

Thompson, Keith R. (2009) Implementation of gaussian process models
for non-linear system identification. PhD thesis.

http://theses.gla.ac.uk/1367/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/1367/

Implementation of Gaussian Process models

for Nonlinear System Identification

A thesis submitted for the degree of

Doctor of Philosophy

Department of Electronics and Electrical Engineering

University of Glasgow

Keith Russell Thompson

© Keith Russell Thompson November 2009

 ii

Abstract

This thesis is concerned with investigating the use of Gaussian Process (GP) models for

the identification of nonlinear dynamic systems. The Gaussian Process model is a non-

parametric approach to system identification where the model of the underlying system is

to be identified through the application of Bayesian analysis to empirical data. The GP

modelling approach has been proposed as an alternative to more conventional methods of

system identification due to a number of attractive features. In particular, the Bayesian

probabilistic framework employed by the GP model has been shown to have potential in

tackling the problems found in the optimisation of complex nonlinear models such as

those based on multiple model or neural network structures. Furthermore, due to this

probabilistic framework, the predictions made by the GP model are probability

distributions composed of mean and variance components. This is in contrast to more

conventional methods where a predictive point estimate is typically the output of the

model. This additional variance component of the model output has been shown to be of

potential use in model-predictive or adaptive control implementations. A further property

that is of potential interest to those working on system identification problems is that the

GP model has been shown to be particularly effective in identifying models from sparse

datasets. Therefore, the GP model has been proposed for the identification of models in

off-equilibrium regions of operating space, where more established methods might

struggle due to a lack of data.

The majority of the existing research into modelling with GPs has concentrated on

detailing the mathematical methodology and theoretical possibilities of the approach.

Furthermore, much of this research has focused on the application of the method toward

statistics and machine learning problems. This thesis investigates the use of the GP

model for identifying nonlinear dynamic systems from an engineering perspective. In

particular, it is the implementation aspects of the GP model that are the main focus of this

work. Due to its non-parametric nature, the GP model may also be considered a ‘black-

box’ method as the identification process relies almost exclusively on empirical data, and

not on prior knowledge of the system. As a result, the methods used to collect and

process this data are of great importance, and the experimental design and data pre-

processing aspects of the system identification procedure are investigated in detail.

 iii

Therefore, in the research presented here the inclusion of prior system knowledge into

the overall modelling procedure is shown to be an invaluable asset in improving the

overall performance of the GP model.

In previous research, the computational implementation of the GP modelling approach

has been shown to become problematic for applications where the size of training dataset

is large (i.e. one thousand or more points). This is due to the requirement in the GP

modelling approach for repeated inversion of a covariance matrix whose size is dictated

by the number of points included in the training dataset. Therefore, in order to maintain

the computational viability of the approach, a number of different strategies have been

proposed to lessen the computational burden. Many of these methods seek to make the

covariance matrix sparse through the selection of a subset of existing training data.

However, instead of operating on an existing training dataset, in this thesis an alternative

approach is proposed where the training dataset is specifically designed to be as small as

possible whilst still containing as much information. In order to achieve this goal of

improving the ‘efficiency’ of the training dataset, the basis of the experimental design

involves adopting a more deterministic approach to exciting the system, rather than the

more common random excitation approach used for the identification of black-box

models. This strategy is made possible through the active use of prior knowledge of the

system.

The implementation of the GP modelling approach has been demonstrated on a range of

simulated and real-world examples. The simulated examples investigated include both

static and dynamic systems. The GP model is then applied to two laboratory-scale

nonlinear systems: a Coupled Tanks system where the volume of liquid in the second

tank must be predicted, and a Heat Transfer system where the temperature of the airflow

along a tube must be predicted. Further extensions to the GP model are also investigated

including the propagation of uncertainty from one prediction to the next, the application

of sparse matrix methods, and also the use of derivative observations. A feature of the

application of GP modelling approach to nonlinear system identification problems is the

reliance on the squared exponential covariance function. In this thesis the benefits and

limitations of this particular covariance function are made clear, and the use of

alternative covariance functions and ‘mixed-model’ implementations is also discussed.

 iv

Acknowledgements

The completion of this thesis would not have been possible but for the support and

guidance of a number of individuals, and for that I would like to express my most sincere

gratitude. Firstly, I’d like to thank my supervisor Professor David Murray-Smith, both

for giving me the opportunity to study, and more importantly for remaining positive and

having faith in me when things became desperately difficult. I will be eternally grateful

for his expertise and untold levels of patience. Others who have made a great impact on

my understanding of the subject and provided a great deal of technical know-how,

especially at the beginning of my studies, have been those in the Computing Science

Department of Glasgow University, namely Professor Roderick Murray-Smith and Dr.

Gary Gray. Furthermore, it also important to acknowledge the use of software made

available by Dr. Carl Rasmussen and Dr. Chris Williams.

From the Electronics Department, a special mention must be given to Tom O’Hara

whose technical expertise and friendship made working in the control lab, whether

performing data collection experiments or lab demonstrating, not just possible but also

great fun. From my fellow PhD students, I’d especially like to thank Alistair Grant, Jill

Walker, Alisdair Mitchell and David McGeoch for their friendship and camaraderie over

the last few years. I’m also grateful for the enjoyable company of others in Room 507,

including Jin, Gregory, Fang and Wei.

Just as important has been the support of all my friends outside the department;

especially during those difficult days where I’m sure my morbid demeanour became

almost intolerable! A special mention must therefore go out to those who have had to put

up with me on a daily basis during the last few years, especially my brother Neil and his

flatmates Calum and Russell for letting me stay rent-free when they didn’t have to,

Murray for his generosity and extra-curricular golf tuition, and also Hema and Sarah for

giving me a warm welcome at the beginning of my years of study. Finally, the greatest of

thanks must go to my parents, who without the emotional and not inconsiderable

financial support, I would never have had the opportunity or even the ambition to attempt

this work, let alone stubbornness to see it through to the end.

 v

Contents

Abstract .. ii

Acknowledgements .. iv

1) Introduction .. 1

 1.1) Original Contributions ... 3

 1.2) Thesis Outline .. 5

2) Nonlinear System Identification.. 7

 2.1) The System Identification Process... 7

 2.2) Role of Prior Knowledge ... 10

 2.2.1) Overall Modelling Objectives ... 11

 2.2.2) Knowledge of System Characteristics... 12

 2.2.3) Knowledge of Empirical Data or Experimental Conditions 12

 2.3) Experimental Design.. 13

 2.3.1) Which Measurements ? .. 14

 2.3.2) Excitation Signals.. 15

 2.3.2.1) Active Learning .. 17

 2.4) Pre-processing Data – Creating the Training Data Set 18

 2.5) Choice of Model Architecture ... 20

 2.5.1) Linear and Nonlinear Models.. 20

 2.5.2) Parametric and Nonparametric Models... 22

 2.5.3) Linear Dynamic Models.. 23

 2.5.3.1) Linear to Nonlinear Dynamic Models .. 25

 2.5.4) Nonlinear Dynamic Models .. 27

 2.5.5) Neural Networks.. 30

 2.5.5.1) Multilayer Perceptron (MLP) Network .. 31

 2.5.5.2) Radial Basis Function (RBF) Network... 34

 2.5.5.2.1) Normalised RBF Networks.. 37

 2.5.6) Multiple Model Networks ... 38

 2.5.6.1) Local Model Networks ... 40

 2.5.6.1.1) Off-Equilibrium Dynamics .. 43

 vi

 2.6) Model Optimisation ... 45

 2.6.1) Types of Learning ... 45

 2.6.1.1) Supervised Learning ... 45

 2.6.1.2) Reinforcement Learning ... 46

 2.6.1.3) Unsupervised Learning...46

 2.6.2) Parameter Optimisation... 47

 2.6.2.1) Linear Optimisation.. 48

 2.6.2.2) Nonlinear Optimisation ..50

 2.6.3) Model Structure/Complexity Optimisation... 53

 2.6.3.1) Bias/Variance Dilemma.. 54

 2.6.3.2) Model Complexity Optimisation Strategies 56

 2.7) Model Validation ... 59

3) Gaussian Process Models ... 61

 3.1) What is a Gaussian Process Model? .. 61

 3.2) Motivation for GP models ... 63

 3.3) Dealing with Complexity... 65

 3.4) The Bayesian Alternative... 66

 3.5) Bayesian Learning ... 68

 3.5.1) Levels of Inference.. 69

 3.5.1.1) 1st Level of Inference.. 69

 3.5.1.1.1) Getting a predictive distribution .. 70

 3.5.1.1.2) From predictive distribution to single-value prediction........... 71

 3.5.1.2) 2nd Level of Inference ... 71

 3.5.2) Evaluating Integrals... 72

 3.5.3) What Prior?.. 74

 3.5.4) Relating Back To Complexity... 75

 3.5.4.1) Occam’s Razor ... 76

 3.6) Gaussian Process Modelling .. 78

 3.6.1) What exactly is a Gaussian Process?... 80

 3.6.2) From Infinite Networks to Gaussian Processes... 84

 3.6.2.1) Defining Fixed-Basis Function Model ... 84

 3.6.2.2) Define (Zero-Mean) Prior... 85

 3.6.2.3) Move to Infinite Basic Functions ... 87

 vii

 3.6.2.4) Where does this leave us? ..88

 3.7) Regression with Gaussian Processes ... 88

 3.7.1) Making Predictions.. 89

 3.8) Demonstration of Gaussian Process Modelling... 94

 3.8.1) Defining a Gaussian Process Prior ..94

 3.8.2) Compute Posterior... 95

4) Implementation of GP Models... 99

 4.1) Role of the Covariance Function ... 99

 4.2) Choice of Covariance Functions.. 103

 4.2.1) Validity of Covariance Functions ... 103

 4.2.1.1) Why does Positive-Definiteness Matter? 104

 4.2.2) Types of Covariance Function .. 105

 4.2.2.1) Stationary & Non-stationary Covariance Functions....................... 106

 4.2.2.2) Smoothness Properties.. 107

 4.3) Examples of Covariance Functions ... 108

 4.3.1) Stationary Covariance Functions... 108

 4.3.1.1) Squared Exponential Covariance Function.................................... 109

 4.3.1.2) Matérn Class of Covariance Functions... 111

 4.3.1.3) Exponential, γ-Exponential, and Rational-Quadratic Covariance

 Functions... 114

 4.3.2) Non-stationary Covariance Functions... 114

 4.3.3) Combining Covariance Functions... 116

 4.3.3.1) Sum of Covariance Functions... 116

 4.3.3.2) Product of Covariance Functions.. 116

 4.3.3.3) Vertical Rescaling and Convolution... 117

 4.3.3.4) Nonlinear Mapping (Warping) ... 117

 4.4) GP Model Optimisation ... 118

 4.4.1) Optimising Hyperparameters .. 119

 4.4.2) Marginal Likelihood (Evidence) Maximisation...................................... 120

 4.4.2.1)Marginal Likelihood Loss Function .. 121

 4.4.2.2) Gradient Calculations ...122

 4.4.2.3) Multiple Local Maxima.. 123

 4.4.3) Monte-Carlo Alternative ... 125

 viii

 4.4.4) Which Optimisation Method? ... 126

 4.5) Mathematical & Computational Implementation .. 127

 4.5.1) Size of the Covariance Matrix... 127

 4.5.2) Conditioning of the Covariance Matrix... 128

 4.5.2.1) Dealing with Non-Positive Definite Matrices 129

 4.5.2.1.1) Negative Eigenvalues from Problematic Data....................... 129

 4.5.2.1.2) Eigenvalue Decomposition .. 130

 4.5.2.1.3) Training Data Pre-processing... 130

 4.5.3) Implications for Experimental Design .. 132

 4.5.4) Direct Implementation of the GP model ... 134

 4.5.4.1) Using Matrix Decomposition ... 136

 4.5.5) Approximate Implementations of the GP model..................................... 137

 4.5.5.1) Fast Matrix Vector Multiplications (MVM)................................... 138

 4.5.5.2) Sparse Matrix Methods... 139

 4.5.5.3) Subset Selection.. 140

 4.5.5.4) Subset of Data (SoD)..142

 4.5.5.5) Nyström Approximation... 143

 4.5.5.6) Subset of Regressors (SoR) .. 143

 4.5.5.7) Further Sparse Methods.. 145

 4.5.6) Which Approximation Method? ... 146

 4.5.6.1) Implications for System Identification ... 148

 4.5.6.2) Further Possibilities .. 149

 4.5.6.2.1) Multiple GP Models... 149

 4.5.6.2.2) Derivative Observations... 151

5) Nonlinear Dynamic System Identification with GP models 152

 5.1) Background of GP models in System Identification.. 152

 5.1.1) Control with GP models .. 155

 5.2) Applying the GP Model ... 156

 5.3) Multi-Step Ahead Prediction ... 156

 5.3.1) Uncertainty Propagation.. 157

 5.3.2) When to use Uncertainty Propagation?... 159

 5.4) Derivative Observations... 162

 5.4.1) Identifying Derivative Observations from Data...................................... 163

 ix

 5.4.2) Gaussian Process Derivatives.. 163

 5.4.3) Incorporating Derivative Observations ... 165

 5.5) Experimental Methods and Objectives .. 167

 5.5.1) Implementation of GP Models .. 167

 5.5.1.1) Choice of Covariance Function .. 168

 5.5.1.2) Design of Training Dataset... 169

 5.5.1.3) Further Developments .. 171

 5.5.2) Examining Performance of the GP model... 171

 5.6) Simulated Examples... 174

 5.6.1) ‘Smooth’ Data – Static Nonlinear Example.. 174

 5.6.2) ‘Sparse’ Data Region – Static Nonlinear Example 178

 5.6.3) ‘Noisy’ Data – Static Nonlinear Example... 183

 5.6.4) ‘Spiky’ Data – Static Nonlinear Example ... 187

 5.6.5) Lorenz Attractor – Dynamic Nonlinear Example 199

 5.6.5.1) Incorporating Delayed or Regressed Inputs/Outputs...................... 202

 5.6.5.2) Normalising and Rescaling Data .. 203

 5.7) Coupled Tank System.. 220

 5.7.1) Simulated Coupled Tank System .. 221

 5.7.1.1) Random Noise Excitation Signal.. 223

 5.7.1.2) Random Step Excitation Signal .. 228

 5.7.1.3) Small Step Excitation Signal .. 234

 5.7.2) Experimental Methods for Coupled Tank System 238

 5.7.3) Analytical Model of the System.. 239

 5.7.4) Application to the Real System...242

 5.7.5) Incorporating Derivative Observations ... 256

 5.7.6) Mixed Model Implementation... 262

 5.8) Heat Transfer System... 268

 5.8.1) Simulated Heat Transfer System (1st Order + Delay) 269

 5.8.2) Experimental Methods for Heat Transfer System................................... 274

 5.8.3) Application to the Real System...275

 5.8.3.1) GP Model at Sensor Position 1... 276

 5.8.3.2) GP Model at Sensor Position 3... 287

 5.9) Summary of Experimental Results .. 296

 x

6) Conclusions.. 300

 6.1) Summary of GP Modelling Approach ... 300

 6.2) Guide to GP Model Implementation..302

 6.2.1) Choice of Covariance Function... 303

 6.2.2) Design of Training Dataset .. 303

 6.2.2.1) Size of Training Dataset ... 304

 6.2.2.2) Conditioning of Dataset.. 304

 6.2.2.3) Experimental Design .. 305

 6.2.2.4) Model Structure Selection .. 306

 6.2.3) Training Hyperparameters... 307

 6.2.4) GP Model Validation... 307

 6.2.5) Final Thoughts... 308

 6.3) Future Work ... 309

Appendices .. 315

 Appendix A) Probability Definitions and Background... 315

 Appendix B) Deriving GP Predictive Equations... 319

References .. 322

Chapter 1: Introduction

 1

1) Introduction

The field of system identification is concerned with the development of mathematical

models of real systems or processes using prior knowledge of the system and empirical

data. However the problems encountered in forming an accurate representation of a

system can be seen to have parallels with other forms of empirical analysis where

information must be gleaned from available data. The broad topic of mathematical

modelling can be seen to exist across almost all technical research disciplines with many

different approaches having been developed. Most notably, ideas and techniques from the

fields of statistics and computing have been embraced into the more engineering-based

discipline of system identification. In many cases methodologies originating from

different research fields can be seen to have similarities with one another despite being

developed independently. In particular, the learning task associated with the field of

artificial intelligence or adaptive systems has been a research topic for both the machine

learning community as well as those from an automatic control background. Research into

artificial neural networks has led to collaborative efforts between markedly different

fields, such as those from a background in biological sciences and researchers from

engineering and computing science.

From the fields of mathematics and statistics, the analysis of probability and error has

given other research disciplines the tools with which to identify the most likely or optimal

solution, such as regression algorithms, and ultimately the means to assess and validate the

performance of an identified model. The use of probability theory and methods is relevant

as it formally introduces the analysis of uncertainty into the modelling procedure. As the

purpose of system identification is to investigate systems where knowledge is limited and

of uncertain accuracy, it is therefore sensible that probabilistic methods are employed. The

Gaussian Process (GP) modelling approach investigated in this thesis can be seen to

originate from research into the statistics of spatial data, and in recent years has received

considerable interest in the machine learning research community as a tool for nonlinear

regression and classification. In the machine learning setting, the GP method has been

demonstrated as a viable alternative to more established learning systems such as the

neural-network approach.

Chapter 1: Introduction

 2

The driving factor behind the continued research into alternative system identification

methods is the ever-increasing demands of new and existing applications. Mathematical

models of real systems are often required to assist in the design process of a system (e.g.

by simulating performance, cost effectiveness etc.), and also used as the basis for the

design of automatic control systems. In both these cases, the quality of the identified

model will play a large role in determining the quality of the final solution. For example,

in order to design a control system that maximises a systems potential performance, the

mathematical model must represent the true system as closely as possible. The increase in

model prediction accuracy provided by a precise mathematical model, can allow the

design of a control system to be performed with a greater amount of confidence in how the

system will behave when subjected to control inputs. The further development of

mathematical models through the expansion of the operating range accurately represented

can also facilitate the design of control systems that allow more demanding performance

requirements to be realised. An example of this would be the design of modern aircraft

where the development of accurate mathematical models has allowed the design of more

sophisticated fly-by-wire controllers, leading to more agile fighter aircraft that can be

controlled whilst operating in unstable conditions (e.g. Eurofighter Typhoon). Overall, a

strong demand will always remain for methods that can improve the accuracy of a

mathematical description.

The GP modelling approach is of great potential interest in the field of system

identification due to a number of desirable features. A primary motive for the original

surge of interest in GP models in the machine learning community is that through the

model’s application of Bayesian methods some of the difficulties associated with

optimising complex learning systems can be bypassed through the adoption of this

probabilistic approach. Such difficulties can also be seen to present themselves within the

field of nonlinear system identification as more complex models have been adopted for

use in representing more complex systems. As a result, these alternative GP methods have

now been proposed towards problems found in system identification.

Another feature of the GP modelling approach is that through the probabilistic analysis, a

predictive probability distribution rather than a single predictive estimate is the output

from the model. As a result, the GP model can be seen to provide predictions of nonlinear

system behaviour together with a measure of the uncertainty over each prediction. This

Chapter 1: Introduction

 3

uncertainty or variance term has been shown to be of potential value in the design of

adaptive or predictive controllers where the behaviour of a control system may be

modified to reflect the uncertainty associated with the prediction. The variance output of

the GP model can also be utilised to help identify regions of operating space that are not

well described by the empirical data. This is a useful feature for what may be considered

as a ‘black-box’ method of identification.

A further important feature of the GP modelling approach is that the method has been

found to outperform alternative learning systems where the amount of empirical data is

limited. In the identification of real systems, the amount of available data that can be used

to train a model may be limited due to a number of factors. Therefore a modelling

approach that can provide useful predictions in situations where little data or prior

knowledge is present is something worthy of consideration. For example, in the

identification of many real systems a significant problem is presented by the lack of

available data in certain (typically off-equilibrium) regions of operating space. Without

sufficient data, the identification of an accurate model in these regions can become

impossible, and this deficiency is also passed on to any corresponding control system.

However, as the GP model has been shown to perform well on problems where data is

limited, it has been proposed as a potentially useful method for identification in off-

equilibrium regions of operating space where more conventional methods can struggle.

1.1) Original Contributions

The application of the GP modelling approach towards the task of identifying nonlinear

dynamic systems can be seen to be in its early stages with relatively few dedicated

resources currently available. The majority of the existing research into GP models has

concentrated more upon defining the mathematical methodology and theoretical

possibilities of the approach. Furthermore, much of this existing research has been focused

towards problems found in machine learning and statistics. As a result many of the

examples investigated in the existing literature have utilised simulated and benchmark

datasets that are not particularly demonstrative of the types of problems found in the field

of nonlinear system identification. In particular, static nonlinearities remain the most

popular example applications for much of the existing theory.

Chapter 1: Introduction

 4

The primary contribution of this work is in the investigation of the GP modelling approach

as a method for nonlinear system identification. Whilst in existing research the GP method

has been proposed as an alternative to more established methods, a very limited amount of

research has been devoted to the implementation of the approach from an engineering

perspective. As a result, a particular emphasis has been placed on the practical

implementation of the GP model through the identification of real laboratory systems from

empirical data. In this way the usability of the approach toward general system

identification problems can be made clear. Therefore, the main original contribution of

this thesis has been to provide a general guide to the implementation of the GP modelling

approach for system identification problems. Other original contributions made in this

thesis are:

• As the implementation of the GP model is the prime objective of this thesis, a

detailed discussion of the most important issues is provided. The properties of

various different covariance functions, and the techniques used to optimise the GP

model are discussed in detail. Furthermore, through experimental results a detailed

review of the relative strengths and weaknesses of the most popular (Squared

Exponential) covariance function is performed. The potential use of the Matèrn

covariance function to represent less smoothly varying data is also demonstrated.

• The computational implementation of the GP model is discussed in detail. Both the

size and conditioning aspects of the covariance matrix are discussed, and then

related to the training data pre-processing and experimental design aspects of the

system identification procedure (e.g. excitation signals, sampling rate etc.).

• The design of the training dataset used to identify the GP modelling approach is

examined closely. In order to meet the size and conditioning constraints of the

method, the training set must be pre-processed carefully. The most likely source of

ill conditioning in the covariance matrix was identified as the presence of steady-

state data. A random excitation signal that is sufficiently excited is first shown to

provide a good strategy for the identification of a GP model. However, a more

deterministic strategy for the design of the excitation signal consisting of a number

of small-step inputs is shown to be an attractive alternative that allows more

information to be included in the training dataset in a smaller space.

• The inclusion of previous inputs/outputs as additional model inputs is discussed in

detail and then demonstrated. Due to the limitations placed on the size of the

Chapter 1: Introduction

 5

training dataset, a potential discrepancy between the sample intervals of the

training and test data can occur. Therefore, the process of including previous

inputs/outputs is not as straightforward as in other modelling approaches.

• Alternative ‘mixed-model’ implementations of the GP model where the methods

are combined with other existing methods are discussed and demonstrated using

the Coupled Tanks system. These proposals are aimed at retaining the advantages

of the GP modelling approach whilst overcoming some of the disadvantages.

1.2) Thesis Outline

Chapter 2

In this chapter the overall process of system identification is reviewed. Important aspects

including the choice of model architecture, the role of prior knowledge, experimental

design, pre-processing of training data, model optimisation and validation are discussed

with references provided. This review is to provide an overview of the field rather than an

in-depth discussion of all the available methods.

Chapter 3

In this chapter the theoretical background and literature of the GP modelling approach is

presented in detail. This chapter begins with an in-depth discussion of the motivation

behind GP models with reference to some of the model architectures discussed in the

previous chapter. The concepts behind Bayesian learning are then introduced and the

potential benefits in terms of dealing with model complexity issues are made clear. Next,

the process and difficulties of applying a Bayesian learning framework are presented, and

the mathematical peculiarities of the Gaussian process are shown to provide a solution to

some of these difficulties. Finally, the task of using Gaussian processes and Bayesian

learning for the purposes of regression is discussed.

Chapter 4

In this chapter the implementation of the GP modelling approach is discussed in detail. A

review of the role played by the covariance function is first provided, followed by a

discussion of various alternative covariance functions. Next, the optimisation of the GP

model is discussed in detail. The computational implementation of the GP model is then

Chapter 1: Introduction

 6

tackled with the challenges posed by large datasets and matrix ill-conditioning made clear.

From this discussion the implementation of the GP model is described using both direct

and approximate methods.

Chapter 5

In this chapter the specific challenge of implementing GP models for dynamic system

identification purposes is investigated and a variety of simulated and real nonlinear

dynamic systems are identified. Notable extensions to the GP model are first described,

including the propagation of uncertainty and derivative observations, together with the

implications for control system design using GP models. After a brief discussion of the

experimental objectives (based on the research presented in the previous two chapters), the

GP modelling approach is then applied to a number of simulated examples. The purpose

of these simulated examples is to demonstrate the overall process of implementing the GP

model and its ability to identify nonlinearities using relatively few training observations.

Both static and dynamic examples are tackled. Following on from these simulated

examples, two real laboratory-scale nonlinear systems are investigated: a Coupled Tank

system, and a Heat Transfer system. Through these examples the identification process

using real empirical data is demonstrated with problems regarding the size and

conditioning of the covariance matrix tackled through experimental design, model

structure definition and training data pre-processing. Utilising these methods, the two real

systems are then identified to a good degree of accuracy. Further extensions investigated

include the incorporation of derivative observations and an alternative ‘mixed-model’

implementation which combines the use of an analytical model of the Coupled Tanks

system with a GP model. A summary of the experimental results is then provided at the

end of this chapter.

Chapter 6

In this chapter the thesis is concluded by discussing some of the main points raised

through the course of the preceding chapters. A general guide to the implementation of the

GP modelling approach is then presented. Finally, a number of possible strategies for

improving the GP modelling approach are discussed; together with recommendations for

the most important areas that should be targeted in future research.

Chapter 2: Nonlinear System Identification

 7

2) Nonlinear System Identification

System Identification can be seen to be the determination of a mathematical model

through the use of empirical data together with prior knowledge of a particular system’s

characteristics. In this chapter the overall process of system identification is to be

discussed where the various choices involved in developing models are examined and the

practical implications are made clear. Furthermore, a background review of the various

types of linear and nonlinear models and optimisation techniques currently being

employed toward the task of system identification is included. This discussion is

worthwhile as it provides an insight into where the GP modelling approach is to fit in

amongst its alternatives.

2.1) The System Identification Process

The overall objective of the system identification process is to provide an accurate and

robust approximation to the behaviour of a given system. In the identification of a

suitable model of system behaviour, an iterative development process is normally

undertaken where a number of design choices must be made and subsequently refined if

through evaluation they are found to be unsatisfactory.

The system identification procedure may be seen to follow the loop detailed in Figure

(2.1) where the process begins with the examination of any available ‘a priori’

knowledge of the system. This initial or prior knowledge may take the form of a detailed

understanding of system characteristics, such as an analytical or physical model derived

from first principles, or merely knowledge as to the availability and nature of any

experimental data. Before undertaking the modelling task, it also of great importance that

the intentions for any identified model are carefully considered so that any performance

requirements such as accuracy, robustness or level of complexity can be met.

From a prior (or ‘a priori’) understanding of system components and behaviour, the

human operator or modeller can then make informed decisions as to the level of data

required to successfully capture the dynamics of the system. Utilising this information

can then lead to the creation of any number of experimental conditions which may be

Chapter 2: Nonlinear System Identification

 8

used to record empirical data. The level of prior information and availability of data will

then dictate what kind of modelling strategy and therefore what kind of model structure

will be the most suitable to formulate our description. It is common for a number of

possible models to be proposed which offer different levels of description or

performance. Through a ‘criterion of fit’ each possible model must be evaluated and the

most suitable chosen.

Figure (2.1) - System Identification Loop

The choice of model type or architecture together with the level of empirical data

available will then influence the decision of how best the model may be fitted to the data

through a process of optimisation. This is a learning process where optimum parameters

A Priori Knowledge

Prior Analysis of System
Characteristics

Modelling Intentions &
Required Performance

Model OK?

END

YES

Experimental
Design

Choose Model
Architecture

Collect Empirical
Data

Pre-Process Data

Validation
Data

Training
Data

Optimisation/Learning

Parameter & Structure Estimation

Model
Validation

NO

START

Chapter 2: Nonlinear System Identification

 9

and structure are to be identified through the application of machine-learning procedures

to the empirical data (e.g. Least-Squares regression). It is often the case that raw

empirical data collected from an experimental set-up must be first pre-processed before it

may be used successfully in any optimisation regime. This pre-processed data is then

referred to as training data as it is this information with which we will train our model.

Finally, any model identified must be validated successfully before it may be employed

through comparison with the observed system response. A separate set or subset of data,

known as a validation or test set, is normally generated under similar but not necessarily

identical operating conditions to that of the training data set. Statistical measurements of

model error and likelihood can then be calculated from the comparison of the model

output to the measured system response. The outcome of the validation procedure will

then determine whether or not the identified model meets its required criteria. If the

model is found to be lacking in some aspect, the modeller must return to the previous

design conclusions and potentially modify any aspects of the adopted model structure,

optimisation or experimental procedure that requires refinement.

Through each step and iteration of the System Identification procedure it is normal that

the prior knowledge associated with the system under investigation is enhanced. This

improved understanding of the system is most desirable and is often a fundamental

objective of the modelling process. If the model is to have practical implementations

such as for the basis of an automatic control design, it is useful to have as much

knowledge over the system’s behaviour as possible. In the following sections of this

chapter we will look at different aspects of the system identification process in more

detail. Good sources of information on the general topic of System Identification are the

books by Ljung (1999), Söderström and Stoica (1989), and Juang (1994). The book by

Unbehauen and Rao (1987) provides very useful information on the identification of

continuous systems using more classical methods. The book by Nelles (2001) details the

system identification field with specific emphasis on identifying nonlinear systems using

modern techniques.

Chapter 2: Nonlinear System Identification

 10

2.2) Role of Prior Knowledge

The level of prior knowledge available is of fundamental importance in determining how

any modelling procedure should be approached and plays a vital role throughout the

development of a successful model. For complex nonlinear systems where a physical

analysis of the system is difficult and little or no physical insight or system knowledge is

available, models must be learned solely through the use of experimental data. The

application of learning systems can be seen to reduce the requirement for a detailed

physical knowledge and the use of such methods has led to the following categorisation

of models based upon the level prior knowledge available or employed:

White-Box Models

The model has been constructed entirely from prior knowledge and physical insight.

Typically, models derived from first-principles such as a nonlinear differential equation

model. White-box models often appear to have an advantage in overall interpretability,
however for complex systems a resultant model can also be seen to be very complex.

Grey-Box Models

Some physical insight is available or used, with certain aspects such as model structure

and parameters being directly estimated from experimental data using optimisation or

learning techniques.

Black-Box Models

No physical insight is available or used; models are constructed solely from experimental

data together with the application of learning systems and a chosen model structure.

Black-box modelling can also be referred to as empirical modelling.

In practice, a white-box model derived from first principles, such as a nonlinear

differential equation model, will rarely fully replicate a real system’s behaviour due to

environmental effects, and experimental data will often be used to tune parameters or

coefficients of a model. Similarly it is rare that absolutely no knowledge of the system is
available. Nevertheless, in tackling problems where prior knowledge is seen to be

lacking, the use of learning systems can be seen to overcome this deficiency through the

Chapter 2: Nonlinear System Identification

 11

continuous use of system information in the form of current and previous inputs and

outputs.

In the selection of a white-box or black-box modelling strategy a further consideration is

the time and cost associated with adopting various alternatives. The development of a

white-box form of model of a complex physical process can be seen to be a particularly

demanding task. As a result, an alternative approach based on the application of learning

algorithms to empirical data may be easier and therefore more cost-effective to

implement. Therefore the role of prior knowledge in most cases is to provide a basis for

the design of an appropriate model structure, and consequently to dictate the level of

empirical data required and subsequent experimental policy. In this regard, the use of

prior knowledge allows the modeller to potentially reduce the learning task through

extending a tangible influence upon what may otherwise become a interpreted as a

prescribed machine learning or function approximation algorithm where data is

submitted without any regard to validity. This prior or initial knowledge may take many

forms and is discussed below.

2.2.1) Overall Modelling Objectives

The role of prior knowledge begins with an understanding of the problem to be solved.

The ultimate purpose of the model will have a great influence on the kind of model that

will be required. Is the goal of the model merely to provide a basis for

simulation/prediction as an estimator, or is the modelling process to provide further

physical insight and reflect the workings of a process? Is the model to be used as the

basis for the design of a control system? What level of model complexity,

interpretability, accuracy and robustness is desirable? Another important factor that

should be borne in mind is that if the resultant model is to be used as the basis of an

automatic controller, this controller may be able to compensate for less than perfect

model accuracy. As a result, it is the robustness rather than merely the accuracy of the

description that will dictate the quality of the solution.

Chapter 2: Nonlinear System Identification

 12

2.2.2) Knowledge of System Characteristics

Any knowledge regarding the characteristics of the system can prove invaluable when

deciding upon which modelling approach to adopt. Information regarding the type of

nonlinearities involved, such as the dynamic order of the system, or the number of

parameters or interactions between variables can allow the complexity of any potential

model to be reduced and thereby limit the dimensionality of the problem. For example, in

most fixed-wing aircraft the coupling between longitudinal and lateral directional

variables can be neglected, therefore allowing these subsystems to be modelled

independently. By contrast, in helicopters, such decoupling is generally not appropriate

in flight mechanics models, except possibly under some particular flight conditions.

Knowledge concerning any environmental influences such as disturbances and noise

effects can also be incorporated into the model design. Another source of prior

knowledge could be any existing models of the system that have been developed. Such

models can act as a basis for the design of a new improved model or may even form an

integral part of a new solution. A previous model may also be employed as a

performance benchmark for any new development.

2.2.3) Knowledge of Empirical Data or Experimental

Conditions

Prior knowledge of the system characteristics may also extend to information about the

operating range of the system and the availability of empirical data. Many systems

primarily operate within limited regions of the potential operating range of that system

and this may be reflected in the overall constitution of the available data. Empirical data

may be scarce in regions where it is difficult to perform data collection experiments due

to limitations in the experimental set-up. Constraints on the physical operation of the

process, such as operating conditions that can lead to damaging the system itself, can also

lead to an uneven distribution of data across the full operating range of the system.

Knowledge of such conditions can impact on subsequent design conclusions, as

modelling approaches that are predominantly data-reliant may not be possible to pursue

due to the sparsity of available data.

Chapter 2: Nonlinear System Identification

 13

2.3) Experimental Design

The experimental design stage of the system identification process is of critical

importance if the chosen modelling approach is to depend significantly on empirical data.

As well as selection of which variables are be measured, the experimental design process

must also consider what kind of excitation signals will be necessary in order to gather as

much information about the underlying system as possible. More practical considerations

will concern the actual experimental equipment set-up (e.g. sensors, calibration, etc.), and

the sampling rate used to record the data. It is important to remember that whilst some

design choices can be proposed and examined at length whilst working away from the

actual system, the experimental design choices made can only be changed through

conducting new experiments. Therefore, careful consideration and planning of the

experiment in advance is necessary if potentially costly redesign and repetition are to be

avoided. The previously mentioned textbooks on system identification by Ljung (1999)

and Söderström and Stoica (1989) are good starting points for general information

regarding experimental design, and further more dedicated sources of information are

Godfrey (1993), Goodwin and Payne (1977), Goodwin (1987), and Mehra (1981).

Through the design of a suitable experimental procedure, a Training dataset can then be

created to support the learning or optimisation process from the resultant empirical data.

For the identification of complex systems where prior information is limited (black-box

modelling) the accuracy of any model will be entirely dependant on the quality and scope

of the training data supplied to the learning system. Consequently the design and

construction of the training dataset where important data maybe extracted and

represented appropriately is not a trivial task. The overall design objectives of any model

and subsequently developed control system must be kept into consideration when the

experimental methods are chosen. Experiments must be tailored to the system under

investigation with the resultant data covering all the relevant areas of operating space. If

data is not recorded over the full range of operation we wish to model and ultimately

control, the resulting model accuracy in regions where data was not recorded is likely to

be unsatisfactory. Important considerations in the design of an experiment include:

Chapter 2: Nonlinear System Identification

 14

2.3.1) Which measurements?

Ideally, open-loop system response data should be used in the modelling process so that

the behaviour of the system can be examined directly. However, in some cases this is not

possible due to operational constraints and a closed-loop identification approach must be

adopted. An example of this would be a system that proves to be unstable under open-

loop operating conditions and through prolonged operation can compromise the safety of

the operator or the system itself. In tackling closed-loop identification, a variety of

methods have been proposed, with the most simple being ‘Direct’ methods where the

closed-loop system is treated as if it where open-loop and the same overall system

identification methods applied. However, a particular problem in closed-loop

identification is that the process input u is typically correlated with the output noise m.

The result of this is that some identification methods are not well suited to this direct

approach, and a number of ‘indirect’ methods have been proposed where external signals

measured between the controller and the plant are incorporated. For more information on

closed-loop identification, the previously mentioned textbook by Ljung (1999) provides a

good overall account of the problem, and a review of closed-loop identification issues

has been completed by Van den Hof (1997). In this thesis we are focusing on systems

where open-loop response data is available, and are not investigating closed-loop

identification.

Another potential problem in the design of the experiment is the availability, placement,

accuracy and flexibility of any measurement equipment. Measurement devices must not

introduce further disturbances or noise to the system response that would otherwise not

be present. Noise and prevalent disturbances in the system must also be investigated. If a

system is susceptible to particular disturbances as part of its normal operation, this

behaviour cannot readily be separated from the underlying system response and its

influence should not be ignored or removed from the Training dataset.

There are also potential commercial considerations involved in conducting a number of

experimental procedures. The investment of time and money into equipment and

experienced personnel may be limited. An extreme example would be the prolonged

flight-testing program necessary in the development of a new aircraft. Expensive

prototypes fitted with measurement devices must be developed as well as the experienced

Chapter 2: Nonlinear System Identification

 15

pilots and ground crew needed to support the operation. In this example further costs

would be incurred by extensive wind-tunnel work and the design and support involved in

ground based experimental-rig set-ups. A more straightforward constraint would be the

potential downtime involved in halting a manufacturing or chemical processes in order to

perform modelling analysis.

If the modelling procedure is to adopt an inclusive operating regime outlook this also

introduces a number of important challenges. Regions of the operating range where the

model must be most accurate will require sufficient data. These will be regions of

operating space where the model will be required to operate for most of the time. Such

operating regions may display off equilibrium or significant nonlinearities where large

amounts of data may be necessary to represent such complexities or regions of critical

importance. The relative importance of individual data samples must also be examined to

allow the frequency of different situations, noise levels, or definitions between operating

regions, to be incorporated into the model design. Under certain operating conditions the

system may also likely be damaged or become dangerous, and the acquisition of data and

successful modelling in these regions may prove difficult. Awareness of the limitations

of the system must be employed in the experimental design.

2.3.2) Excitation Signals

The choice of excitation signals will ultimately determine the nature of the system

response data included within the Training set and therefore plays a crucial role in how

good a representation can be achieved. The selection of excitation signals is

predominantly specific to the particular application and places a great deal of dependence

upon the expertise of the engineer. As system noise and underlying disturbances are

beyond the influence of the modeller, the input signal is the only avenue open for

manipulation.

For nonlinear systems with complex dynamics it is first necessary to cover the whole

operating range (min maxu u→) of the system by varying the amplitude of the input signal.

Furthermore, the dynamics of any system may only reveal themselves under excitations

at certain frequencies. Which frequency dynamics are excited and therefore likely to be

Chapter 2: Nonlinear System Identification

 16

represented by our resultant model is determined by the spectrum of our input signal.

Choices of excitation signal include:

Constant

Not readily suitable for identification as no dynamics are excited. Only one parameter,

such as the static gain, may be identified.

Impulse

Not readily suitable for identification purposes. A possible indication of the overall

transient response may be forthcoming, but gain may not be estimated with any great

accuracy.

Step

Popular and well suited for identification purposes. Transient response can be fully

appreciated and good estimations of the static gain and low frequency response can be

obtained. Related to the step input is the ‘Doublet’ excitation signal consisting of an

initial positive step quickly followed by a negative step.

Rectangular

In essence this can be scene to have the same qualities as that of the Step input but also

introduces a frequency component allowing a particular frequency range to be

emphasized. However this information as to the frequency response is limited to one

frequency, as would any sinusoidal input of a particular wavelength. If a model is to

replicate the behaviour of a system known to operate at particular frequencies, it is

important that the design of any excitation signal take this into account (e.g. a mixture of

sine waves or rectangles).

Filtered Gaussian White Noise

If little is known of the process’s frequency dynamics or even the models intended use, a

good choice for the excitation signal may be a Gaussian white noise signal put through a

filter so that particular frequencies may be emphasized to tailor an overall signal

spectrum, and also to curtail signal amplitude within predefined limits.

Chapter 2: Nonlinear System Identification

 17

Pseudo-Random Binary Signal (PRBS)

Another popular general choice for linear systems is the use of the Pseudo-Random

Binary signal that can be seen to be a periodic deterministic signal of constant amplitude

that displays properties in keeping with the white-noise alternative. A range of

frequencies may be emphasized accurately. However, for the identification of nonlinear

systems this signal must be adapted to include changes in signal amplitude as otherwise

we would have empirical output data restricted to the upper and lower limits dictated by

the original input binary signal. For such reasons, amplitude modulated PRBS (APRBS)

can be adopted to allow both the amplitude and frequency ranges of the input space to be

investigated.

2.3.2.1) Active Learning

As with the other aspects of modelling process the selection of an appropriate array of

excitation signals can be seen to be dependant on prior knowledge of the system and can

involve a significant level of iterative design, perhaps resorting to heuristics or trial and

error, in order to produce a suitable training dataset. In the absence of such prior

knowledge, such as for complex systems being identified with black-box methods, a

common strategy is to endeavour to make the distribution of training data as uniform as

possible across the operating space or even to use all available training examples.

However, a non-selective approach where data is submitted to the learning system

without proper consideration can lead to problems regarding the conditioning of the

training set. Repeated or redundant data examples may be included that unnecessarily

increase the size of the training set, or examples concentrated within non-essential areas

of operating space due to local complexities may be incorporated.

A modern approach to the design of excitation signals in the machine-learning field has

been the concept of Active Learning. Instead of first collecting and pre-processing

empirical data and then employing a suitable learning algorithm to identify a model, the

two tasks are brought together by actively acquiring new information about the system

(by searching for an optimal training set by exploring input space for the appropriate

excitation signals) whilst the process is in operation. In essence, the learning system is to

interact with the system directly in order to obtain and enhance the required training data.

Chapter 2: Nonlinear System Identification

 18

A conventional Active Learning scheme would endeavour to optimise the amount of new

information that can be garnered from each subsequent measurement. Therefore, in order

to determine the most informative data measurement, a method to determine the model

error associated with any previous measurements must be employed. By examining the

model error associated with each sample we assign a level of curiosity to the Active

Learning algorithm as the excitation signals will be targeted toward the goal of finding

new information close to operating points at which the model is struggling. As can be

readily appreciated, a potential problem encountered by the active learning approach is

that although we are seeking to optimise the entire training set, the searching impetus of

the algorithm can focus too closely and remain confined to one local region of operating

space. Such an increase in potential local complexity can in turn require an increase in

data with which to identify parameters. Another potential problem associated with this

approach is that the searching algorithm can be slow and computationally expensive.

This is especially true if an undirected random search for data is employed.

In processes where active learning has been implemented whilst remaining under normal

day-to-day operations, the effort demonstrated by the searching algorithm (termed

curiosity component) must be constrained so as to not fully disrupt the performance of

the system whilst still seeking new information with which to improve the model. The

research presented by (Cohn et al., 1990), (Cohn, 1994), (Thrun, 1992) and (Plutowski,

1994) explores the different details of Active Learning, the work presented by (Murray-

Smith, 1994) explores the use of Active Learning with regard to the Local Model

Network learning system, and (Cohn et al., 1997) shows how Active Learning may be

incorporated with the mixture of Gaussians model framework.

2.4) Pre-processing Data – Creating the Training Data

Set

Once the empirical data has been collected, a degree of pre-processing is normally

required in order to a construct a suitable set of training data that may be used with the

selected learning system. Through the pre-processing stage the learning task can be made

easier and therefore can allow a greater level of model performance to be attained.

Factors such as the size of the training data set, the distribution of data examples with

Chapter 2: Nonlinear System Identification

 19

regard to the whole of the available operating space and the validity of individual data

examples must be examined before a final Training set may be determined. The sampling

rate of the data acquisition must be fast enough to allow system dynamics to be

accurately reflected, but also not lead to excessive amounts of data and therefore increase

level of data pre-processing required. Different Learning systems or optimisation

algorithms may involve complex iterative mathematics which can place limits on the size

or length of the Training set due to the computational effort required to find a solution.

Through pre-processing and subsequent analysis of the resultant model error it may

become apparent that certain modifications to the excitation signals and sampling rate

may be required. Furthermore, certain regions of data or individual samples may have to

be omitted as they may cause poor conditioning within the training set. This may have

implications with regard to the amplitude range explored by our excitation signals. A

further consideration when designing a suitable training set is the minimum hold time

(shortest period of time that the excitation signal remains constant) associated with the

excitation signal and response data. If an excitation signal is of a given length, the

minimum hold time will dictate the number of steps or transitions within the signal and

therefore influence the frequency characteristics of the system. For a linear system the

minimum hold time is normally selected to be equal to that of the sampling time.

However for nonlinear system identification a design trade-off is introduced. Too small a

minimum hold time can prevent the system reaching a settled or equilibrium state, this

leads to the recorded output data being restricted with regard to the potentially available

output amplitude range with the data examples being concentrated within the middle of

the operating range. Too large a time will restrict the number of transitions within the

signal and therefore potentially restrict the number of operating points that may be

excited by the signal and can overemphasize the importance of low frequencies. A

heuristic often employed would be to select the minimum hold time to be close to that of

the dominant time constant, see Nelles (2001).

Chapter 2: Nonlinear System Identification

 20

2.5) Choice of Model Architecture

Perhaps the most fundamental part of the system identification process is the selection of

a suitable model architecture or structure with which to build a representation. A great

range of alternative model structures have been proposed and successfully implemented

over many years. This section is to provide an overall guide to the various types of

models that are available, rather than a full account of the precise details of each

alternative.

2.5.1) Linear and Nonlinear Models

The most fundamental distinction made between various types of model is whether it can

be said to be either linear or nonlinear. Systems are often categorised as being either

linear or nonlinear, however most real dynamic systems can be seen to display a level of

non-linearity (e.g. noise). From a logical perspective it would seem that a nonlinear

system would require a nonlinear model to fully exhibit its characteristics. However, it is

common practice that a linear model will be the first choice structure with which to

identify a model of a nonlinear system, and that this course of action often leads to

satisfactory model fit for its purpose.

One of the primary reason for adopting a linear approach is the very well understood and

widely adopted methodology of defining a linear structure and utilising a comparatively

simple linear optimisation technique (such as linear least squares) with which to identify

parameters from data. Nonlinear modelling approaches typically require significantly

more effort due to an increase in complexity and optimisation. Linear modelling

techniques are therefore still used successfully when considering nonlinear systems and

can often be seen to form the building blocks of a nonlinear description.

Many system plants are also designed to behave as linearly as possible within certain

operating ranges so that they may be operated more easily. Moreover, a well-designed

feedback controller will also act to contain the effects of the nonlinearities in the system.

It has also been shown that linear theory can be applied to model nonlinear systems

operating at equilibrium points. The mathematician Lyapunov showed that the local

Chapter 2: Nonlinear System Identification

 21

stability of a system in equilibrium where nonlinearities are smooth, and therefore

differentiable, could be predicted through the application of linear theory. This has

particular relevance to models identified from first principles in the form of ordinary

differential equations. Such nonlinear descriptions may facilitate linear models to be

identified through the linearisation of these equations at particular equilibrium operating

points.

The process of designing a control system for a system plant is also made significantly

easier if a Linear Time-Invariant (LTI) model can sufficiently represent the plant. A well-

established and straightforward methodology for designing controllers for LTI systems

has been in existence for many years, with most introductory control system design

books covering the basic principles, see Dorf and Bishop (2004) and Nise (2003). This is

not the case when dealing with systems that exhibit significant nonlinearities, where to

describe the system with a single linear model would result in an inadequate

representation of the system’s behaviour. In cases where significant nonlinearities are

present, a linear model will not accurately describe the real system behaviour away from

the equilibrium region at which it was linearised.

No standard or generic response from a nonlinear system will exist as such systems can

behave in very different ways. For example, nonlinear systems can display random or

indeterministic behaviour (where the behaviour of a system cannot readily be predicted),

periodic and aperiodic (e.g. chaotic oscillations) oscillations, and multi-stability (i.e.

alternating between two or more exclusive states). Consequently, no generic all-purpose

modelling methodology and control design procedure has been established. Therefore

nonlinear modelling and control remains an extremely active area of research where

various possible solutions have been proposed each with their particular strengths and

weaknesses and associated level of complexity. A further important categorisation of

models is whether or not they are to operate within a Time or Frequency domain.

Obviously a Time-domain model will involve the analysis of a system or unknown

function with respect to time, and a Frequency-domain will operate with respect to

frequency. In this thesis only problems within the Time-domain (i.e. time-series data) are

considered.

Chapter 2: Nonlinear System Identification

 22

2.5.2) Parametric and Nonparametric Models

A classical distinction is often made between parametric and nonparametric models. A

parametric model will consist of an assumed functional form constructed from a limited

number of variable parameters. The function supposed by this approach will then be

optimised through its parameters to fit any recorded empirical data as closely as possible.

Parametric models are the more widely adopted approach, as due to the limited number

of parameters a more interpretable model is often the result. In the presence of prior

knowledge of the system characteristics, it is often possible for a parametric model to be

constructed that directly reflects the relationships between particular physical quantities.

A non-parametric modelling approach will not assume or impose a functional form on

the function to be identified. Nonparametric methods are often seen to offer a more

flexible approach to the identification task, as no prior structure is adopted an infinite

number of parameters may be used to represent the process exactly. As a predefined

structure is not to be imposed on the unknown function, a greater degree of freedom over

the form of final model is possible. As a result, non-parametric methods are often seen as

ideal tools for the identification of systems where a priori knowledge is limited such as in

black-box modelling problems.

Although in theory a non-parametric approach may offer an infinite dimension parameter

vector, in practice a limitation on the number of parameters will ultimately be

encountered due to the restrictions imposed by complexity and computational constraints.

Furthermore, as prior knowledge is either unavailable or not employed in the modelling

process, non-parametric approaches are often said to be more dependant on the quality

and quantity (or relative sparsity) of empirical data. Classical approaches to constructing

non-parametric models include Transient Analysis, Frequency Analysis, Correlation

Analysis and Spectral Analysis. Further information on these classic methods can be

found in the aforementioned system identification textbooks by Ljung (1999),

Söderström and Stoica (1989) and Unbehauen and Rao (1987).

The GP modelling approach investigated in this thesis may also be categorised as a

nonparametric method as instead of specifying a parametric structure to form the basis of

a description, a prior probability space over functions is to be specified instead. In order

to specify this space over functions, a kernel-based nonparametric regression method is

Chapter 2: Nonlinear System Identification

 23

utilised. Further methods of nonparametric regression include kernel smoothing

estimators and Spline-smoothing techniques. Useful reviews of these smoothing methods

include Hardle (1990), Eubank (1999) and Wahba (1990). These nonparametric methods

are not often deployed toward the task of system identification, and instead are more

typically utilised toward statistical problems. However, the GP model can be seen to have

much in common with these alternative nonparametric regression methods and a full

discussion of the similarities can be found in Rasmussen and Williams (2006). A detailed

discussion of the GP modelling approach itself is to form the basis of the next chapter.

2.5.3) Linear Dynamic Models

A general framework for the description of different linear dynamic models can be found

in most system identification textbooks, including Ljung (1999), Söderström and Stoica

(1989), and Nelles (2001). A further useful resource is the survey paper by Leontartis &

Billings (1985). The framework allows different linear dynamic models to be described

through the combination of various transfer function elements. A general form of the

problem can be seen to describe the unknown output through the function

)())(()(tetfty += ϕ (2.1)

where y(t) is the output (measured data), f(*) the function we wish to model, ()tϕ a

vector of adjustable parameters and e(t) representing noise present in the system. Note,

that in describing the elements present in the following general model structure, the time

t has been substituted for k, and we make use of the time shift operator q (equivalent to

writing (k -1)).

A general linear model structure was introduced by Ljung (1999) and is formed from

decomposing the influences on the model into deterministic and stochastic components.

The deterministic model component operates on the principal that at some given input a

corresponding output response will be generated, and that all actions are determined

through preceding events to the exclusion of random elements. The stochastic model

component can be seen to introduce randomness to the model structure and therefore

allow unknown or external disturbances (noise) to be included. A solely deterministic

Chapter 2: Nonlinear System Identification

 24

model structure can then be realised through employing a linear filter G(q) between the

input) and output y(k). In the same manner, a linear filter H(q) can be introduced to filter

white noise v(k) and therefore allow noise frequency components to be modelled. The

term input transfer function is used to describe the filter G(q), and noise transfer function

adopted to describe H(q). Both of these transfer functions can then be further

decomposed into a numerator and denominator. A general model structure can then be

constructed through the combination of the deterministic and stochastic components:

() ()

() () () () () () ()
()()

B q C q
y k G q u k H q v k u k v k

D qA q
= + = +

ɶɶ

ɶ ɶ
 (2.2)

A further decomposition is normally adopted in the general framework where common

denominator dynamics are identified from G(q) and H(q), and given the signifier A(q).

)()()(
~

qAqFqA = and)()()(
~

qAqDqD = with common denominator A(q). The general

model structure can then be written as:

)(
)(

~
)(

~
)(

)(
~

)(
~

)()(kv
qD

qC
ku

qF

qB
kyqA += (2.3)

With the transfer functions composed of polynomials as:

..

1)(

)(

1)(

11

11

11

1

1

1

etc

qcqcqC

qbqbqB

qaqaqA

nc
nc

nb
nb

na
na

−−−

−−−

−−−

+++=

++=

+++=

…

…

…

 (2.4)

and a parameter vector can then be written as

 ...)1(11 etcccbbaa ncnbna ………=Θ (2.5)

From this general model structure a number of different linear dynamic models can then

be defined through the combination or omission of certain elements of the general

structure. The simplest model structure would be a model consisting of either solely

deterministic or stochastic components. However, when examining real systems it is

highly improbable that uncertainty in the form of noise would not extend some influence

Chapter 2: Nonlinear System Identification

 25

upon the output response. Therefore, a wholly deterministic model (e.g. y(k) = G(q)u(k))

is not a common structure to employ within the system identification field.

With the help of any available prior knowledge regarding the nature of the system, the

relevant inputs of any identified model can be outlined and incorporated into our chosen

model structure. The inclusion of one or more input variables u(k), known as an

exogenous input (X), allows the deterministic nature of a system to be incorporated in

that an input will have a determinable influence on the system output. These input/output

models can be further categorised by the way the noise component is incorporated into

the structure. A distinction can be made between Equation Error models (ARX,

ARMAX, ARARX) and Output Error models (OE, BJ, FIR) where for Equation Error

models a common denominator polynomial 1/A(q) can be adopted to demonstrate shared

dynamics between the input and output noise. From this general framework, the

modelling process would involve the selection of the model structure most suitable to

identify a particular system. For the sake of thesis brevity, I refer the reader to the

aforementioned system identification textbooks (Ljung (1999), Nelles (2001),

Söderström and Stoica (1989)) for a detailed account of where the various model types

may be best employed. However, the general approach taken is to first utilise a simple

model structure for the identification task before considering a more complex one.

2.5.3.1) Linear to Nonlinear Dynamic Models

As in this thesis we are expressly concerned with the identification of nonlinear systems,

therefore it might seem tempting to dismiss the various linear dynamic models discussed

previously. However, the nomenclature used for the description of linear dynamic models

(e.g. ARX) crops up frequently in the literature devoted to nonlinear system

identification. Furthermore, methods have been developed to extend these linear models

for the purposes of nonlinear modelling. For the extension to nonlinear model structures,

the ARX model is particularly important (due to it’s linear in the parameters structure)

and forms the basis of the Nonlinear ARX (NARX) model. The NARX model extends

the ARX structure through the replacement of the linear relationship with some unknown

nonlinear function ()f ⋅ . Therefore, assuming that the model is to be implemented on a

digital computer, the discrete-time nonlinear model can be stated as:

Chapter 2: Nonlinear System Identification

 26

))(,),1(),(),1(()(mkykymkukufky −−−−= …… (2.6)

Where y(k) is the output, and u(k) the inputs, with m representing a time delay, and thus

assuming a multiple input single output (MISO) form. Model structures that include

more advanced noise components (e.g. ARMAX) are rarely applied for nonlinear system

identification due to the resultant increase in complexity. Thus, simple dynamics

representations that result in input-output mappings are more common for nonlinear

models. For a detailed review of this extension of linear system identification methods

toward nonlinear problems, see Leontartis and Billings (1985) and Nelles (2001). The

NARX model structure can also be interpreted as a tapped-delay-line as depicted in

Figure (2.2).

Figure (2.2):- NARX model as Tapped-Delay Line

Furthermore, this approach to nonlinear modelling is also known as the ‘external

dynamics’ approach due to the separation of the model structure into a nonlinear static

approximator and an external dynamic filter bank, see Nelles (2001) for more discussion.

Due to this separation, any nonlinear model architecture can then be chosen for the

approximator, such as a nonlinear polynomial or neural network architecture. A

drawback of the external dynamics approach is that typically a large number of inputs are

required by the approximator, leading to the requirement for the chosen approximator to

Static
Nonlinear

Approximator
f(.)

u(k-1)

y(k)

q-1

u(k)

q-1

q-1

u(k-2)

u(k-m)

y(k-1)
q-1

q-1

q-1

y(k-2)

y(k-m)

Chapter 2: Nonlinear System Identification

 27

be able to manage high-dimensional mappings for complex systems that involve large

numbers of delayed inputs and outputs. Furthermore, this can lead to matrix conditioning

problems in some learning systems as delayed inputs/outputs will be highly correlated

with their immediate successors if a high sampling rate is chosen. Consequently, the

overall input space of the model may become impossible to cover completely with

training data observations resulting in certain operating regions that are difficult to

identify due to a lack of empirical data. This is something that may prove problematic for

modelling approaches that rely upon the partitioning of the input space. However, this

restriction of the input space is also something that can become advantageous as the

overall learning task may be reduced.

Whilst the external dynamics approach to nonlinear system identification is the most

widely used method, an alternative method termed ‘internal dynamics’ is also possible.

In contrast to the external approach where the dynamics are handled by a separate

tapped-delay line and then employed as inputs to the nonlinear approximator, the internal

approach does away with external feedback and uses internal memory and feedback

instead. Thus, the dynamics are to be learned by the network itself. The internal

dynamics approach is common within the field of neural networks where they known as

recurrent networks with notable implementations being the Hopfield network discussed

in Hopfield (1982), and the Boltzmann machine discussed in Hinton and Sejnowski

(1986). The internal dynamics approach can be seen to be an attractive alternative as a

reduction in the dimensionality of the input space (a problem with the external approach)

may be realisable. However, they remain less popular due to the increase in the

complexity of the network, and the lack of interpretability of the internal model states.

Further alternatives for tackling nonlinear problems include the inclusion of derivative

information into the model, and parameter scheduling approaches.

2.5.4) Nonlinear Dynamic Models

In the previous section the extension of linear to nonlinear dynamic models was

discussed. However, in the implementation of the NARX method suitable nonlinear

static model or approximator must also be selected. This nonlinear approximator is then

to define a mapping between inputs and outputs.

Chapter 2: Nonlinear System Identification

 28

Classic parametric methods of modelling nonlinearities include the identification of

polynomial representations of the system characteristics. These methods can be seen to

be an increase of model order over the linear model (a 1st degree polynomial) and are

often employed for interpolation or curve-fitting problems of lower dimensions. A

discussion of the Kolmogorov-Gabor (K-G) polynomial and Volterra-series modelling

approaches that represent a nonlinear model with output feedback (as in NARX) can be

found in Nelles (2001). However, this method is only suitable for low-dimensional

problems as the number of regressors present in these models grows very quickly with

the chosen degree of the polynomial. Furthermore, high-degree polynomial approaches

have a tendency toward oscillatory interpolation behaviour and unreliable extrapolation

behaviour. Other classic methods of nonlinear models include the Hammerstein and

Wiener approaches. These methods are widely adopted in industry and rely upon an

assumption that a separation exists between the dynamics and the nonlinearity of the

system. The Hammerstein model structure implements a static nonlinear model (typically

a polynomial but any model is possible) followed in series with a dynamic linear model,

and the Wiener model structure is in the reverse order. The implementation of both these

methods relies on prior knowledge of the system that facilitates the inherent structural

assumptions. As a result, they cannot be regarded as general purpose modelling

approaches for black-box problems. For more information on Hammerstein and Wiener

models see Ljung (1999).

At this point it is worth pointing out a particular obstacle that is inherent to all modelling

approaches, the ‘curse of dimensionality’. This phrase is often used in describing the

effect of including more input dimensions (and parameters) into the chosen model

architecture. As the number of variables or parameters necessary to represent a particular

function increases, so will the likelihood of oscillatory interpolation (an increase in

variance error). Furthermore, the computational demand of optimising the parameters of

the chosen model structure will also increase. Therefore, model structures that quickly

grow in complexity as the number of included variables increases are not suitable for

high-dimension problems, or for black-box problems where little is known about the

underlying modelling problem. Model structures that can be seen to suffer particularly

from this ‘curse’ include polynomial models, and grid or lattice based approaches that

seek to partition the operating space in a uniform manner such as ‘look-up’ tables.

Chapter 2: Nonlinear System Identification

 29

Overcoming or bypassing this curse of dimensionality is one of the most important

driving forces behind some of the modern approaches to nonlinear system identification

(e.g. using non-uniform partitions based on prior knowledge, mapping inputs onto

different function spaces). Furthermore, in the identification of real systems, the curse of

dimensionality may not manifest itself too detrimentally due to the peculiarities of the

system under investigation. For example, the model may be able to be simplified due to

the presence of inputs that are correlated or redundant, smooth regions of operating space

may allow simple models that require less data to represent, and the presence

unreachable regions of operating space (e.g. due to correlated data or operational

constraints) may reduce the overall operating space to be identified.

 In the identification of black-box models where prior knowledge of the system is

limited, the model must therefore be identified from empirical data. This is also

sometimes referred to as ‘empirical modelling’, and a fundamental aspect of this

approach is that the chosen model architecture must facilitate this learning process.

Furthermore, without prior knowledge of the system characteristics, the chosen model

structure must be flexible enough to allow a wide range of nonlinear behaviours to be

approximated. A general framework that a large number of different model architectures

can be seen to follow is the formulation of a network of basis functions:

1

()
M

l nl
i i

i

y θ φ θ
=

=∑ (2.7)

In this formulation, the mapping ()f ⋅ is to be modelled as a weighted sum of M basis

functions, where θl are the weighting linear parameters, and θ
nl are the nonlinear

parameters of the basis functions ()φ ⋅ . Therefore, for nonlinear models the basis

functions must be nonlinear, and it is also worth noting that linear and polynomial

models can also be interpreted under this basis function formulation. Furthermore, basis

functions can be described as being either global or local. Global basis functions can be

seen to contribute to overall model output across the operating range, whereas local basis

functions only contribute to the model output in small ‘local’ regions of the operating

range.

Chapter 2: Nonlinear System Identification

 30

2.5.5) Neural Networks

The artificial neural network (ANN) is a black-box model architecture that consists of a

large number of interconnected neurons (simple nonlinear processing units) that act as a

parallel information processor. The origins of the artificial neural network approach

come from research into the operation of human brains where the concept of neurons as

structural elements of the brain was proposed. If the human brain is viewed as a

computational device (performing tasks such as movement, pattern recognition and

perception etc.) it becomes clear that even the most complex man-made machines are

vastly less capable. Therefore, researchers working in the fields of machine learning and

artificial intelligence have sought to emulate the vast processing power of the brain.

Although the history of artificial neural networks can be seen to stretch back to the work

of McCulloch and Pitts (1943), a great catalyst for the modern surge in interest in neural

networks was the work of Rumelhart et al. (1986) that popularised the backpropagation

algorithm used for training Multilayer Perceptron (MLP) networks. A good general

resource that details many different types of neural networks is the book by Haykin

(1994), where a full and interesting account of the historical advancements made in

neural networks is also provided. Other good neural network textbooks include Bishop

(1995) and Ripley (1996), however much of the discussion is focused towards pattern

recognition or classification tasks. Good resources on neural networks from an

engineering or system identification perspective are the books by Brown and Harris

(1994) and Nelles (2001), and the paper by Sjöberg et al. (1995).

For the purposes of nonlinear system identification, the most widely adopted neural

network structures are feed-forward networks. In this arrangement the information is to

travel in one direction, from the network inputs to the network outputs. This flow of

information is depicted in Figure (2.3), and the neural network structure can be readily

interpreted as a static nonlinear mapping between the input and outputs, and thus

compatible with the previously discussed ‘external dynamics’ NARX dynamical

modelling approach.

Chapter 2: Nonlinear System Identification

 31

Figure (2.3) – Feed-forward Neural Network

Alternative network structures where delayed information is passed between neurons are

known as recurrent networks. As discussed in the previous section, recurrent networks

have the potential to reduce the impact of the curse of dimensionality, but this increase in

complexity makes the learning task more difficult. Furthermore, the presence of feedback

in the network brings the possibility for instability, as discussed in Braham (1998). The

neural network architecture can also be understood as a network of basis functions where

each basis function (or hidden layer neuron) is of the same type. The two most widely

adopted feed-forward neural network architectures in the field of system identification

are the Multilayer Perceptron (MLP) network and the Radial Basis Function (RBF)

network. In this section a brief description of the properties of these two networks is

provided.

2.5.5.1) Multilayer Perceptron (MLP) Network

The Multilayer Perceptron network is the most widely known neural network architecture

and has become synonymous with what is generally understood to be a neural network.

This feed-forward network utilises a ridge construction mechanism in order to project the

input vector u onto a nonlinear parameter vector x:

x1

x2

xn

g1(x)

g2(x)

g3(x)

gk(x)

f1(x)

f2(x)

f j(x)

Input Layer

Hidden Layer

Output Layer

Chapter 2: Nonlinear System Identification

 32

0 1 1
nl nl nl nl

o p pu u uθ θ θ= = + + +x uθ … (2.8)

The nonlinear parameters are also known as the ‘weights’ of the hidden layer of the

neural network 0 2[]nl T
i i i ipw w wθ = ⋯ . An activation function exhibiting saturation

behaviour (typically a sigmoid function, e.g. () tanh()g =x x) is then applied to the

parameter vector x. This combination of the construction mechanism and the activation

function may then be termed as a ‘perceptron’. This individual hidden layer neuron can

then be combined in parallel with other hidden layer neurons of the network through

connecting the outputs of each neuron to an ‘output layer neuron’. This output layer

neuron is most commonly a linear combination of the hidden layer outputs that are each

weighted by a set of parameters known as the output layer weights wi. The overall

network structure can then be written using the basis function formulation (where M is

the number of hidden layer neurons and p is the number of inputs) as:

0 0

ˆ
pM

i i ij j
i j

y w w u
= =

 
= Φ  

 
∑ ∑ (2.9)

This combination of a single hidden layer of neurons and a linear output neuron is the

most simple and common implementation of the MLP network. Further complexity can

be achieved by incorporating additional hidden layers, or employing a nonlinear output

neuron. Overall, we can control the number of parameters in the model by modifying the

number of hidden layer neurons included. However, by increasing the complexity of the

model structure, the optimisation procedure may become more demanding. An

alternative to including more hidden layers is to include more neurons in a single hidden

layer. As discussed in Nelles (2001), a general preference for one strategy over the other

is difficult to substantiate and is dependent on the problem at hand.

As the MLP network contains nonlinear parameters in the hidden layers (and potentially

the output layer), a nonlinear optimisation procedure will be required if these hidden

layer weights are to be made optimal. The general problem of model optimisation and

various nonlinear optimisation strategies are discussed in more depth in Section (2.6) of

this chapter. However, it is worth stating here that the task of optimising the parameters

and structure of any neural network can become a significant challenge. The need for

Chapter 2: Nonlinear System Identification

 33

nonlinear optimisation techniques to be employed can result in very long training times.

However, some of the resultant computational burden may be reduced if the output layer

weights of the MLP network are chosen to be linear, therefore allowing more efficient

linear optimisation algorithms to be implemented.

Furthermore, in addition to the optimisation of the linear and nonlinear model

parameters, the overall model structure (i.e. number of neurons, number of hidden layers

etc.) must also be optimised. Traditionally, the network structure is fixed in advance and

then the model parameters optimised and the performance validated (i.e. we choose the

number of neurons/layers ‘a priori’). Such an approach can obviously become frustrating

as if the model is found to be lacking in some way. As a result of this, methods that seek

to regulate the complexity of the network structure by ‘growing’ or ‘pruning’ the number

of hidden layer neurons have been developed. The difficulty of selecting an appropriate

model structure for the MLP network is also compounded by the fact that the component

parts of the model structure are not readily interpretable. In particular, the individual

hidden layer neurons of the MLP network cannot be interpreted as active in only certain

local regions of operating space (i.e. by changing or eliminating one hidden layer neuron,

the whole network is affected and model output at all input regions will possibly change).

So far in this section we have focused on the difficulties of training a MLP network

without detailing the major advantages of the model architecture. The main advantage of

the MLP network architecture is that it can be seen to be a ‘universal function

approximator’ , which means that the MLP can approximate any smooth function to an

arbitrary degree of accuracy as the number of hidden layer neurons is increased.

Furthermore, this facility holds true for MLP networks composed of only one hidden

layer for certain classes of activation functions (i.e. sigmoidal) as proven in Cybenko

(1989) and Hornik et al. (1989). As a result, the MLP network can be seen to be a good

general purpose modelling approach that exhibits a very high flexibility that allows a

great range of different function shapes to be represented, and thereby may be applied to

any function approximation problem. It is however worth noting that this universal

approximation feature is not exclusive to the MLP network as other modelling

approaches (such as polynomials) and types of neural network also demonstrate this

property As the ridge construction mechanism acts to project the input space onto a lower

dimensional hidden layer space, this allows the effects of the ‘curse of dimensionality’ to

Chapter 2: Nonlinear System Identification

 34

be reduced, making the MLP network suitable for higher dimensional problems. A

further property of the MLP network that makes it an attractive method for system

identification and control is the fact that the number of neurons present in an MLP

network is typically smaller than other neural network approaches (e.g. RBF networks).

