a set of trgrdata that evenly covers the whole of our
defined input range(< x < 20), any test data subsequently collected will alsarl close
proximity to these training points. In effect, tt@st data will closely match the training data
and therefore lead us to the expectation that ¢iseltant GP model predictions should
closely match the underlying function (assuming thia have included sufficient training
points). This point may seem an obvious one, bug Wworth stating as a lot of the GP
modelling literature demonstrates the approach autth static one-dimensional examples
of this kind. Therefore, it is important to poinitahat in such cases, the training and test
data are often quite similar and a good model showt be an unexpected outcome.
Furthermore, it is also important to make cleat #sno previous output information is to
be used as additional inputs, this example shoeltebmed as a simulation rather than a

prediction.

In Figure (5.2a) we can see that the GP model giieds do achieve a good fit to the
underlying function, with a Mean-Square Error (MS&) 3.67e-005, Log Predictive

Density (LPD) of 3.9632, and log likelihood (LL) 6f9607. Furthermore, due to the even
spread of the training points, even though theeerelatively few training data points (10 in
this case), the variance output of the GP modedlaively low and consistent across most

of the defined operating range of the input. Howewe can see a marked increase in the
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variance atx >18 and also the beginnings of model error in the mgaadiction. This
growth in the model error and variance is furtheticated in Figure (5.2b), and is due to
the lack of training points in this region of inmpace. Notice also the slight growth of the

variance for test points occurring between the Bvepaced training points.

RS

. . . . . . . . . N e e e T )

2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 20
Input, x

(a) (b)

Figure (5.2): One-dimensional simulated example fuwtion. Chart (a) shows GP mean
predictions (dotted line) vs Underlying function (slid line) together with GP model
variance shown as & errorbars (95% confidence interval). Chart (b) shavs GP Model

Error (solid line) and Variance (26) output (dashed line).

The decay in the prediction accuracy in regionsreti&ining data is lacking is something
that all empirically based modelling approaches kel subject to. Therefore, the process of
collecting a suitable empirical dataset that covlkeesentire operating range of interest is of
fundamental importance. Furthermore, it is wortiterating that, fundamentally, the GP
modelling approach is a method of interpolation.eveha curve is to be fitted between
observed values. This means that outside of that irgnge that is populated with training
observations, the GP model will not provide anyialde estimates of the underlying
function (i.e. the extrapolation ability of the GRodel is poor). However, due to the
existence of the variance output (that should mseesubstantially in regions where training
data is limited), we can at least display a lackcomfidence in any predictions made in

these sparse regions.

As would be expected, through further reductionhef number of included training points
the accuracy of the model diminishes and the veeiautput increases in regions of input
space where data are sparse. Furthermore, a reductthe number of training points can

lead to optimisation problems (in this exampe8 results in a failure of the optimisation

algorithm), as there is simply insufficient infortizan available with which to identify the
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hyperparameters. By contrast, an increase in tmebeu of training points included will

result in greater prediction accuracy at the exparfign increased computational burden.

Therefore, for online applications a temptation meaist to train the model offline using a
large dataset to obtain suitable hyperparametémsn tfor reasons of computational
efficiency use a smaller dataset with which to maikedictions. However, such an
approach is untenable as the GP model is definedhbyinformation present in its
covariance matrix (i.e. hyperparameters such asetigth-scale are defined by the precise
spatial relationship between training points), eatlthan as a parametric form where
parameters may be interchanged or manipulated.i3usrhaps an obvious but important
point, the hyperparameters are not transferabledset different models, and although their
individual roles may be interpretable, the inteelggency of the hyperparameters leads to
an overall lack of interpretability that preventsyaneaningful manual adjustment.

5.6.2) ‘Sparse’ Data Region - Static Nonlinear Exapie

As discussed previously, one of the primary driveehind the research into the GP
modelling approach was the method’s potential nsie identification of models in off-

equilibrium operating regimes. The main difficuligsociated with identifying models of
such operating regimes using empirical methods igbtaining enough empirical data. In
the previous example, the general impact of thebmimof included training points on the
GP model’s predictive accuracy was discussed. Eurtbre, the growth of the variance

output in operating regions where training datspiarse was also made clear.

In this example, we are to build on this secondhippand demonstrate why the GP model is
a good choice for tackling identification in sparegions of operating space. Furthermore,
rather than employ an arbitrarily chosen nonlinkesuction to generate empirical data, a

simple Simulink model, see Figure (5.3), is instatilised to generate nonlinear data.
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Figure (5.3): Simple 1-dimensional Static NonlineaBystem

Through the course of this chapter, a number ééiiht Simulink models are to be utilised
for the generation of example training and tesaskatss, as a greater control over the type of
nonlinearity and scale of the input range is pdssibherefore, whilst such models are no
substitute for the real system applications, theyoffer the possibility to easily try out
different strategies and demonstrate different espaf the GP modelling approach. In this
example, the ‘Signal Builder block is used to gexte an input signal composed of a
number of positive and negative step inputs. This é then fed through a simpl@ drder
transfer function block that has the effect of sluywdown this transient behaviour in order
to allow a set of smoothly varying data to be ad#e. As this smoothly varying data is
one-dimensional (i.e. not input and output datals to be interpreted in a similar manner
to that of the previous static nonlinear examptethis example, the Squared exponential

covariance function is again used to define a Gangarocess prior.

As this example is to demonstrate how the GP midi tackle the identification task in
regions of sparse data, the data signal was dekigne manner to reflect 3 different local
operating regimes. At small and large values dfexdutput y is to vary smoothly and have
relatively small amplitude variation (i.e. regiors 20 and x > 40). In the middle of these
regions of input space (i.20> x< 40), the scale of the amplitude variation of the data
signal is to be considerably larger. The data ctél® from this system was initially
sampled every 0.2 seconds to provide 300 trainmigtp (note that in terms of sampling
the input x is interpreted as a timescale). Thenrthddle section of the data was further
sampled by a factor of 5 so that the training datéhe region20> x< 40 is observed
every 1 second, resulting in an overall trainintadat of 220 points. This training dataset is
shown in Figure (5.4).
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Figure (5.4): Training Data of Sparse Data Example
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The next stage is to identify the hyperparametérh® covariance function through the

optimisation of the marginal likelihood. As the emsance function is the same as that used

in the previous example, the same 3 hyperparameterd to be identified. Using the same

initial values (log(-1) for all 3), the hyperparateis were calculated #@gp.= (01 = 0.9851
6, = 2.9812,0;= 0.0757). As before, due to the static naturenefgroblem, the test data

will invariably be of a similar constitution to thaf the training data. However, in order to

investigate the quality of the model identifiedthe sparse middle region of the data, the

full complement (sampled every 0.01s) of the gaeera data is to be used as the test

input. Once again, this example can be understeadsamulation rather than a prediction.

