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Abstract 
 

This thesis is concerned with investigating the use of Gaussian Process (GP) models for 

the identification of nonlinear dynamic systems. The Gaussian Process model is a non-

parametric approach to system identification where the model of the underlying system is 

to be identified through the application of Bayesian analysis to empirical data. The GP 

modelling approach has been proposed as an alternative to more conventional methods of 

system identification due to a number of attractive features. In particular, the Bayesian 

probabilistic framework employed by the GP model has been shown to have potential in 

tackling the problems found in the optimisation of complex nonlinear models such as 

those based on multiple model or neural network structures. Furthermore, due to this 

probabilistic framework, the predictions made by the GP model are probability 

distributions composed of mean and variance components. This is in contrast to more 

conventional methods where a predictive point estimate is typically the output of the 

model. This additional variance component of the model output has been shown to be of 

potential use in model-predictive or adaptive control implementations. A further property 

that is of potential interest to those working on system identification problems is that the 

GP model has been shown to be particularly effective in identifying models from sparse 

datasets. Therefore, the GP model has been proposed for the identification of models in 

off-equilibrium regions of operating space, where more established methods might 

struggle due to a lack of data. 

 

The majority of the existing research into modelling with GPs has concentrated on 

detailing the mathematical methodology and theoretical possibilities of the approach. 

Furthermore, much of this research has focused on the application of the method toward 

statistics and machine learning problems. This thesis investigates the use of the GP 

model for identifying nonlinear dynamic systems from an engineering perspective. In 

particular, it is the implementation aspects of the GP model that are the main focus of this 

work. Due to its non-parametric nature, the GP model may also be considered a ‘black-

box’ method as the identification process relies almost exclusively on empirical data, and 

not on prior knowledge of the system. As a result, the methods used to collect and 

process this data are of great importance, and the experimental design and data pre-

processing aspects of the system identification procedure are investigated in detail. 
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Therefore, in the research presented here the inclusion of prior system knowledge into 

the overall modelling procedure is shown to be an invaluable asset in improving the 

overall performance of the GP model.  

 

In previous research, the computational implementation of the GP modelling approach 

has been shown to become problematic for applications where the size of training dataset 

is large (i.e. one thousand or more points). This is due to the requirement in the GP 

modelling approach for repeated inversion of a covariance matrix whose size is dictated 

by the number of points included in the training dataset. Therefore, in order to maintain 

the computational viability of the approach, a number of different strategies have been 

proposed to lessen the computational burden. Many of these methods seek to make the 

covariance matrix sparse through the selection of a subset of existing training data. 

However, instead of operating on an existing training dataset, in this thesis an alternative 

approach is proposed where the training dataset is specifically designed to be as small as 

possible whilst still containing as much information. In order to achieve this goal of 

improving the ‘efficiency’ of the training dataset, the basis of the experimental design 

involves adopting a more deterministic approach to exciting the system, rather than the 

more common random excitation approach used for the identification of black-box 

models. This strategy is made possible through the active use of prior knowledge of the 

system. 

 

The implementation of the GP modelling approach has been demonstrated on a range of 

simulated and real-world examples. The simulated examples investigated include both 

static and dynamic systems. The GP model is then applied to two laboratory-scale 

nonlinear systems: a Coupled Tanks system where the volume of liquid in the second 

tank must be predicted, and a Heat Transfer system where the temperature of the airflow 

along a tube must be predicted. Further extensions to the GP model are also investigated 

including the propagation of uncertainty from one prediction to the next, the application 

of sparse matrix methods, and also the use of derivative observations. A feature of the 

application of GP modelling approach to nonlinear system identification problems is the 

reliance on the squared exponential covariance function. In this thesis the benefits and 

limitations of this particular covariance function are made clear, and the use of 

alternative covariance functions and ‘mixed-model’ implementations is also discussed.  
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1) Introduction 
 

The field of system identification is concerned with the development of mathematical 

models of real systems or processes using prior knowledge of the system and empirical 

data. However the problems encountered in forming an accurate representation of a 

system can be seen to have parallels with other forms of empirical analysis where 

information must be gleaned from available data. The broad topic of mathematical 

modelling can be seen to exist across almost all technical research disciplines with many 

different approaches having been developed. Most notably, ideas and techniques from the 

fields of statistics and computing have been embraced into the more engineering-based 

discipline of system identification. In many cases methodologies originating from 

different research fields can be seen to have similarities with one another despite being 

developed independently. In particular, the learning task associated with the field of 

artificial intelligence or adaptive systems has been a research topic for both the machine 

learning community as well as those from an automatic control background. Research into 

artificial neural networks has led to collaborative efforts between markedly different 

fields, such as those from a background in biological sciences and researchers from 

engineering and computing science.  

 

From the fields of mathematics and statistics, the analysis of probability and error has 

given other research disciplines the tools with which to identify the most likely or optimal 

solution, such as regression algorithms, and ultimately the means to assess and validate the 

performance of an identified model. The use of probability theory and methods is relevant 

as it formally introduces the analysis of uncertainty into the modelling procedure. As the 

purpose of system identification is to investigate systems where knowledge is limited and 

of uncertain accuracy, it is therefore sensible that probabilistic methods are employed. The 

Gaussian Process (GP) modelling approach investigated in this thesis can be seen to 

originate from research into the statistics of spatial data, and in recent years has received 

considerable interest in the machine learning research community as a tool for nonlinear 

regression and classification. In the machine learning setting, the GP method has been 

demonstrated as a viable alternative to more established learning systems such as the 

neural-network approach.  
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The driving factor behind the continued research into alternative system identification 

methods is the ever-increasing demands of new and existing applications. Mathematical 

models of real systems are often required to assist in the design process of a system (e.g. 

by simulating performance, cost effectiveness etc.), and also used as the basis for the 

design of automatic control systems. In both these cases, the quality of the identified 

model will play a large role in determining the quality of the final solution. For example, 

in order to design a control system that maximises a systems potential performance, the 

mathematical model must represent the true system as closely as possible. The increase in 

model prediction accuracy provided by a precise mathematical model, can allow the 

design of a control system to be performed with a greater amount of confidence in how the 

system will behave when subjected to control inputs. The further development of 

mathematical models through the expansion of the operating range accurately represented 

can also facilitate the design of control systems that allow more demanding performance 

requirements to be realised. An example of this would be the design of modern aircraft 

where the development of accurate mathematical models has allowed the design of more 

sophisticated fly-by-wire controllers, leading to more agile fighter aircraft that can be 

controlled whilst operating in unstable conditions (e.g. Eurofighter Typhoon). Overall, a 

strong demand will always remain for methods that can improve the accuracy of a 

mathematical description. 

 

The GP modelling approach is of great potential interest in the field of system 

identification due to a number of desirable features. A primary motive for the original 

surge of interest in GP models in the machine learning community is that through the 

model’s application of Bayesian methods some of the difficulties associated with 

optimising complex learning systems can be bypassed through the adoption of this 

probabilistic approach. Such difficulties can also be seen to present themselves within the 

field of nonlinear system identification as more complex models have been adopted for 

use in representing more complex systems. As a result, these alternative GP methods have 

now been proposed towards problems found in system identification. 

 

Another feature of the GP modelling approach is that through the probabilistic analysis, a 

predictive probability distribution rather than a single predictive estimate is the output 

from the model. As a result, the GP model can be seen to provide predictions of nonlinear 

system behaviour together with a measure of the uncertainty over each prediction. This 
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uncertainty or variance term has been shown to be of potential value in the design of 

adaptive or predictive controllers where the behaviour of a control system may be 

modified to reflect the uncertainty associated with the prediction. The variance output of 

the GP model can also be utilised to help identify regions of operating space that are not 

well described by the empirical data. This is a useful feature for what may be considered 

as a ‘black-box’ method of identification. 

 

A further important feature of the GP modelling approach is that the method has been 

found to outperform alternative learning systems where the amount of empirical data is 

limited. In the identification of real systems, the amount of available data that can be used 

to train a model may be limited due to a number of factors. Therefore a modelling 

approach that can provide useful predictions in situations where little data or prior 

knowledge is present is something worthy of consideration. For example, in the 

identification of many real systems a significant problem is presented by the lack of 

available data in certain (typically off-equilibrium) regions of operating space. Without 

sufficient data, the identification of an accurate model in these regions can become 

impossible, and this deficiency is also passed on to any corresponding control system. 

However, as the GP model has been shown to perform well on problems where data is 

limited, it has been proposed as a potentially useful method for identification in off-

equilibrium regions of operating space where more conventional methods can struggle. 

 

1.1) Original Contributions 
 

The application of the GP modelling approach towards the task of identifying nonlinear 

dynamic systems can be seen to be in its early stages with relatively few dedicated 

resources currently available. The majority of the existing research into GP models has 

concentrated more upon defining the mathematical methodology and theoretical 

possibilities of the approach. Furthermore, much of this existing research has been focused 

towards problems found in machine learning and statistics. As a result many of the 

examples investigated in the existing literature have utilised simulated and benchmark 

datasets that are not particularly demonstrative of the types of problems found in the field 

of nonlinear system identification. In particular, static nonlinearities remain the most 

popular example applications for much of the existing theory. 
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The primary contribution of this work is in the investigation of the GP modelling approach 

as a method for nonlinear system identification. Whilst in existing research the GP method 

has been proposed as an alternative to more established methods, a very limited amount of 

research has been devoted to the implementation of the approach from an engineering 

perspective. As a result, a particular emphasis has been placed on the practical 

implementation of the GP model through the identification of real laboratory systems from 

empirical data. In this way the usability of the approach toward general system 

identification problems can be made clear. Therefore, the main original contribution of 

this thesis has been to provide a general guide to the implementation of the GP modelling 

approach for system identification problems. Other original contributions made in this 

thesis are: 

 

• As the implementation of the GP model is the prime objective of this thesis, a 

detailed discussion of the most important issues is provided. The properties of 

various different covariance functions, and the techniques used to optimise the GP 

model are discussed in detail. Furthermore, through experimental results a detailed 

review of the relative strengths and weaknesses of the most popular (Squared 

Exponential) covariance function is performed. The potential use of the Matèrn 

covariance function to represent less smoothly varying data is also demonstrated. 

• The computational implementation of the GP model is discussed in detail. Both the 

size and conditioning aspects of the covariance matrix are discussed, and then 

related to the training data pre-processing and experimental design aspects of the 

system identification procedure (e.g. excitation signals, sampling rate etc.). 

• The design of the training dataset used to identify the GP modelling approach is 

examined closely. In order to meet the size and conditioning constraints of the 

method, the training set must be pre-processed carefully. The most likely source of 

ill conditioning in the covariance matrix was identified as the presence of steady-

state data. A random excitation signal that is sufficiently excited is first shown to 

provide a good strategy for the identification of a GP model. However, a more 

deterministic strategy for the design of the excitation signal consisting of a number 

of small-step inputs is shown to be an attractive alternative that allows more 

information to be included in the training dataset in a smaller space. 

• The inclusion of previous inputs/outputs as additional model inputs is discussed in 

detail and then demonstrated. Due to the limitations placed on the size of the 
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training dataset, a potential discrepancy between the sample intervals of the 

training and test data can occur. Therefore, the process of including previous 

inputs/outputs is not as straightforward as in other modelling approaches. 

• Alternative ‘mixed-model’ implementations of the GP model where the methods 

are combined with other existing methods are discussed and demonstrated using 

the Coupled Tanks system. These proposals are aimed at retaining the advantages 

of the GP modelling approach whilst overcoming some of the disadvantages. 

 

1.2) Thesis Outline 
 

Chapter 2 

In this chapter the overall process of system identification is reviewed. Important aspects 

including the choice of model architecture, the role of prior knowledge, experimental 

design, pre-processing of training data, model optimisation and validation are discussed 

with references provided. This review is to provide an overview of the field rather than an 

in-depth discussion of all the available methods.  

 

Chapter 3 

In this chapter the theoretical background and literature of the GP modelling approach is 

presented in detail. This chapter begins with an in-depth discussion of the motivation 

behind GP models with reference to some of the model architectures discussed in the 

previous chapter. The concepts behind Bayesian learning are then introduced and the 

potential benefits in terms of dealing with model complexity issues are made clear. Next, 

the process and difficulties of applying a Bayesian learning framework are presented, and 

the mathematical peculiarities of the Gaussian process are shown to provide a solution to 

some of these difficulties. Finally, the task of using Gaussian processes and Bayesian 

learning for the purposes of regression is discussed. 

 

Chapter 4 

In this chapter the implementation of the GP modelling approach is discussed in detail. A 

review of the role played by the covariance function is first provided, followed by a 

discussion of various alternative covariance functions. Next, the optimisation of the GP 

model is discussed in detail. The computational implementation of the GP model is then 
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tackled with the challenges posed by large datasets and matrix ill-conditioning made clear. 

From this discussion the implementation of the GP model is described using both direct 

and approximate methods.  

 

Chapter 5 

In this chapter the specific challenge of implementing GP models for dynamic system 

identification purposes is investigated and a variety of simulated and real nonlinear 

dynamic systems are identified. Notable extensions to the GP model are first described, 

including the propagation of uncertainty and derivative observations, together with the 

implications for control system design using GP models. After a brief discussion of the 

experimental objectives (based on the research presented in the previous two chapters), the 

GP modelling approach is then applied to a number of simulated examples. The purpose 

of these simulated examples is to demonstrate the overall process of implementing the GP 

model and its ability to identify nonlinearities using relatively few training observations. 

Both static and dynamic examples are tackled. Following on from these simulated 

examples, two real laboratory-scale nonlinear systems are investigated: a Coupled Tank 

system, and a Heat Transfer system. Through these examples the identification process 

using real empirical data is demonstrated with problems regarding the size and 

conditioning of the covariance matrix tackled through experimental design, model 

structure definition and training data pre-processing. Utilising these methods, the two real 

systems are then identified to a good degree of accuracy. Further extensions investigated 

include the incorporation of derivative observations and an alternative ‘mixed-model’ 

implementation which combines the use of an analytical model of the Coupled Tanks 

system with a GP model. A summary of the experimental results is then provided at the 

end of this chapter. 

 

Chapter 6 

In this chapter the thesis is concluded by discussing some of the main points raised 

through the course of the preceding chapters. A general guide to the implementation of the 

GP modelling approach is then presented. Finally, a number of possible strategies for 

improving the GP modelling approach are discussed; together with recommendations for 

the most important areas that should be targeted in future research.  
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2) Nonlinear System Identification 

 

System Identification can be seen to be the determination of a mathematical model 

through the use of empirical data together with prior knowledge of a particular system’s 

characteristics. In this chapter the overall process of system identification is to be 

discussed where the various choices involved in developing models are examined and the 

practical implications are made clear. Furthermore, a background review of the various 

types of linear and nonlinear models and optimisation techniques currently being 

employed toward the task of system identification is included. This discussion is 

worthwhile as it provides an insight into where the GP modelling approach is to fit in 

amongst its alternatives.  

 

2.1) The System Identification Process 

 

The overall objective of the system identification process is to provide an accurate and 

robust approximation to the behaviour of a given system. In the identification of a 

suitable model of system behaviour, an iterative development process is normally 

undertaken where a number of design choices must be made and subsequently refined if 

through evaluation they are found to be unsatisfactory. 

 

The system identification procedure may be seen to follow the loop detailed in Figure 

(2.1) where the process begins with the examination of any available ‘a priori’ 

knowledge of the system. This initial or prior knowledge may take the form of a detailed 

understanding of system characteristics, such as an analytical or physical model derived 

from first principles, or merely knowledge as to the availability and nature of any 

experimental data. Before undertaking the modelling task, it also of great importance that 

the intentions for any identified model are carefully considered so that any performance 

requirements such as accuracy, robustness or level of complexity can be met. 

 

From a prior (or ‘a priori’) understanding of system components and behaviour, the 

human operator or modeller can then make informed decisions as to the level of data 

required to successfully capture the dynamics of the system. Utilising this information 

can then lead to the creation of any number of experimental conditions which may be 
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used to record empirical data.  The level of prior information and availability of data will 

then dictate what kind of modelling strategy and therefore what kind of model structure 

will be the most suitable to formulate our description. It is common for a number of 

possible models to be proposed which offer different levels of description or 

performance. Through a ‘criterion of fit’ each possible model must be evaluated and the 

most suitable chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.1) - System Identification Loop 
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available will then influence the decision of how best the model may be fitted to the data 

through a process of optimisation. This is a learning process where optimum parameters 

A Priori Knowledge 

Prior Analysis of System 
Characteristics 

 

Modelling Intentions & 
Required Performance 

 

Model OK? 

END 

YES 

Experimental  
Design 

 

Choose Model  
Architecture 

 

Collect Empirical  
Data 

 

Pre-Process Data 

Validation 
Data 

 

Training  
Data 

 

Optimisation/Learning 
 

Parameter & Structure Estimation 

Model  
Validation 

NO 

START 



Chapter 2: Nonlinear System Identification 

 9 

and structure are to be identified through the application of machine-learning procedures 

to the empirical data (e.g. Least-Squares regression). It is often the case that raw 

empirical data collected from an experimental set-up must be first pre-processed before it 

may be used successfully in any optimisation regime. This pre-processed data is then 

referred to as training data as it is this information with which we will train our model. 

 

Finally, any model identified must be validated successfully before it may be employed 

through comparison with the observed system response. A separate set or subset of data, 

known as a validation or test set, is normally generated under similar but not necessarily 

identical operating conditions to that of the training data set. Statistical measurements of 

model error and likelihood can then be calculated from the comparison of the model 

output to the measured system response. The outcome of the validation procedure will 

then determine whether or not the identified model meets its required criteria. If the 

model is found to be lacking in some aspect, the modeller must return to the previous 

design conclusions and potentially modify any aspects of the adopted model structure, 

optimisation or experimental procedure that requires refinement. 

 

Through each step and iteration of the System Identification procedure it is normal that 

the prior knowledge associated with the system under investigation is enhanced. This 

improved understanding of the system is most desirable and is often a fundamental 

objective of the modelling process. If the model is to have practical implementations 

such as for the basis of an automatic control design, it is useful to have as much 

knowledge over the system’s behaviour as possible. In the following sections of this 

chapter we will look at different aspects of the system identification process in more 

detail. Good sources of information on the general topic of System Identification are the 

books by Ljung (1999), Söderström and Stoica (1989), and Juang (1994). The book by 

Unbehauen and Rao (1987) provides very useful information on the identification of 

continuous systems using more classical methods. The book by Nelles (2001) details the 

system identification field with specific emphasis on identifying nonlinear systems using 

modern techniques. 
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2.2) Role of Prior Knowledge 
 

The level of prior knowledge available is of fundamental importance in determining how 

any modelling procedure should be approached and plays a vital role throughout the 

development of a successful model. For complex nonlinear systems where a physical 

analysis of the system is difficult and little or no physical insight or system knowledge is 

available, models must be learned solely through the use of experimental data. The 

application of learning systems can be seen to reduce the requirement for a detailed 

physical knowledge and the use of such methods has led to the following categorisation 

of models based upon the level prior knowledge available or employed: 

 

White-Box Models 

The model has been constructed entirely from prior knowledge and physical insight. 

Typically, models derived from first-principles such as a nonlinear differential equation 

model. White-box models often appear to have an advantage in overall interpretability, 
however for complex systems a resultant model can also be seen to be very complex. 

 

Grey-Box Models 

Some physical insight is available or used, with certain aspects such as model structure 

and parameters being directly estimated from experimental data using optimisation or 

learning techniques.  

 

Black-Box Models 

No physical insight is available or used; models are constructed solely from experimental 

data together with the application of learning systems and a chosen model structure. 

Black-box modelling can also be referred to as empirical modelling. 

 

In practice, a white-box model derived from first principles, such as a nonlinear 

differential equation model, will rarely fully replicate a real system’s behaviour due to 

environmental effects, and experimental data will often be used to tune parameters or 

coefficients of a model. Similarly it is rare that absolutely no knowledge of the system is 
available. Nevertheless, in tackling problems where prior knowledge is seen to be 

lacking, the use of learning systems can be seen to overcome this deficiency through the 
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continuous use of system information in the form of current and previous inputs and 

outputs. 