The result of this is that the evaluation speed associated with making predictions is

typically lower than the alternatives. In summary, the MLP network is a very powerful

and flexible method of function approximation. However, this flexibility comes at a cost

due to the need for potentially time consuming and computationally expensive nonlinear

optimisation methods to be employed. Furthermore, the more subtle nature of model

structure optimisation and general lack of interpretability regarding individual

neurons/weights makes the identification process difficult. As a result, the training of

MLP networks can descend into a less than rigorous process of applying various

heuristics or even trial and error.

2.5.5.2) Radial Basis Function (RBF) Network

Radial Basis Functions were originally developed as a method of multivariate

interpolation (as discussed in Powell (1985)) in isolation to the development of MLP or

other neural networks. The integration of the RBF methodology into the wider field of

neural networks took place after the surge in interest in MLP networks, with notable

papers being Broomhead and Lowe (1988), Moody and Darken (1989), and Poggio and

Girosi (1990). Further papers that investigate the use of the RBF network for modelling

purposes are Barnes et al. (1991), Murray-Smith (1992), and Pantaleón-Prieto at al.

(1993). The RBF network is a feed-forward architecture where a radial construction

mechanism is first used to calculate the scalar distance x between the input vector u and a

centre vector 1 2[]T
pc c c=c ⋯ , with respect to a norm matrix iΣ used to scale and

rotate the input axes.

() ()
i

T

i i i iΣ
= − = − Σ −x u c u c u c (2.10)

As in the MLP network, an activation function is then applied to this new parameter x.

This activation function is normally selected to exhibit some kind of local character

around a maximum at 0x = , with the most popular choice being the Gaussian function

Chapter 2: Nonlinear System Identification

 35

21
() exp()

2
g x x= − .In the same manner as the MLP network, this individual hidden layer

neuron can then be combined in parallel with other hidden layer neurons of the network

through connecting the outputs of each neuron to an output neuron. This output layer

neuron is again most commonly a linear combination of the hidden layer outputs that are

each weighted by a set of parameters known as the output layer weights wi. The overall

network structure (composed of M hidden layer neurons) can then be written using the

basis function formulation as:

()
0

ˆ
i

M

i i i
i

y w c
Σ

=

= Φ −∑ u (2.11)

The RBF network can be seen to consist of three different components or types of

parameter: output layer weights (which are linear parameters that determine the height of

the basis functions and the offset value), Centres (which are nonlinear parameters of the

hidden layer neurons that determine the position of the basis functions), and the Norm

matrix (which are nonlinear parameters of the hidden layer neurons in the form of

standard deviations that determine the widths and rotations of the basis functions).

The RBF network has also been proven to be a ‘universal function approximator’, see

Park and Sandberg (1991) for details, but unlike the MLP network the prospect of

combining multiple hidden layers in the RBF network is not thought to be particularly

useful. As a result the RBF network is normally only employed with one hidden layer.

One of the attractions of the RBF network over the MLP network is that through the

radial construction mechanism and local activation function, the hidden layer neurons of

the RBF network can be more readily interpretable. As the basis functions are local, the

effect of changing the parameters of one neuron has only a small effect for input values

that are far away from the designated centre of the neuron. Therefore, each neuron is

predominantly active in a specific region of operating space, and the network as a whole

can be interpreted more as a combination of local sub-models or multiple model. As a

result, employing multiple layers of RBF neurons is likely to diminish this interpretable

aspect as the outputs of the first hidden layer already span the input space, leaving

subsequent layers to span the space of some less interpretable intermediary input space.

Chapter 2: Nonlinear System Identification

 36

The RBF network can be interpreted as a two-layer network that is linear in the

parameters if the nonlinearities and RBF centres are first fixed in the hidden layer. As the

output layer weights of the RBF network are linear, the optimisation of these parameters

can be performed through the use of efficient linear (least squares) regression. However,

the nonlinear parameters that determine the position and character of the basis function

must also be optimised. It is therefore common to first determine the hidden layer

parameters of the RBF network (i.e. place the basis functions and determine the standard

deviations) before optimising the linear output layer weights (thus determining the

heights of the basis functions). The task of optimising the hidden layer parameters of the

RBF network is also termed ‘centre placement’ and it is normal to attempt to exploit the

more interpretable ‘local’ nature of the hidden layer parameters so that the use of

demanding nonlinear optimisation algorithms can be minimised. A variety of different

approaches to the problem of training the hidden layer parameters of the RBF network

have been proposed, see Nelles (2001) for a good review. These include simple

approaches such as Random and Grid Based Centre Placement, where the basis functions

are centred at random or in a uniform manner. More sophisticated Clustering Methods

have also been developed where unsupervised methods (e.g. K-means algorithm,

Kohonen’s Self-Organizing Map) can be used to determine basis function centres that

reflect the nature of the training data distribution,(i.e. many RBFs can be placed in

regions of dense data, and few RBFS can be placed in regions of sparse data.

A further alternative to the problem of training the hidden layer of the RBF network are

constructive methods such as the Orthogonal Least Squares (OLS) method proposed in

Chen et al. (1991). This forward regression method can be understood as a form of

Subset Selection, where a subset of suitable centres (regressors) is selected from a large

set of candidate or potential basis functions. Unlike other methods, this subset selection

uses supervised learning as the OLS algorithm only selects basis functions on the basis

that they are effective at reducing the model error. Therefore, a key advantage of the OLS

approach is that the RBF network is trained incrementally. The main disadvantage of

adopting this incremental or constructive approach is the increased computational

demand that may result in long training times. Furthermore, the OLS algorithm is still

heuristic in nature, and is unlikely to outperform a RBF network trained with even more

computationally expensive nonlinear optimisation methods, see Wettschereck and

Dietterich (1992) for information on the application of nonlinear optimisation to RBF

Chapter 2: Nonlinear System Identification

 37

training. Nevertheless, the OLS method has become a popular method for training RBF

Networks and is the standard method used in the MATLAB Neural Network Toolbox,

see Demuth and Beale (1998).

2.5.5.2.1) Normalised RBF Networks

A problem associated with the application of clustering techniques (and RBF networks in

general) is the potential existence of ‘dips’ in the interpolation behaviour. Such

behaviour is normally the result of regions of operating space where either no basis

function is present or the standard deviations of the neighbouring basis functions is too

small. As clustering attempts to place the RBFs in accordance with the distribution of the

training data, it is not unreasonable to expect that some sparser (but potentially

important) regions of operating space are not sufficiently covered by the defined basis

functions. Therefore, when the model is asked to predict within such a region, the model

output is likely to be highly inaccurate. For high-dimensional input spaces the problem

can become almost unavoidable and these ‘dips’ can lead to unexpected and undesirable

behaviour in the output. A further potentially undesirable property of RBF networks is

that the extrapolation behaviour tends to zero due to the local activation functions.

However, through the normalisation of the RBF network these drawbacks can be

overcome. The normalisation process results in the sum of all the basis functions being

equal to 1, and this property is known as a partition of unity . Therefore, the partition of

unity ensures that an equal weighting is given to every point in the input space, so that

any variation in the output of the network is due to the weighting parameters of the basis

functions (i.e. no unexpected ‘dips’). As a result, the Normalised RBF network is less

sensitive to poorly chosen basis functions, and an overall output level can be fixed

without any explicit offset value (unlike MLP and RBF networks that normally employ a

separate offset or bias weight0 0(,)w φ). Further advantages of the Normalised RBF

network are outlined in Werntges (1993).

However, the normalisation of the RBF network can present some less than desirable

side-effects as the normalisation introduces interactions between the basis functions. A

detailed discussion of these side-effects can be found in Shorten and Murray-Smith

(1994). Most fundamentally, the basis functions may lose their uniform shape resulting in

the maximums of basis functions being shifted from their centres, and the monotonic

Chapter 2: Nonlinear System Identification

 38

decrease in the basis function as the distance from the centre may also be affected.

Furthermore, the basis functions may reactivate in different regions of operating space.

Overall, these side-effects are not enough to fully diminish the advantages of

normalisation, but the interaction between basis functions is undesirable as it may result

in basis functions that are multi-modal and non-local. These aspects are perhaps the

defining qualities of the RBF network, so without care the normalisation of the RBF

network can potentially diminish the local interpretability of the approach.

2.5.6) Multiple Model Networks

In the previous section the advantages of the RBF network were discussed. In particular,

the locally active basis functions can be seen to offer an advantage in terms of

interpretability and ease of training over the MLP neural network. However, whilst the

RBF network may be more interpretable than the MLP alternative, the model still does

not offer much insight into the underlying system or make it particularly straightforward

to incorporate prior knowledge of the system into the identification process. Overall, the

RBF network can be interpreted as a large number of locally accurate piece-wise constant

(zero-order) models that are placed across the operating space. As a result, these simple

local constant models are not going to offer much physical insight into the underlying

system. Nevertheless, the RBF network and the Basis function formulation in general,

can be seen to offer a methodology that allows a network of multiple local models to be

defined.

The concept of developing a multiple model network can be seen to be an attractive

prospect as the identification of complex systems may become more manageable if the

overall problem can be reduced into a number of smaller problems. Such an approach is

typically known as ‘divide and conquer’, and in the field of system identification this

can understood as dividing or partitioning the operating space into a number of local

regions or ‘regimes’, and then identifying a local model that is accurate for each region.

A global model may then be constructed through the combination of these local models,

as depicted in Figure (2.4) on the next page.

Chapter 2: Nonlinear System Identification

 39

Figure (2.4): General Multiple Model Structure (from Murray-Smith and Johansen

(1997))

A number of different multiple modelling approaches have been proposed to help solve

the problem of nonlinear system identification. One notable approach is the application

of fuzzy logic (see Zadeh (1965)) to the problem of partitioning the operating range

where a number of rules must be defined. Through such an approach, any prior

knowledge of the system (especially qualitative knowledge) can be incorporated directly

into the model through the definition of membership functions. An important

development in the application of fuzzy rules for system identification problems was the

framework introduced by Takagi and Sugeno (1985), known as the TS model. Unlike

linguistic or singleton fuzzy models, the outputs of TS model are functions (normally

linear models) of the system inputs. Therefore, local models based on expert qualitative

knowledge can be defined.

However, it is unlikely that qualitative knowledge will provide enough information for a

successful model to be identified, and the inclusion of empirical data and learning

methods is typically required. Such combined methods are often referred to as Neuro-

Fuzzy models. In comparison to the neural network approach, Fuzzy networks can be

seen to have an advantage in interpretability, however the development if good models

may require the meticulous modification of the logical rules that are to define the

Model 1

Model 2

Model M

Weight

Weight

Weight

Σ

Supervisor/
Scheduler

Input

Output

Chapter 2: Nonlinear System Identification

 40

membership functions. Further explorations of this approach can be found in Jang and

Sun (1995), Pfeiffer and Isermann (1994), and Babuška and Verbruggen (2003).

An alternative approach to the problem of defining the multiple model networks is the

‘Operating Regime’ based methods developed in Johansen and Foss (1992, 1993,

1995a, and 1997). In this work the Local Model Network (LMN) architecture was

proposed and further examined in Murray-Smith (1994), Murray-Smith and Gollee

(1994), and Murray-Smith and Hunt (1995). There are close links and equivalences

between LMNs, RBF Networks, Takagi-Sugeno fuzzy models and other approaches, and

a good overall review can be found in Murray-Smith and Johansen (1997). A further

related local linear approach to system identification is the Local Linear Model Tree

(LOLIMOT) developed in Nelles et al. (2000) and expanded on in Nelles (2001). In this

section we are to briefly focus on the Local Model Network approach as it can be further

linked to the Gaussian Process modelling approach that is to be investigated in this

thesis, as discussed in Gregorčič and Lightbody (2008).

2.5.6.1) Local Model Networks

The Local Model Network can be interpreted as an extension or generalisation of the

Normalised RBF network where instead of the simple weights (constant or zero-order

models) used in the output layer, more complex local models are to be employed. In

theory, these local models can be of any type, but local linear models are normally

employed for ease of implementation and interpretation. An advantage of using more

complex local models is that in comparison to the zero-order weights of the RBF

network, each local model can cover a larger portion of the operating space. Therefore,

an LMN network of equivalent accuracy can normally be defined using a smaller number

of basis functions (or validity functions) than the RBF network, thus improving

computational efficiency and interpretability. Furthermore, engineers are well used to

using linear models, and engineering systems are often designed and operated near to

equilibrium operating conditions. Therefore, the collection of sufficient empirical data is

likely to be achievable therefore allowing efficient linear regression methods to be

applied. The local model network can be described by:

Chapter 2: Nonlinear System Identification

 41

1

ˆ ((;)) (;)
M

i i i i i
i

y d x c f x wσ
=

= Φ∑ (2.12)

Where ŷ is the output prediction, Φ is the validity function (equivalent to the basis

function of the RBF network, and similar to a membership function of a fuzzy network)

constructed from an adjustable distance function d , and f is a function consisting of the

inputs to the local model and a weighting function w . As in the case of RBF networks,

the LMN can be normalised so that a partition of unity can be guaranteed (along with the

potential for undesirable side-effects). The contribution from each local model is

therefore defined by the activation of the corresponding validity function. Furthermore,

the validity function is also sometimes stated as being a function of a scheduling vector,

i.e. (())i tφΦ , rather than expressly stated using a distance function akin to that of the

RBF network. The scheduling vector()tφ must be chosen carefully as it is to represent

the nonlinear properties of the underlying system, and therefore help to define the

operating point of the system so that the correct local model can be used at any one time.

The scheduling vector is typically chosen from a part of the entire data vector, and in

making this selection the use of prior knowledge can prove to be invaluable (i.e. certain

current or delayed inputs or outputs of the system should provide a good indication of the

current operating point of the system). A useful discussion regarding the choice of

scheduling vector can be found in Gollee (1994).

The training of the individual components of the Local Model Network can be treated in

a similar manner to that of other basis function approaches. Firstly, the parameters of the

local linear models can be optimised through linear least squares. However, these

parameters can either be learned globally or locally. In global learning, the process of

optimising the parameters is to be performed simultaneously for all local models, and can

be interpreted as similar to the optimisation of the output layer weights of the RBF

network. In local learning, the parameters of each local model are to be optimised

independently. Overall, a trade-off can be seen to exist between achieving an accurate

global model and retaining the local nature of the models. The parameters of one local

model estimated using the global learning approach are not independent of neighbouring

local models. Therefore, the local models are not accurate linearisations of the system at

the centre of the validity functions. As a result, these local models cannot truly be

Chapter 2: Nonlinear System Identification

 42

interpreted as locally accurate models. Furthermore, the global learning method is

computationally expensive in comparison to the local learning method and is less robust

to over-parameterised or poorly structured local model networks. Therefore, local

learning methods will tend to perform better when there is insufficient or noisy training

data. However, global learning methods cannot be fully discounted, as they will tend to

result in more accurate global models when the model structure is well chosen, the

training dataset is well populated and the underlying nonlinearities are smooth. Further

information on the relative merits of local and global learning can be found in Murray-

Smith (1994), Murray-Smith and Johansen (1995), Cleveland et al. (1996) and Nelles

(2001). The problem of structure optimisation, where the validity (basis) functions are to

be defined, can be tackled in a similar manner to that of identifying the centres and

standard deviations of the basis functions of an RBF network, e.g. uniform grid-based

methods and clustering techniques such as the k-means algorithm. Furthermore,

constructive forward regression methods such as those defined in Murray-Smith (1994)

and Nelles et al. (2000) can also be used to determine the structural optimisation of the

Local Model Network. In addition, backward regression or ‘pruning’ methods (see Reed

(1999) and Jutton and Fambon (1995)) can also be employed to reduce model complexity

by identifying and removing useless parameters, or similar and therefore redundant local

models. As with the RBF network, popular activation functions include the Gaussian

function and B-splines.

Once the validity functions and parameters of the local model network have been

identified, the next problem to be tackled is how a global model is to be constructed from

these local models. This problem can be understood as interpolating between the local

models or ‘blending’ them together. Two different methods that have been proposed to

tackle this problem are ‘blending the outputs’ and ‘blending the parameters’. The first

‘blending the outputs’ method implements a simple weighted sum of the local model

outputs in a similar manner to the linear combination of hidden layer outputs of the RBF

network. The ‘blending the parameters’ method is an attractive alternative for cases

where the local models can be seen to share the same structure across the operating

space. In such an implementation, as the structure of the global model remain consistent

across the operating range; it is the parameters of the global model that will change in

accordance with the scheduling vector.

Chapter 2: Nonlinear System Identification

 43

2.5.6.1.1) Off-Equilibrium Dynamics

The Local Model Network architecture offers a particularly good approach to modelling

of nonlinear dynamic systems where both prior system knowledge and empirical data is

available. In particular, the use of local linear models can be seen to be especially

appropriate for systems where prolonged periods of operation (therefore providing an

abundance of data) are to occur near to equilibrium or steady-state operating points. As

many engineering systems are designed to operate primarily at certain stable operating

points for ease of operation, this means that a great proportion of the available empirical

data has a tendency to be centred around such operating points. However, in the

investigations of Shorten et al (1999) and Murray-Smith et al. (1999), this reliance on

local linear models has been found to compromise the validity of the LMN architecture

when the off-equilibrium dynamics of the underlying system are considered.

As the validity of each local model is restricted to representing the system close to a

defined operating point, in transient regions between such operating points the LMN

model will not usually provide an accurate representation of the underlying system.

Therefore, each local model will only provide an insight into the full model behaviour in

a very small region of operating space. This problem does not tend to explicitly manifest

itself when the operating point and therefore the scheduling vector change slowly.

However, for faster or more violent transients (e.g. quickly driving the input across the

full operating range) between operating regimes, the operating point of the system can be

model can be forced far away from the equilibrium regions where the local models were

identified. This may result in unexpected and undesirable transient effects in the output

that may compromise the stability of the model and therefore prove problematic from a

control perspective. In tackling this problem of off-equilibrium dynamics, local models

may be placed in the off-equilibrium regions. Indeed, such a strategy can be seen to be in

keeping with the overall proposal for a multiple model approach. However, as discussed

in Shorten et al. (1999), it is possible for non-unique parameterisations of the model

behaviour to exist (i.e. any identified off-equilibrium model may only partially represent

the off-equilibrium region). Furthermore, the model structure of any identified off-

equilibrium models may end up being significantly different from that of the existing

equilibrium local models, thus impacting on the overall interpretability and transparency

of the global model.

Chapter 2: Nonlinear System Identification

 44

The problem of retaining transparency in off-equilibrium local models has been directly

tackled through the use of velocity-based descriptions (see Leith and Leithead (1999))

where an analytical framework for relating global dynamic behaviour to local models

was proposed. The original proposal for the application of the velocity-based framework

focused on the linearisation of known nonlinear systems (Leith and Leithead (1999)), but

further investigations in McLoone et al. (2001) have demonstrated the construction of a

velocity-based Local Model Network using empirical data. However, a problem

demonstrated in McLoone (2000) is that whilst the velocity-based description may

provide a more accurate representation of the nonlinear dynamics of the system, the

steady-state response of the underlying system was less accurately modelled.

Furthermore, the velocity-based framework requires that the derivative of the input be

available. This is something that may prove to be problematic to obtain due to noise and

discontinuities in the input signal (i.e. sharp transients in the input signal will have near-

infinite gradient and therefore reduced differentiability). However, alternative

implementations of the model may allow differentiation of the input to be avoided.

The problem of identifying off-equilibrium models is also compounded by more practical

operational constraints that often lead to a general lack of available off-equilibrium

empirical data. In the identification of real systems it is often not possible or even unwise

to excite the system in such a way to initiate an off-equilibrium response due to the

potential damage to the system or even the operator. Therefore, if an off-equilibrium

identification strategy is to be implemented, the experimental design and data collection

process must be considered carefully. Due to the difficulty of identifying off-equilibrium

models (i.e. lack of interpretability and lack of empirical data), alternative methods of

identification have been proposed. One such method is the GP modelling approach

discussed in this thesis. The GP model is non-parametric modelling approach where the

model is identified almost exclusively from empirical data (overcoming the lack of

interpretability problem). Furthermore, a number of specific properties of the GP model

make it a good candidate for identification of models where empirical data is sparse. The

use of GP models in tackling off-equilibrium identification problems was proposed in

Murray-Smith et al (1999), Leith et al (2000), and Leithead et al (2000), and further

discussion of this aspect is provided in Section (5.1).

Chapter 2: Nonlinear System Identification

 45

2.6) Model Optimisation

A crucial part of the system identification process is the optimisation or learning task that

must be undertaken in order to fit the chosen model structure to the available empirical

data. Within the system identification community, model optimisation has also

traditionally been referred to as ‘parameter estimation’ due to the popularity of

parametric models over nonparametric alternatives. Furthermore, as applications have

become more demanding, leading to the requirement for more sophisticated models, the

learning task has also grown accordingly. As a result, the optimisation procedures

required to identify the overall structure and parameters of these more complex models

has also become more sophisticated. Therefore, in the selection of a suitable model

structure the level of optimisation required is an important consideration.

2.6.1) Types of Learning

Techniques for optimisation can be categorised into three different approaches that are

distinguished by the amount of information or data that would be required by the chosen

model architecture.

2.6.1.1) Supervised Learning

Supervised learning methods require that both input data and output data of the process is

available. Typically this would involve empirical data consisting of matching pairs of

input and output data. The objective of supervised learning techniques is to identify an

optimal solution through the minimisation of a measurement of the error between the

model and that of the observed process. In order to provide this measurement of the error,

a loss function is employed to analyse the difference between each possible model

solution and the target output against some criteria. From a machine learning perspective,

the use of output data can be seen to perform the role of a ‘teacher’ and therefore provide

supervision for the learning system. The supplied output data can therefore be interpreted

as examples of a correct response that allows a comparison to be made with the learning

system’s current solution. Most optimisation problems in system identification can be

seen to fall within the domain of a supervised learning algorithm, as we would typically

Chapter 2: Nonlinear System Identification

 46

expect the output of real systems to be available. Therefore, it is supervised learning that

this thesis will focus on.

2.6.1.2) Reinforcement Learning

In reinforcement learning, a degree of information about the quality of the model is

available, but no desired output value is known for each input. This type of learning is

normally employed toward evaluating the quality of different strategies or long-term

goals, rather than evaluating the error of individual test (input-output) cases. This kind of

learning has particular relevance in a number of applications (e.g. robotic control,

dynamic programming and gaming strategies) where it is difficult to assess the quality of

individual manoeuvres or events, as it is the final outcome that will determine success or

failure. For more information on this subject, see Sutton and Barto (1998) and Kaebling

et al. (1996).

2.6.1.3) Unsupervised Learning

In unsupervised learning, only the input data is typically available or used. Unsupervised

learning techniques are therefore used to extract any compressed information about the

input data distribution. Furthermore, as no output information is utilised, unsupervised

learning methods are typically employed in conjunction with supervised learning

methods in order to obtain an optimal model solution. As a result, unsupervised learning

techniques are predominantly used as tools for data pre-processing. In Nelles (2001), two

main categories of unsupervised learning are discussed, namely Principal Component

Analysis (PCA) and Clustering techniques.

The goal of PCA methods is to simplify the overall learning problem through

transforming the input axes. In particular, PCA methods are used to reduce the

dimensionality of the problem through eliminating any input axes that are uninformative

about the data. Therefore, the relative significance of each input axes must be evaluated,

and this is done through assessing the degree of variance (i.e. high-variance indicating

high significance and vice versa). Such methods have been shown to be particularly

valuable for high-dimensional problems, where computational demands and overall

model complexity can be reduced. However, it is important to remember that this

Chapter 2: Nonlinear System Identification

 47

dimensional reduction is performed through the analysis of only the input distribution,

and the loss of important information is still possible (i.e. there is no reason why a low

input variance should automatically imply a low significance of that particular input).

The goal of clustering techniques is to find groups of similar data samples. A similarity

measure must therefore be defined, where the shape of the cluster is to be determined

(e.g. circle, spherical, elliptical etc.). The number of clusters can be chosen initially or

determined automatically in more advanced methods. Notable clustering techniques

include the K-Means algorithm, Gustafson-Kessel Algorithm and Kohonen’s Self-

Organising Map. For a more detailed discussion on clustering techniques, see Ripley

(1996), Kohonen (1990) and Bezdek (1981).

2.6.2) Parameter Optimisation

The overall task of model optimisation can be split into two parts: parameter

optimisation and structure optimisation, in this section we focus on the former. The

process of optimising the parameters is also known as parameter estimation and begins

with the identification of a suitable criterion that defines the exact mathematical measure

that is to be optimised. This criterion is also commonly termed a Loss function and is

typically a measure of the error between the measured output of the system ()y i , and the

corresponding output of the model ̂()y i for a defined training dataset, i.e.

ˆ() () ()e i y i y i= − .

In the general system identification literature, such as Ljung (1999) and Söderström and

Stoica (1989), three different loss functions are commonly discussed: the Least Squares

method (or sum of squared errors), Maximum Likelihood method, and the Maximum

A-Posteriori (MAP) estimate. The Least squares method is the most widely adopted

approach and forms the basis for linear optimisation methods to be discussed briefly

below. The remaining two methods can be categorised as probabilistic approaches to

parameter estimation. A probabilistic approach to modelling is relevant as it introduces

the concept of uncertainty into the modelling procedure. The maximum likelihood

method is to be employed for the optimisation of the GP model and is discussed in

Chapter 2: Nonlinear System Identification

 48

chapter 4. The MAP estimate can be seen to be a form of Bayesian analysis that is to be

discussed in the next chapter.

2.6.2.1) Linear Optimisation

Depending on the nature of the chosen model architecture, the parameter optimisation

procedure can be termed as either linear or nonlinear optimisation. A linear optimisation

problem can be said to exist if the model error can be categorised as being linear in the

parameters θ and if the sum of squares error (least squares) loss function is employed.

Therefore, a model ̂y of the dependent variable y, composed of n independent variables

(regressors) xn can written as:

 1 1 2 2
1

ˆ
n

n n i i
i

y x x x xθ θ θ θ
=

= + + + =∑… (2.13)

In matrix form can be written as ˆ =y Xθ , where []1 2 nx x x=X ⋯ is the regression

matrix and []1 2

T

nθ θ θ=θ ⋯ is the parameter matrix.

Linear optimisation techniques are the most widely adopted parameter estimation

methods due to their interpretability and ease of application. It is also due to these

qualities that linear model architectures remain the preferred method in the field of

system identification as a whole. Further desirable qualities of linear optimisation include

the ability to provide optimum parameters that are unique (global), and the speed and

robustness of the optimisation algorithm relative to nonlinear optimisation techniques. At

this point it is worth briefly detailing the linear least-squares algorithm, further details of

which can be found in the majority of system identification and statistical texts. The

model error can be written as ˆ= − = −e y y y Xθ , and the sum of square errors loss

function can then be stated as
1

()
2

TV =θ e e . As this loss function is quadratic in θ, the

minimum value can be easily computed by setting the derivative of this function to zero.

The least squares estimate can then be stated as 1ˆ ()T T−=θ X X X y .

Chapter 2: Nonlinear System Identification

 49

Utilising modern numerical software, such as Matlab, it is then straightforward to

compute the least-squares estimate of the model parameters and then assess the

performance of the identified model. However, it is important to point out that the

required matrix inversion of the Hessian 1()T −X X can prove problematic if the matrix is

ill-conditioned. Such matrix conditioning problems can result if the empirical data

collected from the system and then used to generate the regression matrix is not

sufficiently excited. This aspect is mentioned in most system identification texts such as

Söderström and Stoica (1989). Furthermore, the direct inversion of these matrices is not

normally carried out due to likelihood for mathematical difficulties and a number of

alternative approaches, such as Gaussian elimination, Cholesky decomposition or

singular value decomposition, are normally employed instead. Useful resources on

various matrix methods include Barnett (1979) and Golub and Van Loan (1987). These

matrix computation and conditioning aspects are particularly relevant as the same kind of

problems can be seen to present themselves in the implementation of GP models. As a

result a more detailed discussion of matrix conditioning aspects is to follow in Chapter 4.

However, for linear optimisation implementations, regularisation techniques such as

ridge regression have been developed to tackle matrix conditioning problems, see

Tikhonov and Arsenin (1977) and Johansen (1997) for more details.

A further feature of linear least-squares optimisation is that using the regression matrix it

is also possible to generate covariance matrices of the parameter estimate θ and model

output ŷ . Utilising the covariance matrix of ̂y it is therefore possible to generate

measures of variance and therefore errorbars, if some information regarding the noise

distribution is known or assumed. More detailed information on this can be found in

Nelles (2001), however it is mentioned here due to the similarities found in the GP

modelling approach which involves the specification of a covariance matrix. Therefore, a

more detailed discussion of covariance and covariance matrices is found in the next

chapter.

Extensions to the linear least-squares algorithm also include the weighted least-squares

implementation, where the contribution of each squared error can be weighted with a

factor. This facility allows knowledge of the relevance or confidence in each data sample

to be incorporated. A further extension is the recursive least squares algorithm that

allows the parameter vector to be updated whilst online. This is a useful feature for real-

Chapter 2: Nonlinear System Identification

 50

time implementations where the model must be updated. More general information on

linear optimisation techniques can be found in Draper and Smith (1998) and Wolberg

(2005).

2.6.2.2) Nonlinear Optimisation

If the model function is nonlinear in the parameters (i.e. the parameters appear as

functions), a nonlinear optimisation technique must be applied to search for optimal

parameters. However, the general goal of nonlinear optimisation techniques remains the

same, to find the minimum of a given loss function with respect to the parameters. A

wide range of nonlinear optimisation techniques have been developed and good general

sources of information and algorithms include Scales (1985), Reklaitis et al. (1983),

Vanderplaats (1984) and Press et al. (1992). Nonlinear optimisation can prove to be a

challenging endeavour due to the potential presence of multiple local optima. Therefore,

more than one set of ‘optimal’ parameters may be identified from data and care must be

taken to find the most appropriate solution (i.e. some optimal parameter values will lead

to better models than others). Furthermore, as more than one possible solution can exist,

in contrast to the computationally desirable ‘one-shot’ solution typical of linear

optimisation, nonlinear optimisation techniques are iterative in nature and require

algorithms that search for and then converge on local optima. As a result, nonlinear

optimisation methods are not typically suited for online application.

Due to the iterative nature of nonlinear optimisation methods, in order to identify a good

local optimum and speed up the algorithm’s convergence to such a solution, an important

consideration is the choice of initial parameters. Whilst a random or arbitrary choice of

initial parameters may result in the convergence toward a suitable optimum, the selection

of a good set of initial parameters (through the use of prior knowledge) can increase the

chances of a good result and speed up the process considerably. Furthermore, nonlinear

optimisation methods can also be categorised into Local and Global methods, as in

Nelles (2001).

Although both methods will converge on local optima, local optimisation methods tend

to converge on local optima close to the supplied initial conditions as search directions

are obtained from neighbourhood information such as first and second order derivatives.

Chapter 2: Nonlinear System Identification

 51

As a result, local algorithms may become stuck in poor local minima and more suitable

optima in other regions of parameter space may not be considered. Global nonlinear

optimisation methods are aimed at overcoming this problem, and typically rely on the

inclusion of random or stochastic components that allow the algorithm to escape from

local optima. Notable global optimisation techniques include Simulated Annealing,

described in Kirkpatrick et al. (1983) and Laarhoven and Aarts (1987), and a range of

Evolutionary algorithms such as the Genetic Algorithm, see Holland (1975) and

Goldberg (1989) for details. However, as global methods are to search the whole

parameter space (potentially for multiple parameters) a significant disadvantage is the

high computational demand and slow convergence speed of these algorithms. As a result,

nonlinear local optimisation methods that are generally faster to converge remain more

popular. Furthermore, using local methods, it is possible to obtain a more global

optimum through applying a ‘multi-start’ approach where a number of local

optimisations are performed using different initial parameters, and the best solution then

chosen. A further option is to combine the use of global and local methods, e.g. using

global methods to locate the region around suitable local optima, and then deploying a

faster converging local optimisation method to provide a more precise local estimate.

The simplest general-purpose nonlinear local optimisation techniques are termed Direct

Search methods. These include Simplex Search and Hookes-Jeeves methods, and utilise

only loss function values in their search for local optima. These methods are typically

slow to converge and only used when the derivatives of the loss function are not

available or require significant computation time to compute. As a result, local

optimisation approaches that make specific use of gradient information are amongst the

most widely adopted methods. Notable gradient-based methods include Steepest Descent,

Newton’s Method, Quasi-Newton, and Conjugate-Gradient methods. These methods are

reviewed in depth in Scales (1985), but the general concept of these methods is given by

1 1 1k k k kη− − −= −θ θ p with 1 1 1k k k− − −=p R g . Where the parameter vector kθ is to be updated

by the quantity 1 1k kη − −p , where 1kη − is a step-size (typically determined by ‘line search’

methods) that fixes the proportionality of the search direction 1k−p , which is defined by

the gradient direction 1k−g that is rotated and scaled by a direction (or rotation) matrix

1k−R . The different gradient-based methods of local optimisation algorithms can then be

defined by different choices of step-size and rotation matrix.

Chapter 2: Nonlinear System Identification

 52

The simplest gradient-based method is the Steepest Descent method where the rotation

matrix is taken to be an identity I matrix. This method is notable for its non-requirement

for second-order derivatives of the loss function, but is typically slow to converge and

has been somewhat made redundant by more sophisticated methods. In Nelles (2001), the

equivalence between the Steepest Descent method and the famous backpropagation

algorithm used in the training of Neural Networks is discussed. The Newton’s method

employs the inverse of the Hessian matrix for use as the rotation matrix, and therefore

brings a demand for second-order derivatives which may be computationally expensive

to compute if unavailable analytically. Furthermore, Newton’s method is computationally

demanding due to the need for matrix inversion and is therefore recommended only for

small optimisation problems. The Quasi-Newton method is therefore aimed at reducing

the computational complexity through replacing the inverse Hessian used as the rotation

matrix, with an approximation to this inverse (so the computational demands of inversion

can be avoided). A popular formula for defining this approximation is the Broyden-

Fletcher-Goldfarb-Shanno (BFGS), as described in Scales (1985).

Both Newton and Quasi-Newton methods are typically described as having very good

convergence properties (i.e. fast convergence in terms of number of required iterations

rather than computational demand), but for large problems these methods are still found

to suffer from excessive computational demands. The Conjugate-Gradient method is a

further alternative local optimisation method that can be seen to be less computationally

intensive. Rather than attempt to directly approximate the Hessian, the conjugate-

gradients method employs a rougher approximation where the search direction is

computed in a more direct manner as 1 1 2k k kβ− − −= −p g p . Different conjugate-gradients

methods can then be distinguished through the choice of the scalar β, with popular

choices being the Fletcher-Reeves and Polak-Ribiere methods, see Fletcher (1993) for

more precise details. Conjugate gradient methods are typically found to require a higher

number of iterations than the Quasi-Newton and Newton methods to converge upon an

optimum, however due to their less demanding computational nature, the overall speed of

the algorithm is found to be superior. Therefore, conjugate-gradient methods are the

preferred choice for larger optimisation problems, however they typically require a more

accurate line search to be performed.

Chapter 2: Nonlinear System Identification

 53

Whilst these general gradient-based methods of local optimisation are well established,

further alternative methods can be considered if the loss function to be minimised is of

the sum of squares type. These methods are known as nonlinear least squares methods

and are typically recommended over the previously discussed choices if the loss function

is of the required type. The two most common nonlinear least-squares methods are the

Gauss-Newton method and the Levenberg-Marquandt method. The nonlinear least-

squares loss function can be formulated as ()TV =θ f f with

[(1,) (,)]f f Nf = θ θ⋯ , and the gradient as 2T=g J f where J is the Jacobian

matrix (first-order derivatives). For both the Gauss-Newton and Levenberg-Marquandt

methods, an approximation can then be introduced where the Hessian matrix can be

approximated as T≈H J J . This allows the both methods to approximate the second-

order derivatives of the Hessian through the first-order derivatives of the Jacobian, which

results in a computational saving. For more information on this approximation and its

assumptions, see Scales (1985). The Gauss-Newton method can then be described by

1
1 1 1 1 1 1()T T

k k k k k k kη −
− − − − − −= −θ θ J J J f and the Levenberg-Marquandt method can be

described by 1
1 1 1 1 1 1 1()T T

k k k k k k k kη α −
− − − − − − −= − +θ θ J J I J f .

The Levenberg-Marquandt method can therefore be seen to be an extension of the Gauss-

Newton method where the quantity α is introduced. This feature can be seen to be

equivalent to the ridge-regression regularisation method employed in linear regression

and acts to overcome matrix-conditioning problems associated with the Gauss-Newton

method. Furthermore, as with the linear regression case, the inversion of these matrices

would again not be undertaken directly and less mathematically problematic methods

such as Cholesky decomposition would be employed instead.

2.6.3) Model Structure/Complexity Optimisation

The task of optimising the structure of a chosen model can also be interpreted as the

optimisation of the model’s complexity. Whilst there are many different characteristics

that could be used to describe the complexity of a model, the term ‘model complexity’ is

usually generally related to the number of parameters present. Therefore, a model is said

to increase in complexity if parameters are added, and vice-versa. Furthermore, with

more parameters a model is said to increase in flexibility, where the variety of possible

Chapter 2: Nonlinear System Identification

 54

functions that could be described by the model is subsequently increased. Fundamentally,

a model that is too simple will potentially fail to sufficiently capture the behaviour of the

underlying system, and thus lead to inaccurate predictions. However, a more complex

model constructed from a large number of parameters can also perform poorly if the

amount of available training data is insufficient.

Therefore, in order to identify a good model, the complexity of the model must be

appropriate for the task. The system should be over-determined (especially in complex

regions of the input space) in that more training data than model parameters should exist.

The process of optimising the complexity of the model is normally performed in

conjunction with the model validation stage (to be discussed in the next section) where

the performance of the model is assessed before any modifications are made. An

important feature of the model validation process is that the model’s performance is

examined on a separate ‘test’ dataset that is different from the training dataset. The

importance of this strategy is that in this way the generalisation ability of the identified

model is examined. Generalisation is the ability of model to provide an accurate

prediction of the system output when presented with inputs on which it has never been

trained. This is a important objective of the modelling process, as we are interested in

obtaining a model that is robust and performs well on a range of new (test) data, rather

than models which perform well on limited range of data or indeed a memorisation of the

training dataset. In describing the generalisation ability of the model, it is common for

the terms underfitting or overfitting to be used to describe models that perform poorly.

In cases where the test data is estimated poorly by a model that would appear to be

insufficiently flexible (i.e. too simple), this is generally known as underfitting. For cases

where a complex/flexible model is employed and the training set appears to be learned to

a reasonable extent, but the generalisation remains poor, this may be evidence of

overfitting. The model has potentially learned the noise present in the training data, or

has correctly learned the data but the interpolation between datapoints is incorrect.

2.6.3.1) Bias/Variance Dilemma

In analysing the generalisation ability of the model, a useful strategy is to decompose the

model error into two components, the bias error and the variance error. In this section

Chapter 2: Nonlinear System Identification

 55

this decomposition is briefly discussed but a full account of this can be found in Nelles

(2001) and Geman et al. (1992). The model error initially be formulated as

 2 2 2ˆ ˆE{() } E{() } E{ }uy y y y n− = − + (2.14)

Where ŷ is the model output, y is the measured system output, and uy is the true

output that is uncorrupted by noise. The first part of this expression is the model error

between the true system output and the model output, and the second part of this

expression represents the noise variance. Therefore, assuming the model does not

represent the system exactly (where the first part would disappear), and the model does

not influence the noise variance, the model error can be decomposed into bias and

variance parts accordingly:

2 2

2 2 2

(model error) = (bias error) + variance error

ˆ ˆ ˆ ˆE{() } [E{ }] E{[{ }] }u uy y y y y E y− = − + −
 (2.15)

The bias error can be interpreted as the proportion of the model error that is due to the

fundamental difference between the model structure and the system or process. In real

systems the process may be significantly more complex than the class of models that are

to be considered for application. This lack of flexibility in the model means that an exact

representation of the system is impossible, and this deviation is known as the bias error.

Therefore in order to reduce the bias error, it is necessary to make the model more

flexible which leads to a growth in the number of model parameters. In theory this leads

to a strategy of employing as complex a model as computationally feasible, however this

is not normally realisable due to the variance error component of the model error.

The variance error can be interpreted as the proportion of the model error that is due to

differences between the estimated model parameters and their optimal values, resulting

from inadequate optimisation. As the identification of real systems requires that the

model parameters must be estimated from noisy training data that is of limited size, a

difference between the estimated parameters and the truly optimal parameters is likely to

be present.

Chapter 2: Nonlinear System Identification

 56

Therefore, for cases where a high variance error is present, the optimisation of the model

parameters must be improved. One strategy would be to reduce the number of

parameters, as models containing fewer parameters will typically be easier to optimise

using the same amount training data. Alternatively, larger training sets containing more

information with which to estimate these parameters is a method of reducing the variance

error. Fundamentally, the number of parameters in the model should not exceed the

number of training data samples, as if they are equal the model will be fit exactly to the

noisy training data and then generalise poorly on different noisy test data. Furthermore,

higher levels of noise present in the data will result in higher variance error, and require

larger training datasets in order to compensate. For very complex or flexible models, the

variance error will dominate the model error and the bias error can become negligible.

Overall, it can be seen that in order to reduce the bias error, a model should be made

more complex thus increasing number of parameters. However, a model composed of

more parameters will result in a larger variance error unless the training dataset used to

estimate these parameters is also increased. For many implementations, the data available

for training is limited and the inclusion of more data is not something that is feasible.

Therefore, the bias and variance components of the model error can be seen to be in

conflict (hence the ‘dilemma’) and must be traded off against one another in order to

achieve optimal model complexity. The difficulty in the implementation of this trade-off

is that the bias/variance error components are typically unknown.

2.6.3.2) Model Complexity Optimisation Strategies

Given that the chosen model structure should only be as complex as necessary, a large

number of different strategies for dealing with complexity have been proposed. In

addition to the potential overfitting problems discussed previously, more complex

structures will typically require a more computationally demanding parameter

optimisation stage to be completed. Furthermore, a more complex model may have a

detrimental impact on the overall interpretability of the model.

If the chosen model architecture is found to ‘underfit’ the test data it is obvious that the

model in its current guise is not sufficiently well equipped to handle the learning task at

hand, and the addition of further parameters or the consideration of alternative structures

Chapter 2: Nonlinear System Identification

 57

may be required. However, before eliminating potential candidate models, it must be

clear that the problem lies with the lack of flexibility of the model, rather than with

insufficient training data or a poorly executed parameter optimisation strategy. For the

case of an overly complex ‘overfit’ model, a number of strategies exist to help regulate

the complexity of the chosen model architecture. Furthermore, other approaches have

been developed that seek to reconstitute the learning problem allowing different and

possibly less complex model architectures to be utilised.

Through the course of this chapter a number of ideas for dealing with complexity have

already been mentioned, however a fundamental concept worth reiterating is the ‘curse of

dimensionality’, where the learning task becomes harder solve as the dimensionality of

the input space, and therefore the number of parameters, increases. In trying to solve

harder learning problems, more complex models are therefore required and the potential

for overfitting increases. Therefore, adopting modelling strategies that seek to mitigate

this ‘curse of dimensionality’ may ease the identification of more optimally complex

models. In particular, the various network structures discussed previously typically do

not suffer from the same rate of growth in the number of parameters with the number of

input dimensions, as more classical nonlinear methods. Furthermore, many of the

unsupervised learning methods such as clustering and principal component analysis are

expressly concerned with helping to organise and simplify the learning problem.

For linear models composed of a number of regressors, well established subset selection

methods have been developed to help determine which of these regressors are the most

important, therefore allowing the number of parameters to be optimised. Important subset

selection techniques include forward selection, backward elimination and stepwise

selection; see Nelles (2001) for a full discussion. These methods can also be adopted in

the optimisation of Neural Network based structures where basis functions or neurons

can be added to or eliminated from the model (i.e. the network may be ‘grown’ or

‘pruned’ accordingly). Furthermore, the adoption of the operating regime approach

where a divide and conquer approach is applied to the operating range of the system can

help facilitate the inclusion of prior knowledge into the identification process, e.g. local

linear models identified at known equilibrium regions. Another possible approach to

decomposing the input space is the classification and regression tree (CART) methods

proposed in Breiman et al. (1984).

Chapter 2: Nonlinear System Identification

 58

Further alternative methods include the use of ‘Hybrid’ model structures where more

than one type of model are combined together. Through such an approach, the

identification process may be further broken down into more manageable components

where a number of simpler model structures can then be more easily identified and then

combined in some arrangement (e.g. additive or hierarchical models). In this way,

models that are well suited to representing certain aspects of a system’s behaviour (e.g.

an existing model derived from first principles) can be combined with other methods

(e.g. a sophisticated black-box model derived from empirical data). Another possibility is

the adoption of a ‘projection-based’ approach where instead of eliminating or partitioning

regions of the input space, the input space is projected onto a different set of axes and the

learning task redefined. This is the basis of various kernel methods and also the GP

modelling approach examined in this thesis, where a probabilistic ‘function space’ is

defined and Bayesian learning is employed towards finding optimal model complexity.

So far, these complexity optimisation strategies have tackled the problem through the

modification of the model structure and are in essence attempting to reduce the number

of model parameters to be included. However, an alternative strategy is offered by

various regularisation methods where instead attempting to reduce the number of

parameters included by elimination, the goal is to restrict the overall influence of the

parameters. Therefore, the effect of regularisation is to compel the model behave as

though the model is composed of fewer parameters than it actually has. As a result,

regularisation can be seen to reduce the number of ‘effective’ model parameters and has

a smoothing effect (reducing variance) on the model output. For linear regression

problems the previously mentioned technique of ridge regression is a particularly

prominent method of regularisation, and the same principle is employed for neural

network type problems under the guise of ‘Weight Decay’, as discussed in Nelles (2001).

Further methods of regularisation include the inclusion of constraints on the parameters

values (e.g. certain parameters are given a fixed value or restricted range, or must be

positive or negative), and ‘staggered’ optimisation where instead of attempting to

optimise all model parameters simultaneously, the learning task is split up with subsets of

parameters being optimised in turn. Another notable regularisation strategy is ‘Early

Stopping’ where instead of allowing the iterative nonlinear optimisation algorithm to

converge to a minimum using solely the training data, a set of test or validation data is

also employed and the iterative optimisation algorithm is concluded when the model

Chapter 2: Nonlinear System Identification

 59

error on this validation set reaches its minimum. This is a good strategy to adopt for very

flexible models where the convergence of all parameters may not be desirable.

2.7) Model Validation

Once the selection and optimisation of the model has been performed, a process of model

validation should be completed before the model may be declared as ready for use. This

process of model validation is an important but often overlooked stage of the overall

modelling process as a whole. In the context of the system identification loop discussed

previously, model validation involves the careful evaluation of the model against some

performance criteria. The discussion of these criteria is often restricted to the application

of statistical testing of model accuracy (e.g. Mean-square error), but the application of

more subjective reasoning (i.e. using prior knowledge) should also be incorporated. In

this way, the overall suitability of an identified model can be assessed (e.g. is the model

interpretable?). It is normal to find a trade-off exists between more complex and

therefore flexible models, and the overall interpretability of the approximation. If the

model is found to perform adequately then the overall identification process can be said

to be complete, however if some aspects of the model’s performance are seen to be

deficient, the practitioner should return to previous stages of the modelling process and

consider modifications. Using the information gained from the model validation stage,

various strengths and weaknesses of the identified model can become clearer (e.g.

particular operating regions where accuracy is poor), thus facilitating any necessary

modifications.

Once a model has been identified from a set of training data, the most straightforward

method of evaluating the performance of the model is to then test the model on a

different set of data. This concept of splitting the overall set of empirical data into

separate training and test datasets is generally known as cross-validation. For cases

where an abundance of empirical data is available, this validation procedure would not

prove to be problematic. However, for cases where the amount of empirical data is

limited, the requirement for separate training and test datasets can be difficult to meet. As

discussed previously, in order for a successful model to be identified, the training data

must be representative of the unknown system function. Therefore, through experimental

Chapter 2: Nonlinear System Identification

 60

design and data pre-processing, the training dataset must attempt to include sufficient

datapoints from the all regions of operating space that are to be considered. However by

the same rational, if we are to fully evaluate the performance of the model, then the test

dataset must also be representative of as much of the operating range as possible.

Fundamentally, a significant restriction on the size of the training dataset in order to

provide large amounts of test data can be seen to be counter-productive (even wasteful of

data), as the modeller is of course charged with identifying the best possible model.

Therefore, in cases where empirical data is limited (a common problem in the

identification of real systems), it is normal for pressure to be put on restricting the

amount of available test data in order to boost the amount of training data. As a result,

instead of arbitrarily splitting the available data, more sophisticated validation methods

have been proposed that seek to maximise the exploitation of the available data. One

such method is n-fold cross-validation where the available empirical data is partitioned

into n sub-samples. Each sub-sample is then employed in turn as a test dataset for a

model trained on the other (n-1) sub-samples, with the overall error rate being taken as

the average of these n sub-sample tests. A further alternative is Leave-One-Out-

Validation , where a single observation of the overall data is to be left out and used as a

test example, and the remaining data used for training. As before, this process is then

repeated until each member of the training set has also been used as a test example. This

can be seen to be an extreme case of cross-validation that is only computationally

feasible for small datasets.

As cross-validation schemes can prove to be computationally expensive, the overall

process of model validation can become frustrating for complex models. The overall

process involved in testing the model, then potentially modifying and retraining the

model, and then retesting it, can prove to be a time-consuming one. Therefore, alternative

methods of evaluating test error that are less computationally expensive have been

developed. These include the use of various ‘information criteria’ methods, such as

Akaike’s Information Criterion (AIC), and Final Prediction Error (FPE), see Akaike

(1974). For more information on various model validation strategies, see the

aforementioned system identification texts by Ljung (1999) and Nelles (2001), and also

Leontaritis and Billings (1987).

Chapter 3: Gaussian Process Models

 61

3) Gaussian Process Models

The Gaussian Process (GP) model may be regarded as a nonparametric method of

nonlinear system identification where new predictions of system behaviour are computed

through the use of Bayesian inference techniques applied to empirical data. The GP

model may also loosely be considered as a ‘black-box’ method as the identification

process relies heavily upon experimental data. However, as with other methods of

identification, a priori knowledge such as physical insight can prove to be invaluable in

the design of the model and experimental procedures. In this chapter we introduce the

theoretical background and literature of the Gaussian Process modelling approach,

together with a discussion of the motivation behind the methods.

3.1) What is a Gaussian Process Model?

Through the course of this chapter the mathematical framework of the GP modelling

approach is to be presented in detail. However, before beginning an exploration of the

methods it is first necessary to place the GP modelling approach in context with

alternative modelling approaches. From this point, the motivation behind the proposed

adoption of these methods can then be discussed.

The GP modelling approach is typically described as a nonparametric ‘black box’

method that employs Bayesian learning with which to identify a model of system

behaviour. Therefore, in order to characterise the GP model, it is first important to realise

that the GP approach has much in common with alternative nonparametric methods

where identification is performed through the application of learning techniques to

empirical data. In the previous chapter, the Neural Network approach was briefly

described and it is this machine learning approach that the GP modelling approach is

most often compared with. However, an important distinction between the two methods

is that unlike the Neural Network’s adaptive basis functions, the GP modelling approach

can be thought to employ a fixed basis function or kernel. As will be discussed through

the course of this chapter, this move from adaptive to fixed basis functions has

advantages in dealing with the complexity issues (parameter and structural optimisation)

raised in the previous chapter. Furthermore, it is through the use of Bayesian inference

Chapter 3: Gaussian Process Models

 62

coupled with the mathematical properties of the Gaussian process that the GP model will

be shown to be a powerful method for nonlinear regression. Therefore, as with other

nonlinear regression techniques the GP modelling approach can be understood as a

method of interpolation, where a curve is to be fitted to data.

In order to illustrate the workings of the Gaussian Process modelling approach it is first

necessary to outline the supervised learning problem to be tackled. Namely, we are

seeking to identify an unknown function y, by constructing a model from noisy data with

which we can use to make predictions given new input data. A model for our noisy data

example can be formulated as:

 nnn xfy υ+=)((3.1)

The input is denoted as x, with the output or target denoted as y. The input is a vector x

dependant on the number of input variables, and the target is continuous data for this

regression case. In essence, the problem can be understood as a multiple-input, single-

output (MISO) arrangement. The noisy training dataset D consists of N observations

D={(x i,yi)| i = 1,…,N}, i.e. N pairs of L-dimensional input vectors {xi} and scalar

outputs {yi} for i = 1…N.

Given the observed behaviour present in the set of training data, we now wish to make

predictions from the model for new inputs x* not seen in the training set. Therefore the

problem is to make predictions for all possible inputs based on information given a finite

set of training data examples. In mathematical terms this is known as inductive reasoning

where a general conclusion may be drawn from a series of premises based on experience

or experimental evidence.

In order to successfully identify the unknown function from a set of training data, the

more popular and well-established methods of system identification, such as a parametric

model structure or Neural Network, would seek to make assumptions or use prior

knowledge with which to simplify the learning task. Furthermore, the modeller must

ensure that any model considered suitably represents the underlying function, rather than

just providing a valid fit to the observed data. Considerations such as the likely order of

the underlying function would be used to gauge the necessary level of complexity of the

Chapter 3: Gaussian Process Models

 63

chosen model structure (e.g. would a linear or lower order polynomial model be

sufficient?).

By utilising this parametric approach where a finite number of variables must be

determined through optimisation, we run the risk of selecting a model structure

insufficient in its flexibility to be able to satisfy the given goal in terms of providing an

accurate representation of the function to be approximated. Consequently, the complexity

of the chosen model structure may need to be increased so that the function

characteristics are better recreated. As discussed in the previous chapter, the risk

associated with such an endeavour is the possibility of overfitting the model to the

training data. Furthermore, as the number of parameters increases, the need for a greater

amount of training data may also become apparent.

In seeking to solve this problem, the Gaussian Process model differs from more

conventional system identification methods by adopting a Bayesian approach to the

learning task. The GP model does not seek to assume a functional form with which to

compute new predictions. Instead, a prior probability is given to every possible function

with the most likely function identified through the use of Bayesian inference. This

approach would seem to present a significant problem as if we are looking at every

possible function, and therefore not discounting any particular category of function as in

the parametric case, the task of computing likely functions appears to be almost infinite!

However, it is through the specific use of the mathematical properties of the Gaussian

Process that this computing dilemma can be overcome.

3.2) Motivation for GP models

Before going into a detailed description of the theory and methods associated with the

GP model approach it is worth discussing the motivation behind the recent interest in

Gaussian Process methods. Furthermore, the GP model is mostly defined in terms of its

relationship to other methods and its application of Bayesian inference towards the

problem of nonlinear regression. Therefore, some background discussion is necessary to

provide much of the rationale that lies behind the adoption of the approach.

Chapter 3: Gaussian Process Models

 64

In the previous chapter, models based around a Neural Network type approach were

described as being of immense potential in providing a tool for universal approximation

that could be applied across a wide range of problems. The central tenet that a group of

adaptive basis functions, or hidden layers/structures, could be learned from data, allowed

the user the flexibility to approximate complex nonlinearities and discover patterns in

data that were previously hidden. Through the 1980s and early 1990s Neural Network

techniques became very popular topics of study across many research fields and the

underlying understanding of methods and their relation to existing statistical principles

became apparent. Furthermore, the problems associated with employing such complex

model structures and the general lack of a stringent unifying framework for

implementation became clear.

The problem of optimising the complexity of these multiple models remains the biggest

challenge presented to those who employ these methods. In tackling this problem, the

principle that a model should only be as complex as completely necessary for the

intended application is almost fundamental to the field of system identification. In terms

of interpretability, a simple model may often be preferable to a complex one.

Furthermore, the idea that complexity should be minimised also becomes a practical

necessity where the computational demand of identifying parameters becomes unviable.

This principle of economy also relates to the philosophical concept of Occam’s Razor,

which states that assumptions should not be needlessly multiplied.

As discussed previously in section (2.6.3), the potential for ‘overfitting’ is significant

when considering a model of high complexity. The Bias/Variance trade-off dictates that

although a more complex model may be successful in reducing the bias error by more

closely approximating the underlying process or function, there may be an increase in the

variance error due to a potential tendency to approximate the function to any random

variation in the training data. Conversely a simpler model may have a higher bias

(dependant on whether the underlying process or function is comparably simple), but a

lower variance. The consequence of this trade-off is that in order for a complex model to

be identified successfully, without being hamstrung by poor variance error, a large

amount of training data is required. Therefore, from an overall perspective, we are

restricted in our choice of model complexity by the amount of training data available.

Chapter 3: Gaussian Process Models

 65

3.3) Dealing with Complexity

For many applications, large quantities of training data may not be available. Therefore,

if we are to employ large complex networks to identify the underlying nonlinear

function, the problem of promoting accuracy whilst restricting model complexity must be

tackled. The various possible choices in architecture, activation functions and

optimisation procedures discussed in the previous chapter show that whilst solutions to

the complexity problem have been proposed, a great deal of uncertainty remains over

which method would be most appropriate given a certain set of conditions. The

consequence of this doubt has therefore led to the suspicion that perhaps the Neural

Network was not the great ‘catch-all’ solution to supervised learning problems.

Within the System Identification community, the development of Neuro-Fuzzy and Local

Linear methods can be seen as a direct response to the ambiguous principles of the

Neural Network approach, and indeed as an integration of classical methods of

identification (local linear models) and prior system knowledge into the powerful

adaptive basis function network methodology. Other methods such as the inclusion of

penalty functions to the optimisation process have also been successful in applying a

specific upper limit on the complexity of the resultant description.

In tandem with this effort to simplify or make more methodical the Neural Network

identification process, research has continued within the Statistical and Machine

Learning communities on alternative ‘kernel’ methods. Rather than attempt to

approximate a function through the use of large numbers of adaptive basis functions,

these kernel methods approach the learning problem through the use of fixed basis

functions or ‘kernels’. Whilst this movement from adaptive to fixed basis functions may

be seen to be somewhat of a backward step, it has been shown that if enough of these

fixed basis functions are used, the problems associated with complexity/overfitting can

be mitigated, and therefore the perceived limitation in flexibility may be overcome.

Furthermore, as there is only one fixed basis function to optimise, the resultant model

structure can be seen to have an advantage in overall simplicity.

Chapter 3: Gaussian Process Models

 66

Many of these kernel methods have been developed toward the problem of classification,

rather than as a tool for nonlinear regression, with the most well known approach being

the Support Vector Machine (SVM), see Vapnik (1995). These kernel methods rely upon

the implementation of the ‘Kernel Trick’, Aizerman (1964), where original observations

may be mapped onto a higher dimensional feature space. By performing this mapping

process, computational savings can be made as the nonlinear algorithms can be

transformed into linear algorithms. The Support Vector Machine has been further

extended to tackle regression problems as in Drucker et al. (1997). Furthermore, the

Gaussian Process model can be seen to be an example of a Kernel method or machine, as

it relies on the use of a single optimised kernel rather than adaptive basis functions.

However, the GP model can be distinguished from the majority of kernel methods due to

its implementation of Bayesian methods.

3.4) The Bayesian Alternative

An alternative approach to overcoming the problem of overfitting in complex network

models is to adopt a Bayesian framework. In the early 1990s there was significant

progress in the field of adapting Bayesian methods to the field of machine learning in an

effort to solve learning problems, see Mackay (1991). These Bayesian methods

attempted to address the problems associated with employing complex learning systems

through the use of a probabilistic framework. The importance of adopting a probabilistic

approach, where a prior distribution is defined and then a posterior distribution is

inferred, is that through these distributions, information may be gleaned about both the

overall error of the approximation, and the uncertainty or likelihood associated with this

error. This new information may then be redeployed toward the goal of improving the

approximation. In the analysis of identification arising from the use of a non-Bayesian

approach, only information regarding the size of the error may be forthcoming.

The field of Bayesian modelling originates from within the statistics community where

the probabilities of various events or outcomes must be calculated. The term Bayesian

refers to the use of Bayesian inference, an interpretation of probability that allows the

degree of belief in a hypotheses or event to be the basis of an estimate of its probability.

Chapter 3: Gaussian Process Models

 67

Through the use of Bayes’ Theorem, this prior ‘degree of belief’ can then be revised or

updated upon the discovery of new information, giving a posterior estimate.

The Bayesian interpretation of probability is often quoted as being in keeping with the

scientific method, where a rule or hypothesis is first proposed, and revised upon any new

discoveries. However, the concepts of Bayesian probability remain somewhat

controversial within the statistical community as they are in contrast to that of the

classical Frequency probability interpretation. In the Frequency interpretation, the

probability associated with an event is defined as the limit of its relative frequency after

observation in a large number of trials (e.g. the observed frequency of ‘heads’ when

tossing a ‘fair’ coin should indicate that the probability of the event equals ½, given a

large enough number of tosses). In contrast, a Bayesian will use a probability distribution

over possible values for an unknown probability to express this uncertainty, and will then

update this distribution as the outcome of each toss becomes known using probability

theory.

The introduction of the Prior probability is the fundamental step that allows us to move

from a likelihood function to a posterior probability distribution through the application

of Bayes’ Theorem. The adoption of this prior is also the main source of contention

between Frequentist and Bayesian theorists, as the choice of prior can be viewed as

arbitrary in many respects as the decision is made in the absence of experimental

evidence. The counter argument is that the choices made are often done so on the basis of

some kind of knowledge and are therefore not truly arbitrary. Furthermore, it could be

argued that in the Bayesian approach our prior beliefs are at least stated explicitly, rather

than employed tacitly as in other methods of probabilistic analysis.

To support this discussion on Bayesian modelling and the details of the GP model,

Appendix A contains a brief overview of the most relevant probability definitions. Useful

introductions to the topic of Bayesian statistics are Box & Taio (1973), Press (1989) and

Lee (2004). More advanced methods including the application of Bayesian methods to

regression and classification problems are examined in Gull (1988), Gelman et al.

(2004), Congdon (2003) and Denison et al. (2002). However, the growth of interest in

GP models can be seen to predominantly originate from investigations into the use of

Bayesian learning in Neural Network implementations. Important sources of information

Chapter 3: Gaussian Process Models

 68

on this particular aspect are the texts by Mackay (1991, 1992a, 1992b) and Neal (1996),

and much of the forthcoming discussion can be seen to have its origins in this research.

3.5) Bayesian Learning

The Bayesian approach to the modelling of data is based upon the expression of

knowledge in terms of probability distributions. Whereas more conventional parametric

modelling approaches would seek to optimise the parameters of a model structure so that

any model error is minimised, a Bayesian approach would seek to maximise the

probability of a model given some data. Therefore, rather than dealing directly with the

error in the model, we are to operate upon the probability of the model given the data.

Consequently, if the goal of the modelling process is to obtain a prediction estimate,

rather than directly computing the value of a new prediction yN+1, we must first find the

probability of this new prediction P(yN+1).

The Bayesian approach begins in a similar fashion to that of a more conventional

parametric modelling approach. From examination of any ‘a priori’ knowledge of the

unknown function, we can speculate upon a number of initial model structures or

hypotheses Hi {i.e. H1, H2 … HL} that we believe may offer the level of flexibility or

sophistication (e.g. would a linear model suffice?) needed to form an accurate

representation. This set of models can be termed the ‘hypothesis space’ with each model

said to be characterised by a set of parameters wi, which are to be identified through

some empirical data D.

This collection of models can be thought to be competing with one another to account for

the data we have obtained, with each model Hi aiming to maximise the plausibility of the

data. In this sense, the Bayesian approach adopted here differs from other probabilistic

interpretations, as it is the inverse probability (rather than forward probability) that is to

be employed through the use of the Likelihood principle. By doing so, the relative

plausibility of these alternative models are to be computed based on the information

present in the single data set that is to be observed. In the Bayesian framework our initial

model or hypotheses Hi would be termed as a ‘prior belief’, and expressed as a Prior

distribution over all possible models P(Hi). These initial beliefs (prior to the arrival of

Chapter 3: Gaussian Process Models

 69

any data) about the relative plausibility of these models can be thought to be a quantified

list of probabilities P(H1), P(H2), …, P(HL) which sum up to 1 (a certain event).

Furthermore, we can define a prior distribution over the parameters wi that is conditional

on this initial model P(wi|Hi).

3.5.1) Levels of Inference

After deciding upon our possible models and observing experimental data, the Bayesian

modelling approach has two stages or ‘levels of inference’ as described in Mackay

(1991).

3.5.1.1) 1st Level of Inference

In the first level of inference, the task is to fit each model to the observed data through

applying Bayes’ theorem to infer the parameters wi of each model. Therefore, this stage

of the Bayesian approach is fundamentally similar to other modelling approaches where

the parameters of a proposed model are to be optimised using information gained from

the empirical data. Therefore, our goal is to infer a probability distribution over the

parameters that is conditional on the data and the model/hypothesis P(wi|D,Hi).

This first level of inference is performed through the application of Bayes’ theorem,

where a Posterior distribution is inferred from combining the information present in the

Prior P(wi|Hi) with that of the information gained from the data. The information gained

from the data is known as the Likelihood , P(D|wi,Hi), which gives the probability of the

observed data as a function of the unknown model parameters. This probability can be

said to be conditional on the initial model structure Hi and parameters wi, and is often

expressed as the likelihood function L(wi):

Bayes’ Theorem: Posterior = Likelihood x Prior__

 Evidence

)|(

)|(),|(
),|(

i

iiii
ii HDP

HwPHwDP
HDwP = (3.2)

Chapter 3: Gaussian Process Models

 70

If our set of training data D is, for example {(x(1),y(1)),…, (x(n),y(n))}, the likelihood

function L(wi) can be written as:

(1) (1) () ()

(1) (1) () () () ()

1

L(| (,),..., (,)

L((,),..., (,) | ((,) |)

n n

n
n n i i

i

w L w x y x y

w P x y x y w P x y w
=

) = ()

) ∝ () = ∏
 (3.3)

The unknown parameters of the model can now be identified through the optimisation of

this likelihood function, with methods such as maximum likelihood or maximum-

penalised likelihood.

The Posterior distribution can therefore be seen to be the product of the Likelihood and

the Prior , with the Evidence P(D|Hi) (also known as the marginal likelihood) acting as a

normalising constant. This marginal likelihood or evidence quantity can be somewhat

ignored in the first level of inference. However, it is this evidence quantity that allows

comparisons to be made between the likelihood of different models in the ‘second level

of inference’ discussed below.

Note that for more complex models we can adopt a hierarchical approach to reflect the

hierarchy of the proposed description. For example, Neural Networks are often

characterised by a set of parameters to control the individual weights of the hidden layer.

A further set of hyperparameters that control the distribution of these lower level

parameters may then be defined. To implement this for the first level of inference, the

inference process can be repeated for the hyperparameter-level through defining a hyper-

prior distribution over the hyperparameters.

3.5.1.1.1) Getting a predictive distribution

In the first level of inference, a posterior distribution over the model parameters has been

achieved P(w|(x(1),y(1)),…, (x(n),y(n))). However, it is the probability of the new output that

we are ultimately interested in. Therefore, in order to obtain a predictive distribution for

the probability of a new output, P(y(n+1)), the Bayesian inference must be completed. This

Chapter 3: Gaussian Process Models

 71

is achieved through the integration of the model (i.e. y(n+1) from parameters w) with

respect to the posterior distribution of the parameters

(1) (1) (1) (1) () ()

(1) (1) (1) (1) () ()

| , (,),..., (,)

| , (| (,),..., (,))

n n n n

n n n n

P y x x y x y

P y x w P w x y x y dw

+ +

+ +

()

= ()∫
 (3.4)

3.5.1.1.2) From predictive distribution to single-value prediction

In most modelling tasks, we wish to approximate the output of underlying system or

process. So far we have formulated a method to provide us with a predictive distribution

over the output, i.e. the probability of the unknown value y(n+1). For a single-value

prediction, we must estimate the output y from this predictive distribution. The mean of

such a probability distribution is therefore taken as the most probable estimate. Note that

the precise choice of point estimate is dependant on the assessment criteria we are using

to compare model error. For a squared error loss function the mean is appropriate, but the

median of the distribution may prove to be a better choice if the model error is being

analysed as an absolute error, see Neal (1996).

3.5.1.2) 2nd Level of Inference

In the first level of inference the parameters wi of a particular model or hypothesis Hi

were inferred from the observed data D using Bayes’ theorem, resulting in the

conditional P(wi|D,Hi). Therefore, this process of model fitting is not radically different

from other non-Bayesian approaches to the problem where a model is proposed and then

optimised to reflect the available data. In the second level of inference, the objective is to

compare a number of different models to find the most likely or plausible model given

the data. As a result, this process has comparable goals to that of model validation, where

a number of proposed models may be assessed and ranked accordingly.

The second level of inference once again employs Bayes’ theorem to find the posterior

probability of these different models given the data P(Hi |D). The existing Prior

probability distribution P(Hi) (independent of parameters) over all possible models is

employed in this inference. The likelihood P(D|Hi) represents what the data is telling us

Chapter 3: Gaussian Process Models

 72

about the plausibility of each of the models Hi, and corresponds to the evidence or

marginal likelihood quantity of the first level of inference. A normalising constant P(D)

is once again employed to ensure the probability sums to unity.

)(

)()|(
)|(

DP

HPHDP
DHP ii

i = (3.5)

The goal of this second level of inference is not to replace or replicate the process of

validation where different models are compared in terms of accuracy or error. The

Bayesian approach merely provides a further level of information regarding the

probability of the model. This may then be used to distinguish between the suitability of

competing models.