The GP model's mean predictions are shown in Figtt8) and compared with the

underlying test data.
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Figure (5.5): GP Mean predictions (dotted line) vsUnderlying function (solid line)

Overall, we can see that the GP model achieve®d lgvel of approximation in the upper
and lower regions of the input space where traidiaig is plentiful. As would be expected,
the quality of the model predictions is signifidgnteduced in the middle region where
training data is more sparse. Using the same messafr model performance as before
gives a Mean-Square Error (MSE) of 0.0918, Log ete@ Density (LPD) of -0.2169, and

log likelihood (LL) of -7.7237. The variance outpaftthe GP model can again be plotted

on the same axis and compared with the model asrshown in Figure (5.6).
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Figure (5.6): GP Model Error (dashed line) and Varance (&) output (solid line)

In Figure (5.6) we can see that, as well as a anbat increase in the model error present
in the middle region of the input space, the vamamutput of the GP model is also
significantly larger. It is this facility to indi¢a the confidence over each prediction that
makes a probabilistic approach such as the GP nendedttractive alternative to other

modelling approaches.

Fundamentally, any empirical modelling approachl wsiruggle to identify operating
regions where data is limited; therefore the reduaodf the model accuracy in this example
is not something that should be unexpected. Nesiedh, the GP model does provide a
reasonable attempt at identifying this sparselyutaipd region of operating space with the
identified function at least bisecting the includedining points. This is the other main
advantage of utilising the GP method to tackle kimsl of problem, as whatever data that is
available will be used directly in making predictso in this region, rather than just
employing a function whose characteristics are ariiy identified from data in other
operating regions (i.e. the GP model ‘constraihe’ilentified function to at least touch the
few included training points).
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5.6.3) ‘Noisy’ Data - Static Nonlinear Example

In the previous two examples, the level of noisespnt on the data was minimal. In this
example, the effect of a larger level of noise lom identification process of the GP model
is to be discussed. Returning to the simple noafirexample used in the first example
(equation (5.16)), a significant level of randomseois to be added to the data, and the
computed values are to be sampled in the same masnbefore to obtain 10 training

points, as depicted in Figure (5.7).
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Figure (5.7): Shows Noisy simulated example functip with 10 evenly spaced training

observations marked.
The effect that this additional noise has had antthining observations can be readily

understood by plotting the previous noise-freeniry points and underlying function on

the same chart as the noisy training observatems) Figure (5.8).
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Figure (5.8): Shows Noisy simulated example functig with noisy (large markers) and

noise-free (small markers) training observations miked.

As would be expected, the added noise has significanodified the position of the
training observations. Therefore, it is likely tlaty identified GP model will also be less
accurate in approximating the underlying functidhis is indeed the case as can be seen in
Figure (5.9), where a significant error betweenitleatified GP model (dotted line) and the
underlying function (dashed line). Furthermore tfas GP model has provided a smooth
estimate of behaviour, the model prediction has petaly failed to capture the noise
present in the data. This is again to be expeet®dy including only 10 training points, it

is impossible to capture the higher frequency taorly behaviour present in the noise. In
order to approximate such behaviour, it would appleat the model would have to include

a far larger number of training observations.
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Figure (5.9): GP Mean predictions (dotted line) vsNoisy Underlying Function (solid

line) vs. Underlying function (dashed line) for 1Graining observations.

In many modelling approaches, in order to succéigsfuodel systems where a large
amount of noise is present, it is common practicerhploy larger amounts of empirical
data and perhaps even more complex model structOfesourse by doing so, the risk of
‘overfitting’ the data becomes more pronounced, nelibe model has begun to identify the
noise rather than just the underlying functionClmapter 3, the potential benefits of using
the Bayesian approach of the GP model to tacklgotbblem of model complexity where

made clear. Therefore, in this example it is woetnaining the GP model to include a far
larger number of training points in order to dentcate whether or not overfitting is to

become a significant problem.

Using the same noisy nonlinear data, instead opBagto provide 10 training points, this
new implementation is to employ 400 training paiftse effect of including more training
points on the quality of the GP mean predictiondepicted in Figure (5.10). Overall, we
can see that the new predictions of the GP modelary close to that of the underlying

function, whilst the model has still not approxieththe noise present in the data.
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Figure (5.10): GP Mean predictions (dotted line) vsNoisy Underlying Function (solid

line) vs. Underlying function (dashed line) for 40Qraining observations.

Therefore, it is clear that as with other modellaygproaches, the identification of noisy
systems will require a significantly larger traigimlataset in order to provide accurate
predictions of the underlying function. Furthermarecontrast with other complex model
architectures used for empirical modelling, the iB6&del does not tend to overfit the data.
In some respects this reluctance of the GP modatgin modelling the noise present in the
data is due to the automatic implementation of @e&am’s Razor principle which

implements a preference for the simplest solutisee (Section (3.5.4.1)). However, a
further aspect in play is that the specified Sqgi&®rponential covariance function is only
capable of providing smooth (infinitely differerti@) posterior functions. Therefore, any
GP model specified with such a covariance functioh fail to model such a sharply

varying almost discontinuous (or non-differentigilenction.
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5.6.4) ‘Spiky’ Data - Static Nonlinear Example

In the previous example, the GP model specifiedhwat Squared Exponential was
demonstrated as being unable to identify a sharptying or ‘spiky’ example function.
Whilst in the previous example this was benefigalhat the smoothly varying underlying
function could be successfully identified given egb training points, despite a large noise
component present in the training data. On therdtled, this inability to approximate
more sharply varying data can be seen to be a foedtl limitation of the GP modelling
approach when this most popular Squared Exponectiriance function is employed.
For many real applications (including the two ex#&spconsidered later in this chapter),
this limitation to smoothly varying systems is rsamething that is unduly troublesome.
However, for systems that exhibit a less smootipaese, alternative methods must be

pursued.

A possible strategy is to employ a different cosace function that has less strong
assumptions over the smoothness properties ofritierlying function. In Section (4.3.1.2),
the Matérn class of covariance functions was idiedtias being suitable for such a task.
The Matérn class of covariance functions allowsréiative smoothness or differentiability
of the GP prior to be controlled through the par@me . In this example, a Matérn
covariance function is to be compared with the mpopular Squared Exponential

covariance function for the approximation of a kgpistatic dataset.

The spiky dataset to be approximated was genetetied a simple Simulink model as in
Figure (5.3), however the denominator of the tran$finction block was changed from
(0.25s+1) to (3s+1), and the ‘signal builder’ blogs used to define a number of positive
and negative steps that vary in and around zetbefrghan gradually increasing as in
Figure (5.3). The ‘spiky’ dataset generated is ckeyl in Figure (5.11) and can be seen to
vary considerably less smoothly than in the opermng examples of this section, but is
also not extremely discontinuous as in the noisgvipus example. As in the previous
examples this dataset is to be used for both trgiaind testing the GP model, and this
example can be understood as a simulation ratlar finediction. For the purposes of
comparison, two training different sized datasetsrevsampled from this data, one
containing 100 points and the other containing 8ihts. The location of the smaller set of

training observations is marked on Figure (5.11).
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Figure (5.11): Shows ‘Spiky’ example function, with34 training observations marked.