 

In the selection of a white-box or black-box modelling strategy a further consideration is 

the time and cost associated with adopting various alternatives. The development of a 

white-box form of model of a complex physical process can be seen to be a particularly 

demanding task. As a result, an alternative approach based on the application of learning 

algorithms to empirical data may be easier and therefore more cost-effective to 

implement. Therefore the role of prior knowledge in most cases is to provide a basis for 

the design of an appropriate model structure, and consequently to dictate the level of 

empirical data required and subsequent experimental policy. In this regard, the use of 

prior knowledge allows the modeller to potentially reduce the learning task through 

extending a tangible influence upon what may otherwise become a interpreted as a 

prescribed machine learning or function approximation algorithm where data is 

submitted without any regard to validity. This prior or initial knowledge may take many 

forms and is discussed below. 

 

2.2.1) Overall Modelling Objectives 

 

The role of prior knowledge begins with an understanding of the problem to be solved. 

The ultimate purpose of the model will have a great influence on the kind of model that 

will be required. Is the goal of the model merely to provide a basis for 

simulation/prediction as an estimator, or is the modelling process to provide further 

physical insight and reflect the workings of a process? Is the model to be used as the 

basis for the design of a control system? What level of model complexity, 

interpretability, accuracy and robustness is desirable? Another important factor that 

should be borne in mind is that if the resultant model is to be used as the basis of an 

automatic controller, this controller may be able to compensate for less than perfect 

model accuracy. As a result, it is the robustness rather than merely the accuracy of the 

description that will dictate the quality of the solution. 
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2.2.2) Knowledge of System Characteristics 

 

Any knowledge regarding the characteristics of the system can prove invaluable when 

deciding upon which modelling approach to adopt. Information regarding the type of 

nonlinearities involved, such as the dynamic order of the system, or the number of 

parameters or interactions between variables can allow the complexity of any potential 

model to be reduced and thereby limit the dimensionality of the problem. For example, in 

most fixed-wing aircraft the coupling between longitudinal and lateral directional 

variables can be neglected, therefore allowing these subsystems to be modelled 

independently. By contrast, in helicopters, such decoupling is generally not appropriate 

in flight mechanics models, except possibly under some particular flight conditions. 

Knowledge concerning any environmental influences such as disturbances and noise 

effects can also be incorporated into the model design. Another source of prior 

knowledge could be any existing models of the system that have been developed. Such 

models can act as a basis for the design of a new improved model or may even form an 

integral part of a new solution. A previous model may also be employed as a 

performance benchmark for any new development.  

 

2.2.3) Knowledge of Empirical Data or Experimental 

Conditions 

 

Prior knowledge of the system characteristics may also extend to information about the 

operating range of the system and the availability of empirical data. Many systems 

primarily operate within limited regions of the potential operating range of that system 

and this may be reflected in the overall constitution of the available data. Empirical data 

may be scarce in regions where it is difficult to perform data collection experiments due 

to limitations in the experimental set-up. Constraints on the physical operation of the 

process, such as operating conditions that can lead to damaging the system itself, can also 

lead to an uneven distribution of data across the full operating range of the system. 

Knowledge of such conditions can impact on subsequent design conclusions, as 

modelling approaches that are predominantly data-reliant may not be possible to pursue 

due to the sparsity of available data. 
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2.3) Experimental Design 
 

The experimental design stage of the system identification process is of critical 

importance if the chosen modelling approach is to depend significantly on empirical data. 

As well as selection of which variables are be measured, the experimental design process 

must also consider what kind of excitation signals will be necessary in order to gather as 

much information about the underlying system as possible. More practical considerations 

will concern the actual experimental equipment set-up (e.g. sensors, calibration, etc.), and 

the sampling rate used to record the data. It is important to remember that whilst some 

design choices can be proposed and examined at length whilst working away from the 

actual system, the experimental design choices made can only be changed through 

conducting new experiments. Therefore, careful consideration and planning of the 

experiment in advance is necessary if potentially costly redesign and repetition are to be 

avoided. The previously mentioned textbooks on system identification by Ljung (1999) 

and Söderström and Stoica (1989) are good starting points for general information 

regarding experimental design, and further more dedicated sources of information are 

Godfrey (1993), Goodwin and Payne (1977), Goodwin (1987), and Mehra (1981).  

 

Through the design of a suitable experimental procedure, a Training  dataset can then be 

created to support the learning or optimisation process from the resultant empirical data. 

For the identification of complex systems where prior information is limited (black-box 

modelling) the accuracy of any model will be entirely dependant on the quality and scope 

of the training data supplied to the learning system. Consequently the design and 

construction of the training dataset where important data maybe extracted and 

represented appropriately is not a trivial task. The overall design objectives of any model 

and subsequently developed control system must be kept into consideration when the 

experimental methods are chosen. Experiments must be tailored to the system under 

investigation with the resultant data covering all the relevant areas of operating space. If 

data is not recorded over the full range of operation we wish to model and ultimately 

control, the resulting model accuracy in regions where data was not recorded is likely to 

be unsatisfactory. Important considerations in the design of an experiment include: 
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2.3.1) Which measurements? 

 

Ideally, open-loop system response data should be used in the modelling process so that 

the behaviour of the system can be examined directly. However, in some cases this is not 

possible due to operational constraints and a closed-loop identification approach must be 

adopted. An example of this would be a system that proves to be unstable under open-

loop operating conditions and through prolonged operation can compromise the safety of 

the operator or the system itself. In tackling closed-loop identification, a variety of 

methods have been proposed, with the most simple being ‘Direct’ methods where the 

closed-loop system is treated as if it where open-loop and the same overall system 

identification methods applied. However, a particular problem in closed-loop 

identification is that the process input u is typically correlated with the output noise m.  

The result of this is that some identification methods are not well suited to this direct 

approach, and a number of ‘indirect’ methods have been proposed where external signals 

measured between the controller and the plant are incorporated. For more information on 

closed-loop identification, the previously mentioned textbook by Ljung (1999) provides a 

good overall account of the problem, and a review of closed-loop identification issues 

has been completed by Van den Hof (1997). In this thesis we are focusing on systems 

where open-loop response data is available, and are not investigating closed-loop 

identification.  

 

Another potential problem in the design of the experiment is the availability, placement, 

accuracy and flexibility of any measurement equipment. Measurement devices must not 

introduce further disturbances or noise to the system response that would otherwise not 

be present. Noise and prevalent disturbances in the system must also be investigated. If a 

system is susceptible to particular disturbances as part of its normal operation, this 

behaviour cannot readily be separated from the underlying system response and its 

influence should not be ignored or removed from the Training dataset. 

 

There are also potential commercial considerations involved in conducting a number of 

experimental procedures. The investment of time and money into equipment and 

experienced personnel may be limited. An extreme example would be the prolonged 

flight-testing program necessary in the development of a new aircraft. Expensive 

prototypes fitted with measurement devices must be developed as well as the experienced 
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pilots and ground crew needed to support the operation. In this example further costs 

would be incurred by extensive wind-tunnel work and the design and support involved in 

ground based experimental-rig set-ups. A more straightforward constraint would be the 

potential downtime involved in halting a manufacturing or chemical processes in order to 

perform modelling analysis. 

 

If the modelling procedure is to adopt an inclusive operating regime outlook this also 

introduces a number of important challenges. Regions of the operating range where the 

model must be most accurate will require sufficient data. These will be regions of 

operating space where the model will be required to operate for most of the time. Such 

operating regions may display off equilibrium or significant nonlinearities where large 

amounts of data may be necessary to represent such complexities or regions of critical 

importance. The relative importance of individual data samples must also be examined to 

allow the frequency of different situations, noise levels, or definitions between operating 

regions, to be incorporated into the model design.  Under certain operating conditions the 

system may also likely be damaged or become dangerous, and the acquisition of data and 

successful modelling in these regions may prove difficult. Awareness of the limitations 

of the system must be employed in the experimental design. 

 

2.3.2) Excitation Signals 

 

The choice of excitation signals will ultimately determine the nature of the system 

response data included within the Training set and therefore plays a crucial role in how 

good a representation can be achieved. The selection of excitation signals is 

predominantly specific to the particular application and places a great deal of dependence 

upon the expertise of the engineer. As system noise and underlying disturbances are 

beyond the influence of the modeller, the input signal is the only avenue open for 

manipulation.  

 

For nonlinear systems with complex dynamics it is first necessary to cover the whole 

operating range (min maxu u→ ) of the system by varying the amplitude of the input signal. 

Furthermore, the dynamics of any system may only reveal themselves under excitations 

at certain frequencies. Which frequency dynamics are excited and therefore likely to be 
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represented by our resultant model is determined by the spectrum of our input signal. 

Choices of excitation signal include: 

 

Constant 

Not readily suitable for identification as no dynamics are excited. Only one parameter, 

such as the static gain, may be identified. 

 

Impulse 

Not readily suitable for identification purposes. A possible indication of the overall 

transient response may be forthcoming, but gain may not be estimated with any great 

accuracy. 

 

Step 

Popular and well suited for identification purposes. Transient response can be fully 

appreciated and good estimations of the static gain and low frequency response can be 

obtained. Related to the step input is the ‘Doublet’ excitation signal consisting of an 

initial positive step quickly followed by a negative step. 

 

Rectangular 

In essence this can be scene to have the same qualities as that of the Step input but also 

introduces a frequency component allowing a particular frequency range to be 

emphasized. However this information as to the frequency response is limited to one 

frequency, as would any sinusoidal input of a particular wavelength. If a model is to 

replicate the behaviour of a system known to operate at particular frequencies, it is 

important that the design of any excitation signal take this into account (e.g. a mixture of 

sine waves or rectangles). 

 

Filtered Gaussian White Noise 

If little is known of the process’s frequency dynamics or even the models intended use, a 

good choice for the excitation signal may be a Gaussian white noise signal put through a 

filter so that particular frequencies may be emphasized to tailor an overall signal 

spectrum, and also to curtail signal amplitude within predefined limits.  
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Pseudo-Random Binary Signal (PRBS) 

Another popular general choice for linear systems is the use of the Pseudo-Random 

Binary signal that can be seen to be a periodic deterministic signal of constant amplitude 

that displays properties in keeping with the white-noise alternative. A range of 

frequencies may be emphasized accurately. However, for the identification of nonlinear 

systems this signal must be adapted to include changes in signal amplitude as otherwise 

we would have empirical output data restricted to the upper and lower limits dictated by 

the original input binary signal. For such reasons, amplitude modulated PRBS (APRBS) 

can be adopted to allow both the amplitude and frequency ranges of the input space to be 

investigated. 

 

2.3.2.1) Active Learning  

 

As with the other aspects of modelling process the selection of an appropriate array of 

excitation signals can be seen to be dependant on prior knowledge of the system and can 

involve a significant level of iterative design, perhaps resorting to heuristics or trial and 

error, in order to produce a suitable training dataset. In the absence of such prior 

knowledge, such as for complex systems being identified with black-box methods, a 

common strategy is to endeavour to make the distribution of training data as uniform as 

possible across the operating space or even to use all available training examples. 

However, a non-selective approach where data is submitted to the learning system 

without proper consideration can lead to problems regarding the conditioning of the 

training set. Repeated or redundant data examples may be included that unnecessarily 

increase the size of the training set, or examples concentrated within non-essential areas 

of operating space due to local complexities may be incorporated. 

 

A modern approach to the design of excitation signals in the machine-learning field has 

been the concept of Active Learning. Instead of first collecting and pre-processing 

empirical data and then employing a suitable learning algorithm to identify a model, the 

two tasks are brought together by actively acquiring new information about the system 

(by searching for an optimal training set by exploring input space for the appropriate 

excitation signals) whilst the process is in operation. In essence, the learning system is to 

interact with the system directly in order to obtain and enhance the required training data. 
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A conventional Active Learning scheme would endeavour to optimise the amount of new 

information that can be garnered from each subsequent measurement. Therefore, in order 

to determine the most informative data measurement, a method to determine the model 

error associated with any previous measurements must be employed. By examining the 

model error associated with each sample we assign a level of curiosity to the Active 

Learning algorithm as the excitation signals will be targeted toward the goal of finding 

new information close to operating points at which the model is struggling. As can be 

readily appreciated, a potential problem encountered by the active learning approach is 

that although we are seeking to optimise the entire training set, the searching impetus of 

the algorithm can focus too closely and remain confined to one local region of operating 

space. Such an increase in potential local complexity can in turn require an increase in 

data with which to identify parameters. Another potential problem associated with this 

approach is that the searching algorithm can be slow and computationally expensive. 

This is especially true if an undirected random search for data is employed.  

 

In processes where active learning has been implemented whilst remaining under normal 

day-to-day operations, the effort demonstrated by the searching algorithm (termed 

curiosity component) must be constrained so as to not fully disrupt the performance of 

the system whilst still seeking new information with which to improve the model. The 

research presented by (Cohn et al., 1990), (Cohn, 1994), (Thrun, 1992) and (Plutowski, 

1994) explores the different details of Active Learning, the work presented by (Murray-

Smith, 1994) explores the use of Active Learning with regard to the Local Model 

Network learning system, and (Cohn et al., 1997) shows how Active Learning may be 

incorporated with the mixture of Gaussians model framework.  

 

2.4) Pre-processing Data – Creating the Training Data 

Set 
 

Once the empirical data has been collected, a degree of pre-processing is normally 

required in order to a construct a suitable set of training data that may be used with the 

selected learning system. Through the pre-processing stage the learning task can be made 

easier and therefore can allow a greater level of model performance to be attained. 

Factors such as the size of the training data set, the distribution of data examples with 
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regard to the whole of the available operating space and the validity of individual data 

examples must be examined before a final Training set may be determined. The sampling 

rate of the data acquisition must be fast enough to allow system dynamics to be 

accurately reflected, but also not lead to excessive amounts of data and therefore increase 

level of data pre-processing required. Different Learning systems or optimisation 

algorithms may involve complex iterative mathematics which can place limits on the size 

or length of the Training set due to the computational effort required to find a solution.  

 

Through pre-processing and subsequent analysis of the resultant model error it may 

become apparent that certain modifications to the excitation signals and sampling rate 

may be required. Furthermore, certain regions of data or individual samples may have to 

be omitted as they may cause poor conditioning within the training set. This may have 

implications with regard to the amplitude range explored by our excitation signals. A 

further consideration when designing a suitable training set is the minimum hold time 

(shortest period of time that the excitation signal remains constant) associated with the 

excitation signal and response data. If an excitation signal is of a given length, the 

minimum hold time will dictate the number of steps or transitions within the signal and 

therefore influence the frequency characteristics of the system. For a linear system the 

minimum hold time is normally selected to be equal to that of the sampling time. 

However for nonlinear system identification a design trade-off is introduced. Too small a 

minimum hold time can prevent the system reaching a settled or equilibrium state, this 

leads to the recorded output data being restricted with regard to the potentially available 

output amplitude range with the data examples being concentrated within the middle of 

the operating range. Too large a time will restrict the number of transitions within the 

signal and therefore potentially restrict the number of operating points that may be 

excited by the signal and can overemphasize the importance of low frequencies. A 

heuristic often employed would be to select the minimum hold time to be close to that of 

the dominant time constant, see Nelles (2001). 
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2.5) Choice of Model Architecture 
 

Perhaps the most fundamental part of the system identification process is the selection of 

a suitable model architecture or structure with which to build a representation. A great 

range of alternative model structures have been proposed and successfully implemented 

over many years. This section is to provide an overall guide to the various types of 

models that are available, rather than a full account of the precise details of each 

alternative. 

 

2.5.1) Linear and Nonlinear Models 

 

The most fundamental distinction made between various types of model is whether it can 

be said to be either linear or nonlinear. Systems are often categorised as being either 

linear or nonlinear, however most real dynamic systems can be seen to display a level of 

non-linearity (e.g. noise). From a logical perspective it would seem that a nonlinear 

system would require a nonlinear model to fully exhibit its characteristics. However, it is 

common practice that a linear model will be the first choice structure with which to 

identify a model of a nonlinear system, and that this course of action often leads to 

satisfactory model fit for its purpose.  

 

One of the primary reason for adopting a linear approach is the very well understood and 

widely adopted methodology of defining a linear structure and utilising a comparatively 

simple linear optimisation technique (such as linear least squares) with which to identify 

parameters from data. Nonlinear modelling approaches typically require significantly 

more effort due to an increase in complexity and optimisation. Linear modelling 

techniques are therefore still used successfully when considering nonlinear systems and 

can often be seen to form the building blocks of a nonlinear description.  

 

Many system plants are also designed to behave as linearly as possible within certain 

operating ranges so that they may be operated more easily. Moreover, a well-designed 

feedback controller will also act to contain the effects of the nonlinearities in the system. 

It has also been shown that linear theory can be applied to model nonlinear systems 

operating at equilibrium points. The mathematician Lyapunov showed that the local 
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stability of a system in equilibrium where nonlinearities are smooth, and therefore 

differentiable, could be predicted through the application of linear theory. This has 

particular relevance to models identified from first principles in the form of ordinary 

differential equations. Such nonlinear descriptions may facilitate linear models to be 

identified through the linearisation of these equations at particular equilibrium operating 

points. 

 

The process of designing a control system for a system plant is also made significantly 

easier if a Linear Time-Invariant (LTI) model can sufficiently represent the plant. A well-

established and straightforward methodology for designing controllers for LTI systems 

has been in existence for many years, with most introductory control system design 

books covering the basic principles, see Dorf and Bishop (2004) and Nise (2003). This is 

not the case when dealing with systems that exhibit significant nonlinearities, where to 

describe the system with a single linear model would result in an inadequate 

representation of the system’s behaviour. In cases where significant nonlinearities are 

present, a linear model will not accurately describe the real system behaviour away from 

the equilibrium region at which it was linearised.  

 

No standard or generic response from a nonlinear system will exist as such systems can 

behave in very different ways. For example, nonlinear systems can display random or 

indeterministic behaviour (where the behaviour of a system cannot readily be predicted), 

periodic and aperiodic (e.g. chaotic oscillations) oscillations, and multi-stability (i.e. 

alternating between two or more exclusive states). Consequently, no generic all-purpose 

modelling methodology and control design procedure has been established. Therefore 

nonlinear modelling and control remains an extremely active area of research where 

various possible solutions have been proposed each with their particular strengths and 

weaknesses and associated level of complexity. A further important categorisation of 

models is whether or not they are to operate within a Time or Frequency domain. 

Obviously a Time-domain model will involve the analysis of a system or unknown 

function with respect to time, and a Frequency-domain will operate with respect to 

frequency. In this thesis only problems within the Time-domain (i.e. time-series data) are 

considered. 
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2.5.2) Parametric and Nonparametric Models 

 

A classical distinction is often made between parametric and nonparametric models. A 

parametric model will consist of an assumed functional form constructed from a limited 

number of variable parameters. The function supposed by this approach will then be 

optimised through its parameters to fit any recorded empirical data as closely as possible. 

Parametric models are the more widely adopted approach, as due to the limited number 

of parameters a more interpretable model is often the result. In the presence of prior 

knowledge of the system characteristics, it is often possible for a parametric model to be 

constructed that directly reflects the relationships between particular physical quantities. 

A non-parametric modelling approach will not assume or impose a functional form on 

the function to be identified. Nonparametric methods are often seen to offer a more 

flexible approach to the identification task, as no prior structure is adopted an infinite 

number of parameters may be used to represent the process exactly. As a predefined 

structure is not to be imposed on the unknown function, a greater degree of freedom over 

the form of final model is possible. As a result, non-parametric methods are often seen as 

ideal tools for the identification of systems where a priori knowledge is limited such as in 

black-box modelling problems. 

  

Although in theory a non-parametric approach may offer an infinite dimension parameter 

vector, in practice a limitation on the number of parameters will ultimately be 

encountered due to the restrictions imposed by complexity and computational constraints. 