3.5.2) Evaluating Integrals

In order to implement the Bayesian approach a number of integrals must be evaluated in

order to compute the posterior distributions of interest. Specifically, in the first level of

inference, in order to obtain the posterior distribution of any new output yn+1, we must

integrate over the parameters. Furthermore, in order to infer the most likely parameters,

we must evaluate the marginal likelihood or evidence that is itself an integral:

 iiiiii dwHwPHwDPHDP ∫)(=)()|(,|| (3.6)

The evaluation of this integral over the parameter space is also important to any

subsequent model comparison undertaken in the second level of inference. Therefore, the

evaluation of the marginal likelihood is of fundamental importance to the implementation

of the Bayesian inference as a whole, and is perhaps the most distinguishing feature of

the Bayesian approach over more conventional methods of model optimisation and

selection.

The constituent parts of this integral are the likelihood and prior distributions detailed in

the application of Bayes’ Theorem to the first level of inference. Both of these

probability distributions can generally be seen to be nonlinear functions of the

Chapter 3: Gaussian Process Models

 73

parameters. The likelihood may often be expressed as a sum of a squared error term, and

the prior may be of any form that we have deemed necessary to express our beliefs about

the parameter values before any data has been observed. Taken together, this integral can

prove to be analytically intractable and therefore impossible to evaluate directly. This is a

significant problem with the Bayesian modelling approach and requires the use of

approximation methods in many implementations.

The most general purpose and powerful methods of evaluating these intractable integrals

rely upon the use of Markov Chain Monte Carlo (MCMC) methods. Other possibilities

include methods based on the use of Gaussian approximations to the modes (peak values)

of the posterior distribution. These Gaussian approximations rely upon the assumption

that one or more modes of the posterior distribution can be initially located and that the

most of the important information contained within the distribution is to be found close

to these modes. Various methods of implementing Gaussian approximations have been

described in Mackay (1991,1992b, 1992c), Thodberg (1996) and Hinton and van Camp

(1993).

The approximation schemes based around the use of MCMC methods make no

assumptions about the form of the posterior distribution under investigation, such as

whether or not it might be approximated by a Gaussian. Therefore these methods are

potentially more powerful and may be used to find multiple modes of the posterior

distribution. However, the main disadvantage of MCMC methods is the computational

demand many implementations require to converge to an adequate solution. The

approach taken by Neal (1992a, 1993b, 1996) uses the Hybrid MCMC method for the

implementation of Bayesian inference in Neural Networks.

For the sake of thesis brevity, a full discussion of MCMC methods is not included in this

thesis, but general resources detailing the vagaries of Monte Carlo methods are Gilks et

al. (1996), Mackay (1998a), and Smith and Roberts (1993). Furthermore, due to the

reliance of many Bayesian inference implementations upon such statistical sampling

algorithms, good introductions to MCMC methods can be found in the more general

Bayesian analysis textbooks mentioned before, such as Gelman et al. (2004)

Chapter 3: Gaussian Process Models

 74

3.5.3) What Prior?

Another challenging aspect of the Bayesian approach is the determination of suitable

prior probabilities with which to begin the inference process. These prior probabilities

must embody our initial beliefs about the model before we have access to any data. For

examples where a complex initial model is proposed, the task of expressing our prior

beliefs over the model through assigning probability distributions, perhaps over different

levels of parameter that are in themselves not readily interpretable, can be seen to be

particularly demanding.

As a consequence of the relative difficulty of this task, combined with the mathematical

complexities detailed previously, the temptation is to adopt a prior for mathematical

convenience rather than truly expressing our beliefs about the underlying function. This

course of action can be seen to be inconsistent with the philosophy of the Bayesian

interpretation of probability, as the choice of prior should be made irrespective of

mathematical convenience. To proceed otherwise would therefore invite questions as to

whether it the methods used may be truly described as Bayesian, therefore placing doubt

over the validity of the approach. To remain consistent with such formalism, objectivity

must be maintained. A prior placed on an object should be determined through prior

knowledge, and to meet the requirements for objectivity, those working with the same

prior knowledge should reach the same conclusions and therefore propose the same

priors.

Therefore, a balance must be struck between finding priors that are interpretable and

readily applicable, whilst still reflecting our knowledge of the system. In practice, it is

therefore common to apply prior distributions that are wide in terms of scope so as not to

inherently rule too much in or out (e.g. a uniform or flat prior over models would not

favour one model over another). For Bayesian Neural Network implementations

independent Gaussian distributions are often used as the prior distributions over the

parameters, see Mackay (1992b).

A final consideration to be made regarding the choice of priors, particularly priors over

models to be subsequently compared in the second level of inference, is that if the ‘true’

model is not included within our set of possible models then it obviously cannot be

Chapter 3: Gaussian Process Models

 75

included within the comparison. This has been termed the ‘closed hypothesis space’; in

that we can only compare models that have been distinctly specified, see Gibbs (1997).

As a result, if no model has been specified that comes close to the ideal, then the

subsequent inference process will not compensate for this inherent flaw, as there is no

Bayesian criterion for assessing the suitability of the defined hypothesis space. This is in

keeping with any other modelling paradigm where if a candidate model is inherently

unsuitable for approximating the data, then no amount of optimisation will overcome this

fundamental error in model selection.

3.5.4) Relating Back To Complexity

In the previous section we have discussed the Bayesian approach to nonlinear regression

and then gone on to discuss some of the difficulties of implementation. However, we

introduced the Bayesian approach as an alternative strategy for dealing with the problems

of implementing complex models found in more conventional methods of model

selection and optimisation. In these more established methods we found that a candidate

model’s complexity may be limited by the quantity of training data available to the

optimisation process.

By contrast, if a Bayesian approach is taken toward the goal of identifying a complex

model, at no point in this procedure (Priors → Collect Data → Infer Posterior →

Predictions → Comparison) is the complexity of the model modified to meet restrictions

imposed by the amount of training data. Such a course of action can be seen to be

inconsistent with the Bayesian perspective, as if a model or prior are deemed to be

correct for cases where a certain number of data points are observed, they should

theoretically remain correct for cases where more data points are available.

Unfortunately, although the theoretical principles of the Bayesian approach may preclude

the influence of the size of the dataset over the model complexity realisable, limitations

may still be imposed by more practical considerations. For example, if data is sparse for

a given application, a simpler model may be deemed more suitable if the advantages of a

more complex description cannot be realised without considerable computational

expense. Furthermore, a moderately inaccurate prior might prove to be a more significant

handicap to the identification process where the data is insufficient. Therefore, for

Chapter 3: Gaussian Process Models

 76

applications where a simple model is not likely to provide an adequate description, an

appropriate Bayesian approach would be to implement the most complex solution that is

computationally viable, disregarding the size of the training dataset.

3.5.4.1) Occam’s Razor

In the identification of a model of suitable complexity, the principle of Occam’s Razor is

often cited as being relevant. The maxim dictates that in the presence of several

compatible models or hypotheses, no more assumptions should be made than are

necessary. This leads to a preference for simpler solutions over more complex

alternatives, as they are often founded upon fewer assumptions. In some circumstances,

this preference for a simple solution may be aesthetically motivated by the desire for a

mathematically elegant solution, but it may also be construed as an excuse for

reductionism or mathematical convenience. Nonetheless, invoking this concept towards

the goal of regulating the complexity of a model has practical benefits in terms of

computational demand and model interpretability.

Whilst we can employ this preference for simple models over more complex alternatives

in any situation where competing models have been identified, by simply choosing the

least complex model that still meets our accuracy requirements. However, the Bayesian

setting outlined in this chapter offers a further level of information with which to employ

this preference against complexity. Indeed, the Bayesian approach can be used to

automatically apply Occam’s Razor, allowing a simpler solution to become our preferred

choice (rather than purposely having to implement some method of regularisation into

our optimisation procedure that places an arbitrary upper limit on complexity). This

automatic implementation of Occam’s Razor relies upon the examination of the marginal

likelihood or evidence, i.e. the probability of the data given the model.

To illustrate this feature, suppose that we have two competing models (H1 and H2) of

different complexities, with H2 being much more complex. Fundamentally, a simple

model may only offer a limited variety of possible target values for a given set of inputs,

whereas a more complex model has the scope to offer a wider range of possible targets

due to the greater flexibility on offer. This relationship is visualised in Figure (3.1),

which shows the behaviour of the marginal likelihood for the two different model

Chapter 3: Gaussian Process Models

 77

complexities, P(D|H1)and P(D|H2). This figure and further discussion can be found in

many of the aforementioned sources, including Mackay (1991, 2003) and Rasmussen and

Williams (2006).

Figure (3.1): Occam’s Razor from Marginal Likelihood

Interpreting this figure in terms of marginal likelihood (a probability distribution over the

data given the model that is normalised to unity), a simple model will have a large value

of marginal likelihood where the model does accurately account for the data, i.e. a

precise fit to the data, but this distribution will be narrow (low variance) due to the

limited potential of the simple model. Conversely, a more complex model offers the

possibility of accounting for a wider range of data (high variance), but the value of the

marginal likelihood for any given model will not reach the same magnitudes as would be

seen for a simple model.

For cases where both models can be seen to be compatible with the data, the simpler

model H1 will have a larger marginal likelihood and therefore may be interpreted as more

probable. Therefore, we may express a preference for a simpler solution through

assessing the marginal likelihood of each model and selecting the most probable model.

Furthermore, we have expressed our predilection towards simpler models without

applying any arbitrary or subjective prejudice against more complex solutions, such as an

external parameter to govern the trade-off between model complexity and model

accuracy. Consequently, we can utilise the marginal likelihood as a tool for selecting an

appropriate model complexity that is well suited to the observed data.

Marginal Likelihood

All Possible Datasets (D)

P(D|H1)

P(D|H2)

Chapter 3: Gaussian Process Models

 78

3.6) Gaussian Process Modelling

In this chapter the primary focus has been on building a case to support the consideration

of a Bayesian approach to the supervised learning problem. The importance of this

discussion is that by adopting this Bayesian formalism the overfitting problem normally

associated with complex networks of a large size (Neural Networks or Kernel Machines)

may be potentially overcome. In addition to outlining the potential of the Bayesian

approach, the previous discussion highlighted potential problems regarding the

identification of suitable priors, and the possible occurrence of intractable integrals that

may require the use of time-consuming Markov Chain Monte Carlo (MCMC) methods

for solution.

Fortunately, the main advantage of the Gaussian Process (GP) modelling approach is that

we can remove some of the mathematical complexity associated with implementing a

Bayesian framework, whilst retaining its features regarding its approach to dealing with

complexity. Specifically, the mathematical properties of the Gaussian Process allow the

problematic integrals associated with the evaluation of the marginal likelihood to become

tractable, and therefore directly calculable thus forgoing the requirement for MCMC

methods. Furthermore, much of the flexibility and power of approximation associated

with the complex adaptive basis function methods such as the Neural Network can also

be retained through the use of the GP model. Instead of a neural network composed of a

finite number of adaptive basis functions, the GP model will be seen to correspond to an

infinite network of fixed basis functions (or a kernel-based method), thus allowing

significant computational savings to be made.

Much of the recent work on Gaussian Process models originates from the work of

Mackay (1991, 1992a, 1992b) and Neal (1993) who applied the Bayesian approach

toward the problems of learning with complex Neural Networks. In particular it was the

research carried out by Neal (1996) into the possibilities of implementing infinite

networks using Bayesian inference that lead to the realisation that, under some

circumstances, a network composed of infinite fixed basis functions corresponds to a

Gaussian process. Specifically, Neal (1996) demonstrated that under the Bayesian

framework, neural networks with one hidden-layer converge to a Gaussian process as the

Chapter 3: Gaussian Process Models

 79

number of hidden layer neurons increases towards infinity, assuming suitable (zero-

mean) priors.

The key outcome of this observation is that instead of struggling to define different priors

to represent our initial beliefs about the proposed network (as would be the procedure in

the Bayesian approach outlined previously), we can directly define a Gaussian Process as

the prior over the possible functions. Due to the mathematical properties of the Gaussian

process this is a significantly more straightforward task. As a result, the explicit use of

Gaussian processes to express our prior beliefs was proposed as a potentially simpler

approach to implementing Bayesian analysis.

This proposal of using Gaussian Processes as the basis for Bayesian nonlinear regression

was taken up by Rasmussen and Williams (1996) who showed that the Gaussian Process

models compared favourably to other approaches including Neural Networks and the

Multivariate Adaptive Regression Splines (MARS) of Friedman (1991). In Rasmussen

(1996) the GP method was also contrasted with a Bayesian Neural Network structure

based upon the methods developed by Neal (1996) and was found to be significantly less

computationally intensive as MCMC methods were not required.

The use of GPs gained further momentum through the work of Mackay (1997) where GP

models were even postulated as a potential replacement for Neural Networks. Later

versions of this paper with further information and discussion can also be found in

Mackay (1998b, 2003). This work by Mackay was the first general review of the

methods involved in undertaking supervised learning methods using Gaussian Processes.

The reviews also contain discussion about how the approach can be seen to have notable

equivalents and parallels across other learning methods and indeed in other areas of

research. Important links between Gaussian Processes and other methods such as Kalman

filters, Splines, and generalised radial basis functions are made apparent. Furthermore,

the work by Mackay makes the observation that the use of Gaussian Processes for the

purposes of regression can even be stretched back to work of O’Hagan (1978), Wiener

(1948) and of the astronomer Thiele working in the 19th century as described in Lauritzen

(1981). However, the most interesting was the parallel made between Gaussian Processes

and the well-established Geostatistics technique of Kriging, which uses the probabilistic

analysis of data for the identification mineral deposits. The methods of Kriging have

Chapter 3: Gaussian Process Models

 80

been found to be identical to Gaussian Process regression, with the original research

being conducted by Matheron (1963) and named after a mining engineer D.G. Krige. A

review of these methods can be found in the text by Cressie (1994) devoted to statistical

techniques for dealing with spatial data.

Further reviews of GP regression were completed by Gibbs (1997), Williams (1998) and

Seeger (2004). The latest research into the GP model has focused upon overcoming some

of the limitations of the approach and adapting it toward the task of nonlinear system

identification. Precise details of these advancements and references are to be discussed in

later sections of this chapter and the next. Much of this previous research has now been

reviewed and brought together into a single volume by Rasmussen and Williams (2006),

which builds on previous reviews and provides an excellent grounding in the theory and

methods required for successfully adopting the GP approach. Furthermore, the text by

Rasmussen and Williams (2006) provides a detailed comparison of the GP method with

other machine learning architectures, such as the Support Vector Machine and Spline

smoothing techniques. However, only a very limited amount of this research into the GP

model has been aimed toward meeting the specific demands of system identification for

engineering problems that is the main focus of this thesis.

3.6.1) What exactly is a Gaussian Process?

Given that the mathematical properties of a Gaussian Process are key to the mechanics of

the Gaussian Process model, it is pertinent to discuss the peculiarities of this complex

mathematical object. Put simply, a Gaussian Process is a stochastic process. But what

exactly is a stochastic process?

The concept of a mathematical stochastic process was inspired by the need to model

physical stochastic processes, which are processes in which the measured variable is

governed by probabilistic laws. The most famous example of a physical stochastic

process would be the Brownian motion of particles suspended in a liquid. A

mathematical stochastic process can be defined as a collection or family of random

variables. More loosely, a stochastic process may be thought of as a random function,

with each function value being a random variable. Indeed, a random variable can be

thought to have been created by a random or stochastic process. A further distinction can

Chapter 3: Gaussian Process Models

 81

be made between a stochastic process and a random field. Whereas a stochastic process

can be thought to be evolving and therefore indexed with time (at time t, a random

variable Xt is specified), a random field can be seen to be a collection of random numbers

whose values are mapped onto any defined space of n dimensions.

Another important definition to consider is the fact that a random variable is actually

defined as a mathematical function itself, rather than a true mathematical variable of

assignable value. A random variable will map the possible outcomes of an experiment

rather than describe the actual outcome. With each random variable, a probability

distribution can be defined to describe its qualities, i.e. if X is a random variable, the

corresponding probability distribution assigns to an interval [x1, x2] the probability

P[x1≤X≤x2]. A probability distribution is often further characterised by a probability

density function (PDF) where integrals are defined over an interval to calculate the

precise probability.

Given these definitions, we can more precisely define a Gaussian Process to be a

generalisation of the Gaussian (or normal) probability distribution (i.e. random

variable 2~ Normal(,)X µ σ), where sample functions generated over time {Xt} have the

property that any linear combination will be normally distributed (i.e. the process is

Gaussian if all joint distributions are multivariate normal). Put into more mathematically

explicit terms, for any given set of inputs {x1,…, xn}, the resultant random variables

{ f(x1),…, f (xn)} have an n-dimensional Gaussian distribution:

 p(f(x1),…, f (xn)|x1,…, xn) = Normal(m,Σ) (3.7)

where m is the n x 1 vector of expected values (or means) and Σ is the n x n matrix of

covariances between all pairs of points. The covariance can be interpreted as a measure

of how much two variables vary together (since variance is a measure of how much a

single variable varies). Two independent variables are defined as having a covariance of

zero; therefore two random variables whose covariance is zero are defined as

uncorrelated. For two variables that show a tendency to vary together (i.e. they can be

seen to display a degree of correlation such that both variables are found to be above an

expected value), a positive covariance will result. Alternatively, if two variables are

found to vary in an opposing trend, the covariance should be negative.

Chapter 3: Gaussian Process Models

 82

The Gaussian or Normal distribution can be characterised by the following Gaussian

‘Bell’ probability density function:

 






 −−=
2

2

2

)(
exp

2

1
),;(

σ
µ

πσ
σµ x

xf (3.8)

with mean µ corresponding to the expected value of the random variable, and variance σ2

describing the statistical dispersion around the expected value, and commonly interpreted

as the width of the probability distribution. Variance measures are also commonly

converted to standard deviations and presented as error bars, with one standard deviation

(σ) of a standard Gaussian distribution corresponding to a 68% confidence interval, and

2σ as a 95% confidence interval.

Given the properties of the Gaussian or normal distribution, one can fully specify a

Gaussian process solely through its mean and covariance function:

 f(x) ~ GP(m(x),C(xi,xj)) (3.9)

with mean function m(x) = E[f(x)], and covariance function C(xi,xj)= Cov[f(xi), f(xj)]. In

a probabilistic framework this may also be written as

 mi = E[f(xi)|xi]

 Σij = Cov[f(xi), f(xj)| xi,xj] = E[f(xi), f(xj)| xi,xj] - E[f(xi)|xj]E[f(xj)|xj] (3.10)

A covariance matrix Σij can then be generated from evaluating the covariance function

given all the pairs of recorded data. Note also that given the assumed form of y = f(x)

between inputs x and outputs y, the covariance between inputs Σij = Cov(xi,xj) = C(xi,xj),

is also equal to the covariance evaluated at the corresponding outputs C(yi,yj), where

C(.,.) is some covariance function. The covariance matrix Σij can then be defined as:

















=Σ
),(),(

),(),(

1

111

nnn

n

ij

xxCxxC

xxCxxC

…

………

…

 (3.11)

Chapter 3: Gaussian Process Models

 83

The overall result of adopting these mathematical constructs is that we can calculate the

properties of the Gaussian Process at any finite number of points, and receive the same

answer as if we were to calculate all the points of the process. This quality of the

Gaussian process is sometimes known as the marginalisation property, and it allows us

to overcome the perceived computational impossibilities associated with handling

infinite dimensional random objects. This marginalisation property is also interpreted as

a consistency requirement that must be fulfilled through the use of a covariance function

to specify each entry of the covariance matrix, (i.e. if we are to employ a function that

specifies the entries of an inverse covariance matrix then this property is no longer

satisfied).

Furthermore, from this description of the Gaussian Process, we can see that the

covariance function plays a fundamental role in how the resultant Gaussian Process will

be specified. It is this function that generates the covariance matrix, and therefore

influences how inputs and outputs are to be correlated with each other. The user must

select the covariance function used by the GP model and therefore the choice represents a

significant design control over the resultant model. More information on different

covariance functions and how a suitable function may be identified will be given in the

next chapter. However, from a purely mathematical perspective, any function that results

in a positive semi-definite covariance matrix may be seen to be a valid choice of

covariance function.

In conclusion, due to the complex random mathematical objects that make up the

building blocks of the GP model, the descriptive terms used to categorise the approach

(e.g. nonparametric, random variables, stochastic processes, …etc.) can seem rather

ambiguous, impenetrable and by their very nature imprecise, especially for those

uninitiated with probabilistic analysis. However, it is important to remember that whilst

the components parts of the GP model may be seen to be complex random mathematical

objects, they may be precisely expressed with interpretable mathematical functions such

as Normal distributions and covariance functions.

Chapter 3: Gaussian Process Models

 84

3.6.2.) From Infinite Networks to Gaussian Processes

As mentioned previously, much of the interest in Gaussian Process models was initiated

by the demonstration of a level of equivalence between Gaussian processes and Bayesian

neural networks composed of an infinite number of fixed basis functions, assuming

suitable priors. In the previous section, we have closely defined the mathematical

particulars of the Gaussian process, but the relationship to infinite neural networks is

worth exploring in order to complete the picture. From this point, the task of performing

regression with Gaussian process models becomes more interpretable. For this section

the work of Neal (1996) is referred to again and use is also made of much of the same

theory and notation found in Gibbs (1997) and Mackay (1998b).

3.6.2.1) Defining Fixed-Basis Function Model

Restating the learning problem to be solved, we are given a set of N training data-points

(XN, tN) = {x(n), tn}, composed of inputs x that are vectors of some fixed input dimension

I, and corresponding outputs or targets tN. Our task is to infer an unknown function y(x)

assumed to be well represented by the data, and then seek to calculate predictions of new

targets tN+1 given a new observed input xN+1.

Adopting a parametric approach to the modelling task we aim to approximate the

unknown function y(x), by a nonlinear function y(x; w) that may be characterised by

parameters w. If we now choose to adopt a network of H fixed basis functions 1{ ()} H
h hφ =x

as our model structure, then we can specify the model as

1

(;) ()
H

h h
h

y wφ
=

=∑x w x (3.12)

Notice that by adopting this structure, the dependence between the output y and the

parameters w is linear. This is an important point, as we are seeking to identify a

nonlinear function y(x; w), but we have specified that the relationship between the

unknown function y and the unknown parameters w is linear. However, if we specify

basis functions that are nonlinear functions of x, then the overall model y(x; w) is said to

Chapter 3: Gaussian Process Models

 85

be nonlinear. If we therefore select the nonlinear radial basis function centred at fixed

points 1{ } H
h hc = , we can define

2

2

()
() exp

2
h

h r
φ

 −= − 
 

x
x

c
 (3.13)

For notational convenience, we can define a matrix R (N x H) to represent the values of

the basis functions 1{ ()} H
h hxφ = at the points {x(n)}. We can then define the vector yN to be

the vector of values of y(x) at the N points.

 ()()n
nh hR φ≡ x

 n nh h
h

y R w≡∑ (3.14)

From an overall perspective we can therefore interpret this model as being a multilayer

network where only the output weights w are adaptive. The inner connections between

the input layer and the hidden layer are fixed.

3.6.2.2) Define (Zero-Mean) Prior

In keeping with the Bayesian approach, after defining this initial model structure, we

must now define a prior probability distribution over the unknown parameters w of this

model. In the absence of any data, a possible choice of prior could be a Gaussian

distribution of zero mean.

 2() Normal(,)wP σ=w 0 I (3.15)

As we have defined y as being a linear function of w, we can therefore deduce that y will

also be Gaussian distributed, with a mean, E[y], of zero. The covariance matrix Q of y

can then be defined as

Chapter 3: Gaussian Process Models

 86

 E[(E[])(E[])]= − − TQ y y y y

= =T T T T

2 T
w

Q Rww R R ww R

Q = RR

Tyy =

σ

 (3.16)

Giving the prior distribution of y as:

 2 T() Normal(,) Normal(,)wP σ= =y 0 Q 0 RR (3.17)

Therefore, for any selected number of points XN, the vector of function values y will

always have a Gaussian distribution. As a result of assuming a Gaussian zero-mean prior,

we have therefore recreated the defining property of the Gaussian process in that a

probability distribution of a function y(x) is a Gaussian process for any finite selection of

points {x(n)}, the probability density P(y(x(1)), y(x(2)), …, y(x(n))) is also Gaussian.

Looking more closely at the covariance matrix Q, the individual (n, n’) element of Q is

 2 T 2 () (')
' '

RR () ()n n
nn w w h hnn

h

Q σ σ φ φ = =  ∑ x x (3.18)

The covariance matrix Q describes the covariances of the function values at locations

XN, but we must also describe the covariance at the output or target values tn. Assuming

each target tn differs from the corresponding function value by Gaussian distributed

additive noise 2
vσ , then the targets will also have a Gaussian prior distribution

 2() Normal(,)vP σ= +t 0 Q I (3.19)

Therefore, denoting the covariance matrix of the targets t by C:

 2 2 2
v w vσ σ σ= + TC Q RRI = + I (3.20)

Looking more closely at the covariance matrix C, the individual (n, n’) element of C may

be shown to be

Chapter 3: Gaussian Process Models

 87

 2 () (')
' '() ()n n

nn w h h nn
h

Q σ φ φ δ= +∑ x x (3.21)

3.6.2.3) Move to Infinite Basis Functions

If we now consider the model based upon an infinite rather than finite number of basis

functions (H → ∞), the summation over the basis function at (n, n’) becomes an

integral. We can simplify the form of Qnn’ by assuming that the basis functions are to be

uniformly spaced, with each basis function h centred on the point x h= . Additionally,

the variance component 2wσ can be scaled so as not to diverge with the increasing H, by

redefining it as a constant S dependent on the number of basis functions per unit length of

the x-axis.

max

min

() (')
' () ()

h
n n

nn h h

h

Q S dhφ φ= ∫ x x (3.22)

max

min

() (')

' 2 2

(-) ()
exp exp

2 2

h n n

nn

h

x h x h
Q S dh

r r

   −=    
   

∫ (3.23)

Setting the limits of integration to ± ∞, this integral becomes:

(') ()

2
' 2

()
exp

4

n n

nn

x x
Q r S

r
π

 −=  
 

 (3.24)

From this expression describing the individual entry (n,n’) of covariance matrix Q, we

can generalise to form a covariance function describing all entries with the constant terms

grouped together to form the hyperparameter θ1.

(') ()

() (')
1 2

()
(,) exp

4

n n
n n x x

C x x
r

θ
 −≡  
 

 (3.25)

Therefore, for any valid covariance function, we can define the covariance matrix Q for

N function values at locations XN to be:

Chapter 3: Gaussian Process Models

 88

 () (')(,)n nC= x xQ (3.26)

And assuming Gaussian additive noise, the covariance matrix C for the corresponding N

target values is:

 () (') 2
'(,)n n

v nnC σ δ= +C x x (3.27)

3.6.2.4) Where does this leave us?

The consequence of increasing the number of fixed basis functions of the model towards

infinity is that effectively a prior may now be defined using a covariance function that is

equivalent to the prior specified in terms of basis functions and priors over the

parameters. In essence we have simplified the process of defining a suitable prior as

instead of defining individual priors over the type of model or function, parameter

values, and noise beliefs, we can combine everything through defining a Gaussian

Process Prior that may be specified through the choice of covariance function C.

Furthermore, as well as making the task of defining priors easier, the subsequent steps

required to complete the inference and obtain predictions also become easier to

implement. Previously, the presence of intractable integrals made the evaluation of

different components (particularly the marginal likelihood) of the Bayesian framework

difficult to achieve without the use of iterative methods. Through the use of the Gaussian

process, these integrals become tractable and can therefore be treated analytically.

3.7) Regression with Gaussian Processes

The previous sections have provided an account of how we can use a Gaussian process to

represent our prior beliefs for Bayesian learning. By using a Gaussian process prior, we

can alleviate much of the difficulty of identifying suitable priors over the type of

functions and parameters if a more conventional parametric structure were to be

employed. Therefore, to employ a Gaussian process as our prior we must specify its

defining characteristics, namely the mean of the process, and a covariance matrix C that

reflects the correlations found in the training data set.

Chapter 3: Gaussian Process Models

 89

A common choice for GP models is to specify a zero-mean Gaussian process as our

prior. In reality, the choice of a zero-mean Gaussian process may not be particularly

representative of the underlying data, but this is not seen as a drastic limitation as our

posterior process is not confined to zero. For the specification of the covariance matrix

C, a suitable covariance function C(x, x’) must be applied to the training data. Various

choices of covariance functions are possible (see Section 4.3), and the most appropriate

candidate must be selected on the basis of prior knowledge. As a result, the choice of

covariance function is fundamental to the GP modelling approach as it dictates how the

data is to be transformed into a matrix that reflects their correlations.

After selecting an appropriate covariance function, the parameters θ of this function

(known as hyperparameters due to the similar role played by the upper-level parameters

of neural network approaches) must be identified from the training data in order to

optimise this covariance function. This process is to be discussed in the next chapter, but

for the moment we can assume that an optimised covariance function has been identified

and that our Gaussian process prior has been specified. At this point, we wish to discuss

how predictions can be made using this Gaussian process prior.

3.7.1) Making Predictions

To initiate Bayesian learning, after defining the prior of our Bayesian model, the next

stage is to infer the posterior and ultimately make predictions given a new input xN+1.

However, due to the nature of our prior, instead of following the procedure of the

Bayesian approach outlined previously, we can also bypass some of these steps. In the

Bayesian framework outlined, the inference of a posterior distribution with which to

make predictions relied upon the application of Bayes’ theorem. However due to the

nature of our prior we have in effect explicitly stated the probability of the data (i.e the

marginal likelihood) in one step. Therefore, we can obtain the predictive distribution of

tN+1 from the straightforward application of conditional probability instead of applying

Bayes theorem. As a result, it could be said that the GP modelling approach is not truly

Bayesian due to the absence of Bayes’ theorem. In fact, the prior placed upon the space

of functions comes from the very probabilistic nature of the model (a Gaussian process

being a random function) instead through the explicit use of Bayes’ formula.

Chapter 3: Gaussian Process Models

 90

Restating the regression problem, we are given a set of N training data points

(,)N NX tD = , composed of inputs x that are vectors of some fixed input dimension (i.e.

multiple inputs), and their corresponding scalar outputs or target values t (single output):

 Inputs: 1 2[, , ,]N N=X x x x… (3.28)

 Targets: 1 2[(), (), , ()]N Nt t t=t x x x… (3.29)

The regression task at hand is to predict a new output or target tN+1, given the new input

xN+1. However, due to the probabilistic nature of the GP modelling approach, the

regression process will involve the computation of a posterior probability distribution

over tN+1, and subsequent determination of a singular prediction estimate 1N̂t + based upon

the mean of this distribution.

Utilising the GP modelling approach, we are to specify a Gaussian process prior

distribution over the space of functions. As discussed previously, the GP prior is a

collection of random variables that are assumed to have a joint multivariate Gaussian

distribution, thus allowing it to be fully specified by its mean µ and covariance matrix C.

As the Gaussian process is a collection of random variables, we can explicitly state the

probability of the target data as the joint distribution

1

(| ,) (| (, ;),{ })
n

N i m n n
i

P P t C
=

= ∏t C X x x θ x (3.30)

The probability of the target data is conditional on the covariance matrix and input data,

(| ,)NP t C X . This joint distribution can then be rewritten as

1 1

(| ,) exp () ()
2

T
NP

Z
µ µ = − − − 

 

-1t C X t C t (3.31)

where C is the covariance matrix defined by the parameterised covariance function

(, ;)m nC x x θ applied to the input data, µ is the mean of the process, and Z is a

normalising constant. Furthermore, we can realise the prior belief regarding the Gaussian

process having zero-mean, µN = 0, allowing us to rewrite the Gaussian process prior as

Chapter 3: Gaussian Process Models

 91

 11 1
(| ,) exp ()

2
T

N N N N N N
N

P
Z

− = − 
 

t C X t C t (3.32)

The regression task is now to infer the prediction tN+1, using this Gaussian process prior

and a new input observation xN+1. Therefore the predictive distribution we desire can be

interpreted as a conditional probability distribution over tN+1, written as

1 1(t | , ,)N N NP + +C xD , where (,)N NX tD = .

If we briefly adopt a more concise notational form, (where our prior (| ,)N N NP t C X is

denoted as P(tN), and the desired posterior 1 1(t | , ,)N N NP + +C xD is denoted P(tN+1)) we

can interpret this conditional probability as

 1
1

(,)
(|)

()
N N

N N
N

P t
P t

P
+

+ = t
t

t
 (3.33)

Therefore we must find the joint probability P(tN+1,tN) of the new input and the existing

prior probability. Reverting back to the previous notation, we can restate this conditional

probability as

 1 1
1 1

(| , ,)
(t | , ,)

(| ,)
N N N N

N N N
N N N

P
P

P
+ +

+ + = t C X x
C x

t C X
D (3.34)

where the conditional probability 1 1(| , ,)N N N NP + +t C X x in the numerator of this

expression is equivalent to the joint distribution P(tN+1,tN). Therefore, before finding the

conditional distribution 1 1(| , ,)N N NP + +t C xD , we must first define the joint distribution

1 1(| , ,)N N N NP + +t C X x . This can be done by treating the new input observation as a

continuation of our Gaussian process, where we can apply the covariance function to the

new observation and therefore update the covariance matrix from CN to CN+1, giving the

joint distribution:

 1
1 1 1 1 1

1

1 1
(| , ,) exp ()

2
T

N N N N N N N
N

P
Z

−
+ + + + +

+

 = − 
 

t C X x t C t (3.35)

Chapter 3: Gaussian Process Models

 92

At this stage we can introduce the mechanics of how the covariance matrix CN+1, is to be

updated through the introduction of a new input. From the training set XN, the covariance

matrix CN was determined. For predictions, a new covariance matrix (incorporating the

new input data) CN+1 of size (N+1) × (N+1) is obtained from

[] []

[]1

N

N T κ+

 
=  

    

C k
C

k
 (3.36)

Where the sub-matrix () ()1, N+1 N, N+1 C ; , ,C ; =  k x x θ x x θ… is the vector of covariances

between the new test point and existing training cases, and ()N 1, N+1 C ;κ += x x θ is the

variance of the individual test case.

Returning to the task of obtaining the conditional probability 1 1(| , ,)N N NP + +t C xD ,

remembering the relationship that
1

1 2

2

x
x x

x

e
e

e
−= , we can write

1 1
1 1 1 1 1

1

1 1 1
(| , ,) . exp () ()

1 2 2
T TN

N N N N N N N N N
N

Z
P

Z
− −

+ + + + +
+

      = − − −      
     

t C x t C t t C tD (3.37)

1 1
1 1 1 1 1

1

1
(| , ,) exp ()

2
T TN

N N N N N N N N N
N

Z
P

Z
− −

+ + + + +
+

 = − − 
 

t C x t C t t C tD (3.38)

At this point we can see that in order to compute this posterior distribution to find the

probability of the new target tN+1, we would need to already have observed tN+1, i.e. the

very quantity which we are hoping to predict. Thankfully, through the use of some

mathematical substitution made possible by using partitioned inverse equations, see

Bartnett (1979), we can move forward. These partitioned inverse equations allow the

specification of 1
1N

−
+C in terms of NC and 1

N
−C , and thereby allow us to effectively

implement a model where the number of basis functions may be much larger than the

number of observed data points N. This can be seen to be a computational saving (the

matrix inversion is N×N, rather than (N+1) × (N+1)) as we can in effect fix the

computational demand to that of O(N 3).

Chapter 3: Gaussian Process Models

 93

The precise details of this mathematical manipulation and the derivation of the GP

predictive equations have been omitted here for the sake of thesis brevity, but may be

found in Appendix B. Utilising these expressions we can specify the posterior probability

of in terms of CN and k, thereby allowing computation. The result of this process is that

we can define the posterior distribution in a readily interpretable Gaussian form:

1

1 1
1 1 2

ˆ

ˆ()1
(| , ,) exp

2
N

N N
N N N

t

t t
P t x

Z σ
+

+ +
+ +

 −= − 
 
 

CD (3.39)

where the mean and variance are defined as:

 1
1 1

ˆ T
N N N Nt −

+ += k C t (3.40)

 2 1
1 1 1

T
N N N Nσ κ −

+ + += − k C k (3.41)

Therefore, we have arrived at the point where a prediction of the output 1N̂t + has been

obtained, together with the uncertainty over that prediction that may be interpreted using

error bars.

In the next section a more visual interpretation of the GP modelling approach is

provided, however it is worth pointing that an alternative ‘weight-space’ mathematical

interpretation of the GP framework has also been developed, see Rasmussen and

Williams (2006). In this chapter the ‘function-space’ interpretation of the GP method has

been presented. Through the weight-space-view, the GP modelling approach can be seen

to be equivalent to the Bayesian linear regression. As the two interpretations can be seen

to result in the same predictive framework, the function-space viewpoint has been

preferred solely due to being more intuitive in my experience.

Chapter 3: Gaussian Process Models

 94

3.8) Demonstration of Gaussian Process Modelling

To provide a better understanding of the GP modelling approach, a simple one-

dimensional regression problem is considered, with input x and output f(x). This example

is aimed at providing a more visual interpretation of the method.

3.8.1) Defining a Gaussian Process Prior

The first step in any application of Bayesian inference is to define a Prior distribution

over the kinds of function we expect to observe before any data is presented. For a

Gaussian Process model, we employ a Gaussian Process to define our Prior to represent

our prior beliefs over the underlying function. For this example, a zero mean Gaussian

process with a point-wise variance N(0,1) has been taken as our Prior. In Figure (3.2), we

can see the assumed space where we believe the function is to exist on a chart of the

output y (= f(x)) versus input x.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

Input, x

y

Figure (3.2): Prior Distribution over functions with 5 sample functions

A number of sample functions from the Gaussian Process have also been drawn onto

Figure (3.2) to show a number of functions that could possibly be close to what we are

searching for. Note that these sample functions are just possibilities drawn at random,

Chapter 3: Gaussian Process Models

 95

and do not involve prior knowledge or represent particularly likely candidates that are to

be corrected in the next step. These sample functions merely provide a visualisation as to

the variety of possible functions that exist over our function space. The dotted lines at y =

-2, 0, and +2, can be seen to represent the Prior where the average value of the sample

functions at each x is zero (at this point in the process we have no data to assume

otherwise), together with 2 times the point-wise variance (i.e. 2σ = +/- 2) that we have

used as an indicator as to the variability of the sample functions. Furthermore the

Gaussian process used has specified a prior variance that is independent of the input x.

In Figure (3.2), the sample functions are drawn at random from the Prior distribution

over functions. A further assumption has been introduced that implies that the underlying

function will vary in a smooth manner. The samples shown in Figure (3.2) are all

characteristically similar in that they have been drawn from a Gaussian process defined

from the same Covariance function with identical hyperparameters. A random element

has been introduced to show a few different possible functions based on the same

Covariance function and hyperparameters. More information on different covariance

functions and the influence of their hyperparameters is to follow in the next section.

Again, these are sample functions drawn from the Prior distribution over functions for

the purposes of visualisation, not the Prior itself. Normally, we are not interested in

generating random samples from the prior, but in generating a posterior and then making

predictions.

3.8.2) Compute Posterior

Following the template for Bayesian inference, the next stage is to compute the Posterior

distribution. In order to make this happen, we must have some observed data to combine

with our Prior distribution over functions. Therefore consider that we are now given a

small dataset comprised of 4 pairs of input-output data D = {(x1,y1), …, (x4,y4)}, as

shown in Figure (3.3).

Chapter 3: Gaussian Process Models

 96

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Input, x

y

Figure (3.3): Observed Data (4 data points)

Visually, the idea is to move from our Prior space over every possible function, to now

considering functions that pass through or close to the observed data. We are not

‘correcting’ the previous sample functions of Figure (3.2), but identifying new functions

from our function space that are consistent with the observed data.

In Figure (3.3) the observed dataset is displayed as point values, and in Figure (3.4) the

Posterior distribution over functions is displayed. In Figure (3.4), a number of possible

functions (in dashed lines) consistent with the observed data are displayed, together with

the predicted mean of the posterior distribution (solid line) that is normally taken as the

overall prediction estimate of the GP model. Figure (3.4) also displays error bars

showing twice the standard deviation (2σ) that provide an estimate as to the uncertainty

of the predicted mean relative to the input x. From these error bars we can see that the

variance of the prediction is markedly reduced close to the observed values, indicating

that we are more certain in these regions and therefore more confident in our model’s

accuracy.

Chapter 3: Gaussian Process Models

 97

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

Input, x

y

Figure (3.4): Posterior Distribution with 4 sample functions (dashed lines) and

Predicted Mean (solid line) & 2σ Errorbars

If the size of observed dataset is increased, as in Figure (3.5), we can see the mean of the

posterior is further adjusted to remain consistent with the data, together with a further

decrease in variance close to the observed values. Due to the increase in the number of

data points, we have more evidence with which to analyse the correlations between the

different data points. As a result, we can be more certain of our model’s accuracy over a

greater range of the input space. Furthermore, the regions where data is sparser become

ever more pronounced through the analysis of the uncertainty/errorbars that is made

readily possible in the GP modelling approach.

Chapter 3: Gaussian Process Models

 98

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Input, x

y

Figure (3.5): Posterior Distribution (20 data points) with Predicted Mean (solid line)

& 2σ Errorbars

Note that in this demonstrative example, the choice of covariance function or

hyperparameters has not been discussed. A reasonable fit to the underlying function was

achieved primarily because the observed data points were random points that were

themselves generated from a Gaussian process of closely matching hyperparameters. For

the identification of unknown functions, a suitable covariance function composed of

identified hyperparameters must be determined from the available training data. The

details of this identification process are to be discussed in the next chapter.

Chapter 4: Implementation of GP Models

 99

4) Implementation of GP models

In the previous chapter the theoretical background to the GP modelling approach was

discussed together with the mathematical framework necessary to facilitate nonlinear

regression. In this chapter, we are to look more closely at the details of exactly how the

GP method is to be implemented. Of fundamental importance to the GP modelling

approach is the specification of a covariance function that allows us to represent

successfully the correlations between different training data observations. Furthermore,

in order to provide accurate predictions of system behaviour, the parameters of this

covariance function must be optimised using the available observations. In practice, both

of these objectives are subject to mathematical and computational difficulties relating to

the size and conditioning of the covariance matrix. Methods aimed at tackling these

implementation difficulties are then discussed in detail.

4.1) Role of the Covariance Function

As a Gaussian Process prior is specified by its mean and covariance matrix, the

covariance function used to generate this covariance matrix will therefore play a

fundamental role in the GP modelling approach. Consequently, the covariance function

must be chosen to reflect our prior assumptions about the function or system we wish to

identify, and ultimately instil these assumptions into the covariance matrix. Through the

selection of the covariance function, we are attempting to fix the properties of the

functions that are to be considered for inference. As a result, this stage of selecting a

covariance function is somewhat analogous to the selection of a parametric model

structure. For an example, referring back to the previous demonstrative example, where

the sample functions in Figure (3.2) are all smooth and stationary (informally, stationary

means that the functions will look similar at all x locations). These are properties that are

defined by the chosen covariance function of the GP; other covariance functions that

exhibit other properties are possible.

Typically, a covariance function will be constructed out of a number of ‘free’ parameters

θ that may be used to adjust the properties of the Gaussian process prior. The parameters

of the covariance function are more often referred to as hyperparameters due to the

Chapter 4: Implementation of GP Models

 100

similar role they play to that of the upper-level parameters of neural network structures.

Therefore, the problem of supervised learning in GP models can be seen to be to the

problem of identifying suitable hyperparameters for the covariance function. The

hyperparameters of the covariance function θ must therefore be identified from the

observed training data. This learning process is examined in the next section, but before

hyperparameters can be determined a suitable covariance function must first be selected.

Furthermore, before discussing the nature of various covariance functions it is first

worthwhile underlining a number of assumptions inherent in the underlying regression

problem:

• As the covariance function is directly applied to the training data, in order for the

resultant covariance matrix to reflect the nature of the correlations between inputs

and outputs of the underlying function, the training data collected must therefore

adequately reflect the characteristics of the underlying function. This is of course

common sense, but the GP approach presents particular mathematical

requirements that may cause difficulties in adhering to this principle.

• For most nonlinear regression problems, and especially those found in the

identification of real systems, the observed data used for training is likely to have

been corrupted by noise. As a result, a noise model would be an appropriate

feature to incorporate into our chosen covariance function.

• An important assumption made in most supervised learning problems is that

similar inputs should result in similar outputs. This assumption further manifests

itself as an expectation that two data points close together in input space are likely

to have a greater correlation than two points that are distant. Furthermore, as we

assume that similar inputs are likely to result in similar target values, we can

assume that training points (input and output pairs) near to a test point (input)

should be informative about the desired prediction (output). Therefore this

concept of nearness or similarity is something that all regression methods are

founded upon. In the context of GP models, it is the covariance function that is to

define the nearness or similarity of the individual data points.

Chapter 4: Implementation of GP Models

 101

Taking this final assumption concerning the nearness or similarity of individual data

points, it is now useful to reiterate this concept in terms of covariance. Remember that

the covariance measures the similarity between two random variables, where a high

covariance is representative of two random variables that are closely related, and a low

covariance is representative of those that are weakly related. Furthermore, leaving aside

the mathematics used to define different covariance functions and the GP model as a

whole, it is worthwhile first attempting provide a more descriptive interpretation of how

the covariance function is to define the characteristics of the functions that are to be

considered.

From a purely mechanical point of view, in order to identify our model we have a set of

training cases of input and output data, but for prediction we will only have an input.

Therefore, we must build our GP model so that given an input we can generate an

appropriate output. The result of this is that we are not interested in the covariance

between inputs and outputs, nor are we expressly concerned with the covariance between

different inputs. Instead we are interested in relating the covariance between the inputs to

that of the outputs, and this is achieved through the covariance function C. As a result,

the covariance between the outputs or targets can be written as a function of the inputs.

cov((), ()) (,)m n m nf f C=x x x x (4.1)

Under our initial assumption, two data points that are close together in input space are to

be informative about each other’s respective targets, thus reflected in a high covariance.

Similarly, for two distant points thought to be uninformative, the covariance is to be low.

Note that this initial assumption may not necessarily be the case for all problems (e.g.

periodic functions where relationships between relatively distant datapoints must be

considered). Nevertheless, we can more closely define the role of the covariance function

to be that of a model of how the covariance is to change as the distance between different

inputs changes.

To demonstrate this visually we can display the relationship between the covariance k

and the distance between inputs, 'r = −x x , for two different covariance functions as in

Figure 4.1(a). For both these covariance functions, the covariance approaches unity

Chapter 4: Implementation of GP Models

 102

between variables whose corresponding inputs are very close, and decreases as the input

distance is increased. However, for the dashed-line example, the rate of decay in the

covariance as the input distance is increased is much slower than that of solid-line

example. Note that both of these covariance functions are in fact of the same squared-

exponential form, see Section (4.3.1.1), but with different hyperparameters.

In combination with an assumed a zero-mean, the two defined covariance functions of

Figure 4.1(a) can be thought to have each defined a Gaussian process prior. Therefore,

we can gain a further understanding of the role played by the covariance function through

drawing sample functions from each Gaussian process prior. In Figure 4.1(b) two sample

functions have been drawn from the GP priors of the dashed and solid-line covariance

functions of Figure 4.1(a). Immediately we can see that the more rapidly decaying

covariance function of the solid line example results in a sample function that varies far

more rapidly, thus resulting in a less smooth process.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Distance, r

k

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Input, x

y

 (a) (b)

Figure (4.1): Chart (a) shows two different covariance functions where the

covariance k varies against the input distance r. Chart (b) shows random functions

drawn from the Gaussian process with the same covariance functions as Chart (a).

Relating the smoothness characteristics of the samples shown in Figure 4.1(b) to the

covariance functions displayed in Figure 4.1(a), we can understand that for the

covariance function that decays more rapidly as the distance in input space is increased,

the degree of similarity between nearby inputs is to reduce more quickly. As a result, the

random sample function generated from the prior will have the capacity (remember that

we are specifying a space over functions rather than an actual function) to vary more

Chapter 4: Implementation of GP Models

 103

quickly, as each generated point of the sample function will have a weaker relationship to

those points immediately preceding them. This relationship between the distance

between inputs and the potential for the sample function to vary more rapidly (or become

more ‘wiggly’) can be understood as the characteristic length scale of the process, and

is one of the possible properties of the GP prior that we can control through the

hyperparameters of a chosen covariance function.

Returning to our system identification remit, we have seen that through the manipulation

of the covariance function, the length-scale property of the resultant functions can be

modified. As a result, for an underlying system that is known to vary in a smooth

manner, the covariance function and accompanying hyperparameters can be chosen to

reflect this prior knowledge through manipulation of the length-scale property of the

Gaussian process prior. Similarly, for systems that are known to vary in a less smooth or

more abrupt manner, the covariance function and its hyperparameters can be altered to

reflect this prior knowledge. Overall, in this simple example (where we have restricted

the discussion to the length-scale property) we can see how the properties of our

Gaussian process prior can be fixed through the choice of covariance function and its

hyperparameters to suit the identification task at hand.

4.2) Choice of Covariance Functions

In order to identify a GP model, a suitable covariance function that reflects our prior

knowledge of the underlying system must be selected. Furthermore, the process of

selecting or defining a suitable covariance function can also be seen to be the process of

constructing a valid Gaussian (stochastic) process. As a result, any arbitrary function

cannot be chosen for use as a covariance function as the construction of stochastic

processes places particular demands on the nature of this function.

4.2.1) Validity of Covariance Functions

In the selection of an appropriate covariance function, an important constraint exists over

the validity of any possible function. This constraint states that the covariance function

must generate a positive semi-definite (or non-negative definite) covariance matrix.

Chapter 4: Implementation of GP Models

 104

Therefore, any arbitrary function of input pairs x and x’ will not in general be a valid

covariance function. To more accurately define what is meant by a positive semi-definite

matrix, consider a set of input points xn. We can apply our chosen covariance function, or

more generally a ‘kernel’ to this data to generate the matrix K = k(x,x’). The matrix

generated from the application of a kernel is known as the Gram matrix, where if k is a

valid covariance function the matrix K can be termed a covariance matrix. Whilst a Gram

matrix generated from a kernel function need not be positive semi-definite, a covariance

matrix must adhere to this constraint.

Mathematically, a real n n× matrix K is said to be positive semi-definite (PSD) if it

satisfies the condition () 0Q = ≥Tv v Kv for all vectors where n∈v ℝ , and Q is a

quadratic form. This can possibly be better understood by stating that for a PSD matrix,

the eigenvalues of the matrix must be non-negative. The positive definiteness of a matrix

can also be described in terms of the sign of the determinant of the matrix. As the

determinant is a scalar function of the matrix, where matrices are symmetric (as is the

case for covariance matrices), the positive definiteness of the matrix will only remain if

the matrix and every principal submatrix (formed by removing row-column pairs) have a

positive determinant. A matrix that does not meet this condition is not positive definite.

4.2.1.1) Why does Positive-Definiteness matter?

The mathematical descriptions of positive definiteness do not provide any great deal of

information as to why this constraint exists upon the choice of covariance function.

Therefore, perhaps further comment on the reasoning behind this constraint would be

worthwhile, as it offers further insight into how the GP modelling approach actually

works.

Fundamentally, the requirement for positive semi-definiteness originates from the

mathematics employed in the construction of stochastic processes. Remember that we are

attempting to construct a stochastic (Gaussian) process with which to apply Bayesian

inference. In general, the properties of a stochastic process or random field may be

described by a set of finite-dimensional distributions. For a Gaussian process or Gaussian

random field, these finite-dimensional distributions are multivariate normal distributions.

This property allows them to be specified by a mean and covariance as described in the

Chapter 4: Implementation of GP Models

 105

previous chapter. For the specification of non-Gaussian random fields, the definition of

finite-dimensional distributions is not as straightforward, hence the appeal of Gaussian

processes.

These finite-dimensional distributions
1, , k

Ft t… can therefore be defined at any available

training data points or coordinates 1{ , , }kt t… , and then utilised to construct our

stochastic (Gaussian) process. Note that these finite-dimensional distributions are

cumulative distributions,
1 1, , 1 1(, ,) P{ , , }

k k k kF x x X x X x= ≤ ≤t t t t…
… … , and must therefore

be right-continuous and non-decreasing. From this system of finite-dimensional

distributions, a valid random field or stochastic process is said to exist if certain

symmetric and compatibility conditions are met. This is known as Kolmogorov’s

Existence theorem (also known as Kolmogorov’s Extension). Taken together, the

conditions concerning symmetry and compatibility can be regarded as requirements for

consistency over the finite-dimensional distributions. Therefore, the question is how do

we ensure this consistency over the finite-dimensional distribution and therefore create a

valid stochastic process. This is where the constraint for positive-definiteness comes into

it:- a positive-definite covariance function will ensure a positive-definite covariance

matrix, which in turn safeguards the existence of a valid Gaussian process.

4.2.2) Types of Covariance Function

In this chapter we are focusing on describing the properties of a number of existing

covariance functions. Therefore, a full and precise account of the methodology involved

in the construction of stochastic processes, and how covariance functions can be derived

has not been included. This is a complicated area of probability/statistics that more

detailed resources on this particular subject are better placed to cover. Therefore, I refer

to the texts by Adler (1981), Billingsey (1986), Doob (1953), and Papoulis (1991).

Fortunately a number of valid covariance functions have been already defined in the

existing literature and identified as being particularly suitable for use in the GP

modelling approach. In particular, reviews of different covariance functions can be found

in Abrahamsen (1997), Stein (1999), Mackay (1998b), and Rasmussen and Williams

(2006). These references also include detailed information as to how various covariance

Chapter 4: Implementation of GP Models

 106

functions can be derived. In the forthcoming sections, a number of these different

covariance functions are to be discussed.

4.2.2.1) Stationary & Non-stationary Covariance Functions

In describing the properties of different covariance functions the most important

distinction is whether or not the function may be described as stationary or non-

stationary. Stationary covariance functions can be seen to be functions of '−x x and are

therefore said to be invariant to translations in the input space. Loosely, this means that

sample functions drawn from a stationary GP prior will look or behave similarly at all x

locations (i.e. the process does not depend on the location of the observer). For non-

stationary covariance functions, this is not the case and sample functions may vary wildly

in terms of variable smoothness over the input space. Furthermore, if a covariance

function is a function of '−x x then it may be described as isotropic and therefore

invariant to all rigid motions. Therefore, for stationary isotropic covariance functions, the

quantity r introduced as the ‘input distance’ at the start of this chapter can be more

specifically defined as the Euclidean distance, 'r = −x x .

At this point a possible parallel between stationary and non-stationary covariance

functions and static and dynamic systems may become apparent. For dynamic systems

where the output response is to vary significantly over the defined input space, it might

be thought that a non-stationary covariance function would seem most appropriate.

Nevertheless, stationary covariance functions are more commonly used for

implementation and interpretability reasons. Furthermore, existing research has

demonstrated that excellent models of dynamic systems may be identified using

stationary GPs. However, one issue to consider arises if a stationary covariance function

is adopted for a case in which the underlying system is prone to change its behaviour

during operation (e.g. some systems may heat-up or cool-down influencing the response).

As a result, in such a case the operating response of the system may not be seen to

behave consistently across the input range and a non-stationary covariance function

might be a better choice.

Chapter 4: Implementation of GP Models

 107

4.2.2.2) Smoothness Properties

A further consideration in the selection of a suitable covariance function is the resultant

smoothness properties of the defined Gaussian process prior. In the opening section of

this chapter, the role of the covariance function in influencing the characteristics of the

sample functions drawn from the resultant GP prior was introduced. In particular, it is the

smoothness characteristics of the resultant sample functions that can be seen to be a

fundamental differentiator between different covariance functions. In order to describe

the relative smoothness of functions, mathematicians often employ the terms ‘continuity’

and ‘differentiability’. In simple terms, if a function that approaches an infinite gradient

(i.e. vertical) it can be thought of as being discontinuous and non-differentiable at that

point. The occurrence of such sample function characteristics can therefore be seen to be

symptomatic of a rough or non-smooth Gaussian process.

Therefore, through the selection of a suitable covariance function we are endeavouring to

select the appropriate smoothness properties characterised by the relative

continuity/differentiability of the sample functions. However, relating the smoothness

properties of sample functions to a chosen covariance function is not mathematically

straightforward, and different properties known as the ‘mean-square’ (MS)

continuity/differentiability are normally employed. MS properties are more easily

derived and are directly related to the derivatives of the covariance function and moments

of spectral distribution. Unfortunately, these MS properties are less interpretable than the

sample function properties as we can more readily judge the nature of the sample

function continuity visually, as in Figure (4.1b).

The difference between sample function continuity/differentiability and their MS

counterparts is the level of continuity displayed. Sample function continuity is a much

stronger property than mean-square continuity, as discontinuities can be allowed under

the weaker MS properties. Therefore, in general, mean-square continuity does not imply

sample path continuity, and vice versa. However, for Gaussian random fields such as the

GP we are defining, mean-square continuity is a necessary and almost sufficient

condition for continuous sample paths. Furthermore, a random field can be seen to be

continuous in mean square at *x , if and only if its covariance function (, ')k x x is

continuous at the point ' *x = x = x . For stationary covariance functions this can be

Chapter 4: Implementation of GP Models

 108

reduced to checking continuity at k(0), where 0 signifies a vector of all zeros. As a result,

it is the properties of the kernel around 0 that determine the smoothness properties of a

stationary process. For a more in-depth discussion of the geometrical properties of

stochastic processes, see Adler (1981), Stein (1999) and Abrahamsen (1997). The thesis

by Paciorek (2003) also contains useful information with specific regard to smoothness

properties in terms of sample function continuity rather than mean-square continuity

4.3) Examples of Covariance Functions

General Form of Covariance Function

In the application of the GP modelling approach to practical system identification

problems, a degree of noise is likely to be present on the empirical data. Therefore, only

noisy function values are typically available, i.e. ()y f ε= +x . If the assumption that this

noise is additive independent identically distributed Gaussian noise ε with variance 2
nσ , a

general form for the covariance function can be stated as

 2(, ;)mn m n n mnC σ δ= +x xC θ (4.2)

where δmn is a Kronecker delta which is one if and only if m n= and zero otherwise. Due

to this independent noise assumption, in comparison to a noise-free implementation, a

diagonal matrix is added (i.e. K(x,x) + 2nσ I). Other noise models where independence

from the input is not assumed are also possible.

4.3.1) Stationary Covariance Functions

In Table (4.1) a number of stationary non-degenerate covariance functions have been

given. Note that instead of displaying the general form (covariance function C with or

without noise), we are to concentrate on discussing the properties of the different kernels

k. Furthermore, the variable 'r = −x x is the input distance measure, and ℓ is the

characteristic length-scale hyperparameter. The properties of these covariance functions

are now to be discussed below.

Chapter 4: Implementation of GP Models

 109

Covariance Function Expression

Squared Exponential

2

2
() exp

2SE

r
k r

 
= − 

 ℓ

Matérn

12 2 2
() ()

()Matern

r r
k r K

νν

ν
ν ν

ν

−  
=   Γ  ℓ ℓ

Exponential
() exp

r
k r

 = − 
 ℓ

γ-Exponential
() exp

r
k r

γ  = −     ℓ

Rational Quadratic

2

2
() 1

2RQ

r
k r

α

α

−
 

= + 
 ℓ

Table (4.1): Table of stationary covariance functions

4.3.1.1) Squared Exponential Covariance Function

The most widely adopted choice of covariance function found in the GP literature is the

squared exponential shown in Table (4.1). This function generates a Gaussian

distribution shape and can be seen to be equivalent to the radial basis functions used in

other modelling approaches. The squared exponential covariance function is infinitely

differentiable and therefore has mean-square derivatives of all orders. As a result, a GP

defined by this covariance function will be very smooth in terms of the sample functions

drawn from it. The squared exponential covariance function is often implemented in an

anisotropic form where each input dimension (D) can be assigned a different

hyperparameter { }dℓ to control the characteristic length-scale. This form of the squared

exponential covariance function may be written as

2

1 22
1

(')1
(, ';) exp

2

D
d d

d d

x x
C θ θ

=

 −= − + 
 

∑x x θ
ℓ

 (4.3)

where xd is the dth component of x, a D-dimensional vector, and hyperparameters θ = (θ1,

θ2, { }dℓ). As this is the most popular covariance function, it is worth discussing in more

Chapter 4: Implementation of GP Models

 110

depth the role of these different hyperparameters. The θ1 hyperparameter can be seen to

define the vertical scale of the possible variations of the defined function, the θ2,

hyperparameter can be seen to be a bias term that allows the whole function to be offset

from zero by some unknown amount. As mentioned above, a separate length-scale

hyperparameter { }dℓ has been defined for each input dimension, and can be thought of

as determining the distance in that particular direction over which the output y is

expected to vary significantly. Therefore, if a particular input is to be given a very large

length-scale hyperparameter, this input can be thought of as being irrelevant (or at least

non-contributory) to the output y, as the output is expected to be a constant function of

this input.

At this point it is pertinent to introduce a feature of the GP modelling approach known as

Automatic Relevance Detection (ARD). This feature was first introduced in Mackay

(1994) and Neal (1996) in the context of Bayesian neural network implementations. The

ARD facility utilises the anisotropic format of the squared exponential covariance

function (or indeed any stationary isotropic covariance function) to assess the relative

importance of contributions made by each input through the comparison of their length-

scale hyperparameters. Therefore, during the optimisation of the GP model (to be

discussed in section (4.2)) where the hyperparameters of the chosen covariance function

are to be identified, we can also employ the ARD facility to help optimise the structure of

the model. As a result, the ARD feature can be seen to be of particular value for system

identification purposes where there is a lack of prior knowledge regarding the nature of

suitable inputs. This is one of the attractive features of the GP modelling approach, as

due to the probabilistic optimisation we can develop a greater understanding of how

different inputs can influence the model. On a practical level we can see that this facility

can be utilised to tune the overall model structure employed, where unimportant inputs

can be eliminated from the model structure and thereby improve computational

efficiency and ultimately model interpretability.

The squared exponential function embodies the property that points that are close

together in input space are strongly correlated and hence give rise to similar values of

target t. The strong smoothness properties can be demonstrated by drawing some sample

functions from the defined GP prior. In Figure (4.2a) a number of different squared

exponential covariance functions have been defined using different hyperparameter

Chapter 4: Implementation of GP Models

 111

values, and the impact on the sample functions drawn from the prior can be seen in

Figure (4.2b).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Distance, r

k

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Input, x

y

 (a) (b)

Figure (4.2): Chart (a) shows three different Squared Exponential covariance

functions where the covariance k varies against the input distance r. The Chart (b)

shows random functions drawn from the Gaussian process with the same

covariance functions as Chart (a).

As expected, through increasing the size of the length-scale hyperparameter ℓ

(comparing the solid line versus the dotted line) we can see that the sample functions

have a tendency to vary much more slowly. Furthermore, through reducing the size of the

θ1 hyperparameter we can be seen to restrict the vertical scale of the variations of the

sample functions (comparing dashed line versus solid and dotted lines). Overall, the use

of the squared exponential covariance function implies an assumption that the function to

be identified exhibits smooth and continuous behaviour with a high correlation between

outputs and inputs in close proximity.

4.3.1.2) Matérn Class of Covariance Functions

Whilst the squared exponential function can be seen to be the most widely adopted

covariance function, due to the infinitely differentiable nature of this function there is an

implicit assumption that the underlying function is to be smoothly varying. This is a

strong assumption that must be substantiated from prior knowledge of the system or from

empirical data. Therefore, a facility that allows a less stringent prior assumption over the

smoothness or differentiability of the underlying function can be seen to be an attractive

Chapter 4: Implementation of GP Models

 112

possibility. A control over the relative smoothness or differentiability of the GP prior

probability is a feature of the Matérn class of covariance functions, sees Table (4.1).

The Matérn class of covariance functions is given by the expression in Table (4.1) where

ν and ℓ are positive parameters, and Kν is a modified Bessel function. The parameter

ν can be seen to control the differentiability of the sample functions. As ν → ∞ the

Matérn form approaches the squared exponential (infinitely differentiable) covariance

function discussed above. In the text by Rasmussen and Williams (2006) the most

interesting cases for machine learning purposes are stated as 3 / 2ν = and 5 / 2ν = :

 3/2

3 3
() 1 exp

r r
k rν =

   
= + −      
   ℓ ℓ

 (4.4)

2

5/2 2

5 5 5
() 1 exp

3

r r r
k rν =

   
= + + −      
   ℓ ℓ ℓ

 (4.5)

In Figures (4.3) and (4.4), both of these covariance functions (for 3 / 2ν = and 5 / 2ν =)

are displayed with two different length-scale hyperparameters, together with sample

functions drawn from their respective priors. Again, the manipulation of the

characteristic length-scale hyperparameter can be seen to have a great effect on the

overall smoothness of the resultant sample functions. In comparison to the squared

exponential covariance function, the covariance can be made to decay much more rapidly

resulting in sample functions that can become significantly less smooth and therefore less

differentiable. Furthermore, as the ν hyperparameter is increased from 3 / 2ν = to

5 / 2ν = there is a slight reduction in the roughness of the sample functions. This is in

keeping with the earlier statement that as ν → ∞ the Matern form will become

equivalent to the squared exponential. In Rasmussen and Williams (2006) it is stated that

for cases where 7 / 2ν ≥ the processes will be difficult to distinguish from one another,

and indeed that of the squared exponential.

Chapter 4: Implementation of GP Models

 113

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Distance, r

k

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Input, x

y

 (a) (b)

Figure (4.3): Chart (a) shows two different Matérn (ν=3/2) covariance functions

where the covariance k varies against the input distance r for two different length-

scales. The Chart (b) shows random functions drawn from the Gaussian process

defined by the same covariance functions as Chart (a).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Distance, r

k

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Input, x

y

 (a) (b)

Figure (4.4): Chart (a) shows two different Matérn (ν=5/2) covariance functions

where the covariance k varies against the input distance r for two different length-

scales. The Chart (b) shows random functions drawn from the Gaussian process

defined by the same covariance functions as Chart (a).

Thus, it can be seen that through the use of the Matérn covariance function we can

express a lack of prior knowledge about the sample function differentiability. This

proposal for more control over the relative differentiability of the covariance functions is

supported in the text by Stein (1999), where the strong smoothness assumptions

embodied by the squared exponential covariance function are questioned from a practical

and asymptotic perspective.

Chapter 4: Implementation of GP Models

 114

4.3.1.3.) Exponential, γ-Exponential, and Rational-Quadratic

Covariance Functions

In the case where 1/ 2ν = , the Matérn form can be seen to be equivalent to the

exponential covariance function also given in Table (4.1). As a result, the sample

functions drawn from a process defined by the exponential function can be made to be

highly non-smooth and therefore non-differentiable. From the exponential class of

covariance functions the Ornstein-Uhlenbeck process used to model the velocity of a

particle in Brownian motion can also be defined. A further class of covariance functions

given in Table (41) is the γ-exponential. This class of function is equivalent to the

previously discussed Squared-exponential covariance function when γ=2, but is not MS

differentiable for 2γ < . As a result, Rasmussen and Williams (2006) state that this

family of covariance functions is less flexible than the Matérn class.

The Rational Quadratic (RQ) covariance function given in Table (4.1) is an interesting

covariance function as it can accommodate several characteristic length-scales. Due to

this property, the RQ covariance function can be interpreted as a scale mixture or infinite

sum of squared exponential covariance functions with different characteristic length-

scales. The RQ covariance function exhibits the same infinitely MS differentiable

properties of the squared exponential covariance function.

4.3.2) Non-stationary Covariance Functions

The most simple non-stationary covariance function discussed in Mackay (1998b) is the

one corresponding to a linear trend.

 2 2

1

(, ';{ , }) '
D

lin w c w d d c
d

k x xσ σ σ σ
=

= +∑x x (4.6)

This linear covariance function can also be generalised into Dot Product covariance

functions as discussed in Rasmussen and Williams (2006), where polynomial covariance

functions can then be defined:

Chapter 4: Implementation of GP Models

 115

1

(, ') (') '
pD

d d
d

k x x
=

 = =  
 
∑x x x xi (4.7)

However, this polynomial is not thought to be particularly useful for regression

problems, as the prior variance will become very large with x as 1>x .

One of the inherent assumptions of the previously discussed stationary covariance

functions is that the length-scale is to be fixed in all directions. This is obviously not

going to be the case for all systems and a non-stationary covariance function with the

ability vary the length-scale as a function of x has been proposed in Gibbs (1997). This

spatially varying length-scale covariance function defines an arbitrary positive function

()d xℓ of the input:

1/2 2

2 2 2 2
11

2 () (') (')
(, ') exp

() (') () (')

D D
d d d d

dd d d d d

x x x x
k

x x x x==

   −= −   + +   
∑∏x x

ℓ ℓ

ℓ ℓ ℓ ℓ
 (4.8)

A further alternative non-stationary covariance function is the neural network

covariance function discussed in Williams (1998) and Rasmussen and Williams (2006),

but based on the Bayesian neural network research found in Neal (1996). In defining this

function, the input vector is augmented as 1(1, , ,)Tdx x=xɶ … , and the hidden layer

transfer function used is the error function () ()h z erf z= , rather than a more common

sigmoid neural network function such as tanh(z) as this is not found to be positive

definite,

 12 2
(, ') sin

(1 2)(1 2)

T

NN T T
k

π
−  Σ=  + Σ + Σ 

x x'
x x

x x x' x'

ɶ ɶ

ɶ ɶ ɶ ɶ
 (4.9)

This covariance function can also be of use in tackling problems where the length-scale

is to vary across the input space. In Rasmussen and Williams (2006) this function is

successfully applied to a static step data problem (i.e. slow varying steady-state followed

by a rapid input transition).

Chapter 4: Implementation of GP Models

 116

In the research of Paciorek and Schervish (2004) further non-stationary covariance

functions are proposed that are generalisations of Gibbs’ spatially varying covariance

function. Furthermore, a non-stationary version of the Matérn covariance function was

outlined, thus allowing control over sample function differentiability to be combined

with control over length-scale variance.

4.3.3) Combining Covariance Functions

Due to the properties of the Gaussian process it is possible to combine different

covariance functions in order to define new stationary and non-stationary covariance

functions. As a result, different aspects of the nonlinearity of the underlying function can

be treated by individual kernels and combined into a global covariance function. This

facility is discussed in both Mackay (1998b) and Rasmussen and Williams (2006).

Furthermore, an informative example is provided in Rasmussen and Williams (2006)

where a number of covariance functions are combined towards the identification of a

complex nonlinearity composed of a number of different contributing nonlinearities.