The Squared Exponential covariance function is fised to approximate the data using the
100-point training dataset (see Test 1 below) drah the 34-point training dataset (see
Test 2). This process is then repeated for the iat@variance function (see Test 3 and 4).
For the Matérn case, as discussed previously diehigalues of the differentiability
parametery = 7/2, sample functions taken from prior defined by Hatérn covariance
function become almost indistinguishable from thde&ned by the Squared Exponential.
Therefore, for this example the differentiabilitgrpmeter is chosen to lbe=3/2, and the

covariance function given by equation (4.4).

Test 1 — Squared Exponential Covariance Function(I0training points)

In Figure (5.12) the GP predictions are comparetth wie underlying data for the model
trained on 100 training points. The hyperparametene calculated afyp.= (01 = 1.3877

6, = 0.9999,0; = 0.0783) and the validation measures calculateMean-Square Error
(MSE) of 0.0028, Log Predictive Density (LPD) o6@58, and log likelihood (LL) of
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7.2224. The variance output of this GP model caairabe plotted on the same axis and

compared with the model error as shown in Figur&3hp

Overall, we can see that the GP model identifiadguhe Squared Exponential covariance
function provides a good approximation to the ‘gpilataset. However, looking more

closely at the sharp peaks of this dataset, tlseaenioticeable error between the model and
the underlying data. This deficiency is due to sh@othness assumptions inherent in the

choice of this particular covariance function.

5 10 15 20 25 30 35 40 45 50
Input, X
Figure (5.12): ‘Spiky’ Data Example (100 training mints, Sg. Exp Cov. Function) -
GP Mean predictions (dotted line) vs. Underlying faction (solid line)

This mistaken assumption over the smoothness grepas further demonstrated in the
complete lack of correlation between the modelrearal predictive variance as shown in
Figure (5.13). In this example, the optimisationgadure has failed to find an optimal set
of hyperparameters that would allow a smoothly wayyunction (as defined by the chosen
prior) to accommodate the included training poiAs a result, the variance associated with
each prediction remains consistently large acrbssentire defined input range (i.e. the
variance does not even tend to zero when testraiming points are the same).
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Figure (5.13): ‘Spiky’ Data Example (100 training mints, Sg. Exp Cov. Function) -
GP Model Error (solid line) and Variance (2) output (dashed line)

The next question that arises is that if the omation procedure has not exactly been a
success, why does the GP model's mean predictihprevide a good approximation?
The primary reason behind this outcome is the laygantity of training data, which
significantly reduces the difficulty of this or iadd any interpolation task. Therefore, by
including large quantities of training data, a poboice of covariance function or failure of
the optimisation process may be possibly overcadieourse, by reverting to this kind of
‘brute-force’ strategy of including more and moraining data, the computational expense
and efficiency of the model may become unrealistitd the risk of compromising the

conditioning of the covariance matrix also becommese pronounced (i.e. a low sampling

interval may result in repetition in the data).
Test 2 — Squared Exponential Covariance Function @training points)

In this next test the size of the training seteiduced to 34 evenly space training points and
the Squared Exponential covariance function red@into obtain the following
hyperparameter8yp.= (01 = 1.8898,0, = 1.0182,05 = 0.3845). As before, the GP mean
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predictions are compared with the underlying datkigure (5.14), and the variance output
of the GP model is compared with model error inuFég(5.15). Using the same model
validation measures as before, we calculated a Nemiare Error (MSE) of 0.0444, Log
Predictive Density (LPD) of 0.0389, and log likeldd (LL) of -41.2297. Overall, the
performance of the GP model trained on a smallenbmr of training datapoints is
considerably poorer. Furthermore, the scale ofvidr@gance output is considerably larger
than that of the previous test case. Neither af@hmutcomes can be seen to be surprising,
as if the optimisation procedure is not capabléehtifying suitable hyperparameters for
the covariance function when a larger quantityraiining data is available, it will naturally

struggle even more when much of this informatiotaien away.

5 10 15 20 25 30 35 40 45 50
Input, x

Figure (5.14): ‘Spiky’ Data Example (34 training pants, Sq. Exp Cov. Function) - GP

Mean predictions (dotted line) vs. Underlying funcion (solid line)
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Figure (5.15): ‘Spiky’ Data Example (34 training pants, Sq. Exp Cov. Function) - GP
Model Error (solid line) and Variance (26) output (dashed line)

Furthermore, through the reduction of the sizeheftraining dataset the previous ‘safety-
net’ of a large dataset and therefore an easierpalation task is taken away, and we can
see that the GP model fails to even reach soméedbbserved training values. This is
better illustrated in Figure (5.16) where the tmragnobservations are plotted on to the same
chart as in Figure (5.15). Therefore, in this ex@mphere the training dataset has been
reduced in size we can better demonstrate thé@di@ared Exponential covariance function

is an unsuitable choice for problems involving gihavarying or ‘spiky’ data.
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Figure (5.16): ‘Spiky’ Data Example (34 training pants (Marked), Sq. Exp Cov.
Function) - GP Mean predictions (dotted line) vs. dderlying function (solid line)

Test 3 — Matérn Covariance Function (100 training pints)

Using the same training datasets, the Matérn caweei function (withv =3/2) combined
with a simple noise model is now to be employedgproximate the data. In Figure (5.17)
the GP predictions are compared with the underlglata for the model trained on 100
training points. The hyperparameters were calcdlagdyp.= (¢, = 2.8529,0, = 1.1249,0;

= 0.0001), where these 3 hyperparameters play #dasimole to that of the previous
Squared Exponential covariance function. Using slaene performance measures, the
following were calculated, Mean-Square Error (MSE).00064, Log Predictive Density
(LPD) of 2.1252, and log likelihood (LL) of 6.9822he variance output of this GP model
can again be plotted on the same axis and compaitbdthe model error as shown in
Figure (5.18).

Overall, the predictive accuracy of the identifi@é® model can be seen to be superior to the
model identified with the Squared Exponential cevaze function in Test 1, using the

same data. In fact, the mean predictions of the m8flel can be seen to be almost
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indistinguishable from the underlying function, withe sharper peak regions of the data
being better approximated by this Matérn GP motahtthe Squared Exponential GP
model. This improvement in the predictive perforgcercan be put down to the less
constraining smoothness assumptions that are ichfilie using the Matérn covariance
function. As the choice of this covariance functr@sults in a GP prior that is capable of
generating less differentiable sample functions, sharper regions of data can be better

approximated.

5 10 15 20 25 30 35 40 45 50
Input, x
Figure (5.17): ‘Spiky’ Data Example (100 training mints, Matérn Cov. Function) - GP

Mean predictions (dotted line) vs. Underlying funcion (solid line).