Furthermore, as prior knowledge is either unavailable or not employed in the modelling 

process, non-parametric approaches are often said to be more dependant on the quality 

and quantity (or relative sparsity) of empirical data. Classical approaches to constructing 

non-parametric models include Transient Analysis, Frequency Analysis, Correlation 

Analysis and Spectral Analysis. Further information on these classic methods can be 

found in the aforementioned system identification textbooks by Ljung (1999), 

Söderström and Stoica (1989) and Unbehauen and Rao (1987).  

 

The GP modelling approach investigated in this thesis may also be categorised as a 

nonparametric method as instead of specifying a parametric structure to form the basis of 

a description, a prior probability space over functions is to be specified instead. In order 

to specify this space over functions, a kernel-based nonparametric regression method is 
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utilised. Further methods of nonparametric regression include kernel smoothing 

estimators and Spline-smoothing techniques. Useful reviews of these smoothing methods 

include Hardle (1990), Eubank (1999) and Wahba (1990). These nonparametric methods 

are not often deployed toward the task of system identification, and instead are more 

typically utilised toward statistical problems. However, the GP model can be seen to have 

much in common with these alternative nonparametric regression methods and a full 

discussion of the similarities can be found in Rasmussen and Williams (2006). A detailed 

discussion of the GP modelling approach itself is to form the basis of the next chapter. 

 

2.5.3) Linear Dynamic Models 

 

A general framework for the description of different linear dynamic models can be found 

in most system identification textbooks, including Ljung (1999), Söderström and Stoica 

(1989), and Nelles (2001). A further useful resource is the survey paper by Leontartis & 

Billings (1985). The framework allows different linear dynamic models to be described 

through the combination of various transfer function elements. A general form of the 

problem can be seen to describe the unknown output through the function 

 

 )())(()( tetfty += ϕ         (2.1) 

 

where y(t) is the output (measured data), f(*)  the function we wish to model, ( )tϕ  a 

vector of adjustable parameters and e(t) representing noise present in the system. Note, 

that in describing the elements present in the following general model structure, the time 

t has been substituted for k, and we make use of the time shift operator q (equivalent to 

writing (k -1)). 

 

A general linear model structure was introduced by Ljung (1999) and is formed from 

decomposing the influences on the model into deterministic and stochastic components. 

The deterministic model component operates on the principal that at some given input a 

corresponding output response will be generated, and that all actions are determined 

through preceding events to the exclusion of random elements. The stochastic model 

component can be seen to introduce randomness to the model structure and therefore 

allow unknown or external disturbances (noise) to be included. A solely deterministic 
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model structure can then be realised through employing a linear filter G(q) between the 

input ) and output y(k). In the same manner, a linear filter H(q) can be introduced to filter 

white noise v(k) and therefore allow noise frequency components to be modelled. The 

term input transfer function is used to describe the filter G(q), and noise transfer function 

adopted to describe H(q). Both of these transfer functions can then be further 

decomposed into a numerator and denominator. A general model structure can then be 

constructed through the combination of the deterministic and stochastic components: 
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A further decomposition is normally adopted in the general framework where common 

denominator dynamics are identified from G(q) and H(q), and given the signifier A(q). 
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model structure can then be written as:  
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With the transfer functions composed of polynomials as: 
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and a parameter vector can then be written as 

 ...)1( 11 etcccbbaa ncnbna ………=Θ      (2.5) 

 

From this general model structure a number of different linear dynamic models can then 

be defined through the combination or omission of certain elements of the general 

structure.  The simplest model structure would be a model consisting of either solely 

deterministic or stochastic components. However, when examining real systems it is 

highly improbable that uncertainty in the form of noise would not extend some influence 
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upon the output response. Therefore, a wholly deterministic model (e.g. y(k) = G(q)u(k) ) 

is not a common structure to employ within the system identification field.  

 

With the help of any available prior knowledge regarding the nature of the system, the 

relevant inputs of any identified model can be outlined and incorporated into our chosen 

model structure. The inclusion of one or more input variables u(k), known as an 

exogenous input (X), allows the deterministic nature of a system to be incorporated in 

that an input will have a determinable influence on the system output. These input/output 

models can be further categorised by the way the noise component is incorporated into 

the structure. A distinction can be made between Equation Error  models (ARX, 

ARMAX, ARARX) and Output Error  models (OE, BJ, FIR) where for Equation Error 

models a common denominator polynomial 1/A(q) can be adopted to demonstrate shared 

dynamics between the input and output noise. From this general framework, the 

modelling process would involve the selection of the model structure most suitable to 

identify a particular system. For the sake of thesis brevity, I refer the reader to the 

aforementioned system identification textbooks (Ljung (1999), Nelles (2001), 

Söderström and Stoica (1989)) for a detailed account of where the various model types 

may be best employed. However, the general approach taken is to first utilise a simple 

model structure for the identification task before considering a more complex one.  

 

2.5.3.1) Linear to Nonlinear Dynamic Models 

 

As in this thesis we are expressly concerned with the identification of nonlinear systems, 

therefore it might seem tempting to dismiss the various linear dynamic models discussed 

previously. However, the nomenclature used for the description of linear dynamic models 

(e.g. ARX) crops up frequently in the literature devoted to nonlinear system 

identification. Furthermore, methods have been developed to extend these linear models 

for the purposes of nonlinear modelling. For the extension to nonlinear model structures, 

the ARX model is particularly important (due to it’s linear in the parameters structure) 

and forms the basis of the Nonlinear ARX (NARX) model. The NARX model extends 

the ARX structure through the replacement of the linear relationship with some unknown 

nonlinear function ( )f ⋅ . Therefore, assuming that the model is to be implemented on a 

digital computer, the discrete-time nonlinear model can be stated as: 
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 ))(,),1(),(),1(()( mkykymkukufky −−−−= ……     (2.6) 

 

Where y(k) is the output, and u(k) the inputs, with m representing a time delay, and thus 

assuming a multiple input single output (MISO) form. Model structures that include 

more advanced noise components (e.g. ARMAX) are rarely applied for nonlinear system 

identification due to the resultant increase in complexity. Thus, simple dynamics 

representations that result in input-output mappings are more common for nonlinear 

models. For a detailed review of this extension of linear system identification methods 

toward nonlinear problems, see Leontartis and Billings (1985) and Nelles (2001). The 

NARX model structure can also be interpreted as a tapped-delay-line as depicted in 

Figure (2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.2):- NARX model as Tapped-Delay Line 

 

Furthermore, this approach to nonlinear modelling is also known as the ‘external 

dynamics’ approach due to the separation of the model structure into a nonlinear static 

approximator and an external dynamic filter bank, see Nelles (2001) for more discussion. 

Due to this separation, any nonlinear model architecture can then be chosen for the 

approximator, such as a nonlinear polynomial or neural network architecture. A 

drawback of the external dynamics approach is that typically a large number of inputs are 

required by the approximator, leading to the requirement for the chosen approximator to 
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be able to manage high-dimensional mappings for complex systems that involve large 

numbers of delayed inputs and outputs. Furthermore, this can lead to matrix conditioning 

problems in some learning systems as delayed inputs/outputs will be highly correlated 

with their immediate successors if a high sampling rate is chosen. Consequently, the 

overall input space of the model may become impossible to cover completely with 

training data observations resulting in certain operating regions that are difficult to 

identify due to a lack of empirical data. This is something that may prove problematic for 

modelling approaches that rely upon the partitioning of the input space. However, this 

restriction of the input space is also something that can become advantageous as the 

overall learning task may be reduced. 

 

Whilst the external dynamics approach to nonlinear system identification is the most 

widely used method, an alternative method termed ‘internal dynamics’ is also possible. 

In contrast to the external approach where the dynamics are handled by a separate 

tapped-delay line and then employed as inputs to the nonlinear approximator, the internal 

approach does away with external feedback and uses internal memory and feedback 

instead. Thus, the dynamics are to be learned by the network itself. The internal 

dynamics approach is common within the field of neural networks where they known as 

recurrent networks with notable implementations being the Hopfield network discussed 

in Hopfield (1982), and the Boltzmann machine discussed in Hinton and Sejnowski 

(1986). The internal dynamics approach can be seen to be an attractive alternative as a 

reduction in the dimensionality of the input space (a problem with the external approach) 

may be realisable. However, they remain less popular due to the increase in the 

complexity of the network, and the lack of interpretability of the internal model states. 

Further alternatives for tackling nonlinear problems include the inclusion of derivative 

information into the model, and parameter scheduling approaches. 

 

2.5.4) Nonlinear Dynamic Models 

 

In the previous section the extension of linear to nonlinear dynamic models was 

discussed. However, in the implementation of the NARX method suitable nonlinear 

static model or approximator must also be selected. This nonlinear approximator is then 

to define a mapping between inputs and outputs. 
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Classic parametric methods of modelling nonlinearities include the identification of 

polynomial representations of the system characteristics. These methods can be seen to 

be an increase of model order over the linear model (a 1st degree polynomial) and are 

often employed for interpolation or curve-fitting problems of lower dimensions. A 

discussion of the Kolmogorov-Gabor (K-G) polynomial and Volterra-series modelling 

approaches that represent a nonlinear model with output feedback (as in NARX) can be 

found in Nelles (2001). However, this method is only suitable for low-dimensional 

problems as the number of regressors present in these models grows very quickly with 

the chosen degree of the polynomial. Furthermore, high-degree polynomial approaches 

have a tendency toward oscillatory interpolation behaviour and unreliable extrapolation 

behaviour. Other classic methods of nonlinear models include the Hammerstein and 

Wiener approaches. These methods are widely adopted in industry and rely upon an 

assumption that a separation exists between the dynamics and the nonlinearity of the 

system. The Hammerstein model structure implements a static nonlinear model (typically 

a polynomial but any model is possible) followed in series with a dynamic linear model, 

and the Wiener model structure is in the reverse order. The implementation of both these 

methods relies on prior knowledge of the system that facilitates the inherent structural 

assumptions. As a result, they cannot be regarded as general purpose modelling 

approaches for black-box problems. For more information on Hammerstein and Wiener 

models see Ljung (1999). 

 

At this point it is worth pointing out a particular obstacle that is inherent to all modelling 

approaches, the ‘curse of dimensionality’. This phrase is often used in describing the 

effect of including more input dimensions (and parameters) into the chosen model 

architecture. As the number of variables or parameters necessary to represent a particular 

function increases, so will the likelihood of oscillatory interpolation (an increase in 

variance error). Furthermore, the computational demand of optimising the parameters of 

the chosen model structure will also increase. Therefore, model structures that quickly 

grow in complexity as the number of included variables increases are not suitable for 

high-dimension problems, or for black-box problems where little is known about the 

underlying modelling problem. Model structures that can be seen to suffer particularly 

from this ‘curse’ include polynomial models, and grid or lattice based approaches that 

seek to partition the operating space in a uniform manner such as ‘look-up’ tables.  
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Overcoming or bypassing this curse of dimensionality is one of the most important 

driving forces behind some of the modern approaches to nonlinear system identification 

(e.g. using non-uniform partitions based on prior knowledge, mapping inputs onto 

different function spaces). Furthermore, in the identification of real systems, the curse of 

dimensionality may not manifest itself too detrimentally due to the peculiarities of the 

system under investigation. For example, the model may be able to be simplified due to 

the presence of inputs that are correlated or redundant, smooth regions of operating space 

may allow simple models that require less data to represent, and the presence 

unreachable regions of operating space (e.g. due to correlated data or operational 

constraints) may reduce the overall operating space to be identified. 

 

 In the identification of black-box models where prior knowledge of the system is 

limited, the model must therefore be identified from empirical data. This is also 

sometimes referred to as ‘empirical modelling’, and a fundamental aspect of this 

approach is that the chosen model architecture must facilitate this learning process. 

Furthermore, without prior knowledge of the system characteristics, the chosen model 

structure must be flexible enough to allow a wide range of nonlinear behaviours to be 

approximated. A general framework that a large number of different model architectures 

can be seen to follow is the formulation of a network of basis functions:  

 

 
1

( )
M

l nl
i i

i

y θ φ θ
=

=∑         (2.7) 

 

In this formulation, the mapping ( )f ⋅  is to be modelled as a weighted sum of M basis 

functions, where θl are the weighting linear parameters, and θ
nl are the nonlinear 

parameters of the basis functions ( )φ ⋅ . Therefore, for nonlinear models the basis 

functions must be nonlinear, and it is also worth noting that linear and polynomial 

models can also be interpreted under this basis function formulation. Furthermore, basis 

functions can be described as being either global or local. Global basis functions can be 

seen to contribute to overall model output across the operating range, whereas local basis 

functions only contribute to the model output in small ‘local’ regions of the operating 

range.  
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2.5.5) Neural Networks 
 

The artificial neural network (ANN) is a black-box model architecture that consists of a 

large number of interconnected neurons (simple nonlinear processing units) that act as a 

parallel information processor. The origins of the artificial neural network approach 

come from research into the operation of human brains where the concept of neurons as 

structural elements of the brain was proposed. If the human brain is viewed as a 

computational device (performing tasks such as movement, pattern recognition and 

perception etc.) it becomes clear that even the most complex man-made machines are 

vastly less capable. Therefore, researchers working in the fields of machine learning and 

artificial intelligence have sought to emulate the vast processing power of the brain. 

Although the history of artificial neural networks can be seen to stretch back to the work 

of McCulloch and Pitts (1943), a great catalyst for the modern surge in interest in neural 

networks was the work of Rumelhart et al. (1986) that popularised the backpropagation 

algorithm used for training Multilayer Perceptron (MLP) networks. A good general 

resource that details many different types of neural networks is the book by Haykin 

(1994), where a full and interesting account of the historical advancements made in 

neural networks is also provided. Other good neural network textbooks include Bishop 

(1995) and Ripley (1996), however much of the discussion is focused towards pattern 

recognition or classification tasks. Good resources on neural networks from an 

engineering or system identification perspective are the books by Brown and Harris 

(1994) and Nelles (2001), and the paper by Sjöberg et al. (1995). 

 

For the purposes of nonlinear system identification, the most widely adopted neural 

network structures are feed-forward networks. In this arrangement the information is to 

travel in one direction, from the network inputs to the network outputs. This flow of 

information is depicted in Figure (2.3), and the neural network structure can be readily 

interpreted as a static nonlinear mapping between the input and outputs, and thus 

compatible with the previously discussed ‘external dynamics’ NARX dynamical 

modelling approach.  
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Figure (2.3) – Feed-forward Neural Network 

 

Alternative network structures where delayed information is passed between neurons are 

known as recurrent  networks. As discussed in the previous section, recurrent networks 

have the potential to reduce the impact of the curse of dimensionality, but this increase in 

complexity makes the learning task more difficult. Furthermore, the presence of feedback 

in the network brings the possibility for instability, as discussed in Braham (1998). The 

neural network architecture can also be understood as a network of basis functions where 

each basis function (or hidden layer neuron) is of the same type. The two most widely 

adopted feed-forward neural network architectures in the field of system identification 

are the Multilayer Perceptron (MLP) network and the Radial Basis Function (RBF) 

network. In this section a brief description of the properties of these two networks is 

provided. 

 

2.5.5.1) Multilayer Perceptron (MLP) Network 

 

The Multilayer Perceptron network is the most widely known neural network architecture 

and has become synonymous with what is generally understood to be a neural network. 

This feed-forward network utilises a ridge construction mechanism in order to project the 

input vector u onto a nonlinear parameter vector x: 
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The nonlinear parameters are also known as the ‘weights’ of the hidden layer of the 

neural network 0 2[ ]nl T
i i i ipw w wθ = ⋯ . An activation function exhibiting saturation 

behaviour (typically a sigmoid function, e.g. ( ) tanh( )g =x x ) is then applied to the 

parameter vector x. This combination of the construction mechanism and the activation 

function may then be termed as a ‘perceptron’. This individual hidden layer neuron can 

then be combined in parallel with other hidden layer neurons of the network through 

connecting the outputs of each neuron to an ‘output layer neuron’. This output layer 

neuron is most commonly a linear combination of the hidden layer outputs that are each 

weighted by a set of parameters known as the output layer weights wi. The overall 

network structure can then be written using the basis function formulation (where M is 

the number of hidden layer neurons and p is the number of inputs) as: 

 

0 0

ˆ
pM

i i ij j
i j

y w w u
= =

 
= Φ  
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∑ ∑        (2.9) 

 

This combination of a single hidden layer of neurons and a linear output neuron is the 

most simple and common implementation of the MLP network. Further complexity can 

be achieved by incorporating additional hidden layers, or employing a nonlinear output 

neuron. Overall, we can control the number of parameters in the model by modifying the 

number of hidden layer neurons included. However, by increasing the complexity of the 

model structure, the optimisation procedure may become more demanding. An 

alternative to including more hidden layers is to include more neurons in a single hidden 

layer. As discussed in Nelles (2001), a general preference for one strategy over the other 

is difficult to substantiate and is dependent on the problem at hand.  

 

As the MLP network contains nonlinear parameters in the hidden layers (and potentially 

the output layer), a nonlinear optimisation procedure will be required if these hidden 

layer weights are to be made optimal. The general problem of model optimisation and 

various nonlinear optimisation strategies are discussed in more depth in Section (2.6) of 

this chapter. However, it is worth stating here that the task of optimising the parameters 

and structure of any neural network can become a significant challenge. The need for 
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nonlinear optimisation techniques to be employed can result in very long training times. 

However, some of the resultant computational burden may be reduced if the output layer 

weights of the MLP network are chosen to be linear, therefore allowing more efficient 

linear optimisation algorithms to be implemented.  

 

Furthermore, in addition to the optimisation of the linear and nonlinear model 

parameters, the overall model structure (i.e. number of neurons, number of hidden layers 

etc.) must also be optimised. Traditionally, the network structure is fixed in advance and 

then the model parameters optimised and the performance validated (i.e. we choose the 

number of neurons/layers ‘a priori’). Such an approach can obviously become frustrating 

as if the model is found to be lacking in some way. As a result of this, methods that seek 

to regulate the complexity of the network structure by ‘growing’ or ‘pruning’ the number 

of hidden layer neurons have been developed. The difficulty of selecting an appropriate 

model structure for the MLP network is also compounded by the fact that the component 

parts of the model structure are not readily interpretable. In particular, the individual 

hidden layer neurons of the MLP network cannot be interpreted as active in only certain 

local regions of operating space (i.e. by changing or eliminating one hidden layer neuron, 

the whole network is affected and model output at all input regions will possibly change).  

 

So far in this section we have focused on the difficulties of training a MLP network 

without detailing the major advantages of the model architecture. The main advantage of 

the MLP network architecture is that it can be seen to be a ‘universal function 

approximator’ , which means that the MLP can approximate any smooth function to an 

arbitrary degree of accuracy as the number of hidden layer neurons is increased. 

Furthermore, this facility holds true for MLP networks composed of only one hidden 

layer for certain classes of activation functions (i.e. sigmoidal) as proven in Cybenko 

(1989) and Hornik et al. (1989). As a result, the MLP network can be seen to be a good 

general purpose modelling approach that exhibits a very high flexibility that allows a 

great range of different function shapes to be represented, and thereby may be applied to 

any function approximation problem. It is however worth noting that this universal 

approximation feature is not exclusive to the MLP network as other modelling 

approaches (such as polynomials) and types of neural network also demonstrate this 

property As the ridge construction mechanism acts to project the input space onto a lower 

dimensional hidden layer space, this allows the effects of the ‘curse of dimensionality’ to 
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be reduced, making the MLP network suitable for higher dimensional problems. A 

further property of the MLP network that makes it an attractive method for system 

identification and control is the fact that the number of neurons present in an MLP 

network is typically smaller than other neural network approaches (e.g. RBF networks). 

The result of this is that the evaluation speed associated with making predictions is 

typically lower than the alternatives. In summary, the MLP network is a very powerful 

and flexible method of function approximation. However, this flexibility comes at a cost 

due to the need for potentially time consuming and computationally expensive nonlinear 

optimisation methods to be employed. Furthermore, the more subtle nature of model 

structure optimisation and general lack of interpretability regarding individual 

neurons/weights makes the identification process difficult. As a result, the training of 

MLP networks can descend into a less than rigorous process of applying various 

heuristics or even trial and error. 