4.3.3.1) Sum of Covariance Functions

Fundamentally, a sum of kernels can be seen to be a kernel itself. If a random process

1 2() () ()f f f= +x x x where 1()f x and 2()f x are independent, then the kernels that

generate them can also be combined 1 2(, ') (, ') (, ')k k k= +x x x x x x and be considered a

valid covariance function. This construction can be seen to be particularly useful for

application in nonlinear problems where a number of different characteristic length-

scales can be observed, and therefore has similarities to the Rational Quadratic

covariance function.

4.3.3.2) Product of Covariance Functions

Similarly, a product of two kernels can be seen to be kernel. If 1(, ')k x x and 2(, ')k x x are

covariance functions on the same input space then they can be combined as

1 2(, ') (, ') (, ')k k k=x x x x x x . For covariance function over different spaces, 1(, ')k x x and

Chapter 4: Implementation of GP Models

 117

2(, ')k y y , a product space can be defined as (,)x y=z , and the covariance functions

1 1 2(, ') (, ') (, ')C k k= +z z x x y y and 2 1 2(, ') (, ') (, ')C k k=z z x x y y may then also be defined.

Further discussion of these possibilities can be found in Rasmussen and Williams (2006),

but from an overall perspective we can see that if faced with complex nonlinearities, the

possibility exists to break the problem down into constituent nonlinear contributions and

devote an individual covariance function to tackle each component. From this point an

additive model may be defined through utilising individual covariance functions as

building blocks for a more global representation. As a result, this feature of the GP

modelling approach can be seen to be particularly in keeping with the divide-and-

conquer approach that has been adopted in other methods of nonlinear system

identification.

4.3.3.3) Vertical Rescaling and Convolution

A straightforward method of transforming a given stationary covariance function into a

non-stationary version is to introduce another function a(x), giving

(, ') () (, ') (')C a k a≡x x x x x x . This method can also be used to normalise kernels.

Furthermore, Mackay (1998b) discusses the potential exists to convolve (or ‘blur’) an

existing covariance function to generate a new one, through integration with an arbitrary

kernel h, i.e. (, ') ' () (, ') (' ')C x x dy dy h x y k y y h y x= − −∫ .

4.3.3.4) Nonlinear Mapping (Warping)

A further alternative method of implementing a non-stationary solution is to employ an

arbitrary nonlinear mapping (also known as warping) of the input u(x) to handle the non-

stationary nonlinearity of the function in tandem with a stationary covariance function to

operate in u-space.

 (, ') ((, (')C k≡x x u x) u x) (4.10)

As the original input space x need not exhibit the same dimensionality as that of the new

u-space, we are free to use whatever input mapping is most conducive to identifying a

Chapter 4: Implementation of GP Models

 118

satisfactory model. This facility is demonstrated in Mackay (1998b) to define a periodic

random covariance function. Examples of this strategy can be found in the paper by

Sampson and Guttorp (1992), and in Gibbs (1997) where the nonlinear mapping strategy

is contrasted with the previously mentioned spatially varying length-scale covariance

function. A more in-depth analysis of ‘Warping’ can also be found in Snelson et al.

(2004) Snelson (2007). Furthermore, in Girard (2004) empirical data collected from a Ph

Neutralisation plant is first modelled using a linear model, with the subsequent residual is

then modelled by a stationary GP model defined with the squared exponential covariance

function. In this example, the strategy taken is not to actively ’warp’ the covariance

function to identify a new covariance function, but to modify the input space data in a

manner that allows the easier implementation of a subsequent GP model (i.e. to define a

set of latent input variables).

Through the use of this nonlinear mapping strategy, the potential exists for the GP

modelling approach in its most common form (i.e. a stationary GP defined using a

Squared Exponential) to be combined with other modelling strategies to form a hybrid

representation. Such a hybrid approach may be particularly useful for problems where an

existing but somewhat inaccurate model (such as an analytical model derived from first

principles) can be combined with the powerful data-driven approach of the GP model. As

a result, the overall interpretability of the original description may be somewhat retained

and then combined with the simplest and most interpretable form of the GP model acting

as a corrective device. This may be an attractive alternative to the use of more complex

non-stationary covariance functions, which may be less interpretable and more difficult

to train due to the potential for a greater number of hyperparameters.

4.4) GP Model Optimisation

Due to the probabilistic nature of the GP model, the popular model optimisation

approach where model parameters, and possibly also the model structure, are optimised

through the minimisation of a loss function defined in terms of model error (e.g. mean

square error), is not readily applicable. Furthermore, as GP modelling has also been

described as a Bayesian probabilistic method, a probabilistic approach to the optimisation

of the model would seem appropriate. Fortunately, we have already discussed the

Chapter 4: Implementation of GP Models

 119

framework for Bayesian learning in the previous chapter. Essentially, instead of

minimising model error, it is the probability of the model that is to be maximised.

Therefore, after the selection of an appropriate covariance function, it is the

hyperparameters of this function that must be optimised to accurately reflect the

correlations present in our observed training data set.

4.4.1) Optimising Hyperparameters

The overall problem of learning unknown parameters from data can be seen to

correspond to the first level of Bayesian inference discussed previously. The overall goal

of this first level of Bayesian inference was to obtain the predictive distribution

1 1(| , ,)N N N NP t t X x+ + of the new target tN+1 given the training data (t, X) and a new input

xN+1. In order to realise this posterior distribution, a prior distribution over the

hyperparameters can first be defined (| ,)N NP t Xθ , followed by the integration of the

model over the hyperparameters

 1 1 1 1(| , ,) (| , , ,) (| ,)N N N N N N N N N NP t t X x P t t X x P t X dθ θ θ+ + + += ∫ (4.11)

As discussed in the previous section on Bayesian modelling, the computation of such

integrals can prove difficult due to the intractable nature of the nonlinear functions. One

solution to the problem of intractable integrals is to adopt numerical integration methods

such as the Monte-Carlo approach. These numerical methods offer considerable

flexibility and accuracy of approximation. Unfortunately, significant computational

expense may be required in order to achieve a sufficiently accurate approximation. An

alternative approach based on the Maximum Likelihood optimisation method has also

been developed and is applied to maximise the marginal likelihood or evidence.

Therefore, by searching for hyperparameters that maximise the probability of the training

data, we are optimising the properties of the Gaussian process prior that is to be used to

generate new predictive distributions. Both of these methods are discussed below,

beginning with the Marginal Likelihood maximisation approach.

Chapter 4: Implementation of GP Models

 120

4.4.2) Marginal Likelihood (Evidence) Maximisation

This method of optimisation is based upon the application of Bayesian inference and is

commonly referred to as Marginal Likelihood or ‘Evidence’ maximisation, see Mackay

(1992c), Rasmussen (1996) and Gibbs (1997). This optimisation strategy dispenses with

the need for potentially time-consuming or computationally intensive MCMC methods of

numerical integration with the computational burden scaling linearly with the number of

hyperparameters. Instead, an approximation to the integral is made through the use of the

most probable values of hyperparameters θMP.

 1 1 1 1(| , ,) (| , , ,)N N N N N MP N N NP t P t+ + + +t X x θ t X x≃ (4.12)

The basis for the approximation is the assumption that the posterior distribution

(| ,)N NP t Xθ is sharply peaked around θMP relative to the variation in the predictive

distribution 1 1(| , , ,)N N N NP t t X x θ+ + . Therefore, this optimisation strategy relies upon the

identification of the most probable hyperparameters from the training data, signified by

the posterior distribution (| ,)N NP t Xθ . The inference of this posterior probability is

performed through the straightforward application of Bayes’ theorem:

 (| ,) (| ,) (N N N NP P P∝θ t X t X θ θ) (4.13)

where (| ,)N NP t X θ is the marginal likelihood or evidence (or probability of the data),

and ()P θ is a prior over the hyperparameters. Note that this posterior probability has

been expressed as proportionality, rather than as a function due to the omission of the

denominator that is independent of the hyperparameters.

Overall, this Bayesian method of determining the hyperparameters can be seen to offer

significant advantages over other model selection and optimisation methods utilised by

alternative modelling approaches. In particular, by performing optimisation through the

analysis of the marginal likelihood, the automatic implementation of Occam’s Razor

detailed in the previous chapter can be used to regulate complexity of the model and

thereby curtail overfitting.

Chapter 4: Implementation of GP Models

 121

4.4.2.1) Marginal Likelihood Loss Function

The marginal likelihood component (| ,)N NP t X θ of the previous proportionality has

been discussed in the previous chapter on Bayesian learning, and (assuming a zero-mean)

may be stated as:

 11 1
(| ,{ }) exp ()

2
T

N N n N N N
N

P x
Z

− = − 
 

t C t C t (4.14)

If we ignore the Prior over the hyperparameters P(θ) for the moment, we can restate the

marginal likelihood as a loss function that is to be maximised. The log of the marginal

likelihood is first taken for numerical scaling purposes (note that the negative log

transforms this into a minimisation), resulting in the loss function

 11 1
() log() log(2)

2 2 2N

T
N N N

N
L π−= − − −θ C t C t (4.15)

The three components of the log marginal likelihood function have interpretable roles as

described in Rasmussen and Williams (2006). The only component that includes the

observed target data is 11

2 N

T
N N

−− t C t and can be interpreted as a ‘data-fit’ term. The term

1
log()

2 N− C is dependent only on the choice of covariance function and the input data,

and may be interpreted as ‘complexity’ penalty. The final component log(2)
2

N π− acts a

normalisation constant. The discussion example in Rasmussen & Williams (2006) shows

that the ‘data-fit’ term can be seen to decrease monotonically as the length-scale

increases. This is what would be expected, as an increase in length-scale would be

symptomatic with a loss of flexibility in the model. By contrast, the negative

‘complexity’ term will be seen to increase with an increase in length-scale due to the

model becoming ever less complex.

Furthermore, the marginal likelihood itself will become more peaked as the number of

included training data points is increased. This is in agreement with what would be

Chapter 4: Implementation of GP Models

 122

expected, as with more available data a better insight into the underlying function will be

forthcoming, resulting in a more likely approximation. Relating the marginal likelihood

to the length-scale, for problems where few points are available, the slope of the log

marginal likelihood is shallow as both short and intermediate values of the length scale

can be considered as consistent with the data. If the length-scale increased to be larger

than 1, the marginal likelihood can be seen to decrease rapidly as the model no longer

provides a good approximation to the data. With larger amounts of data, the ‘complexity’

term of the loss function becomes more severe and therefore acts to discourage adoption

of length-scales that are too short, and therefore guards against overfitting.

4.4.2.2) Gradient Calculations

The next stage is to find the maximum/minimum of this loss function and therefore

locate the most probable hyperparameters. As we are endeavouring to locate the

maximum of the log marginal likelihood, this process is therefore equivalent to locating

the Maximum A-Posteriori (MAP) estimate of this distribution. Therefore, given the

nonlinear loss function L(θ), we can analytically express the partial derivatives of the log

marginal likelihood with respect to hyperparameters θ as follows:

 1 1 11 1
()

2 2
TN N

N N N N N

L
trace

θ θ θ
− − −∂ ∂∂ = − +

∂ ∂ ∂
C C

C t C C t (4.16)

In order to perform these gradient calculations, a nonlinear (local) optimisation algorithm

is required. Furthermore, it is important to note that the calculation of the derivative of

the likelihood again relies upon the efficient calculation of the inverse covariance matrix.

As stated previously, the inversion of large matrices is a computationally expensive

process of the order O(N3). Therefore, to ensure that a viable optimisation is achieved,

the size of the covariance matrix to be inverted (and therefore the size of the training set)

must not be unfeasibly large. Once the inversion has been computed, the remaining

components of the log likelihood and its derivatives are less computationally demanding

being of the order O(N2).

To perform the nonlinear optimisation, a conjugate gradients approach to the problem

has been successfully implemented to locate a local maximum of the log marginal

Chapter 4: Implementation of GP Models

 123

likelihood. In this thesis we follow the same implementation as Rasmussen (1996) where

a Polack-Ribiere version of the conjugate gradients methods is utilised in tandem with

the Wolfe-Powell stopping conditions. Further information on various different types of

conjugate gradients methods can be found in Fletcher (1987, 1993). Compared with

methods relying upon MCMC integration, this conjugate gradients approach can find a

reasonable approximation to a local maximum after relatively few function and gradient

evaluations.

4.4.2.3) Multiple Local Maxima

As with any nonlinear local optimisation based on the identification of local maxima, the

MAP estimation through the conjugate gradients method may be subject to problems

where the marginal likelihood is multi-modal. In such cases the algorithm may become

stuck in bad local maxima that ultimately results in a poor estimation of the most

probable hyperparameters. Fortunately, other researchers into the GP model, (Rasmussen

(1996), Gibbs (1997)) have found that for simple covariance functions, the scale of the

problem presented by multiple local maxima is not something that cannot be overcome if

a degree of care is taken over the optimisation procedure.

Furthermore, it is worth remembering that these alternative local maxima are merely

different interpretations of the data. Therefore, for applications where the training dataset

is relatively small, a large number of potential interpretations of the data (and therefore

local maxima) will be possible as relatively little information has been presented to the

optimisation procedure. However, given sufficient data, a more acute or obvious

interpretation of the data should begin to emerge, resulting in a local maximum that is

significantly larger than alternative modes. As a result, we can then dismiss other local

maxima (interpretable as alternative models) as being less likely. This can be seen to

relate back to the previous discussion regarding the automatic Occam’s Razor effect that

is inherent with optimisation through the marginal likelihood.

In addition, further links between the type of covariance function being optimised and the

propensity for encountering problematic multiple local maxima can be made. As more

complex covariance functions (consisting of more hyperparameters) are likely to offer

greater model flexibility, and therefore more possible interpretations of the training data,

Chapter 4: Implementation of GP Models

 124

the potential for more local maxima should increase. Therefore, this might lead to further

problems finding the ‘most probable’ hyperparameters using the marginal likelihood

maximisation technique. Thus, an alternative optimisation strategy, such as MCMC

methods detailed below, may be required for determining the hyperparameters of more

complex covariance functions.

Nevertheless, we can outline strategies aimed at minimising problematic multiple local

maxima. One possible strategy is to attempt multiple runs of the optimisation algorithm

utilising different initial values for the hyperparameters. As the algorithm is dependant

on the evaluation of the partial derivatives of the likelihood, unsuitable initial

hyperparameter values that result in very small derivative values may cause

computational difficulties. Therefore, different initial conditions could be either be

selected at random, or deterministically where we may purposely avoid initial points of

the training data (or regions of operating space) that have proven to be problematic.

Performing multiple runs of the optimisation procedure may also prove useful if more

than one set of training data is available. In cases where a number of viable alternative

sets of hyperparameters have been obtained, the final selection of hyperparameters can

then be performed through analysing the performance of each model through model

validation.

A further option for improving the optimisation procedure is make use of the Prior

component of the Bayesian inference. So far, the prior over the hyperparameters ()P θ

has been ignored, and the marginal likelihood used as in Maximum Likelihood

optimisation. Therefore, the role of the prior over hyperparameters had been relegated to

merely being a set of initial values for θMP. From a certain perspective, this dismissal of

the Prior distribution from the optimisation procedure can be seen to be somewhat

contrary to the spirit of Bayesian inference, as without the inclusion of prior knowledge,

possible values for the most probable hyperparameters θMP that are incorrect or

inconsistent with the data or covariance function may be allowed. However, as discussed

in the previous chapter, the determination of suitable prior distributions based on ‘a

priori’ system knowledge is a difficult task. One possibility discussed in the research by

Neal (1996) and Gibbs (1997) is to employ Gamma distributions as priors over θMP.

Chapter 4: Implementation of GP Models

 125

4.4.3) Monte-Carlo Alternative

Another possible optimisation strategy is to perform the integration over θ is through

using numerical MCMC methods as described in Williams and Rasmussen (1996), and

Neal (1997). The MCMC approach employs a Markov chain to approximate the integral

together with sampling methods to calculate an approximation to the overall predictive

distribution, as described by:

 1 1 1 1
1

1
(| , , , (.)) (| , , , (.),)

T

N N N N N N N N t
t

P t C P t C
T+ + + +

=
∑x X t x X t θ≃ (4.17)

where the θt are samples drawn from the posterior distribution over θ, (| , , (.))N NP Cθ X t .

The resultant accuracy of the MCMC approximation is dependent on the number of

samples taken from the posterior distribution over θ, and as each term in this summation

is a Gaussian distribution, the MCMC approximation to the desired predictive

distribution can be termed a mixture of Gaussians. Furthermore, as we are sampling from

the posterior over θ, prior distributions over the hyperparameters P(θ) will be required as

in the previous strategy based on the maximisation of the marginal likelihood.

Typically, in order to facilitate a good approximation to the integral, a large number of

samples must be taken from the posterior. Therefore, the adoption of the MCMC

approach carries a potentially high computational cost, especially for problems where

large numbers of observations are included in the training set and must be stored as the

algorithm proceeds. As a result, methods to improve the efficiency of the algorithm may

be required. In particular, the method used to sample from the posterior distribution over

θ will influence the efficiency of the approach, as the samples taken from the posterior

must adequately represent the underlying distribution. For example, if a particular region

of θ space is not adequately sampled, the overall approximation to the integral will

suffer, especially if this region has a high associated probability.

A further step toward improving the efficiency of the MCMC method for use in Gaussian

processes found in the work presented by Williams and Rasmussen (1996) and Neal

(1997), is the adoption of the Hybrid Monte-Carlo method developed by Duane et al.

Chapter 4: Implementation of GP Models

 126

(1987). The key objective of adopting this particular method of MCMC is to avoid

random walk behaviour of the more popular Gibbs and Metropolis sampling approaches.

The Hybrid MCMC is a stochastic dynamics sampling algorithm that introduces an

auxiliary momentum vector (gradient information) with which to move across the sample

space in larger steps and thereby sample from the posterior more efficiently and converge

more rapidly to the target distribution.

4.4.4) Which Optimisation Method?

In the existing literature on GP models, a preference for the optimisation through

marginal likelihood maximisation has been indicated. As a result, it is the method

adopted in this thesis. Although this method fundamentally relies upon an approximation,

and may be prone to difficulties associated with multiple local maxima, given a decent

set of training data this method has been proven to provide very good estimates for

optimal hyperparameters. Furthermore, as well as providing sufficient training data

conducive to obtaining a good estimation of the most probable hyperparameters, a

number of possible strategies (multiple restarts, different initial conditions or express

priors) exist so that the problems associated with multiple local maxima may be

mitigated. Furthermore, the fundamental result of optimisation through the marginal

likelihood, where a set of most probable hyperparameters are obtained, is an attractive

result in itself, as it can provide the user with an insight into the data being modelled.

The marginal likelihood maximisation has a further advantage over the MCMC

alternative when examined in computational terms. Upon the completion of the algorithm

only one set of final hyperparameters exist, leaving a single covariance matrix that must

be stored and subsequently inverted in order to make predictions. If further training data

points are to be included at a later date, only one inverse covariance matrix must

therefore be updated using the partitioned inverse equations detailed previously. This is

not the case for the MCMC method where all the inverse matrices must be stored if new

points are to be included, thus adding to the potential computational expense of the

MCMC approach.

However, in terms of overall accuracy and flexibility, the MCMC method has potential

advantages. As the MCMC method gradually builds a more exact approximation of the

Chapter 4: Implementation of GP Models

 127

integral, for problems where more complex covariance functions are being employed the

MCMC may provide a better result. Furthermore, for problems where the size of the

training set is relatively small and therefore the amount of matrices to be stored does not

prove to be infeasible, the performance of the MCMC method may be preferable to that

of the marginal likelihood maximisation method.

4.5) Mathematical & Computational Implementation

In the identification of a GP model, we wish to construct a covariance matrix that defines

a Gaussian process with which to infer new test predictions. This covariance matrix is to

be specified through the application of a covariance function to a set of training

observations. In the discussion so far, we have mentioned the various choices of

covariance function that are available to us, together with strategies for the determination

of optimum hyperparameters from our set of training data. What has not been discussed

are issues relating to the actual training dataset itself. Therefore, in this section the

requirements for this training dataset are to be discussed together with the computational

implementation of the GP model.

4.5.1) Size of the Covariance Matrix

As can be seen from the predictive equations (3.40) and (3.41), the identification of a GP

model revolves around the specification and manipulation of the covariance matrix. As a

result, the GP modelling approach can be seen to be particularly susceptible to any

mathematical or computational difficulties found when performing matrix manipulation.

In particular, it is the inversion of the covariance matrix that has been proven to be the

main source of difficulty in the GP modelling approach. The inversion of large matrices

is a well-established computational problem encountered across many research fields

where large amounts of data must be analysed and manipulated. Consequently, the

potential size of the covariance matrix to be inverted is something that any researcher

must be conscious of. Furthermore, as the size of the training data set (N) dictates the

size of the resultant covariance matrix (N×N), the number of observed data points

included in the training set must therefore be kept within reasonable limits if the GP

model (as prescribed by the predictive equations) is to be implemented directly.

Chapter 4: Implementation of GP Models

 128

From a more fundamental perspective, we can also see that by placing limits on the size

of the covariance matrix, we are also potentially restricting the amount of information we

can include in the training dataset. Therefore, this mathematical constraint can be seen to

impact the potential flexibility of the GP modelling approach, e.g. for complex nonlinear

problems where thousands of data-points are necessary to adequately characterise the

system. Therefore, in recent years a variety of methods aimed at overcoming this

constraint on the size of the covariance matrix have been proposed. These strategies are

often referred to as Approximate Methods, and are to be discussed in Section (4.5.5).

4.5.2) Conditioning of the Covariance Matrix

Another implication of the mathematical framework of the GP modelling approach is that

in order for the inversion of the covariance matrix to remain accurate and

computationally viable, the matrix to be inverted must not be ‘ill-conditioned’. The term

‘ ill-conditioned’ matrix relates to the condition number of a matrix, which provides a

measure of stability or sensitivity of a matrix to certain numerical operations (i.e. how

numerically ‘well-posed’ is the problem?). A low condition number is indicative of a

problem that is ‘well-conditioned’, ‘too large’ a condition number is indicative of ‘ill-

conditioning’, and an infinite condition number is indicative of a matrix that is singular

and therefore does not have an inverse. A further aspect to the conditioning requirements

placed upon the covariance matrix has been outlined in the previous section detailing the

theory of various covariance functions. In order for a valid Gaussian process to be

defined and subsequently used as a Prior with which to infer predictions, the covariance

matrix must be Positive Semi-Definite (PSD) in order to ensure consistency. In the

simplest terms the constraint for PSD can be most easily interpreted as the requirement

that the eigenvalues of the covariance function must be non-negative.

Therefore, we have a constraint fundamental to the GP theory that the covariance matrix

must be conditioned to be PSD, and a practical constraint on the conditioning of the

covariance matrix that it may be suitably conditioned for numerical manipulation.

Furthermore, these two conditioning requirements can be seen to be somewhat

complimentary, and therefore difficult to decouple from one another upon examination of

the matrix. However, by ensuring positive semi-definiteness we should also go some way

to ensuring a well-conditioned and therefore invertible matrix.

Chapter 4: Implementation of GP Models

 129

One aspect of ensuring that the covariance matrix is appropriately conditioned to meet

the PSD requirement is to employ a valid covariance function as described in the opening

sections of this chapter. However, the characteristics of the training data to be utilised by

the chosen covariance function also play an important role in determining whether or not

the resultant covariance matrix is suitably conditioned. Furthermore, as well as ensuring

that the type of data included in the training dataset is conducive to the construction of a

valid GP model, the training data collected must also meet the demands of the system

identification task to be undertaken. Therefore, gaining an appreciation of the potential

problems associated with the inclusion of particular types of data (e.g. steady-state,

rough, smooth, oscillatory etc.) in the training dataset would be a useful step in ensuring

the successful implementation of a GP model.

4.5.2.1) Dealing with Non-Positive Definite Matrices

As discussed previously, the covariance matrix to be generated from the application of

the covariance function to the training data must be Positive Semi-Definite in order to

meet the consistency requirements of the GP model. In other words, the eigenvalues of

the covariance matrix must be non-negative. Therefore, if we can identify the cause of

negative eigenvalues in the covariance matrix we can hopefully take steps to eliminate

their presence and ensure a suitably conditioned matrix. A good resource for dealing with

this problem of Non-positive definite matrices is Wothke (1993).

4.5.2.1.1) Negative Eigenvalues from Problematic Data

One of the principal causes of negative eigenvalues, and therefore matrices that are not

positive definite, is the presence of unsuitable data in the training set. In particular, the

presence of equilibrium or constant data in the training dataset can be a major

contributory factor in the definition of a not positive definite matrix. If a variable can be

seen to remain almost constant (such as when recording the steady-state response of the

system under identification), it will exhibit zero variance and result in a covariance

matrix that may be non-positive-definite. Further covariance matrix problems may also

be encountered where a near perfect linear dependency (or correlation) exists between

two variables. Therefore, from an overall perspective, we can see that the conditioning

requirements placed upon the covariance matrix have potential implications for the

Chapter 4: Implementation of GP Models

 130

nature of the types of system response data we can readily utilise. This in turn will have

implications for the experimental design aspects of the system identification process.

4.5.2.1.2) Eigenvalue Decomposition

A possible strategy for diagnosing the cause of matrix conditioning problems is to

perform an eigenvalues decomposition of the covariance matrix. Through this analysis,

we may be able to locate problematic training cases and therefore make adjustments to

the training dataset more easily. Furthermore, performing such eigenvalue decomposition

may also be of interpretable benefit if the GP model is to be viewed through the weight-

space interpretation of Rasmussen and Williams (2006). Software development

environments such as Matlab, should allow the straightforward computation of the

eigenvalues of a given matrix. Furthermore, the condition number of a matrix may also

be computed and thus establish whether or not a matrix is indeed ill-conditioned.

However, the size and dimensions of the matrix to be computed may impact on the

viability of conducting this kind of analysis repeatedly.

4.5.2.1.3) Training Data Pre-processing

As an alternative strategy to performing eigenvalue decomposition, it may be possible to

identify problems in the training dataset by simply maintaining an awareness of the

empirical data that is to be included. Therefore, it may be possible to tackle conditioning

problems that result from problematic data (such as prolonged steady-state response data)

directly without resorting to further computational manipulation. However, for more

complex implementations where the nature of a multitude of inputs must be accounted

for, it may not be particularly straightforward to detect exactly the cause of conditioning

problems, or determine possible remedies. One possible strategy would be to add each

input dimension to the covariance matrix in turn, whilst maintaining an awareness of the

conditioning of the matrix at each stage.

Moving forward, once a problematic region of data has been identified, the next stage to

be tackled is to determine what course of action should be taken. The most

straightforward approach would be simply to remove any data points from the training

dataset that are causing conditioning difficulties. Furthermore, as we also have

Chapter 4: Implementation of GP Models

 131

constraints on the overall size of the training dataset to meet, this may prove to be a

sensible approach. In the case of equilibrium data such as that resulting from a prolonged

steady state response, these training cases can be interpreted as repeated and therefore

redundant data, and therefore prime candidates for elimination. However, before

removing any data from the training dataset the overall principle that we are also

potentially removing relevant information from the modelling process must also be

appreciated. For the case where we wish to eliminate equilibrium data, the potential

exists to be too aggressive with the removal process resulting in the loss of important

information in the transition between transient and steady-state operating regions.

A further option in attempting to improve the conditioning of the covariance matrix is to

gain an appreciation of the noise level of the underlying system or function. For a system

response that exhibits a high level of noise, prolonged periods of constant or repeated

data would seem to be improbable. As a result, the resultant conditioning of the

covariance matrix may not be as adversely affected by periods close to equilibrium. This

is something that can be used to our advantage through the introduction of a random

element or ‘jitter’ to the raw empirical data where the level of noise present in the data

can be increased so as to combat any conditioning errors encountered. The addition of a

small ‘jitter’ term or ridge adjustment to the diagonal elements of the covariance matrix

acts to attenuate the estimated dependency between variables, and has been shown to

improve the overall conditioning of the covariance matrix in Neal (1996). Furthermore,

this strategy can be seen to be equivalent to the ridge regression regularisation methods

that are often used in other modelling approaches. Of course by introducing noise, we are

also potentially introducing error into the model, therefore such a ‘jitter’ term should not

be inappropriately large and be in keeping with the relative magnitude of transitions

observed in the system under investigation.

Overall, we can see that the specification of a good training dataset can prove to be a

challenging aspect of the GP modelling approach that may involve significant pre-

processing of the empirical data. Not only must the training dataset be of a reasonable

size, but also appropriately conditioned so as to meet the requirements of the

mathematical framework of the GP model. Furthermore, we can see that such

requirements have significant implications for the experimental design procedure utilised

to collect the training data in the first place.

Chapter 4: Implementation of GP Models

 132

4.5.3) Implications for Experimental Design

At this point we have established the impact that the peculiarities of the mathematical

framework of GP models can have on the size and condition of the covariance matrix.

Furthermore, such requirements can be seen to extend their influence into the

experimental design process that is to be adopted in order to generate the training data. In

much of the current literature devoted to the GP modelling approach this is an aspect that

has not been discussed in great detail. This is probably due to the statistics and machine

learning origins of the method where the design of the training data set may not be

something that the researcher has complete control over. However, the objective of this

project has been to provide guidance for the implementation of GP models towards

system identification tasks, and as a result the design of experimental procedures to

collect data is something that is of fundamental importance.

In the previous discussion, the size of the covariance matrix has been identified as a

potential source of implementation problems due to the algorithm’s need for repeated

matrix inversion. As the size of the covariance matrix is dictated by the size of the

training dataset, this constraint can be seen to have a direct influence on the choice of

sampling rate employed in the collection of data from a system. Through the existence of

an upper limit on the size of the covariance matrix, we may be forced into choosing a

sample rate that would be lower than normally recommended by standard system

identification procedures (e.g. rules of thumb based on the limits associated with Nyquist

sampling theory) so as not to include excessive data. A further pressure on the choice of

sampling rate comes from the knowledge that large quantities of equilibrium or repeated

data can have a detrimental effect on the conditioning of the resultant covariance matrix.

This result can be due to an overly high sampling rate where a large number of points are

collected resulting in data points so close together that any variance is diminished,

therefore affecting the conditioning of the covariance matrix.

Nevertheless, the choice of sampling rate must also be adequate to meet the demands of

the system identification task. Fundamental in this task is that we retain enough

information within the sampled data so as to adequately represent the underlying

function, i.e. we can capture the dominant nonlinearities exhibited. Furthermore, another

important facet to the development of a good mathematical model is that, through the

Chapter 4: Implementation of GP Models

 133

experimental design process, we attempt to gather as much information about the system

as possible. In essence, we would wish the training dataset to cover as much of the

operating range of the system as possible. Therefore we must balance the demands for a

reasonably sized training dataset with the requirements that as much of the operating

range be included, and indeed sampled in a manner so as to adequately represent the

behaviour of the system.

We can now move on to consider the impact of the conditioning requirements of the GP

approach on the experimental design component of the system identification process.

Previously we have pointed to the potential for equilibrium or steady-state data to cause

conditioning problems in the covariance matrix. For the identification of engineering

systems this would appear to be a serious problem, as the empirical data gathered from

such applications routinely includes both equilibrium and transient behaviour as the

system is moved through various operating points. Furthermore, many systems are

explicitly designed to remain in relatively stable operating regions so as to facilitate

manual or even automatic control. These operational constraints therefore present further

challenges to the design of the training dataset.

Furthermore, the types of excitation signals that are readily employed to gather response

data are also very likely to include periods of constant or equilibrium data as, in seeking

to identify nonlinear dynamic systems, researchers often design inputs that elicit a

response that takes a significant time to develop. For example, in response to a step input,

a system may have an initial transient or oscillatory behaviour, leading eventually to a

steady-state response. For the identification of this system, all of this information will

need to be captured in order to fully characterise the system response. Similarly, many

engineering systems may exhibit a delay in the response to an input (dead-time), or a

saturation of the output in response to an input. In all of these cases, the potential for the

inclusion of steady-state or constant data in the training set is great, especially if previous

inputs or outputs are to be utilised as regressors. Thus, whilst the presence of equilibrium

data in the training dataset and the impact on the conditioning of the covariance matrix

may be easy to identify, strategies to overcome this problem whilst holding true to the

demands of the system identification task are needed. This problem is not something that

is unique to identification using GP models as many other modelling approaches

(including linear regression) are also subject to matrix conditioning problems that result

Chapter 4: Implementation of GP Models

 134

from incompatible training data. The main solution to this problem is to ensure that the

experimental procedure employed endeavours to excite the system sufficiently so as to

ensure the empirical data collected does not contain prolonged periods of steady-state

data. In the next chapter the problems associated with the pre-processing of training data

and its impact on experimental design procedures are to be investigated with a number of

practical examples. However, at this point, the computational implementation of the GP

model is to be discussed.

4.5.4) Direct Implementation of the GP model

If we now assume that a well-conditioned covariance matrix has been constructed we can

look into the direct implementation of the GP model. In the direct implementation of the

GP model the goal is to compute the predictive equations (3.40) and (3.41) exactly.

However, as discussed previously, the size of the covariance matrix as dictated by the

number of included training points (N) can prove to be computationally challenging. This

is due to the repeated multiplication and inversion of the potentially large covariance

matrix that is required not only by the predictive equations, but also by the optimisation

techniques discussed previously. A number of different ‘approximate’ methods have

been proposed that deal directly with the size constraints of the GP modelling approach

and these are discussed in the next section.

Before discussing the precise details of the direct implementation it is also first useful to

discuss the computational limits that have been established for this direct implementation

of the GP model. For the GP modelling approach, the overall computational burden for

the direct implementation has been estimated as O(N3) by Rasmussen and Williams

(2006). This has led to the recommendation that for large problems (N>10000), further

approximation methods (described in the next section) should be adopted. Earlier texts

by Mackay (1998b) and Gibbs (1997) put a feasible limit of (N<1000) points upon the

size of the covariance matrix. In my own experience working with data sets for the

identification of dynamic engineering applications, the lower limit of (N<1000) data

points is more realistic for those working with average desktop PC computational

facilities.

Chapter 4: Implementation of GP Models

 135

An exact implementation of the GP model predictive equations outlined in Gibbs and

Mackay (1997) is as follows:

The predictive equations to be computed are

1
1 1

2 1
1 1 1

ˆ T
N N N N

T
N N N N

t

σ κ

−
+ +

−
+ + +

=

= −

k C t

k C k

Given a new test input xN+1, to calculate a single prediction 1N̂t + , the following procedure

can be followed:

1) Construct the vector, () ()N 1 1, N+1 N, N+1 C ; , ,C ;+  =  k x x θ x x θ…

2) Invert covariance matrix, 1
N
−C

3) Calculate the vector, 1
N N
−=v C t

4) For the mean prediction, find the dot product, 1 1
ˆ T
N Nt + += k v

5) Evaluate covariance of test input, ()N 1, N+1 C ;κ += x x θ

6) Calculate the scalar, 1
1 1

T
N N N

−
+ +k C k

7) Subtract for variance prediction, 2 1
1 1 1

T
N N N Nσ κ −

+ + += − k C k

For subsequent test inputs, xN+2 and so on, to calculate new predictions only the new

vector kN+2 need be constructed, as the vector v will not have changed. Therefore, after

the initial test input (where the matrix must first be inverted 1
N
−C and applied to a vector

tN), the calculation of the remaining prediction horizon requires only the evaluation of

the dot product, i.e. 2 2
ˆ T
N Nt + += k v , to be repeated, therefore reducing the remaining

computational demand to around that of O(N).

With regard to the implementation of the Marginal Likelihood maximisation algorithm

used to find the most probable hyperparameters θMP , we can also see that that each

calculation of the gradient of the log likelihood requires the inversion of the covariance

matrix. Gibbs and Mackay (1997) break down each evaluation so that they require 4

matrix to vector applications, and 1 dot product calculation. However the evaluation of

Chapter 4: Implementation of GP Models

 136

1()N
Ntrace

θ
− ∂

∂
C

C can be seen to avoid a full calculation of 1N
−C as the trace operator only

requires diagonal elements.

4.5.4.1) Using Matrix Decomposition

Whilst this direct method of implementing the GP model has significant computational

disadvantages due to the need for the repeated explicit inversion of the covariance

matrix, a further disadvantage is that through this inversion and the subsequent

application and dot product computations involving this matrix the overall accuracy and

computational stability of this method can become compromised. This is due to potential

for ill-conditioning in the covariance matrix, as discussed earlier. As a result alternative

methods for the direct implementation of the predictive equations have been developed

so as to avoid the need for the explicit inversion of the covariance matrix. Rather than

attempt the direct inversion of matrices (involving the definition of an adjugate matrix

divided by the determinant), alternative methods that rely upon the decomposition of the

covariance matrix can be adopted to help mitigate the potential for numerical

inaccuracies and ultimately lessen the computational expense.

The LU matrix decomposition method applied in Gibbs and Mackay (1997) allows a

square matrix to be decomposed into upper and lower triangular matrices (of identical

size), allowing more rapid inversion of these smaller matrices and subsequent

multiplication (i.e. C-1 = U-1L-1). Furthermore, the authors reported that numerical errors

were reduced through the adoption of this decomposition. Nevertheless, such

decomposition still employs inversion techniques that can prove time-consuming for

large datasets. A further alternative is to take advantage of the requirement that the

covariance matrix must be symmetric and positive semi-definite, and implement

Cholesky decomposition of the covariance matrix instead. The Cholesky decomposition

is a special case of LU decomposition that allows the decomposition of a square positive

Hermitian matrix into the product of the lower triangular matrix and its transpose (i.e.

C=LLT). The use of Cholesky decomposition has been recommended in Rasmussen and

Williams (2006) as it has been shown to be both faster and more computationally stable.

Furthermore, through the implementation of Cholesky decomposition in development

environments such as Matlab, a check on the conditioning of the covariance matrix can

Chapter 4: Implementation of GP Models

 137

be performed. Therefore, the underlying software may generate a potentially informative

error message when the conditioning of the covariance matrix has deteriorated.

The text by Rasmussen and Williams (2006) has provided the following useful guide for

implementing the GP predictive equations using Cholesky decomposition:

Applying Cholesky decomposition, we can generate L = Cholesky(K). For the

calculation of the predictive mean (1
1 1

ˆ T
N N N Nt −

+ += k C t) we first simplify this equation into

the form 1 1
ˆ T
N Nt + += k α where 1

N N
−

α = C t . Then through substituting the Cholesky

decomposition (T
N LL=C) and solving for α , we find \ (\)T

NL Lα = t . We can then

express the predictive mean as 1 1
ˆ T
N Nt + += k α . For the predicted variance, we can make

further use of the Cholesky decomposition and define 1\ NL +v = k , and then express the

variance as 2
1

T
Nσ κ+ = − v v .

4.5.5) Approximate Implementations of the GP model

In the direct implementation the GP model the overall computational demand can be seen

to scale with the size of the training dataset to the order of O(N3). As a result, the

implementation of this direct approach presents a significant difficulty for those working

on problems that involve large quantities of data. Furthermore, the computational load

required by the method may prove to be beyond that of users with access only to average

desk-top computing facilities. Therefore the development of methods aimed at reducing

the computational demands of the GP modelling approach have received a great deal of

attention and remain a focus of ongoing research.

As discussed previously, the predictive equations of the GP model involve both the

storage and inversion of a potentially large covariance matrix. Furthermore, the

implementation of the direct method can be seen to revolve around the problem of

solving the linear system 2()nK Iσ+ =v y for v, (Note that for consistency with existing

literature we have substituted the 2()nK Iσ+ for the previously used CN which assumes

Gaussian independent noise, and y for targets tN).

Chapter 4: Implementation of GP Models

 138

In tackling this problem of reducing the computational demand, a number of different

approaches have been developed. Useful reviews of these approximate methods can be

found in Seeger (2003), Rasmussen and Williams (2006) and Quinonero-Candela et al.

(2007). The review paper by Quinonero-Candela et al. (2007) builds upon that found in

Rasmussen and Williams (2006) in providing a unifying view of the techniques used to

approximate the GP model for regression. The former paper states that the various

options can be generally categorised into two different approaches to the problem:

1) Using Fast matrix-vector multiplication methods (MVM) to approximate the

direct implementation of the GP model.

2) Using Sparse matrix methods to approximate the covariance matrix.

In this section an overview of the main ideas behind these approaches has been provided,

rather than a full mathematical exploration.

4.5.5.1) Fast Matrix Vector Multiplications (MVM)

The primary cause of the demanding computational requirements of the direct

implementation of the GP model has been isolated as the need for the repeated inversion

of the potentially large covariance matrix (or the solution to the linear system

2()nK Iσ+ =v y for v). As a result, efficient computational methods aimed at solving this

problem and therefore speeding up GP regression have been proposed. The fast MVM

methods proposed in Wahba (1995) and Gibbs and Mackay (1997) tackle this problem

through the use of iterative methods such as conjugate gradients. The paper by Gibbs and

Mackay (1997) takes its inspiration from the methods proposed by Skilling (1993), and

provides a detailed resource for the reconfiguration of the GP predictive equations and

the maximum likelihood optimisation loss function into expressions that avoid the

explicit inversion of the covariance matrix. Overall, the number of iterations of the

conjugate gradients method completed can be seen to dictate the computational demand

of the fast MVM method. Every iteration of the conjugate gradients method has a

computational demand of the order of O(n2), however an approximate solution can be

arrived at if the algorithm is terminated after k iterations, giving an overall computational

demand of O(kn2).

Chapter 4: Implementation of GP Models

 139

With regard to the overall task of improving the computational efficiency of the GP

model, the reviews of Quinonero-Candela et al. (2007) and Rasmussen and Williams

(2006) are somewhat dismissive of this option. This is primarily due to the overall

computational demand incurred by the deployment of these methods still being seen to

scale nonlinearly as O(n2), and thus not offering the computational savings that are

desired. As a result, the fast MVM methods have been stated as being of the most

potential benefit for problems where the number of input dimensions is relatively small.

4.5.5.2) Sparse Matrix Methods

The most straightforward method of reducing the computational burden of the GP

approach is to restrict the size of the training dataset and therefore reduce the size of the

covariance matrix. This most obvious of strategies has been named the Subset of Data

(SOD) approach and entails the definition of a subset of the training dataset for use in the

construction of the covariance matrix. This approach is to be discussed below, but suffers

from the fundamental drawback that through the elimination of training data from the

training dataset we are of course potentially throwing away valuable information about

the underlying system and therefore compromising the performance of the resultant

model.

Therefore alternative methods to “sparsify” the covariance matrix have been proposed.

The idea here is somehow to retain the bulk of the information contained in the full

training dataset, but reduce the rank (i.e. the number of linearly independent rows) of the

resultant covariance matrix so as to facilitate a less computationally demanding

implementation of the GP model. These sparse methods are to approximate the full

posterior and therefore the predictive equations of the GP model through the use of

expressions that involve matrices of lower rank m n< (where m is the rank of the sparse

covariance matrix, and n is the rank of the full GP covariance matrix).

In Rasmussen and Williams (2006) the discussion of approximate methods for large

datasets begins with a proposal for a method for improving computational efficiency

through the eigendecomposition of the GP model kernel. As a result of this

eigendecomposition, a method of reducing the rank covariance matrix may then be

forthcoming. However the discussion points out that the problem of approximating the

Chapter 4: Implementation of GP Models

 140

kernel in terms of eigenvalues and eigenvectors is a computationally demanding one in

itself, and may therefore negate any resulting benefit in the subsequent implementation

of the GP model prediction framework. Therefore, methods aimed at reducing the

computational demand of eigendecomposition are proposed as a possible way forward.

One such method is the Nyström approximation described below, but before examining

the details of the various methods, a discussion of the subset selection procedures used to

define each sparse method is required.

4.5.5.3) Subset Selection

In constructing a reduced rank or sparse version of the covariance matrix K (note that due

to the potential modification of the covariance matrix it may be more correctly termed as

the Gram matrix) the first step is the selection of a subset of datapoints. The selection of

this ‘included’ or ‘active’ subset of data can be seen to be something common to all

Sparse methods, where the included latent variables are to be treated exactly by the GP

model framework and the remaining variables are to be approximated by a less

computationally demanding method. This means that, unlike the previously mentioned

Subset of Data (SOD) method, the data not included in the subset is not going to be

completely eliminated from the approximation.

This subset of data is to be of size m n< , where n is the size of the overall training

dataset, and is denoted as I (as in ‘included’ datapoints) in Rasmussen and Williams

(2006), with the ‘remaining’ n m− datapoints then said to form the set R. If the training

datapoints are then assumed to be ordered in a manner so that the subset I appears first,

the matrix K can be partitioned without loss of generality as the following:

()

() ()()

mm m n m

n m m n m n m

K K
K

K K
−

− − −

 
=  
 

 (4.18)

where the top m n× block can also be denoted to as Kmn and its transpose as Knm.

In the review by Quinonero-Candela et al. (2007) a slightly different perspective is taken

where the active set is known as a set of ‘inducing’ variables. This review paper builds

on the previous account by Quinonero-Candela and Rasmussen (2005) that sought to

Chapter 4: Implementation of GP Models

 141

provide a unified view of the various sparse matrix methods that had been developed.

This is achieved through the reinterpretation of the various sparse methods as “exact

inference with an approximate prior”, rather than the more common interpretation of

“approximate inference with the exact prior”. As a result the ‘effective’ prior being

employed by each algorithm can be computed from the analysis of the posterior. The

overall objective of this reinterpretation is to provide a means of direct comparison

between the various sparse matrix methods.

As only the active set is to be treated fully in the sparse model, the process of

determining which datapoints are to be included is critical to the success of the

approximation. One possible strategy is to carefully build the subset of data through the

manual selection of datapoints based on ‘a priori’ knowledge of the underlying system

characteristics. This method of selecting an optimum training data subset can be seen to

be particularly in keeping with the system identification process where the pre-

processing of empirical data is often an important stage. However, for implementations

where ‘a priori’ knowledge is limited, or for complex nonlinearities composed of

multiple dimensions, the determination of a suitable subset may become a challenging

problem. As a result, a simple strategy such as the random selection of datapoints may be

a suitable course of action.

As an alternative, more iterative approaches to the selection of the active set have also

been proposed. In particular, ‘Greedy Approximation’ methods have been shown to be of

great potential where the active set is selected and updated according to some criterion.

Such an algorithm would initiate with an empty active set I with the remaining set R

containing all indexed training observations. Then, using an iterative method, each

indexed training example is added to the active set in turn and the selection criterion

evaluated. If the criterion is met, and the active set can be seen to be further optimised,

the training example under review will be included in the active set. As a result, many of

these algorithms can be seen to have significant parallels with the ‘active learning’

methods briefly mentioned in Section (2.3.2). Note that the computational expense of

considering all training examples with respect to the criterion in one sitting may prove to

be prohibitive and therefore working subsets of data may also need to be defined, see

Rasmussen and Williams (2006) for a general description of the Greedy Approximation

algorithm.

Chapter 4: Implementation of GP Models

 142

The next question that arises is what kind of selection criteria should be used to

determine the active subset of data. Various methods have been proposed including the

‘Informative Vector Machine’ (IVM) of Lawrence et al. (2003), the ‘Informative Gain’

criterion of Seeger et al. (2003), the online learning algorithm of Csato and Opper

(2002), minimisation of the residual sum of squares as in Luo and Wahba (1997), and

maximising the effective posterior instead of the effective marginal likelihood as in

Smola and Bartlett (2001). A further method could be the maximisation of the marginal

likelihood (i.e. the same optimisation used to identify hyperparameters) with respect to

the inducing inputs as described by Snelson and Ghahramani (2006). In addition, the

selection of the active set of data can also be incorporated into the existing optimisation

of the hyperparameters as in Seeger et al. (2003).

A final aspect to consider in the determination of a suitable active set is that there is no

fundamental reason why the subset has to be chosen from the training dataset itself. The

review by Quinonero-Candela et al. (2007) states that subset selection from a disjoint of

the training dataset may be a viable alternative, and points to the paper by Snelson and

Ghahramani (2006) where the discrete selection of training/test cases has been replaced

by an algorithm more in keeping with continuous optimisation. After determining a

suitable subset of data, we can now turn our attention toward describing some of the

various sparse methods that have been proposed.

4.5.5.4) Subset of Data (SoD)

The Subset of Data (SoD) method can be seen to be the most straightforward method of

sparse matrix approximation, where an active subset of data m is to be selected from the

whole training dataset n. The existing predictive equations and optimisation expressions

remain unchanged by this method, resulting in an overall computational demand of

O(m3), where m n< . As discussed previously, the Subset of Data approximation method

would seem to be fundamentally handicapped in comparison to alternative sparse

methods, as training data that is not included in the active subset is simply discarded

rather than approximated. However, in comparison to the more sophisticated sparse

methods, the computational demand of the SoD method is independent of n.

Furthermore, through the use of carefully selected data or the greedy selection methods

discussed previously, the resultant active subset to be used by the SoD method can

Chapter 4: Implementation of GP Models

 143

become more optimised. As a result, the SoD method may still provide a good

approximation to a ‘full’ GP model and should not be wholly discounted in favour of

more sophisticated sparse methods.

4.5.5.5) Nyström Approximation

The Nyström approximation method involves the analysis and approximation of the

eigenfunctions and eigenvectors of the kernel. The Nyström method is described in Press

et al. (1992), and has been proposed as a sparse method for GP regression in Williams

and Seeger (2001). This method allows the covariance (or more generally the Gram)

matrix K to be approximated by a reduced rank or sparse version Kɶ that can then be

substituted into the GP predictive equations. By then choosing the number of

eigenvalues/vectors to be included in the approximation to be the same as the size of our

defined subset I, the Nyström approximation of K can be written as:

 1
nm mm mnK K K K−=ɶ (4.19)

This approximation Kɶ can then be substituted for K in the main GP predictive equations.

Note that it is only the matrix K that is to be substituted, the covariance function k is not

going to be to be substituted by kɶ . The computation demand associated with the method

is O(m2n) for the required matrix computations, and O(n) and O(mn) for the evaluation of

the predictive mean and variance respectively. In the paper by Williams et al. (2002), the

experimental results point out that the Nyström method performs poorly relative to other

methods when the size of the active set m is small. Furthermore, due to the fact that the

covariance function is not completely replaced by an approximation kɶ , numerical errors

may be encountered.

4.5.5.6) Subset of Regressors (SoR)

The Subset of Regressors (SoR) method takes advantage of an equivalence between the

GP model’s mean predictor and that of a finite-dimensional generalised linear regression

model. This method originates from Wahba (1990) and Poggio and Girosi (1990), and

has been adapted for use in Sparse GP models by Smola and Bartlett (2001). Therefore

Chapter 4: Implementation of GP Models

 144

the SoR model is a finite linear-in-the-parameters model with a particular prior on the

weights. For any input x*, the corresponding function value f* is given by:

 * *
1

() (,)
n

i i
i

f kα
=

=∑x x x with a prior 1Normal(,)K −0α ∼ (4.20)

In order to formulate an approximation to this model only a subset of regressors are

considered so that:

 * *
1

() (,)
m

SR i i
i

f kα
=

=∑x x x with a prior 1Normal(,)m mmK −0α ∼ (4.21)

We can then formulate the predictive distribution in the same manner as described in the

‘weight-space’ interpretation of the GP model (Rasmussen and Williams, 2006), to find

the mean and variance:

 2 1
* *() () ()T

SR m mn nm n mm mnf K K K Kσ −= +x k x y
⌢

 (4.22)

 2 2 1
* * *[()] () () ()T

SR n m mn nm n mm mVar f K K Kσ σ −= +x k x k x (4.23)

From these predictive equations we can see that in contrast to the SoD method, the SoR

method is to employ all n datapoints of the training set in the approximation. However, a

major disadvantage of the SoR method is that due to its basis upon a linear-in-the-

parameters model, the GP model becomes degenerate. Under the unifying view of

Quinonero-Candela et al. (2007) where methods are described in terms of approximate

priors, the degenerate nature of the SoR model can be seen to restrict the variety of

possible functions that will be plausible under the posterior. Furthermore, as the SoR

model can be seen to have only m degrees of freedom, this implies the restriction that we

can only draw m linearly independent functions from the prior, with subsequent 1m+

functions being a linear combination of the previous functions.

The main consequence of this degeneracy is that the resultant predictive distributions can

become unreasonable. For covariance functions that decay as the distance between inputs

Chapter 4: Implementation of GP Models

 145

increases, we would expect that the predictive variance to increase as the distance

between inputs is increased, thus indicating an increase in uncertainty. Unfortunately, the

due to the restrictions placed by the SoR model on the approximate prior over functions,

the predictive distribution can in some cases have no prior variance. This can result in

predictive distributions in which the variance tends to zero for far apart inputs (i.e. the

opposite of what would be desired). Overall, whilst the SoR method can be seen to be a

useful approach in terms of approximating the GP mean prediction, the accompanying

predictive variances can at best be described as overconfident, and at worst absurd. The

computation demand associated with the SoR method is O(m2n) for the initial matrix

computations, and O(m) and O(m2) for the evaluation of the predictive mean and

variance respectively.

4.5.5.7) Further Sparse Methods

A number of other sparse matrix methods have been proposed in recent years that can be

seen to overcome the main weakness of the SoR approximate method, i.e. the greatly

reduced scale and therefore usefulness of the variance output. Notable methods discussed

in the review by Quinonero-Candela et al. (2007) include the Deterministic Training

Conditional (DTC) Approximation (that is equivalent to the method of Projected Latent

Variables (PLV) proposed in Seeger (2003) and also discussed in Rasmussen and

Williams (2006) as Projected Process Approximation (PPA)), and the Partially

Independent Training Conditional (PITC) and Fully Independent Training Conditional

(FITC) (also known as the Sparse Pseudo-input Gaussian Process (SPGP) which was

proposed by Snelson and Ghahramani (2006) and further discussed in Snelson (2007)).

These different sparse methods are more complex and without fully exploring the unified

view of sparse methods proposed in Quinonero-Candela et al. (2007), where each sparse

method is interpreted through their effective priors, it is difficult to provide a detailed

explanation of these methods. In essence, the DTC and SoR sparse approximations can

both be seen to impose a deterministic relationship between the training and inducing

latent variables that results in inducing training conditionals where the covariance matrix

has been set to zero. For the PITC and FITC sparse methods, the approximation to the

training conditional is to include a portion of the true covariance matrix (a block-

diagonal in the case of PITC) and set the remaining elements of the matrix to zero.

Chapter 4: Implementation of GP Models

 146

Overall, the computational demand of these different methods has been found to be

similar at O(m2n). As a result, it is difficult to draw conclusions as to which method

would be the preferred choice for a given application.

4.5.6) Which Approximation Method?

As many of the sparse methods have been estimated as having a similar computational

demand, it does not appear immediately obvious as to which method should be preferred.

Furthermore, the reviews of Quinonero-Candela et al. (2007) and Rasmussen and

Williams (2006) also present final conclusions that are somewhat inconclusive and

recommend further empirical investigations. However, such an evaluation of the various

methods on offer can be seen to be a challenging task where many contributing factors

can determine the suitability of a particular approximate method, together with numerous

possible measures of approximation accuracy and computational efficiency. Issues such

as the complexity of the underlying function, dimensionality of the model input, and the

degree of noise present on the targets have been identified as being potentially influential

in determining the suitability of a chosen approximation (e.g. the SoR method is

degenerate which may limit flexibility). For assessing the predictive performance of an

approximation, measures such as such as mean square error or negative log likelihood

may be utilised, and for computational performance the time taken for testing, pre-

computation (i.e. operations required before test predictions are made), and

hyperparameter learning may all be useful measures of efficiency. Overall, some

approximate algorithms may be seen to perform better under some criteria, and

comparatively worse under others.

For the more complex varieties of sparse matrix methods proposed (i.e. discounting the

SoD method), as the computational demand would seem to be similar, the most

important distinguishing feature between them would appear to be how the predictive

variance is to be treated. Therefore, the selection of an appropriate approximate method

could be based upon the need for an accurate representation of the variance of the

prediction. In some applications, this measure of prediction uncertainty may be

considered superfluous (see Seeger (2004) for a discussion as to the worth of the variance

output from a machine learning perspective), and it is the predictive mean that we are

interested in. As a result, the SoR method may become a strong candidate due to the

Chapter 4: Implementation of GP Models

 147

relative straightforward nature of the approximation. If the predictive variance is to be of

great importance, the more sophisticated approximate methods of the PP/DTC, PITC and

FITC should be considered. However, before making any concrete recommendations it

must be pointed out that due to the vagaries presented by current empirical evidence, a

more simple SoD method may still prove to be competitive. Referring to the results of

the empirical example presented in Rasmussen and Williams (2006), the measure of

model error (for a fixed subset size) can be seen to be reduced if more complex sparse

methods (SoR and PP/DTC) are adopted in comparison to the SoD method. However, the

results point to the fact that the overall ‘mean runtime’ (indicative of the computational

load) associated with the more complex sparse methods is substantially higher than the

equivalent SoD method. As a result, a more simple SoD approximate constructed from a

larger subset of data can remain competitive in both predictive accuracy and

computational load, than a more complex sparse method composed of a smaller subset of

data. Note that the authors do not present this evidence as a definitive result, but merely

as indicative of the problem of assessing the relative performance of competing

approaches.

In the selection of an appropriate approximation a further consideration is the intended

implementation or application of the GP model. In particular a significant proportion of

the computational demand of the GP model can be seen to be take place before

predictions may actually be computed (i.e. the pre-computation involving the inversion

of the covariance matrix and application to the target vector, and the optimisation of the

hyperparameters). In some applications it is reasonable to assume that the time taken for

pre-computation and training is not of great concern, and it is the speed of prediction that

is of overriding importance (e.g. real-time implementations involving a trained GP

model). In contrast, other applications may require that the identified GP model must be

adaptable, where the speedy re-training of the hyperparameters takes precedence over the

speed of prediction (e.g. implementations where relatively few predictions are computed,

but the model must be modified or updated repeatedly). As a result, it is the practical

demands of the problem under investigation that must dictate whether or not any

approximate methods are required, and ultimately which method would be preferable.

Chapter 4: Implementation of GP Models

 148

4.5.6.1) Implications for System Identification

Returning to the specific demands of system identification, further comment on the

overall usefulness of these approximate methods is worthwhile. The primary objective of

these methods are to reduce the computational demand of the GP model, either through

optimising the covariance matrix through sparse matrix methods, or through

reconfiguring the mathematical implementation of the model through fast (MVM)

methods. However, none of these methods are aimed at tackling the matrix conditioning

problems also discussed. Therefore, regular system identification issues such as the

design of experiments and collection of data that can be seen to directly influence the

conditioning of the covariance matrix must also be considered before any approximate

methods are employed.

In the discussion concerning the matrix conditioning aspects of the GP model the need

for significant pre-processing of the training set was identified as being likely for system

identification problems. Furthermore, we can see that through the pre-processing of the

training set and potentially removing problematic data we are in fact adopting a Subset of

Data (SoD) sparse approximate method even before actively considering the

computational load. As a result it may be the case that through the pre-processing of the

training data, the final subset of m data to be employed may be of a size that is

computationally feasible. This in turn may diminish the need for more exotic

approximate methods to be employed. In essence, the implementation strategy should

first endeavour to pre-process the training data to tackle any conditioning problems,

before then considering whether or not any further approximate methods are required.

The potential need for the pre-processing of the training data to meet the conditioning

requirements of the GP model can also be seen to suggest that a more manual or “hands-

on” approach to subset selection may be preferable to the use of more random or iterative

selection methods where datapoints are greedily added upon evaluation against some

criteria. In this way, any prior knowledge of the underlying system can be utilised in

avoiding conditioning problems as well as meeting the demands of the system

identification task and regulating the overall size of the subset of data. Furthermore,

through the manual pre-processing of the training dataset any specific issues such as

ensuring the inclusion of particularly important regions of operating space can be tackled

Chapter 4: Implementation of GP Models

 149

directly. After all, the most important issue to be borne in mind is whether or not any

sparse method employed can be seen to impact detrimentally on the overall integrity of

the training data to be employed in the construction of a GP model. Therefore, in the first

stages of pre-processing, a more manual approach to subset selection of the training

dataset would seem to be a sensible strategy. After this stage, a more iterative selection

approach could then be employed to further improve the subset. For example, by

carefully adding more points to increase the accuracy of the model, or through carefully

removing points to increase the computational efficiency.

Nevertheless, for some applications such a detailed manual pre-processing of the training

dataset may not be viable. In cases where the size of the initial training dataset is very

large, or where prior knowledge is limited, a random or iterative approach to subset

selection should be considered. However for the relatively simple nonlinear dynamic

systems considered in the next chapter, this thesis is to adopt the subset of data (SoD)

approximation where the selection or pre-processing of training data is to be performed

by hand. As a result, the general guideline that for the direct implementation of the GP

model the training dataset should contain (n<1000) is to be followed.

4.5.6.2) Further Possibilities

As has been discussed previously, the direct implementation of the GP model has been

shown to be problematic due to the need for the inversion of a potentially large

covariance matrix. To tackle this problem, the sparse matrix methods discussed in the

previous section attempt to reduce the computational footprint of the covariance matrix

through approximation, whilst endeavouring to retain as much information as possible in

the modified covariance matrix. In tackling the implementation difficulties of the GP

model a further two possibilities have been proposed and are worthy of discussion.

4.5.6.2.1) Multiple GP models

An obvious alternative to this problem of squeezing as much information into as small a

space as possible is to split up the information into number of smaller spaces. In essence,

the idea would be to follow the precedent laid out in other forms of mathematical

modelling where a ‘divide and conquer’ approach is taken, and a multiple model or

Chapter 4: Implementation of GP Models

 150

network of models are specified in place of a single global model. Such a scheme could

follow the previously discussed Operating Regime approach, see Murray-Smith and

Johanson (1997), where the operating range of the system under investigation is

partitioning into a number of local regions. Using empirical data collected from each

local operating region a local GP model could then be identified. As each individual GP

model would be identified from a subset of the overall set of training data, the resultant

size of each covariance matrix will then be significantly smaller and therefore easier to

implement.

The next stage to consider is how this group of local GP models are to be combined into

a global representation of the system. In particular, the switching between individual GP

models is something that must be considered carefully, as in addition to the prediction

estimate each GP model is to provide a predictive variance. The paper by Rasmussen and

Ghahramani (2002) proposes a scheduler or manager that probabilistically assigns points

to each local expert model. The paper by Shi et al. (2003) utilises a probabilistic

approach with a hierarchical arrangement to structure a mixture of GP models. In both of

these papers, the inference required the use of MCMC methods to maintain the validity

of the Bayesian framework.

A further example that specifically aims to implement a ‘local model network‘ comprised

of local GP models is the paper by Gregorčič and Lightbody (2007). In this paper a

global GP utilising the squared exponential covariance function is first identified to

divide the operating range of the system into local regimes composed of clusters of

training data. This is achieved by examining the variance output of the global GP model

where a low variance is taken to be indicative of a suitable region for the identification of

a local model due to the presence of sufficient data, thus providing the centres for local

validity functions. Subsequently, a linear covariance function is then employed to

identify a local linear model in each operating regime. The problem of ensuring that the

variance output of this multiple GP model remains indicative of model uncertainty is

solved through blending the different local models through their parameters, rather than

blending the multiple models through their respective outputs. Overall, this prospect of

employing the GP model within the well developed multiple modelling strategy would

appear to be a promising avenue for further research.

Chapter 4: Implementation of GP Models

 151

4.5.6.2.2) Derivative Observations

A further alternative to the previously discussed methods of approximation is to

incorporate derivative observations into the GP model, as in Leith et al. (2002) and Solak

et al. (2003). The idea behind this approach is to summarise any training data that is close

to an equilibrium point by defining a local linear model to cover this region of operating

space. Therefore, standard linear regression solutions (i.e. linear least-squares) can be

used to estimate a derivative observation from perturbation data in the vicinity of an

equilibrium point. After obtaining a set of derivative observations, these can then be

combined with the existing training data (function observations) in the covariance matrix.

Therefore, through the identification of a number of derivative observations we can

potentially summarise a significant proportion of the training data very concisely, and

utilise the remaining space (i.e. the majority of the covariance matrix) for the inclusion of

function observations collected in off-equilibrium regions. Therefore, this strategy of

utilising derivative observations for equilibrium regions and function observations for

off-equilibrium regions, can also be thought of as being in keeping with the divide and

conquer methodology of the multiple model approach, where the derivative observations

can be interpreted as local linear models. This has particular relevance in the

identification of nonlinear dynamic systems where real applications can often be seen to

exhibit prolonged periods of operation near to equilibrium points, with off-equilibrium

data being comparatively sparse. As a result, the benefits of incorporating derivative

information can be seen to be particularly relevant to the system identification and

engineering applications considered in this thesis, and are therefore to be discussed in

greater detail in the next chapter, see section (5.4).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 152

5) Nonlinear Dynamic System Identification with

GP models

In the previous two chapters, the mathematical background and computational

implementation of the GP modelling approach has been discussed. In this chapter, we are to

investigate the application of the GP modelling approach for the specific task of identifying

nonlinear dynamic systems. Notable extensions to the GP framework that are particularly

relevant for nonlinear system identification (Uncertainty Propagation and Derivative

Observations) are also discussed. To support this investigation, a number of simulated

example systems are first identified with the GP modelling approach. Finally, a number of

real laboratory-scale nonlinear systems are to be identified from empirical data. Through

utilising these different examples, the implementation of the GP model from a practical

engineering perspective can therefore be discussed. Furthermore, rather than focussing

solely on judging the accuracy of the identified GP models (as is common in machine

learning applications of the method), the robustness qualities of the identified models are

also to be assessed. As the main overall objective of the system identification process is to

provide both an accurate and robust approximation to the underlying system (especially if

the model is to be ultimately used for control purposes, see Section (2.2.1)), the ability of

the identified GP models to represent the full range of behaviour exhibited by the example

applications must be judged carefully.

5.1) Background of GP models in System Identification

The recent interest in the GP modelling approach as a method for nonlinear system

identification can be seen to originate from the ideas presented in Murray-Smith et al

(1999), Leith et al (2000), and Leithead et al (2000). In these papers, a non-parametric

modelling approach was proposed for use in the identification of local models (as part of a

multiple model type structure) in off-equilibrium regions. In such operating regions, the

popular strategy of identifying local linear models has been shown to be fundamentally

limited, as discussed in Shorten et al (1999). Much of the difficulty associated with

representing such off-equilibrium regions is due to the potential absence of prior

knowledge, coupled with a lack of sufficient data with which to identify local models. To

combat this lack of prior knowledge, non-parametric empirical modelling methods have

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 153

therefore been proposed as a solution. However, due to the scarcity of the available data,

such data-based modelling approaches may also struggle to identify a meaningful

description.

The reason why the GP model offers a viable alternative is the fact that due to the Bayesian

probabilistic nature of the approach, the relative scarcity of the empirical data (or density of

data) can be reflected in the approximation through the variance output. In addition, the GP

model is to directly use whatever data is available in computing each prediction (i.e. the

covariance matrix is directly defined from applying the covariance function to the training

data), rather than rely solely on parameters defined through optimisation. As a result, the

GP modelling approach has been shown to perform well in identifying models from small

datasets as the number of structural parameters (hyperparameters of the covariance

function) to be identified is typically less than that of other complex learning systems (see

Kocijan et al (2003a) for a practical comparison of the GP modelling approach with a

Neural Network alternative). Further good general sources of information on applying the

GP modelling approach toward dynamic system identification problems are Gregorčič and

Lightbody (2002), Murray-Smith et al. (2002), Kocijan et al. (2003b), Wang et al (2005),

Ažman and Kocijan (2007), Kocijan and Ažman (2007), and Kocijan and Likar (2007). In

Gray et al (2003), and Thompson and Murray-Smith (2006), some of the more practical

implementation issues associated with the GP model are also discussed, with some of this

research forming the basis of this thesis.

A further motivating factor behind the GP modelling approach are the possibilities that

exist for the incorporation of the GP methods into the well established ‘divide and conquer’

multiple modelling strategy discussed previously. As stated above, the paper by Murray-

Smith et al. (1999) proposed the use of local GP models to identify off-equilibrium

operating regions, and then combining these local GP models with local linear models used

to identify equilibrium regions. A further strategy in keeping with this desire to retain the

local linear modelling approach and combine it with the GP model is the incorporation of

derivative observations into the GP modelling approach (as mentioned in Section

(4.5.6.2.2)). This extension to the GP modelling approach takes advantage of the fact that

as differentiation is a linear operation, the derivative of a GP remains a GP. As a result, as

long as the derivative of the covariance function is employed, these derivative observations

can be handled by the same predictive framework as the normal functional observations.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 154

As derivative observations can be thought of as equivalent to linearisations about an

equilibrium operating point, through incorporating derivative observations we can develop

a global model built out of multiple local linear models that can be blended almost

seamlessly with any off-equilibrium functional observations. Whilst in certain applications

direct access to derivative observations may be available (e.g. sensors measuring speed and

acceleration), it is also possible to generate them through the application of standard linear

regression techniques to any available equilibrium functional observations. An important

outcome of adopting this approach is that significant improvements in the computational

efficiency of the overall GP modelling approach may be realised. By using computationally

efficient linear regression techniques to identify derivative observations from (commonly

abundant) equilibrium data, the more computationally expensive standard GP methods can

then be reserved for the more scarce off-equilibrium data. This divide and conquer strategy

based on the combination of functional and derivative observations is discussed in more

detail in a forthcoming section, and previous detailed sources include Leith et al (2002),

Solak et al (2003) and Kocijan et al (2003c).

This overall synergy between the methods employed in the multiple model approach and

that of the GP modelling approach is further described in the review by Gregorčič and

Lightbody (2004, 2008). Furthermore, as discussed in section (4.5.6.2.1), another paper by

Gregorčič and Lightbody (2007) proposed another interesting but related alternative where

local linear GP models (in this case linear covariance functions are used) in the

development of a local model network model structure. Further notable contributions to the

field of GP modelling for dynamic system identification include the consideration of non-

Gaussian noise models as discussed in Murray-Smith and Girard (2001). In the previous

section discussing covariance functions (Section (4.3)), the general form of covariance

function assumed additive independent identically distributed Gaussian noise. However, in

the identification of real systems it is not unlikely that noise is dependent on other

variables. A further important development in GP models for system identification

purposes is the development of more a complex multi-step ahead prediction method where

the uncertainty over one prediction can be propagated to the next prediction. This

‘Uncertainty Propagation’ or ‘Prediction with Uncertain Inputs’ was first proposed in

Girard et al (2002) and expanded on in Girard (2004), and will be discussed in more detail

in a forthcoming section.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 155

5.1.1) Control with GP models

In this thesis the problem of applying automatic control to nonlinear dynamic systems

identified by GP models has not been investigated. However, it is worthwhile to provide a

brief overview of the existing research into this aspect, as one of the primary drivers behind

the development and maturation of any system identification approach is whether or not the

methods are well suited to solving existing control problems or if new control design

strategies are made possible.