Regarding the variance output of the GP modeljgare (5.18) the variance can be seen to
be near zero at test points that are co-incidewitaltraining points (as would be desirable),
however the growth and decay of the variance outpatbe seen to be very rapid in the

small intervals between the test points.
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Figure (5.18): ‘Spiky’ Data Example (100 training ints, Matérn Cov. Function) - GP
Model Error (solid line) and Variance (26) output (dashed line).

Test 4 — Matérn Covariance Function (34 training pmts)

The Matérn covariance function is now to be apptieedthe problem of approximating the
underlying function using the smaller training (3doint) dataset. Training the
hyperparameters resultedgp.= (01 = 2.3542,0, = 1.0800,0; = 0.2114). In Figure (5.19)
the GP predictions are compared with the underlyata for the model trained on 34
training points, and the variance output of this i@&del is again plotted on the same axis
as the model error, as shown in Figure (5.20). ¢she same performance validation
measures the following were calculated, Mean-Squamer (MSE) of 0.0124, Log
Predictive Density (LPD) of 0.3731, and log likedd (LL) of —40.901. Overall, the
predictive accuracy of the identified GP model estainly less than that of the previous
example that was trained on a larger number ohitrgi points. A more interesting
comparison is the performance of this Matérn GP ehoslith that of the Squared
Exponential GP model identified with the same 24dning points. Therefore, in the Figure
(5.19), the training points have been plotted a6 agethe mean predictions to allow easier

comparison with Figure (5.16).
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Figure (5.19): ‘Spiky’ Data Example (34 training ponts (Marked), Matérn Cov.
Function) - GP Mean predictions (dotted line) vs. dderlying function (solid line)

In comparing the Matérn GP model with the SquargpoBential model, we can see that
the predictive performance of the former is consilly better than that of the latter (i.e.
MSE drops from 0.0440 to 0.0124). Most notably thean predictions also manage to
cope better with the sharper peaks/troughs in tita. d=urthermore, unlike the Squared
Exponential GP model, the mean predictions of treévh GP model successfully bisect

the included training points.

Turning our attention to the variance output o$ thiatérn GP model as depicted in Figure
(5.20), we can see that the overall level of theanae output is considerably higher than
that of the previous example that included morenitng data. Furthermore, the variance
output fails to reach zero even at test points #ratequal to observed training points.
Nevertheless, in comparison to the Squared Exp@idvibdel, the level of the variance
does reflect the location of the training dataeatihan just remain constant across the input
space. Taken together, the reasonable mean puedpgiformance and the rather high (but
still reactive) variance output of this Matérn GBdal suggests that the size of the training
set (34 points) is approaching the lower limit mfluding enough information with which
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to identify suitable hyperparameters. This is imtl&efound to be the case when a further

few training points are removed, and the GP meadigtions become highly inaccurate.
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Figure (5.20): ‘Spiky’ Data Example (34 training pants, Matérn Cov. Function) - GP

Model Error (solid line) and Variance (26) output (dashed line).

Furthermore, up until this point we have not comtadron the inconsistencies present in
the validation performance measures of these Zetestples. Whilst the MSE measure of
model accuracy can be seen to reflect what may isealNy interpreted in the
accompanying figures (i.e. the MSE of the largaming datasets outperform the smaller
datasets, and the Matérn GP models outperform themparably sized Squared
Exponential GP models). The more probabilistic meas of performance do not concur
with the MSE measures, as the LPD and LL of theaBsglExponential models are smaller
and therefore ‘better’ than those of the Matérnngxas. This is slightly troubling but as
the near constant variance output of both Squargobiiential models seems to indicate
that the optimisation process has not been entagtgessful, the variance output cannot be
seen to be particularly reliable. Therefore, thghhghts the need to employ a number of
different measures of model performance, and alssnsure that such validation measures

also concur with what is visually interpretablesabjectively plausible.
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Overall, this ‘spiky’ data example has attemptedhow (over the 4 tests) the limitations of
the Squared Exponential covariance function whexl tig tackle sharply varying data. This
is important due to the fact that the Squared Egpbal covariance function has become
almost ubiquitous in its selection for GP model liempentations (especially for system
identification purposes). In this example a Matéavariance function was found to be
more suitable for this kind of problem, and thigasbe expected due to its less stringent
prior assumption over the smoothness or differeiitiy of the underlying function. In the
forthcoming sections devoted to identifying reapesimental systems, the smoothness
properties of these systems are found to be cobieatiith that of the popular Squared
Exponential covariance function. Nevertheless,simme applications this will not be the
case and the use of alternative covariance fure{sunch as the Matérn covariance function

used here) is something that should be considered.
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5.6.5) Lorenz Attractor — A Dynamic Nonlinear Exampe

The Lorenz attractor is a 3 dimensional model stmecdefined by 3 differential equations
that was developed by Edward Lorenz in 1961 fromimaplified analytical model of
thermal convection in a layer of fluid. The Loreattractor is perhaps the most widely
known example of achaotic system, and played an important role in the génera
development of chaos theory. Chaotic systems cadeseribed generally as nonlinear
deterministic systems that are very sensitive tiialnconditions, are highly periodic, and
exhibit behaviour where phase space (trajectorgylaps occur in different regions of the
operating space (termed topological mixing). Thesdeinistic characteristic is important
as unlike systems that exhibit random behaviousptib systems can be described exactly
through analytical or parametric models. Howevespite this characteristic, the prediction
of future behaviour is difficult due to the parti@u properties of chaotic behaviour. Of
paramount importance in the analysis of chaoticabiglur is the sensitivity to initial
conditions where even miniscule changes in thealngonditions can lead to drastically
different responses as the system behaviour evalves time. This feature of chaotic
systems is popularly known as the ‘Butterfly effethis terminology originates from the
influential paper by Lorenz (1972) titledPredictability: Does the flap of a butterfly’s
wings set off a tornado in Texasthd also relates to the shape of trajectory efltbrenz
attractor as depicted in Figure (5.22). The diffgigd equations that describe the Lorenz

attractor are:

dx _ B

E_J(y X) (5.17)
4y _ oA

it X(p-2) -y (5.18)
d—Z=xy—,82 (5.19)
dt '

Wherea, p, 5> 0, ando is called the Prandtl number, anés called the Rayleigh number.

Typically, these values are constants, and for thabehaviour given the values

0=10,p=28, £=8/3. Given a set of initial conditions fo; y andz, the behaviour of

the system can then be simulated through applyurgenical methods. For this example

the initial conditions wherex=-2,y=-3.5, z=21 and the ‘ode45 Runge-Kutta solver in

Matlab was utilised to generate the data. The tlr#erential equations are displayed in
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Figure (5.21) for a 40 second time-scale, and tiese plane or trajectory of the system

displayed in Figure (5.22).
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Figure (5.21): Lorenz Attractor - dx/ dt (solid line), dy/ dt(dotted line) and dz/ dt
(dashed line).
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Figure (5.22): ‘Butterfly Effect’ of Lorenz Attract or - Chart (a) shows trajectory
dy/ dt vs. dx/ dt. Chart (b) shows trajectory dz/ dt vs. dx/ dt.