 

2.5.5.2) Radial Basis Function (RBF) Network 

 

Radial Basis Functions were originally developed as a method of multivariate 

interpolation (as discussed in Powell (1985)) in isolation to the development of MLP or 

other neural networks. The integration of the RBF methodology into the wider field of 

neural networks took place after the surge in interest in MLP networks, with notable 

papers being Broomhead and Lowe (1988), Moody and Darken (1989), and Poggio and 

Girosi (1990).  Further papers that investigate the use of the RBF network for modelling 

purposes are Barnes et al. (1991), Murray-Smith (1992), and Pantaleón-Prieto at al. 

(1993). The RBF network is a feed-forward architecture where a radial construction 

mechanism is first used to calculate the scalar distance x between the input vector u and a 

centre vector 1 2[ ]T
pc c c=c ⋯ , with respect to a norm matrix iΣ  used to scale and 

rotate the input axes. 

 

( ) ( )
i

T

i i i iΣ
= − = − Σ −x u c u c u c       (2.10) 

 

As in the MLP network, an activation function is then applied to this new parameter x. 

This activation function is normally selected to exhibit some kind of local character 

around a maximum at 0x = , with the most popular choice being the Gaussian function 
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21
( ) exp( )

2
g x x= − .In the same manner as the MLP network, this individual hidden layer 

neuron can then be combined in parallel with other hidden layer neurons of the network 

through connecting the outputs of each neuron to an output neuron. This output layer 

neuron is again most commonly a linear combination of the hidden layer outputs that are 

each weighted by a set of parameters known as the output layer weights wi. The overall 

network structure (composed of M hidden layer neurons) can then be written using the 

basis function formulation as: 
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M

i i i
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Σ

=

= Φ −∑ u        (2.11) 

 

The RBF network can be seen to consist of three different components or types of 

parameter: output layer weights (which are linear parameters that determine the height of 

the basis functions and the offset value), Centres (which are nonlinear parameters of the 

hidden layer neurons that determine the position of the basis functions), and the Norm 

matrix (which are nonlinear parameters of the hidden layer neurons in the form of 

standard deviations that determine the widths and rotations of the basis functions). 

 

The RBF network has also been proven to be a ‘universal function approximator’, see 

Park and Sandberg (1991) for details, but unlike the MLP network the prospect of 

combining multiple hidden layers in the RBF network is not thought to be particularly 

useful. As a result the RBF network is normally only employed with one hidden layer. 

One of the attractions of the RBF network over the MLP network is that through the 

radial construction mechanism and local activation function, the hidden layer neurons of 

the RBF network can be more readily interpretable. As the basis functions are local, the 

effect of changing the parameters of one neuron has only a small effect for input values 

that are far away from the designated centre of the neuron. Therefore, each neuron is 

predominantly active in a specific region of operating space, and the network as a whole 

can be interpreted more as a combination of local sub-models or multiple model. As a 

result, employing multiple layers of RBF neurons is likely to diminish this interpretable 

aspect as the outputs of the first hidden layer already span the input space, leaving 

subsequent layers to span the space of some less interpretable intermediary input space. 

 



Chapter 2: Nonlinear System Identification 

 36 

The RBF network can be interpreted as a two-layer network that is linear in the 

parameters if the nonlinearities and RBF centres are first fixed in the hidden layer. As the 

output layer weights of the RBF network are linear, the optimisation of these parameters 

can be performed through the use of efficient linear (least squares) regression. However, 

the nonlinear parameters that determine the position and character of the basis function 

must also be optimised. It is therefore common to first determine the hidden layer 

parameters of the RBF network (i.e. place the basis functions and determine the standard 

deviations) before optimising the linear output layer weights (thus determining the 

heights of the basis functions). The task of optimising the hidden layer parameters of the 

RBF network is also termed ‘centre placement’ and it is normal to attempt to exploit the 

more interpretable ‘local’ nature of the hidden layer parameters so that the use of 

demanding nonlinear optimisation algorithms can be minimised. A variety of different 

approaches to the problem of training the hidden layer parameters of the RBF network 

have been proposed, see Nelles (2001) for a good review. These include simple 

approaches such as Random and Grid Based Centre Placement, where the basis functions 

are centred at random or in a uniform manner. More sophisticated Clustering Methods 

have also been developed where unsupervised methods (e.g. K-means algorithm, 

Kohonen’s Self-Organizing Map) can be used to determine basis function centres that 

reflect the nature of the training data distribution,(i.e. many RBFs can be placed in 

regions of dense data, and few RBFS can be placed in regions of sparse data.  

 

A further alternative to the problem of training the hidden layer of the RBF network are 

constructive methods such as the Orthogonal Least Squares (OLS) method proposed in 

Chen et al. (1991). This forward regression method can be understood as a form of 

Subset Selection, where a subset of suitable centres (regressors) is selected from a large 

set of candidate or potential basis functions. Unlike other methods, this subset selection 

uses supervised learning as the OLS algorithm only selects basis functions on the basis 

that they are effective at reducing the model error. Therefore, a key advantage of the OLS 

approach is that the RBF network is trained incrementally. The main disadvantage of 

adopting this incremental or constructive approach is the increased computational 

demand that may result in long training times. Furthermore, the OLS algorithm is still 

heuristic in nature, and is unlikely to outperform a RBF network trained with even more 

computationally expensive nonlinear optimisation methods, see Wettschereck and 

Dietterich (1992) for information on the application of nonlinear optimisation to RBF 



Chapter 2: Nonlinear System Identification 

 37 

training. Nevertheless, the OLS method has become a popular method for training RBF 

Networks and is the standard method used in the MATLAB Neural Network Toolbox, 

see Demuth and Beale (1998). 

 

2.5.5.2.1) Normalised RBF Networks 

 

A problem associated with the application of clustering techniques (and RBF networks in 

general) is the potential existence of ‘dips’ in the interpolation behaviour. Such 

behaviour is normally the result of regions of operating space where either no basis 

function is present or the standard deviations of the neighbouring basis functions is too 

small. As clustering attempts to place the RBFs in accordance with the distribution of the 

training data, it is not unreasonable to expect that some sparser (but potentially 

important) regions of operating space are not sufficiently covered by the defined basis 

functions. Therefore, when the model is asked to predict within such a region, the model 

output is likely to be highly inaccurate. For high-dimensional input spaces the problem 

can become almost unavoidable and these ‘dips’ can lead to unexpected and undesirable 

behaviour in the output. A further potentially undesirable property of RBF networks is 

that the extrapolation behaviour tends to zero due to the local activation functions. 

However, through the normalisation of the RBF network these drawbacks can be 

overcome. The normalisation process results in the sum of all the basis functions being 

equal to 1, and this property is known as a partition of unity . Therefore, the partition of 

unity ensures that an equal weighting is given to every point in the input space, so that 

any variation in the output of the network is due to the weighting parameters of the basis 

functions (i.e. no unexpected ‘dips’). As a result, the Normalised RBF network is less 

sensitive to poorly chosen basis functions, and an overall output level can be fixed 

without any explicit offset value (unlike MLP and RBF networks that normally employ a 

separate offset or bias weight0 0( , )w φ ). Further advantages of the Normalised RBF 

network are outlined in Werntges (1993). 

 

However, the normalisation of the RBF network can present some less than desirable 

side-effects as the normalisation introduces interactions between the basis functions. A 

detailed discussion of these side-effects can be found in Shorten and Murray-Smith 

(1994). Most fundamentally, the basis functions may lose their uniform shape resulting in 

the maximums of basis functions being shifted from their centres, and the monotonic 
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decrease in the basis function as the distance from the centre may also be affected. 

Furthermore, the basis functions may reactivate in different regions of operating space. 

Overall, these side-effects are not enough to fully diminish the advantages of 

normalisation, but the interaction between basis functions is undesirable as it may result 

in basis functions that are multi-modal and non-local. These aspects are perhaps the 

defining qualities of the RBF network, so without care the normalisation of the RBF 

network can potentially diminish the local interpretability of the approach. 

 

2.5.6) Multiple Model Networks 

 

In the previous section the advantages of the RBF network were discussed. In particular, 

the locally active basis functions can be seen to offer an advantage in terms of 

interpretability and ease of training over the MLP neural network. However, whilst the 

RBF network may be more interpretable than the MLP alternative, the model still does 

not offer much insight into the underlying system or make it particularly straightforward 

to incorporate prior knowledge of the system into the identification process. Overall, the 

RBF network can be interpreted as a large number of locally accurate piece-wise constant 

(zero-order) models that are placed across the operating space. As a result, these simple 

local constant models are not going to offer much physical insight into the underlying 

system. Nevertheless, the RBF network and the Basis function formulation in general, 

can be seen to offer a methodology that allows a network of multiple local models to be 

defined.  

 

The concept of developing a multiple model network can be seen to be an attractive 

prospect as the identification of complex systems may become more manageable if the 

overall problem can be reduced into a number of smaller problems. Such an approach is 

typically known as ‘divide and conquer’, and in the field of system identification this 

can understood as dividing or partitioning the operating space into a number of local 

regions or ‘regimes’, and then identifying a local model that is accurate for each region. 

A global model may then be constructed through the combination of these local models, 

as depicted in Figure (2.4) on the next page. 
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Figure (2.4): General Multiple Model Structure (from Murray-Smith and Johansen 

(1997)) 

 

A number of different multiple modelling approaches have been proposed to help solve 

the problem of nonlinear system identification. One notable approach is the application 

of fuzzy logic (see Zadeh (1965)) to the problem of partitioning the operating range 

where a number of rules must be defined. Through such an approach, any prior 

knowledge of the system (especially qualitative knowledge) can be incorporated directly 

into the model through the definition of membership functions. An important 

development in the application of fuzzy rules for system identification problems was the 

framework introduced by Takagi and Sugeno (1985), known as the TS model. Unlike 

linguistic or singleton fuzzy models, the outputs of TS model are functions (normally 

linear models) of the system inputs. Therefore, local models based on expert qualitative 

knowledge can be defined.  

 

However, it is unlikely that qualitative knowledge will provide enough information for a 

successful model to be identified, and the inclusion of empirical data and learning 

methods is typically required. Such combined methods are often referred to as Neuro-

Fuzzy models. In comparison to the neural network approach, Fuzzy networks can be 

seen to have an advantage in interpretability, however the development if good models 

may require the meticulous modification of the logical rules that are to define the 
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membership functions. Further explorations of this approach can be found in Jang and 

Sun (1995), Pfeiffer and Isermann (1994), and Babuška and Verbruggen (2003). 

 

An alternative approach to the problem of defining the multiple model networks is the 

‘Operating Regime’ based methods developed in Johansen and Foss (1992, 1993, 

1995a, and 1997). In this work the Local Model Network (LMN) architecture was 

proposed and further examined in Murray-Smith (1994), Murray-Smith and Gollee 

(1994), and Murray-Smith and Hunt (1995). There are close links and equivalences 

between LMNs, RBF Networks, Takagi-Sugeno fuzzy models and other approaches, and 

a good overall review can be found in Murray-Smith and Johansen (1997). A further 

related local linear approach to system identification is the Local Linear Model Tree 

(LOLIMOT) developed in Nelles et al. (2000) and expanded on in Nelles (2001). In this 

section we are to briefly focus on the Local Model Network approach as it can be further 

linked to the Gaussian Process modelling approach that is to be investigated in this 

thesis, as discussed in Gregorčič and Lightbody (2008). 

 

2.5.6.1) Local Model Networks 

 

The Local Model Network can be interpreted as an extension or generalisation of the 

Normalised RBF network where instead of the simple weights (constant or zero-order 

models) used in the output layer, more complex local models are to be employed. In 

theory, these local models can be of any type, but local linear models are normally 

employed for ease of implementation and interpretation. An advantage of using more 

complex local models is that in comparison to the zero-order weights of the RBF 

network, each local model can cover a larger portion of the operating space. Therefore, 

an LMN network of equivalent accuracy can normally be defined using a smaller number 

of basis functions (or validity functions) than the RBF network, thus improving 

computational efficiency and interpretability. Furthermore, engineers are well used to 

using linear models, and engineering systems are often designed and operated near to 

equilibrium operating conditions. Therefore, the collection of sufficient empirical data is 

likely to be achievable therefore allowing efficient linear regression methods to be 

applied. The local model network can be described by: 
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Where ŷ  is the output prediction, Φ  is the validity function (equivalent to the basis 

function of the RBF network, and similar to a membership function of a fuzzy network) 

constructed from an adjustable distance function d , and f  is a function consisting of the 

inputs to the local model and a weighting function w . As in the case of RBF networks, 

the LMN can be normalised so that a partition of unity can be guaranteed (along with the 

potential for undesirable side-effects). The contribution from each local model is 

therefore defined by the activation of the corresponding validity function. Furthermore, 

the validity function is also sometimes stated as being a function of a scheduling vector, 

i.e. ( ( ))i tφΦ , rather than expressly stated using a distance function akin to that of the 

RBF network. The scheduling vector( )tφ  must be chosen carefully as it is to represent 

the nonlinear properties of the underlying system, and therefore help to define the 

operating point of the system so that the correct local model can be used at any one time. 

The scheduling vector is typically chosen from a part of the entire data vector, and in 

making this selection the use of prior knowledge can prove to be invaluable (i.e. certain 

current or delayed inputs or outputs of the system should provide a good indication of the 

current operating point of the system). A useful discussion regarding the choice of 

scheduling vector can be found in Gollee (1994). 

 

The training of the individual components of the Local Model Network can be treated in 

a similar manner to that of other basis function approaches. Firstly, the parameters of the 

local linear models can be optimised through linear least squares. However, these 

parameters can either be learned globally or locally. In global learning, the process of 

optimising the parameters is to be performed simultaneously for all local models, and can 

be interpreted as similar to the optimisation of the output layer weights of the RBF 

network. In local learning, the parameters of each local model are to be optimised 

independently. Overall, a trade-off can be seen to exist between achieving an accurate 

global model and retaining the local nature of the models. The parameters of one local 

model estimated using the global learning approach are not independent of neighbouring 

local models. Therefore, the local models are not accurate linearisations of the system at 

the centre of the validity functions. As a result, these local models cannot truly be 
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interpreted as locally accurate models. Furthermore, the global learning method is 

computationally expensive in comparison to the local learning method and is less robust 

to over-parameterised or poorly structured local model networks. Therefore, local 

learning methods will tend to perform better when there is insufficient or noisy training 

data. However, global learning methods cannot be fully discounted, as they will tend to 

result in more accurate global models when the model structure is well chosen, the 

training dataset is well populated and the underlying nonlinearities are smooth. Further 

information on the relative merits of local and global learning can be found in Murray-

Smith (1994), Murray-Smith and Johansen (1995), Cleveland et al. (1996) and Nelles 

(2001). The problem of structure optimisation, where the validity (basis) functions are to 

be defined, can be tackled in a similar manner to that of identifying the centres and 

standard deviations of the basis functions of an RBF network, e.g. uniform grid-based 

methods and clustering techniques such as the k-means algorithm. Furthermore, 

constructive forward regression methods such as those defined in Murray-Smith (1994) 

and Nelles et al. (2000) can also be used to determine the structural optimisation of the 

Local Model Network. In addition, backward regression or ‘pruning’ methods (see Reed 

(1999) and Jutton and Fambon (1995)) can also be employed to reduce model complexity 

by identifying and removing useless parameters, or similar and therefore redundant local 

models. As with the RBF network, popular activation functions include the Gaussian 

function and B-splines.  

 

Once the validity functions and parameters of the local model network have been 

identified, the next problem to be tackled is how a global model is to be constructed from 

these local models. This problem can be understood as interpolating between the local 

models or ‘blending’ them together. Two different methods that have been proposed to 

tackle this problem are ‘blending the outputs’ and ‘blending the parameters’. The first 

‘blending the outputs’ method implements a simple weighted sum of the local model 

outputs in a similar manner to the linear combination of hidden layer outputs of the RBF 

network. The ‘blending the parameters’ method is an attractive alternative for cases 

where the local models can be seen to share the same structure across the operating 

space. In such an implementation, as the structure of the global model remain consistent 

across the operating range; it is the parameters of the global model that will change in 

accordance with the scheduling vector. 
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2.5.6.1.1) Off-Equilibrium Dynamics 

 

The Local Model Network architecture offers a particularly good approach to modelling 

of nonlinear dynamic systems where both prior system knowledge and empirical data is 

available. In particular, the use of local linear models can be seen to be especially 

appropriate for systems where prolonged periods of operation (therefore providing an 

abundance of data) are to occur near to equilibrium or steady-state operating points. As 

many engineering systems are designed to operate primarily at certain stable operating 

points for ease of operation, this means that a great proportion of the available empirical 

data has a tendency to be centred around such operating points. However, in the 

investigations of Shorten et al (1999) and Murray-Smith et al. (1999), this reliance on 

local linear models has been found to compromise the validity of the LMN architecture 

when the off-equilibrium dynamics of the underlying system are considered. 

 

As the validity of each local model is restricted to representing the system close to a 

defined operating point, in transient regions between such operating points the LMN 

model will not usually provide an accurate representation of the underlying system. 

Therefore, each local model will only provide an insight into the full model behaviour in 

a very small region of operating space. This problem does not tend to explicitly manifest 

itself when the operating point and therefore the scheduling vector change slowly. 

However, for faster or more violent transients (e.g. quickly driving the input across the 

full operating range) between operating regimes, the operating point of the system can be 

model can be forced far away from the equilibrium regions where the local models were 

identified. This may result in unexpected and undesirable transient effects in the output 

that may compromise the stability of the model and therefore prove problematic from a 

control perspective. In tackling this problem of off-equilibrium dynamics, local models 

may be placed in the off-equilibrium regions. Indeed, such a strategy can be seen to be in 

keeping with the overall proposal for a multiple model approach. However, as discussed 

in Shorten et al. (1999), it is possible for non-unique parameterisations of the model 

behaviour to exist (i.e. any identified off-equilibrium model may only partially represent 

the off-equilibrium region). Furthermore, the model structure of any identified off-

equilibrium models may end up being significantly different from that of the existing 

equilibrium local models, thus impacting on the overall interpretability and transparency 

of the global model.  
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The problem of retaining transparency in off-equilibrium local models has been directly 

tackled through the use of velocity-based descriptions (see Leith and Leithead (1999)) 

where an analytical framework for relating global dynamic behaviour to local models 

was proposed. The original proposal for the application of the velocity-based framework 

focused on the linearisation of known nonlinear systems (Leith and Leithead (1999)), but 

further investigations in McLoone et al. (2001) have demonstrated the construction of a 

velocity-based Local Model Network using empirical data. However, a problem 

demonstrated in McLoone (2000) is that whilst the velocity-based description may 

provide a more accurate representation of the nonlinear dynamics of the system, the 

steady-state response of the underlying system was less accurately modelled. 

Furthermore, the velocity-based framework requires that the derivative of the input be 

available. This is something that may prove to be problematic to obtain due to noise and 

discontinuities in the input signal (i.e. sharp transients in the input signal will have near-

infinite gradient and therefore reduced differentiability). However, alternative 

implementations of the model may allow differentiation of the input to be avoided. 

 

The problem of identifying off-equilibrium models is also compounded by more practical 

operational constraints that often lead to a general lack of available off-equilibrium 

empirical data. In the identification of real systems it is often not possible or even unwise 

to excite the system in such a way to initiate an off-equilibrium response due to the 

potential damage to the system or even the operator. Therefore, if an off-equilibrium 

identification strategy is to be implemented, the experimental design and data collection 

process must be considered carefully. Due to the difficulty of identifying off-equilibrium 

models (i.e. lack of interpretability and lack of empirical data), alternative methods of 

identification have been proposed. One such method is the GP modelling approach 

discussed in this thesis. The GP model is non-parametric modelling approach where the 

model is identified almost exclusively from empirical data (overcoming the lack of 

interpretability problem). Furthermore, a number of specific properties of the GP model 

make it a good candidate for identification of models where empirical data is sparse. The 

use of GP models in tackling off-equilibrium identification problems was proposed in 

Murray-Smith et al (1999), Leith et al (2000), and Leithead et al (2000), and further 

discussion of this aspect is provided in Section (5.1). 
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2.6) Model Optimisation 
 

A crucial part of the system identification process is the optimisation or learning task that 

must be undertaken in order to fit the chosen model structure to the available empirical 

data. Within the system identification community, model optimisation has also 

traditionally been referred to as ‘parameter estimation’ due to the popularity of 

parametric models over nonparametric alternatives. Furthermore, as applications have 

become more demanding, leading to the requirement for more sophisticated models, the 

learning task has also grown accordingly. As a result, the optimisation procedures 

required to identify the overall structure and parameters of these more complex models 

has also become more sophisticated. Therefore, in the selection of a suitable model 

structure the level of optimisation required is an important consideration. 