One application of the GP model used in the context of control is the development of

Nonlinear Model Predictive Control (NMPC) strategies, as described in Kocijan and

Murray-Smith (2004) for a Ph Neutralisation process. The general idea behind MPC

strategies is to employ an explicit model of the process to predict the future behaviour of

the process up to a chosen prediction horizon, and then optimise the manipulated variable

against some cost function to obtain an optimal future process response. This input

information is then directed to the process, and the control horizon is then completed before

the whole sequence is repeated again. For more general information on NMPC, see the

reviews by Henson (1998), Qin and Badgwell (2000) and Allgöwer and Zheng (2000). In

the paper by Kocijan and Murray-Smith (2004), the interesting development is that the

NMPC algorithm is implemented with constraints placed on the variance output of the GP

model. Therefore, the process can be controlled in a robust manner that prohibits the

operation in regions of operating space that the GP model deems ‘unsafe’ as designated by

a high variance output. This exploitation of the variance output of the GP model for control

purposes is one of the main attractive features of the GP modelling approach, as variance

information is not normally so readily available. Further papers that have also investigated

control using GP models include Murray-Smith et al (2003) where the variance output is

used to implement ‘cautious’ control, Murray-Smith and Sbarbaro (2002), Sbarbaro and

Murray-Smith (2005), and Likar and Kocijan (2007). Furthermore, the incorporation of

derivative observations into the control system is discussed in Kocijan and Leith (2004),

and the application of ‘Fault Detection’ using GP models is discussed in Jurirčič and

Kocijan (2006).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 156

5.2) Applying the GP Model

In applying the GP modelling approach, we are to assume a Multiple-Input-Single-Output

(MISO) model structure, where the inputs x are to be mapped to a single output y . For the

identification of dynamic systems, we are interested in utilising information from previous

states to provide information about future states. Therefore, regressors such as previous

inputs and outputs are important quantities that we must build into our model. As a result,

the simple NARX (Nonlinear ARX) model structure discussed in Section (2.5.3.1) can be

seen to be an appropriate choice for the overall structure of the GP model:

() ((1), (2), , (), (1), (2), , ())y k f y k y k y k L u k u k u k L ε= − − − − − − +… … (5.1)

Where ε is white noise, and k is used to denote a consecutive number of data samples.

The selection of appropriate regressors is a key stage of the optimisation of any model

structure. In order to make this selection prior knowledge of the system can prove to be an

invaluable resource in tackling this problem. Furthermore, through a model testing and

validation stage it may become clear which inputs are most important. However, a further

facility of the GP modelling approach that can be used in the selection of inputs is the

Automatic Relevance Detection (ARD) feature of certain covariance functions. This feature

was briefly discussed in Section (4.3.1.1) in relation to the most popular Squared

Exponential covariance function. The ARD facility allows the relative importance of each

input dimension to be assessed through the relative size of the corresponding trained

hyperparameter, and therefore allows any redundant or non-contributing inputs to be

identified and then eliminated from the model structure.

5.3) Multi-Step Ahead Prediction

After the identification of the GP model hyperparameters, the next stage to consider is how

the model is to be employed for prediction. A standard approach to implementing multi-

step (or k-step) ahead prediction is to make repeated one-step ahead predictions up to the

desired prediction horizon, whilst all the time feeding back the predictive mean (model

output) as part of the model input. This ‘iterative’ approach can be contrasted with a

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 157

‘direct’ approach where the model is designed to predict a certain number (l) of steps into

the future. The direct approach suffers from the requirement that the model must include all

the required inputs to begin with (i.e. (), (1), , (1)u k u k u k l+ + −…), thus resulting in an

increase in the dimensionality of the input space. Furthermore, such a model can only

predict exactly l steps ahead and cannot be readily employed in applications where previous

outputs are required, thus restricting the flexibility of such an implementation. However, an

important drawback of the iterative one-step ahead prediction method is that it is an

approximation, where the prediction relies on previous predictions that may result in an

accumulation of prediction error. Nevertheless, this prediction method is the standard

approach used in most modelling problems.

5.3.1) Uncertainty Propagation

An alternative method of iterative multi-step ahead prediction has been proposed for use in

the GP modelling approach where the uncertainty or variance over each prediction is fed

back along with the predictive mean at each time step. In this method the input at which we

wish to calculate the prediction becomes a normally distributed random variable, therefore

allowing the uncertainty over each prediction to be propagated onto subsequent predictions

by updating this input random variable. The result of adopting this strategy is that the

variance over each prediction can potentially be made more informative, resulting in less

constrained (or wider) error bars where the model has been asked to repeatedly predict in

regions where the amount of training data is limited (i.e. a previous prediction with a high

corresponding variance (high uncertainty) can be taken into account when calculating

subsequent predictions). This method is discussed in more detail below and was first

proposed in Girard et al (2002) and is expanded on in Girard (2004). In this section a

summary of the overall method has been provided. A full mathematical derivation of this

extension can be found in Girard (2004), and a slightly more concise version is also given

in Kocijan et al. (2003c).

Firstly, given a set of training data 1{ , } N
i i iD t == x , we are to employ a zero-mean GP with

covariance function (,)i jC x x to model the input/output relationship i i it y ε= + , where

()i iy f= x , iε is white noise of zero-mean and variance tv and inputs ix are noise free. As

discussed previously, given a new test input x (note that the previously used notation of

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 158

*x is replaced for simplicity), the predictive distribution of the corresponding output

()y f= x can be readily obtained using the previous mean and variance predictive

equations (3.40) and (3.41). Rewriting these equations in the same form as Girard (2004),

and adopting 1β −= K t , the predictive equations become:

1

() (,)
N

i i
i

Cµ β
=

=∑x x x (5.2)

 2 1

1

() (,) (,) (,)
N

ij i j
i

C K C Cσ −

=

= −∑x x x x x x x (5.3)

This predictive distribution can also be described by: 2(,) ((), ())yp y D N µ σ=x x x

At this point we wish to consider a new input that is corrupted by noise (i.e. an uncertain

input), such that = + xx u ε where ~ (,)Nx xε 0 Σ . Therefore, the input can now be

considered a random variable that is normally distributed. In order to make a new

prediction at this random input ~ (,)N xx u Σ , the existing predictive distribution must be

integrated over this new input distribution:

 (,u,) (,) (,)x xp y D p y D p d= ∫Σ x x u Σ x (5.4)

As (,)p y D x is a nonlinear function (as given by equation (3.8)) of x , the new predictive

distribution (, u,)xp y D Σ is not Gaussian and cannot be readily integrated without

resorting to methods of approximation. In Girard (2004), a number of different

approximation strategies are discussed and can be broadly categorised into either

numerical or analytical approximations. The proposed numerical approximation relies on

the use of Markov-Chain Monte Carlo (MCMC) techniques with which to sample tx from

the Gaussian input distribution, ~ (,)N xx u Σ , whilst the analytical approximations are

dependent on the choice of covariance function The Gaussian (Squared Exponential) and

linear covariance functions are shown to result in integrals that may be computed exactly,

thus allowing the exact mean and variance to be calculated. In other cases, an

approximation to these integrals is proposed where a Taylor approximation to the selected

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 159

covariance function is utilised. From this approximation to the covariance function, an

approximate mean and variance of the predictive distribution can be obtained.

5.3.2) When to use Uncertainty Propagation?

The uncertainty propagation extension to the GP modelling approach has been primarily

discussed and implemented for the identification of nonlinear dynamic systems, and

especially for the purposes of control. In the literature dedicated to machine learning, the

application of uncertainty propagation for GP models is not given much consideration.

Therefore, as this proposed extension can be seen to add a further level of complexity it is

worth discussing when uncertainty propagation is best employed.

The main outcome of including the uncertainty propagation extension is an overall

‘flattening’ effect on the output predictive distribution. Therefore, in comparison to the

standard or ‘naïve’ implementation of the GP model, the predictive distribution is wider

(increasing the variance) and the mean value can become less pronounced. As the

predictive distribution is wider (and may also be less uniform Gaussian shape if the

numerical Monte-Carlo approximation is calculated), the location of the mean of the

predictive distribution can be found to be slightly different to that found with the ‘naïve’

implementation. In the examples presented in Girard (2004), this discrepancy between the

means found in the naïve and non-naïve cases is not normally huge, and at some points in

the prediction horizon either implementation may be more accurate (i.e. closer the recorded

output). Therefore, it is difficult to argue for the inclusion of uncertainty propagation purely

in terms of improving the quality of the mean prediction.

Where the uncertainty propagation extension does offer potential advantages is the effect

on the variance prediction. As the predictive distribution is wider, the variance output is

therefore boosted and is thus less constrained to the mean. For systems where the model is

found to represent the data very accurately, increasing the scale of the variance output is

perhaps not something that appears to be particularly worthwhile. However, for systems

that are less accurately modelled, if the model is to be tested on a long prediction horizon

and previous outputs are to be used as future inputs, it is clear that a growth in uncertainty

over the predictions is to be expected. Furthermore, despite the best intentions, the potential

remains for certain areas of operating space or test conditions not to be reflected in the

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 160

training data of the model (especially in a method where pressure exists to reduce the size

of the training set). In addition, for the identification of real-systems the potential exists for

unexpected disturbances or some low-level non-stationary behaviour to introduce some

differences between previously recorded and test behaviour. Therefore, it is perfectly

plausible for the model to make mean predictions based on evidence in the training dataset

that are not as accurate as the variance output would suggest (i.e. the variance output

(depicted as error-bars) does not fully envelope the real recorded response). Therefore,

through the use of uncertainty propagation, the boosted variance output will have a far

greater chance of enveloping the real response.

Fundamentally, this potential discrepancy between test and training data is something that

all data-driven modelling approaches have to deal with and is known as the generalisation

ability of the model. However, whereas most modelling approaches have only an output

prediction to consider, the GP modelling approach also has a variance output that should

ideally reflect the potential error in the model. Therefore, reflecting this growth in

uncertainty through the variance output of the model allows the GP model to become more

informative. Furthermore, it is worth noting that this growth in the uncertainty as the

prediction horizon extends is not unbounded or exponential, the capability exists to ‘catch’

the system (reducing the variance) at later test points as reported in Girard (2004).

Another aspect to consider regarding the use of uncertainty propagation is that the method

adds further level of complexity to the predictive framework of the approach, and thus

potentially adds further computational expense. Overall, whilst the expressions for mean

and variance are slightly more complex, and a further input covariance matrix (defined by

the size of the input vector) must be computed, as the size of the main covariance matrix is

not increased and that the repeated inversion of this potentially large matrix is the main

computational bottleneck, the additional computational expense of implementing

uncertainty propagation does not appear to be too much of a problem. Nevertheless, whilst

no additional large-scale matrix inversion is required, it is likely that by including the

propagation of uncertainty the evaluation speed of the GP model will be further slowed.

This has implications for the on-line application of the GP model, and with the exception of

a small number of papers outlining model-predictive control with GP models (see Section

(5.1.1)), there have been little dedicated investigations into the real-time implementation of

the GP model (with and without uncertainty propagation) and how it compares to other

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 161

black-box methods. Such a comparison would be a worthwhile future direction for research

as it may more clearly define the types of problem in which the GP model is most

appropriate (e.g. RBF networks are typically found to be slower to evaluate than MLP

networks, a significant disadvantage in certain applications).

Overall, the concept of taking into account the uncertainty of the input (and propagating

output uncertainty to subsequent predictions) would seem to be eminently sensible for

applications where time-series data is to be modelled. Furthermore, due to the probabilistic

nature of the GP model, implementing this consideration of input uncertainty is something

that is more feasible than in other modelling approaches. However, most modelling

approaches or implementations of multi-step ahead prediction do not seek to include the

uncertainty over the input, and it is merely understood that the accuracy of the model may

reduce as the prediction horizon is extended. Therefore, the uncertainty propagation can be

seen to be a useful but perhaps unnecessary extension if only the mean prediction is to be

used. But if the variance is to be actively employed in some manner, such as in the design

of control systems (see Section (5.1.1)), the uncertainty propagation may prove to be an

important addition. As this thesis is investigating the use of GP models for identification

purposes, rather than actively seeking to employ the variance output, we are more interested

in the accuracy of the mean predictions. As a result, the application of this propagation of

uncertainty extension has not been a priority, and the examples investigated have employed

the standard or ‘naïve’ implementation of the GP model.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 162

5.4) Derivative Observations

The concept of incorporating derivative observations into the GP model framework has

been previously discussed in Section (5.1). Overall, the proposal is particularly interesting

for system identification purposes as it offers a method to efficiently include derivative

information (either directly available from data, or generated from identified linearisations)

into the GP modelling approach. The main advantage of this proposal is the compatibility

with the divide-and-conquer strategy of other multiple model approaches, where local

linear models (in the form of derivative observations) can be combined with functional

observations to form a global representation.

Furthermore, in the identification of real nonlinear systems, it is often the case that much of

the available empirical data is found close to various equilibrium operating points, with the

availability of off-equilibrium transient data being typically scarce (see Section (2.5.6.1.2)

for more discussion on this point). As one of the main difficulties of the GP modelling

approach is the heavy computational demand associated with inverting the covariance

matrix (the size of which is dictated by the size the training dataset), any method that can

reduce this demand is worthy of consideration (e.g. the sparse matrix methods discussed in

Section (4.5.5)). The incorporation of derivative observations is an attractive extension as

the typically abundant equilibrium empirical data can be summarised using derivative

observations identified from computationally efficient linear optimisation, thus leaving the

remaining off-equilibrium data to be treated as normal function observations by the GP

model.

In addition, as discussed in Section (4.5.2), the presence of prolonged periods of steady-

state data can have a negative effect on the conditioning of the covariance matrix.

Therefore, as steady-state response data can often result from operating near to equilibrium

points, summarising such data in the form of a derivative observation through local

linearisation would appear to be an attractive alternative to deleting this problematic data all

together.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 163

5.4.1) Identifying Derivative Observations from Data

Whilst in certain applications derivative observations may be directly available from

empirical data, it is also possible to identify them from applying simple linear regression

techniques to the training data. Therefore, derivative observations can be generated for any

system using linearisation around suitable operating points. In order to perform

linearisation, small signal or perturbation data close to this operating point is required as

local linearity is only guaranteed near to the defined operating point of continuous systems.

Although it is possible to identify linearisations at any point, as with other modelling

approaches based on local linear models (e.g. Local Model Networks) it is normal to

identify linearisations at equilibrium points. Equilibrium operating points are important

when considering the stability of the system, which therefore has implications for control

purposes.

The linearisation at an equilibrium operating point can be achieved through applying the

Taylor series approximation (i.e. a function at x a= can be approximated by

() ()()y f a f a x a′= + − , for a 1st order Taylor approximation where the higher order terms

can be ignored by ensuring small scale perturbations from a). Therefore, the linearisation

involves the calculation of the slope or gradient (derivative) of the linear model ̂=y Xθ ,

through applying standard linear regression (i.e. gradient can be found by

1ˆ ()T T−=θ X X X y , variance from 2 21 ˆˆ()T

N
σ = y - Xθ , and local linear covariance matrix

from 2 1()Tσ −Σ = X X).

5.4.2) Gaussian Process Derivatives

Fundamentally, as differentiation is a linear operation, the derivative of a Gaussian Process

remains a Gaussian Process. Therefore, in order to incorporate derivative observations, the

covariance function to be employed for function observations must be differentiated, and

this derivative covariance function used to handle the derivative observations. For the most

popular Gaussian (Squared Exponential) covariance function, the existing covariance

function relating any two data points in the case of two functional observations is:

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 164

 2

1

1
(,) exp ()

2

D
d d

i j d i d j
d

C v w x x
=

 = − − 
 

∑x x (5.5)

For the case of mixed set of derivative and functional observations:

 2

1

1
(,) ()exp ()

2

D
d d d di

j d i d j d i d j
di

C vw x x w x x
x =

∂  = − − − − ∂  
∑

x
x (5.6)

In the case of two derivative observations, (where ,e dδ is a Kroneckor operator between

the eth component derivative in ix and the dth component derivative in vector jx):

2
,

1

1
(,) (()())exp ()

2

D
j e e d d d di

e e d d i d j i d j d i d j
di j

C vw w x x x x w x x
x x

δ
=

∂∂  = − − − − − ∂ ∂  
∑

xx
 (5.7)

In the existing literature, only the Gaussian covariance function has been considered for this

extension to the GP model. However, it is clear that any covariance function that is

differentiable may offer a suitable alternative. It is also worth noting that although the

covariance function is altered through differentiation, no new hyperparameters are defined

so the optimisation procedure is unchanged by this extension. As a result, the dataset used

for training need not include the derivative observations.

Furthermore, although we are to employ a derivative covariance function to handle the

derivative observations, the overall covariance matrix is still to be populated in a manner

that allows the existing GP predictive equations to be applied for output predictions. In

addition, the previously discussed proposal for uncertainty propagation is something that

can also be incorporated with the derivative observations extension. In this next section we

will briefly cover the incorporation of derivative observations in the standard or ‘naïve’

multi-step ahead implementation of the GP model, but full details of incorporating

combining uncertainty propagation and derivative observations can be found in Kocijan et

al. (2003c) and Girard (2004).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 165

5.4.3) Incorporating Derivative Observations

Using the same notation as Kocijan et al. (2003c), the incorporation of derivative

observations can be achieved in the following manner. A possible for the grouping of the

data in the input matrix X and the target vector t is:

oeq oeq

eq eq

eq eq

eq eq

 
 
 
 

=  
 
 
  
 

Y U

Y U

Y U
X

Y U

⋮ ⋮

⋮ ⋮

 and

1

()

()

oeq

eq

f

y k

f

u k

 
 
 
  ∂
  ∂   =  
 
  ∂
  ∂  
 
 

Y

Y

t
⋮

⋮

 (5.8)

Where:

1oeqY is a vector of target response points out of equilibria

oeqY is a vector of input response points out of equilibria

oeqU is a matrix of input points out of equilibria

eqU is a matrix of equilibria input points

eqY is a vector of equilibria response points

()

f

y k

 ∂
 ∂ 

 is a vector of derivative observations of response component (vector of a

linear model coefficient in different points).

()

f

u k

 ∂
 ∂ 

 is a vector of derivative observations of input component (vector of a

linear model coefficient in different points).

Therefore, the target vector t now contains derivative observations rather than just output

measurements, and the input matrix X has also been extended to include the values of the

regressors associated with each derivative observation. Furthermore, in this model

structure, a derivative observation vector (
()

f

y k

 ∂
 ∂ 

 and
()

f

u k

 ∂
 ∂ 

), exists for each

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 166

component of the input matrix. Therefore, the dimension of the input space is

()Dn D n D+ ⋅ × and the dimension of the target vector is () 1Dn D n+ ⋅ × , where D is the

number of derivative observation vectors, n is the number of function observations (input-

output training data), and nD is the number of derivative observations (input-output

equilibrium training data).

From this organisation of the input matrix and target vector, a corresponding organisation

of the covariance matrix is given by:

1

1 1, 1 1,

,

(,) (,) (,)

(,) (,) (,)

(,) (,)

j j
i j i i

j jd d D

j ji i i
j

i i j i jd e d e d D

ji i
j

i i jd D e D d

C C C
x x

C C C
x x x x x

C C
x x x

= =

= = = = =

= = =

   ∂ ∂
       ∂ ∂      

   ∂ ∂ ∂ ∂ ∂
    ∂ ∂ ∂ ∂ ∂=         

 ∂ ∂ ∂
  ∂ ∂ ∂    

x x
x x x x

x xx x x
x

K

xx x
x

⋯

⋯

⋮ ⋮ ⋮ ⋮

1 ,

(,)ji

i j e D d D

C
x x

= =

 
 
 
 
 
 
 
 
 
  ∂∂
  
 ∂ ∂   

xx
⋯

 (5.9)

[]

1

(,)

(,)

()

(,)

i

i

i d

i

i d D

C

C
x

C
x

=

=

 
 
 ∂ 
  ∂  =
 
 
 ∂ 
  ∂  

x x

x
x

k x

x
x

⋮
 (5.10)

 []() (,)k C v= =x x x (5.11)

Therefore, utilising these matrices, the standard GP predictive equations can be computed

to give the mean and variance components of the output predictive distribution.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 167

5.5) Experimental Methods and Objectives

In the remaining parts of this chapter, a number of simulated and experimental example

systems are to be identified using the GP modelling approach. Therefore, before delving

fully into the specific characteristics of the systems to be identified, a brief discussion of

what precise aspects of the GP modelling approach are to be investigated is worthwhile.

Furthermore, this section is to provide a means to reiterate some of the main findings of the

previous sections, and therefore justify some of the implementation methods and model

design choices that are to be made in the process of identifying the example systems

investigated.

5.5.1) Implementation of GP Models

One of the more overlooked aspects within the literature of GP models is how best to

implement the approach for a given application. This is partly due to the application

specific nature of any system identification task, i.e. what will work on one problem, may

not work on another. Nevertheless, a more practical guide to the implementation of GP

models to for a variety of nonlinear systems would be a useful addition to the field. In

Chapter 4, a detailed discussion of the implementation aspects of the GP modelling

approach was presented. In this section we focus on some of the main points of this

discussion that are to be investigated in the forthcoming examples.

In the development of a suitable mathematical model one of the key stages of the system

identification process is to select an appropriate model order. However, as the GP model is

a nonparametric method, this component of the identification process is not required.

Instead the GP model is to be completely defined through the selection of an appropriate

covariance function together with a suitable set of training data. The choice of covariance

function will impact heavily on the types of nonlinearity that the resultant GP model will be

able to represent effectively, and the design of the training dataset will have a profound

bearing on the relative accuracy of any identified GP model.

With regard to the design of the training dataset, as this component will contain the

information with which to identify the GP model, the selection of an appropriate set of

inputs or regressors will play an important role in the development of an accurate model.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 168

Therefore, for complex systems where a large number of regressors will be required to

characterise the system, the identification of these regressors is an important part of the

identification process. For the relatively simple example applications examined in this

thesis the identification of suitable regressors was found to be quite straightforward as the

number of regressors required was quite low (typically used only a single input variable

together with a few delayed input and output variables). However, for more complex

systems the task of identifying suitable regressors may become more challenging and the

use of delay-embedding theory (see Takens (1981)) may be of particular relevance in order

to identify the nonlinear mapping through dynamic reconstruction of the observed time-

series data.

5.5.1.1) Choice of Covariance Function

For the choice of covariance function, any covariance function that results in a positive

semi-definite covariance matrix may be employed. However, whilst a number of different

covariance functions and even combinations of covariance functions have been proposed,

see Section (4.3), a limited amount of practical research is available with which to select an

appropriate covariance function. As a result, the most popular squared exponential or

Gaussian covariance function has become almost uniformly adopted in the GP modelling

approach. The use of this stationary function imposes the assumption that the input-output

data to be approximated varies in a smooth and consistent manner. In the case of real

engineering systems such qualities are common, as most real systems are designed to

operate smoothly for ease of use.

However, it is also clear that many systems will exhibit responses that fail to meet this

assumption of smooth and stationary behaviour. Therefore this reliance on the squared

exponential function can be seen to be limiting the potential flexibility of the GP model.

Nevertheless, the squared exponential covariance function has been used successfully in the

identification of a variety of systems, so a further investigation into the flexibility and

ultimate limitations of the Squared Exponential function is worthwhile. Therefore, in the

experimental results presented in this thesis the choice of covariance function has been

initially restricted to the popular Squared Exponential function. From this point we can then

move onto identifying the potential limitations that this choice imposes, and then seek to

offer alternatives.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 169

A further reasoning behind the selection of the Squared Exponential covariance function is

that it is well known from other approaches (e.g. RBF Networks), and the hyperparameters

can be interpreted more easily than for other covariance functions. In addition, some of the

extensions (uncertainty propagation and derivative observations) to the standard GP

modelling approach have been proposed with this covariance function specifically in mind.

Whilst other covariance functions can be used with these extensions (i.e. an approximation

based upon a Taylor-series expansion for uncertainty propagation), as yet very few further

developments or experimental investigations have been presented.

5.5.1.2) Design of Training Dataset

The design of a suitable training dataset is paramount in the successful identification of any

model developed primarily from empirical data. In Section (4.5), the size and conditioning

aspects of the covariance matrix and its implications for the design of the training dataset

were discussed in detail. In the forthcoming examples, we are to investigate some of the

issues raised in this discussion.

In particular, as the size of the training dataset dictates the size of the covariance matrix, in

order to ensure that the identified GP model remains computationally viable, the number of

datapoints included in the training set should not be too large. In Section (4.5.4) an upper

limit of ~1000 datapoints was proposed as being suitable for the direct implementation of

the GP model for system identification purposes on average desktop PC facilities and a

number of approximate methods have also been proposed for larger datasets. In the

examples presented here, we are to stick to this limit of ~1000 datapoints, and therefore

investigate the identification of GP models using relatively small datasets. Therefore,

important issues such as the choice of sampling rate and the design of the input signal are to

be discussed. Furthermore, any aspects where prior knowledge of the system can be utilised

are to be made clear.

Given this constraint over the size of training dataset, the task of creating a dataset that

captures the essence of the underlying process becomes a significant challenge to ensure

that we make the most of the space available. In addition, the choice of covariance function

can be seen to extend an influence toward the suitability of any training dataset, i.e. the

squared exponential function’s requirement for smoothly varying data. Furthermore, during

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 170

the optimisation of the hyperparameters and ultimately the computation of new predictions,

the covariance matrix built from this combination of covariance function and training data

must be inverted many times. Consequently, not only is the size of the training set

important, but the conditioning of the resultant matrix must also be appropriate in order to

allow efficient and accurate inversion. Furthermore, as discussed in Section (4.5.3), the

requirement for a well conditioned covariance matrix has implications for the design of the

data collection experiments.

In section (4.5.2) one of the most likely causes of covariance matrix ill-conditioning was

identified as the presence of large amounts of steady-state data in the training dataset.

Therefore, one of the main experimental design strategies that can be employed is to

endeavour to keep the system excited (i.e. not operating under equilibrium conditions) for

the duration of the experiment. Such an approach can be undertaken through the use of

random excitation signals. However, as will be discussed in the forthcoming examples it is

also necessary to allow the system to approach steady-state in order to include this

information in the training dataset. As a result, the excitation signal used to collect the

training data must be considered carefully. Furthermore, in some of the examples presented

in this thesis it has also been necessary to manually remove prolonged periods of steady-

state data from the training dataset. Through this removal of problematic steady state

datapoints it could therefore be construed that an asynchronous approach to sampling is

being taken. However, the approach taken was to remove certain sections of data and then

reconstruct a complete training dataset from the portions of the overall dataset that are to be

kept. As a result, a uniform sample interval (synchronous sampling) was maintained in the

training dataset.

An alternative approach to tackling the problem of ill-conditioning caused by steady-state

data is to employ some method of regularisation, as mentioned in Section (4.5.2.1.3). Such

an approach would add a further level of noise or ‘jitter’ to the data so that prolonged

periods of steady state data can be made more variable, see Tikhonov and Arsenin (1977).

However, for the examples presented in this thesis we are to concentrate on the pre-

processing of the training dataset without the use of such regularisation techniques. In this

way, the problems encountered with the data can be stated more clearly and therefore

tackled directly, rather than masked through the addition of an artificial noise component.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 171

5.5.1.3) Further Developments

The initial experimental results presented are focused on presenting the capabilities of the

most straightforward implementation of the GP model when applied to relatively simple

nonlinear static and dynamic systems. However, through the selection of a particular

covariance function (Squared Exponential) and the restriction of the number of training

points included in the covariance matrix, the potential flexibility of the approach has been

compromised somewhat. As a result, through the course of this chapter a number of

potential strategies have been investigated with a view to providing a solution to some of

the problems encountered.

In order to tackle the constraints over the size of the training dataset, in Section (4.5.5) a

number of approximate methods were discussed. Furthermore, is Section (5.4) an

alternative method based on the use of derivative observations was discussed. In the

forthcoming results, some of these methods are to be investigated. In the final part of this

chapter, the proposals for ‘mixed model’ implementations of the GP model are also to be

demonstrated. Overall, these methods are aimed at overcoming some of the weaknesses in

the GP modelling approach that have been encountered.

5.5.2) Examining Performance of the GP model

In order to support the proposal for considering GP models as a tool for nonlinear system

identification, it is necessary to demonstrate that accurate models of system behaviour can

be obtained. From a fundamental perspective, there would be not much point in persevering

with the GP modelling approach, let alone recommending it, if the resultant predictive

performance is poor. Consequently, careful validation procedures conducted on separate

test datasets (i.e. cross-validation), must be adopted in order to provide evidence of the

accuracy of the identified models. This is especially important to provide a feel as to the

performance of the GP model, as no direct numerical comparison of the GP models with

other different modelling procedures is to be presented in this thesis. A detailed numerical

comparison between the GP modelling approach and other machine learning methods is

provided in Rasmussen (1996), and a more practical system identification comparison can

be found in Kocijan et al (2003a).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 172

For the evaluation of the GP modelling approach a number of different measures of

performance can be utilised. These include the standard quantitive measures of model

accuracy that can be used to evaluate the mean prediction, such as Mean Square Error

(MSE) and Mean Relative Square Error (MRSE):

 2

1

1
MSE

N

i
i

e
N =

= ∑ (5.12)

2

1

2

1

MRSE

N

i
i
N

i
i

e

y

=

=

=
∑

∑
 (5.13)

Where iy is the system output, ˆiy is the model output and ˆi ie y y= − is the prediction or

model error at the ith case of the test dataset (of size N).

Furthermore, as the GP model is a probabilistic approach, where an output predictive

distribution is provided, it is also possible to evaluate the performance of the model using

more probabilistic measures. For the GP model, the negative Log Predictive Density (LPD)

and negative Log-Likelihood (LL) have been used as valuable indicators of model

performance:

2

2
2

1

1 1
LPD log(2) log()

2 2

N
i

i
i i

e

N
π σ

σ=

 
= + + 

 
∑ (5.14)

 11 1
LL log log(2)

2 2 2
T N π−= + +K y K y (5.15)

The LPD estimate (smaller or ‘more negative’ the better) accounts for the model

uncertainty (variance output), and trades it off against the accuracy of the model. As a

result, this measure of performance is to especially indicate when the predictions are

‘overconfident’ (high model error & low variance), rather than predictions that are ‘good’

(low model error & low variance) or ‘bad’ (high model error & high variance). The

negative LL estimate (smaller or ‘more negative’ the better) is the same loss function used

to train the hyperparameters of the covariance function, and provides an overall indication

as to the probability of the model. As a result, the LL measure is less useful for assessing

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 173

model performance as it will be modified every time the training dataset and model setup

are changed.

Along with these quantitative measures of model performance, of further importance is to

assess the model in more subjective or qualitative terms. In this way, the model validation

stage can ensure that the identified model is fit for its intended purpose. Therefore,

important aspects such as the overall plausibility and interpretability of the model can be

assessed. Furthermore, together with close scrutiny of the prediction error, the variance

output of the GP model can provide some valuable insight as to the model performance in

local operating regions (e.g. a high variance is likely to be due to a lack of training data in a

particular region).

As the variance output of the GP model is one of the most potentially attractive features of

the approach, the characteristics of this extra output information must also be investigated.

In an ideal situation, the location and magnitude of the variance output would exactly

mirror that of the prediction error between the model and the process. In this way, we

would then have a measure of the model error that is available at all times or ‘online’,

rather than only when validation tests are being completed. As discussed earlier, this extra

information could then be integrated into some form of model-based predictive control or

fault detection implementation. However, fundamentally model error is not what the

variance output signifies; instead it is a measurement of uncertainty over each prediction,

not a measure of the error itself. In other words, the level of agreement between the test

data and the information found within the training dataset is what governs the resultant

variance output. Therefore, test data presented to the GP model that does not fall within the

boundaries of the training set, or shows significantly different characteristics, should result

in a potentially inaccurate prediction estimate together with a marked increase in the

magnitude of the variance output. Therefore, something that should be closely examined for

each example application is the relationship between the level of the variance output and

the degree of model error.

Of further interest in the examination of the variance output, is the proposal for uncertainty

propagation from one prediction to the next, see Section (5.3). Overall, the idea that the

uncertainty surrounding one prediction should then be reflected in subsequent predictions

appears to be sensible. However, as discussed in Section (5.3.3), the uncertainty

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 174

propagation algorithm is primarily of use in applications where the variance output is to be

actively employed in some manner. As this thesis is primarily concerned with identification

and not control, the uncertainty propagation extension has not been implemented.

Furthermore, as the outcome of adopting this extension is well understood to be an overall

‘flattening effect’ on the output predictive distribution, rather than an increase in the

accuracy of the GP mean prediction, there is no great reason to repeat this demonstration.

5.6) Simulated Examples

Before tackling the identification of the real laboratory based nonlinear systems from

experimental data, the GP modelling approach is first to be applied to some initial

simulated examples. These examples are aimed at demonstrating the power of the GP

modelling approach when confronted with the task of identifying strongly nonlinear

mathematical functions from a small number of training observations. Furthermore, these

examples are intended to demonstrate the full process of applying the method. The previous

demonstrative example, see Section (3.8), was aimed at conveying the theoretical

procedure, where the hyperparameters were not identified from the training data. Instead,

the posterior was generated using the same random process as the datapoints. In these

simulated examples and for the experimental results to come, the hyperparameters of the

covariance function are to be identified from the training data. A further intention of these

simulated examples is to highlight the differences between implementations of the GP

modelling approach where static nonlinearities are to be identified, such as those found in

the regression or interpolation problems found in machine learning and statistics, and the

more typical dynamic time-series problems found in engineering which are the focus of this

research.

5.6.1) ‘Smooth’ Data - Static Nonlinear Example

In this opening example we are to consider one-dimensional static nonlinearities. Consider

the following smoothly varying nonlinear mathematical function:

sin(x)
y

x
= (5.16)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 175

In this example we are to attempt to identify the unknown y from a number of observed

inputs and outputs {x, y} and therefore build a 1 dimensional mapping from x to y so that

when presented with a different set of inputs x*, we may be able to predict the resultant

outputs. For this static nonlinear problem, we can simply define an input range, []0 20∈x

and calculate the resultant outputs. To make things slightly more realistic, some random

noise can be added to the function. For the initial part of this opening example the noise is

to be kept very low, however it will be increased in a later example. A number of training

observations can then be selected through sampling of the original function calculations

(every 2 seconds, resulting in 10 datapoints), as in Figure (5.1).

2 4 6 8 10 12 14 16 18
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Input, x

y

Figure (5.1): Shows one-dimensional simulated example function, with 10 evenly

spaced training observations marked.

The next stage of the GP modelling process is to select an appropriate covariance function

with which to generate the covariance matrix that specifies the Gaussian process prior. As

indicated earlier, the most popular choice of covariance function is the Squared Exponential

function and it is this one that we are to employ for this problem. Furthermore, as the

choice of this function implies a smoothly varying function, it would seem appropriate for

this simulated example. Lastly, this covariance function is to be combined with the simple

noise model as described in section (4.3).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 176

The task is now to perform maximum likelihood optimisation to identify a set of optimal

hyperparameters for the covariance function. In this simple one-dimensional example we

are to find three hyperparameters of the Squared Exponential covariance function: a vertical

variance or amplitude hyperparameter θ1, a length-scale parameter θ2, and a noise

parameter θ3. For this example, a set of default initial values of these hyperparameters

(log(-1) for all 3) were selected, equivalent to uniform priors over each hyperparameter. By

applying the methods detailed in Section (4.4.2), the hyperparameters were calculated as

θMP.= (θ1 = 2.7677 θ2 = 0.4566, θ3 = 0.0023) Following the identification of a set of optimal

hyperparameters, the covariance matrix K may then be fully specified. The next stage is

then to employ the predictive equations (3.40) and (3.41) toward the goal of predicting new

output target values given a series of test inputs x*.

Regarding the choice of data to be employed to test the GP model, it is at this point that we

can define the major difference between the static nonlinear mapping problems considered

here, and the more conventional dynamic time-series data examples found in engineering

applications. As we have collected a set of training data that evenly covers the whole of our

defined input range (0 20x< <), any test data subsequently collected will also lie in close

proximity to these training points. In effect, the test data will closely match the training data

and therefore lead us to the expectation that the resultant GP model predictions should

closely match the underlying function (assuming that we have included sufficient training

points). This point may seem an obvious one, but it is worth stating as a lot of the GP

modelling literature demonstrates the approach with such static one-dimensional examples

of this kind. Therefore, it is important to point out that in such cases, the training and test

data are often quite similar and a good model should not be an unexpected outcome.

Furthermore, it is also important to make clear that as no previous output information is to

be used as additional inputs, this example should be termed as a simulation rather than a

prediction.

In Figure (5.2a) we can see that the GP model predictions do achieve a good fit to the

underlying function, with a Mean-Square Error (MSE) of 3.67e-005, Log Predictive

Density (LPD) of 3.9632, and log likelihood (LL) of 0.9607. Furthermore, due to the even

spread of the training points, even though there are relatively few training data points (10 in

this case), the variance output of the GP model is relatively low and consistent across most

of the defined operating range of the input. However, we can see a marked increase in the

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 177

variance at x 18> and also the beginnings of model error in the mean prediction. This

growth in the model error and variance is further indicated in Figure (5.2b), and is due to

the lack of training points in this region of input space. Notice also the slight growth of the

variance for test points occurring between the evenly spaced training points.

2 4 6 8 10 12 14 16 18
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Input, x

y

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Input, x

E

 (a) (b)

Figure (5.2): One-dimensional simulated example function. Chart (a) shows GP mean
predictions (dotted line) vs Underlying function (solid line) together with GP model
variance shown as 2σ errorbars (95% confidence interval). Chart (b) shows GP Model
Error (solid line) and Variance (2σ) output (dashed line).

The decay in the prediction accuracy in regions where training data is lacking is something

that all empirically based modelling approaches will be subject to. Therefore, the process of

collecting a suitable empirical dataset that covers the entire operating range of interest is of

fundamental importance. Furthermore, it is worth reiterating that, fundamentally, the GP

modelling approach is a method of interpolation, where a curve is to be fitted between

observed values. This means that outside of the input range that is populated with training

observations, the GP model will not provide any reliable estimates of the underlying

function (i.e. the extrapolation ability of the GP model is poor). However, due to the

existence of the variance output (that should increase substantially in regions where training

data is limited), we can at least display a lack of confidence in any predictions made in

these sparse regions.

As would be expected, through further reduction of the number of included training points

the accuracy of the model diminishes and the variance output increases in regions of input

space where data are sparse. Furthermore, a reduction in the number of training points can

lead to optimisation problems (in this example, N<8 results in a failure of the optimisation

algorithm), as there is simply insufficient information available with which to identify the

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 178

hyperparameters. By contrast, an increase in the number of training points included will

result in greater prediction accuracy at the expense of an increased computational burden.

Therefore, for online applications a temptation may exist to train the model offline using a

large dataset to obtain suitable hyperparameters, then for reasons of computational

efficiency use a smaller dataset with which to make predictions. However, such an

approach is untenable as the GP model is defined by the information present in its

covariance matrix (i.e. hyperparameters such as the length-scale are defined by the precise

spatial relationship between training points), rather than as a parametric form where

parameters may be interchanged or manipulated. This is perhaps an obvious but important

point, the hyperparameters are not transferable between different models, and although their

individual roles may be interpretable, the interdependency of the hyperparameters leads to

an overall lack of interpretability that prevents any meaningful manual adjustment.

5.6.2) ‘Sparse’ Data Region - Static Nonlinear Example

As discussed previously, one of the primary drivers behind the research into the GP

modelling approach was the method’s potential use in the identification of models in off-

equilibrium operating regimes. The main difficulty associated with identifying models of

such operating regimes using empirical methods is in obtaining enough empirical data. In

the previous example, the general impact of the number of included training points on the

GP model’s predictive accuracy was discussed. Furthermore, the growth of the variance

output in operating regions where training data is sparse was also made clear.

In this example, we are to build on this second point and demonstrate why the GP model is

a good choice for tackling identification in sparse regions of operating space. Furthermore,

rather than employ an arbitrarily chosen nonlinear function to generate empirical data, a

simple Simulink model, see Figure (5.3), is instead utilised to generate nonlinear data.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 179

Figure (5.3): Simple 1-dimensional Static Nonlinear System

Through the course of this chapter, a number of different Simulink models are to be utilised

for the generation of example training and test datasets, as a greater control over the type of

nonlinearity and scale of the input range is possible. Therefore, whilst such models are no

substitute for the real system applications, they do offer the possibility to easily try out

different strategies and demonstrate different aspects of the GP modelling approach. In this

example, the ‘Signal Builder’ block is used to generate an input signal composed of a

number of positive and negative step inputs. This data is then fed through a simple 1st order

transfer function block that has the effect of slowing down this transient behaviour in order

to allow a set of smoothly varying data to be collected. As this smoothly varying data is

one-dimensional (i.e. not input and output data), it is to be interpreted in a similar manner

to that of the previous static nonlinear example. In this example, the Squared exponential

covariance function is again used to define a Gaussian Process prior.

As this example is to demonstrate how the GP model is to tackle the identification task in

regions of sparse data, the data signal was designed in a manner to reflect 3 different local

operating regimes. At small and large values of x the output y is to vary smoothly and have

relatively small amplitude variation (i.e. regions 20x < and 40x >). In the middle of these

regions of input space (i.e. 20 40x> <), the scale of the amplitude variation of the data

signal is to be considerably larger. The data collected from this system was initially

sampled every 0.2 seconds to provide 300 training points (note that in terms of sampling

the input x is interpreted as a timescale). Then the middle section of the data was further

sampled by a factor of 5 so that the training data in the region 20 40x> < is observed

every 1 second, resulting in an overall training dataset of 220 points. This training dataset is

shown in Figure (5.4).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 180

0 10 20 30 40 50 60
-6

-4

-2

0

2

4

6

Input, x

y

Figure (5.4): Training Data of Sparse Data Example

The next stage is to identify the hyperparameters of the covariance function through the

optimisation of the marginal likelihood. As the covariance function is the same as that used

in the previous example, the same 3 hyperparameters need to be identified. Using the same

initial values (log(-1) for all 3), the hyperparameters were calculated as θMP.= (θ1 = 0.9851

θ2 = 2.9812, θ3 = 0.0757). As before, due to the static nature of the problem, the test data

will invariably be of a similar constitution to that of the training data. However, in order to

investigate the quality of the model identified in the sparse middle region of the data, the

full complement (sampled every 0.01s) of the generated x data is to be used as the test

input. Once again, this example can be understood as a simulation rather than a prediction.

The GP model’s mean predictions are shown in Figure (5.5) and compared with the

underlying test data.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 181

5 10 15 20 25 30 35 40 45 50 55
-6

-4

-2

0

2

4

6

Input, x

y

Figure (5.5): GP Mean predictions (dotted line) vs. Underlying function (solid line)

Overall, we can see that the GP model achieves a good level of approximation in the upper

and lower regions of the input space where training data is plentiful. As would be expected,

the quality of the model predictions is significantly reduced in the middle region where

training data is more sparse. Using the same measures of model performance as before

gives a Mean-Square Error (MSE) of 0.0918, Log Predictive Density (LPD) of -0.2169, and

log likelihood (LL) of -7.7237. The variance output of the GP model can again be plotted

on the same axis and compared with the model error as shown in Figure (5.6).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 182

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Input, x

E

Figure (5.6): GP Model Error (dashed line) and Variance (2σ) output (solid line)

In Figure (5.6) we can see that, as well as a substantial increase in the model error present

in the middle region of the input space, the variance output of the GP model is also

significantly larger. It is this facility to indicate the confidence over each prediction that

makes a probabilistic approach such as the GP model an attractive alternative to other

modelling approaches.

Fundamentally, any empirical modelling approach will struggle to identify operating

regions where data is limited; therefore the reduction of the model accuracy in this example

is not something that should be unexpected. Nevertheless, the GP model does provide a

reasonable attempt at identifying this sparsely populated region of operating space with the

identified function at least bisecting the included training points. This is the other main

advantage of utilising the GP method to tackle this kind of problem, as whatever data that is

available will be used directly in making predictions in this region, rather than just

employing a function whose characteristics are primarily identified from data in other

operating regions (i.e. the GP model ‘constrains’ the identified function to at least touch the

few included training points).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 183

5.6.3) ‘Noisy’ Data - Static Nonlinear Example

In the previous two examples, the level of noise present on the data was minimal. In this

example, the effect of a larger level of noise on the identification process of the GP model

is to be discussed. Returning to the simple nonlinear example used in the first example

(equation (5.16)), a significant level of random noise is to be added to the data, and the

computed values are to be sampled in the same manner as before to obtain 10 training

points, as depicted in Figure (5.7).

2 4 6 8 10 12 14 16 18
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Input, x

y

Figure (5.7): Shows Noisy simulated example function, with 10 evenly spaced training

observations marked.

The effect that this additional noise has had on the training observations can be readily

understood by plotting the previous noise-free training points and underlying function on

the same chart as the noisy training observations, as in Figure (5.8).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 184

2 4 6 8 10 12 14 16 18
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Input, x

y

Figure (5.8): Shows Noisy simulated example function, with noisy (large markers) and

noise-free (small markers) training observations marked.

As would be expected, the added noise has significantly modified the position of the

training observations. Therefore, it is likely that any identified GP model will also be less

accurate in approximating the underlying function. This is indeed the case as can be seen in

Figure (5.9), where a significant error between the identified GP model (dotted line) and the

underlying function (dashed line). Furthermore, as the GP model has provided a smooth

estimate of behaviour, the model prediction has completely failed to capture the noise

present in the data. This is again to be expected, as by including only 10 training points, it

is impossible to capture the higher frequency oscillatory behaviour present in the noise. In

order to approximate such behaviour, it would appear that the model would have to include

a far larger number of training observations.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 185

2 4 6 8 10 12 14 16 18
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Input, x

y

Figure (5.9): GP Mean predictions (dotted line) vs. Noisy Underlying Function (solid

line) vs. Underlying function (dashed line) for 10 training observations.

In many modelling approaches, in order to successfully model systems where a large

amount of noise is present, it is common practice to employ larger amounts of empirical

data and perhaps even more complex model structures. Of course by doing so, the risk of

‘overfitting’ the data becomes more pronounced, where the model has begun to identify the

noise rather than just the underlying function. In Chapter 3, the potential benefits of using

the Bayesian approach of the GP model to tackle the problem of model complexity where

made clear. Therefore, in this example it is worth retraining the GP model to include a far

larger number of training points in order to demonstrate whether or not overfitting is to

become a significant problem.

Using the same noisy nonlinear data, instead of sampling to provide 10 training points, this

new implementation is to employ 400 training points. The effect of including more training

points on the quality of the GP mean predictions is depicted in Figure (5.10). Overall, we

can see that the new predictions of the GP model are very close to that of the underlying

function, whilst the model has still not approximated the noise present in the data.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 186

2 4 6 8 10 12 14 16 18
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Input, x

y

Figure (5.10): GP Mean predictions (dotted line) vs. Noisy Underlying Function (solid

line) vs. Underlying function (dashed line) for 400 training observations.

Therefore, it is clear that as with other modelling approaches, the identification of noisy

systems will require a significantly larger training dataset in order to provide accurate

predictions of the underlying function. Furthermore, in contrast with other complex model

architectures used for empirical modelling, the GP model does not tend to overfit the data.

In some respects this reluctance of the GP model to begin modelling the noise present in the

data is due to the automatic implementation of the Occam’s Razor principle which

implements a preference for the simplest solution (see Section (3.5.4.1)). However, a

further aspect in play is that the specified Squared Exponential covariance function is only

capable of providing smooth (infinitely differentiable) posterior functions. Therefore, any

GP model specified with such a covariance function will fail to model such a sharply

varying almost discontinuous (or non-differentiable) function.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 187

5.6.4) ‘Spiky’ Data - Static Nonlinear Example

In the previous example, the GP model specified with a Squared Exponential was

demonstrated as being unable to identify a sharply varying or ‘spiky’ example function.

Whilst in the previous example this was beneficial in that the smoothly varying underlying

function could be successfully identified given enough training points, despite a large noise

component present in the training data. On the other hand, this inability to approximate

more sharply varying data can be seen to be a fundamental limitation of the GP modelling

approach when this most popular Squared Exponential covariance function is employed.

For many real applications (including the two examples considered later in this chapter),

this limitation to smoothly varying systems is not something that is unduly troublesome.

However, for systems that exhibit a less smooth response, alternative methods must be

pursued.

A possible strategy is to employ a different covariance function that has less strong

assumptions over the smoothness properties of the underlying function. In Section (4.3.1.2),

the Matérn class of covariance functions was identified as being suitable for such a task.

The Matérn class of covariance functions allows the relative smoothness or differentiability

of the GP prior to be controlled through the parameter ν . In this example, a Matérn

covariance function is to be compared with the more popular Squared Exponential

covariance function for the approximation of a ‘spiky’ static dataset.

The spiky dataset to be approximated was generated using a simple Simulink model as in

Figure (5.3), however the denominator of the transfer function block was changed from

(0.25s+1) to (3s+1), and the ‘signal builder’ block was used to define a number of positive

and negative steps that vary in and around zero (rather than gradually increasing as in

Figure (5.3). The ‘spiky’ dataset generated is depicted in Figure (5.11) and can be seen to

vary considerably less smoothly than in the opening two examples of this section, but is

also not extremely discontinuous as in the noisy previous example. As in the previous

examples this dataset is to be used for both training and testing the GP model, and this

example can be understood as a simulation rather than prediction. For the purposes of

comparison, two training different sized datasets were sampled from this data, one

containing 100 points and the other containing 34 points. The location of the smaller set of

training observations is marked on Figure (5.11).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 188

5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Input, x

y

Figure (5.11): Shows ‘Spiky’ example function, with 34 training observations marked.

The Squared Exponential covariance function is first used to approximate the data using the

100-point training dataset (see Test 1 below) and then the 34-point training dataset (see

Test 2). This process is then repeated for the Matérn covariance function (see Test 3 and 4).

For the Matérn case, as discussed previously at higher values of the differentiability

parameter, 7 / 2ν ≥ , sample functions taken from prior defined by the Matérn covariance

function become almost indistinguishable from those defined by the Squared Exponential.

Therefore, for this example the differentiability parameter is chosen to be 3 / 2ν = , and the

covariance function given by equation (4.4).

Test 1 – Squared Exponential Covariance Function(100 training points)

In Figure (5.12) the GP predictions are compared with the underlying data for the model

trained on 100 training points. The hyperparameters were calculated as θMP.= (θ1 = 1.3877

θ2 = 0.9999, θ3 = 0.0783) and the validation measures calculated as Mean-Square Error

(MSE) of 0.0028, Log Predictive Density (LPD) of 1.5058, and log likelihood (LL) of

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 189

7.2224. The variance output of this GP model can again be plotted on the same axis and

compared with the model error as shown in Figure (5.13).

Overall, we can see that the GP model identified using the Squared Exponential covariance

function provides a good approximation to the ‘spiky’ dataset. However, looking more

closely at the sharp peaks of this dataset, there is a noticeable error between the model and

the underlying data. This deficiency is due to the smoothness assumptions inherent in the

choice of this particular covariance function.

5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Input, x

y

Figure (5.12): ‘Spiky’ Data Example (100 training points, Sq. Exp Cov. Function) -

GP Mean predictions (dotted line) vs. Underlying function (solid line)

This mistaken assumption over the smoothness properties is further demonstrated in the

complete lack of correlation between the model error and predictive variance as shown in

Figure (5.13). In this example, the optimisation procedure has failed to find an optimal set

of hyperparameters that would allow a smoothly varying function (as defined by the chosen

prior) to accommodate the included training points. As a result, the variance associated with

each prediction remains consistently large across the entire defined input range (i.e. the

variance does not even tend to zero when test and training points are the same).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 190

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Input, x

E

Figure (5.13): ‘Spiky’ Data Example (100 training points, Sq. Exp Cov. Function) -

GP Model Error (solid line) and Variance (2σ) output (dashed line)

The next question that arises is that if the optimisation procedure has not exactly been a

success, why does the GP model’s mean predictions still provide a good approximation?

The primary reason behind this outcome is the large quantity of training data, which

significantly reduces the difficulty of this or indeed any interpolation task. Therefore, by

including large quantities of training data, a poor choice of covariance function or failure of

the optimisation process may be possibly overcome. Of course, by reverting to this kind of

‘brute-force’ strategy of including more and more training data, the computational expense

and efficiency of the model may become unrealistic, and the risk of compromising the

conditioning of the covariance matrix also becomes more pronounced (i.e. a low sampling

interval may result in repetition in the data).

Test 2 – Squared Exponential Covariance Function (34 training points)

In this next test the size of the training set is reduced to 34 evenly space training points and

the Squared Exponential covariance function retrained to obtain the following

hyperparameters θMP.= (θ1 = 1.8898, θ2 = 1.0182, θ3 = 0.3845). As before, the GP mean

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 191

predictions are compared with the underlying data in Figure (5.14), and the variance output

of the GP model is compared with model error in Figure (5.15). Using the same model

validation measures as before, we calculated a Mean-Square Error (MSE) of 0.0444, Log

Predictive Density (LPD) of 0.0389, and log likelihood (LL) of -41.2297. Overall, the

performance of the GP model trained on a smaller number of training datapoints is

considerably poorer. Furthermore, the scale of the variance output is considerably larger

than that of the previous test case. Neither of these outcomes can be seen to be surprising,

as if the optimisation procedure is not capable of identifying suitable hyperparameters for

the covariance function when a larger quantity of training data is available, it will naturally

struggle even more when much of this information is taken away.

5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Input, x

y

Figure (5.14): ‘Spiky’ Data Example (34 training points, Sq. Exp Cov. Function) - GP

Mean predictions (dotted line) vs. Underlying function (solid line)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 192

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Input, x

E

Figure (5.15): ‘Spiky’ Data Example (34 training points, Sq. Exp Cov. Function) - GP

Model Error (solid line) and Variance (2σ) output (dashed line)

Furthermore, through the reduction of the size of the training dataset the previous ‘safety-

net’ of a large dataset and therefore an easier interpolation task is taken away, and we can

see that the GP model fails to even reach some of the observed training values. This is

better illustrated in Figure (5.16) where the training observations are plotted on to the same

chart as in Figure (5.15). Therefore, in this example where the training dataset has been

reduced in size we can better demonstrate that the Squared Exponential covariance function

is an unsuitable choice for problems involving sharply varying or ‘spiky’ data.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 193

5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Input, x

y

Figure (5.16): ‘Spiky’ Data Example (34 training points (Marked), Sq. Exp Cov.

Function) - GP Mean predictions (dotted line) vs. Underlying function (solid line)

Test 3 – Matérn Covariance Function (100 training points)

Using the same training datasets, the Matérn covariance function (with 3 / 2ν =) combined

with a simple noise model is now to be employed to approximate the data. In Figure (5.17)

the GP predictions are compared with the underlying data for the model trained on 100

training points. The hyperparameters were calculated as θMP.= (θ1 = 2.8529, θ2 = 1.1249, θ3

= 0.0001), where these 3 hyperparameters play a similar role to that of the previous

Squared Exponential covariance function. Using the same performance measures, the

following were calculated, Mean-Square Error (MSE) of 0.00064, Log Predictive Density

(LPD) of 2.1252, and log likelihood (LL) of 6.9822. The variance output of this GP model

can again be plotted on the same axis and compared with the model error as shown in

Figure (5.18).

Overall, the predictive accuracy of the identified GP model can be seen to be superior to the

model identified with the Squared Exponential covariance function in Test 1, using the

same data. In fact, the mean predictions of the GP model can be seen to be almost

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 194

indistinguishable from the underlying function, with the sharper peak regions of the data

being better approximated by this Matérn GP model than the Squared Exponential GP

model. This improvement in the predictive performance can be put down to the less

constraining smoothness assumptions that are implied by using the Matérn covariance

function. As the choice of this covariance function results in a GP prior that is capable of

generating less differentiable sample functions, the sharper regions of data can be better

approximated.

5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Input, x

y

Figure (5.17): ‘Spiky’ Data Example (100 training points, Matérn Cov. Function) - GP

Mean predictions (dotted line) vs. Underlying function (solid line).

Regarding the variance output of the GP model, in Figure (5.18) the variance can be seen to

be near zero at test points that are co-incidental with training points (as would be desirable),

however the growth and decay of the variance output can be seen to be very rapid in the

small intervals between the test points.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 195

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Input, x

E

Figure (5.18): ‘Spiky’ Data Example (100 training points, Matérn Cov. Function) - GP

Model Error (solid line) and Variance (2σ) output (dashed line).

Test 4 – Matérn Covariance Function (34 training points)

The Matérn covariance function is now to be applied to the problem of approximating the

underlying function using the smaller training (34 point) dataset. Training the

hyperparameters resulted in θMP.= (θ1 = 2.3542, θ2 = 1.0800, θ3 = 0.2114). In Figure (5.19)

the GP predictions are compared with the underlying data for the model trained on 34

training points, and the variance output of this GP model is again plotted on the same axis

as the model error, as shown in Figure (5.20). Using the same performance validation

measures the following were calculated, Mean-Square Error (MSE) of 0.0124, Log

Predictive Density (LPD) of 0.3731, and log likelihood (LL) of –40.901. Overall, the

predictive accuracy of the identified GP model is certainly less than that of the previous

example that was trained on a larger number of training points. A more interesting

comparison is the performance of this Matérn GP model with that of the Squared

Exponential GP model identified with the same 34 training points. Therefore, in the Figure

(5.19), the training points have been plotted as well as the mean predictions to allow easier

comparison with Figure (5.16).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 196

5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Input, x

y

Figure (5.19): ‘Spiky’ Data Example (34 training points (Marked), Matérn Cov.

Function) - GP Mean predictions (dotted line) vs. Underlying function (solid line)

In comparing the Matérn GP model with the Squared Exponential model, we can see that

the predictive performance of the former is considerably better than that of the latter (i.e.

MSE drops from 0.0440 to 0.0124). Most notably the mean predictions also manage to

cope better with the sharper peaks/troughs in the data. Furthermore, unlike the Squared

Exponential GP model, the mean predictions of the Matérn GP model successfully bisect

the included training points.

Turning our attention to the variance output of this Matérn GP model as depicted in Figure

(5.20), we can see that the overall level of the variance output is considerably higher than

that of the previous example that included more training data. Furthermore, the variance

output fails to reach zero even at test points that are equal to observed training points.

Nevertheless, in comparison to the Squared Exponential Model, the level of the variance

does reflect the location of the training data rather than just remain constant across the input

space. Taken together, the reasonable mean predictive performance and the rather high (but

still reactive) variance output of this Matérn GP model suggests that the size of the training

set (34 points) is approaching the lower limit of including enough information with which

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 197

to identify suitable hyperparameters. This is indeed to found to be the case when a further

few training points are removed, and the GP mean predictions become highly inaccurate.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Input, x

E

Figure (5.20): ‘Spiky’ Data Example (34 training points, Matérn Cov. Function) - GP

Model Error (solid line) and Variance (2σ) output (dashed line).

Furthermore, up until this point we have not commented on the inconsistencies present in

the validation performance measures of these 4 test examples. Whilst the MSE measure of

model accuracy can be seen to reflect what may be visually interpreted in the

accompanying figures (i.e. the MSE of the larger training datasets outperform the smaller

datasets, and the Matérn GP models outperform their comparably sized Squared

Exponential GP models). The more probabilistic measures of performance do not concur

with the MSE measures, as the LPD and LL of the Squared Exponential models are smaller

and therefore ‘better’ than those of the Matérn examples. This is slightly troubling but as

the near constant variance output of both Squared Exponential models seems to indicate

that the optimisation process has not been entirely successful, the variance output cannot be

seen to be particularly reliable. Therefore, this highlights the need to employ a number of

different measures of model performance, and also to ensure that such validation measures

also concur with what is visually interpretable or subjectively plausible.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 198

Overall, this ‘spiky’ data example has attempted to show (over the 4 tests) the limitations of

the Squared Exponential covariance function when used to tackle sharply varying data. This

is important due to the fact that the Squared Exponential covariance function has become

almost ubiquitous in its selection for GP model implementations (especially for system

identification purposes). In this example a Matérn covariance function was found to be

more suitable for this kind of problem, and this is to be expected due to its less stringent

prior assumption over the smoothness or differentiability of the underlying function. In the

forthcoming sections devoted to identifying real experimental systems, the smoothness

properties of these systems are found to be compatible with that of the popular Squared

Exponential covariance function. Nevertheless, for some applications this will not be the

case and the use of alternative covariance functions (such as the Matérn covariance function

used here) is something that should be considered.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 199

5.6.5) Lorenz Attractor – A Dynamic Nonlinear Example

The Lorenz attractor is a 3 dimensional model structure defined by 3 differential equations

that was developed by Edward Lorenz in 1961 from a simplified analytical model of

thermal convection in a layer of fluid. The Lorenz attractor is perhaps the most widely

known example of a chaotic system, and played an important role in the general

development of chaos theory. Chaotic systems can be described generally as nonlinear

deterministic systems that are very sensitive to initial conditions, are highly periodic, and

exhibit behaviour where phase space (trajectory) overlaps occur in different regions of the

operating space (termed topological mixing). The deterministic characteristic is important

as unlike systems that exhibit random behaviour, chaotic systems can be described exactly

through analytical or parametric models. However, despite this characteristic, the prediction

of future behaviour is difficult due to the particular properties of chaotic behaviour. Of

paramount importance in the analysis of chaotic behaviour is the sensitivity to initial

conditions where even miniscule changes in the initial conditions can lead to drastically

different responses as the system behaviour evolves over time. This feature of chaotic

systems is popularly known as the ‘Butterfly effect’. This terminology originates from the

influential paper by Lorenz (1972) titled ‘Predictability: Does the flap of a butterfly’s

wings set off a tornado in Texas?’ and also relates to the shape of trajectory of the Lorenz

attractor as depicted in Figure (5.22). The differential equations that describe the Lorenz

attractor are:

()
dx

y x
dt

σ= − (5.17)

()
dy

x z y
dt

ρ= − − (5.18)

dz
xy z

dt
β= − (5.19)

Where , , 0σ ρ β > , and σ is called the Prandtl number, and ρ is called the Rayleigh number.

Typically, these values are constants, and for chaotic behaviour given the values

10σ = , 28ρ = , 8 / 3β = . Given a set of initial conditions for x, y and z, the behaviour of

the system can then be simulated through applying numerical methods. For this example

the initial conditions where 2x = − , 3.5y = − , 21z = and the ‘ode45’ Runge-Kutta solver in

Matlab was utilised to generate the data. The three differential equations are displayed in

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 200

Figure (5.21) for a 40 second time-scale, and the phase plane or trajectory of the system

displayed in Figure (5.22).

0 5 10 15 20 25 30 35 40
-30

-20

-10

0

10

20

30

40

50

time (seconds)

Figure (5.21): Lorenz Attractor - /dx dt (solid line), /dy dt(dotted line) and /dz dt

(dashed line).

-20 -15 -10 -5 0 5 10 15 20
-30

-20

-10

0

10

20

30

dx
-20 -15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

dx

 (a) (b)

Figure (5.22): ‘Butterfly Effect’ of Lorenz Attract or - Chart (a) shows trajectory

/dy dt vs. /dx dt. Chart (b) shows trajectory /dz dt vs. /dx dt.

In this example, the simulated time-series data of the Lorenz attractor is to be used to

demonstrate the process of identifying nonlinear dynamic systems using the GP modelling

approach. Therefore, a detailed investigation into the Lorenz attractor or chaotic behaviour

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 201

in general is not conducted. For more detailed information on chaos theory, the textbooks

by Alligood (1997) and Gollub and Baker (1996) are good resources. As chaotic systems

are highly nonlinear whilst remaining deterministic, they are often used in the comparison

and benchmarking of alternative prediction methods. In Girard (2004) the Mackey-Glass

series (generated from a model of blood cell count in leukaemia patients) was used as an

example application for the GP model. However, as the Mackey-Glass time-series is

described by only one variable and is therefore not particularly comparable with the typical

problems of system identification where both input and output data exists.

As the Lorenz attractor is a 3 dimensional dynamic model, it is first necessary to decide

which quantity we wish to predict (i.e. model output), and which quantities are to be used

as model inputs. Furthermore, as this example is dynamic in nature, previous inputs and

outputs may also be used as inputs to the model. Firstly, in order to avoid confusion and

inconsistencies in the nomenclature used, we are to rename the previous characteristic

equations as:

() ()
dx

A k y x
dt

σ= = − (5.20)

() ()
dy

B k x z y
dt

ρ= = − − (5.21)

()
dz

C k xy z
dt

β= = − (5.22)

To begin with the identification problem was defined as trying to identify C(k) using A(k)

and B(k) as the model inputs (see Test 1 below). A second implementation is then tackled

where the identification problem was defined as trying to identify C(k) using A(k) and B(k)

together with the previous output C(k-1) (i.e. one-step back) as the model inputs, resulting

in an ARX model structure (see Test 2 below). Therefore, as previous output information is

to be used as an additional input, this example application can therefore be termed as one-

step ahead prediction rather than simulation. However, before tackling these models, a

couple of important issues regarding the practical implementation of the approach to

dynamic problems must first be discussed.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 202

5.6.5.1) Incorporating Delayed or Regressed Inputs/Outputs

Firstly, it is the construction of the model structure that is to be an important point of

discussion in this example implementation of the GP modelling approach. As discussed

previously, one of the main difficulties of the GP modelling approach is that it is

computationally expensive to include large quantities of data in the training dataset.

Consequently, this puts pressure on the amount of training data that can be readily included,

which may result in the choice of a sampling rate that is slower (i.e. larger intervals

between points) than would normally be employed for identification purposes. However, it

is perhaps unreasonable to place such a constraint on the size and sampling rate of any test

dataset that the model is to be applied to (e.g. we may have to sample every 0.1 seconds in

order to reduce the size of the training data, but we might want to predict every 0.05

seconds). This issue is particularly important when dynamic systems are considered where

previous inputs and outputs are routinely employed as model inputs. In effect, if a previous

output y(k-1) is to be used as an input, the training data may be sampled in such a manner

that y(k-1) corresponds to X seconds previous, whereas the test dataset may be sampled in a

manner that y(k-1) corresponds to Y seconds previous (e.g. for training data sampled every

0.1 seconds, one-step back corresponds to 2-steps back if the test data is sampled every

0.05 seconds).

Therefore, an important aspect in the implementation of the GP modelling approach for

dynamic problems is to ensure that the training and test data are pre-processed in such a

manner that allows the desired model structure to be maintained. As a result, unless the

training data and test data are to be sampled at the same rate, once the training dataset has

been pre-processed, the test data must also be processed in order to ensure consistency.

Furthermore, the process of creating a training dataset must also keep in mind any

subsequent requirements over the ultimate use of the model (e.g. the need to test at a certain

interval). Otherwise, it is possible to create a training dataset that has discarded information

that may be needed to make test predictions. As an example, if the training data is sampled

every 0.5 seconds and the test data sampled every 0.1 seconds, a model trained using a

previous output y(k-1) as the input, should be tested with a model that employs the 5th

previous output y(k-5). Therefore, the test data must be processed to start predictions (k=1)

at the 5th point in the dataset, whilst holding onto the previous 5 data points for prediction

(and updating this variable as the prediction horizon proceeds). As a result, for problems

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 203

that are to include multiple inputs composed of different delayed inputs/outputs, the task of

ensuring the consistency of the training and test data sets becomes more challenging.

This need to process the test data in order to remain compatible with the model structure is

certainly not something that is unique to the GP modelling approach. However, due to the

possible need to minimise the number of included training points, the potential for different

sampling rates to be employed for training and test data is perhaps greater than in

alternative approaches. Furthermore, this need for careful processing of the test data can be

seen to be a notable drawback of utilising this nonparametric approach where the data is

directly included in the model (i.e. the covariance matrix can be interpreted as a precise

spatial mapping). For parametric models, where the training data is used only to optimise a

number of parameters, careful processing of test data is not something that is normally

required if the test and training data are similarly sampled (as would normally be the case).

5.6.5.2) Normalising and Rescaling Data

Another important aspect with regard to the implementation of the GP modelling approach

is the potential need for the rescaling and normalisation of the training data. Firstly, in order

to remain consistent with the Bayesian framework of the approach where a zero-mean prior

is defined, the output or target training data should also have a zero mean (note that in the

previous simulated examples the functions varied in and around zero). This can be easily

achieved through calculating the mean value of the target data, and then subtracting this

value (or offset) from the target data. A further potential source of problems is the scaling

of the input variables, where if large differences in the relative scaling of different inputs

exist, the optimisation of the hyperparameters can become difficult. Therefore, by

calculating the standard deviation of the different inputs, the scaling of each input

dimension can be checked and then re-scaled if considerable differences exist.

At this point the potential need for the normalisation of the training target data and re-

scaling of the training input data has been discussed. However, for models that are to

employ previous outputs as model inputs, this normalisation and rescaling of the training

data must be treated with care. As discussed before, it is fundamental that the input training

and input test data are consistent with one another from a timing perspective, but also now

from a scaling perspective. Therefore, employing previous output/target data (that has been

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 204

normalised) as a model input, and subsequently training hyperparameters under this

condition, means that the corresponding test input data (i.e. the previous output) must also

be normalised accordingly. This means that when performing multiple-step ahead

prediction, the calculated output prediction must be normalised before being fed back for

use as a model input.

Overall, whilst these implementation issues regarding the incorporation of previous

inputs/outputs and the normalisation and rescaling of the data are important, it is also worth

noting that it is often the case that a reasonable model can be identified even if these

considerations are not implemented perfectly. As the processing of the training and test data

can become quite complex, and time-consuming if a number of iterations of training and

testing procedure are required, it is sometimes easy to overlook some of the more subtle

aspects and assume that everything is correct as a reasonable model performance has been

achieved. Nevertheless, if these strategies are correctly employed, a greater level of model

performance should be possible.