In this example, the simulated time-series datdhef Lorenz attractor is to be used to

demonstrate the process of identifying nonlinearaglyic systems using the GP modelling

approach. Therefore, a detailatvestigation into the Lorenz attractor or chadahaviour
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in general is not conducted. For more detailedrinédion on chaos theory, the textbooks
by Alligood (1997) and Gollub and Baker (1996) gaod resources. As chaotic systems
are highly nonlinear whilst remaining deterministicey are often used in the comparison
and benchmarking of alternative prediction methddsGirard (2004) the Mackey-Glass
series (generated from a model of blood cell canreukaemia patients) was used as an
example application for the GP model. However, las Mackey-Glass time-series is
described by only one variable and is thereforepaoticularly comparable with the typical

problems of system identification where both ingot output data exists.

As the Lorenz attractor is a 3 dimensional dynamaxel, it is first necessary to decide
which quantity we wish to predict (i.e. model ou)p@and which quantities are to be used
as model inputs. Furthermore, as this example mauhyc in nature, previous inputs and
outputs may also be used as inputs to the modsthFiin order to avoid confusion and
inconsistencies in the nomenclature used, we arename the previous characteristic

eguations as:

_dx_

AR =F=a(y- 3 (5.20)

B0 =2 =x0-2- (5.21)
_dz_

C(k)—dt Xy— [z (5.22)

To begin with the identification problem was detinas trying to identifyC(k) usingA(K)
andB(K) as the model inputs (see Test 1 below). A sedomiementation is then tackled
where the identification problem was defined amtyyto identifyC(k) usingA(k) andB(k)
together with the previous outpGtk-1) (i.e. one-step back) as the model inputs, tesul

in an ARX model structure (see Test 2 below). Tfugeg as previous output information is
to be used as an additional input, this exampldicgipn can therefore be termed as one-
step ahead prediction rather than simulation. Hanebefore tackling these models, a
couple of important issues regarding the practiogplementation of the approach to
dynamic problems must first be discussed.
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5.6.5.1) Incorporating Delayed or Regressed Input®utputs

Firstly, it is the construction of the model stwet that is to be an important point of
discussion in this example implementation of the @&delling approach. As discussed
previously, one of the main difficulties of the QRodelling approach is that it is
computationally expensive to include large quasditiof data in the training dataset.
Consequently, this puts pressure on the amoumaioiing data that can be readily included,
which may result in the choice of a sampling rdiat tis slower (i.e. larger intervals
between points) than would normally be employedidentification purposes. However, it
is perhaps unreasonable to place such a consbraitiite size and sampling rate of any test
dataset that the model is to be applied to (e.gmag have to sample every 0.1 seconds in
order to reduce the size of the training data, wetmight want to predict every 0.05
seconds). This issue is particularly important whgnamic systems are considered where
previous inputs and outputs are routinely emplaggdnodel inputs. In effect, if a previous
output y(k-1) is to be used as an input, the trgjrdata may be sampled in such a manner
that y(k-1) corresponds % seconds previous, whereas the test dataset msgntygled in a
manner that y(k-1) correspondsXaeconds previous (e.g. for training data sampledye
0.1 seconds, one-step back corresponds to 2-staphsibthe test data is sampled every
0.05 seconds).

Therefore, an important aspect in the implementatgbthe GP modelling approach for
dynamic problems is to ensure that the training @stl data are pre-processed in such a
manner that allows the desired model structureetaniaintained. As a result, unless the
training data and test data are to be sampledeatame rate, once the training dataset has
been pre-processed, the test data must also bessext in order to ensure consistency.
Furthermore, the process of creating a trainingagkt must also keep in mind any
subsequent requirements over the ultimate usesahtbdel (e.g. the need to test at a certain
interval). Otherwise, it is possible to createaaning dataset that has discarded information
that may be needed to make test predictions. Asxample, if the training data is sampled
every 0.5 seconds and the test data sampled evkrge@onds, a model trained using a
previous output y(k-1) as the input, should beestith a model that employs th& 5
previous output y(k-5). Therefore, the test datate processed to start predictions (k=1)
at the ' point in the dataset, whilst holding onto the jwes 5 data points for prediction

(and updating this variable as the prediction lwriproceeds). As a result, for problems
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that are to include multiple inputs composed ofedént delayed inputs/outputs, the task of

ensuring the consistency of the training and tatd dets becomes more challenging.

This need to process the test data in order toireamempatible with the model structure is
certainly not something that is unique to the GRletlong approach. However, due to the
possible need to minimise the number of includathiing points, the potential for different
sampling rates to be employed for training and tsia is perhaps greater than in
alternative approaches. Furthermore, this needdweful processing of the test data can be
seen to be a notable drawback of utilising thispamametric approach where the data is
directly included in the model (i.e. the covariamatrix can be interpreted as a precise
spatial mapping). For parametric models, whereridiaing data is used only to optimise a
number of parameters, careful processing of te&t @anot something that is normally

required if the test and training data are simjladmpled (as would normally be the case).

5.6.5.2) Normalising and Rescaling Data

Another important aspect with regard to the impletaton of the GP modelling approach
is the potential need for the rescaling and nomsasibn of the training data. Firstly, in order
to remain consistent with the Bayesian frameworthefapproach where a zero-mean prior
is defined, the output or target training data $th@lso have a zero mean (note that in the
previous simulated examples the functions variednd around zero). This can be easily
achieved through calculating the mean value oftéinget data, and then subtracting this
value (or offset) from the target data. A furthetemtial source of problems is the scaling
of the input variables, where if large differenceshe relative scaling of different inputs
exist, the optimisation of the hyperparameters t@tome difficult. Therefore, by
calculating the standard deviation of the differemputs, the scaling of each input

dimension can be checked and then re-scaled ifdemable differences exist.

At this point the potential need for the normalisatof the training target data and re-
scaling of the training input data has been dismisglowever, for models that are to
employ previous outputs as model inputs, this ntsai@on and rescaling of the training
data must be treated with care. As discussed heatasefundamental that the input training
and input test data are consistent with one andtber a timing perspective, but also now

from a scaling perspective. Therefore, employingyjmus output/target data (that has been
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normalised) as a model input, and subsequentlyitigi hyperparameters under this
condition, means that the corresponding test icjptd (i.e. the previous output) must also
be normalised accordingly. This means that whenfopaing multiple-step ahead

prediction, the calculated output prediction mustnormalised before being fed back for

use as a model input.

Overall, whilst these implementation issues regaydihe incorporation of previous
inputs/outputs and the normalisation and rescalirtpe data are important, it is also worth
noting that it is often the case that a reasonatdelel can be identified even if these
considerations are not implemented perfectly. Asptocessing of the training and test data
can become quite complex, and time-consuming ii@mber of iterations of training and
testing procedure are required, it is sometimey sa®verlook some of the more subtle
aspects and assume that everything is correctr@asanable model performance has been
achieved. Nevertheless, if these strategies areattr employed, a greater level of model

performance should be possible.