 

2.6.1) Types of Learning 

 

Techniques for optimisation can be categorised into three different approaches that are 

distinguished by the amount of information or data that would be required by the chosen 

model architecture. 

 

2.6.1.1) Supervised Learning 

 

Supervised learning methods require that both input data and output data of the process is 

available. Typically this would involve empirical data consisting of matching pairs of 

input and output data. The objective of supervised learning techniques is to identify an 

optimal solution through the minimisation of a measurement of the error between the 

model and that of the observed process. In order to provide this measurement of the error, 

a loss function is employed to analyse the difference between each possible model 

solution and the target output against some criteria. From a machine learning perspective, 

the use of output data can be seen to perform the role of a ‘teacher’ and therefore provide 

supervision for the learning system. The supplied output data can therefore be interpreted 

as examples of a correct response that allows a comparison to be made with the learning 

system’s current solution. Most optimisation problems in system identification can be 

seen to fall within the domain of a supervised learning algorithm, as we would typically 
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expect the output of real systems to be available. Therefore, it is supervised learning that 

this thesis will focus on. 

 

2.6.1.2) Reinforcement Learning 

 

In reinforcement learning, a degree of information about the quality of the model is 

available, but no desired output value is known for each input. This type of learning is 

normally employed toward evaluating the quality of different strategies or long-term 

goals, rather than evaluating the error of individual test (input-output) cases. This kind of 

learning has particular relevance in a number of applications (e.g. robotic control, 

dynamic programming and gaming strategies) where it is difficult to assess the quality of 

individual manoeuvres or events, as it is the final outcome that will determine success or 

failure. For more information on this subject, see Sutton and Barto (1998) and Kaebling 

et al. (1996). 

 

2.6.1.3) Unsupervised Learning 

 

In unsupervised learning, only the input data is typically available or used. Unsupervised 

learning techniques are therefore used to extract any compressed information about the 

input data distribution. Furthermore, as no output information is utilised, unsupervised 

learning methods are typically employed in conjunction with supervised learning 

methods in order to obtain an optimal model solution. As a result, unsupervised learning 

techniques are predominantly used as tools for data pre-processing. In Nelles (2001), two 

main categories of unsupervised learning are discussed, namely Principal Component 

Analysis (PCA) and Clustering techniques. 

 

The goal of PCA methods is to simplify the overall learning problem through 

transforming the input axes. In particular, PCA methods are used to reduce the 

dimensionality of the problem through eliminating any input axes that are uninformative 

about the data. Therefore, the relative significance of each input axes must be evaluated, 

and this is done through assessing the degree of variance (i.e. high-variance indicating 

high significance and vice versa). Such methods have been shown to be particularly 

valuable for high-dimensional problems, where computational demands and overall 

model complexity can be reduced. However, it is important to remember that this 
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dimensional reduction is performed through the analysis of only the input distribution, 

and the loss of important information is still possible (i.e. there is no reason why a low 

input variance should automatically imply a low significance of that particular input). 

 

The goal of clustering techniques is to find groups of similar data samples. A similarity 

measure must therefore be defined, where the shape of the cluster is to be determined 

(e.g. circle, spherical, elliptical etc.). The number of clusters can be chosen initially or 

determined automatically in more advanced methods. Notable clustering techniques 

include the K-Means algorithm, Gustafson-Kessel Algorithm and Kohonen’s Self-

Organising Map. For a more detailed discussion on clustering techniques, see Ripley 

(1996), Kohonen (1990) and Bezdek (1981). 

 

2.6.2) Parameter Optimisation 

 

The overall task of model optimisation can be split into two parts: parameter 

optimisation and structure optimisation, in this section we focus on the former. The 

process of optimising the parameters is also known as parameter estimation and begins 

with the identification of a suitable criterion that defines the exact mathematical measure 

that is to be optimised. This criterion is also commonly termed a Loss function and is 

typically a measure of the error between the measured output of the system ( )y i , and the 

corresponding output of the model ̂( )y i  for a defined training dataset, i.e. 

ˆ( ) ( ) ( )e i y i y i= − . 

 

In the general system identification literature, such as Ljung (1999) and Söderström and 

Stoica (1989), three different loss functions are commonly discussed: the Least Squares 

method (or sum of squared errors), Maximum Likelihood  method, and the Maximum 

A-Posteriori (MAP) estimate. The Least squares method is the most widely adopted 

approach and forms the basis for linear optimisation methods to be discussed briefly 

below. The remaining two methods can be categorised as probabilistic approaches to 

parameter estimation. A probabilistic approach to modelling is relevant as it introduces 

the concept of uncertainty into the modelling procedure. The maximum likelihood 

method is to be employed for the optimisation of the GP model and is discussed in 
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chapter 4. The MAP estimate can be seen to be a form of Bayesian analysis that is to be 

discussed in the next chapter. 

 

2.6.2.1) Linear Optimisation 

 

Depending on the nature of the chosen model architecture, the parameter optimisation 

procedure can be termed as either linear or nonlinear optimisation. A linear optimisation 

problem can be said to exist if the model error can be categorised as being linear in the 

parameters θ and if the sum of squares error (least squares) loss function is employed. 

Therefore, a model ̂y of the dependent variable y, composed of n independent variables 

(regressors) xn can written as: 

 

 1 1 2 2
1

ˆ
n

n n i i
i

y x x x xθ θ θ θ
=

= + + + =∑…       (2.13) 

 

In matrix form can be written as ˆ =y Xθ , where [ ]1 2 nx x x=X ⋯  is the regression 

matrix and [ ]1 2

T

nθ θ θ=θ ⋯  is the parameter matrix. 

 

Linear optimisation techniques are the most widely adopted parameter estimation 

methods due to their interpretability and ease of application. It is also due to these 

qualities that linear model architectures remain the preferred method in the field of 

system identification as a whole. Further desirable qualities of linear optimisation include 

the ability to provide optimum parameters that are unique (global), and the speed and 

robustness of the optimisation algorithm relative to nonlinear optimisation techniques. At 

this point it is worth briefly detailing the linear least-squares algorithm, further details of 

which can be found in the majority of system identification and statistical texts. The 

model error can be written as ˆ= − = −e y y y Xθ , and the sum of square errors loss 

function can then be stated as 
1

( )
2

TV =θ e e . As this loss function is quadratic in θ, the 

minimum value can be easily computed by setting the derivative of this function to zero. 

The least squares estimate can then be stated as 1ˆ ( )T T−=θ X X X y . 
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Utilising modern numerical software, such as Matlab, it is then straightforward to 

compute the least-squares estimate of the model parameters and then assess the 

performance of the identified model. However, it is important to point out that the 

required matrix inversion of the Hessian 1( )T −X X  can prove problematic if the matrix is 

ill-conditioned. Such matrix conditioning problems can result if the empirical data 

collected from the system and then used to generate the regression matrix is not 

sufficiently excited. This aspect is mentioned in most system identification texts such as 

Söderström and Stoica (1989). Furthermore, the direct inversion of these matrices is not 

normally carried out due to likelihood for mathematical difficulties and a number of 

alternative approaches, such as Gaussian elimination, Cholesky decomposition or 

singular value decomposition, are normally employed instead. Useful resources on 

various matrix methods include Barnett (1979) and Golub and Van Loan (1987). These 

matrix computation and conditioning aspects are particularly relevant as the same kind of 

problems can be seen to present themselves in the implementation of GP models. As a 

result a more detailed discussion of matrix conditioning aspects is to follow in Chapter 4. 

However, for linear optimisation implementations, regularisation techniques such as 

ridge regression have been developed to tackle matrix conditioning problems, see 

Tikhonov and Arsenin (1977) and Johansen (1997) for more details. 

 

A further feature of linear least-squares optimisation is that using the regression matrix it 

is also possible to generate covariance matrices of the parameter estimate θ and model 

output ŷ . Utilising the covariance matrix of ̂y  it is therefore possible to generate 

measures of variance and therefore errorbars, if some information regarding the noise 

distribution is known or assumed. More detailed information on this can be found in 

Nelles (2001), however it is mentioned here due to the similarities found in the GP 

modelling approach which involves the specification of a covariance matrix. Therefore, a 

more detailed discussion of covariance and covariance matrices is found in the next 

chapter.  

 

Extensions to the linear least-squares algorithm also include the weighted least-squares 

implementation, where the contribution of each squared error can be weighted with a 

factor. This facility allows knowledge of the relevance or confidence in each data sample 

to be incorporated. A further extension is the recursive least squares algorithm that 

allows the parameter vector to be updated whilst online. This is a useful feature for real-
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time implementations where the model must be updated. More general information on 

linear optimisation techniques can be found in Draper and Smith (1998) and Wolberg 

(2005).  

 

2.6.2.2) Nonlinear Optimisation 

 

If the model function is nonlinear in the parameters (i.e. the parameters appear as 

functions), a nonlinear optimisation technique must be applied to search for optimal 

parameters. However, the general goal of nonlinear optimisation techniques remains the 

same, to find the minimum of a given loss function with respect to the parameters. A 

wide range of nonlinear optimisation techniques have been developed and good general 

sources of information and algorithms include Scales (1985), Reklaitis et al. (1983), 

Vanderplaats (1984) and Press et al. (1992). Nonlinear optimisation can prove to be a 

challenging endeavour due to the potential presence of multiple local optima. Therefore, 

more than one set of ‘optimal’ parameters may be identified from data and care must be 

taken to find the most appropriate solution (i.e. some optimal parameter values will lead 

to better models than others). Furthermore, as more than one possible solution can exist, 

in contrast to the computationally desirable ‘one-shot’ solution typical of linear 

optimisation, nonlinear optimisation techniques are iterative in nature and require 

algorithms that search for and then converge on local optima. As a result, nonlinear 

optimisation methods are not typically suited for online application. 

 

Due to the iterative nature of nonlinear optimisation methods, in order to identify a good 

local optimum and speed up the algorithm’s convergence to such a solution, an important 

consideration is the choice of initial parameters. Whilst a random or arbitrary choice of 

initial parameters may result in the convergence toward a suitable optimum, the selection 

of a good set of initial parameters (through the use of prior knowledge) can increase the 

chances of a good result and speed up the process considerably. Furthermore, nonlinear 

optimisation methods can also be categorised into Local and Global methods, as in 

Nelles (2001).  

 

Although both methods will converge on local optima, local optimisation methods tend 

to converge on local optima close to the supplied initial conditions as search directions 

are obtained from neighbourhood information such as first and second order derivatives. 



Chapter 2: Nonlinear System Identification 

 51 

As a result, local algorithms may become stuck in poor local minima and more suitable 

optima in other regions of parameter space may not be considered. Global nonlinear 

optimisation methods are aimed at overcoming this problem, and typically rely on the 

inclusion of random or stochastic components that allow the algorithm to escape from 

local optima. Notable global optimisation techniques include Simulated Annealing, 

described in Kirkpatrick et al. (1983) and Laarhoven and Aarts (1987), and a range of 

Evolutionary algorithms such as the Genetic Algorithm, see Holland (1975) and 

Goldberg (1989) for details. However, as global methods are to search the whole 

parameter space (potentially for multiple parameters) a significant disadvantage is the 

high computational demand and slow convergence speed of these algorithms. As a result, 

nonlinear local optimisation methods that are generally faster to converge remain more 

popular. Furthermore, using local methods, it is possible to obtain a more global 

optimum through applying a ‘multi-start’ approach where a number of local 

optimisations are performed using different initial parameters, and the best solution then 

chosen. A further option is to combine the use of global and local methods, e.g. using 

global methods to locate the region around suitable local optima, and then deploying a 

faster converging local optimisation method to provide a more precise local estimate. 

 

The simplest general-purpose nonlinear local optimisation techniques are termed Direct 

Search methods. These include Simplex Search and Hookes-Jeeves methods, and utilise 

only loss function values in their search for local optima. These methods are typically 

slow to converge and only used when the derivatives of the loss function are not 

available or require significant computation time to compute. As a result, local 

optimisation approaches that make specific use of gradient information are amongst the 

most widely adopted methods. Notable gradient-based methods include Steepest Descent, 

Newton’s Method, Quasi-Newton, and Conjugate-Gradient methods. These methods are 

reviewed in depth in Scales (1985), but the general concept of these methods is given by 

1 1 1k k k kη− − −= −θ θ p  with 1 1 1k k k− − −=p R g . Where the parameter vector kθ  is to be updated 

by the quantity 1 1k kη − −p , where 1kη −  is a step-size (typically determined by ‘line search’ 

methods) that fixes the proportionality of the search direction 1k−p , which is defined by 

the gradient direction 1k−g  that is rotated and scaled by a direction (or rotation) matrix 

1k−R . The different gradient-based methods of local optimisation algorithms can then be 

defined by different choices of step-size and rotation matrix.  
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The simplest gradient-based method is the Steepest Descent method where the rotation 

matrix is taken to be an identity I matrix. This method is notable for its non-requirement 

for second-order derivatives of the loss function, but is typically slow to converge and 

has been somewhat made redundant by more sophisticated methods. In Nelles (2001), the 

equivalence between the Steepest Descent method and the famous backpropagation 

algorithm used in the training of Neural Networks is discussed. The Newton’s method 

employs the inverse of the Hessian matrix for use as the rotation matrix, and therefore 

brings a demand for second-order derivatives which may be computationally expensive 

to compute if unavailable analytically. Furthermore, Newton’s method is computationally 

demanding due to the need for matrix inversion and is therefore recommended only for 

small optimisation problems. The Quasi-Newton method is therefore aimed at reducing 

the computational complexity through replacing the inverse Hessian used as the rotation 

matrix, with an approximation to this inverse (so the computational demands of inversion 

can be avoided). A popular formula for defining this approximation is the Broyden-

Fletcher-Goldfarb-Shanno (BFGS), as described in Scales (1985).  

 

Both Newton and Quasi-Newton methods are typically described as having very good 

convergence properties (i.e. fast convergence in terms of number of required iterations 

rather than computational demand), but for large problems these methods are still found 

to suffer from excessive computational demands. The Conjugate-Gradient method is a 

further alternative local optimisation method that can be seen to be less computationally 

intensive. Rather than attempt to directly approximate the Hessian, the conjugate-

gradients method employs a rougher approximation where the search direction is 

computed in a more direct manner as 1 1 2k k kβ− − −= −p g p . Different conjugate-gradients 

methods can then be distinguished through the choice of the scalar β, with popular 

choices being the Fletcher-Reeves and Polak-Ribiere methods, see Fletcher (1993) for 

more precise details. Conjugate gradient methods are typically found to require a higher 

number of iterations than the Quasi-Newton and Newton methods to converge upon an 

optimum, however due to their less demanding computational nature, the overall speed of 

the algorithm is found to be superior. Therefore, conjugate-gradient methods are the 

preferred choice for larger optimisation problems, however they typically require a more 

accurate line search to be performed. 
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Whilst these general gradient-based methods of local optimisation are well established, 

further alternative methods can be considered if the loss function to be minimised is of 

the sum of squares type. These methods are known as nonlinear least squares methods 

and are typically recommended over the previously discussed choices if the loss function 

is of the required type. The two most common nonlinear least-squares methods are the 

Gauss-Newton method and the Levenberg-Marquandt method. The nonlinear least-

squares loss function can be formulated as ( )TV =θ f f  with 

[ (1, ) ( , )]f f Nf = θ θ⋯ , and the gradient as 2T=g J f  where J is the Jacobian 

matrix (first-order derivatives). For both the Gauss-Newton and Levenberg-Marquandt 

methods, an approximation can then be introduced where the Hessian matrix can be 

approximated as T≈H J J . This allows the both methods to approximate the second-

order derivatives of the Hessian through the first-order derivatives of the Jacobian, which 

results in a computational saving. For more information on this approximation and its 

assumptions, see Scales (1985). The Gauss-Newton method can then be described by 

1
1 1 1 1 1 1( )T T

k k k k k k kη −
− − − − − −= −θ θ J J J f  and the Levenberg-Marquandt method can be 

described by 1
1 1 1 1 1 1 1( )T T

k k k k k k k kη α −
− − − − − − −= − +θ θ J J I J f . 

 

The Levenberg-Marquandt method can therefore be seen to be an extension of the Gauss-

Newton method where the quantity α is introduced. This feature can be seen to be 

equivalent to the ridge-regression regularisation method employed in linear regression 

and acts to overcome matrix-conditioning problems associated with the Gauss-Newton 

method. Furthermore, as with the linear regression case, the inversion of these matrices 

would again not be undertaken directly and less mathematically problematic methods 

such as Cholesky decomposition would be employed instead.  

 

2.6.3) Model Structure/Complexity Optimisation 

 

The task of optimising the structure of a chosen model can also be interpreted as the 

optimisation of the model’s complexity. Whilst there are many different characteristics 

that could be used to describe the complexity of a model, the term ‘model complexity’ is 

usually generally related to the number of parameters present. Therefore, a model is said 

to increase in complexity if parameters are added, and vice-versa. Furthermore, with 

more parameters a model is said to increase in flexibility, where the variety of possible 
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functions that could be described by the model is subsequently increased. Fundamentally, 

a model that is too simple will potentially fail to sufficiently capture the behaviour of the 

underlying system, and thus lead to inaccurate predictions. However, a more complex 

model constructed from a large number of parameters can also perform poorly if the 

amount of available training data is insufficient.  

 

Therefore, in order to identify a good model, the complexity of the model must be 

appropriate for the task. The system should be over-determined (especially in complex 

regions of the input space) in that more training data than model parameters should exist. 

The process of optimising the complexity of the model is normally performed in 

conjunction with the model validation stage (to be discussed in the next section) where 

the performance of the model is assessed before any modifications are made. An 

important feature of the model validation process is that the model’s performance is 

examined on a separate ‘test’ dataset that is different from the training dataset. The 

importance of this strategy is that in this way the generalisation ability of the identified 

model is examined. Generalisation is the ability of model to provide an accurate 

prediction of the system output when presented with inputs on which it has never been 

trained. This is a important objective of the modelling process, as we are interested in 

obtaining a model that is robust and performs well on a range of new (test) data, rather 

than models which perform well on limited range of data or indeed a memorisation of the 

training dataset. In describing the generalisation ability of the model, it is common for 

the terms underfitting  or overfitting  to be used to describe models that perform poorly. 

In cases where the test data is estimated poorly by a model that would appear to be 

insufficiently flexible (i.e. too simple), this is generally known as underfitting. For cases 

where a complex/flexible model is employed and the training set appears to be learned to 

a reasonable extent, but the generalisation remains poor, this may be evidence of 

overfitting. The model has potentially learned the noise present in the training data, or 

has correctly learned the data but the interpolation between datapoints is incorrect. 