Test 1 – Predicting C(k) using A(k) and B(k) as inputs

In this example the following model structure is employed: C(k) is the model output, and

use A(k) and B(k) are the model inputs. The differential equations were then employed to

generate the dataset displayed in Figure (5.21). In order to adhere to the basic principles of

cross-validation, this data is then split into separate training and test datasets. Therefore, it

is important to be clear that the data used to train the model will not be used as a test

dataset. For this example, the data was partitioned evenly (at 20 seconds) into test and

training datasets. The original empirical data generated from the differential equations was

done so at an interval of 0.01 seconds for 40 seconds, resulting in 2000 points each in the

test and training datasets. Therefore, in order to reduce the computational burden, the

training dataset was then sampled by a factor of 4 to give 500 points, and the test data was

sampled by a factor of 2 to give 1000 points. This difference in the sampling rate of the

training and test datasets will not be important for this test as no previous output

information is to be fed back as an additional input.

After this initial processing of the data, the next stage to consider is the normalisation and

scaling of the data. Examining the mean and standard deviation of the three quantities the

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 205

following values were calculated: (()) 3.91, (()) 6.94mean A k std A k= − =),

(()) 3.92, (()) 8.03mean B k std B k= − = , and (()) 23.80, (()) 8.37mean C k std C k= = .

Overall, we can see that the standard deviation of the three variables is quite similar, so

rescaling of the data to be employed as inputs is not required. However, as the mean of

target C(k) is significantly different from the prior zero-mean assumption inherent in the

GP modelling approach, the target values should be offset by this mean value. As no

previous regressive outputs are to be used in this implementation as model inputs, this

normalisation of the target data will not affect the input data. However, this offset value

must be retained and added to the computed predictions.

The next stage to consider is the selection of an appropriate covariance function along with

the optimisation of suitable hyperparameters. For this example, the Squared Exponential

covariance function was employed with the same initial values chosen for hyperparameters

as before (-1 for all). As this example model is to employ two inputs, a second length-scale

hyperparameter is required (i.e. vertical variance or amplitude hyperparameter θ1, a length-

scale parameter θ2 (for A(k) input dimension), a length-scale parameter θ3 (for B(k) input

dimension), and a noise parameter θ4.). Applying the same marginal likelihood

maximisation optimisation scheme as before results in θMP.= (θ1 = 2.0439 θ2 = 5.1122, θ3 =

10.0623, θ4 = 1.9969). Now that the GP prior has been defined, the predictive mean of the

posterior can then be calculated for all test inputs and compared with the real function data

as in Figure (5.23) on the next page.

Overall, the GP model has provided a reasonable representation of the behaviour of target

function but significant error can be seen to exist. This is reflected in the validation

measures of performance where the following were calculated: Mean-Square Error (MSE)

of 6.4987, Log Predictive Density (LPD) of -10.2683, and log likelihood (LL) of -

1.1795e+003. As before, it is informative to plot the model error on the same chart as the

variance output of the GP model as in Figure (5.24).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 206

20 22 24 26 28 30 32 34 36 38 40
5

10

15

20

25

30

35

40

45

time (seconds)

Figure (5.23): Lorenz Example - GP Mean predictions (dotted line) vs. Underlying

function (solid line).

20 22 24 26 28 30 32 34 36 38 40
0

2

4

6

8

10

12

14

16

18

20

time (seconds)

E

Figure (5.24): Lorenz Example - GP Model Error (solid line) and Variance (2σ)

output (dashed line).

C

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 207

In Figure (5.24), the peaks in the model error can be seen to mostly correspond with the

peaks in the variance output. Furthermore, a notable increase in the overall level of the

variance output can be observed in the middle portion of the test data between t = ~27

seconds and t= ~31 seconds. We can interpret this increase in the variance output, and sharp

increase in the model error at the beginning of this region of test data, by referring to the

training data included in the model (first 20 seconds of data in Figure 5.22). In the region

(27 31t< <) of the test data, the model inputs A(k) and B(k) can be seen to shift upward to

a higher value and continue oscillating. However, in the first 20 seconds of this dataset that

has been used for training, this upward shift in the observed data is not present. As a result,

the training dataset does not contain sufficient information in the form of observed data

with which to make accurate predictions at these input values, thus leading to more

uncertain predictions that have a higher variance. This can be further understood by

referring to the trajectory chart of Figure (5.22b), where the less frequent oscillations that

occur at higher values can be interpreted as the right-hand ‘wing’ of the ‘butterfly’. In this

example, we have not included enough observations from this right-hand ‘wing’ in order to

make accurate predictions there.

Overall, this example demonstrates the fundamental dependency that the GP modelling

approach has on the quality of the training dataset. Of course by including more

observations in the training dataset the quality of the model may be improved, but this may

lead to considerable computational expense. Therefore, if strict controls are to be placed on

the size of the training dataset, it is clear that the quality of the training dataset must be

improved using some other strategy. It is at this point that prior knowledge of the system

and available data can prove to be of significant importance. Rather than just employing an

arbitrarily chosen block of the available data, if the training dataset can be pre-processed

more carefully to cover a greater range of the operating space more evenly, a better overall

model can often result. Conversely, if there are specific regions of operating space that are

more common or more important, the training data should be concentrated into covering

those areas. Either way, using prior knowledge of the system together with the overall

objectives of the model can play an important role in developing the most suitable model.

In order to demonstrate this aspect of choosing the training dataset more carefully, the same

analytical model and initial conditions were again used to generate data, but the time-scale

of the collected data was extended to 100 seconds in order to gain a better appreciation of

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 208

the long-term behaviour of the system, see Figure (5.25). Overall, the input oscillations can

be seen to repeatedly alternate about zero in an aperiodic manner, and this is indeed the

case if alternative initial conditions are employed. Therefore, the initial model trained on

the first 20 seconds of data can be seen to be particularly lacking in sufficient observations

of the input data where the oscillations occur above zero. As a result, if the model is

retrained to include more observations in this region of input space, the performance of the

model should be improved. To demonstrate this, the model is now to be trained on the data

present in the region 20 40t< < where input oscillations occur above and below zero, and

the performance of the model compared with the original model trained on the data

contained in the region 0 20t< < .

0 10 20 30 40 50 60 70 80 90 100
-30

-20

-10

0

10

20

30

40

50

time (seconds)

Figure (5.25): Lorenz Attractor - A(k) (solid line), B(k) (dotted line) and C(k) (dashed

line).

As before, the training datasets of both models are to be sampled so as to include 500 data

points, and the same optimisation procedure followed. In order to test these two models, the

data contained in the region 80 100t< < is to be used, and the model performance can seen

in Figure (5.26) and Figure (5.27). Overall, we can see that the level of error present in the

model trained on the data 20 40t< < is mostly superior to that of the model trained on the

data 0 20t< < with the large peaks in the model error corresponding to the larger

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 209

amplitude oscillations. The variance output of this newly trained model is also typically

lower and more consistent between these peaks in model error. For the model trained on the

data on the original 0 20t< < data, the validation measures where Mean-Square Error

(MSE) of 9.6090, Log Predictive Density (LPD) of -12.6828, and log likelihood (LL) of -

1.1795e+003. For the model trained on the data on the new 20 40t< < data, the validation

measures where Mean-Square Error (MSE) of 5.3996, Log Predictive Density (LPD) of -

19.4800, and log likelihood (LL) of -1.2148e+003.

80 82 84 86 88 90 92 94 96 98 100
5

10

15

20

25

30

35

40

45

time (seconds)
80 82 84 86 88 90 92 94 96 98 100
0

2

4

6

8

10

12

14

16

time (seconds)

E

 (a) (b)

Figure (5.26): Lorenz Example (trained on 0 20t< <) - Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dashed line).

80 82 84 86 88 90 92 94 96 98 100
5

10

15

20

25

30

35

40

45

time (seconds)
80 82 84 86 88 90 92 94 96 98 100
0

1

2

3

4

5

6

7

8

9

10

time (seconds)

E

 (a) (b)

Figure (5.27): Lorenz Example (trained on 20 40t< <) - Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dashed line).

From these validation measures we can see that MSE accuracy of the model has improved

as expected. In contrast, the LPD measure that relates to the variance output of the models

shows that the first model has less uncertainty about its predictions. However as a

C

C

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 210

significant level of error still exists in both models, this is not something that is unduly

concerning.

It is also worth pointing out that whilst this new GP model trained on the data contained in

20 40t< < provides a slightly better performance than that trained with the data contained

in 0 20t< < , this is partly due to the fact that the test region 80 100t< < contains

considerable amounts of input data above and below zero. If the test data is to primarily

include input response data below zero the first model identified with data 0 20t< < is

likely to perform better as it has a greater concentration of training observations that are

similar to the test points, whereas the second model has training data that is spread more

evenly across input space. This is indeed the case in the data region 40 60t< < , where the

first model outperforms the second. This is important in relation to this particular example

application as due to the chaotic nature of the response and sensitivity to initial conditions,

it is often possible to generate input data that oscillates above or below zero for prolonged

periods of time before switching. Therefore, in order to identify a robust model that

performs well across the input range, it is necessary to select the training data carefully in

order to include as much information as possible in the limited space available.

Furthermore, it is necessary to employ test data that examines the performance of the model

across as much of the input space as possible. Therefore, it is worth testing both of these

models on a larger dataset 50 100t< < in order to confirm which model is superior. For the

model trained on the data on the original 0 20t< < data, the validation measures where

Mean-Square Error (MSE) of 6.3394, Log Predictive Density (LPD) of -10.1268, and log

likelihood (LL) of -1.1795e+003. For the model trained on the data on the new 20 40t< <

data, the validation measures where Mean-Square Error (MSE) of 4.9244, Log Predictive

Density (LPD) of -12.0030, and log likelihood (LL) of -1.2149e+003. From the MSE

validation measures we can see that accuracy of the model trained using the data

20 40t< < is remains slightly better than the model trained using the data 0 20t< < , and

the LPD measure now also indicates that this model is less uncertainty associated with it.

Note that for this example, the model performance is not plotted as the charts are difficult to

read due to the frequency of the oscillations and length of the timescale.

Overall, the significant error in the model demonstrates the difficulty of predicting the

chaotic behaviour of the Lorenz attractor using the chosen inputs: A(k) and B(k). This is due

to the fact that these input variables are not particularly informative of the desired output

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 211

C(k) (i.e. a relationship between the input and output oscillations is not easy to interpret).

Therefore, in order to improve this model C(k) additional or alternative inputs would be

required.

Test 2 – Predicting C(k) using C(k-1), A(k) and B(k) as inputs

As this example application is dynamic in nature, the previous states of the inputs and

outputs are available for use in predicting future behaviour. In this example the previously

used inputs, A(k) and B(k), are to be augmented with previous or delayed output

information C(k-1) as an additional input to the model. Therefore, this GP model can now

be understood as an implementation of one-step ahead prediction This example is to

employ the same initial conditions and therefore use the same data as in the previous model

implementation. As before, employing an additional input in the model structure means that

another length-scale hyperparameter must be added to the squared exponential covariance

function. Furthermore, as this additional input is to be the previous output fed back, the

normalisation that was performed in the original pre-processing of the training data must

also be applied to this input data C(k-1). As before, after the test predictions are computed,

the offset that results from this normalisation can then be added to the output predictions.

In addition, as the training data has been sampled to include 500 points resulting in a 0.04

second interval between data points, and the test data has been sampled so that a 0.02

second interval between data points exists, the previous output must be incorporated in a

manner that ensures consistency in the timing. Therefore, the delayed or previous output

(one-step back) of the training data is equivalent to the previous output (two-steps back) of

the test data, i.e. 2×0.02s = 0.04s. As a result, the output must be stored in a variable after

each prediction so it can then be used to calculate the appropriate subsequent prediction (2

steps in advance in this case). This process can be better understood by writing out the form

of the inputs/outputs as below:

At the first test case, k=1:

Model Input: [](2) () ()C k A k B k−

Model Output: []()C k

Previous Output (stored for next prediction): [](1)C k −

At the second test case, k+1:

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 212

Model Input: [](1) (1) (1)C k A k B k− + +

Model Output: [](1)C k +

Previous Output (stored for next prediction): []()C k

At the third test case, k+2:

Model Input: []() (2) (2)C k A k B k+ +

Model Output: [](2)C k +

Previous Output (stored for next prediction): [](1)C k +

And so on….

An obvious problem of including previous or regressed outputs is that for the initial test

predictions, this input information would not appear to be available (i.e. for the first test

case we need (2)C k − and (1)C k −). In some applications we can employ knowledge over

the initial conditions of the system in order to provide this input information. Furthermore,

in this simulated example, where test data has been selected from a larger set of empirical

data, it is straightforward to include some observations of the output that immediately

precede the chosen start of the test data (i.e. we can include observations (2)C k − and

(1)C k − for use as input information, with the remaining observations of ()C k being used

for comparison with the model predictions).

However, in other cases it is possible that such initial conditions are not available (e.g.

applying the model online to fresh datasets) and we must make the first few predictions

using whatever input information is available (i.e. only ()A k and ()B k). A problem with

adopting such an approach is that the hyperparameters have been identified using the full

complement of inputs in the training data, and therefore do not remain optimised if one or

more of the inputs and accompanying hyperparameters are removed from the model set-up.

This is due to the coupling that exists between the identified hyperparameters, and means

that if the model set-up is altered, the hyperparameters must be retrained on similarly re-

configured training data in order to remain optimal. As the optimisation of the

hyperparameters can become a computationally demanding process if a large quantity of

data is included in the training dataset, the retraining of the hyperparameters to identify a

GP model that is only going to be used to predict a few initial test cases would seem to be

computationally expensive from an overall perspective. Furthermore, for this particular

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 213

application, the GP model identified using only ()A k and ()B k as the model inputs has

been shown to be of limited accuracy in Test 1. Therefore, the resulting overall model will

provide a poor level of predictive accuracy for the initial test predictions, but is likely to

improve significantly dramatically when the previous outputs become available and can be

used as model inputs, as will be demonstrated in this example. Therefore, the strategy

involving the inclusion of initial conditions in the form of recorded previous output data has

been adopted for the applications investigated in this thesis.

Firstly, we are to employ the same training and test dataset as in the first part of Test 1

where the model is trained on the data included in the region 0 20t< < and tested on data

in the region 20 40t< < . The hyperparameters where identified as before, resulting in

θMP.= (θ1 = 51.2158, θ2 = 9.4911, θ3 = 59.5256, θ4 = 28.2600, θ5 = 0.0039), and the model

performance is compared with the underlying data in Figure (5.28), and the model error and

variance output of the GP model shown in Figure (5.29).

20 22 24 26 28 30 32 34 36 38 40
5

10

15

20

25

30

35

40

45

time (seconds)

Figure (5.28): Lorenz Example - GP Mean predictions (dotted line) vs. Underlying

function (solid line).

C

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 214

Overall, we can see that the accuracy of the model has improved dramatically by including

the previous output as a model input, with the GP mean predictions being practically

indistinguishable from the underlying test data, with validation measures Mean-Square

Error (MSE) of 1.7524e-004, Log Predictive Density (LPD) of -9.2260, and log likelihood

(LL) of 1.7919e+003. This great improvement in the model performance is not something

that should be unexpected as the inclusion of the previous output information provides an

input that is likely to be highly correlated with the desired output. Examining the model

error and variance output of the GP model in Figure (5.29), we can clearly see that as in the

previous example (shown in Figure (5.24)) both quantities grow in the middle portion of

the test dataset as the training dataset includes a smaller number of observations in this

region of input space.

20 22 24 26 28 30 32 34 36 38 40
0

0.02

0.04

0.06

0.08

0.1

0.12

time (seconds)

E

Figure (5.29): Lorenz Example - GP Model Error (solid line) and Variance (2σ)

output (dashed line).

As in the previous example, we can attempt to modify the training dataset to better cover

the whole of the input range. Therefore, the model identified using data contained in the

region 0 20t< < is to be compared with a model identified using data contained in the

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 215

region 20 40t< < , with the data contained in the region 80 100t< < being used as the test

data. The performance of the two models can be seen in Figure (5.30) and Figure (5.31).

80 82 84 86 88 90 92 94 96 98 100
5

10

15

20

25

30

35

40

45

time (seconds)
80 82 84 86 88 90 92 94 96 98 100
0

0.01

0.02

0.03

0.04

0.05

0.06

time (seconds)

E

 (a) (b)

Figure (5.30): Lorenz Example using previous output (trained on 0 20t< <) - Chart

(a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart

(b) shows GP model error (solid line) and Variance (2σ) output (dashed line).

80 82 84 86 88 90 92 94 96 98 100
5

10

15

20

25

30

35

40

45

time (seconds)
80 82 84 86 88 90 92 94 96 98 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

time (seconds)

E

 (a) (b)

Figure (5.31): Lorenz Example using previous output (trained on 20 40t< <) - Chart

(a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart

(b) shows GP model error (solid line) and Variance (2σ) output (dashed line).

Overall, we can see that both models provide an accurate representation of the underlying

data. For the model trained on the data on the original 0 20t< < dataset, the validation

measures where Mean-Square Error (MSE) of 1.4252e-004, Log Predictive Density (LPD)

of -3.7094, and log likelihood (LL) of 1.7919e+003. For the model trained on the data on

the new 20 40t< < dataset, the validation measures where Mean-Square Error (MSE) of

2.7576e-004, Log Predictive Density (LPD) of -43.3763, and log likelihood (LL) of

1.7377e+003. Therefore, in the measure of model error (MSE) the first model is actually

C

C

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 216

slightly superior to the second model, whilst in the measure of variance (LPD) it is the

other way round. As in the previous example, the model error of the first model can be seen

to be increase at test cases where the inputs ()A k and ()B k are above zero, where there is

fewer included training observations. For the second model, the model error can be seen to

be slightly lower than in the first model for some of the test cases, but increases sharply at

test cases that coincide with the transition of the oscillating inputs ()A k and ()B k from

below zero to above zero. Furthermore, through closer inspection of the model error and

predictive variance of each model we can gain a greater appreciation of their different

characteristics. Due to the more even spread of training data (in relation to the input space

()A k and ()B k) of the second model trained on the data region 20 40t< < , the variance

level of this model is consistently lower than that of the model trained on the data region

0 20t< < . This means that the second GP model is more confident over the predictions it

has made, and is perhaps overconfident at certain test points where the model error is

actually larger than that found in the first model where the model error and variance are

more in tune with one another.

From inspecting the training datasets of both models, it is difficult to see exactly why the

second model performs slightly worse than the first model with regard to modelling the

output when this transition in the inputs occurs. It is clear that, unlike the first model, the

training dataset of this second model is not particularly deficient in covering the available

input space of this example, as the variance output of the model remains quite small.

Instead, the slight advantage of the first model in representing this transition is due to this

model’s training dataset being slightly more informative at these particular test cases. This

is an interesting result, as it shows that as long as some training data is included from across

the operating range, and informative inputs are employed, a good model can be identified.

Furthermore, this model is competitive with the alternative model where the training data is

more evenly spread.

The informative nature of the training data is not something that has been given much

consideration in the example applications so far. This is primarily due to the static nature of

the nonlinearities considered, where the problem can almost be reduced to including as

much data in the training dataset as is computationally feasible. However, for the

identification of nonlinear dynamic systems, the design of the training dataset must also

take into account the characteristics of the system under investigation.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 217

One of the most important aspects of creating a training dataset is the selection of a suitable

sampling rate for the experimental data collection and data pre-processing stages. In this

example so far, the training data has been sampled using a 0.04 second interval between

data points to provide a training dataset of 500 points, and the test data sampled so that

0.02 second interval between data points exists. Using this data along with previous output

information has allowed us to identify some models of decent accuracy. However, one

thing that has not been made clear so far is that it is considerably more computationally

expensive and therefore slower to compute predictions where previous outputs are to be

included as model inputs. This is due to the need to evaluate the predictive equations at

each individual step in time in order to feed back the newly computed output. In the

previous static examples, the predictive equations could be computed in a single iteration as

the full compliments of test inputs are immediately available. Therefore, in order to speed

up the identification of hyperparameters and evaluation of predictions it is worthwhile

attempting to carefully reduce the size of the training dataset whilst retaining sufficient

model performance, i.e. trade-off the computational efficiency of the model against model

accuracy.

The problem with attempting to reduce the size of the training dataset is that we are

potentially eliminating important information. Obviously, if the sampling rate is kept

constant, by reducing the number of observations included in the training dataset, we are

reducing the size of the time-scale that is to be included. Therefore, less information is

likely to be included in the training dataset as the time-series may be too short to exhibit the

full characteristics and operating range of the system. An alternative strategy is to reduce

the sampling rate used in processing the training data. This will obviously allow us to

include a longer time-series, thus potentially increasing the amount of operating space

covered by the training dataset. The downside to reducing the sampling rate used for the

training dataset is that we run the risk of failing to capture the some of the more subtle

characteristics of the system, especially regions of the response that vary quickly. As the

Lorenz attractor system is characterised by its highly oscillatory behaviour, if the sampling

rate is reduced significantly these rapid changes and higher frequency characteristics are

not going to be represented as well by using a smaller numbers of points. This is

demonstrated below where the training data 0 20t< < was sampled by a factor of 2

resulting in a training dataset of 250 points, with the data contained in the region

80 100t< < again being used as the test data. The hyperparameters where identified as

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 218

before, resulting in θMP.= (θ1 = 40.5500, θ2 = 10.2231, θ3 = 48.8862, θ4 = 29.4780, θ5 =

0.0049), and the and the model performance is compared with the underlying data in Figure

(5.32). The validation measures where Mean-Square Error (MSE) of 30.2199, Log

Predictive Density (LPD) of 1.7260, and log likelihood (LL) of 717.5159.

80 82 84 86 88 90 92 94 96 98 100
0

10

20

30

40

50

60

time (seconds)
80 82 84 86 88 90 92 94 96 98 100
0

2

4

6

8

10

12

time (seconds)

E

 (a) (b)

Figure (5.32): Lorenz Example using previous output (trained on 0 20t< < , Smaller

250 point dataset) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying

function (solid line). Chart (b) shows GP model error (solid line) and Variance (2σ)

output (dashed line).

The performance of this model can be seen to be substantially poorer than that of the

previous model identified with twice the number of training examples. This is to be

expected, but as discussed above, it is not purely the reduction in the number of points that

is to blame for this decrease in model performance. It is the fact that the sampling rate

employed is too slow and fails to capture the nature of the system dynamics. The effect of

reducing the sampling rate is to concentrate the training data around the middle of the

operating range, resulting in a model that fails to represent the underlying data at the

extremities of the operating range. Looking more closely at the variance output of the

model in comparison to the model error, it would appear that that these quantities are not

well correlated at all. The variance output can be seen to grow substantially where the

output transient is fastest (i.e. as it passes through the middle of the oscillation), and drops

to a low level when the output transient slows down near the peak/trough of the oscillation.

This is in contrast to the model error which is at its greatest when the output nears these

peaks/troughs. This reinforces the point that we cannot use the variance output (or the LPD

measure) as a definitive guide to the level of model error in the identified model. The

C

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 219

training data has failed to capture the dynamics at the extremities, so a model trained with

this deficiency cannot hope to indicate this uncertainty.

Overall, this example has demonstrated the process of applying the GP modelling approach

to a complex nonlinear system. As the GP modelling approach is dependent on the quality

of the training data, in this example we have outlined the fundamental requirements behind

identifying a suitable model. Firstly, that the training dataset must include data from across

the operating range of the system in order to provide a robust model, and secondly that the

training data must be sampled at an appropriate rate so that the dynamics of the system may

be well represented. However, as the models where identified using portions of training

data collected from a generated time-series, it is perhaps not truly demonstrative of the

system identification process as no control over the input signals was possible. Therefore,

in the next examples to follow, we are to take control over the input signals and apply the

GP modelling approach to real laboratory-scale nonlinear systems.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 220

5.7) Coupled Tank System

The GP modelling approach is now to be applied to a real laboratory-scale nonlinear

dynamic system. The Coupled or ‘Twin’ Tank System, shown in Figure (5.33), is

comprised of two water tanks identical in size and shape, coupled together through a small

hole of known diameter between the dividing wall of the tanks. The system’s control input

is a variable flow rate into the first tank controlled through a variable speed water pump,

with the height of the water present in both tanks used as measured variables. An output

pipe is present in the second tank to prevent overflow. The system displays nonlinearity

throughout the operating range due to orifice flow behaviour between the tanks and at the

output flow pipe. The system is open-loop stable under all operating conditions with

relatively long time constants (2-5 minutes) being observed.

H1

H2

Qvi

Qv1

Qvo

Figure (5.33): Coupled Tank System

This system can be seen to exhibit a first order nonlinear response between H1 and H2

across the entire operating range, where output data varies with excitation input data in a

smooth and continuous manner. Consequently, the behaviour of this system would seem to

be highly appropriate for the smoothly varying requirements imposed by the squared

exponential covariance function employed in the most common GP model architecture.

Further studies into this system can be found in Gong and Murray-Smith (1998), Chong

and Li (2000), and Chan (2003). In this example application a number of different GP

models are to be identified. In the next section, the process of developing a suitable training

dataset for the identification of a GP model is to be examined using a simulated version of

the Coupled Tanks system. Following on from this discussion, the experimental methods

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 221

applied to the collection of empirical data are described and an existing analytical model

developed from first principles is also examined. Utilising the information gained from

these initial investigations the GP modelling approach is then applied to empirical data

collected from the real system.

5.7.1) Simulated Coupled Tanks System

In order to identify a GP model, a training dataset must first be created from any available

empirical data. In contrast to the previous examples, in this application we are to take

control over the input or excitation signals so that the full system identification process can

be demonstrated. To provide a more in-depth investigation into the development of a

suitable training dataset a number simulated models have also been employed, where a

number of simple first order system models were developed to generate training and test

datasets. The responses of these simulated models are designed to resemble the overall

characteristics of the two real systems rather than provide an exact approximation. Using

these simulated examples allowed different sets of training data to be collected more easily,

and facilitated a greater degree of experimentation (e.g. model set-up, system dynamics,

excitation signals, sampling rate etc.) than would be possible given the operational

constraints present in performing data collection experiments on the real systems. The

simple model structures were constructed using Simulink component of the Matlab

environment as shown in Figure (5.34).

Figure 5.34: - Simulink Diagram of Simulated System

For the excitation signal “Input Voltage”, the various options within Simulink’s ‘Sources’

menus can be employed. Particularly useful are the random number generators to allow

Pseudo-Random signals for inputs, and the ‘Signal Builder’ block that allows the user to

construct a specific input from various transition steps. This input signal is to represent the

input voltage used to control the water pump and therefore the inflow into Tank 1. The

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 222

initial 1st Order transfer function block ‘H1 T.F.’ represents the dynamics of the height of

water in the first tank, and the second transfer function block ‘H2 T.F.’ represents the

dynamics of the height of water in the second tank. The values for the numerators and

denominators of both transfer functions were arbitrarily chosen, however the second

transfer block was designed to vary along a similar timescale and with a lower amplitude

than the first transfer block, thereby mimicking the overall nature of the real system where

the height of water in the second tank (H2) varies smoothly in tandem with that of the

height of water in the first tank (H1). Furthermore, the time constants associated with these

transfer functions are much lower than for the real system (~20 seconds rather than ~5

minutes).

In previous sections of this thesis (see Sections (4.5.2) and (4.5.3)), important aspects

regarding the size and conditioning of the covariance matrix and the implications for

experimental design have been discussed. Of particular relevance to the process of

experimental design is the fact that including prolonged periods of equilibrium or steady-

state data in the training dataset can adversely affect the conditioning of the covariance

matrix. As a result, in order to avoid this problem of matrix ill-conditioning, the input

signals used must adequately excite the system so that the response data does not remain in

steady-state for long periods. However, a significant problem can be seen to exist where the

inputs and outputs can be seen to vary at different rates. To demonstrate this problem we

can plot the response of both transfer function blocks to a step input signal, see Figure

(5.35). In this chart we can see that if the full transient responses (H1 and H2 in the real

system) are to be included, the corresponding input signal (pump input voltage in the real

system) that remains constant must also be included, thus potentially degrading the

conditioning of the training data. In contrast, we can see that as the transients associated

with the H1 and H2 vary along a comparable time-scale, the problem of avoiding the

inclusion of constant or equilibrium data would appear to be more easily dealt with.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 223

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (seconds)

Figure (5.35): Step Response of Simulated System – Input Voltage (solid line), Height

(H1) of water in Tank 1 (dotted line), Height (H2) of water in Tank 2 (dashed line).

5.7.1.1) Random Noise Excitation Signal

Therefore, if we are to model the relationship between the input voltage and the level of

water in either tank, it would appear that the use of step excitation inputs is not a viable

option. An alternative course of action would be to use an input signal that is constantly

excited across the timescale and is therefore unlikely to result in prolonged periods of

steady-state data being included in the training dataset. In Figure (5.36) a random (sampled

Gaussian noise) excitation signal has been generated and applied to the simulated system.

Random excitation inputs are especially popular in the development of black box models as

they offer a suitable method of manipulating the system in an unbiased manner that reflects

the lack of prior knowledge of the system that is often inherent.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 224

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8

9

10

Time (seconds)

Figure (5.36): Coupled Tanks Simulated System (Random Noise Excitation Signal)–

Input Voltage (solid line), Height (H1) of water in Tank 1 (dotted line), Height (H2) of

water in Tank 2 (dashed line).

As in the previous Lorenz attractor example, in order to adhere to the basic principles of

cross-validation, this data set is to be split into separate training and test datasets. For this

example, the data set was partitioned evenly (at 400 seconds) into test and training datasets.

The original empirical data generated from the simulated system was done so at an interval

of 0.05 seconds for 400 seconds, resulting in 8000 points each in the test and training

datasets. Therefore, in order to reduce the computational burden, the training dataset was

then re-sampled using a factor of 20 to give 400 points, and the test data were re-sampled

by a factor of 4 to give 2000 points.

Using this random excited training data we can train three different models, firstly we

model the relationship between the Input Voltage and H1, secondly the relationship

between the Input Voltage and H2, and thirdly the relationship between H1 and H2. As in

the previous dynamic example, the previous output is to be used as a second input for these

models (i.e. one-step ahead prediction). Therefore, due to the difference in sampling rates

between the test and training data sets (a factor of 5), the test data is to employ the output

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 225

point 5 steps before the current time (i.e. (k-5)) in order to remain consistent with the

training data. In addition, the target data is again normalised in accordance with the zero-

mean prior assumption, whilst the inputs are not rescaled, as their standard deviations are

not hugely different. The squared exponential covariance function is again chosen, and the

hyperparameters found using the same maximum likelihood maximisation scheme as

before. These three model implementations (M1, M2, M3) were then tested with the model

performance and variance output displayed in Figure (5.37), Figure (5.38) and Figure

(5.39), with the validation measures given in Table (5.1).

400 450 500 550 600 650 700 750 800
0

1

2

3

4

5

6

7

8

9

time (seconds)
400 450 500 550 600 650 700 750 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (seconds)

E

 (a) (b)

Figure (5.37): Coupled Tanks Simulated Example (Model M1: Input V→H1) - Chart

(a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart

(b) shows GP model error (solid line) and Variance (2σ) output (dotted line).

400 450 500 550 600 650 700 750 800
-1

0

1

2

3

4

5

6

7

time (seconds)
400 450 500 550 600 650 700 750 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (seconds)

E

 (a) (b)

Figure (5.38): Coupled Tanks Simulated Example (Model M2: Input V→H2) - Chart
(a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart
(b) shows GP model error (solid line) and Variance (2σ) output (dotted line).

H1

H2

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 226

400 450 500 550 600 650 700 750 800
0

1

2

3

4

5

6

7

time (seconds)
400 450 500 550 600 650 700 750 800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time (seconds)

E

 (a) (b)

Figure (5.39): Coupled Tanks Simulated Example (Model M3: H1→H2)- Chart (a)

shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart

(b) shows GP model error (solid line) and Variance (2σ) output (dotted line).

Validation Measure M1: Input V→H1 M2: Input V→H2 M3: H1→H2

MSE 0.0080 0.2412 0.0025

LPD -273.7931 -3.0388e+003 -432.9226

LL 880.8169 512.6326 1.2552e+003

Table (5.1): Validation measures of Coupled Tank Simulated Model

Overall, we can see that the GP modelling approach achieves a good level of model

performance for models M1 and M3, whilst the model M2 is significantly less accurate. For

the model M3, as the input H1 and output H2 can be seen to vary smoothly with one

another, it is not surprising that this model implementation has been successful. As a result,

it is this model implementation that we will focus on when applying the GP modelling

approach to the real empirical data. For the model M1, as the input (Input Voltage) and the

output H1 are quite closely correlated (as shown in Figure (5.36)), the GP model can be

seen to achieve a decent approximation. This is not the case for the model M2 where the

input and output are not closely correlated, and a substantially poorer level of accuracy is

found. This lack of model accuracy is due to the training data not providing sufficient

information with which to make predictions, as the output varies at a far slower rate to that

of the input. Therefore, the full response of the output to a change in the input is never

captured by the training data, leading to error in the model. Indeed, it important to point out

that the relationship between the Input Voltage and H2 can be understood as a second rather

H2

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 227

than a first order system. As a result, the current ARX structure of model M2 is

insufficiently complex (i.e. not enough inputs), leading to a poor description of this second

order relationship.

Furthermore, in all of 3 of these models it is worth drawing attention to the fact that the

variance output of each GP model is not particularly informative of the presence of model

error. Whilst the LPD measure is better (more negative) for model M3 over M1, therefore

in keeping with the MSE measure, the LPD measure of M2 is better than either despite

attaining a substantially poorer accuracy. This again reinforces the fact that the variance

output of the GP model is predominantly only really informative of where training data is

sparse. In this example, the random excitation signal is sufficiently long enough that the

whole operating range is covered relatively evenly by the training data. Therefore, the error

in model M2 is predominantly due to the unsuitability of this model implementation, where

the relationship between fast input transients to slower output transients is to be mapped.

This aspect is something that we will return to in Section (5.7.6) where a mixed-model

implementation is discussed, but for the moment we will concentrate on modelling the

relationship between H1 and H2.

A problem with conducting system identification tests using such a random excitation

signal (shown in Figure (5.36)) is that this kind of operating response is not particularly

representative of how the real coupled tanks system is normally operated. In operating the

real coupled tanks system, the system can be seen to settle into steady-state operating points

very readily, and the recorded system response consists typically of relatively slow

transitions between steady-state operating points. Therefore, the random excitation signal

shown in Figure (5.36) is slightly artificial and whilst it offers a straightforward method for

avoiding the inclusion of problematic steady-state data, it may be difficult to implement in

practice. Another important aspect that has not yet been considered is the performance of

these GP models for data that actually reaches steady-state. As the system is likely to spend

a significant proportion of time under such operating conditions, the identified model must

be able to provide accurate predictions of such steady-state behaviour.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 228

5.7.1.2) Random Step Excitation Signal

In Figure (5.40) a different excitation signal is now applied to the simulated coupled tanks

system where the input consists of a number of step transitions of different magnitudes. The

magnitude of these input steps have been chosen arbitrarily to appear somewhat random in

nature, and the time between steps was chosen to be ~25 seconds so as to let the full

transients of H1 and H2 be captured. This time between steps was selected from inspecting

the step response shown in Figure (5.35), where at ~25 seconds after the input step, both H1

and H2 both approach equilibrium.

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9

10

Figure (5.40): Coupled Tanks Simulated System (Random Step Excitation Signal) –

Input Voltage (solid line), Height (H1) of water in Tank 1 (dotted line), Height (H2) of

water in Tank 2 (dashed line).

Therefore, by ensuring the time between steps is kept within such a margin, we can avoid

including large quantities of problematic equilibrium data. Note that it is important to

ensure that neither the inputs (H1 and H2(k-1)) or the outputs reach steady-state, so this

upper limit on the time between steps should be enforced rigorously, otherwise the

conditioning of the covariance matrix can begin to degrade quickly. This problem becomes

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 229

most apparent if the optimisation process ends in an abrupt manner, resulting in poorly

identified hyperparameters. As before, this data set is then split into training and test

datasets. The first 600 seconds of the time history is to be used as training data, and the

second 600 seconds used as a test dataset. For this example, H2 is to be identified using H1

and the previous H2 as the model inputs. The squared exponential covariance function is

again utilised and the hyperparameters optimised as before. The sampling rates chosen for

the training and test data remain the same as in the previous example, resulting in a training

dataset of 600 points and a test dataset of 3000 points. Note that the timescale of the whole

dataset for this example has been extended from 1000 to 1200 seconds to allow more of

these slower transitions to be included. The predictive performance of the model can be

seen in Figure (5.41), and the validation measures were calculated as: Mean-Square Error

(MSE) of 3.2688e-004, Log Predictive Density (LPD) of -0.0140, and log likelihood (LL)

of 1.4375e+003. Overall, the identified model can be seen to provide accurate predictions

of the underlying function, with the model error and model variance remaining low with the

odd spike coinciding with the larger input transitions.

600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

8

time (seconds)
600 700 800 900 1000 1100 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

time (seconds)

E

 (a) (b)

Figure (5.41): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 600

training points from first 600 seconds of Figure (5.40))- Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dotted line).

We are now to contrast the performance of this model with the previous model identified

using the more ‘noisy’ random excitation signal shown in Figure (5.36). In order to provide

a fair comparison, the training data selected from this dataset was extended to include 600

points from the first 600 seconds. The model performance can be seen in Figure (5.42), and

the validation measures where calculated as: Mean-Square Error (MSE) of 0.0016, Log

H2

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 230

Predictive Density (LPD) of -870.8319, and log likelihood (LL) of 1.8728e+003. Overall,

we can see that the GP model identified from the more ‘noisy’ random training data

provides a good approximation to the underlying system, but does not quite match the MSE

performance of the model identified using the more slowly varying step inputs. However,

the variance output of the model trained on the noisy data is lower than that of the model

trained on the random step data (indicating a more successful optimisation, probably due to

better training set conditioning of the noisy data as it includes no steady-state data). Of

particular importance is the that accuracy of this ‘noisy’ data trained model where the

output begins to reach steady-state is noticeably poorer than that of the step input trained

model, especially at the lower and higher ends of the output operating range. This is to be

expected as the ‘noisy’ training data does not include as much information near to steady-

state as the step training dataset. A further by-product of the faster transitions included in

the ‘noisy’ training dataset is that the data has a tendency to concentrate in the middle of the

input range leaving the extremities of the operating range more sparsely populated by

training observations. It is this tendency that is reflected in the model’s poorer predictive

performance at transitions that take place in the lower and higher regions of the output

operating range.

600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

8

time (seconds)
600 700 800 900 1000 1100 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

time (seconds)

E

 (a) (b)

Figure (5.42): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 600

training points from first 600 seconds of Figure (5.36))- Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dotted line).

So far in this example application, it is the conditioning of the covariance matrix that has

driven the process of identifying a suitable training dataset. However, in the

implementation of the GP modelling approach, the size of this training dataset must also be

H2

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 231

considered carefully, due to the large computational expense of including large quantities of

training data. In the examples so far, the training datasets have included 600 points, which

could not readily be described as very large. However, it is at around this size that the

computation time associated with optimising hyperparameters and then predicting 1000+

test cases becomes slightly prolonged (~15 minutes on my PC: 1.6 GHz, single-core, 1Gb

RAM). Therefore, in order to speed this process up it is worth discussing methods to reduce

the computational expense of the GP model. If the two existing excitation signals are to be

retained, there are two different strategies that can be applied to reducing the size of the

training dataset: 1) Reduce the length of the time-scale included, or 2) Decrease the

sampling rate used to collect the data. Both approaches are to be investigated for the two

random excitation signals shown in Figure (5.36) and Figure (5.40).

Firstly, to reduce the size of the training dataset, the timescale of both excitation signals

was reduced from 600 seconds to 300 seconds resulting in a training dataset of 300 points

with the existing sampling rate. The model performance of both models is shown in Figure

(5.43) and Figure (5.44), and the validation measures of the model in Figure (5.43) where

calculated as: Mean-Square Error (MSE) of 0.0443, Log Predictive Density (LPD) of -

1.2257, and log likelihood (LL) of 704.7914, and for the model in Figure (5.44) the

validation measures where calculated as: Mean-Square Error (MSE) of 0.0119, Log

Predictive Density (LPD) of -693.2591, and log likelihood (LL) of 948.7873.

600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

8

time (seconds)
600 700 800 900 1000 1100 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (seconds)

E

 (a) (b)

Figure (5.43): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300

training points from first 300 seconds of Figure (5.40))- Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dotted line).

H2

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 232

600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

8

time (seconds)
600 700 800 900 1000 1100 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time (seconds)

E

 (a) (b)

Figure (5.44): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300

training points from first 300 seconds of Figure (5.36))- Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dotted line).

Overall, we can see that the two models offer a good approximation to the underlying

function over the majority of the operating space. However, the model identified using the

random step input data can be seen to have a particular deficiency in predicting at the

higher levels of the output H2. This is due to the removal of important training data

observations from the training dataset by reducing the included timescale (i.e. transients at

this higher region are included in the original data (Figure (5.38) but at t > 300 seconds).

The model identified by the ‘noisy’ random data is slightly less affected by this curtailment

of the training dataset at the higher end of the operating range, but is more affected at the

lower end of the operating range. This is again evidence of the tendency for data collected

from more rapidly varying signals to become concentrated toward the middle of the

operating range (i.e. the minimum hold time is not of sufficient length).

This potential omission of observations from important regions of operating space is a

significant problem with employing random excitation signals for the collection of training

data. In order to ensure that the full input range of the system is covered by the training

data, it is therefore necessary to design excitation signals that are of sufficient duration to

make up for this lack of precise control over the input. Furthermore, it is worth reiterating

the point that the GP modelling approach can be thought of as a method of interpolation. As

a result, any predictions carried out on test points that lie out with the training data are very

likely to be inaccurate with a correspondingly large variance output.

H2

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 233

Instead of shortening the length of the included excitation signal, an alternative strategy

based on reducing the sampling rate (or increasing the interval between datapoints) can be

pursued. Unlike the previous example application (Lorenz attractor), as this simulated

coupled tank system (and especially the real version) varies more slowly, the potential

deterioration in model accuracy when the sampling rate is reduced should be less rapid.

Using the same two excitation signals, the sampling rate of the training data was increased

by a factor of two (from 1 second to 2 seconds, resulting in 300 datapoints collected from

the 600 second duration excitation signals), with the test data sampled as before (0.2

seconds) thus requiring an adjustment in the implementation of the input H2(k-1) from 5

steps previous to 10 steps previous. The model performance of both models is shown in

Figure (5.45) and Figure (5.46), and the validation measures of the model in Figure (5.45)

where calculated as: Mean-Square Error (MSE) of 0.0367, Log Predictive Density (LPD) of

-349.8891, and log likelihood (LL) of 626.7114, and for the model in Figure (5.46) the

validation measures where calculated as: Mean-Square Error (MSE) of 0.0447, Log

Predictive Density (LPD) of -1.6761e+003, and log likelihood (LL) of 556.7409.

600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

8

time (seconds)
600 700 800 900 1000 1100 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (seconds)

E

 (a) (b)

Figure (5.45): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300

training points from first 600 seconds of Figure (5.40))- Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dotted line).

H2

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 234

600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

8

time (seconds)
600 700 800 900 1000 1100 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (seconds)

E

 (a) (b)

Figure (5.46): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300

training points from first 600 seconds of Figure (5.36))- Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dotted line).

Overall, both of these models can be seen to offer a reasonable approximation to the

underlying function, however a significant level of model error is demonstrable across the

whole of the test dataset, and particularly at test cases where large transients occur. This is

to be expected, as by reducing the sampling rate and therefore the size of the training

dataset from 600 to 300 points, the more subtle characteristics of the system response have

been lost from the training dataset. This is in contrast to the previous models identified with

data from a shortened excitation signal, where the model error is specific to certain regions

of the operating range that are not covered by the training data.

5.7.1.3) Small Step Excitation Signal

In the previous implementations of the GP modelling approach, a random excitation signal

was employed to collect the training data. Whilst such an approach has been shown to

provide suitable training data and therefore good models, a disadvantage of using random

signals is that the length of the signal must be of sufficient duration so that training data can

be collected from the full operating range of the system. Furthermore, as the sampling rate

used to collect the training data cannot be reduced without potentially losing important

information, in order to reduce the size of the training set alternative methods to decrease

the size of the training dataset should be considered. Assuming the sampling rate of the

H2

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 235

training data is kept at a minimum that remains viable to capture the dynamics of the

system, it is therefore the length of the excitation signal that could be modified.

Therefore, instead of employing a random excitation signal, a more deterministic approach

to the design of the excitation signal and therefore the training dataset could be adopted.

Fundamentally, due to the interpolation characteristics of the GP model, the greatest source

of model error is normally due to the lack of training data in certain regions of the operating

space. Therefore, any excitation signal must attempt cover the entire operating range of the

system (i.e. input range is 0 to 10). Taking this prior knowledge and combining it with the

other important knowledge over the duration of individual transients, it is therefore possible

to design an excitation signal that excites the system across the whole of the operating

range whilst remaining shorter in terms of timescale than the previously employed random

signals. In essence, the idea is to cram as much information into as small a training dataset

as possible. As a result, the computational expense of the GP model may then be reduced

without resorting to further complex methods (e.g. sparse matrix methods).

In Figure (5.47) an excitation signal composed of a number of small step transitions that

covers the full range of the operating space was developed. As before, it is important to

avoid including steady-state data, and the size and number of transitions were chosen so

that the input could be stepped up and down through the range within a reasonably short

timescale. It is also worth pointing out that although the response of this simulated system

should remain symmetrical, in that an input step should result in the same length of

transient whether it is positive or negative, the real coupled tank system does not display

such perfect symmetry. Therefore, this has influenced the inclusion of ‘downsteps’ as well

as ‘upsteps’. Furthermore, including the ‘downsteps’ allows the training dataset to be

populated by the full range of data a second time, thus improving model performance.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 236

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

Time (seconds)

Figure (5.47): Coupled Tanks Simulated System (Small Step Excitation Signal) –

Input Voltage (solid line), Height (H1) of water in Tank 1 (dotted line), Height (H2) of

water in Tank 2 (dashed line).

Utilising the same sampling rates as before, two training datasets where collected from this

excitation data and used to identify two GP models. The first of these models is to use the

original sampling rate of 1 second resulting in a training dataset of 300 datapoints, and the

second model is to use a 2 second sampling rate thus resulting in a training dataset of 150

datapoints. The performance of these two models can be seen in Figure (5.48) and

Figure(5.491), and the validation measures of the model in Figure (5.48) where calculated

as: Mean-Square Error (MSE) of 3.6230e-004, Log Predictive Density (LPD) of -455.8357,

and log likelihood (LL) of 1.1774e+003, and for the model in Figure (5.49) the validation

measures where calculated as: Mean-Square Error (MSE) of 0.0300, Log Predictive

Density (LPD) of -465.9639, and log likelihood (LL) of 410.8031.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 237

600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

8

time (seconds)
600 700 800 900 1000 1100 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time (seconds)

E

 (a) (b)

Figure (5.48): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300

training points from 300 seconds of Figure (5.47))- Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dotted line).

600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

8

time (seconds)
600 700 800 900 1000 1100 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (seconds)

E

 (a) (b)

Figure (5.49): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 150

training points from 300 seconds of Figure (5.47))- Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dotted line).

The performance of the model in Figure (5.48), where 300 training datapoints are included

in the training dataset, can be seen to be very competitive with the previous models

identified with 600 datapoints. Therefore, as this model performs significantly better than

the previous models identified from the same size of training dataset (300 datapoints), this

can be seen to be a substantial reduction in the computational expense of the model without

much sacrifice in the predictive performance of the model. This is further demonstrated in

the model shown in Figure (5.49) where a model identified from 150 datapoints

H2

H2

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 238

outperforms in both MSE and LPD the previous models identified from twice the amount

of data.

Overall, in this example we have demonstrated that it may be possible to employ prior

knowledge of the system in the design of the training dataset used to identify the GP model.

Instead of relying on random excitation signals that are routinely used to identify black-box

models, by taking more control over the exact nature of the empirical data included, there

can be significant reductions in the size of the training dataset required. This can therefore

lead to a reduction in the computational burden of the approach. However, it is worth

pointing out that the design of the excitation signal and therefore the training set must

always take into account the specific characteristics of the application. For the simulated

Coupled Tank system adopting an experimental approach where the input is stepped up and

down the operating range quickly is a viable method as the system varies in a consistent

manner across the whole of the operating range. This may not be the case for other

applications. Furthermore, this ‘small step’ approach has practical benefits when

considering the real Coupled Tank system where the transients are very slow and the length

of time taken to collect data can become very long. Therefore, conducting an experimental

approach that stimulates the system across the whole operating range in a straightforward

and systematic manner is an attractive proposition, as moving from one steady-state

operating point to another and then back again is a slow process.

5.7.2) Experimental Methods for Coupled Tank System

The Coupled Tanks (CE5) system manufactured by TecQuipment has been equipped with

differential pressure sensors (Sensym SX01D) that measure the difference between

atmospheric pressure and the pressure at the base of each tank and return an electrical

signal. The resultant signals are then amplified to provide a suitable range of measurement

of the depth of water in both tanks. Measurements from the Coupled Tank system were

automatically recorded through a PC data acquisition device (National Instruments 6024E)

controlled with National Instruments LabVIEW software. Through this software the height

of water in both tanks (H1 and H2), together with the input voltage applied to the water

pump, was recorded over the duration of the experiments.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 239

To identify nonlinear systems it is desirable to collect empirical data across as much of the

operating range as possible. The system was subjected to a series of small and large step

inputs and the response recorded. The system response to large inputs is often difficult to

record, as operational restrictions must be enforced (e.g. to avoid water overflow). As a

result, the restrictions existing when operating close to the boundaries of the operating

envelope are reflected in the smaller quantities of data collected close to the system’s limits

(Heights near maximum of 0.3m). Additionally, the water pump response to input voltage

can be seen to be linear only within a certain range, where the input voltage can be directly

transformed to input flow rate through an identified constant. Outside of this range (close to

minimum and maximum flow rate), flow rates tend to be related to the pump input voltage

in a nonlinear fashion. The Two-Tank system is a stable system that displays high damping,

as overshoots and oscillatory behaviour are not observed in its current configuration. The

system tends to settle into equilibrium readily, with equilibrium points existing across the

operating range. This makes the system suitable for modelling using local linear techniques

and small perturbation theory.

The Coupled Tanks system response is relatively slow with time constants typically being

several minutes. Consequently, the sampling rate chosen to acquire the data must not be too

high that an excessive amount of slow varying data is produced, but also not so low as to

inadequately represent the system response. Therefore, a sampling rate of 10 seconds was

implemented. For this system, it is worth noting that negative input transients tend to result

in faster output transient responses than equivalently sized positive transients.

5.7.3) Analytical Model of the Coupled Tanks System

The conventional method for analysing dynamic systems similar to the two-tank system is

to apply the principle of continuity of mass and energy (Bernoulli’s theorem). This results

in a nonlinear model of the system described by the following equations:

Tank 1 (Height of water H1, Cross-sectional area A1, Inflow Qvi and Outflow Qv1)

1
1

1 vvi QQ
dt

dH
A −= (5.23)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 240

Tank 2 (Height of water H2, Cross-sectional area A2, Inflow Qv1 and Outflow Qvo)

vov QQ
dt

dH
A −= 1

2
2 (5.24)

The rate of change of volume (cross-sectional area A, multiplied by height H, for

rectangular shaped tanks) of liquid in each tank must be equal to the difference between the

flow rate into and out of each tank. If the hole which links the two tanks and the outflow

pipe are treated as simple orifices, the flow rate through each hole can be related to the fluid

heights through the following equations

)(2 21111 HHgaCQ dv −= (5.25)

)(2 3222 HHgaCQ dvo −= (5.26)

where a1 and a2 are the cross sectional areas of the orifice and outlet pipe, H3 is the height

of the outlet pipe above the base of the tanks, g is the gravitational constant, and Cd1 and

Cd2 are discharge coefficients of constant value. The system can be seen to be nonlinear due

to the presence of the square root covering the difference in water levels of the two tanks.

From these expressions it is possible to formulate ordinary differential equations that

describe the system at different operating or initial conditions. When the system is

operating in it’s natural operating state of H1 > H2 with H2 > H3, the system can be

described by

)(2),,,(21
111

211 HHg
A

aC

A

Q

dt

dH
tQHHf do

o −−== (5.27)

1 1 2 22
2 1 2 1 2 1 3(, , ,) 2 () 2 ()d d

o

C a C adH
f H H Q t g H H g H H

dt A A
= = − − − (5.28)

Utilising the same coefficients as in Gong and Murray-Smith (1998), the simulated

response of the analytical model was then compared with experimental data collected from

the real system when subjected to the same input, see Figure (5.50).

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 241

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

Figure (5.50): Nonlinear Analytical Model (dotted lines) vs. Real Data (sold lines),

with the water level in Tank 1 (H1) greater than the water level in Tank 2 (H2).

Overall, the analytical model can be seen to approximate the behaviour of the recorded

response from the system, but the model has significant errors present. The time constants

associated with the transients of the simulated system are slightly faster than in reality, and

the steady state values are significantly different. As certain quantities identified in the

model (H1, H2, A1, A2, and Qvi) are well known, they are therefore unlikely to introduce

significant error into the model. Instead, the paper by Gong and Murray-Smith (1998) has

pointed to a deficiency in the model structure through this assumption for orifice type flow

behaviour. As the outlet of the second tank is not strictly an orifice (rather a short section of

pipe with a drain tap), other flow properties, such as turbulent or laminar flow, that are not

well represented by the model of orifice flow will be present. A possible strategy indicated

in Gong and Murray-Smith (1998) for reducing this model error is to introduce a variable

discharge coefficient into the model that is dependent on the depth of water in the second

tank. Nevertheless, whilst it would be possible to improve the predictive performance of

this existing analytical model, this research is focused on the application of the

nonparametric GP model alternative.

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 242

5.7.4) Application to the Real System

In this section, we are now to tackle the identification of the real Coupled Tanks system

using empirical data collected from the system. To collect the training data, the previously

discussed experimental approach where the system is excited by a number of small positive

and negative step inputs was adopted. In this way, we can attempt to collect empirical data

from the whole operating range of the system in a more concise manner than would be

achievable if random excitation signals were to be adopted. A further reasoning behind the

adoption of the small step excitation approach instead of the random excitation approach is

that for many real world applications it is not practically possible to employ large rapidly

changing input signals due to operational circumstances and constraints. In many

applications, such large and abrupt input transients cannot be performed repeatedly without

potentially damaging the system. For the Coupled Tanks system in particular, the use of

very large input transients was discouraged for fear of water overflowing from the first

tank. Consequently, it is often the case that small perturbation data, collected from the open

loop response at various equilibrium points, is used to identify models. Nevertheless, we

would want to investigate the performance of the identified GP model for large input

transients. This is because of the fact that, for any test data very similar to the training data

used, an identification method that fails to find an accurate description could certainly not

be recommended. Therefore, training on small step data and testing on larger input

responses is a useful method of assessing the flexibility of the identified model and the

suitability of the identification method used.

The small step excitation input and output response can be seen in Figure (5.51a) where the

data was collected using a sampling rate of 10 seconds leading to a dataset of 2672

datapoints. As discussed previously, in order to avoid considerable computational expense,

it is recommended that the size of the training set be reduced to a more manageable level

(i.e. below 1000 datapoints). Furthermore, as the system response is smooth and slowly

varying, this empirical dataset can be re-sampled without fear of losing valuable

information. Therefore, the excitation data shown in Figure (5.51a) was re-sampled by a

factor of 20 to provide a training dataset of 134 datapoints with a sample interval of 200

seconds. A further important consideration in the pre-processing of the training dataset is

the conditioning of the data itself. Most importantly, the existence of large amounts of

steady-state data in the training dataset can lead to ill-conditioning in the covariance matrix

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 243

of the GP model. For the excitation data shown in Figure (5.51a), both the input and output

signals can be seen to remain sufficiently excited (i.e. the period between the step

transitions is relatively small) so as to remove the need to eliminate any steady-state data by

hand. Therefore, the only pre-processing employed for this training dataset was the re-

sampling of the empirical data. The effect of this pre-processing can be seen in Figure

(5.51b).

0 0.5 1 1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

time (seconds)
0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (seconds)

 (a) (b)

Figure (5.51) Coupled Tanks System – Small Step Training Data. Chart (a) shows

recorded data with input (dotted line) and output (solid line). Chart (b) shows pre-

processed Training Data (134 datapoints).

In order to validate the GP models identified from this training dataset, four further test

datasets where collected from the Coupled Tanks system. These are shown in Figure (5.52),

where the first test dataset is composed of a number of large positive and negative

transitions or ‘pulses’, the second test dataset is composed of a single large positive ‘pulse’

where the steady-state performance of the model can also be assessed, the third dataset is

composed of a number of small positive step transitions designed to test the model on data

that is more similar to that present in the training dataset, and the fourth test dataset is a

mixture of different size and more rapidly varying transitions. The test datasets shown in

charts (b), (c), and (d) of Figure (5.52) where collected using the same sampling interval

(every 10 seconds) as that used to collect the empirical data used for training. However, the

test dataset shown in chart (a) of Figure (5.52) was collected using a different sampling

interval of 4 seconds. This difference is the result of a lack of experimental consistency

rather than for any other practical reason. For the purposes of testing the GP models

identified, these test datasets are not going to be re-sampled. Therefore, for any previous or

regressed inputs/outputs that are to be incorporated into the model structure, an awareness

H(m) H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 244

of the different sampling rates is required. For the test datasets shown in charts (b), (c), and

(d) of Figure (5.52), 1-step back of the training data will be equivalent to 20 steps back of

the test data, and for chart (a), 1-step back of the training data will be equivalent to 50 steps

back of the test data.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

time (seconds)
0 1000 2000 3000 4000 5000

0

0.05

0.1

0.15

0.2

0.25

0.3

time (seconds)

 (a) (b)

0 2000 4000 6000 8000 10000 12000 14000
0

0.05

0.1

0.15

0.2

0.25

0.3

time (seconds)
0 2000 4000 6000 8000 10000

0

0.05

0.1

0.15

0.2

0.25

0.3

time (seconds)

 (c) (d)

Figure (5.52): Coupled Tanks System – Test Datasets. Chart (a) shows a number of

large positive and negative ‘pulse’ transitions. Chart (b) shows a single large positive

step transition with a long period in ‘steady-state’. Chart (c) shows a number of small

positive steps inputs followed by a large negative transient. Chart (d) shows mixture of

slow and fast transitions. All charts show system input (dotted line) and output (solid

line).

Before the hyperparameters of the Squared Exponential covariance function are optimised

it is first necessary to define the precise model structure that we wish to employ. As in the

simulated version, a simple ARX model structure is to be used where the model inputs are

to be the current input H1(k) and previous output H2(k-1), with the model output being

H2(k). Next, the training target data must be normalised in accordance with the zero-mean

H(m) H(m)

H(m) H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 245

GP prior assumption, and the scaling of the input variables is checked to ensure no large

differences are found. Applying the same marginal likelihood maximisation optimisation

scheme as before results in θMP.= (θ1 = 0.1965, θ2 = 0.0796, θ3 = 0.0696, θ4 = 0.0007). Now

that the GP prior has been defined, the predictive mean of the posterior can then be

calculated for all test inputs and compared with the real system data. The four test datasets

are then to be identified using the GP prior with the results presented below followed by a

discussion of the model’s performance.

Test 1 – Large ‘Pulses’ Test

In this test the performance of the GP model identified using the small step training data is

tested on the large positive and negative ‘pulse’ transitions shown in Figure (5.52a). The

GP mean predictions can be seen in Figure (5.53) and the validation measures were

calculated as Mean-Square Error (MSE) of 5.2375e-005, Log Predictive Density (LPD) of -

249.1887, and log likelihood (LL) of 742.1701.

0 2000 4000 6000 8000 10000 12000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.005

0.01

0.015

0.02

0.025

time (seconds)

E

 (a) (b)

Figure (5.53): Coupled Tanks System – Large ‘Pulses’ Test Data - Chart (a) shows GP

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows

GP model error (solid line) and Variance (2σ) output (dotted line).

Test 2 – Large Step and ‘Steady-State’ Test

In this test the performance of the GP model identified using the small step training data is

tested on the large positive step transition followed by a prolonged period of near steady-

state behaviour shown in Figure (5.52b). The GP mean predictions can be seen in Figure

(5.54) and the validation measures were calculated as Mean-Square Error (MSE) of

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 246

2.0191e-004, Log Predictive Density (LPD) of -3.1304e+003, and log likelihood (LL) of

742.1701.

0 1000 2000 3000 4000 5000 6000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time (seconds)
0 1000 2000 3000 4000 5000 6000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

time (seconds)

E

 (a) (b)
Figure (5.54): Coupled Tanks System – Large Step and ‘Steady-State’ Test Data -

Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line).

Chart (b) shows GP model error (solid line) and Variance (2σ) output (dotted line).

Test 3 – Small Steps Test

In this test the performance of the GP model identified using the small step training data is

tested on the small positive step transitions shown in Figure (5.52c). The GP mean

predictions can be seen in Figure (5.55) and the validation measures were calculated as

Mean-Square Error (MSE) of 1.9965e-005, Log Predictive Density (LPD) of -145.4783,

and log likelihood (LL) of 742.1701.

0 5000 10000 15000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

time (seconds)
0 5000 10000 15000

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

time (seconds)

E

 (a) (b)
Figure (5.55): Coupled Tanks System – Small Step Test Data - Chart (a) shows GP

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows

GP model error (solid line) and Variance (2σ) output (dotted line).

H(m)

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 247

Test 4 – Mixture of Slow and Fast Transitions Test

In this test the performance of the GP model identified using the small step training data is

tested on the mixture of slow and fast transitions shown in Figure (5.52d). The GP mean

predictions can be seen in Figure (5.56) and the validation measures were calculated as

Mean-Square Error (MSE) of 4.3327e-005, Log Predictive Density (LPD) of -45.5146, and

log likelihood (LL) of 742.1701.

0 2000 4000 6000 8000 10000 12000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

time (seconds)

E

 (a) (b)

Figure (5.56): Coupled Tanks System – Mixture of Slow and Fast Transitions Test

Data - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function

(solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) output

(dotted line).

Overall, the performance of the GP model in each of the four test cases can be seen to

provide a reasonable representation of the system behaviour, with the whole operating

range being successfully covered by the training dataset. However, a significant level of

error can be seen in the GP mean predictions of Tests 1, 2 and 3 in particular. Firstly, it is

important to point out that although the predictive performance of this GP model does not

initially appear to be particularly impressive, it is worth remembering that the data

employed has been collected from a real system. All the previous examples examined in

this thesis have employed simulated data where the datasets used for training and validation

are not affected by inconsistencies such as noise, model uncertainties or disturbances. As a

result, obtaining a perfect representation of the underlying system from imperfect data is

more challenging problem. Nevertheless, it is important to closely analyse the performance

of the model to see if any improvements can be made.

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 248

In analysing the performance of the GP model in Test 1 and Test 2, a conclusion that could

be drawn is that the training data, which consists of only small step transitions, has not

provided enough information with which to allow accurate predictions of larger step

transitions to be made. However, in the case of Test 4, which is also mainly made up of

large transitions, the GP model can be seen to perform much better. A further troubling

result is that the GP model’s performance in Test 3 is slightly disappointing given that the

test data is pretty similar in nature to that of the training data. Therefore, from an overall

perspective the performance of this GP model would appear to be somewhat inconsistent or

unreliable. As a result, such a mixed outcome is perhaps more difficult to contend with than

a model that is simply poor, and can therefore be disregarded. One aspect that can be

clearly understood is that the GP model has failed to represent the very slow positive drift

in the level of the output (between the large positive and negative transitions) seen in Test

2. This kind of subtle behaviour is something that the GP modelling approach will fail to

capture, as despite this drift in the test output, the level of the test input remains constant.

Furthermore, as the training data has been pre-processed to reduce the presence of data near

steady state, this more subtle nonlinear behaviour is not included in the training dataset

with the resultant growth in model error not being reflected in a growth in the variance

output of the GP model. In addition, the variance output from the model in Test 2 is not at

all correlated with the model error, and an unfeasibly good LPD measure is the result.

One possible strategy for improving the performance of the model is to include more data

in the training set through reducing the sampling interval between observations. Through

adopting such an approach, more rapidly varying and subtler nonlinearities can be better

represented in the training data. However, for the case of the Coupled Tanks system, as the

system response is slow and readily settles into steady-state conditions across the operating

range, including more data in the training dataset does not offer any great improvement in

the performance of the model. In fact, for the same reasons, reducing the amount of data in

the model by a factor of two (giving a training set of 67 points) has also been found to have

only a small negative effect on the accuracy of the GP model. Furthermore, due to the

smoothly varying nature of the data, the reduction of the training set can also lead to an

improvement in the model performance as a greater interval between observations can

further reduce the potential inclusion of repeated data, therefore improving the conditioning

of the training dataset and leading to better hyperparameters being identified.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 249

Therefore, if the sampling rate chosen for pre-processing and the size of the training dataset

are not found to be the deficient, it is perhaps the nature of the training dataset that is the

limiting factor in the performance of this GP model. In Tests 1 and 2 the performance of the

model was found to be somewhat lacking when attempting to predict large transitions. As

the training dataset is composed of only small step transitions it is plausible that if larger

transitions are included in the training dataset the accuracy of the model could be improved.

Furthermore, such a strategy would seem to be appropriate if a closer analysis of the system

characteristics is performed. In particular, the transient response of the system to different

size input transitions is not likely to vary in the same consistent manner as that displayed in

the simulated version of the system. As the simulated version of the system employed

constant transfer function parameters, the amplitude of the output transient response varies

in a consistent manner directly dependent on the size of the input transient. For the case of

the real Coupled Tank system, we already know that this same consistency is not upheld, as

previous analytical models based on constant discharge coefficients have found to be

inadequate. In essence, the behaviour of the output response will vary in a less predictable

manner than that of the simulated version, where the real response is dependent on the size

of the input transient as well as on the current region of operating space. Nevertheless, it is

still uncertain whether or not this variation is the major cause of model error, as we have

seen in Test 4 that the GP model has performed much better on similarly large transients.

Therefore, to investigate whether or not the small step training data is the problem, an

alternative training dataset is to be employed to identify a second GP model, which is to be

validated using the same four test datasets. This new training dataset is to contain larger

step transitions than in the previous model, whilst still hopefully maintaining coverage of

the whole operating range. In order to create this new training dataset, two existing

empirical datasets were combined and then pre-processed in accordance with the previous

guidelines where the size and conditioning aspects of the data must be considered.

Therefore, the overall size of the training dataset was restricted through employing the

same sampling rate as before (resulting in a 200 second interval between observations).

Furthermore, in order to reduce the problem of ill-conditioning in the covariance matrix, it

was necessary to manually remove certain regions of steady state data from the empirical

dataset. As discussed in Section (5.5), it also possible to employ a form of regularisation to

the data through adding noise to the diagonal of the covariance matrix. However, in this

example we are to concentrate on removing problem data as it more informative of the

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 250

problem than simply masking it with noise. The effect of this pre-processing on the training

data can be seen in Figure (5.57b) where 81 datapoints are included.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

time (seconds)
0 2000 4000 6000 8000 10000 12000 14000 16000

0

0.05

0.1

0.15

0.2

0.25

time (seconds)

 (a) (b)

Figure (5.57) Coupled Tanks System – Larger Step Training Data. Chart (a) shows

recorded data with input (dotted line) and output (solid line). Chart (b) shows pre-

processed Training Data (81 datapoints).

With regard to the process of combining or piecing together different datasets into a more

substantial training dataset, this is something that should be done with care and avoided if

possible. As the recorded data is a dynamic time-series, it is clear that by simply splicing

two datasets together the potential exists to introduce behaviour into the time-series that is

uncharacteristic of the system. As a result, if previous inputs and outputs are to be used in

the model structure, in the region where data overlaps, this previous information can prove

to be noticeably inconsistent with other regions of data. Therefore, as this data set is to be

used first to train hyperparameters and then retained in the covariance matrix, it is possible

to introduce significant error into the model. Consequently, in order to minimise this risk an

effort should be made to combine these different training datasets at points in the time-

series where the data is in a similar operating region. In the training dataset shown in Figure

(5.58), the two datasets were combined where the output level had reached a similarly high

value. Applying the same marginal likelihood maximisation optimisation scheme as before

results in θMP.= (θ1 = 0.7879, θ2 = 0.2174, θ3 = 0.0921, θ4 = 0.0042). Now that the GP prior

has been defined, the predictive mean of the posterior can then be calculated for all test

inputs and compared with the real system data. The same four test datasets are now to be

identified using the GP prior with the results presented below followed by a discussion of

the model’s performance.

H(m) H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 251

Test 5 – Large ‘Pulses’ Test

In this test the performance of the GP model identified using the ‘larger’ step training data

is tested on the large positive and negative ‘pulse’ transitions shown in Figure (5.52a). The

GP mean predictions can be seen in Figure (5.58) and the validation measures were

calculated as Mean-Square Error (MSE) of 2.1095e-005, Log Predictive Density (LPD) of

2.6727, and log likelihood (LL) of 311.9477.

0 2000 4000 6000 8000 10000 12000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time (seconds)

E

 (a) (b)

Figure (5.58): Coupled Tanks System (larger training steps) – Large ‘Pulses’ Test

Data - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function

(solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) output

(dotted line).

Test 6 – Large Step and ‘Steady-State’ Test

In this test the performance of the GP model identified using the ‘larger’ step training data

is tested on the large positive step transition followed by a prolonged period of near steady-

state behaviour shown in Figure (5.52b). The GP mean predictions can be seen in Figure

(5.59) and the validation measures were calculated as Mean-Square Error (MSE) of

1.1253e-004, Log Predictive Density (LPD) of -15.8432, and log likelihood (LL) of

311.9477.

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 252

0 1000 2000 3000 4000 5000 6000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time (seconds)
0 1000 2000 3000 4000 5000 6000

0

0.005

0.01

0.015

0.02

0.025

0.03

time (seconds)

E

 (a) (b)

Figure (5.59): Coupled Tanks System (larger training steps) – Large Step and

‘Steady-State’ Test Data - Chart (a) shows GP Mean predictions (dotted line) vs.

Underlying function (solid line). Chart (b) shows GP model error (solid line) and

Variance (2σ) output (dotted line).

Test 7 – Small Steps Test

In this test the performance of the GP model identified using the ‘larger’ step training data

is tested on the small positive step transitions shown in Figure (5.52c). The GP mean

predictions can be seen in Figure (5.60) and the validation measures were calculated as

Mean-Square Error (MSE) of 2.3790e-005, Log Predictive Density (LPD) of 3.2935, and

log likelihood (LL) of 311.9477.