Test 1 — PredictingC(k) using A(k) and B(k) as inputs

In this example the following model structure ispdayed: C(k) is the model output, and
useA(k) andB(k) are the model inputs. The differential equatiaese then employed to
generate the dataset displayed in Figure (5.219rder to adhere to the basic principles of
cross-validation, this data is then split into sapaitraining and test datasets. Therefore, it
is important to be clear that the data used ta ttheé model will not be used as a test
dataset. For this example, the data was partitiaehly (at 20 seconds) into test and
training datasets. The original empirical data gateel from the differential equations was
done so at an interval of 0.01 seconds for 40 s;aresulting in 2000 points each in the
test and training datasets. Therefore, in orderettuce the computational burden, the
training dataset was then sampled by a factortofgive 500 points, and the test data was
sampled by a factor of 2 to give 1000 points. Tdifference in the sampling rate of the
training and test datasets will not be important fois test as no previous output

information is to be fed back as an additional inpu

After this initial processing of the data, the netdge to consider is the normalisation and

scaling of the data. Examining the mean and standaviation of the three quantities the
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following values were calculated mear{ A B) =-3.91, std A k)= 6.9,
mear{ B R) =-3.92, std B k)= 8.0 and mear{ G B) =23.80, std ¢ R)= 8.3.

Overall, we can see that the standard deviatioth@fthree variables is quite similar, so
rescaling of the data to be employed as inputsotsrequired. However, as the mean of
targetC(k) is significantly different from the prior zero-@me assumption inherent in the
GP modelling approach, the target values shouldffset by this mean value. As no
previous regressive outputs are to be used initm@ementation as model inputs, this
normalisation of the target data will not affece timput data. However, this offset value
must be retained and added to the computed presscti

The next stage to consider is the selection ofpgamagriate covariance function along with
the optimisation of suitable hyperparameters. g e€xample, the Squared Exponential
covariance function was employed with the sameaintalues chosen for hyperparameters
as before (-1 for all). As this example model i®toploy two inputs, a second length-scale
hyperparameter is required (i.e. vertical variaocamplitude hyperparametéy, a length-
scale parametet, (for A(Kk) input dimension), a length-scale paraméteffor B(k) input
dimension), and a noise parametés.). Applying the same marginal likelihood
maximisation optimisation scheme as before resnlés;p.= (01 = 2.04390, = 5.1122,0;=
10.0623,0, = 1.9969). Now that the GP prior has been defitiegl predictive mean of the
posterior can then be calculated for all test is@nd compared with the real function data
as in Figure (5.23) on the next page.

Overall, the GP model has provided a reasonableseptation of the behaviour of target
function but significant error can be seen to exi&is is reflected in the validation
measures of performance where the following weteutated: Mean-Square Error (MSE)
of 6.4987, Log Predictive Density (LPD) of -10.2683nd log likelihood (LL) of -
1.1795e+003. As before, it is informative to ploe tmodel error on the same chart as the

variance output of the GP model as in Figure (5.24)
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Figure (5.23): Lorenz Example - GP Mean predictiongdotted line) vs. Underlying
function (solid line).
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Figure (5.24): Lorenz Example - GP Model Error (sad line) and Variance (&)
output (dashed line).
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In Figure (5.24), the peaks in the model error barseen to mostly correspond with the
peaks in the variance output. Furthermore, a netaidrease in the overall level of the
variance output can be observed in the middle gortif the test data between t = ~27
seconds and t= ~31 seconds. We can interpretritrigase in the variance output, and sharp
increase in the model error at the beginning of tkgion of test data, by referring to the
training data included in the model (first 20 sed®f data in Figure 5.22). In the region
(27 <t < 31) of the test data, the model inpét&) andB(k) can be seen to shift upward to
a higher value and continue oscillating. Howewverthie first 20 seconds of this dataset that
has been used for training, this upward shift emabserved data is not present. As a result,
the training dataset does not contain sufficiefdrimation in the form of observed data
with which to make accurate predictions at thegsutinvalues, thus leading to more
uncertain predictions that have a higher variandads can be further understood by
referring to the trajectory chart of Figure (5.22Wwhere the less frequent oscillations that
occur at higher values can be interpreted as gig-hand ‘wing’ of the ‘butterfly’. In this
example, we have not included enough observatrmams this right-hand ‘wing’ in order to

make accurate predictions there.

Overall, this example demonstrates the fundametegpendency that the GP modelling
approach has on the quality of the training data€¥t course by including more
observations in the training dataset the qualitthefmodel may be improved, but this may
lead to considerable computational expense. Thexgeifostrict controls are to be placed on
the size of the training dataset, it is clear tina quality of the training dataset must be
improved using some other strategy. It is at tligpthat prior knowledge of the system
and available data can prove to be of significergartance. Rather than just employing an
arbitrarily chosen block of the available datathié training dataset can be pre-processed
more carefully to cover a greater range of the aijpgy space more evenly, a better overall
model can often result. Conversely, if there amrecsj regions of operating space that are
more common or more important, the training datauih be concentrated into covering
those areas. Either way, using prior knowledgehef system together with the overall
objectives of the model can play an important mldeveloping the most suitable model.

In order to demonstrate this aspect of choosindrdiring dataset more carefully, the same

analytical model and initial conditions were agased to generate data, but the time-scale

of the collected data was extended to 100 secondsder to gain a better appreciation of
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the long-term behaviour of the system, see Figbu25]. Overall, the input oscillations can
be seen to repeatedly alternate about zero in arioglic manner, and this is indeed the
case if alternative initial conditions are employ@&tierefore, the initial model trained on
the first 20 seconds of data can be seen to beglarty lacking in sufficient observations
of the input data where the oscillations occur &aero. As a result, if the model is
retrained to include more observations in thisaeg@f input space, the performance of the
model should be improved. To demonstrate thisptbdel is now to be trained on the data
present in the regio20<t < 40 where input oscillations occur above and belovozand
the performance of the model compared with theimaigmodel trained on the data

contained in the regiof <t < 20.
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Figure (5.25): Lorenz Attractor - A(k) (solid line), B(k) (dotted line) and C(k) (dashed

line).