 

2.6.3.1) Bias/Variance Dilemma 

 

In analysing the generalisation ability of the model, a useful strategy is to decompose the 

model error into two components, the bias error and the variance error. In this section 
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this decomposition is briefly discussed but a full account of this can be found in Nelles 

(2001) and Geman et al. (1992). The model error initially be formulated as  

 

 2 2 2ˆ ˆE{( ) } E{( ) } E{ }uy y y y n− = − +       (2.14) 

 

Where ŷ  is the model output, y  is the measured system output, and uy  is the true 

output that is uncorrupted by noise. The first part of this expression is the model error 

between the true system output and the model output, and the second part of this 

expression represents the noise variance. Therefore, assuming the model does not 

represent the system exactly (where the first part would disappear), and the model does 

not influence the noise variance, the model error can be decomposed into bias and 

variance parts accordingly: 

 

 
2 2

2 2 2

(model error)  = (bias error)  + variance error

ˆ ˆ ˆ ˆE{( ) } [ E{ }] E{[ { }] }u uy y y y y E y− = − + −
    (2.15) 

 

The bias error can be interpreted as the proportion of the model error that is due to the 

fundamental difference between the model structure and the system or process. In real 

systems the process may be significantly more complex than the class of models that are 

to be considered for application. This lack of flexibility in the model means that an exact 

representation of the system is impossible, and this deviation is known as the bias error. 

Therefore in order to reduce the bias error, it is necessary to make the model more 

flexible which leads to a growth in the number of model parameters. In theory this leads 

to a strategy of employing as complex a model as computationally feasible, however this 

is not normally realisable due to the variance error component of the model error. 

 

The variance error can be interpreted as the proportion of the model error that is due to 

differences between the estimated model parameters and their optimal values, resulting 

from inadequate optimisation. As the identification of real systems requires that the 

model parameters must be estimated from noisy training data that is of limited size, a 

difference between the estimated parameters and the truly optimal parameters is likely to 

be present. 
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Therefore, for cases where a high variance error is present, the optimisation of the model 

parameters must be improved. One strategy would be to reduce the number of 

parameters, as models containing fewer parameters will typically be easier to optimise 

using the same amount training data. Alternatively, larger training sets containing more 

information with which to estimate these parameters is a method of reducing the variance 

error. Fundamentally, the number of parameters in the model should not exceed the 

number of training data samples, as if they are equal the model will be fit exactly to the 

noisy training data and then generalise poorly on different noisy test data. Furthermore, 

higher levels of noise present in the data will result in higher variance error, and require 

larger training datasets in order to compensate. For very complex or flexible models, the 

variance error will dominate the model error and the bias error can become negligible. 

 

Overall, it can be seen that in order to reduce the bias error, a model should be made 

more complex thus increasing number of parameters. However, a model composed of 

more parameters will result in a larger variance error unless the training dataset used to 

estimate these parameters is also increased. For many implementations, the data available 

for training is limited and the inclusion of more data is not something that is feasible. 

Therefore, the bias and variance components of the model error can be seen to be in 

conflict (hence the ‘dilemma’) and must be traded off against one another in order to 

achieve optimal model complexity. The difficulty in the implementation of this trade-off 

is that the bias/variance error components are typically unknown.  

 

2.6.3.2) Model Complexity Optimisation Strategies 

 

Given that the chosen model structure should only be as complex as necessary, a large 

number of different strategies for dealing with complexity have been proposed. In 

addition to the potential overfitting problems discussed previously, more complex 

structures will typically require a more computationally demanding parameter 

optimisation stage to be completed. Furthermore, a more complex model may have a 

detrimental impact on the overall interpretability of the model.  

 

If the chosen model architecture is found to ‘underfit’ the test data it is obvious that the 

model in its current guise is not sufficiently well equipped to handle the learning task at 

hand, and the addition of further parameters or the consideration of alternative structures 
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may be required. However, before eliminating potential candidate models, it must be 

clear that the problem lies with the lack of flexibility of the model, rather than with 

insufficient training data or a poorly executed parameter optimisation strategy. For the 

case of an overly complex ‘overfit’ model, a number of strategies exist to help regulate 

the complexity of the chosen model architecture. Furthermore, other approaches have 

been developed that seek to reconstitute the learning problem allowing different and 

possibly less complex model architectures to be utilised. 

 

Through the course of this chapter a number of ideas for dealing with complexity have 

already been mentioned, however a fundamental concept worth reiterating is the ‘curse of 

dimensionality’, where the learning task becomes harder solve as the dimensionality of 

the input space, and therefore the number of parameters, increases. In trying to solve 

harder learning problems, more complex models are therefore required and the potential 

for overfitting increases. Therefore, adopting modelling strategies that seek to mitigate 

this ‘curse of dimensionality’ may ease the identification of more optimally complex 

models. In particular, the various network structures discussed previously typically do 

not suffer from the same rate of growth in the number of parameters with the number of 

input dimensions, as more classical nonlinear methods. Furthermore, many of the 

unsupervised learning methods such as clustering and principal component analysis are 

expressly concerned with helping to organise and simplify the learning problem. 

 

For linear models composed of a number of regressors, well established subset selection 

methods have been developed to help determine which of these regressors are the most 

important, therefore allowing the number of parameters to be optimised. Important subset 

selection techniques include forward selection, backward elimination and stepwise 

selection; see Nelles (2001) for a full discussion. These methods can also be adopted in 

the optimisation of Neural Network based structures where basis functions or neurons 

can be added to or eliminated from the model (i.e. the network may be ‘grown’ or 

‘pruned’ accordingly). Furthermore, the adoption of the operating regime approach 

where a divide and conquer approach is applied to the operating range of the system can 

help facilitate the inclusion of prior knowledge into the identification process, e.g. local 

linear models identified at known equilibrium regions. Another possible approach to 

decomposing the input space is the classification and regression tree (CART) methods 

proposed in Breiman et al. (1984). 
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Further alternative methods include the use of ‘Hybrid’ model structures where more 

than one type of model are combined together. Through such an approach, the 

identification process may be further broken down into more manageable components 

where a number of simpler model structures can then be more easily identified and then 

combined in some arrangement (e.g. additive or hierarchical models). In this way, 

models that are well suited to representing certain aspects of a system’s behaviour (e.g. 

an existing model derived from first principles) can be combined with other methods 

(e.g. a sophisticated black-box model derived from empirical data). Another possibility is 

the adoption of a ‘projection-based’ approach where instead of eliminating or partitioning 

regions of the input space, the input space is projected onto a different set of axes and the 

learning task redefined. This is the basis of various kernel methods and also the GP 

modelling approach examined in this thesis, where a probabilistic ‘function space’ is 

defined and Bayesian learning is employed towards finding optimal model complexity.  

 

So far, these complexity optimisation strategies have tackled the problem through the 

modification of the model structure and are in essence attempting to reduce the number 

of model parameters to be included. However, an alternative strategy is offered by 

various regularisation methods where instead attempting to reduce the number of 

parameters included by elimination, the goal is to restrict the overall influence of the 

parameters. Therefore, the effect of regularisation is to compel the model behave as 

though the model is composed of fewer parameters than it actually has. As a result, 

regularisation can be seen to reduce the number of ‘effective’ model parameters and has 

a smoothing effect (reducing variance) on the model output. For linear regression 

problems the previously mentioned technique of ridge regression is a particularly 

prominent method of regularisation, and the same principle is employed for neural 

network type problems under the guise of ‘Weight Decay’, as discussed in Nelles (2001). 

Further methods of regularisation include the inclusion of constraints on the parameters 

values (e.g. certain parameters are given a fixed value or restricted range, or must be 

positive or negative), and ‘staggered’ optimisation where instead of attempting to 

optimise all model parameters simultaneously, the learning task is split up with subsets of 

parameters being optimised in turn. Another notable regularisation strategy is ‘Early 

Stopping’ where instead of allowing the iterative nonlinear optimisation algorithm to 

converge to a minimum using solely the training data, a set of test or validation data is 

also employed and the iterative optimisation algorithm is concluded when the model 
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error on this validation set reaches its minimum. This is a good strategy to adopt for very 

flexible models where the convergence of all parameters may not be desirable. 

 

2.7) Model Validation 
 

Once the selection and optimisation of the model has been performed, a process of model 

validation should be completed before the model may be declared as ready for use. This 

process of model validation is an important but often overlooked stage of the overall 

modelling process as a whole. In the context of the system identification loop discussed 

previously, model validation involves the careful evaluation of the model against some 

performance criteria. The discussion of these criteria is often restricted to the application 

of statistical testing of model accuracy (e.g. Mean-square error), but the application of 

more subjective reasoning (i.e. using prior knowledge) should also be incorporated. In 

this way, the overall suitability of an identified model can be assessed (e.g. is the model 

interpretable?). It is normal to find a trade-off exists between more complex and 

therefore flexible models, and the overall interpretability of the approximation. If the 

model is found to perform adequately then the overall identification process can be said 

to be complete, however if some aspects of the model’s performance are seen to be 

deficient, the practitioner should return to previous stages of the modelling process and 

consider modifications. Using the information gained from the model validation stage, 

various strengths and weaknesses of the identified model can become clearer (e.g. 

particular operating regions where accuracy is poor), thus facilitating any necessary 

modifications.  

 

Once a model has been identified from a set of training data, the most straightforward 

method of evaluating the performance of the model is to then test the model on a 

different set of data. This concept of splitting the overall set of empirical data into 

separate training and test datasets is generally known as cross-validation. For cases 

where an abundance of empirical data is available, this validation procedure would not 

prove to be problematic. However, for cases where the amount of empirical data is 

limited, the requirement for separate training and test datasets can be difficult to meet. As 

discussed previously, in order for a successful model to be identified, the training data 

must be representative of the unknown system function. Therefore, through experimental 
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design and data pre-processing, the training dataset must attempt to include sufficient 

datapoints from the all regions of operating space that are to be considered. However by 

the same rational, if we are to fully evaluate the performance of the model, then the test 

dataset must also be representative of as much of the operating range as possible. 

 

Fundamentally, a significant restriction on the size of the training dataset in order to 

provide large amounts of test data can be seen to be counter-productive (even wasteful of 

data), as the modeller is of course charged with identifying the best possible model. 

Therefore, in cases where empirical data is limited (a common problem in the 

identification of real systems), it is normal for pressure to be put on restricting the 

amount of available test data in order to boost the amount of training data. As a result, 

instead of arbitrarily splitting the available data, more sophisticated validation methods 

have been proposed that seek to maximise the exploitation of the available data. One 

such method is n-fold cross-validation where the available empirical data is partitioned 

into n sub-samples. Each sub-sample is then employed in turn as a test dataset for a 

model trained on the other (n-1) sub-samples, with the overall error rate being taken as 

the average of these n sub-sample tests. A further alternative is Leave-One-Out-

Validation , where a single observation of the overall data is to be left out and used as a 

test example, and the remaining data used for training. As before, this process is then 

repeated until each member of the training set has also been used as a test example. This 

can be seen to be an extreme case of cross-validation that is only computationally 

feasible for small datasets.  

 

As cross-validation schemes can prove to be computationally expensive, the overall 

process of model validation can become frustrating for complex models. The overall 

process involved in testing the model, then potentially modifying and retraining the 

model, and then retesting it, can prove to be a time-consuming one. Therefore, alternative 

methods of evaluating test error that are less computationally expensive have been 

developed. These include the use of various ‘information criteria’  methods, such as 

Akaike’s Information Criterion (AIC), and Final Prediction Error (FPE), see Akaike 

(1974). For more information on various model validation strategies, see the 

aforementioned system identification texts by Ljung (1999) and Nelles (2001), and also 

Leontaritis and Billings (1987). 
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3) Gaussian Process Models 
 

The Gaussian Process (GP) model may be regarded as a nonparametric method of 

nonlinear system identification where new predictions of system behaviour are computed 

through the use of Bayesian inference techniques applied to empirical data. The GP 

model may also loosely be considered as a ‘black-box’ method as the identification 

process relies heavily upon experimental data. However, as with other methods of 

identification, a priori knowledge such as physical insight can prove to be invaluable in 

the design of the model and experimental procedures. In this chapter we introduce the 

theoretical background and literature of the Gaussian Process modelling approach, 

together with a discussion of the motivation behind the methods. 

 

3.1) What is a Gaussian Process Model? 

 

Through the course of this chapter the mathematical framework of the GP modelling 

approach is to be presented in detail. However, before beginning an exploration of the 

methods it is first necessary to place the GP modelling approach in context with 

alternative modelling approaches. From this point, the motivation behind the proposed 

adoption of these methods can then be discussed.  

 

The GP modelling approach is typically described as a nonparametric ‘black box’ 

method that employs Bayesian learning with which to identify a model of system 

behaviour. Therefore, in order to characterise the GP model, it is first important to realise 

that the GP approach has much in common with alternative nonparametric methods 

where identification is performed through the application of learning techniques to 

empirical data. In the previous chapter, the Neural Network approach was briefly 

described and it is this machine learning approach that the GP modelling approach is 

most often compared with. However, an important distinction between the two methods 

is that unlike the Neural Network’s adaptive basis functions, the GP modelling approach 

can be thought to employ a fixed basis function or kernel. As will be discussed through 

the course of this chapter, this move from adaptive to fixed basis functions has 

advantages in dealing with the complexity issues (parameter and structural optimisation) 

raised in the previous chapter. Furthermore, it is through the use of Bayesian inference 
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coupled with the mathematical properties of the Gaussian process that the GP model will 

be shown to be a powerful method for nonlinear regression. Therefore, as with other 

nonlinear regression techniques the GP modelling approach can be understood as a 

method of interpolation, where a curve is to be fitted to data.  

 

In order to illustrate the workings of the Gaussian Process modelling approach it is first 

necessary to outline the supervised learning problem to be tackled. Namely, we are 

seeking to identify an unknown function y, by constructing a model from noisy data with 

which we can use to make predictions given new input data. A model for our noisy data 

example can be formulated as: 

 

 nnn xfy υ+= )(         (3.1) 

 

The input is denoted as x, with the output or target denoted as y. The input is a vector x 

dependant on the number of input variables, and the target is continuous data for this 

regression case. In essence, the problem can be understood as a multiple-input, single-

output (MISO) arrangement. The noisy training dataset D consists of N observations 

D={(x i,yi)| i = 1,…,N}, i.e. N pairs of L-dimensional input vectors {xi} and scalar 

outputs {yi} for i = 1…N. 

 

Given the observed behaviour present in the set of training data, we now wish to make 

predictions from the model for new inputs x* not seen in the training set. Therefore the 

problem is to make predictions for all possible inputs based on information given a finite 

set of training data examples. In mathematical terms this is known as inductive reasoning 

where a general conclusion may be drawn from a series of premises based on experience 

or experimental evidence. 

 

In order to successfully identify the unknown function from a set of training data, the 

more popular and well-established methods of system identification, such as a parametric 

model structure or Neural Network, would seek to make assumptions or use prior 

knowledge with which to simplify the learning task. Furthermore, the modeller must 

ensure that any model considered suitably represents the underlying function, rather than 

just providing a valid fit to the observed data. Considerations such as the likely order of 

the underlying function would be used to gauge the necessary level of complexity of the 
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chosen model structure (e.g. would a linear or lower order polynomial model be 

sufficient?).  

 

By utilising this parametric approach where a finite number of variables must be 

determined through optimisation, we run the risk of selecting a model structure 

insufficient in its flexibility to be able to satisfy the given goal in terms of providing an 

accurate representation of the function to be approximated. Consequently, the complexity 

of the chosen model structure may need to be increased so that the function 

characteristics are better recreated. As discussed in the previous chapter, the risk 

associated with such an endeavour is the possibility of overfitting the model to the 

training data. Furthermore, as the number of parameters increases, the need for a greater 

amount of training data may also become apparent.  

 

In seeking to solve this problem, the Gaussian Process model differs from more 

conventional system identification methods by adopting a Bayesian approach to the 

learning task. The GP model does not seek to assume a functional form with which to 

compute new predictions. Instead, a prior probability is given to every possible function 

with the most likely function identified through the use of Bayesian inference. This 

approach would seem to present a significant problem as if we are looking at every 

possible function, and therefore not discounting any particular category of function as in 

the parametric case, the task of computing likely functions appears to be almost infinite! 

However, it is through the specific use of the mathematical properties of the Gaussian 

Process that this computing dilemma can be overcome.  

 

3.2) Motivation for GP models 
 

Before going into a detailed description of the theory and methods associated with the 

GP model approach it is worth discussing the motivation behind the recent interest in 

Gaussian Process methods. Furthermore, the GP model is mostly defined in terms of its 

relationship to other methods and its application of Bayesian inference towards the 

problem of nonlinear regression. Therefore, some background discussion is necessary to 

provide much of the rationale that lies behind the adoption of the approach. 
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In the previous chapter, models based around a Neural Network type approach were 

described as being of immense potential in providing a tool for universal approximation 

that could be applied across a wide range of problems. The central tenet that a group of 

adaptive basis functions, or hidden layers/structures, could be learned from data, allowed 

the user the flexibility to approximate complex nonlinearities and discover patterns in 

data that were previously hidden. Through the 1980s and early 1990s Neural Network 

techniques became very popular topics of study across many research fields and the 

underlying understanding of methods and their relation to existing statistical principles 

became apparent. Furthermore, the problems associated with employing such complex 

model structures and the general lack of a stringent unifying framework for 

implementation became clear. 

 

The problem of optimising the complexity of these multiple models remains the biggest 

challenge presented to those who employ these methods. In tackling this problem, the 

principle that a model should only be as complex as completely necessary for the 

intended application is almost fundamental to the field of system identification. In terms 

of interpretability, a simple model may often be preferable to a complex one. 

Furthermore, the idea that complexity should be minimised also becomes a practical 

necessity where the computational demand of identifying parameters becomes unviable. 

This principle of economy also relates to the philosophical concept of Occam’s Razor, 

which states that assumptions should not be needlessly multiplied. 

 

As discussed previously in section (2.6.3), the potential for ‘overfitting’ is significant 

when considering a model of high complexity. The Bias/Variance trade-off dictates that 

although a more complex model may be successful in reducing the bias error by more 

closely approximating the underlying process or function, there may be an increase in the 

variance error due to a potential tendency to approximate the function to any random 

variation in the training data. Conversely a simpler model may have a higher bias 

(dependant on whether the underlying process or function is comparably simple), but a 

lower variance. The consequence of this trade-off is that in order for a complex model to 

be identified successfully, without being hamstrung by poor variance error, a large 

amount of training data is required. Therefore, from an overall perspective, we are 

restricted in our choice of model complexity by the amount of training data available.  
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3.3) Dealing with Complexity 
 

For many applications, large quantities of training data may not be available. Therefore, 

if we are to employ large complex networks to identify the underlying nonlinear 

function, the problem of promoting accuracy whilst restricting model complexity must be 

tackled. The various possible choices in architecture, activation functions and 

optimisation procedures discussed in the previous chapter show that whilst solutions to 

the complexity problem have been proposed, a great deal of uncertainty remains over 

which method would be most appropriate given a certain set of conditions. The 

consequence of this doubt has therefore led to the suspicion that perhaps the Neural 

Network was not the great ‘catch-all’ solution to supervised learning problems. 

 

Within the System Identification community, the development of Neuro-Fuzzy and Local 

Linear methods can be seen as a direct response to the ambiguous principles of the 

Neural Network approach, and indeed as an integration of classical methods of 

identification (local linear models) and prior system knowledge into the powerful 

adaptive basis function network methodology. Other methods such as the inclusion of 

penalty functions to the optimisation process have also been successful in applying a 

specific upper limit on the complexity of the resultant description. 

 

In tandem with this effort to simplify or make more methodical the Neural Network 

identification process, research has continued within the Statistical and Machine 

Learning communities on alternative ‘kernel’ methods. Rather than attempt to 

approximate a function through the use of large numbers of adaptive basis functions, 

these kernel methods approach the learning problem through the use of fixed basis 

functions or ‘kernels’. Whilst this movement from adaptive to fixed basis functions may 

be seen to be somewhat of a backward step, it has been shown that if enough of these 

fixed basis functions are used, the problems associated with complexity/overfitting can 

be mitigated, and therefore the perceived limitation in flexibility may be overcome. 

Furthermore, as there is only one fixed basis function to optimise, the resultant model 

structure can be seen to have an advantage in overall simplicity. 
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Many of these kernel methods have been developed toward the problem of classification, 

rather than as a tool for nonlinear regression, with the most well known approach being 

the Support Vector Machine (SVM), see Vapnik (1995). These kernel methods rely upon 

the implementation of the ‘Kernel Trick’, Aizerman (1964), where original observations 

may be mapped onto a higher dimensional feature space. By performing this mapping 

process, computational savings can be made as the nonlinear algorithms can be 

transformed into linear algorithms.  The Support Vector Machine has been further 

extended to tackle regression problems as in Drucker et al. (1997). Furthermore, the 

Gaussian Process model can be seen to be an example of a Kernel method or machine, as 

it relies on the use of a single optimised kernel rather than adaptive basis functions. 