0 5000 10000 15000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

time (seconds)
0 5000 10000 15000

0

0.005

0.01

0.015

0.02

0.025

time (seconds)

E

 (a) (b)

Figure (5.60): Coupled Tanks System (larger training steps) – Small Step Test Data -

Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line).

Chart (b) shows GP model error (solid line) and Variance (2σ) output (dotted line).

H(m)

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 253

Test 8 – Mixture of Slow and Fast Transitions Test

In this test the performance of the GP model identified using the ‘larger’ step training data

is tested on the mixture of slow and fast transitions shown in Figure (5.52d). The GP mean

predictions can be seen in Figure (5.61) and the validation measures were calculated as

Mean-Square Error (MSE) of 2.5033e-005, Log Predictive Density (LPD) of -2.3593, and

log likelihood (LL) of 311.9477.

0 2000 4000 6000 8000 10000 12000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.005

0.01

0.015

0.02

0.025

0.03

time (seconds)

E

 (a) (b)

Figure (5.61): Coupled Tanks System (larger training steps) – Mixture of Slow and

Fast Transitions Test Data - Chart (a) shows GP Mean predictions (dotted line) vs.

Underlying function (solid line). Chart (b) shows GP model error (solid line) and

Variance (2σ) output (dotted line).

Inspecting the GP mean predictions of the 4 tests, we can see a significant overall

improvement in the accuracy of the GP mean predictions across the majority of the

operating range. However, in both Test 5 and Test 7 a significant level of error is present in

model at high output levels. This is due to the excitation data included in the training

dataset not quite reaching the same high output levels, therefore resulting in a loss of model

accuracy and growth in the corresponding variance output. In Test 6, the new GP model

still does not provide a better representation of the low level positive drift discussed earlier,

but as this new training dataset is not radically different to the previous training dataset this

problem is not likely to be solved. In Test 8, the new GP model does not offer a significant

improvement over the previous model, with both models providing a decent level of

approximation of the slower transitions, and a slightly weaker performance on the faster

transitions. Such an outcome is to be expected as the training data is composed of slower

transitions and is sampled in such a manner to capture these slower dynamics in relatively

few points.

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 254

In order to ease comparison of this new model with that of the previous model trained on

the original training dataset the validation measures are tabulated below (remember that test

data used for Test 1 is the same as that in Test 5, Test 2 is the same as Test 6, etc.).

Original Training Data MSE LPD LL

Test 1 5.2375e-005 -249.1887 742.1701
Test 2 2.0191e-004 -3.1304e+003 742.1701
Test 3 1.9965e-005 -145.4783 742.1701
Test 4 4.3327e-005 -45.5146 742.1701

Table (5.2): Validation measures from Tests 1 to 4.

New Training Data MSE LPD LL

Test 5 2.1095e-005 2.6727 311.9477
Test 6 1.1253e-004 -15.8432 311.9477
Test 7 2.3790e-005 3.2935 311.9477
Test 8 2.5033e-005 -2.3593 311.9477

Table (5.3): Validation measures from Tests 5 to 8.

Overall, the use of this second training dataset (where larger step transitions are employed)

has improved the MSE accuracy of the model in three of the four test cases. In Test 7, the

MSE performance of the second GP model is worse than that of the original model due to

the fact that the second training set fails to fully cover the whole operating range.

Therefore, the suspicion that the original small step training dataset does not excite the

system enough to gather information with which to predict large transitions accurately

would appear to be true. Also worth noting is the fact that the LPD performance of the

second model is worse than that of the original model, despite the model error being mostly

improved. The reason for this apparent inconsistency is that the original training dataset

was better conditioned (less steady-state data), therefore allowing a more successful

optimisation stage to be completed. This is also indicated by the fact that the Log

Likelihood (LL) measure being higher for the first GP model.

As discussed previously, the use of such small step training data has imposed an

assumption that the scale of variation or flow rates remains consistent for large and small

step inputs. Furthermore, such a deficiency would appear to be similar to that built into the

analytical model where the discharge coefficients were defined as constants. In addition,

this lack of consistency in the system response over the operating range can be understood

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 255

as an example of non-stationary behaviour, and of course the GP model has been defined

using a stationary covariance function. Nevertheless, it is likely that the GP model could be

improved through the use of a longer excitation signal composed of both larger and smaller

steps, such as a randomly generated input signal. However, the key objective of using the

more deterministic small-step excitation approach was to ensure that the whole of the input

range would be covered in a relatively short time-scale. Therefore, any random excitation

signal must also be designed to be sufficiently long in order to ensure that the whole of the

input range is covered. Furthermore, due to the slow time-constants associated with the

system, the sampling rate used to collect the data maybe large enough to avoid including

large quantities of data in the training dataset. In addition, further methods of reducing the

computational demand could also be adopted such as including derivative observations or

sparse matrix methods. A potential problem of adopting a more random excitation approach

is the time that may be necessary to collect the data. For example, the small step training

dataset shown in Figure (5.51) took ~7 hours to collect, and in order to ensure that the full

operating range of the system is covered a similar or perhaps even longer period may be

necessary. Whilst this is certainly not an impossible task, and something that I believe

should have been pursued, unfortunately it has not been possible to undertake further

experimental work. In many ways this is reflective of some of the more practical limitations

that are routinely encountered in the identification of real systems, where large quantities of

suitable empirical data are not always available.

A further practical aspect that has not yet been discussed is the reliability or consistency of

the empirical data. Whilst the inclusion of larger step transitions in the training data has

proven to improve the predictive accuracy of the GP model, another possible reason why

the first GP model identified using the small step training data does not perform as well as

expected is due to subtle variations in the system’s properties. It is difficult to substantiate

this proposal, but both the small step training data shown in Figure (5.51) and the test data

shown in Figure (5.52d) where both recorded ~2-3 months after the other datasets used for

training and testing. In addition to the presence of intangible inconsistencies such as noise,

it is possible that the properties of the system can have changed by a small amount. This is

especially plausible as the measurement devices employed in the experimental apparatus

were recalibrated on more than one occasion. It is this potential drift in the measurements

that is perhaps the main reason why the GP model trained on the small step training data

performs much better on the test data collected at around the same time (in Test 4) than in

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 256

the other test cases. Overall, as with other empirically based modelling approaches, the GP

modelling approach will be especially vulnerable to changes in the properties of the system.

As the GP model can be interpreted as a precise mapping between input and output, any

changes in the system that have not been reflected in the training data are not going to be

predicted with any great accuracy by the model.

5.7.5) Incorporating Derivative Observations

In Section (5.4) the use of derivative observations was discussed as potentially useful

extension to the GP modelling approach. Through this extension empirical data points

(function observations) that are close to equilibrium or have reached steady-state can be

summarised into derivative observations. As a result, the computational demand associated

with inverting the covariance matrix (whose size is dictated by the number of function

observations included in the training dataset) may be reduced. Incorporating derivative

observations is often described as being in keeping with the divide-and-conquer strategy

prevalent in many multiple model approaches, as the identification of derivative

observations at equilibrium operating points is somewhat equivalent to identifying local

linear models. In this section the process of identifying derivative observations and then

incorporating them into the GP modelling approach using data collected from the Coupled

Tank system is to be demonstrated. As the second training dataset composed of slightly

larger input transitions (see Figure (5.57)) was found to provide a slightly better model

accuracy, it is this training dataset that is now to be used to identify a number of derivative

observations. Furthermore, the previously adopted model structure of including the

previous output as a second model input is to be retained.

In the previous GP model of the Coupled Tanks system, the training data was sampled

using a sampling interval of 200 seconds resulting in a dataset of 81 datapoints.

Furthermore, before this final re-sampling was performed, the majority of the steady-state

data was removed from the training dataset in order to improve the conditioning of the

subsequent covariance matrix. In this example, instead of simply discarding this steady

state empirical data it is to be used to identify derivative observations at these equilibrium

operating points using the linearisation methods described in Section (5.4.1). Turning our

attention to the function observations that are to be included, as the steady-state parts of the

excitation data are to be used to form the derivative observations, we can therefore focus on

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 257

including only off-equilibrium or transient data as function observations. In the previous

GP model, the manual pre-processing performed was aimed at minimising the inclusion of

steady-state data, whilst still retaining enough information so that the transition between the

input transient and steady state behaviour could be captured. In this implementation, an

effort has been made to be more ruthless in removing steady-state data, leaving only

transient behaviour included as function observations. This division of the empirical data

into separate datasets that are to be used either as function or derivative observations can be

seen in Figure (5.62). The result of this process is a training dataset consisting of 39

function observations and 9 derivative observations.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

time (seconds)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

time (seconds)

 (a) (b)

Figure (5.62) Coupled Tanks System – Larger Step Training Data. Chart (a) shows

recorded data used for function observation (39 datapoints) with input (dotted line)

and output (solid line). Chart (b) shows recorded data used to identify 9 derivative

observation with input (dotted line) and output (solid line).

In order to validate the performance of this model the same test datasets (shown in Figure

(5.52)) that were used previously can again be employed. Furthermore, in order to simplify

the model implementation, these test datasets are to be re-sampled so that the sample

interval of 200 seconds is consistent for both test and training datasets. As a result, the

delayed or previous output H2(k-1) that is to be used as an additional model input will be

indexed one-step back in both the test and training datasets. After performing the same

normalisation and scaling checks as before, the hyperparameters of this new GP model can

then be identified and model predictions computed. Note that the optimisation and

predictive procedures are largely unaffected by including derivative observations when

uncertainty propagation is not also performed, see Section (5.4.2). If we now apply this new

GP model (consisting of 39 function observations and 9 derivative observations) to the test

H(m) H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 258

dataset shown in Figure (5.52d), where a mixture of slow and fast transitions are present,

the GP mean predictions can be seen in Figure (5.63) with the validation measures

calculated as Mean-Square Error (MSE) of 5.2375e-005 and Log Predictive Density (LPD)

of -7.8533, and log likelihood (LL) of 133.5611.

0 2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.005

0.01

0.015

0.02

0.025

time (seconds)

E

 (a) (b)

Figure (5.63): Coupled Tanks System (39 function observations, 9 derivative

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows

GP model error (solid line) and Variance (2σ) output (dotted line).

Overall, this new implementation of the GP model (39 function observations, 9 derivative

observations) has provided a reasonable approximation to the test dataset. The model does

seem to perform less well at higher levels of the output, and it is also worth pointing out

that as the test data has been re-sampled to match the sampling interval of the training data,

the faster transitions included in this test dataset have been affected. Nevertheless, this same

test dataset is now going to be used to validate the performance of a number of different

model implementations so that the effect of incorporating these derivative observations can

be analysed. Firstly, in order to provide a comparison for this new GP model (39 function

observations, 9 derivative observations), the performance of the previous GP model (81

function observations, 0 derivative observations) on the same test data is now to be plotted,

see Figure (5.64). The validation measures were calculated as Mean-Square Error (MSE) of

3.2537e-005 and Log Predictive Density (LPD) of 2.9138, and log likelihood (LL) of

311.9477. Overall, the MSE performance of this existing GP model is superior as would be

expected from including twice as many datapoints (function observations) in the training

dataset. However, the LPD performance of the model including derivative observations is

slightly superior.

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 259

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.005

0.01

0.015

0.02

0.025

0.03

time (seconds)

E

 (a) (b)

Figure (5.64): Coupled Tanks System (81 function observations, 0 derivative

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows

GP model error (solid line) and Variance (2σ) output (dotted line).

If we now include the identified derivative observations with this original training dataset

of 81 function observations, we can investigate whether adding such derivative information

improves the accuracy of the model. This performance of this implementation of the model

can be seen in Figure (5.65), and the validation measures were calculated as Mean-Square

Error (MSE) of 3.1775e-005 and Log Predictive Density (LPD) of -15.0374, and log

likelihood (LL) of 311.9477.

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.005

0.01

0.015

0.02

0.025

time (seconds)

E

 (a) (b)

Figure (5.65): Coupled Tanks System (81 function observations, 9 derivative

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows

GP model error (solid line) and Variance (2σ) output (dotted line).

H(m)

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 260

Overall, the effect of incorporating the derivative observations has been minimal with only

a small increase in the accuracy of the description as compared to the previous case where

no derivative observations. However, it is worth stating that the proposal for including

derivative observations is not expressly aimed at improving the accuracy of models that

have already been found to offer good predictions. Instead, the use of derivative

observations is aimed at reducing the computational demand of the GP modelling approach

through allowing empirical data near to equilibrium operating points to be summarised.

Therefore, in order to provide some comparison to the previous model shown in Figure

(5.63), where 39 function observations and 9 derivatives were employed, the existing

training dataset pre-processed to include 81 training datapoints is to be re-sampled by a

factor of two, providing a training dataset of 41 function observations (with a 400 second

sample interval). GP model predictions using this training dataset (41 function

observations, 0 derivative observations) were then computed and plotted in Figure (5.66),

and the validation measures were calculated as Mean-Square Error (MSE) of 3.2790e-005

and Log Predictive Density (LPD) of -3.7751, and log likelihood (LL) of 147.5693.

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.005

0.01

0.015

0.02

0.025

time (seconds)

E

 (a) (b)

Figure (5.66): Coupled Tanks System (41 function observations, 0 derivative

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows

GP model error (solid line) and Variance (2σ) output (dotted line).

From the result shown in Figure (5.66) we can see that the performance of the GP model

defined using the alternative training dataset (39 function observations, 9 derivative

observations) shown in Figure (5.63) is perhaps not as great as first thought. As both

training sets contain a similar amount of function observations, it can be deduced that the

slightly more aggressive data selection process adopted in the pre-processing shown in

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 261

Figure (5.62) has not provided the model with same level of information with which to

make accurate predictions (especially at higher levels of the output). This can be confirmed

by implementing a GP model that uses only the 39 function observations without the

accompanying derivative observations, see Figure (5.67), where the validation measures

were calculated as Mean-Square Error (MSE) of 5.3451e-005 and Log Predictive Density

(LPD) of -5.4487, and log likelihood (LL) of 133.5611. The result shown in Figure (5.67) is

very similar to that shown in Figure (5.63), and confirms the previous case that the

inclusion of derivative observations only has a small positive effect on the accuracy of the

resultant model.

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.005

0.01

0.015

0.02

0.025

time (seconds)

E

 (a) (b)

Figure (5.67): Coupled Tanks System (39 function observations, 0 derivative

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows

GP model error (solid line) and Variance (2σ) output (dotted line).

Overall, in this application the incorporation of derivative observations has not been found

to offer any large benefit in terms of improving the model accuracy, or allowed the number

of functional observations to be reduced greatly. In terms of improving the model accuracy,

this can perhaps be expected, as defining a linearisation at an equilibrium point is not going

to provide any great deal of information with which to make predictions away from each

equilibrium point. More importantly, the lack of benefit shown in a computational sense

must also be appreciated in the context of the example system. As the Coupled Tanks

system exhibits a slow and smoothly varying response, it is therefore possible to capture the

dynamics of this response with relatively few datapoints. In other cases the system response

may be more complex or less smooth, thus requiring a larger number of functional

observations to be included with which to capture the dynamics. In such as case, the

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 262

potential benefits of summarising any data that is close to equilibrium in a small number of

derivative observations, so that the computational expense may be better spent on including

more functional observations, may become more apparent. As mentioned in Section (5.4),

the abundance of data close to equilibrium is a feature of many engineering applications.

Nevertheless, for the practical applications investigated in this thesis, the benefits of

applying this extension to the GP modelling approach are not massive. This is due to the

fact that the great majority of data close to equilibrium has instead been eliminated from the

training dataset in order to improve the conditioning of the covariance matrix. Therefore,

incorporating derivative observations may be seen as an alternative to simply removing

equilibrium data, and something that does offer a slight increase in model accuracy.

It is also worth pointing out that in this implementation the number of datapoints used to

identify the derivative observations was quite low (e.g. 4 or 5 points). Therefore, it is likely

that if a larger number of datapoints were included in each linearization a more accurate

derivative observation could be obtained. Furthermore, as each derivative observation can

be interpreted as a local linear model, a further improvement to the overall description

could be obtained if the performance of each local model was validated individually.

Therefore, if the inclusion of derivative observations in the GP model is thought to be

important to gaining a good overall description, it is perhaps wise to retain access to a

significant portion of steady-state data. In the implementation presented here, the design of

the training dataset and the pre-processing employed has acted to remove most of the

steady-state data, significantly reducing the potential for accurate local linear models to be

identified.

5.7.6) Mixed Model Implementation

So far in this example application, the objective of the modelling process has been to

identify a model of the relationship between the input H1 and the output H2. As both

measurements can be seen to vary along a similar timescale, matrix conditioning problems

that result from the inclusion of steady-state data can be mostly avoided, as discussed in

Section (5.7.1). However, whilst in this application it has been possible to select input and

output variables that vary smoothly in tandem with one another; this is certainly not going

to be the case for all applications. As a result, in the current implementation of the GP

modelling approach we would seem to be restricted to problems where the input and output

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 263

data are constantly varying in a smooth manner. As discussed earlier, this restriction has

been imposed through the selection of the most popular Squared Exponential covariance

function.

Therefore, in order to tackle problems where the data do not vary along a similar timescales

one possible strategy is to employ more sophisticated non-stationary covariance functions.

In Section (4.3.2) a number of non-stationary covariance functions were outlined, and in

Section (4.3.3) methods of combining covariance functions were also discussed. However,

the use of more complex covariance functions has not been the subject of much practical

investigation. Therefore, instead of changing the covariance function, an alternative

strategy would be to change the nature of the data in order to make the situation more

compatible with the existing methodology that employs the squared exponential covariance

function. This proposal for changing the nature of the data has also already discussed in

Section (4.3.3.4) where it was referred to as ‘Nonlinear Mapping’ or ‘Warping’. However,

this concept can also be interpreted as a ‘mixed’ or ‘hybrid’ model implementation where

the identification problem is divided into two parts, where the input space data is first

mapped or ‘warped’ on to a intermediate or latent function space using some sort of initial

model, followed by the application of a GP model that is to model the relationship or

residuals between this new intermediate value and the desired output.

Utilising a ‘mixed’ or ‘hybrid’ model implementation that is composed of more than one

type of model for the purposes of system identification is certainly not without precedent,

and can be interpreted as a further form of model complexity optimisation as the

identification task is divided into more manageable components. A general discussion of

the various possible combinations of different models can be found in Nelles (2001), and

particularly well known cases of mixed models are the Hammerstein and Wiener model

structures which utilise linear dynamic and nonlinear static components in combination.

Mixed model implementations can often involve the combination of analytical models

developed from first principles with models developed from empirical data. As a result,

such a mixed model may have an advantage over models developed solely from data in that

they make use of any existing model that is available. This means that any prior knowledge

and interpretability associated with the existing model can be retained, rather than

disregarded in the creation of a completely new description. Further advantages of adopting

a mixed model approach are that the extrapolation and robustness properties of the model

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 264

can be improved, as a greater level of prior knowledge is retained the model it is less likely

to be dumbfounded by missing or suspect data.

In this example, we are to demonstrate the potential use of the GP model in such a mixed

model implementation, and also attempt to identify a model of the Coupled Tanks system

that describes the relationship between the input voltage and the height of water in the

second tank (H2). Therefore, the recorded height of water in the first tank (H1) is not going

to be employed by this description. As a result, we must first find some method of

modelling (or mapping) the recorded input voltage data onto an intermediate or latent input

space, where this data is found to vary on a similar timescale to that of the recorded H2

output data. After this initial model or mapping is performed, the GP modelling approach is

then to model the residual to provide a prediction of the system output. For the initial model

or nonlinear map, the analytical model of the Coupled Tanks system outlined in Section

(5.7.3) would seem to be useful. Although this model was not found to be particularly

accurate, it does offer a reasonable overall depiction of the system response and as it has

been developed from first principles, such a model contains a level of interpretability that is

desirable.

In order to identify the GP model we must first create a suitable training dataset in order to

identify hyperparameters. In this example, we are to make use of the previous small step

training dataset, and then test the model on one of the 4 previously used test datasets. In

order to make use of the analytical model, the input voltage recorded must first be

converted into an input flow rate Qvi through multiplying the voltage by the constant 7.6e-6.

This input flow rate of the training dataset can be seen in Figure (5.68a), and the recorded

H1 and H2 values shown as solid lines in Figure (5.68b). The input flow rate signal shown

in Figure (5.68a) was then fed through the analytical model using the ‘ode45’ Matlab solver

in order to simulate predictions of H1 and H2. These simulated values of H1 and H2 are

shown as dotted lines in Figure (5.68b) and as expected can be seen to differ from the real

recorded values by a significant amount. This whole process was then repeated for the test

dataset shown in Figure (5.69). Therefore, through applying the input flow rate signal to the

analytical model, we have identified values of H1 and H2 that can now be thought of as a

nonlinear mapping of the original input space. Furthermore, as both of these simulated

values can be seen to vary along a similar timescale to that of the recorded H2 output, either

quantity could now be employed in the GP model. As the GP component of this mixed

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 265

model is to be interpreted as a corrective device, the simulated output H2 is therefore going

to be used as the input to the GP model.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

-5

time (seconds)
0 0.5 1 1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

time (seconds)

 (a) (b)

Figure (5.68) Coupled Tanks System – Mixed Model – Small Step Training Data.

Chart (a) shows recorded Input Flow data. Chart (b) shows simulated H1 and H2

values (dotted lines with H1>H2) and recorded H1 and H2 values (solid lines with

H1>H2).

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-5

time (seconds)
0 2000 4000 6000 8000 10000

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

 (a) (b)

Figure (5.69) Coupled Tanks System – Mixed Model – Mixture of Slow and Fast

Transitions Test Data. Chart (a) shows recorded Input Flow data. Chart (b) shows

simulated H1 and H2 values (dotted lines with H1>H2) and recorded H1 and H2

values (solid lines with H1>H2).

Before optimisation of the hyperparameters of the GP model can take place it is first

necessary to complete the definition of the model structure, and utilising the same ARX

structure of the previous GP models, the previous model output H2(k-1) is again going to

be employed as an additional model input. Furthermore, it is also necessary to pre-process

H(m) Qvi

H(m) Qvi

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 266

the training data in order to reduce computational expense and avoid ill-conditioning of the

covariance matrix. Therefore, the same procedure that was applied for the previous GP

model identified from this training dataset was applied here, where the data was re-sampled

to provide a sampling interval of 200 seconds resulting in a training dataset of 134

datapoints. After performing the previously outlined normalisation of the training targets,

and ensuring that the scaling of the two model inputs is not significantly different, the

hyperparameters of the GP model can then be optimised and the predictive mean and

variance of the test data computed. The GP mean predictions can be seen in Figure (5.70)

and the validation measures were calculated as Mean-Square Error (MSE) of 2.5148e-004,

Log Predictive Density (LPD) of -21.1800, and log likelihood (LL) of 634.4323.

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

time (seconds)
0 2000 4000 6000 8000 10000 12000

0

0.01

0.02

0.03

0.04

0.05

0.06

time (seconds)

E

 (a) (b)

Figure (5.70): Coupled Tanks System – Mixed Model – Mixture of Slow and Fast

Transitions Test Data - Chart (a) shows GP Mean predictions (dotted line) vs.

Underlying function (solid line). Chart (b) shows GP model error (solid line) and

Variance (2σ) output (dotted line).

Overall, the accuracy of the mixed-model is not as good as that found previously where the

GP model was used to model the relationship between H1 and H2, see Test 4. However,

such an outcome is unlikely, as the H2 output from the initial analytical model is not as

well correlated and therefore less informative than the recorded H1 values that were

previously used as the input to the GP model. Nevertheless, we would hope that the mixed

model significantly outperforms the simulated model, as without such an outcome the

effect of adding the GP model stage would be pointless. Comparing the mean predictions in

Figure (5.70a) with the simulated values of H2 (the GP model input) in Figure (5.69b) this

is certainly the case. Looking closely at the model error in Figure (5.70b), the greatest

differences between the GP mean predictions and the underlying data occur during the

H(m)

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 267

transitions between steady-state operating points. This is unsurprising as the simulated H2

values used as the GP model input do not reflect the more subtle characteristics of the

transient response. With regard to the variance output of the GP model, a good level of

correlation between the variance and the model error can be seen.

In this implementation, the potential use of the GP model as part of a mixed or hybrid

modelling approach has been demonstrated. In this way the interpretability of the existing

analytical description of the system can be retained, and then combined with the powerful

empirically based identification methods of the GP approach. This approach has been

shown to somewhat overcome the problem of the modelling the relationship between an

input variable that is not smoothly varying and an output variable that is smoothly varying.

Therefore, adopting such an approach may allow the GP modelling approach to be used in

implementations where the nature of the empirical data may not seem to be particularly

suitable. For this particular application, the mixed model could be further improved by

attempting to improve the performance of the initial analytical model. Currently, the initial

analytical model employs the same parameter values that have already been found to be

less than optimal. Therefore, some further analysis into the characteristics of the system

could yield a significant improvement in the quality of this initial model, thereby increasing

the accuracy of the mixed model. Furthermore, whilst it is desirable to maintain the

interpretability of the initial analytical model, there is no reason why a more empirically

based method could be employed instead to create a suitable mapping between the input

voltage and some intermediate or latent function space. Of course in selecting an initial

model structure or nonlinear mapping that is to be combined with the GP modelling

approach, it is necessary to maintain an awareness of the overall complexity of the resultant

description. If two complex sub-models are to be employed in series, the computational

demand and therefore speed of evaluation may become prohibitive.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 268

5.8) Heat Transfer System

The Heat Transfer System, shown in Figure (5.71), measures the temperature of air blown

through a heating element toward a heat detector placed a certain distance along a plastic

insulated tube from the heating element. The system input is a desired temperature value

converted into a voltage input to the heater element power supply. A fan built into the

system in close proximity to the heating element provides the system with a constant

airflow through the insulated tube. The level of airflow can however be adjusted through

the altering the angle of the fan intake (blower angle), therefore allowing the amount of

ambient air accessible to the fan to be limited. The system output is a measured temperature

provided by a thermister device that may be placed in one of three different positions along

the insulated tube of constant diameter. The small output voltage from the thermister is then

scaled to the same 10V range as the input voltage range to allow easy comparison.

Power
Supply

Heater

Blower
Angle

Detector
Position 1

Detector
Position 2

Detector
Position 3

Measured Voltage (Output) Input Voltage

Air
Intake

Figure (5.71): Heat Transfer System

The Heat Transfer system exhibits nonlinear behaviour throughout its operating range and

has a stable open-loop response. The system response can be typically described as that of a

first order system with a time delay which is approximately ‘pure’. The system transient

response is significantly faster than that of the Coupled Tanks system with rise times of a

few seconds only. The position of the output temperature sensor dictates the magnitude of

the pure time delay (or deadtime), as a change in input temperature will take some time to

propagate through the tube to the detector. As would be expected, the greater the distance

between heating element and temperature sensor, the longer the delay. The angle of the fan

air intake (Blower Angle) may also be varied to alter the transient behaviour of the system.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 269

A larger blower angle will allow more air to pass through the heating element resulting in a

cooling effect on the system. The transient behaviour of the system will be slightly slower

as the heater power would have to be similarly increased to maintain the same temperature.

A small blower angle can be seen to reduce the operating range of the system as heat is

retained in the system, resulting in the base temperature of system operating range being

significantly higher than that observed for large blower angles. Other significant

nonlinearities that are present in the system include heat losses from the heating element

and insulated tube, and turbulent airflow through the tube as a result of fan dynamics and

boundary effects.

Due to the presence of such nonlinearities, no accurate analytical mathematical model of

the Heat Transfer system has been developed from first principles. As a result, the

application of black-box non-parametric identification methods would seem appropriate.

Previous detailed investigations into the Heat Transfer System can be found in Gollee

(1994) and Johansen and Foss (1995b), and the system is also used as a tutorial example in

the appendix of Ljung (1999). As in the previous Coupled Tanks system application, an

initial simulated version of the Heat Transfer system is investigated to demonstrate the

specific characteristics of this application. After this initial investigation, the experimental

methods used to collect empirical data are then described. The GP modelling process is

then implemented to identify models from data collected at two different sensor positions.

5.8.1) Simulated Heat Transfer System (1st Order + Delay)

Before tackling the identification of the Heat Transfer system using real empirical data, a

simple simulated version of this application is first investigated where the precise problems

of dealing with the pure delay or deadtime in the Heat Transfer system are discussed. In the

literature provided by the system’s manufacturer, TecQuipment, the general structure of the

Heat Transfer system is identified using the transfer function model (5.29).

()
1

dT sA
G s e

sτ
−=

+ (5.29)

Although it may be possible to estimate suitable values for these parameters we are instead

focusing on the development of a GP model of the system. However, we can use the fact

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 270

that the system is thought to demonstrate a first order response as the basis for developing a

simulated version of the system. Overall, as the Heat Transfer system displays a first order

response, the greatest distinction between this system and the previously tackled Coupled

Tanks system is the presence of the pure delay or deadtime between an input transition and

the output response. To investigate this aspect further a simulated model, see Figure (5.72)

that loosely replicates the behaviour of the Heat Transfer system was employed.

Figure (5.72): - Simulink Diagram of 1st Order + Delay System

In this example, the first transfer function block ‘T.F.1’ is employed to smooth the sharp

step transitions of the original input so that the input information will be vary in a similar

manner to that of the output, thereby reducing the potential conditioning problems

associated with including steady-state data. The output of this first transfer function

therefore symbolises the input voltage that would be applied to the real system, and the

output from the second transfer function block ‘T.F.2’ to be used as the output of the

system. The ‘Transport Delay’ block of the Simulink model then implements a delay of 4

seconds between the output of the second transfer function block and the measured output.

In Figure (5.73) the delay between the input transient and output response can be seen

clearly. Using this simulated model structure, the previously employed identification

approach was performed where a set of training data composed of small positive and

negative input steps were collected, together with a test dataset composed of larger input

transitions. Both the training and test data were sampled at the same rate for simplicity with

a sample interval of 1 second, resulting in a training dataset of 116 points.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 271

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (seconds)

Figure (5.73): Step Response of (1st Order + Delay) Simulated System – Step Input

(solid line), Smoothed Input (dotted line), Model Output (dashed line).

The problem that arises from the presence of this delay or ‘deadtime’ between the input

transient and the output response is that if we wish to capture the full character of the

output response we have to include the corresponding input data that has already reached

steady state. Furthermore, if we wish to capture the precise nature of the input transition,

we need to include the corresponding output data that remains at steady-state for the

duration of the delay. Therefore, as this delay is increased the link between the current input

value and its corresponding output value will become less significant. Furthermore, if a

number of these transitions between transient and steady-state behaviour are to be included

in the training dataset, this can result in including a significant amount of steady-state data

in the training dataset. As a result, the conditioning of the training dataset can begin to

suffer which can lead to problems identifying suitable hyperparameters. If both the delay

between input and output and the difference in length of the input and output transient can

be seen to be minimal, through the careful selection and sampling of transient data,

conditioning problems associated with inverting the covariance matrix may be minimised.

However, when confronted with a noticeable delay, the set-up of the GP model must also

be considered.

Fundamentally, the presence of this delay or deadtime between the input transient and

corresponding output response has meant that the relationship between the input and output

has diminished. Therefore, the previously used model structure where the current input and

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 272

previous output where employed as model inputs (one-step ahead prediction) is not likely

to provide an accurate description of the system. This is indeed shown to be the case in

Figure (5.74), where significant error exists between the model predictions and test data,

with validation measures: Mean-Square Error (MSE) of 0.7532, Log Predictive Density

(LPD) of -512.1717, and log likelihood (LL) of 54.5609.

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

4

6

8

10

12

time (seconds)
0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

2

2.5

3

3.5

time (seconds)
E

 (a) (b)

Figure (5.74): Heat Transfer Simulated Example (Model Inputs: Input (k), Output (k-

1))- Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function (solid

line). Chart (b) shows GP model error (solid line) and Variance (2σ) output (dotted

line).

Therefore, to tackle this problem we must attempt to modify the structure of the model so

that a greater correlation between the output and certain inputs can be established. As the

relationship between the ‘current’ input and the ‘current’ output has been diminished by the

presence of the delay, a suitable strategy to adopt would be to include previous inputs into

the model structure. By including previous inputs that are delayed an appropriate length of

time (i.e. equivalent to the delay in the system) we can therefore hopefully provide more

relevant information with which to predict the current output. Initially, the previous input

(one-step back or (k-1)) was added to the model structure, requiring that the training dataset

be re-configured, the hyperparameters retrained, and the test data also re-configured to

accommodate this alternative structure. In Figure (5.75) the performance of this new model

can be seen to be slightly better than the previous model structure where no previous input

information was utilised, with validation measures: Mean-Square Error (MSE) of 0.3832,

Log Predictive Density (LPD) of -218.3926, and log likelihood (LL) of 63.7730. Whilst

this model is slightly better than the previous one, significant model error still remains. This

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 273

is due to the fact that the additional input (1-step back) still does not contain the

information needed to account for the delay in the system.

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

4

6

8

10

12

time (seconds)
0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

2

2.5

3

time (seconds)

E

 (a) (b)

Figure (5.75): Heat Transfer Simulated Example (Model Inputs: Input (k), Input (k-

1), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying

function (solid line). Chart (b) shows GP model error (solid line) and Variance (2σ)

output (dotted line).

This can be addressed by considering the properties of the simulated model where a 4

second delay was implemented. In addition as the training and test data have both been

sampled so as to provide a 1 second interval between observations, we can easily deduce

that the previous input (4-steps back) would likely provide more meaningful information

regarding the start point of the output transition. Therefore, by replacing the previously

introduced input (1-step back) with this alternative input (4-steps back) we should see an

increase in model performance. This is shown to be the case in Figure (5.76) where the

model predictions become almost indistinguishable from the underlying test data, with

validation measures: Mean-Square Error (MSE) of 0.0044, Log Predictive Density (LPD)

of -28.8988, and log likelihood (LL) of 240.4052. However, it is again worth noting that the

LPD measure of this improved model has become slightly worse (i.e. higher variance)

indicating that by altering the model structure we may have slightly diminished the

conditioning of the resultant covariance matrix.

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 274

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

4

6

8

10

12

time (seconds)
0 20 40 60 80 100 120 140 160 180 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (seconds)

E

 (a) (b)

Figure (5.76): Heat Transfer Simulated Example (Model Inputs: Input (k), Input (k-

4), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying

function (solid line). Chart (b) shows GP model error (solid line) and Variance (2σ)

output (dotted line).

Overall, this simulated example has attempted to show how the presence of delay or

deadtime in a system can cause conditioning problems in the covariance matrix due to the

potential inclusion of steady-state data, as transients in the output will develop across a

potentially longer time-scale than that of the input. Furthermore, it has also demonstrated

how this delay property can be tackled through the modification of the structure of the GP

model to include previous input information. This is an example of how prior knowledge

can be incorporated into the identification process of the GP model. However, it is very

easy to take into account prior knowledge of user defined simulated systems, and such

information may not be so forthcoming in the application of the methods to the real Heat

Transfer system.

5.8.2) Experimental Methods for Heat Transfer System

The same experimental approach taken toward the Coupled Tanks system was applied to

the Heat Transfer system (manufactured by TecQuipment) with the open loop response

being recorded under different operating conditions using National Instruments (6024E)

data acquisition hardware and LabVIEW software. The blower angle was kept at a constant

70 degrees in order to investigate the effect of the pure delay (sensor position) on the

accuracy of the GP model. The 70-degree blower angle was selected to allow the full

operating of the system to be investigated, as larger and smaller blower angles act to restrict

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 275

the overall range of the system. The choice of sampling rate for the collection of data was

an important consideration as the transient behaviour of the system is very rapid in

comparison to that of the Coupled Tank system. In addition, the recorded data must

accurately portray the pure delay time present in the system, or the resultant model will not

reflect the true system characteristics. A sampling rate of 0.05s was initially found to be

sufficient to correctly recreate the input and output voltage traces at the different operating

conditions. As before, the precise sampling rate used to define the training datasets is likely

to be modified to meet the previously outlined requirements over the size and conditioning

of the covariance matrix.

A further important practical observation is that the Heat Transfer system has a tendency to

heat up significantly as time elapses. The result of this is the base level of the input and

output measurements can be seen to drift as time goes on, and the operating range of the

system can begin to be restricted as lower output levels cannot be reached. Overall, this can

be seen to be an example of non-stationary behaviour and as we are employing a stationary

GP model, an effort was made to maintain a consistent approach toward data collection so

that the effect of this underlying behaviour can be minimised in the data. In practical terms,

this meant switching the machine on and leaving it to settle for a short period (~20 minutes)

before conducting experiments, and switching the machine off to cool down after short

period (~20 minutes) once completing a number of experiments.

As in the previous example application, the approach taken to the design of the excitation

signal, and therefore the design of the training dataset, was to vary the input voltage

(applied to the heating element) in a series of small upward and downward steps across the

full operating range of the system. Subsequently, larger step responses were also recorded

with which to validate the models identified. In addition, a number of training and test

datasets were collected where the system was excited in a more arbitrary or random

fashion. The squared exponential covariance function was again utilised as the system can

be seen to operate in a smoothly varying manner.

5.8.3) Application to the Real System

In this section, we are to tackle the identification of the Heat Transfer system using

empirical data collected from the system. Firstly, a GP model is to be identified using data

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 276

collected at sensor position 1 where the delay between the input transient and output

response is thought to be relatively minor. This process is then to be repeated for data

collected at sensor position 3 where the delay is thought to be considerably larger.

5.8.3.1) GP Model at Sensor Position 1

As in the previous example, a excitation signal composed of a number of small positive and

negative step inputs was utilised to generate a training dataset that would allow the whole

of the input range to be covered by observations within a reasonable timescale. This dataset

is shown in Figure (5.77a) where the data was collected using a sampling rate of 0.05

seconds. In order to reduce the size of the resultant covariance matrix, this training dataset

was then re-sampled by a factor of 5 resulting in a sample interval of 0.25 seconds and a

training dataset of 98 datapoints. Furthermore, in order to limit the potential for ill-

conditioning caused by the inclusion of steady-state data, certain parts of the training

dataset were carefully removed. These parts included the initial period of inactivity at the

start of the training dataset, the middle portion where the input has reached its maximum,

and the final period of inactivity at the end of the training dataset. The effect of this pre-

processing can be seen in Figure (5.77b).

0 5 10 15 20 25 30 35
-2

0

2

4

6

8

10

time (seconds)
0 5 10 15 20 25 30

-2

0

2

4

6

8

10

time (seconds)
 (a) (b)

Figure (5.77): Heat Transfer System (Sensor Position 1) – Small Step Training Data.

Chart (a) shows recorded data with input (dotted line) and output (solid line). Chart

(b) shows pre-processed Training Data (98 datapoints).

In order to validate the GP models identified from this training dataset, two further test

datasets where collected from the Heat Transfer system whilst operating under the same

conditions. These are shown in Figure (5.78), where the first test dataset is composed of a

V V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 277

mixture of large and small input transitions, and the second test dataset is composed of

more rapidly varying transitions that are designed to appear somewhat random in nature.

After identifying a GP model using the small step training dataset this ‘random’ test dataset

shown in Figure (5.78b) is also going to be used to train a GP model in order to provide

some comparison between different training datasets. The test data shown was collected at

the same rate as the original sampling rate used to collect the training data (0.05 seconds),

and this data is not going to be re-sampled. Therefore, for any previous or regressed

inputs/outputs that are to be implemented, 1-step back of the training data will be

equivalent to 5 steps back of the test data.

0 5 10 15 20 25 30 35 40 45
-1

0

1

2

3

4

5

6

7

8

9

time (seconds)
0 5 10 15 20 25 30 35 40 45

-2

0

2

4

6

8

10

time (seconds)

 (a) (b)

Figure (5.78): Heat Transfer System (Sensor Position 1) – Test Datasets. Chart (a)

shows mixture of large and small transitions with input (dotted line) and output (solid

line). Chart (b) shows more rapidly varying ‘random’ transitions with input (dotted

line) and output (solid line).

In the datasets shown in Figure (5.77) and (5.78) the delay present between input transient

and output response would appear to be quite consistent across the whole of the operating

range at around 0.5 seconds. Therefore, as in the previous simulated example, it may be

possible to employ this prior knowledge into the development of a suitable model structure.

However, in more complex systems where large numbers of variables may be present, it

may not be possible to formulate any strong conclusions about the system’s characteristics.

Therefore, a more automated approach to the selection of model inputs that does not rely on

the availability of prior knowledge would be a desirable feature for this black box

modelling approach. Fortunately, such a feature has previously been discussed in Section

(4.3.1.1), where the Automatic Relevance Detection (ARD) facility of the anisotropic form

of the squared exponential function was introduced. Using this ARD feature, the question

V V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 278

of which inputs to employ in the model structure can be addressed by examining the

optimised length-scale hyperparameters wd of the squared exponential covariance function

for a number of different model set-ups.

Therefore, from the optimised covariance function a length-scale hyperparameter wd exists

for each delayed input that indicates the relative importance of one delayed variable over

another, as the covariance function contains a summation of distances between the training

points of each input. Consequently, a large wd may be interpreted as a significant input for

prediction as it dictates a large contribution of the input in direction d to the covariance.

Additionally, as wd is inversely proportional to the horizontal scale of variation in direction

d, a large wd can also be interpreted as fast variation in the same direction. A further

important consideration to note is that the relative weights between different variables

should not be compared directly (e.g. previous outputs should not be compared with

previous inputs). From performing the hyperparameter optimisation the relative weights of

each delayed input variable can therefore be assessed and an impression of the optimal

model set-up can be obtained. However, in order to be certain of the best model the

predictive performance of each model must also be assessed, and the balance between

model performance and model complexity (computational effort) must be traded off.

In this example five different GP model set-ups (M1 to M5) were considered where only

the input is ‘stepped-back’ more than once in order to limit complexity. After performing

optimisation and then prediction using the test data shown in Figure (5.78a), the

hyperparameters and resultant validation measures are shown in Table (5.4). Looking at the

table, as expected the introduction of previous inputs to the model set-up has increased the

MSE accuracy of the model substantially (i.e. the performance of model M1 is significantly

poorer than the others). However, as in the simulated case, this improvement in model

accuracy is not also accompanied by an improvement in the LPD measurement. It is

somewhat unclear why this is the case, but through employing additional inputs, the

potential exists to damage the conditioning of the covariance matrix. From closer

inspection of the length-scale hyperparameters of the more complex model structures, the

previous input one-step back (k-1) appears to have the least significance in terms of

contributing to the prediction. Furthermore, from inspecting the hyperparameters of model

M5, the most important previous inputs appear to be those at (k-2) and (k-3), which

correspond to delays of 0.5 and 0.75 seconds in accordance with the sampling rate of the

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 279

training data. This second figure of 0.75 seconds is slightly higher than would be expected

from visually inspecting the data where a delay of ~0.5 seconds was observed.

Furthermore, the model M3 has slightly less model error associated with it, so it may be

worth attempting to re-configure the model set-up to use less inputs than in model M5, but

use the more inputs deemed more ‘important’ by this ARD facility of the GP model.

Included
Inputs/Hyps

Model

M1

Model

M2

Model

M3

Model

M4

Model

M5

W1
Output(k-1)

28.895

11.109

10.568

10.669

10.216

W2
Input(k)

33.065

59.930

54.336

55.312

55.570

W3
Input(k-1)

-

11.978

11.549

11.983

12.573

W4
Input(k-2)

-

-

95.269

93.160

251.307

W5
Input(k-3)

-

-

-

151.936

343.462

W6
Input(k-4)

-

-

-

-

124.974

MSE 0.1933 0.0573 0.0523 0.0534 0.0547
LPD -92.769 -44.183 -39.667 -38.335 -40.412
LL 44.806 85.724 86.425 86.695 87.367

Table (5.4) – Table of 5 different model structures (M1 to M5) with optimised

hyperparameter values.

Nevertheless, after some experimentation with different combinations of inputs, the overall

model performance could not be improved beyond that displayed in models M3 and M4.

Furthermore, it is worth pointing out that due to the interaction or coupling between

different hyperparameters, it is sometimes the case that removing seemingly less important

inputs from the model structure can have a large negative effect on the overall model

performance. Therefore, it is important to view the ARD facility of the GP model as a

potentially useful guide to optimising the model structure, but not to view any such

guidance as unquestionable evidence. Furthermore, it is important to understand that

usefulness of the ARD facility is also dependent on the GP model hyperparameters being

successfully optimised. If the model structure has been modified in such a manner that

reduces the overall likelihood of the model, the weightings of individual hyperparameters

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 280

will not be particularly informative as they may not have been optimised very successfully.

As a result, any model structures found to be potentially suitable candidates should be

validated through the use of further test datasets, with the model complexity then traded off

against model performance. The predictive performance of the model M3 is shown in

Figure (5.79).

0 5 10 15 20 25 30 35 40 45
-1

0

1

2

3

4

5

6

7

8

time (seconds)
0 5 10 15 20 25 30 35 40 45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time (seconds)

E

 (a) (b)

Figure (5.79: Heat Transfer System (Sensor Position 1) – (Model M3 with inputs:

Input (k), Input (k-1), Input (k-2), Output (k-1)) - Chart (a) shows GP Mean

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP

model error (solid line) and Variance (2σ) output (dotted line).

From Figure (5.79) we can see that the GP predictions of model M3 do provide a

reasonable level of accuracy when compared with the underlying data. However, the GP

model predictions can be seen to be significantly worse in the latter half of the test dataset,

and it is worth noting that the value of the output dips below zero between around 31 to 34

seconds where the output level reaches ~-0.3. Within this particular region the test data is

outwith the range covered by the training dataset of which the smallest value of the output

is ~-0.1. In an ideal situation both the training and test datasets would vary in a range

between 0 and 10, however due to the previously mentioned propensity for the system to

retain heat in the system, the base level or calibration of the input and output measurements

can drift significantly. As this is an important characteristic of the system it is perhaps

unwise to compensate for this drift, however as the GP model is fundamentally a precise

mapping of input to output based on empirical data, in some ways we are not providing a

fair test of the methodology. This again demonstrates the potential for practical problems to

influence the overall viability of empirical modelling techniques such as the GP model.

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 281

If the ‘base’ or zero level of the output measurement of both the training and test data are

reset by adding an offset, (training data shifted up by 0.1, test data shifted up by 0.3), we

can see that the model performance (using the same M3 model structure) is improved

significantly over the latter half of the test dataset. The increased accuracy of the model can

be seen in Figure (5.80), and the validation measures were calculated as Mean-Square Error

(MSE) of 0.0178, Log Predictive Density (LPD) of -10.3213, and log likelihood (LL) of

86.4249. However, it is worth noting that the predictive performance in certain parts of the

first half of the test dataset (at ~14 seconds) is slightly worse.

0 5 10 15 20 25 30 35 40 45
-1

0

1

2

3

4

5

6

7

8

9

time (seconds)
0 5 10 15 20 25 30 35 40 45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time (seconds)

E

 (a) (b)

Figure (5.80): Heat Transfer System (Sensor Position 1) with Re-set Output Scale -

(Model M3 with inputs: Input (k), Input (k-1), Inpu t (k-2), Output (k-1)) - Chart (a)

shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart

(b) shows GP model error (solid line) and Variance (2σ) output (dotted line).

Returning to the problem of identifying the most suitable model structures, in order to gain

further assurance over the slight superiority of model M3 over model M4, both models

were further tested using a different test dataset composed of more rapidly varying data as

shown in Figure (5.78b). This dataset was generated by manual operation of the input, but

done so in an effort to appear almost random or arbitrary. As in the previous test dataset,

the output of this rapidly varying test data can be seen to dip below zero in the initial part of

the dataset where the input is zero, thus indicating a calibration problem or fluctuation in

the base level of the output range. As we are more interested in the performance of the

model on the rapidly varying aspects of this test data, rather than re-iterating the point that

test data outwith the range of the training data will result in significant error, the base level

of the test data was reset to zero by adding an offset of 0.35 (identified from looking closely

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 282

at the initial part of Figure (5.78b) where the input is at zero and the output is at -0.35). In

order to remain consistent the training dataset is also offset by 0.1. From inspecting the

validation results of the two different models, the model structure M3 was found to still

maintain a very small advantage over M4 in terms of predictive performance, with an MSE

of 0.0372 compared to 0.0375. The full validation measures for model M3 were calculated

as Mean-Square Error (MSE) of 0.0372, Log Predictive Density (LPD) of -4.1627, and log

likelihood (LL) of 86.4249. The predictive performance of the model M3 on this rapidly

varying or ‘random’ test dataset can be seen in Figure (5.81). Overall, the identified model

provides a good representation of the underlying system, however, the model does struggle

to cope with the sharp peaks of the test dataset. This can be put down to the fact that only

slower step variations are included in the training dataset. Nevertheless, this test dataset has

shown that for this application the training dataset composed of small step excitation data

has provided a good platform with which to identify a GP model using only ~100 training

data observations.

0 5 10 15 20 25 30 35 40 45
-2

0

2

4

6

8

10

time (seconds)
0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (seconds)

E

 (a) (b)

Figure (5.81): Heat Transfer System (Sensor Position 1) – ‘Random’ Test Data -

(Model M3 with inputs: Input (k), Input (k-1), Inpu t (k-2), Output (k-1)) - Chart (a)

shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart

(b) shows GP model error (solid line) and Variance (2σ) output (dotted line).

Before moving on to consider the identification of GP models from data collected at

position 3, it is also worth investigating the use of random excitation data as the source of

the training dataset. In the previous Coupled Tanks example application, the small step

training data was found to be somewhat limited, as certain characteristics of the system

were not excited. In particular, the small step transitions included in the training dataset did

not provide sufficient information with which to predict larger transitions very accurately.

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 283

In the tests so far, the GP models identified from small step excitation data of the Heat

Transfer system at sensor position 1 do not appear to be display the same limitations. As a

result, we can understand that the Heat Transfer system at sensor position 1 does not exhibit

the same kind of variation in transient response across the operating range as was seen in

the Coupled Tanks system. Nevertheless, performing identification with data collected

using random excitation signals may provide a useful comparison. Therefore, the rapidly

varying dataset that was previously used to test the model, see Figure (5.78b), is now to be

employed as a training dataset.

As before, the first stage to consider is the pre-processing of this rapidly varying dataset.

Overall, it is unlikely that any great conditioning problems associated with presence of

steady-state data will be encountered due to the nature of the excitation signal. As can be

seen in Figure (5.78b), in the initial and final few seconds of the data there is some data

where little excitation is present, so it is worthwhile removing these regions. Of greater

concern is the sampling rate used to further process the training dataset. As this dataset is of

greater length, if the same sampling rate as before is employed (0.25 seconds) the overall

size of the resultant training dataset is 167 points. Whilst this is well within the range of

what is computationally feasible, it is still significantly larger than the 98 datapoints

included in the previous small step training dataset. After selecting the same model

structure as before (Model M3), the hyperparameters are then optimised and test predictions

are then calculated on the same test data as before (shown in Figure 5.78a). The GP model

predictions and variance can be seen in Figure (5.82) with the validation measures

calculated as Mean-Square Error (MSE) of 0.0113, Log Predictive Density (LPD) of -

10.5118, and log likelihood (LL) of 112.3860.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 284

0 5 10 15 20 25 30 35 40 45
-1

0

1

2

3

4

5

6

7

8

9

time (seconds)
0 5 10 15 20 25 30 35 40 45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (seconds)

E

 (a) (b)

Figure (5.82): Heat Transfer System (Sensor Position 1) – ‘Random’ Training Data

(167 datapoints) - (Model M3 with inputs: Input (k), Input (k-1), Input (k-2), Output

(k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function

(solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) output

(dotted line).

Overall, the performance of the GP model identified using this rapidly varying ‘random’

training dataset can be seen to be slightly superior to that of the previous small step training

datasets. However, as we have included more points in this training dataset, it is worthwhile

reducing the size of this training dataset in order to confirm any superiority. As discussed

previously, it would be possible to either re-sample the training dataset to reduce the

number of points included, or shorten the length of the included excitation signal. As

adopting the latter strategy can lead to the removal of datapoints from potentially important

regions of the operating range, the re-sampling of the training dataset would be the

preferred course of action as long as the dynamics of the underlying can still be captured.

For this example, the training data was re-sampled by a factor of two resulting in a sample

interval of 0.5 seconds between training observations and a dataset of 85 points. If the same

model structure is employed, as the sample interval has been doubled it is important to note

that the delayed information present in the previous inputs will have also changed (i.e.

previous inputs (k-1) and (k-2) are now delayed 0.5 and 1 seconds, instead of 0.25 and 0.5

seconds). The performance of the model trained using this smaller dataset can be seen in

Figure (5.83) and the validation measures were calculated as Mean-Square Error (MSE) of

0.0311, Log Predictive Density (LPD) of -0.4813, and log likelihood (LL) of -51.3729.

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 285

0 5 10 15 20 25 30 35 40 45
-1

0

1

2

3

4

5

6

7

8

9

time (seconds)
0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (seconds)

E

 (a) (b)

Figure (5.83): Heat Transfer System (Sensor Position 1) – ‘Random’ Training Data

(85 datapoints) - (Model M3 with inputs: Input (k), Input (k-1), Input (k-2), Output

(k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function

(solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) output

(dotted line).

As would be expected, the reduction of the size of the training dataset has led to a decrease

in the accuracy of the model. Of greater interest is the fact that the validation measures

from this test are worse than those found with the model trained with small step training

data shown in Figure (5.80), where the MSE was calculated as 0.0178. Therefore, for

training datasets of comparable size (98 and 85 datapoints) this example shows that models

trained on the small step training data would appear to perform better than those trained on

the rapidly varying ‘random’ data. Furthermore, it is worth pointing out that the

performance of the model trained on the larger ‘random’ training dataset did not outperform

this small step training data by a great deal.

Another important aspect of using rapidly varying ‘random’ excitation data is the tendency

for the training data to be concentrated around the middle of the operating range. As a

result, due to the sparsity of training data at the extremities of the operating range, the GP

model’s predictions can become inaccurate in these regions with the variance increasing

substantially as confidence in the prediction has diminished. This characteristic can be seen

in Figure (5.83) where as the test output reaches close to zero at around t= 33 seconds, there

is a marked increase in the variance output of the model. Furthermore, as the ‘random’

training data and test data are not completely dissimilar in nature, in that they both consist

mainly of large rapid transitions, in some ways this validation test is not providing a stern

test of the model performance in the extremities of the operating range. To investigate this

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 286

aspect, the GP model trained on the ‘random’ training data was then tested on data that

closely resembles that of the original small step training dataset. This new small-step test

dataset is different from the original small-step training dataset so that both models can be

tested fairly. Firstly the GP model trained on the ‘random’ dataset composed of 85 points

was used for prediction, with the performance shown in Figure (5.84), and the validation

measures calculated as Mean-Square Error (MSE) of 0.0214, Log Predictive Density (LPD)

of 0.3886, and log likelihood (LL) of -51.3729.

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

6

8

10

time (seconds)
0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time (seconds)

E

 (a) (b)

Figure (5.84): Heat Transfer System (Sensor Position 1) – ‘Random’ Training Data

(85 datapoints) – Small Step Test - (Model M3 with inputs: Input (k), Input (k-1),

Input (k-2), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs.

Underlying function (solid line). Chart (b) shows GP model error (solid line) and

Variance (2σ) output (dotted line).

Next, the previous GP model identified using small step training data composed of 98

points was applied to the same test data, with the performance shown in Figure (5.85), and

the validation measures calculated as as Mean-Square Error (MSE) of 0.0085, Log

Predictive Density (LPD) of -9.7277, and log likelihood (LL) of 86.4249. Overall, the GP

model trained on the small step training data can be seen to be superior to the GP model

trained on the more rapidly varying ‘random’ training data. Again, this is perhaps to be

expected, as the training data employed by this model closely resembles that of the test

data.

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 287

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

6

8

10

time (seconds)
0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (seconds)

E

 (a) (b)

Figure (5.85): Heat Transfer System (Sensor Position 1) – ‘Small Step’ Training Data

(98 datapoints) – Small Step Test - (Model M3 with inputs: Input (k), Input (k-1),

Input (k-2), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs.

Underlying function (solid line). Chart (b) shows GP model error (solid line) and

Variance (2σ) output (dotted line).

More interesting is the variance output of the two GP models. In particular, as the variance

level of the model trained on the ‘random’ excitation data grows substantially in the

extremities of the operating range (i.e. close to maximum and minimum values); this

example clearly demonstrates the tendency for the training data to become concentrated in

the middle portion of the operating range, leading to problems in other regions of operating

range. For the GP model trained on the small step training data this tendency is greatly

reduced. By including more datapoints in the ‘random’ training dataset, such as reverting to

the previous model containing 167 points, the level of variance can be reduced and the

model accuracy improved, however both quantities remain comparatively worse than that

of the GP model trained on the small step data.

5.8.3.2) GP Model at Sensor Position 3

In this section we are now going to apply the GP modelling approach to identifying the

Heat Transfer system where the output voltage is to be measured at sensor position 3. As

sensor position 3 is located significantly further away from the heating element than sensor

position 1, the delay between changes in the input being reflected in the response of the

output is thought to be greater. As in the previous case, the squared exponential covariance

function is to be employed and the identification process is to first investigate the use of

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 288

small step excitation data as the source of training data. The small step excitation input and

output response can be seen in Figure (5.86a) where the data was collected using a

sampling rate of 0.05 seconds. Before pre-processing this empirical data shown in Figure

(5.86a), it is first important to examine the behaviour of the output response before

attempting to reduce the size of the training dataset. Firstly, in comparison to the situation

at sensor position 1, the overall scale of the variation of the output has been reduced

significantly (max value of ~6.5V rather than ~9V). This is understandable as the distance

between the heating element and sensor has increased meaning that less heat will reach the

sensor due to losses. Secondly, the output transient response can be seen to be slightly

slower than that found at sensor position 1. As the distance between the heating element

and sensor is increased, any changes in the input will take longer to propagate through the

insulation tube to the output and also be subject to the loss of heat reducing the magnitude

of any transition. Lastly, as expected a very slight increase in the ‘pure’ delay or deadtime

between input transient and output response can be seen in the upward steps of the

excitation data, but this delay seems to diminish significantly when downward steps of the

data are considered. Therefore, unlike the previous case, the pure delay in the system is not

consistent across the operating range.

Overall, these changes to the properties of the system can be seen to effect the requirements

for pre-processing of the empirical data into a viable training dataset. As before, in order to

reduce the size of the resultant covariance matrix, the empirical dataset was re-sampled by a

factor of 5 resulting in a sample interval of 0.25 seconds. However, even after re-sampling,

the data is still found to include a significant proportion of steady-state data. As in the

previous example at sensor position 1, as the delay between input transient and output

response is increased, the relationship between the current input value and its corresponding

output value will decrease. Therefore, if we wish to capture the full character of the output

response this means that we have to include the corresponding input data that has already

reached steady state. However, at sensor position 3 this situation is further compounded by

the fact that the output transient response is slower than at sensor position 1, meaning that

even more of the corresponding steady-state input data must be included.

Therefore, in order to limit the ill-conditioning caused by the inclusion of steady-state data,

certain parts of the training dataset were to be carefully removed. As was the case for

sensor position 1, these parts included the initial period of inactivity at the start of the

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 289

training dataset and the final period of inactivity at the end of the training dataset. However,

for the case of sensor position 3, this strategy was extended to remove steady-state data

from each step transition. This process was done manually by selecting valid regions of

data using the time-scale as an index for the sake of simplicity, however more automatic

approaches designed to include or remove data based upon meeting some criteria could also

be considered. It is also important to ensure that the specific data values where each

transient begins and finishes are not removed. The effect of this pre-processing can be seen

in Figure (5.86b) where the training dataset includes 104 datapoints.

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

6

8

10

time (seconds)
0 5 10 15 20 25 30

-2

0

2

4

6

8

10

time (seconds)

 (a) (b)

Figure (5.86) Heat Transfer System (Sensor Position 3) – Small Step Training Data.

Chart (a) shows recorded data with input (dotted line) and output (solid line). Chart

(b) shows pre-processed Training Data (104 datapoints).

After identifying GP models from this training datasets, two further test datasets were

collected from the Heat Transfer system using sensor position 3. These are shown in Figure

(5.87), where the first test dataset is composed of a mixture of large and small input

transitions, and the second test dataset is composed of more rapidly varying transitions that

are designed to appear somewhat random in nature. As in the previous example, after

identifying a GP model using the small step training dataset this ‘random’ test dataset

shown in Figure (5.87b) is also going to be used to train a GP model in order to provide

some comparison between different training datasets. As the pre-processing involved in the

development of the small step training dataset of this example has become slightly

awkward, a comparison with the ‘random’ dataset where pre-processing is likely to be

limited is worthwhile. The test data shown was collected at the same rate as the original

sampling rate used to collect the training data (0.05 seconds), and this data is not going to

be re-sampled. Therefore, for any previous or regressed inputs/outputs that are to be

V V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 290

implemented, 1-step back of the training data will be equivalent to 5 steps back of the test

data. Of further importance is the fact that in both test datasets shown in Figure (5.87), the

base level of the output is again inconsistent due to variations in the plant. As in the

previous example, before attempting to predict with such data, this base or zero level of the

output is to be reset to zero. The level of offset required for each dataset is obtained from

inspecting the initial few datapoints of each dataset where the input is yet to be excited.

0 10 20 30 40 50 60
-2

0

2

4

6

8

10

time (seconds)
0 10 20 30 40 50 60

-2

0

2

4

6

8

10

time (seconds)

 (a) (b)

Figure (5.87): Heat Transfer System (Sensor Position 3) – Test Datasets. Chart (a)

shows mixture of large and small transitions with input (dotted line) and output (solid

line). Chart (b) shows more rapidly varying ‘random’ transitions with input (dotted

line) and output (solid line).

The next stage to consider in the identification process is the optimal structure of the GP

model. Firstly, from inspecting the data visually, in comparison to the situation at sensor

position 1 the increase in the delay between the input transient and output response has

been found to be only marginal for the upward transitions, and this delay can be seen to

almost disappear in the downward transitions. Therefore, the process of inspecting the

hyperparameters of different model structures where multiple delayed inputs have been

included is not going to yield any significantly different result. The delay present in the

system is still around ~ 0.5 seconds for the upward transitions. A further difficulty

encountered is that despite the effort made to remove steady-state data from the training

dataset, the overall conditioning of this data is far from perfect. The result of this is that if

more and more inputs are added to the model structure, in order to repeat the previous

process of examining hyperparameters of more complex structures, the overall conditioning

of the covariance matrix degrades to the point where the optimisation process stops early

having failed to optimise the hyperparameters.

V V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 291

One way round this would be to increase the sampling interval between training

observations to improve the overall conditioning and thus allow more inputs to be added to

the structure. The problem with this is by increasing the sample interval the previous inputs

become more widely dispersed, resulting in previous inputs that are actually of little use.

For example, at a sample interval of 0.25 seconds we might want to include Input(k-3),

equivalent to 0.75 seconds previous, but are prevented from doing so by conditioning

problems. If we re-sample the data to provide a sample interval of 0.5 seconds, not only is

Input(k-3) now equivalent to 1.5 seconds previously, we have also lost the resolution in the

data needed to include the desired information at 0.75 seconds previous. Therefore, in order

to maintain this resolution, instead of re-sampling the data to alleviate conditioning

problems it is perhaps wise to first find an upper limit on the amount of inputs that can be

included without compromising the optimisation process, and then investigate the use of

different combinations of the available inputs. This is an area where prior knowledge of the

system can play an important role in providing a good model structure and therefore a good

representation.

As the delay between the input transient and output response can be seen to have increased

only marginally, the first model structure employed was that found to work best in the

previous example identified at sensor position 1. This model structure was previously

termed M3 (see Table (5.4)) where the model consisted of four inputs (Output(k-1),

Input(k), Input(k-1), Input(k-2)). Applying this model structure to the data collected at

sensor position 3 and testing on the dataset shown in Figure (5.87a) resulted in a model

with the validation measures: Mean-Square Error (MSE) of 0.0534, Log Predictive Density

(LPD) of -117.9385, and log likelihood (LL) of 158.7032. This result was then regarded as

a benchmark to be beaten through making use of the prior knowledge obtained from

analysing the change in system properties that result from moving the sensor from position

1 to position 3. After some experimentation with various combinations of inputs, the largest

number of model inputs that could be included in the model structure without encountering

conditioning problems was found to be five. Therefore, if we include an additional delayed

input we can still optimise the hyperparameters effectively. From testing a number of

different combinations, the best model structure was found through adding a further

delayed input (Input(k-3)) to the previous model structure (therefore equivalent to model

structure M4) which resulted in the following validation measures: Mean-Square Error

(MSE) of 0.0522, Log Predictive Density (LPD) of -132.5880, and log likelihood (LL) of

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 292

166.5851. The addition of this further delayed input information makes sense in a practical

sense as the delay has been seen to increase slightly in certain areas of the training data.

The performance of this model can be seen in Figure (5.88).

0 10 20 30 40 50 60
-1

0

1

2

3

4

5

6

7

time (seconds)
0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (seconds)

E

 (a) (b)

Figure (5.88): Heat Transfer System (Sensor Position 3) – (Model M4 with inputs:

Input (k), Input (k-1), Input (k-2), Input (k-3), O utput (k-1)) - Chart (a) shows GP

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows

GP model error (solid line) and Variance (2σ) output (dotted line).

Overall, the model can be seen to provide a reasonable approximation to the underlying

data, however significant discrepancies remain. Furthermore, this model is considerably

poorer than that of the model found at sensor position 1 using similar training data and

similarly rescaled to account for base level drift (see Figure (5.80) where an MSE of 0.0178

was obtained).

In order to provide further validation, the more rapidly varying ‘random’ test data was then

applied to the identified GP model, see Figure (5.89), resulting in the validation measures:

Mean-Square Error (MSE) of 0.0860, Log Predictive Density (LPD) of -152.2902, and log

likelihood (LL) of 170.8908. In both these test cases, the identified GP model can be seen

to provide a decent if not outstanding approximation to the underlying data. Given that the

system is prone to drift in terms of its output measurement in particular, and that the

empirical data was offset in a somewhat heuristic manner, it is perhaps not surprising that a

more exact match was not forthcoming. However, it is clear that the GP model identified

through the use of the small step training data has not been as successful as that in the

previous example where the output data was collected at sensor position 1.

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 293

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

time (seconds)
0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (seconds)

E

 (a) (b)

Figure (5.89): Heat Transfer System (Sensor Position 3) – ‘Random’ Test Data -

(Model M4 with inputs: Input (k), Input (k-1), Inpu t (k-2), Input (k-3), Output (k-1)) -

Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line).

Chart (b) shows GP model error (solid line) and Variance (2σ) output (dotted line).

Fundamentally, this change in the location of measurement has added further complexity to

the system that has not been fully grasped by the training data employed. Therefore, it

would seem appropriate to consider alternative excitation signals with which to design a

suitable training dataset. As in the previous ‘sensor position 1’ example, the more rapidly

varying ‘random’ test data shown in Figure (5.87b) is now to be employed as the source of

a set of training data, with the other test data shown in Figure (5.87a) used for validation.

From inspecting the excitation of this ‘random’ data, problems associated with steady-state

data would not appear to be likely; however the previously implemented offset on this

‘random’ excitation data is to be retained. Of greater consideration is the size of the training

dataset. Whilst it is good practice to compare similarly sized training datasets in order to

compare the performance of different excitation signals, in the case of the small step

training data, the conditioning problems encountered were such that the size of the dataset,

and by implication the sample interval, was not a wholly free choice. A larger amount of

data resulted in a failure of the optimisation scheme due to matrix ill-conditioning, and a

smaller amount of data resulted in poorly optimised hyperparameters due to a lack of

information. Therefore, as these specific circumstances are not present in the case of the

‘random’ excitation data, the opportunity exists to employ different sampling rates more

effectively. This is important, as we have seen that by changing the position of the output

sensor, we have added complexity to the system. Therefore, in order to tackle this

additional complexity, the potential to include more training data observations is valuable.

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 294

Initially, the sampling rate chosen to apply to the ‘random’ excitation data is the same as

that implemented on the small step training data, resulting in a sample interval of 0.25

seconds and a training set of 232 observations. The same model structure M4 was then

employed in order to compute predictions. The predictive performance of this model can be

seen in Figure (5.90) and the validation measures were calculated as Mean-Square Error

(MSE) of 0.0172, Log Predictive Density (LPD) of -61.4704, and log likelihood (LL) of

267.1939.

0 10 20 30 40 50 60
-1

0

1

2

3

4

5

6

7

8

time (seconds)
0 10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (seconds)

E

 (a) (b)

Figure (5.90): Heat Transfer System (Sensor Position 3) – ‘Random’ Training Data

(232 datapoints) - (Model M4 with inputs: Input (k), Input (k-1), Input (k-2), Input (k-

3), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying

function (solid line). Chart (b) shows GP model error (solid line) and Variance (2σ)

output (dotted line).

Overall, the performance of this model trained on the ‘random’ excitation data can be seen

to be superior to that found using the small step training data. However, the accuracy of the

model is noticeably poorer for the initial step transitions in the test dataset, despite the fact

that the model employs more than twice the amount of training observations. If the number

of observations included in the training set is reduced from 232 points through doubling the

sample interval to 0.5 seconds, resulting in 114 points after organising initial conditions, the

model performance is actually significantly worse than that found using the small step

training data of similar size and on the same test dataset, with validation measures: Mean-

Square Error (MSE) of 0.1235, Log Predictive Density (LPD) of -0.6448, and log

likelihood (LL) of -50.0829. Through increasing the sample interval between training

observations, the full character of the faster transitions present in this ‘random’ excitation

data becomes impossible to capture. Furthermore, by changing the interval between points,

V

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 295

the model structure is also modified as discussed previously, with the three delayed inputs

at (k-1), (k-2), and (k-3), now corresponding to 0.5, 1, and 1.5 seconds rather than 0.25, 0.5

and 0.75 seconds respectively. This means that the model structure is now failing to include

important information that was found to correspond to 0.75 seconds previous.

If we now consider including more training datapoints, the model structure will again have

to be modified in order to maintain consistency with what is thought to be optimal.