As before, the training datasets of both modelg@itge sampled so as to include 500 data
points, and the same optimisation procedure folthvike order to test these two models, the
data contained in the regi@®<t <10C is to be used, and the model performance can seen
in Figure (5.26) and Figure (5.27). Overall, we sae that the level of error present in the
model trained on the dat20<t < 40 is mostly superior to that of the model trainedtioa

data 0<t<20 with the large peaks in the model error correspundo the larger
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amplitude oscillations. The variance output of thesvly trained model is also typically
lower and more consistent between these peaks delneoror. For the model trained on the
data on the originaD<t <20 data, the validation measures where Mean-Squam@ Er
(MSE) of 9.6090, Log Predictive Density (LPD) oR-%828, and log likelihood (LL) of -
1.1795e+003. For the model trained on the datdhheméw20<t < 40 data, the validation
measures where Mean-Square Error (MSE) of 5.396§, Rredictive Density (LPD) of -
19.4800, and log likelihood (LL) of -1.2148e+003.
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Figure (5.26): Lorenz Example (trained on0<t< 20) - Chart (a) shows GP Mean
predictions (dotted line) vs. Underlying function ¢olid line). Chart (b) shows GP

model error (solid line) and Variance (&) output (dashed line).
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Figure (5.27): Lorenz Example (trained on20<t < 40) - Chart (a) shows GP Mean
predictions (dotted line) vs. Underlying function ¢olid line). Chart (b) shows GP

model error (solid line) and Variance (&) output (dashed line).

From these validation measures we can see that &8&acy of the model has improved
as expected. In contrast, the LPD measure thaeeeta the variance output of the models

shows that the first model has less uncertaintyugbts predictions. However as a
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significant level of error still exists in both mald, this is not something that is unduly

concerning.

It is also worth pointing out that whilst this n€sW’ model trained on the data contained in
20<t < 40 provides a slightly better performance than thaihed with the data contained
in 0<t<20, this is partly due to the fact that the test eagBO<t <10C contains
considerable amounts of input data above and belw. If the test data is to primarily
include input response data below zero the firstdehadentified with dataO<t < 20 is
likely to perform better as it has a greater cotregion of training observations that are
similar to the test points, whereas the second oake training data that is spread more
evenly across input space. This is indeed the icefee data regio0<t < 60, where the
first model outperforms the second. This is impairia relation to this particular example
application as due to the chaotic nature of thparse and sensitivity to initial conditions,
it is often possible to generate input data thatllases above or below zero for prolonged
periods of time before switching. Therefore, in @rdo identify a robust model that
performs well across the input range, it is neagsiaselect the training data carefully in
order to include as much information as possibli@limited space available.

Furthermore, it is necessary to employ test datbgkamines the performance of the model
across as much of the input space as possibleefbner it is worth testing both of these
models on a larger datasgd<t < 10C in order to confirm which model is superior. Foet
model trained on the data on the origiflatt < 20 data, the validation measures where
Mean-Square Error (MSE) of 6.3394, Log PredictivenBity (LPD) of -10.1268, and log
likelihood (LL) of -1.1795e+003. For the model trad on the data on the ne20<t < 40
data, the validation measures where Mean-Squam BWSE) of 4.9244, Log Predictive
Density (LPD) of -12.0030, and log likelihood (LIof -1.2149e+003. From the MSE
validation measures we can see that accuracy ofntbdel trained using the data
20<t < 40 is remains slightly better than the model trainsthg the datab<t < 20, and
the LPD measure now also indicates that this mmdkdss uncertainty associated with it.
Note that for this example, the model performasceot plotted as the charts are difficult to

read due to the frequency of the oscillations amgjth of the timescale.

Overall, the significant error in the model demoaists the difficulty of predicting the
chaotic behaviour of the Lorenz attractor usingahesen inputsA(k) andB(k). This is due

to the fact that these input variables are notiaddrly informative of the desired output
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C(k) (i.e. a relationship between the input and outmdillations is not easy to interpret).
Therefore, in order to improve this modglk) additional or alternative inputs would be

required.
Test 2 — PredictingC(k) using C(k-1), A(k) and B(k) as inputs

As this example application is dynamic in natutee previous states of the inputs and
outputs are available for use in predicting futbedaviour. In this example the previously
used inputs,A(k) and B(k), are to be augmented with previous or delayedoudut
informationC(k-1) as an additional input to the model. Thereftines GP model can now
be understood as an implementation of one-stepdapeadiction This example is to
employ the same initial conditions and therefore the same data as in the previous model
implementation. As before, employing an additiangut in the model structure means that
another length-scale hyperparameter must be add#tetsquared exponential covariance
function. Furthermore, as this additional inputasbe the previous output fed back, the
normalisation that was performed in the origina-processing of the training data must
also be applied to this input daték-1). As before, after the test predictions are cateqb,

the offset that results from this normalisation ttaen be added to the output predictions.

In addition, as the training data has been sampladclude 500 points resulting in a 0.04
second interval between data points, and the taist las been sampled so that a 0.02
second interval between data points exists, theique output must be incorporated in a
manner that ensures consistency in the timing. &éfbex, the delayed or previous output
(one-step back) of the training data is equivalerthe previous output (two-steps back) of
the test data, i.e. 2x0.02s = 0.04s. As a redqwdtoutput must be stored in a variable after
each prediction so it can then be used to calctiteg@ppropriate subsequent prediction (2
steps in advance in this case). This process caetber understood by writing out the form

of the inputs/outputs as below:

At the first test case, k=1:
Model Input:[C(k=2) AK) B(K]

Model Output:[C(K)]
Previous Output (stored for next predictiof(:(k —1)]

At the second test case, k+1:
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Model Input:[C(k-1) A(k+1) B(k+ 1)
Model Output:[C(k +1)]
Previous Output (stored for next predictio[(:(k)]

At the third test case, k+2:
Model Input:[C(K) A(k+2) B(k+2)]

Model Output:[C(k +2)]
Previous Output (stored for next predictiof(:(k +1)]

And so on....

An obvious problem of including previous or regezs®utputs is that for the initial test
predictions, this input information would not appéa be available (i.e. for the first test

case we nee@(k—-2) andC(k-1)). In some applications we can employ knowledge ove

the initial conditions of the system in order t@yde this input information. Furthermore,
in this simulated example, where test data has belatted from a larger set of empirical
data, it is straightforward to include some obskovs of the output that immediately

precede the chosen start of the test data (i.ecameinclude observation€(k-2) and
C(k-1) for use as input information, with the remainirgservations ofC(k) being used

for comparison with the model predictions).

However, in other cases it is possible that suamainconditions are not available (e.g.
applying the model online to fresh datasets) andmwst make the first few predictions

using whatever input information is available (oaly A(k) and B(k)). A problem with

adopting such an approach is that the hyperparasneéve been identified using the full
complement of inputs in the training data, andéfege do not remain optimised if one or
more of the inputs and accompanying hyperparamatersemoved from the model set-up.
This is due to the coupling that exists betweenidieatified hyperparameters, and means
that if the model set-up is altered, the hyperpatans must be retrained on similarly re-
configured training data in order to remain optim#&s the optimisation of the
hyperparameters can become a computationally danwpdocess if a large quantity of
data is included in the training dataset, the neitmg of the hyperparameters to identify a
GP model that is only going to be used to predigvainitial test cases would seem to be

computationally expensive from an overall perspectiFurthermore, for this particular
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application, the GP model identified using om¥k) and B(k) as the model inputs has

been shown to be of limited accuracy in Test 1.rétoee, the resulting overall model will
provide a poor level of predictive accuracy for thitial test predictions, but is likely to
improve significantly dramatically when the prevsooutputs become available and can be
used as model inputs, as will be demonstrated is» édkample. Therefore, the strategy
involving the inclusion of initial conditions in¢hform of recorded previous output data has

been adopted for the applications investigatedimthesis.