However, the GP model can be distinguished from the majority of kernel methods due to 

its implementation of Bayesian methods. 

  

3.4) The Bayesian Alternative 
 

An alternative approach to overcoming the problem of overfitting in complex network 

models is to adopt a Bayesian framework. In the early 1990s there was significant 

progress in the field of adapting Bayesian methods to the field of machine learning in an 

effort to solve learning problems, see Mackay (1991). These Bayesian methods 

attempted to address the problems associated with employing complex learning systems 

through the use of a probabilistic framework. The importance of adopting a probabilistic 

approach, where a prior distribution is defined and then a posterior distribution is 

inferred, is that through these distributions, information may be gleaned about both the 

overall error of the approximation, and the uncertainty or likelihood associated with this 

error. This new information may then be redeployed toward the goal of improving the 

approximation. In the analysis of identification arising from the use of a non-Bayesian 

approach, only information regarding the size of the error may be forthcoming. 

 

The field of Bayesian modelling originates from within the statistics community where 

the probabilities of various events or outcomes must be calculated. The term Bayesian 

refers to the use of Bayesian inference, an interpretation of probability that allows the 

degree of belief in a hypotheses or event to be the basis of an estimate of its probability. 
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Through the use of Bayes’ Theorem, this prior ‘degree of belief’ can then be revised or 

updated upon the discovery of new information, giving a posterior estimate. 

 

The Bayesian interpretation of probability is often quoted as being in keeping with the 

scientific method, where a rule or hypothesis is first proposed, and revised upon any new 

discoveries. However, the concepts of Bayesian probability remain somewhat 

controversial within the statistical community as they are in contrast to that of the 

classical Frequency probability interpretation. In the Frequency interpretation, the 

probability associated with an event is defined as the limit of its relative frequency after 

observation in a large number of trials (e.g. the observed frequency of ‘heads’ when 

tossing a ‘fair’ coin should indicate that the probability of the event equals ½, given a 

large enough number of tosses). In contrast, a Bayesian will use a probability distribution 

over possible values for an unknown probability to express this uncertainty, and will then 

update this distribution as the outcome of each toss becomes known using probability 

theory.  

 

The introduction of the Prior probability is the fundamental step that allows us to move 

from a likelihood function to a posterior probability distribution through the application 

of Bayes’ Theorem. The adoption of this prior is also the main source of contention 

between Frequentist and Bayesian theorists, as the choice of prior can be viewed as 

arbitrary in many respects as the decision is made in the absence of experimental 

evidence. The counter argument is that the choices made are often done so on the basis of 

some kind of knowledge and are therefore not truly arbitrary. Furthermore, it could be 

argued that in the Bayesian approach our prior beliefs are at least stated explicitly, rather 

than employed tacitly as in other methods of probabilistic analysis. 

 

To support this discussion on Bayesian modelling and the details of the GP model, 

Appendix A contains a brief overview of the most relevant probability definitions. Useful 

introductions to the topic of Bayesian statistics are Box & Taio (1973), Press (1989) and 

Lee (2004). More advanced methods including the application of Bayesian methods to 

regression and classification problems are examined in Gull (1988), Gelman et al. 

(2004), Congdon (2003) and Denison et al. (2002). However, the growth of interest in 

GP models can be seen to predominantly originate from investigations into the use of 

Bayesian learning in Neural Network implementations. Important sources of information 
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on this particular aspect are the texts by Mackay (1991, 1992a, 1992b) and Neal (1996), 

and much of the forthcoming discussion can be seen to have its origins in this research. 

 

3.5) Bayesian Learning 
 

The Bayesian approach to the modelling of data is based upon the expression of 

knowledge in terms of probability distributions. Whereas more conventional parametric 

modelling approaches would seek to optimise the parameters of a model structure so that 

any model error is minimised, a Bayesian approach would seek to maximise the 

probability of a model given some data. Therefore, rather than dealing directly with the 

error in the model, we are to operate upon the probability of the model given the data. 

Consequently, if the goal of the modelling process is to obtain a prediction estimate, 

rather than directly computing the value of a new prediction yN+1, we must first find the 

probability of this new prediction P(yN+1). 

 

The Bayesian approach begins in a similar fashion to that of a more conventional 

parametric modelling approach. From examination of any ‘a priori’ knowledge of the 

unknown function, we can speculate upon a number of initial model structures or 

hypotheses Hi {i.e. H1, H2 … HL} that we believe may offer the level of flexibility or 

sophistication (e.g. would a linear model suffice?) needed to form an accurate 

representation. This set of models can be termed the ‘hypothesis space’ with each model 

said to be characterised by a set of parameters wi, which are to be identified through 

some empirical data D. 

 

This collection of models can be thought to be competing with one another to account for 

the data we have obtained, with each model Hi aiming to maximise the plausibility of the 

data. In this sense, the Bayesian approach adopted here differs from other probabilistic 

interpretations, as it is the inverse probability (rather than forward probability) that is to 

be employed through the use of the Likelihood principle. By doing so, the relative 

plausibility of these alternative models are to be computed based on the information 

present in the single data set that is to be observed. In the Bayesian framework our initial 

model or hypotheses Hi would be termed as a ‘prior belief’, and expressed as a Prior  

distribution over all possible models P(Hi). These initial beliefs (prior to the arrival of 
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any data) about the relative plausibility of these models can be thought to be a quantified 

list of probabilities P(H1), P(H2), …, P(HL) which sum up to 1 (a certain event). 

Furthermore, we can define a prior distribution over the parameters wi that is conditional 

on this initial model P(wi|Hi). 

 

3.5.1) Levels of Inference 

 

After deciding upon our possible models and observing experimental data, the Bayesian 

modelling approach has two stages or ‘levels of inference’ as described in Mackay 

(1991).  

 

3.5.1.1) 1st Level of Inference 

 

In the first level of inference, the task is to fit each model to the observed data through 

applying Bayes’ theorem to infer the parameters wi of each model. Therefore, this stage 

of the Bayesian approach is fundamentally similar to other modelling approaches where 

the parameters of a proposed model are to be optimised using information gained from 

the empirical data. Therefore, our goal is to infer a probability distribution over the 

parameters that is conditional on the data and the model/hypothesis P(wi|D,Hi). 

 

This first level of inference is performed through the application of Bayes’ theorem, 

where a Posterior distribution is inferred from combining the information present in the 

Prior  P(wi|Hi) with that of the information gained from the data. The information gained 

from the data is known as the Likelihood , P(D|wi,Hi), which gives the probability of the 

observed data as a function of the unknown model parameters. This probability can be 

said to be conditional on the initial model structure Hi and parameters wi, and is often 

expressed as the likelihood function L(wi): 

 

Bayes’ Theorem: Posterior     =  Likelihood x Prior__  

            Evidence 
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If our set of training data D is, for example {(x(1),y(1)),…, (x(n),y(n))}, the likelihood 

function L(wi) can be written as: 
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The unknown parameters of the model can now be identified through the optimisation of 

this likelihood function, with methods such as maximum likelihood or maximum-

penalised likelihood. 

 

The Posterior distribution can therefore be seen to be the product of the Likelihood  and 

the Prior , with the Evidence P(D|Hi) (also known as the marginal likelihood) acting as a 

normalising constant. This marginal likelihood or evidence quantity can be somewhat 

ignored in the first level of inference. However, it is this evidence quantity that allows 

comparisons to be made between the likelihood of different models in the ‘second level 

of inference’ discussed below. 

 

Note that for more complex models we can adopt a hierarchical approach to reflect the 

hierarchy of the proposed description. For example, Neural Networks are often 

characterised by a set of parameters to control the individual weights of the hidden layer. 

A further set of hyperparameters that control the distribution of these lower level 

parameters may then be defined. To implement this for the first level of inference, the 

inference process can be repeated for the hyperparameter-level through defining a hyper-

prior distribution over the hyperparameters. 

 

3.5.1.1.1) Getting a predictive distribution 

 

In the first level of inference, a posterior distribution over the model parameters has been 

achieved P(w|(x(1),y(1)),…, (x(n),y(n))). However, it is the probability of the new output that 

we are ultimately interested in. Therefore, in order to obtain a predictive distribution for 

the probability of a new output, P(y(n+1)), the Bayesian inference must be completed. This 
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is achieved through the integration of the model (i.e. y(n+1) from parameters w) with 

respect to the posterior distribution of the parameters 
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3.5.1.1.2) From predictive distribution to single-value prediction 

 

In most modelling tasks, we wish to approximate the output of underlying system or 

process. So far we have formulated a method to provide us with a predictive distribution 

over the output, i.e. the probability of the unknown value y(n+1). For a single-value 

prediction, we must estimate the output y from this predictive distribution. The mean of 

such a probability distribution is therefore taken as the most probable estimate. Note that 

the precise choice of point estimate is dependant on the assessment criteria we are using 

to compare model error. For a squared error loss function the mean is appropriate, but the 

median of the distribution may prove to be a better choice if the model error is being 

analysed as an absolute error, see Neal (1996). 

 

3.5.1.2) 2nd Level of Inference 

 

In the first level of inference the parameters wi of a particular model or hypothesis Hi 

were inferred from the observed data D using Bayes’ theorem, resulting in the 

conditional P(wi|D,Hi). Therefore, this process of model fitting is not radically different 

from other non-Bayesian approaches to the problem where a model is proposed and then 

optimised to reflect the available data. In the second level of inference, the objective is to 

compare a number of different models to find the most likely or plausible model given 

the data. As a result, this process has comparable goals to that of model validation, where 

a number of proposed models may be assessed and ranked accordingly. 

 

The second level of inference once again employs Bayes’ theorem to find the posterior 

probability of these different models given the data P(Hi |D). The existing Prior 

probability distribution P(Hi) (independent of parameters) over all possible models is 

employed in this inference. The likelihood P(D|Hi) represents what the data is telling us 



Chapter 3: Gaussian Process Models 

 72 

about the plausibility of each of the models Hi, and corresponds to the evidence or 

marginal likelihood quantity of the first level of inference. A normalising constant P(D) 

is once again employed to ensure the probability sums to unity. 
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The goal of this second level of inference is not to replace or replicate the process of 

validation where different models are compared in terms of accuracy or error. The 

Bayesian approach merely provides a further level of information regarding the 

probability of the model. This may then be used to distinguish between the suitability of 

competing models. 

 

3.5.2) Evaluating Integrals 

 

In order to implement the Bayesian approach a number of integrals must be evaluated in 

order to compute the posterior distributions of interest. Specifically, in the first level of 

inference, in order to obtain the posterior distribution of any new output yn+1, we must 

integrate over the parameters. Furthermore, in order to infer the most likely parameters, 

we must evaluate the marginal likelihood or evidence that is itself an integral: 

 

 iiiiii dwHwPHwDPHDP ∫ )(=)( )|(,||      (3.6) 

 

The evaluation of this integral over the parameter space is also important to any 

subsequent model comparison undertaken in the second level of inference. Therefore, the 

evaluation of the marginal likelihood is of fundamental importance to the implementation 

of the Bayesian inference as a whole, and is perhaps the most distinguishing feature of 

the Bayesian approach over more conventional methods of model optimisation and 

selection.  

 

The constituent parts of this integral are the likelihood and prior distributions detailed in 

the application of Bayes’ Theorem to the first level of inference. Both of these 

probability distributions can generally be seen to be nonlinear functions of the 
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parameters. The likelihood may often be expressed as a sum of a squared error term, and 

the prior may be of any form that we have deemed necessary to express our beliefs about 

the parameter values before any data has been observed. Taken together, this integral can 

prove to be analytically intractable and therefore impossible to evaluate directly. This is a 

significant problem with the Bayesian modelling approach and requires the use of 

approximation methods in many implementations. 

 

The most general purpose and powerful methods of evaluating these intractable integrals 

rely upon the use of Markov Chain Monte Carlo (MCMC) methods. Other possibilities 

include methods based on the use of Gaussian approximations to the modes (peak values) 

of the posterior distribution. These Gaussian approximations rely upon the assumption 

that one or more modes of the posterior distribution can be initially located and that the 

most of the important information contained within the distribution is to be found close 

to these modes. Various methods of implementing Gaussian approximations have been 

described in Mackay (1991,1992b, 1992c), Thodberg (1996) and Hinton and van Camp 

(1993). 

 

The approximation schemes based around the use of MCMC methods make no 

assumptions about the form of the posterior distribution under investigation, such as 

whether or not it might be approximated by a Gaussian. Therefore these methods are 

potentially more powerful and may be used to find multiple modes of the posterior 

distribution. However, the main disadvantage of MCMC methods is the computational 

demand many implementations require to converge to an adequate solution. The 

approach taken by Neal (1992a, 1993b, 1996) uses the Hybrid MCMC method for the 

implementation of Bayesian inference in Neural Networks. 

 

For the sake of thesis brevity, a full discussion of MCMC methods is not included in this 

thesis, but general resources detailing the vagaries of Monte Carlo methods are Gilks et 

al. (1996), Mackay (1998a), and Smith and Roberts (1993). Furthermore, due to the 

reliance of many Bayesian inference implementations upon such statistical sampling 

algorithms, good introductions to MCMC methods can be found in the more general 

Bayesian analysis textbooks mentioned before, such as Gelman et al. (2004) 
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3.5.3) What Prior? 

 

Another challenging aspect of the Bayesian approach is the determination of suitable 

prior probabilities with which to begin the inference process. These prior probabilities 

must embody our initial beliefs about the model before we have access to any data. For 

examples where a complex initial model is proposed, the task of expressing our prior 

beliefs over the model through assigning probability distributions, perhaps over different 

levels of parameter that are in themselves not readily interpretable, can be seen to be 

particularly demanding.  

 

As a consequence of the relative difficulty of this task, combined with the mathematical 

complexities detailed previously, the temptation is to adopt a prior for mathematical 

convenience rather than truly expressing our beliefs about the underlying function. This 

course of action can be seen to be inconsistent with the philosophy of the Bayesian 

interpretation of probability, as the choice of prior should be made irrespective of 

mathematical convenience. To proceed otherwise would therefore invite questions as to 

whether it the methods used may be truly described as Bayesian, therefore placing doubt 

over the validity of the approach. To remain consistent with such formalism, objectivity 

must be maintained. A prior placed on an object should be determined through prior 

knowledge, and to meet the requirements for objectivity, those working with the same 

prior knowledge should reach the same conclusions and therefore propose the same 

priors. 

 

Therefore, a balance must be struck between finding priors that are interpretable and 

readily applicable, whilst still reflecting our knowledge of the system. In practice, it is 

therefore common to apply prior distributions that are wide in terms of scope so as not to 

inherently rule too much in or out (e.g. a uniform or flat prior over models would not 

favour one model over another). For Bayesian Neural Network implementations 

independent Gaussian distributions are often used as the prior distributions over the 

parameters, see Mackay (1992b). 

 

A final consideration to be made regarding the choice of priors, particularly priors over 

models to be subsequently compared in the second level of inference, is that if the ‘true’ 

model is not included within our set of possible models then it obviously cannot be 
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included within the comparison. This has been termed the ‘closed hypothesis space’; in 

that we can only compare models that have been distinctly specified, see Gibbs (1997). 

As a result, if no model has been specified that comes close to the ideal, then the 

subsequent inference process will not compensate for this inherent flaw, as there is no 

Bayesian criterion for assessing the suitability of the defined hypothesis space. This is in 

keeping with any other modelling paradigm where if a candidate model is inherently 

unsuitable for approximating the data, then no amount of optimisation will overcome this 

fundamental error in model selection. 

 

3.5.4) Relating Back To Complexity 

 

In the previous section we have discussed the Bayesian approach to nonlinear regression 

and then gone on to discuss some of the difficulties of implementation. However, we 

introduced the Bayesian approach as an alternative strategy for dealing with the problems 

of implementing complex models found in more conventional methods of model 

selection and optimisation. In these more established methods we found that a candidate 

model’s complexity may be limited by the quantity of training data available to the 

optimisation process.  

 

By contrast, if a Bayesian approach is taken toward the goal of identifying a complex 

model, at no point in this procedure (Priors → Collect Data → Infer Posterior → 

Predictions → Comparison) is the complexity of the model modified to meet restrictions 

imposed by the amount of training data. Such a course of action can be seen to be 

inconsistent with the Bayesian perspective, as if a model or prior are deemed to be 

correct for cases where a certain number of data points are observed, they should 

theoretically remain correct for cases where more data points are available. 

 

Unfortunately, although the theoretical principles of the Bayesian approach may preclude 

the influence of the size of the dataset over the model complexity realisable, limitations 

may still be imposed by more practical considerations. For example, if data is sparse for 

a given application, a simpler model may be deemed more suitable if the advantages of a 

more complex description cannot be realised without considerable computational 

expense. Furthermore, a moderately inaccurate prior might prove to be a more significant 

handicap to the identification process where the data is insufficient. Therefore, for 
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applications where a simple model is not likely to provide an adequate description, an 

appropriate Bayesian approach would be to implement the most complex solution that is 

computationally viable, disregarding the size of the training dataset. 

 

3.5.4.1) Occam’s Razor 

 

In the identification of a model of suitable complexity, the principle of Occam’s Razor is 

often cited as being relevant. The maxim dictates that in the presence of several 

compatible models or hypotheses, no more assumptions should be made than are 

necessary. This leads to a preference for simpler solutions over more complex 

alternatives, as they are often founded upon fewer assumptions. In some circumstances, 

this preference for a simple solution may be aesthetically motivated by the desire for a 

mathematically elegant solution, but it may also be construed as an excuse for 

reductionism or mathematical convenience. Nonetheless, invoking this concept towards 

the goal of regulating the complexity of a model has practical benefits in terms of 

computational demand and model interpretability.  

 

Whilst we can employ this preference for simple models over more complex alternatives 

in any situation where competing models have been identified, by simply choosing the 

least complex model that still meets our accuracy requirements. However, the Bayesian 

setting outlined in this chapter offers a further level of information with which to employ 

this preference against complexity. Indeed, the Bayesian approach can be used to 

automatically apply Occam’s Razor, allowing a simpler solution to become our preferred 

choice (rather than purposely having to implement some method of regularisation into 

our optimisation procedure that places an arbitrary upper limit on complexity). This 

automatic implementation of Occam’s Razor relies upon the examination of the marginal 

likelihood or evidence, i.e. the probability of the data given the model.  

 

To illustrate this feature, suppose that we have two competing models (H1 and H2) of 

different complexities, with H2 being much more complex. Fundamentally, a simple 

model may only offer a limited variety of possible target values for a given set of inputs, 

whereas a more complex model has the scope to offer a wider range of possible targets 

due to the greater flexibility on offer. This relationship is visualised in Figure (3.1), 

which shows the behaviour of the marginal likelihood for the two different model 
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complexities, P(D|H1)and P(D|H2). This figure and further discussion can be found in 

many of the aforementioned sources, including Mackay (1991, 2003) and Rasmussen and 

Williams (2006).  

 

 

 

 

 

 

 

 

Figure (3.1): Occam’s Razor from Marginal Likelihood 

 

Interpreting this figure in terms of marginal likelihood (a probability distribution over the 

data given the model that is normalised to unity), a simple model will have a large value 

of marginal likelihood where the model does accurately account for the data, i.e. a 

precise fit to the data, but this distribution will be narrow (low variance) due to the 

limited potential of the simple model. Conversely, a more complex model offers the 

possibility of accounting for a wider range of data (high variance), but the value of the 

marginal likelihood for any given model will not reach the same magnitudes as would be 

seen for a simple model.  

 

For cases where both models can be seen to be compatible with the data, the simpler 

model H1 will have a larger marginal likelihood and therefore may be interpreted as more 

probable. Therefore, we may express a preference for a simpler solution through 

assessing the marginal likelihood of each model and selecting the most probable model. 