However, in this case the problem of loosing resolution and therefore important delayed

information is not encountered. Nevertheless, after some experimentation, the performance

of the model shown in Figure (5.90) could not be improved significantly despite the

inclusion of significantly more datapoints. Therefore, as was the case for the model

identified from small step data, the accuracy of the model is again limited by the quality of

the excitation data present in the training dataset. As a result, whilst it may be possible to

identify an improved GP model using a different ‘random’ excitation signal, the

shortcomings of the employed ‘random’ excitation signal are not immediately obvious.

Furthermore, it is also important to be aware that by changing the position of the output

sensor, we have added a further level of complexity to the system that is perhaps not easily

identifiable using only two measured variables. In essence, it is perhaps unrealistic to

expect the GP modelling approach using a stationary covariance function to obtain as good

a representation as that found at sensor position 1, let alone a perfect representation of the

system response at sensor position 3. This is especially true due to the inherent

inconsistency of the measurements that result from the equipment heating up and cooling

down through operation. Therefore, to have obtained a reasonably accurate description of

the system using a relatively small number of training observations cannot be deemed as a

disappointment.

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 296

5.9) Summary of Experimental Results

As this project has focused on the implementation of the GP modelling approach a number

of different example applications have been investigated. Therefore, rather than

concentrating on a single application where the goal is to improve the final accuracy of a

particular model, the experimental work has been presented in a manner that aims to

illustrate the identification process. As a result, to conclude this chapter a short summary of

all the experimental work completed in this thesis is provided.

Simulated Static Nonlinear Examples

In Section (5.6) a number of simulated static nonlinear examples were first investigated in

order to demonstrate some of the specific properties of the GP modelling approach. Most

notable amongst these properties is the growth in the variance output at test predictions

made away from training data observations, and the performance of the model in operating

regions where data is sparse. Furthermore, the ability of the GP modelling approach to

avoid overfitting noisy data was demonstrated. A further simulated static example was used

investigate the ability of the GP modelling approach to identify a less smooth or more

‘spiky’ nonlinear function. As expected, a GP model defined using the Squared Exponential

covariance function was found to struggle in terms of identifying the sharper, less

continuous transitions of the data, especially when the number of training observations

included was reduced. Therefore, an alternative GP model defined using the Matérn

covariance function was identified and found to perform significantly better. Through

utilising the Matérn covariance function, a less stringent prior assumption over the

smoothness or differentiability of the underlying function can be made. This example aims

to demonstrate that through use of alternative covariance functions (rather than exclusively

relying on the Squared Exponential function) better quality GP models may be identified.

Simulated Dynamic Nonlinear Examples

In Section (5.6.5) a further simulated example was then employed to demonstrate the

application of the GP modelling approach to dynamic nonlinear problems. In this example a

more complex Lorenz attractor that exhibits chaotic nonlinear behaviour was successfully

identified. Through this example the inclusion of previous output behaviour as an

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 297

additional model input was discussed, as well as the normalisation and re-scaling of

empirical data. Furthermore, the need to ensure that the intended structure of the model is

preserved through maintaining awareness over the pre-processing applied to both training

and test datasets is also made clear. Finally, the creation of the training dataset from

selecting a subset of data from the empirical time series was discussed. Important choices

are required in order to reduce the potential computational demand of the GP approach and

the subset selection of data was performed through both limiting the length of the time-

scale included, and altering the sampling rate used to capture the data. In either case, it is

important to cover the entire operating range with training data, and also to ensure that the

sampling rate allows the dynamics of the response to be accurately captured by the data.

Coupled Tanks System Example

In Section (5.7) the GP modelling approach was used to identify a model from empirical

data collected from a real laboratory nonlinear system. As discussed earlier, one of the

challenges in implementing the GP modelling approach is that the input data must not

remain at steady state for any prolonged period of time so that the covariance matrix does

not become ill-conditioned. As a result, the GP modelling approach was shown to be most

suited to modelling the relationship between the H1 and H2 variables, as both variables

vary smoothly along similar timescales.

Through the use of a simulated version of the Coupled Tanks system, random excitation

signals were first shown to be suitable experimental strategies, as the inclusion of steady

state data can be mostly avoided. However, in order to ensure that the entire operating

range is covered, the length of the excitation signal must be sufficient for the data to be

captured from the whole of the input range. Furthermore, such a random excitation signal

must be designed carefully in order to allow the full output response to fast input transitions

to be captured. Otherwise the data may become concentrated within the middle of the

operating range. An alternative strategy where a number of small positive and negative step

transitions where used as excitation signals was then shown to be a promising experimental

approach for this simulated version of the system. Through this more deterministic strategy,

prior knowledge regarding the system dynamics and overall size of the operating range

could be taken into account. As a result, a training dataset that captures of the dynamics of

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 298

the system whilst covering the whole operating range could be created that is significantly

smaller than would be readily found through employing random excitation signals.

Once applied to the problem of identifying a GP model from the real empirical data, the

‘small step’ excitation approach was found to provide a good overall description of the

underlying system. The performance of this model was then improved by using an

alternative training dataset where the step transitions included were slightly larger. The

model found using this alternative dataset was found to be superior due to the subtle

variations in the transient response of the Coupled Tanks system when different sized input

transitions are considered. Furthermore, inconsistencies in the empirical data were also

found to be present, leading to inconsistencies in the performance of the identified GP

models. It is worth re-stating that any empirically based modelling approach will struggle to

predict accurately if the behaviour present in the test data has changed from that present in

the training data. Furthermore, it is important to highlight the fact that the variance output

of the GP model is not likely to indicate that such an error in the model exists. In the

examples presented in this thesis, the variance output was found only to be reliable in

indicating regions where training data is sparse. Whilst in such regions the model prediction

is more likely to be erroneous, it is important to remember that if the model is tasked with

making predictions from regions that are well covered by training data, but the training data

is not particularly indicative of the behaviour in these regions, the GP mean predictions are

likely to be inaccurate (high model error) whilst the corresponding variance output may

remain small (i.e. indicating over-confidence).

The incorporation of derivative observations was then demonstrated for the Coupled Tanks

system. This extension is primarily aimed at reducing the computational demand of the GP

modelling approach through the approximation of any empirical data (function

observations) found near equilibrium. This data was used to identify a number of derivative

observations and then combined with the remaining function observations. Overall, this

extension was found to offer a slight increase in the predictive performance of the GP

model when the derivative observations where combined with the previously used training

dataset created from small step excitation data. However, the inclusion of derivative

observations was not found to offer much benefit in terms of reducing the computational

demand of the GP model. This outcome was thought to be partly due to the particular

properties of the example application where small training datasets could already be

Chapter 5: Nonlinear Dynamic System Identification with GP Models

 299

realised due to the slowly varying nature of the output response. In addition, if larger

quantities of steady-state data are used to first identify and then validate these local linear

models, an improved the result may be obtained.

Finally, a GP model was combined with an existing analytical model of the Coupled Tanks

system in order to demonstrate the potential use of the approach in the development of

‘mixed-model’ implementations. Through this approach, the problem of identifying a

model of the second-order relationship between input voltage (input flow rate) and output

H2 was tackled. The existing analytical model was employed as an initial model or

nonlinear map of the input voltage to an intermediate or latent function space, and the GP

model then used to identify the residual. Overall, the mixed-model identified was found to

offer a reasonable approximation of the underlying system, but significant model error was

present. Nevertheless, such a mixed-model or nonlinear mapping approach could prove

useful in adapting the GP modelling approach for use in applications where the data does

not seem initially compatible.

Heat Transfer System Example

In section (5.8) the GP modelling approach was applied to the problem of identifying a

Heat Transfer system using real empirical data. An important feature of this application is

the delay or ‘deadtime’ between transitions in the input being reflected in the output

response. Such a characteristic was found to exacerbate the problem of the input and output

data not varying along similar timescales and therefore increasing the potential for

including steady-state data in the training dataset. In order to tackle this problem, the model

structure of the GP model was changed so that previous input information was used as

current model inputs. The use of the Automatic Relevance Determination (ARD) facility of

the GP model was found to offer a useful source of information with which to aid the

determination of an optimal model structure. Overall, the GP model was found to provide

excellent predictions of the system response at sensor position 1 (close to the heating

element), and slightly less good predictions at sensor position 3 (further away from the

heating element). This was put down to the added complexity of the system when operating

under this configuration.

Chapter 6: Conclusions

 300

6) Conclusions

The objective of this thesis was to investigate the use of Gaussian Process (GP) models

for the identification of nonlinear systems. This was carried out through attempting to

model a number of different simulated and real nonlinear systems. As the majority of the

existing research into the GP modelling approach has focused primarily upon the

mathematics and potential of the framework for use in machine learning problems, this

thesis has concentrated on addressing the implementation issues associated with the

approach. Therefore, a concerted effort was made to use as much empirical data drawn

from real laboratory systems as possible so that the practical implementation issues

associated with system identification could be identified. From an overall perspective,

the GP model proved capable of successfully representing the behaviour of the variety of

nonlinear systems investigated. However, significant effort combined with the use of

prior knowledge was required in the process of designing a suitable training data set with

which to successfully identify the hyperparameters of the GP model. In this final chapter

a summary of the major discussion points and outcomes from this project are presented,

together with some recommendations for future research. Furthermore, this chapter is

intended to act as a guide to the implementation of GP models for system identification

purposes.

6.1) Summary of GP Modelling Approach

One of the more challenging aspects of the GP modelling approach is the theoretical

background of the methodology. As the origins of the GP modelling approach lie in the

fields of statistics and machine learning, some of the mathematical concepts employed by

the method are not immediately interpretable by those from a more engineering-based

background. In particular, the application of Bayesian probability theory is not something

that is often encountered by those working on typical system identification or automatic

control problems. Furthermore, it is difficult to provide a more visual interpretation of

the GP methodology where diagrams can be used to aid description (e.g. Neural

Networks are often described using diagrams of the neuron structure). A further problem

in gaining a foothold into the theory of the GP methodology is that the properties of the

approach are often described or defined in terms of how they compare with alternative

Chapter 6: Conclusions

 301

methods of machine learning, such as Neural Networks or kernel based methods. Whilst

the fields of machine learning and system identification are closely linked, significant

differences exist in the application of methods and the types of problem investigated. As

a result, a significant proportion of the existing literature devoted to GP models is not

easily digestible by those unfamiliar with machine learning or probabilistic analysis.

Therefore, before discussing the specific methodology of the GP model, in Chapter 2 a

review of the field system identification was completed where some of the more popular

methods used to identify nonlinear systems from empirical data were discussed. One of

the main intentions of providing this background discussion is to draw attention to the

fact that some of the more complex modelling approaches based on Neural Networks and

other multiple model implementations have notable disadvantages. In particular, a

significant challenge routinely encountered in identifying complex multiple model

descriptions is the optimisation of the model parameters and structure. Furthermore,

multiple model structures based on the identification of local linear models have been

found to be of questionable accuracy when tasked with predicting outside of equilibrium

operating regions. In addition, in many cases the complexity of the model structures

requires that a large amount of training data be available so that optimal model

parameters and structure can be identified, thus avoiding underfitting/overfitting through

trading-off Bias/Variance model error.

The primary motivation for the use of GP models is that through the application of

Bayesian probability, some of the problems associated with optimising complex model

structures can be avoided. Furthermore, through the specific use of Gaussian processes,

some of the mathematical difficulties associated with employing Bayesian analysis can

also be avoided. Both of these aspects are discussed in detail in Chapter 3. The result of

this discussion is that the GP modelling approach can be seen to be highly suitable for

empirical modelling problems where the amount of data is limited, as the optimisation

through Bayesian probability automatically implements a preference for simpler model

descriptions (Automatic Occam’s Razor) therefore reducing the potential for overfitting.

Furthermore, as the training data is retained within the covariance matrix, what training

data is available ultimately forms part of the model structure. As stated at the beginning

of this section, the disadvantages of the GP modelling approach are that the model is not

particularly interpretable, and due to the need to retain training data information in the

Chapter 6: Conclusions

 302

form of a covariance matrix (rather than retain information in the form of a number of

identified parameters), the modelling approach can become computationally demanding

if a large number of training observations are required to identify an accurate description.

A further interesting feature of the GP modelling approach is the fact that the output from

the model is a probability distribution. This feature means that the uncertainty or variance

of each prediction is readily available, something that is not the case for the majority of

modelling approaches.

6.2) Guide to GP Model Implementation

In this section a guide to the implementation of the GP modelling approach is to be

provided. Whilst a great deal of this information has already been presented in earlier

sections of this thesis, especially Section (5.5), it is worth reiterating the main outcomes.

Overall, the system identification process of the GP modelling approach can be described

by the following:

1) Examine Prior Knowledge of System

2) Collect Experimental Data

3) Select Covariance Function

4) Create Training Dataset

5) Optimise Hyperparameters

6) Compute Predictions

7) Validate Results

As with any system identification process, the GP modelling approach is iterative where

modifications to any stage may be required. However, the identification of a GP model

can be generally decomposed into two components: 1) Select a suitable covariance

function, and 2) Design a ‘good’ training dataset. From this point optimal

hyperparameters can be identified and predictions can be made.

Chapter 6: Conclusions

 303

6.2.1) Choice of Covariance function

In the implementation of the GP modelling approach, one of the key stages is the

selection of a suitable covariance function. This covariance function is to be used to

generate the prior distribution (defined as a Gaussian process that is specified by a zero-

mean assumption, together with a covariance matrix generated from applying the

optimised covariance function to the training data observations) with which the

predictive distributions are to be inferred through Bayesian inference. The overall role

played by the covariance function is described in Section (4.1), together with a

description of a number of existing covariance functions in Section (4.2). The Squared

exponential covariance function is the most popular covariance function and its use

implies an assumption of stationary and smoothly varying nonlinear behaviour. Whilst

other covariance functions have been proposed, there is relatively little existing research

into the practicalities of adopting them. Furthermore, the smoothness assumptions of the

Squared Exponential covariance function make it suitable for identifying many real

systems as such applications are normally designed to be operated in a smooth or

consistent manner in order to facilitate manual or automatic control. Therefore, it is this

covariance function that has been primarily used in the experimental investigations

undertaken. Nevertheless, in some circumstances the smoothness assumptions inherent in

this choice of covariance function may be unrealistic, and an alternative function should

be considered. In particular, the Matèrn covariance function may be useful for systems

that exhibit a rougher response. Overall, we can see that prior knowledge of the systems

characteristics can prove to be important in selecting an appropriate covariance function.

6.2.2) Design of Training Dataset

For the purposes of system identification, the training dataset must be created through the

combination of excitation signal design and pre-processing of empirical data.

Furthermore, in the design of a suitable training dataset, the size and conditioning of this

dataset must also be considered carefully.

Chapter 6: Conclusions

 304

6.2.2.1) Size of Training Dataset

In Chapter 4 the mathematical and computational implementation of the GP modelling

approach was discussed. As stated previously, one of the disadvantages of the GP

modelling approach is that the method can become computationally demanding if the

training dataset is to include a large number of observations. As a result, reasonable

upper limits on the size of this training dataset were discussed, and for the direct

implementation of the GP model using average desktop PC facilities this limit was set at

N<1000. For larger scale problems a number of approximate methods were also

discussed including sparse matrix methods, fast matrix vector multiplications and

derivative observations. Overall, the existing literature has not provided conclusive

evidence as to which of these methods is preferable. Furthermore, the use of simple

Subset of Data methods where excess data is simply discarded has been found to remain

competitive in many cases. In addition, in the experimental work carried out in this

thesis, through careful pre-processing of the training data, the size of the training dataset

could be kept under N<1000, therefore making the use of such approximate methods

unnecessary. Nevertheless, these extensions to the GP modelling approach should be

considered for more complex systems.

Overall, in acting to constrain the size of the training dataset, one of the main tools at our

disposal is in modifying the sampling rate chosen to collect the data. However, it is

important to remember that whilst it may be tempting to reduce the sampling rate

(increase sample interval) in order to include a longer time-series that may provide

observations across a broader operating range, this will lead to a loss in the resolution of

the data. As a result, some of the more subtle aspects of the system’s response may not

be adequately described by the training data. This can therefore lead to a poor model

accuracy (GP mean predications), and also unrealistically low variance predictions.

Therefore, it is important to choose the sampling rate carefully so as to retain the ability

to include as much information as possible.

6.2.2.2) Conditioning of Dataset

A further important aspect of the computational implementation of the GP modelling

approach is the conditioning of the covariance matrix. In order for the hyperparameters to

Chapter 6: Conclusions

 305

be optimised and predictions to be computed various matrix inversion and multiplication

operations must be performed accurately, therefore the covariance matrix must not be ill-

conditioned. Whereas the definition of a valid covariance function has a role to play in

the specification of a well-conditioned (positive semi-definite) covariance matrix,

another aspect that is not given much coverage in the existing literature is that the

training dataset must also be carefully constructed. This aspect is especially important for

system identification purposes, et as one of the key stages in the development of an

empirical model is the design of the experimental approach and the collection of

excitation data. This is perhaps different from typical problems found in statistics and

machine learning where the data to be analysed may not be within the control of the

modeller.

In the examples investigated in this thesis one of the main causes of ill-conditioning in

the covariance matrix was the presence of steady-state data in the training dataset.

Therefore in order to ensure a well conditioned covariance matrix the presence of steady-

state data must be minimised through the use of an appropriate experimental design

strategy (discussed below) and careful pre-processing of the training dataset. With regard

to pre-processing of the training data, the main strategy employed in the work presented

in this thesis was to manually eliminate portions of the training data that were found to

contain prolonged periods of steady-state data. Through adopting this strategy, it was

possible to ensure a well conditioned covariance matrix. An alternative strategy that can

also be used in addition to the manual editing of the training dataset is to employ some

method regularisation. Through adding a small level of noise to the diagonal of the

covariance matrix, it is possible to improve the conditioning of the covariance matrix.

However, it is important to remember that through the addition of noise, the accuracy of

the model may be diminished if care is not taken.

6.2.2.3) Experimental Design

The excitation signal must be designed so that the dynamics of the system are sufficiently

excited across as much of the operating range as possible. As the GP model can be

understood as an interpolation method, the extrapolation properties (i.e. making

predictions outside of the range covered by training data) of an identified model have

been found to be poor. Of further importance is that the excitation signal must be

Chapter 6: Conclusions

 306

sufficiently excited, as one of the key practical outcomes from this work is that the

presence of even small quantities of data near steady state is likely to lead to a significant

deterioration in the conditioning of the covariance matrix. However, for system

identification problems the potential for encountering steady-state regions of data is

great, as input and output variables may vary in a quite deliberate manner (e.g. step

inputs, delayed responses etc.). Therefore, we are unlikely to be always dealing with two

or more variables that vary smoothly or even roughly in tandem with one another in

some arbitrary manner.

One straightforward strategy for the design of the excitation signal is to employ

randomly varying inputs. Through the use of random inputs, the potential to record long

periods of steady-state data is greatly reduced. However, a downside with such an

approach is that the slower dynamics of the system being investigated can fail to be

accurately conveyed by such training data. Furthermore, the extremities of the operating

range can be sparsely populated by observations as the recorded data becomes

concentrated within the middle of the operating range. Therefore, in some applications a

more deterministic approach to the design of the excitation signal may prove to be a

preferable strategy. This was the case for the Coupled Tanks system investigated in this

thesis where the slow transient response could be captured by the training data more

successfully using a number of step transitions. A further benefit of utilising this strategy

was that function observations could be captured from the entire operating range of the

system in a smaller timescale. This is important as it allowed a smaller training dataset to

be created, therefore decreasing the computational burden of the GP modelling approach.

6.2.2.4) Model Structure Selection

Another important stage in the modelling process is in the selection of suitable inputs or

regressors. This is a stage where prior knowledge of the system can prove invaluable as

any characteristics of the system (e.g. delayed output response) can be accommodated

into the structure of the GP model. Furthermore, it is possible that utilising certain

variables as inputs or outputs may appear to cause problems in adhering to the demands

of the chosen covariance function (e.g. mapping very fast input transitions to very slow

output transitions). In such a case alternative covariance functions should be considered,

and the ‘mixed-model’ approach detailed in section (5.7.6) may also be worthy of

Chapter 6: Conclusions

 307

investigation. Furthermore, if previous inputs/outputs are to be employed as additional

model inputs, it is important to ensure these delayed inputs are incorporated in a manner

consistent with the desired model structure. As the size of the training dataset must be

kept within reasonable limits, a discrepancy between the sample intervals of the training

and test datasets can result. Therefore, in order to maintain the integrity of the model

structure it is important to ensure that these delayed variables are incorporated correctly.

Further adjustments to regressors may also be required if any variables require

normalisation.

The Automatic Relevance Detection (ARD) feature of the Squared Exponential

covariance function is another feature that can be used to identify an optimal model

structure. This feature allows the relative importance of different inputs to be assessed.

However it is worth reiterating that the ARD feature is not foolproof and is dependent on

the model structure selected being sufficiently viable so that the hyperparameters can be

successfully optimised. Furthermore, more complex systems than that examined in this

thesis may require a more sophisticated approach to selecting optimal regressors.

6.2.3) Training Hyperparameters

In order to compute accurate predictions of system behaviour, the hyperparameters of the

selected covariance function must be optimised using training data collected from the

system. In Chapter 4, the optimisation of hyperparameters using marginal likelihood

maximisation and Monte-Carlo methods is described A clear preference in the literature

has been shown for the marginal likelihood maximisation, and this method has been used

in the experimental work carried out. Furthermore, the optimisation of hyperparameters

through this method has been found to perform robustly as long as a suitably conditioned

training dataset has been created. Therefore, through attempting optimisation of the

hyperparameters, the conditioning of the training dataset can be assessed.

6.2.4) GP Model Validation

As with any modelling approach it is important to validate the identified model through

comparing the predictions from the model with the observed output response. Separate

Chapter 6: Conclusions

 308

test or validation datasets must therefore collected from the experimental set-up so that

the generalisation ability of the model can be assessed through cross-validation. Standard

measures of prediction accuracy (e.g. mean square error) can then be used to examine the

performance of the model. In addition, the variance output of the model should also be

examined closely to provide a further indicator of the performance of the GP model. The

variance at individual test cases can be easily understood through plotting error bars (2σ)

on prediction charts, and an overall indication of the uncertainty in the model can be

given through computing the log predictive density. If the predictive accuracy of the

model is found to be deficient in a particular area of the operating space it is common

that the variance output of the model is also higher in this region. Therefore, this

information can the be used to modify the training dataset in order to improve the

accuracy of the model in this particular region. Nevertheless, it is also important to

remember that it is also possible to obtain poor model predictions in combination with a

low variance output. Such a result is likely due to the training dataset not accurately

representing some aspect of the system’s behaviour. Once again, it may be necessary to

modify the training dataset to address any particular problems encountered. Finally, it is

also important to reiterate that if the variance output of the model is to be utilised

directly, such as in the basis of model predictive control algorithm, it may be worthwhile

implementing the ‘propagation of uncertainty’ extension to the GP model.

6.2.5) Final Thoughts

The overall outcome from this discussion is that in the creation of a suitable training

dataset a number of different practical considerations (overall matrix size, overall matrix

conditioning, coverage of operating range, dynamics appropriately sampled, etc.) must be

borne in mind. As a result, the use of prior knowledge of the system has been found to be

very important in the creation of this training dataset. This means that the methods

applied here cannot truly be described as a ‘black box’ approach. Furthermore, it is worth

returning to the question over the overall interpretability of the GP modelling approach.

As the training data is retained in the model (in the form of the covariance matrix), from

a certain perspective, the GP model can be thought of as highly interpretable. This is due

to the fact that the quality of the model can be directly linked to the location or relative

sparsity of the training data (assuming the dynamics are captured well, and the

covariance matrix is appropriately conditioned). This is contrast to alternative multiple

Chapter 6: Conclusions

 309

modelling approaches where the structure and parameters of individual sub-models or

neurons must be identified from data and prior knowledge. In essence, the overall

robustness of the GP method means that the problem of identifying an accurate model is

almost reduced to creating a suitable training dataset. Therefore, whilst the actual

theoretical background of the GP model and the identified hyperparameters of the

covariance function may not be especially easy to interpret, the actual process of

identifying GP models can easily be understood as it is the training dataset that must be

‘optimised’ through pre-processing rather than a large number of parameters.

Nevertheless, for applications where large numbers of input dimensions are present, the

problem of pre-processing a suitable training dataset may become challenging.

6.3) Future Work

Throughout the course of this thesis a number of potential extensions to the GP

modelling approach have been discussed. In particular, the following extensions could

prove to be worthwhile avenues for future research:

More Complex Applications

As this thesis has been concerned with discussing the general implementation of a

relatively unproven method of nonlinear system identification, the experimental

applications investigated have been relatively simple (i.e. only a few input dimensions,

smoothly varying system responses). Therefore, the next obvious stage to consider is the

application of the GP methodology to more demanding multivariate applications (e.g.

multiple output problems). Through applying the GP modelling approach to more

complex applications, some of the methods and extensions presented here could be

developed further.

Alternative Covariance Functions

One of the most important future directions for research should be into the use of

alternative covariance functions. Whilst in the experimental applications investigated in

this thesis have been successfully tackled using the most popular Squared Exponential

Chapter 6: Conclusions

 310

covariance function, this is due to the smoothly varying characteristics of those systems.

Other applications where less smooth responses are to be identified will not be as well

approximated by this ‘standard’ GP model implementation. Furthermore, the fact that the

Squared Exponential covariance function is stationary is another notable limitation.

Therefore, further investigations into the use of alternative covariance functions should

be a priority if the full potential of the GP modelling approach is to be realised.

Fortunately, a number of different covariance function have already been proposed, see

Section (4.2) together with methods to combine different covariance functions. However,

these proposed alternative covariance functions have not been the subject of much

experimental investigation. Therefore, in order to address this current lack of

information, an investigation into the suitability of these different covariance functions

for different nonlinear problems would be a valuable addition to the field.

For engineers charged with identifying real nonlinear systems, this would ideally involve

the use of empirical data collected from real systems. If the use of different covariance

functions remains exclusively researched within the machine learning and computing

science communities, it is possible that standardised or benchmark test data sets, or

simple simulated static nonlinearities, will continue as the prime investigative tools. Such

investigations can prove to be valuable resources, but the application of methods to real

world dynamic systems may prove to be more enlightening to those working on system

identification problems. Overall, it would be desirable to establish better links between

types of observed behaviour and the covariance functions best suited to identify them, as

unlike Neural Network approaches that can act as universal function approximators, the

properties of different covariance functions can sometimes be made more interpretable

and applicable to specific problems. However, it is worth pointing out that the adoption

of alternative covariance functions has implications for training data selection and overall

interpretability. One of the advantages of the Squared Exponential function is that the

hyperparameters have interpretable roles, and that we can optimise them using the

Bayesian marginal likelihood maximisation method. With more complex covariance

functions the potential exists for greater optimisation difficulties associated with multiple

local optima. Hence, the potential need to use MCMC methods may become apparent.

The overall consequence may be that the more complex GP model may require a more

complex and time-consuming model optimisation strategy. Therefore, some of the

Chapter 6: Conclusions

 311

original advantages of the GP modelling approach may be lost, as the added complexity

may result in alternative non-Bayesian modelling approaches becoming more attractive.

Approximate Methods

In Section (4.5.5) a number of alternative approximate methods were discussed, where

the objective is to reduce the computational demand of the GP modelling approach.

Although various methods have been proposed and empirical investigations have been

conducted, as yet there is no definitive answer as to which would be the preferred method

in a particular situation. This is a difficult thing to analyse, as many contributing factors

exist. Nevertheless, further analysis of these methods from a practical perspective would

be a valuable addition to the field. As a result, the trade-off between model accuracy and

computational expense could be better implemented. Furthermore, the current literature

devoted to exploring the majority of these approximate methods (especially sparse matrix

methods) has been developed primarily for use in machine learning cases where static

nonlinearities are commonly used as example implementations. As a result, the use of

many of these approximate methods has not been explored towards system identification

problems. In addition, as discussed in Section (4.5.6), many of the approximate methods

do not initially appear to be particularly in keeping with the demands of the system

identification problem, where careful pre-processing of the training data has been

required. This is at odds with some of the random subset selection methods typically

used to sample training data from empirical data.

As part of the experimental work carried out in this thesis, an attempt was made to adapt

the Subset of Regressors sparse matrix method for use in forming an approximation to

the GP model of the Heat Transfer system. Unfortunately, computational problems where

encountered where the approximated covariance matrix was routinely found to be ill-

conditioned, thus leading to poor quality predictions. This is despite the fact that in some

cases the same covariance matrix was found to be adequately conditioned for the

standard GP predictive methods to be employed. It is certainly possible that some

mistakes in the implementation of the method were made, but it is also the case that

existing research is not very clear as to whether or not such an approximate method is

well suited for application to GP models of dynamic systems where previous input and

output information are to be used as model inputs. Nevertheless, further research into

Chapter 6: Conclusions

 312

these methods would be very useful as although the systems investigated in this thesis are

relatively simple, and therefore allow accurate models to be identified from small

training datasets, more complex applications may necessitate the use of approximate

methods.

Derivative Observations

Although this extension to the GP modelling approach was investigated using the

empirical data from the Coupled Tanks system, any overall benefit in terms of reducing

the computational expense of the resultant model was not clearly evident. As discussed in

Section (5.7.5), it is possible that the specific characteristics of the example system made

it an unsuitable candidate for demonstrating the full ability of this extension.

Nonetheless, this is an interesting extension to the GP modelling approach that is

straightforward to implement. Therefore, further investigations into the incorporation of

derivative observations may prove to be valuable.

Mixed-Model Implementations

Another extension to the GP modelling approach that was explored through the

experimental work carried out on the Coupled Tanks system was the use of a ‘Mixed’

model or Nonlinear Mapping approach. Through this extension, some of the

implementation difficulties associated with the GP approach can be bypassed through

employing an initial model structure or nonlinear mapping that can be used to generate

intermediate or latent function values that are more compatible with the standard GP

modelling approach (e.g. Squared Exponential covariance function). Such an approach

can be seen to have considerable appeal in that existing descriptions of a particular

system can potentially be retained and then improved through the use of a secondary GP

model stage. As this extension can perhaps extend the usefulness of the GP modelling

approach, further investigations into the use of ‘Mixed’ models would be useful.

Multiple GP Models

A further potential research avenue is the use of multiple GP models, as discussed

previously in Section (4.5.6.2.1). Through this proposal, some of the implementation

Chapter 6: Conclusions

 313

problems associated with the GP modelling approach could be tackled through applying

a ‘divide and conquer’ approach. Therefore, instead of attempting to include large

quantities of training data into a single covariance matrix in order to specify a ‘global’

GP model of the system, the operating range could be partitioned into local operating

regimes as in alternative multiple modelling approaches. At present, there has been only

a limited amount of research into this aspect, as detailed in Section (4.5.6.2.1), but further

investigations could prove to be useful. However, it is worth bearing in mind some of the

initial motivation behind the GP modelling approach was that the problems associated

with optimising complex networks could be avoided. Therefore, in some respects there

may be limited appeal in moving in the reverse direction.

Control System Design with GP models

The need for better or more informative models is often motivated by the desire to obtain

better or more precise control systems. Therefore, perhaps one of the most important

avenues for future research would be the continuation of research into automatic control

systems that make use GP models. In existing research, see Section (5.1.1), the variance

output has shown promise with regard to implementing model predictive or adaptive

control. However, as yet the GP model has not been proven to be particularly useful or

compatible with other control algorithms. Therefore, great potential research avenues

exist with regard to implementing controllers based on GP models.

Real-Time Implementation

Related to the application of GP models to control system design is the question of how

well the methodology is suited to real-time implementation. As a significant amount of

the existing literature, and indeed this thesis, has been concerned with managing the

computational demands of the GP model, this is an important topic. Once the training

data has been finalised and the hyperparameters identified, the computational

requirement for the prediction at a new test point still requires the inversion of the

covariance matrix. Therefore, for control applications that require real-time or near

instantaneous updates as to the model’s predicted output, this burden of calculation might

prove to be problematic. As a result, a practical investigation using real hardware would

be valuable in order to assess the potential of the GP model as an ‘online’ estimator of

Chapter 6: Conclusions

 314

system behaviour. Such an investigation may also prove to be informative with regard to

the suitability of some of the extensions to the GP model that have been discussed.

Further considerations that could be investigated include the potential of the GP model to

be adapted to allow new data to be added online. Through adding data to the training

dataset whilst the system is online, or modifying it in some other way, the potential exists

to tune the performance of the model if required. For example, if through the operation of

the system we encounter new or off equilibrium operating regions, we may wish to learn

this behaviour and incorporate it into our model. Such a feature is also comparable with

the Active Learning strategies discussed in Section (2.3.2.1). Initially, such a feature

would appear to be computationally demanding, as hyperparameters may need to be re-

optimised if the training dataset is modified. Nevertheless, such a feature is worthy of

investigation as it may also prove worthwhile in the application of approximate methods

where the goal is to optimise the efficiency of the training dataset.

Appendices

 315

Appendix A – Probability Definitions and

Background

This section provides information regarding the axioms of probability and background

definitions most relevant to Bayesian analysis. Most of this information is readily

available in many standard mathematics or statistics textbooks and has been gathered

together for inclusion here to provide a convenient source using common notation

throughout.

Probability of an Event

In the mathematical treatment of probability theory, the probability of an event A is

represented by a real number in the range from 0 (an impossible event) to 1 (a certain

event), and written as P(A) with interval [0, 1].

Probability of an Opposite Event

The probability of an event opposite to A, is defined as the complement rule:

P(not A) =)(1)(APAP −=

Joint Probability

Joint probability is the probability of two events in conjunction. That is, it is the

probability of both events together. The joint probability of A and B is written as),(BAP

or)(BAP ∩ .

If two events are independent, the joint probability is:

P(A and B) = P(A,B) =)(BAP ∩ =)()(BPAP

Appendices

 316

Addition Rule

If two events are mutually exclusive (i.e. two events that may not occur at the same

time), then the probability of either occurring is:

P(A or B) =)(BAP ∪ =)()(BPAP +

If two events are NOT mutually exclusive (i.e. two events that may not occur at the

same time), then the probability of either occurring is:

P(A or B) =)()(BPAP + - P(A and B)

Conditional Probability

Conditional probability is the probability of some event A, given the occurrence of some

other event B. Conditional probability is written (|)P A B and is read as ‘the probability

of A, given B.

The conditional probability of A given B is defined as:

)(

),(

)(

)(
)|(

BP

BAP

BP

BAP
BAP =∩=

Rewritten:)()|(),(BPBAPBAP =

This relationship is termed the Product Rule and is the fundamental rule of probability

calculus as it allows us how to combine conditional probabilities for individual variables,

to define joint probabilities for sets of variables.

Marginal Probability

Marginal probability or prior probability is the probability of one event, regardless of the

other event. Marginal probability is obtained by summing (or integrating, more

generally) the joint probability over the unrequired event. This is called marginalisation.

The marginal probability of A is written P(A), and the marginal probability of B is written

P(B).

Appendices

 317

Bayes’ Theorem

The simplest form of Bayes theorem relates the joint probability P(A,B)of two events (A

and B) in terms of marginal and conditional probabilities. This can be expressed as:

)()|()()|(),(APABPBPBAPBAP ==

By rearrangement, we obtain Bayes’ theorem:

)(

)()|(
)|(

BP

APABP
BAP =

The different components of Bayes’ theorem are often defined using the terminology:

Posterior = Likelihood x Prior__

 Marginal Likelihood

The Prior P(A) is the prior or marginal probability of the event A as it does not take into

account any information about the event B. The posterior (|)P A B is the conditional

probability of A given B, and (|)P B A is the conditional probability of B given A and is

termed the likelihood. P(B) is the marginal probability of B (also termed the ‘evidence’)

and acts as a normalising constant.

Bayes’ theorem is often further expressed as proportionality as the posterior probability

is proportional to the product of the prior probability and the likelihood:

)()|()|(APABLBAP ∝

What is Likelihood?

In popular usage, the term ‘likelihood’ is often used interchangeably for probability,

however in probability theory a separate technical definition exists. In an informal sense,

likelihood works in reverse to probability. For example, if probability allows us to

predict unknown outcomes based on known parameters, then the likelihood allows us to

Appendices

 318

determine unknown parameters based on known outcomes. The likelihood function

remains a conditional probability function, but is considered a function of its second

argument with the first argument held fixed.

 Given B, we use conditional probability P(A|B) to reason about A.

 Similarly, given A, we use the likelihood function L(B|A) to reason about B.

Appendices

 319

Appendix B – Deriving GP Predictive Equations

This section is to provide details of how the mean and variance predictions of the GP

predictive posterior distribution can be derived, see Section (3.7.1) for the background.

This derivation comes from Gibbs (1997).

The conditional probability to be solved in Section (3.7.1) was stated as:

1 1
1 1

(| , ,)
(t | , ,)

(| ,)
N N N N

N N N
N N N

P
P

P
+ +

+ + = t C X x
C x

t C X
D (B.1)

where (,)N NX tD = is a set of N training data points, and NC , 1N+C , 1N+t , 1N+x where

defined as before. Using the Gaussian process model the following was then derived:

1 1
1 1 1 1 1

1

1
(t | , ,) exp ()

2
T TN

N N N N N N N N N
N

Z
P

Z
− −

+ + + + +
+

 = − − 
 

C x t C t t C tD (B.2)

This distribution is Gaussian with respect to 1tN+ , and in order to find the mean and

variance a partitioned inverse form of 1N+C is defined, see Bartnett (1979).

The covariance matrix is defined as:

[] []
[]

1

1
1

N N

N T
N κ

+
+

+

 
=  

    

C k
C

k
 (B.3)

where the sub-matrix () ()1 1, N+1 N, N+1 C ; , ,C ;N+  =  k x x θ x x θ… is the vector of

covariances between the new test point and existing training cases, and

()N 1, N+1 C ;κ += x x θ is the variance of the individual test case.

Appendices

 320

The inverse is then defined as:

11
1

1

N N
N T

N µ
+−

+
+

 
≡  
 

M m
C

m
 (B.4)

Using the fact that 1
1 1 1N N N

−
+ + +=C C I , the following can be written:

1 1
T

N N N N N+ + =C M + k m I (B.5)

1 1N N Nm+ + =C m + k 0 (B.6)

1 1
T T T
N N Nκ+ + =k M + m 0 (B.7)

1 1 1T
N N κµ+ + =k m + (B.8)

Through multiplying equation (B.5) by 1
N
−C , and then substituting the resultant

expression into equation (B.7) we obtain:

()
1

1 1
1 1

1 1 1

N N
N T

N N Nκ

−
+ +

+ −
+ + +

-C k
m =

-k C k
 (B.9)

Substituting this into equation (B.6) then gives us:

() 11
1 1 1

T
N N Nµ κ

−−
+ + += -k C k (B.10)

With the remaining components of (B.4) can be defined as:

1
1 1N N Nµ −

+ += −m C k (B.11)

1
1 1

1 T
N N N Nµ

−
+ += +M C m m (B.12)

Appendices

 321

Returning to predictive posterior distribution in equation (B.2), we can write down the

dependence of the exponent on 1tN+ in terms of the elements of 1
N
−C as defined in (B.4):

1 1 2
1 1 1 1 1 12() const.T T T

N N N N N N N N N Nt tµ µ− −
+ + + + + +− = + +t C t t C t m t (B.13)

Using the expressions derived above for µ and 1N+m , it is then straightforward to

calculate the mean and variance of the Gaussian predictive distribution

1 1(t | , ,)N N NP + +C xD as:

1
1 1

ˆ T
N N N Nt −

+ += k C t (B.14)

2 1
1 1 1

T
N N N Nσ κ −

+ + += − k C k (B.15)

 322

References

Abrahamsen, P. (1997). A Review of Gaussian Random Fields and Correlation
Functions. Technical Report 917, Norwegian Computing Center, Oslo, Norway.

Adler, R. J. (1981). The Geometry of Random Fields. Wiley, Chichester.

Aizerman, M. A., Braverman, E. M., and Rozoner, L. I. (1964) Theoretical
foundations of the potential function method in pattern recognition learning.
Automation and Remote Control, 25, 821-837.

Akaike, H. (1974). A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6):716-723.

Alligood, K. T. (1997). Chaos: an introduction to dynamical systems. Springer-
Verlag, New York.

Allgöwer F., Zheng A., (eds) (2000) Nonlinear Model Predictive Control, Progress in
system and control theory, Vol. 26, Birkhäuser Verlag, Basel.

Ažman, K., and Kocijan, J. (2007). Application of Gaussian processes for black-box
modelling of biosystems. ISA Transactions, 46(4), pages 443-457.

Babuška, R., and Verbruggen, H. (2003). Neuro-fuzzy methods for nonlinear system
identification. Annual Reviews in Control 27, 73-85.

Barnes, C., Brown, S., Flake, G., Jones, R., O’Rourke, M., and Lee, Y. C. (1991).
Applications of neural networks to process control and modelling. In Artificial Neural
Networks, Proceedings of 1991 Internat. Conf. Artif. Neur. Nets, volume 1, pp 321-
326.

Bartnett S., (1979). Matrix Methods for Engineers and Scientists, McGraw-Hill.

Bezdek. J. C. (1981). Pattern Recognition with Fuzzy Objective Function. Plenum
Press, New York.

Billingsey, P., (1986). Probability and Measure, Second edition, John Wiley & Sons,
New York.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press,
Oxford.

Box, G. E. P., and Taio, G. C. (1973). Bayesian inference in statistical analysis.
Addison-Wesley

Braham, R. (1998). Incorporation of Long-Range Feedback in Neural Networks Under
Stability Conditions. Neural Networks, 11, (1)141-144.

 323

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984), Classification and
Regression Trees. Chapman & Hall, New York.

Broomhead, D. S.,and Lowe, D. (1988). Multivariable functional interopolation and
adaptive networks. Complex Systems, 2:321-355.

Brown, M., and Harris, C. J. (1994). Neurofuzzy Adaptive Modelling and Control.
Prentice Hall, New York.

Chan, L. (2003). Time-Series Prediction Using Evolutionary Lateral-Delay Neural
Networks. PhD Thesis, University of Glasgow.

Chen, S., Cowan, C. F. N., and Grant, P. M. (1991). Orthogonal least-squares learning
algorithm for radial basis function networks. IEEE Transactions on Neural Networks,
2(2).

Chong, G. and Li, Y. (2000). Trajectory Controller Network and Its Design
Automation Through Evolutionary Computing. Lecture Notes in Computer Science:
Real-World Applications of Evolutionary Computation, 1803, Eds.: Cagnoni, S. et al.,
Springer-Verlag, 139-146.

Cleveland, W. S., Devlin, S. J., and Grosse, E. (1996). Regression by local fitting:
Methods, properties and computational algorithms. Journal of Econometrics, 37:87-
114.

Cohn, D., Altas, L., and Ladner, R. (1990). Training connectionist networks with
queries and selective sampling. In Touretzky, D. S., editor, Advances in Neural
Information Processing Systems 2. Morgan Kaufmann Publishers, San Mateo, CA.

Cohn, D. (1994). Network exploration using optimal experiment design. In Cowan,
J.D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information
Processing Systems 6, San Francisco, CA. Morgan Kaufmann Publishers.

Cohn, D. A., Ghahramani, Z and Jordan M. I., (1997). Active Learning with Mixture
Models. In Multiple Model Approaches to Modelling and Control, edited by R
Murray-Smith and T. A. Johansen.

Congdon, P. (2003) Applied Bayesian Modelling. Wiley, New York:

Cressie, N. (1993), Statistics for Spatial Data, Wiley.

Csat´o, L. and Opper, M. (2002). Sparse On-Line Gaussian Processes. Neural
Computation, 14(3):641–668.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2, 303-314.

Demuth, H., and Beale, M. (1998). MATLAB Neural Network Toolbox User’s Guide,
Version 3.0. The MATHWORKS Inc., Natick, MA.

Denison D. G. T., Holmes, D. C., Mallick, B. K., and Smith, A. F. M. (2002).

 324

Bayesian Methods for Nonlinear Classification and Regression. Wiley.

Doob, J. L. (1953) Stochastic Processes, John Wiley & Sons, New York.

Dorf, R. C., and Bishop, R. H. (2004). Modern Control Systems Pearson Education;
(Tenth edition).

Draper, N. R., and Smith, H. (1998). Applied Regression Analysis. Probability and
Mathematical Statistics. John Wiley & Sons, New York. (Third Edition).

Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., and Vapnik, V. (1997).
Support Vector Regression Machines. Advances in Neural Information Processing
Systems 9, NIPS 1996, 155-161, MIT Press.

Duane, S., Kennedy, A. D., Pendleton, B.J., and Roweth, D. (1987) Hybrid Monte
Carlo, Physics Letters B, vol. 195, pp. 216-222.

Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing. (Second
Edition) Marcel Dekker.

Fletcher, R. (1987) Practical Methods for optimization. John Wiley and Sons inc.,
Second edition.

Fletcher, R. (1993). An Overview of Unconstrained Optimization. NATO ASI on
Algorithms for Continuous Optimization, Il Ciocco, Italy.

Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion).
Annals of Statistics. 19:1-141.

Gelman, A., Carlin, J. B., Stern, H. S, and Rubin, D. B. (2004) Bayesian Data
Analysis, Second edition. Chapman and Hall.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the
Bias/Variance Dilemma. Neural Computation 4, 1-58.

Gibbs, M. N. (1997). Bayesian Gaussian Processes for Regression and Classification.
PhD thesis, Department of Physics, University of Cambridge.

Gibbs, M. N. and MacKay, D. J. C. (1997). Efficient Implementation of Gaussian
Processes. Unpublished manuscript. Cavendish Laboratory, Cambridge, UK.

Gilks, W. R., Richardson, S., and Spiegelhalter, D.J. (1996) Markov Chain Monte
Carlo in Practice. Chapman and Hall.

Girard, A., Rasmussen, C. E., and Murray-Smith, R. (2002). Gaussian process priors
with uncertain inputs: multiple-step-ahead prediction. Technical Report DCS TR-
2002-119, University of Glasgow, Glasgow.

Girard, A. (2004). Approximate methods for propagation of uncertainty with Gaussian
process models. PhD thesis, University of Glasgow, Glasgow.

 325

Godfrey, K. R. (1993). Perturbation Signals for System Identification. Prentice Hall
International, New York.

Goldberg, D. (1989). Genetic Algorithms in Searching, Optimisation and Machine
Learning. Addison Wesley, Reading, MA.

Gollee, H. (1994). A Non-Linear Approach to Modelling and Control of Electrically
Stimulated Skeletal Muscle. PhD Thesis, University of Glasgow.

Gollub, J. P., Baker, G. L. (1996). Chaotic Dynamics. Cambridge University Press

Golub, G. H. and Van Loan, C, F. (1987). Matrix Computations. Mathematical
Sciences. The Johns Hopkins University Press, Baltimore.

Gong, M. and Murray-Smith, D. J. (1998) A Practical Exercise in Simulation Model
Validation. Mathematical and Computer Modelling of Dynamical Systems. Vol. 4, No.
1, pp. 100-117.

Goodwin, G. C. and Payne, R. L. (1977), Dynamic System Identification: Experiment
Design and Data Analysis. Academic Press, New York.

Goodwin, G. C. (1987). Experiment design for system identification. In
Encyclopedia of Systems and Control (M. Singh, ed.). Pergamon Press, Oxford.

Gray, G., Murray-Smith, R., Thompson, K., and D. J. Murray-Smith, D. J. (2003)
Tutorial example of Gaussian process prior modelling applied to twin-tank system.
Technical Report DCS TR-2003-151, University of Glasgow, Glasgow.

Gregorčič, G., and Lightbody, G. (2002) Gaussian processes for modelling of dynamic
non-linear systems. In Proceedings of Irish Signals and Systems Conference, Cork,
pages 141-147, Cork.

Gregorčič, G., and Lightbody, G. (2003) From multiple model networks to the
Gaussian processes prior model. In Proceedings of IFAC ICONS conference, pages
149-154, Faro.

Gregorčič G., and Lightbody, G. (2007) Local model identification with Gaussian
processes. IEEE Transactions on neural networks, 18(5), pages 1404-1423.

Gregorčič, G., and Lightbody, G. (2008). Nonlinear system identification: From
multiple-model networks to Gaussian processes. In Engineering Applications of
Artificial Intelligence 21:1035-1055.

Gull S. F. (1988). Bayesian inductive inference and maximum entropy. In Maximum
Entropy and Bayesian Methods in Science and Engineering, vol. 1; Foundations, ed.
By G. Erickson and C. Smith. Pp. 53-71. Kluwer.

Hardle, W. (1990). Applied Nonparametric Regression. Cambridge

 326

Haykin, S. (1994). Neural Networks. A Comprehensive Foundation. Macmillan, New
York.

Henson, M. (1998) Nonlinear Model Predictive Control: Current Status and Future
Directions. Computers and Chemical Engineering, 23:187-202.

Hinton, G. E., and Sejnowski, T. J. (1986). Learning and relearning in Boltzmann
machines. In Parallel Distributed Processing: Explorations in Microstructure of
Cognition. (D. E. Rumelhart and J.L. McClelland, eds.), Cambridge, MA: MIT Press.

Hinton, G. E. and van Camp, D. (1993) Keeping neural networks simple by
minimizing the description length of the weights. Proceedings of the Sixth Annual
ACM Conference on Computational Learning Theory, Santa Cruz 1992, pp. 5-13.

Holland, H. J. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the
U.S.A. 79, 2554-2558.

Hornik, K., Stinchombe, M., and White, H. (1989) Multilayer feedforward networks
are universal approximators. Neural Computation, 2:359-366.

Jang, J.-S. R., and Sun, C.-T. (1995). Neuro-fuzzy modeling and control. Proceedings
of the IEEE 83, 378-406.

Johansen, T. A., and Foss, B. A. (1992). A NARMAX model representation for
adaptive control based on local models. Modeling Identification and Control 13, 25-
39.

Johansen, T. A., and Foss, B. A (1993). Constructing NARMAX models using
ARMAX models. International Journal of Control. 58(5), 1125-1153.

Johansen, T. A., and Foss, B. A. (1995a). Identification of non-linear system structure
and parameters using regime decomoposition. Automatica 31, 321-326.

Johansen, T. A., and Foss, B. A. (1995b). Empirical modelling of a heat transfer
process using local models and interpolation. In: Proc. Amer. Control Conference. Vol
5. pp. 3654-3658.

Johansen, T. A. (1997). On Tikhonov regularization, bias and variance in nonlinear
system identification. Automatica, 33(3): 441-446.

Johansen, T. A., and Foss, B. A. (1997). Operating regime based process modelling
and identification. Computers and Chemical Engineering 21, 159-176.

Juang, J. (1994). Applied System Identification. Prentice Hall.
Juričić, D. J., and Kocijan, J. (2006). Fault detection based on Gaussian process
model. In I. Troch and F. Breitenecker, editors, Proceedings of the 5th Vienna
Symposium on Mathematical Modeling - MathMod, Vienna, 2006.

 327

Jutton, C., and Fambon, O. (1995). Pruning methods: A review. In Proc. 3rd European
Symposium on Artificial Neural Networks. Brussels. pp. 129-140.

Kaelbling, L. P.; Littman, M. L.; and. Moore, A. W. (1996). "Reinforcement Learning:
A Survey". Journal of Artificial Intelligence Research 4: 237–285.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598):671-680.

Kocijan, J., Banko, B., Likar, B., Girard, A., Murray-Smith, R., and Rasmussen, C. E.
(2003a). A case based comparison of identification with neural networks and Gaussian
process models. In Proceedings of IFAC ICONS conference, volume 1, pages 137-
142, Faro.

Kocijan, J., Girard, A., Banko, B., and Murray-Smith. R. (2003b) Dynamic systems
identification with Gaussian processes. In I. Troch and F. Breitenecker, editors,
Proceedings of 4th IMACS Symposium on Mathematical Modelling (MathMod), pages
776-784, Vienna.

Kocijan, J., Girard, A., and Leith, D. J. (2003c). Incorporating linear local models in
Gaussian process model. Technical Report DP-8895, Institut Jožef Stefan, Ljubljana.

Kocijan, J., and Leith, D. J. (2004) Derivative observations used in predictive control.
In Proceedings of Melecon 2004, volume 1, pages 379-382, Dubrovnik.

Kocijan, J., Murray-Smith, R., Rasmussen, C. E., and Girard, A. (2004) Gaussian
process model based predictive control. In Proceedings of 4th American Control
Conference, pages 2214-2218, Boston, MA.

Kocijan, J.,and Ažman, K. (2007). Gaussian Process Model Identification: A Process
Engineering Case Study. In Proceedings of the 16th International Conference on
Systems Science, Vol. 1, pages 418 - 427, Wroclaw.

Kocijan, J., and B. Likar, B. (2007) Gas-Liquid Separator Modelling and Simulation
with Gaussian Process Models. In Proceedings of the 6th EUROSIM Congress on
Modelling and Simulation

Kohonen T. (1990). The self-organizing map. Proceeding of the IEEE. 78:1464-1480.

Laarhoven, P. J. M. Van, and Aarts, E. H. L. (1987). Simulation Annealing: Theory
and Applications. Dordrecht, Lancaster.

Lauritzen, S. L. (1981). Time Series Analysis in 1880: A Discussion of Contributions
Made by T. N. Thiele. International Statistical Review, 49:319–333.

Lawrence, N., Seeger, M., and Herbrich, R. (2003). Fast Sparse Gaussian Process
Methods: The Informative Vector Machine. In Becker, S., Thrun, S., and Obermayer,
K., editors, Advances in Neural Information Processing Systems 15, pages 625–632.
MIT Press.

 328

Lee, P. M. (2004). Bayesian Statistics – an introduction. Third Edition. Hodder
Arnold.

Leith, D. J., and Leithhead, W. E. (1999). Analytic framework for blended multiple
model systems using linear local models. International Journal of Control. 72 (7/8),
605-619.

Leith, D. J., Murray-Smith, R., and Leithead, W. E. (2000). Nonlinear structure
identification: A Gaussian process/velocity-based approach. In Proceedings of the
UKACC Control Conference, Cambridge.

Leith, D. J., Leithead, W. E., Solak, E., and Murray-Smith, R. (2002) Divide and
conquer identification using Gaussian processes. In Proceedings of the 41st
Conference on Decision and Control, pages 624-629, Las Vegas, AZ.

Leithead, W. E., Leith, D. J., and Murray-Smith, R. A. (2000). Gaussian Process
Prior/Velocity-based Framework for Nonlinear Modelling and Control, In Irish
Signals and Systems Conference, Dublin.

Leontartis, I. J., and Billings, S. A. (1987) Model selection and Validation Methods
for Non-Linear Systems. International Journal of Control, 45 311-341.

Likar, B., and. Kocijan, J. (2007). Predictive control of a gas-liquid separation plant
based on a Gaussian process model. Computers and Chemical Engineering, 31(3),
pages 142-152.

Ljung, L. (1999). System Identification – Theory for the User. Prentice Hall.

Luo, Z. and Wahba, G. (1997). Hybrid Adaptive Splines. J. Amer. Statist. Assoc.,
92:107–116.

MacKay D. J. C. (1991) Bayesian Methods for Adaptive Models, Ph.D thesis,
California Institute of Technology.

MacKay, D. J. C. (1992a). Bayesian Interpolation. Neural Computation, 4(3):415–
447.

MacKay, D. J. C. (1992b). A Practical Bayesian Framework for Backpropagation
Networks. Neural Computation, 4(3):448–472.

Mackay, D. J. C. (1992c). The evidence framework applied to classification networks.
Neural Computation 4 (5):698-714.

Mackay, D. J. C. (1994) Bayesian non-linear modelling for the energy prediction
competition, ASHRAE Transactions Vol. 100, Pt. 2, PP. 1053-1062.
MacKay, D. J. C. (1997). Gaussian Processes - A Replacement for Supervised Neural
Networks? Lecture notes for a tutorial at NIPS 1997.

MacKay, D J. C. (1998a) Intro to Monte Carlo methods. In Michael I. Jordan, editor,
Learning in Graphical Models. The MIT Press, Cambridge, Massachusetts.

 329

MacKay, D. J. C. (1998b). Introduction to Gaussian Processes. In Bishop, C. M.,
editor, Neural Networks and Machine Learning. Springer-Verlag.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, Cambridge, UK.

Matheron, G. (1963). Principles of geostatistics, Economic Geology 58, 1246-1266.

McCulloch, W. S., and Pitts, W. (1943). A Logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics 5, 115-133.

McLoone, S. (2000). Nonlinear identification using local model networks. PhD
Thesis, Queens University of Belfast.

McLoone, S. E., Irwin, G. W., and McLoone, S. F. (2001). Constructing networks of
continuous-time velocity-based models. IEE Proceedings – Control Theory and
Applications 148o (5), 397-405.

Mehra, R. K. (1981). Choice of input signals. In Trends and Progress in Systems
Identification. (P.Eykhoff, ed.). Pergamon Press, Elmsford, N.Y.

Moody, J., and Darken, C. J. (1989). Fast learning in networks of locally-tuned
processing units. Neural Computation. 1(2):281-294.

Murray-Smith, R. (1992). Local Model Networks and Local Learning. In Fuzzy
Duisburg ’94, pages 404-409.

Murray-Smith, R. (1994). A Local Model Network Approach to Nonlinear Modelling.
PhD Thesis. Department of Computer Science, University of Strathclyde, Glasgow,
Scotland.

Murray-Smith, R., and Gollee, H. (1994). A constructive learning algorithm for local
model networks. In IEEE Workshop on Computer-Intensive Methods in Control and
Signal Processing, Prague, Czech Republic, pp. 21-29.

Murray-Smith, R., and Johansen, T. A. (1995). Local learning in local model
networks. In 4th IEE Intern. Conf. on Artificial Neural Networks. pp. 40-46.

Murray-Smith, R., and Hunt, K. J. (1995). Local Model architectures for nonlinear
modelling and control. In: Hunt, K. J., Irwin, G.R., Warwick, K. (editors) Neural
Network Engineering in Dynamic Control Systems, Advances in Industrial Control.
Springer, Berlin, pp. 61-82.

Murray-Smith, R. and Johanson, T. A. (1997). Multiple Model Approaches to
Modelling and Control. Taylor and Francis.

Murray-Smith, R., Johansen, T. A., Shorten, R. (1999). On transient dynamics, off-
equilibrium behaviour and identification in blended multiple model structures. In
Proceedings of European Control Conference, BA-14, Karslruhe.

 330

Murray-Smith, R., and Girard, A. (2001) Gaussian process priors with ARMA noise
models. In Proceedings of Irish Signals and Systems Conference, pages 147-152,
Maynooth.

Murray-Smith, R., and Sbarbaro, D. (2002). Nonlinear adaptive control using
nonparametric Gaussian process prior models. In Proceedings of IFAC 15th World
Congress, Barcelona.

Murray-Smith, R., Shorten, R., and Leith, D. (2002). Nonparametric models of
dynamic systems. In C. Cowans, editor, Proceedings of IEE Workshop on Nonlinear
and Non-Gaussian signal processing - N2SP, Peebles, UK.

Murray-Smith, R., Sbarbaro, D., Rasmussen, C. E., and Girard, A. (2003). Adaptive,
cautious, predictive control with Gaussian process priors. In Proceedings of 13th IFAC
Symposium on System Identification, pages 1195-1200, Rotterdam.

Neal, R. M. (1992). Bayesian training of backpropagation networks by the hybrid
Monte Carlo Method. Technical Report CRG-TR-92-1, Dept. of Computer Science,
University of Toronto.

Neal, R. M. (1993) Probabilistic inference using Markov Chain Monte Carlo methods.
Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer, New York.
Lecture Notes in Statistics 118.

Neal, R. M. (1997). Monte Carlo Implementation of Gaussian Process Models for
Bayesian Regression and Classification. Technical Report 9702, Department of
Statistics, University of Toronto.

Nelles, O., and Isermann, R. (1996). A new technique for determination of hidden
layer parameters in RBF networks. In IFAC World Congress, pages 453-457, San
Francisco, USA.

Nelles, O., Fink, A., and Isermann, R. (2000). Local linear model trees (lolimot)
toolbox for nonlinear system identification. In 12th IFAC Symposium on System
Identification (SYSID), Santa Barbara, USA. Pp. 845-850.

Nelles, O. (2001) Nonlinear System Identification. Springer.

Nise, N. S. (2003). Control Systems Engineering. John Wiley & Sons; (Fourth
Edition).

O’Hagan, A. (1978). Curve Fitting and Optimal Design for Prediction. Journal of the
Royal Statistical Society B, 40:1–42. (with discussion). Pp. 28, 30, 94.

Paciorek C.J., (2003). Nonstationary Gaussian Processes for Regression and Spatial
Modelling. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvannia.

 331

Paciorek, C. and Schervish, M. J. (2004). Nonstationary Covariance Functions for
Gaussian Process Regression. In Thrun, S., Saul, L., and Schölkopf, B., editors,
Advances in Neural Information Processing Systems 16. MIT Press.

Pantaleón-Prieto, C. J., de María. F. D., and Figueiras-Vidal, A. (1993). On training
RBF networks. In Neural Networks and their Industrial and Cognitive Applications,
Nimes, France, pp. 279-288.

Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, New York. Third Edition.

Park, J., and Sandberg, I. W. (1991).Universal approximation using radial-basis-
function networks. Neural Computation, 3(2):246-257.

Pfeiffer, B-M, and Isermann, R. (1994). Criteria for successful applications of fuzzy
control. Engineering Applications of Artificial Intelligence, 7(3):245-253.

Plutowski, M. (1994). Selecting Training Exemplars for Neural Network Learning.
Ph.D. Thesis, University of California, San Diego, USA.

Poggio, T. and Girosi, F. (1990). Networks for Approximation and Learning.
Proceedings of IEEE, 78:1481–1497.

Powell, M. J. D. (1985). Radial basis functions for multivariable interpolation: A
review. In IMA Conference on Algorithms for the Approximation of Functions and
Data, Pages 143-167, Shrivenham, UK.

Press, S. J. (1989). Bayesian Statistics: Principles, Models and Applications. New
York, Wiley.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992).
Numerical Recipes in C. Cambridge University Press, Second edition.

Qin S. J., and Badgwell T. A., (2000). An overview of nonlinear model predictive
control applications. In Allgower F., Zheng A. (eds.), Nonlinear model predictive
control, Birkhauser Verlag, 369-392.

Quinonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning Research,
6:1939-1959.

Quinonero-Candela, J., Rasmussen, C. E., and Williams, C. K. I. (2007).
Approximation Methods for Gaussian Process Regression. In Leon Bottou, Olivier
Chapelle, Dennis DeCoste and Jason Weston, editors, Large Scale Learning
Machines, pages 203-223, Cambridge, MA. MIT Press.

Rasmussen, C. E. (1996). Evaluation of Gaussian Processes and Other Methods for
Non-linear Regression. PhD thesis, Dept. of Computer Science, University of
Toronto.

 332

Rasmussen, C. E. and Ghahramani, Z. (2002). Infinite Mixtures of Gaussian Process
Experts. In Diettrich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in
Neural Information Processing Systems 14. MIT Press.

Rasmussen, C. E. and Williams, C. K. I (2006) Gaussian Processes for Machine
Learning. MIT Press.

Reed, R. (1999). Pruning algorithms – a survey. IEEE Transactions on Neural
Networks 4 (5), 740-747.

Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M. (1983). Engineering Optimization
– Methods and Applications. John Wiley & Sons, London.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
volume 1, chapter 8. MIT Press, Cambridge

Sampson, P. D., and Guttorp, P. (1992). Nonparametric Estimation of Nonstationary
Covariance Structure. Journal of American Statistical Association, 87:108-119.

Sbarbaro, D., and Murray-Smith, R. (2005). Switching and Learning in Feedback
Systems, volume 3355 of Lecture Notes in Computer Science, chapter Self-tuning
control of nonlinear systems using Gaussian process prior models, pages 140-157.
Springer, Heidelberg.

Scales, L. E. (1985). Introduction to Non-Linear Optimization. Computer and Science
Series. Macmillan, London.

Seeger, M. (2003). Bayesian Gaussian Process Models: PAC-Bayesian Generalisation
Error Bounds and Sparse Approximations. PhD thesis, School of Informatics,
University of Edinburgh.

Seeger, M., Williams, C. K. I., and Lawrence, N. (2003). Fast Forward Selection to
Speed Up Sparse Gaussian Process Regression. In Bishop, C. and Frey, B. J., editors,
Proceedings of the Ninth International Workshop on Artificial Intelligence and
Statistics. Society for Artificial Intelligence and Statistics.
Seeger, M. (2004). Gaussian Processes for Machine Learning. International Journal
of Neural Systems. 14:69-106.

Shi, J. Q., Murray-Smith, R., and Titterington, D. M. (2003). Bayesian Regression and
Classification Using Mixtures of Gaussian Processes. International Journal of
Adaptive Control and Signal Processing. 17:1-16.

Shorten, R., and Murray-Smith, R. (1994). On Normalising Basis Function networks.
In 4th Irish Neural Networks Conference. University College, Dublin.

 333

Shorten, R., Murray-Smith, R., and Bjørgan. (1999). On the interpretation of local
models in blended multiple model structures. International Journal of Control, vol.
72, no. 7/8 pp 620-628.

Sjöberg J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y.,
Hjalmarsson, H., and Juditsky, A. (1995) Non-linear Black-box modeling in system
identification: A unified overview. Automatica, 31(12):1691-1724.

Skilling, J. (1993). Bayesian numerical analysis, in W. T. Grandy, Jr. and P. Milonni
(eds), Physics and Probability, C.U.P., Cambridge.

Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs
sampler and related Markov chain Monte Carlo methods (with discussion). Journal of
the Royal Statistical Society B55, 3-102.

Smola, A. J. and Bartlett, P. L. (2001). Sparse Greedy Gaussian Process Regression. In
Leen, T. K., Diettrich, T. G., and Tresp, V., editors, Advances in Neural Information
Processing Systems 13, pages 619–625. MIT Press.

Snelson, E., Rasmussen, C. E., and Ghahramani. Z. (2004) Warped Gaussian
processes. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural
Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

Snelson, E., and Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-
inputs. In Y. Weiss, B. Schölkopf, and J. Platt, eds, Advances in Neural Information
Processing Systems 18, Cambridge, MA. MIT Press.

Snelson, E. L. (2007). Flexible and efficient Gaussian process models for machine
learning. PhD Thesis, University of London.

Söderström, T. and Stoica, P. (1989). System Identification. Prentice Hall
International, London.

Solak, E., Murray-Smith, R., Leithead, W. E., Leith, D., and Rasmussen, C. E. (2003).
Derivative Observations in Gaussian Process Models of Dynamic Systems. In Becker,
S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing
Systems 15, pages 1033–1040. MIT Press.

Stein, M. L. (1999). Interpolation of Spatial Data. Springer-Verlag, New York.

Sutton, R. S.; and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press.

Takagi, T., and Sugeno, M. (1985). Fuzzy identification of systems and its application
to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics,
15(1):116-132.

Takens, F. (1981) Detecting strange attractors in turbulence. Lecture Notes in
Mathematics 898, Springer-Verlag, Berlin.

 334

Thodberg, H. H. (1996). A review of Bayesian neural networks with an application to
near infrared spectroscopy. IEEE Transactions on Neural Networks, vol. 7. pp. 56-72.

Thompson, K., and Murray-Smith, D. J. (2006) Implementation of Gaussian process
models for nonlinear system identification. In I. Troch and F. Breitenecker, editors,
Proceedings of the 5th Vienna Symposium on Mathematical Modeling - MathMod,
Vienna.

Thrun, S. B. (1992). The role of Exploration in Learning Control. In Handbook of
Intelligent Control: Neural Fuzzy and Adaptive Approaches. Van Nostrand Reinhold.

Tikhonov, A. N., and Arsenin, V. Y. (1977). Solutions of Ill-Posed Problems. Wiley,
New York.

Unbehauen, H. and Rao, G. P. (1987). Identification of Continuous-Time Systems.
North-Holland, Amsterdam.

Van den Hof, P. M. J. (1997). Closed-loop issues in system identification. In IFAC
Symposium on System Identification, pages 1651 – 1664, Fukuoka, Japan.

Vanderplaats, G. N. (1984). Numerical Optimization Techniques for Engineering
Design. Series in Mechanical Engineering. McGraw-Hill, New York.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer Verlag,
New York.

Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and
Applied Mathematics, Philadelphia, PA. CBMS-NSF Regional Conference series in
applied mathematics.

Wahba, G., Johnson, D. R., Gao, F., and Gong, J. (1995). Adaptive Tuning of
Numerical Weather Prediction Models: Randomized CCV in Three-and Four-
Dimentional Data Assimilation. Monthly Weather Review, 123:3358-3369.

Wang, J. M., Fleet,D. J., and Hertzmann, A. (2005). Gaussian process dynamical
models. In Advances in Neural Information Processing Systems, volume 18, pages
1441-1448. MIT Press.

Werntges, H. W. (1993). Partitions of unity improve neural function approximators. In
IEEE International Conference on Neural Networks (ICNN), volume 2, pages 914-
918, San Francisco, USA.

Wettschereck, D., and Dietterich, T. (1992). Improving the performance of radial basis
function networks by learning center locations. In J. E. Moody, S. J. Hanson, and R. P
Lippmann, editors, Advances in Neural Information Processing Systems, volume 4,
pages 1133-1140. Morgan Kaufmann, San Mateo.

Wiener, N. (1948). Cybernetics, Wiley.

 335

Williams, C. K. I., and Rasmussen, C. E. (1996). Gaussian processes for regression, in
D. S. Touretzky, M. C. Mozer and M. E. Hasselmo, (eds), Advances in Neural
Information Processing Systems 8, MIT Press.

Williams, C. K. I. (1998). Computation with Infinite Neural Networks. Neural
Computation, 10(5):1203–1216.

Williams, C. K. I. and Seeger, M. (2001). Using the Nyström Method to Speed Up
Kernel Machines. In Leen, T. K., Diettrich, T. G., and Tresp, V., editors, Advances in
Neural Information Processing Systems 13, pages 682–688. MIT Press.

Williams, C. K. I., Rasmussen, C. E., Schwaighofer, A., and Tresp, V. (2002).
Observations on the Nyström Method for Gaussian Process Prediction. Technical
report, University of Edinburgh.

Wolberg, J. (2005). Data Analysis Using the Least-Squares Method. Springer-Verlag,
New York.

Wothke, W. (1993). Nonpositive definite matrices in structural modelling. In K. A.
Bollen & J. S. Long (Eds.), Testing structural equation models. Newbury Park, CA:
Sage.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8:338-353.