Firstly, we are to employ the same training and dedaset as in the first part of Test 1
where the model is trained on the data includetthénregion0<t < 20 and tested on data
in the region20<t < 40. The hyperparameters where identified as befasulting in
Omp.= (A1 = 51.2158,0, = 9.4911,03 = 59.5256 0, = 28.2600,05 = 0.0039), and the model
performance is compared with the underlying dat@igure (5.28), and the model error and
variance output of the GP model shown in Figurggp.

5 | 1 | 1 | | 1 | | |
20 22 24 26 28 30 32 A 36 38 40
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Figure (5.28): Lorenz Example - GP Mean predictiongdotted line) vs. Underlying

function (solid line).
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Overall, we can see that the accuracy of the mioaelimproved dramatically by including
the previous output as a model input, with the G€ampredictions being practically
indistinguishable from the underlying test datathwvalidation measures Mean-Square
Error (MSE) of 1.7524e-004, Log Predictive Dengit¥?D) of -9.2260, and log likelihood
(LL) of 1.7919e+003. This great improvement in thedel performance is not something
that should be unexpected as the inclusion of tbeigus output information provides an
input that is likely to be highly correlated withet desired output. Examining the model
error and variance output of the GP model in Figbr29), we can clearly see that as in the
previous example (shown in Figure (5.24)) both gtias grow in the middle portion of
the test dataset as the training dataset includamaler number of observations in this

region of input space.
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Figure (5.29): Lorenz Example - GP Model Error (sald line) and Variance (&)
output (dashed line).

As in the previous example, we can attempt to nyoiié training dataset to better cover

the whole of the input range. Therefore, the madentified using data contained in the

region 0<t< 20 is to be compared with a model identified usingadeontained in the
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region 20<t < 40, with the data contained in the regiBA<t < 10C being used as the test

data. The performance of the two models can beise@igure (5.30) and Figure (5.31).
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Figure (5.30): Lorenz Example using previous outpuftrained on 0<t < 20) - Chart
(a) shows GP Mean predictions (dotted line) vs. Urdlying function (solid line). Chart
(b) shows GP model error (solid line) and Variancé2e) output (dashed line).
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Figure (5.31): Lorenz Example using previous outpuftrained on 20<t < 40) - Chart
(a) shows GP Mean predictions (dotted line) vs. Urdlying function (solid line). Chart
(b) shows GP model error (solid line) and Variancé2es) output (dashed line).

Overall, we can see that both models provide anrate representation of the underlying
data. For the model trained on the data on thenaligd <t < 20 dataset, the validation
measures where Mean-Square Error (MSE) of 1.4282¢1bg Predictive Density (LPD)
of -3.7094, and log likelihood (LL) of 1.7919e+00r the model trained on the data on
the new 20<t < 40 dataset, the validation measures where Mean-Sdtraoe (MSE) of
2.7576e-004, Log Predictive Density (LPD) of -4%37 and log likelihood (LL) of
1.7377e+003. Therefore, in the measure of moder éMSE) the first model is actually
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slightly superior to the second model, whilst ire timeasure of variance (LPD) it is the
other way round. As in the previous example, thel@herror of the first model can be seen

to be increase at test cases where the ina(k$ and B(k) are above zero, where there is

fewer included training observations. For the sdcmodel, the model error can be seen to
be slightly lower than in the first model for somiethe test cases, but increases sharply at

test cases that coincide with the transition ofdkeillating inputs A(k) and B(k) from

below zero to above zero. Furthermore, througheclasspection of the model error and
predictive variance of each model we can gain atgreappreciation of their different
characteristics. Due to the more even spread wiirigadata (in relation to the input space

A(k) and B(k)) of the second model trained on the data red®r t < 40, the variance

level of this model is consistently lower than tieatthe model trained on the data region
0<t<20. This means that the second GP model is more aemtfiover the predictions it

has made, and is perhaps overconfident at cerésinpoints where the model error is
actually larger than that found in the first mosdéiere the model error and variance are

more in tune with one another.

From inspecting the training datasets of both msdelis difficult to see exactly why the
second model performs slightly worse than the finstdel with regard to modelling the
output when this transition in the inputs occutssiclear that, unlike the first model, the
training dataset of this second model is not paldity deficient in covering the available
input space of this example, as the variance ouppuhe model remains quite small.
Instead, the slight advantage of the first modelejoresenting this transition is due to this
model’s training dataset being slightly more infative at these particular test cases. This
is an interesting result, as it shows that as Emgome training data is included from across
the operating range, and informative inputs areleygol, a good model can be identified.
Furthermore, this model is competitive with theealative model where the training data is

more evenly spread.

The informative nature of the training data is sotmething that has been given much
consideration in the example applications so farsTs primarily due to the static nature of
the nonlinearities considered, where the problem aaost be reduced to including as
much data in the training dataset as is computallipnfeasible. However, for the
identification of nonlinear dynamic systems, thesige of the training dataset must also
take into account the characteristics of the systeder investigation.
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One of the most important aspects of creatinginitrg dataset is the selection of a suitable
sampling rate for the experimental data colleciow data pre-processing stages. In this
example so far, the training data has been samped) a 0.04 second interval between
data points to provide a training dataset of 50pp and the test data sampled so that
0.02 second interval between data points existmgdbis data along with previous output
information has allowed us to identify some modefisdecent accuracy. However, one
thing that has not been made clear so far is thiat gonsiderably more computationally
expensive and therefore slower to compute predistiwhere previous outputs are to be
included as model inputs. This is due to the needvaluate the predictive equations at
each individual step in time in order to feed balk newly computed output. In the
previous static examples, the predictive equateansd be computed in a single iteration as
the full compliments of test inputs are immediataljailable. Therefore, in order to speed
up the identification of hyperparameters and euaunaof predictions it is worthwhile
attempting to carefully reduce the size of theniray dataset whilst retaining sufficient
model performance, i.e. trade-off the computaticfitiency of the model against model

accuracy.

The problem with attempting to reduce the size e training dataset is that we are
potentially eliminating important information. Olowusly, if the sampling rate is kept
constant, by reducing the number of observationkided in the training dataset, we are
reducing the size of the time-scale that is to hiuded. Therefore, less information is
likely to be included in the training dataset as tilme-series may be too short to exhibit the
full characteristics and operating range of thdesys An alternative strategy is to reduce
the sampling rate used in processing the trainiaig.dThis will obviously allow us to
include a longer time-series, thus potentially @asing the amount of operating space
covered by the training dataset. The downside dogieg the sampling rate used for the
training dataset is that we run the risk of failitegcapture the some of the more subtle
characteristics of the syste