Furthermore, we have expressed our predilection towards simpler models without 

applying any arbitrary or subjective prejudice against more complex solutions, such as an 

external parameter to govern the trade-off between model complexity and model 

accuracy. Consequently, we can utilise the marginal likelihood as a tool for selecting an 

appropriate model complexity that is well suited to the observed data. 
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3.6) Gaussian Process Modelling 
 

In this chapter the primary focus has been on building a case to support the consideration 

of a Bayesian approach to the supervised learning problem. The importance of this 

discussion is that by adopting this Bayesian formalism the overfitting problem normally 

associated with complex networks of a large size (Neural Networks or Kernel Machines) 

may be potentially overcome. In addition to outlining the potential of the Bayesian 

approach, the previous discussion highlighted potential problems regarding the 

identification of suitable priors, and the possible occurrence of intractable integrals that 

may require the use of time-consuming Markov Chain Monte Carlo (MCMC) methods 

for solution. 

 

Fortunately, the main advantage of the Gaussian Process (GP) modelling approach is that 

we can remove some of the mathematical complexity associated with implementing a 

Bayesian framework, whilst retaining its features regarding its approach to dealing with 

complexity. Specifically, the mathematical properties of the Gaussian Process allow the 

problematic integrals associated with the evaluation of the marginal likelihood to become 

tractable, and therefore directly calculable thus forgoing the requirement for MCMC 

methods. Furthermore, much of the flexibility and power of approximation associated 

with the complex adaptive basis function methods such as the Neural Network can also 

be retained through the use of the GP model. Instead of a neural network composed of a 

finite number of adaptive basis functions, the GP model will be seen to correspond to an 

infinite network of fixed basis functions (or a kernel-based method), thus allowing 

significant computational savings to be made. 

 

Much of the recent work on Gaussian Process models originates from the work of 

Mackay (1991, 1992a, 1992b) and Neal (1993) who applied the Bayesian approach 

toward the problems of learning with complex Neural Networks. In particular it was the 

research carried out by Neal (1996) into the possibilities of implementing infinite 

networks using Bayesian inference that lead to the realisation that, under some 

circumstances, a network composed of infinite fixed basis functions corresponds to a 

Gaussian process. Specifically, Neal (1996) demonstrated that under the Bayesian 

framework, neural networks with one hidden-layer converge to a Gaussian process as the 
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number of hidden layer neurons increases towards infinity, assuming suitable (zero-

mean) priors.  

 

The key outcome of this observation is that instead of struggling to define different priors 

to represent our initial beliefs about the proposed network (as would be the procedure in 

the Bayesian approach outlined previously), we can directly define a Gaussian Process as 

the prior over the possible functions. Due to the mathematical properties of the Gaussian 

process this is a significantly more straightforward task. As a result, the explicit use of 

Gaussian processes to express our prior beliefs was proposed as a potentially simpler 

approach to implementing Bayesian analysis. 

 

This proposal of using Gaussian Processes as the basis for Bayesian nonlinear regression 

was taken up by Rasmussen and Williams (1996) who showed that the Gaussian Process 

models compared favourably to other approaches including Neural Networks and the 

Multivariate Adaptive Regression Splines (MARS) of Friedman (1991). In Rasmussen 

(1996) the GP method was also contrasted with a Bayesian Neural Network structure 

based upon the methods developed by Neal (1996) and was found to be significantly less 

computationally intensive as MCMC methods were not required. 

 

The use of GPs gained further momentum through the work of Mackay (1997) where GP 

models were even postulated as a potential replacement for Neural Networks. Later 

versions of this paper with further information and discussion can also be found in 

Mackay (1998b, 2003). This work by Mackay was the first general review of the 

methods involved in undertaking supervised learning methods using Gaussian Processes. 

The reviews also contain discussion about how the approach can be seen to have notable 

equivalents and parallels across other learning methods and indeed in other areas of 

research. Important links between Gaussian Processes and other methods such as Kalman 

filters, Splines, and generalised radial basis functions are made apparent. Furthermore, 

the work by Mackay makes the observation that the use of Gaussian Processes for the 

purposes of regression can even be stretched back to work of O’Hagan (1978), Wiener 

(1948) and of the astronomer Thiele working in the 19th century as described in Lauritzen 

(1981). However, the most interesting was the parallel made between Gaussian Processes 

and the well-established Geostatistics technique of Kriging, which uses the probabilistic 

analysis of data for the identification mineral deposits. The methods of Kriging have 



Chapter 3: Gaussian Process Models 

 80 

been found to be identical to Gaussian Process regression, with the original research 

being conducted by Matheron (1963) and named after a mining engineer D.G. Krige. A 

review of these methods can be found in the text by Cressie (1994) devoted to statistical 

techniques for dealing with spatial data. 

 

Further reviews of GP regression were completed by Gibbs (1997), Williams (1998) and 

Seeger (2004). The latest research into the GP model has focused upon overcoming some 

of the limitations of the approach and adapting it toward the task of nonlinear system 

identification. Precise details of these advancements and references are to be discussed in 

later sections of this chapter and the next. Much of this previous research has now been 

reviewed and brought together into a single volume by Rasmussen and Williams (2006), 

which builds on previous reviews and provides an excellent grounding in the theory and 

methods required for successfully adopting the GP approach. Furthermore, the text by 

Rasmussen and Williams (2006) provides a detailed comparison of the GP method with 

other machine learning architectures, such as the Support Vector Machine and Spline 

smoothing techniques. However, only a very limited amount of this research into the GP 

model has been aimed toward meeting the specific demands of system identification for 

engineering problems that is the main focus of this thesis. 

 

3.6.1) What exactly is a Gaussian Process? 

 

Given that the mathematical properties of a Gaussian Process are key to the mechanics of 

the Gaussian Process model, it is pertinent to discuss the peculiarities of this complex 

mathematical object. Put simply, a Gaussian Process is a stochastic process. But what 

exactly is a stochastic process? 

 

The concept of a mathematical stochastic process was inspired by the need to model 

physical stochastic processes, which are processes in which the measured variable is 

governed by probabilistic laws. The most famous example of a physical stochastic 

process would be the Brownian motion of particles suspended in a liquid. A 

mathematical stochastic process can be defined as a collection or family of random 

variables. More loosely, a stochastic process may be thought of as a random function, 

with each function value being a random variable. Indeed, a random variable can be 

thought to have been created by a random or stochastic process. A further distinction can 
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be made between a stochastic process and a random field. Whereas a stochastic process 

can be thought to be evolving and therefore indexed with time (at time t, a random 

variable Xt is specified), a random field can be seen to be a collection of random numbers 

whose values are mapped onto any defined space of n dimensions. 

 

Another important definition to consider is the fact that a random variable is actually 

defined as a mathematical function itself, rather than a true mathematical variable of 

assignable value. A random variable will map the possible outcomes of an experiment 

rather than describe the actual outcome. With each random variable, a probability 

distribution can be defined to describe its qualities, i.e. if X is a random variable, the 

corresponding probability distribution assigns to an interval [x1, x2] the probability 

P[x1≤X≤x2]. A probability distribution is often further characterised by a probability 

density function (PDF) where integrals are defined over an interval to calculate the 

precise probability.  

 

Given these definitions, we can more precisely define a Gaussian Process to be a 

generalisation of the Gaussian (or normal) probability distribution (i.e. random 

variable 2~ Normal( , )X µ σ ), where sample functions generated over time {Xt} have the 

property that any linear combination will be normally distributed (i.e. the process is 

Gaussian if all joint distributions are multivariate normal). Put into more mathematically 

explicit terms, for any given set of inputs {x1,…, xn}, the resultant random variables 

{ f(x1),…, f (xn)} have an n-dimensional Gaussian distribution: 

 

 p(f(x1),…, f (xn)|x1,…, xn) = Normal(m,Σ)     (3.7) 

 

where m is the n x 1 vector of expected values (or means) and Σ is the n x n matrix of 

covariances between all pairs of points. The covariance can be interpreted as a measure 

of how much two variables vary together (since variance is a measure of how much a 

single variable varies). Two independent variables are defined as having a covariance of 

zero; therefore two random variables whose covariance is zero are defined as 

uncorrelated. For two variables that show a tendency to vary together (i.e. they can be 

seen to display a degree of correlation such that both variables are found to be above an 

expected value), a positive covariance will result. Alternatively, if two variables are 

found to vary in an opposing trend, the covariance should be negative. 
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The Gaussian or Normal distribution can be characterised by the following Gaussian 

‘Bell’ probability density function: 
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with mean µ corresponding to the expected value of the random variable, and variance σ2 

describing the statistical dispersion around the expected value, and commonly interpreted 

as the width of the probability distribution. Variance measures are also commonly 

converted to standard deviations and presented as error bars, with one standard deviation 

(σ) of a standard Gaussian distribution corresponding to a 68% confidence interval, and 

2σ as a 95% confidence interval. 

 

Given the properties of the Gaussian or normal distribution, one can fully specify a 

Gaussian process solely through its mean and covariance function:  

 

 f(x) ~ GP(m(x),C(xi,xj))       (3.9) 

 

with mean function m(x) = E[f(x)], and covariance function C(xi,xj)= Cov[f(xi), f(xj)]. In 

a probabilistic framework this may also be written as  

 

 mi = E[f(xi)|xi] 

 Σij = Cov[f(xi), f(xj)| xi,xj] = E[f(xi), f(xj)| xi,xj] - E[f(xi)|xj]E[f(xj)|xj]  (3.10) 

 

A covariance matrix Σij can then be generated from evaluating the covariance function 

given all the pairs of recorded data. Note also that given the assumed form of y = f(x) 

between inputs x and outputs y, the covariance between inputs Σij = Cov(xi,xj) = C(xi,xj), 

is also equal to the covariance evaluated at the corresponding outputs C(yi,yj), where 

C(.,.) is some covariance function. The covariance matrix Σij can then be defined as: 
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The overall result of adopting these mathematical constructs is that we can calculate the 

properties of the Gaussian Process at any finite number of points, and receive the same 

answer as if we were to calculate all the points of the process. This quality of the 

Gaussian process is sometimes known as the marginalisation property, and it allows us 

to overcome the perceived computational impossibilities associated with handling 

infinite dimensional random objects. This marginalisation property is also interpreted as 

a consistency requirement that must be fulfilled through the use of a covariance function 

to specify each entry of the covariance matrix, (i.e. if we are to employ a function that 

specifies the entries of an inverse covariance matrix then this property is no longer 

satisfied). 

 

Furthermore, from this description of the Gaussian Process, we can see that the 

covariance function plays a fundamental role in how the resultant Gaussian Process will 

be specified. It is this function that generates the covariance matrix, and therefore 

influences how inputs and outputs are to be correlated with each other. The user must 

select the covariance function used by the GP model and therefore the choice represents a 

significant design control over the resultant model. More information on different 

covariance functions and how a suitable function may be identified will be given in the 

next chapter. However, from a purely mathematical perspective, any function that results 

in a positive semi-definite covariance matrix may be seen to be a valid choice of 

covariance function. 

 

In conclusion, due to the complex random mathematical objects that make up the 

building blocks of the GP model, the descriptive terms used to categorise the approach 

(e.g. nonparametric, random variables, stochastic processes, …etc.) can seem rather 

ambiguous, impenetrable and by their very nature imprecise, especially for those 

uninitiated with probabilistic analysis. However, it is important to remember that whilst 

the components parts of the GP model may be seen to be complex random mathematical 

objects, they may be precisely expressed with interpretable mathematical functions such 

as Normal distributions and covariance functions. 
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3.6.2.) From Infinite Networks to Gaussian Processes 

 

As mentioned previously, much of the interest in Gaussian Process models was initiated 

by the demonstration of a level of equivalence between Gaussian processes and Bayesian 

neural networks composed of an infinite number of fixed basis functions, assuming 

suitable priors. In the previous section, we have closely defined the mathematical 

particulars of the Gaussian process, but the relationship to infinite neural networks is 

worth exploring in order to complete the picture. From this point, the task of performing 

regression with Gaussian process models becomes more interpretable. For this section 

the work of Neal (1996) is referred to again and use is also made of much of the same 

theory and notation found in Gibbs (1997) and Mackay (1998b). 

 

3.6.2.1) Defining Fixed-Basis Function Model 

 

Restating the learning problem to be solved, we are given a set of N training data-points 

(XN, tN) = {x(n), tn}, composed of inputs x that are vectors of some fixed input dimension 

I, and corresponding outputs or targets tN. Our task is to infer an unknown function y(x) 

assumed to be well represented by the data, and then seek to calculate predictions of new 

targets tN+1 given a new observed input xN+1. 

 

Adopting a parametric approach to the modelling task we aim to approximate the 

unknown function y(x), by a nonlinear function y(x; w) that may be characterised by 

parameters w. If we now choose to adopt a network of H fixed basis functions 1{ ( )} H
h hφ =x  

as our model structure, then we can specify the model as 

 

 
1

( ; ) ( )
H

h h
h

y wφ
=

=∑x w x         (3.12) 

 

Notice that by adopting this structure, the dependence between the output y and the 

parameters w is linear. This is an important point, as we are seeking to identify a 

nonlinear function y(x; w), but we have specified that the relationship between the 

unknown function y and the unknown parameters w is linear. However, if we specify 

basis functions that are nonlinear functions of x, then the overall model y(x; w) is said to 
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be nonlinear. If we therefore select the nonlinear radial basis function centred at fixed 

points 1{ } H
h hc =  , we can define 
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       (3.13) 

 

For notational convenience, we can define a matrix R (N x H) to represent the values of 

the basis functions 1{ ( )} H
h hxφ =  at the points {x(n)}. We can then define the vector yN to be 

the vector of values of y(x) at the N points. 

 

 ( )( )n
nh hR φ≡ x  

 n nh h
h

y R w≡∑          (3.14) 

 

From an overall perspective we can therefore interpret this model as being a multilayer 

network where only the output weights w are adaptive. The inner connections between 

the input layer and the hidden layer are fixed. 

 

 

 

3.6.2.2) Define (Zero-Mean) Prior 

 

In keeping with the Bayesian approach, after defining this initial model structure, we 

must now define a prior probability distribution over the unknown parameters w of this 

model. In the absence of any data, a possible choice of prior could be a Gaussian 

distribution of zero mean. 

 

 2( ) Normal( , )wP σ=w 0 I        (3.15) 

 

As we have defined y as being a linear function of w, we can therefore deduce that y will 

also be Gaussian distributed, with a mean, E[y], of zero. The covariance matrix Q of y 

can then be defined as  
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 E[( E[ ])( E[ ]) ]= − − TQ y y y y  

 
= =T T T T

2 T
w

Q Rww R R ww R

Q = RR

Tyy =

σ

     (3.16) 

 

Giving the prior distribution of y as: 

 

 2 T( ) Normal( , ) Normal( , )wP σ= =y 0 Q 0 RR      (3.17) 

 

Therefore, for any selected number of points XN, the vector of function values y will 

always have a Gaussian distribution. As a result of assuming a Gaussian zero-mean prior, 

we have therefore recreated the defining property of the Gaussian process in that a 

probability distribution of a function y(x) is a Gaussian process for any finite selection of 

points {x(n)}, the probability density P(y(x(1)), y(x(2)), …, y(x(n))) is also Gaussian. 

 

Looking more closely at the covariance matrix Q, the individual (n, n’) element of Q is 

 

 2 T 2 ( ) ( ')
' '

RR ( ) ( )n n
nn w w h hnn

h

Q σ σ φ φ = =  ∑ x x      (3.18) 

 

The covariance matrix Q describes the covariances of the function values at locations 

XN, but we must also describe the covariance at the output or target values tn. Assuming 

each target tn differs from the corresponding function value by Gaussian distributed 

additive noise 2
vσ , then the targets will also have a Gaussian prior distribution 

 

 2( ) Normal( , )vP σ= +t 0 Q I        (3.19) 

 

Therefore, denoting the covariance matrix of the targets t by C: 

 

 2 2 2
v w vσ σ σ= + TC Q RRI = + I        (3.20) 

 

Looking more closely at the covariance matrix C, the individual (n, n’) element of C may 

be shown to be 
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 2 ( ) ( ')
' '( ) ( )n n

nn w h h nn
h

Q σ φ φ δ= +∑ x x       (3.21) 

 

3.6.2.3) Move to Infinite Basis Functions 

 

If we now consider the model based upon an infinite rather than finite number of basis 

functions (H → ∞ ), the summation over the basis function at (n, n’) becomes an 

integral. We can simplify the form of Qnn’ by assuming that the basis functions are to be 

uniformly spaced, with each basis function h centred on the point x h= . Additionally, 

the variance component 2wσ  can be scaled so as not to diverge with the increasing H, by 

redefining it as a constant S dependent on the number of basis functions per unit length of 

the x-axis. 
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Setting the limits of integration to ± ∞, this integral becomes: 
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From this expression describing the individual entry (n,n’) of covariance matrix Q, we 

can generalise to form a covariance function describing all entries with the constant terms 

grouped together to form the hyperparameter θ1. 
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Therefore, for any valid covariance function, we can define the covariance matrix Q for 

N function values at locations XN to be: 
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 ( ) ( ')( , )n nC= x xQ         (3.26) 

 

And assuming Gaussian additive noise, the covariance matrix C for the corresponding N 

target values is: 

 

 ( ) ( ') 2
'( , )n n

v nnC σ δ= +C x x        (3.27) 

 

3.6.2.4) Where does this leave us? 

 

The consequence of increasing the number of fixed basis functions of the model towards 

infinity is that effectively a prior may now be defined using a covariance function that is 

equivalent to the prior specified in terms of basis functions and priors over the 

parameters. In essence we have simplified the process of defining a suitable prior as 

instead of defining individual priors over the type of model or function, parameter 

values, and noise beliefs, we can combine everything through defining a Gaussian 

Process Prior that may be specified through the choice of covariance function C.  

 

Furthermore, as well as making the task of defining priors easier, the subsequent steps 

required to complete the inference and obtain predictions also become easier to 

implement. Previously, the presence of intractable integrals made the evaluation of 

different components (particularly the marginal likelihood) of the Bayesian framework 

difficult to achieve without the use of iterative methods. Through the use of the Gaussian 

process, these integrals become tractable and can therefore be treated analytically. 

 

3.7) Regression with Gaussian Processes 
 

The previous sections have provided an account of how we can use a Gaussian process to 

represent our prior beliefs for Bayesian learning. By using a Gaussian process prior, we 

can alleviate much of the difficulty of identifying suitable priors over the type of 

functions and parameters if a more conventional parametric structure were to be 

employed. Therefore, to employ a Gaussian process as our prior we must specify its 

defining characteristics, namely the mean of the process, and a covariance matrix C that 

reflects the correlations found in the training data set. 



Chapter 3: Gaussian Process Models 

 89 

 

A common choice for GP models is to specify a zero-mean Gaussian process as our 

prior. In reality, the choice of a zero-mean Gaussian process may not be particularly 

representative of the underlying data, but this is not seen as a drastic limitation as our 

posterior process is not confined to zero. For the specification of the covariance matrix 

C, a suitable covariance function C(x, x’) must be applied to the training data. Various 

choices of covariance functions are possible (see Section 4.3), and the most appropriate 

candidate must be selected on the basis of prior knowledge. As a result, the choice of 

covariance function is fundamental to the GP modelling approach as it dictates how the 

data is to be transformed into a matrix that reflects their correlations.  

 

After selecting an appropriate covariance function, the parameters θ of this function 

(known as hyperparameters due to the similar role played by the upper-level parameters 

of neural network approaches) must be identified from the training data in order to 

optimise this covariance function. This process is to be discussed in the next chapter, but 

for the moment we can assume that an optimised covariance function has been identified 

and that our Gaussian process prior has been specified. At this point, we wish to discuss 

how predictions can be made using this Gaussian process prior. 

 

3.7.1) Making Predictions 

 

To initiate Bayesian learning, after defining the prior of our Bayesian model, the next 

stage is to infer the posterior and ultimately make predictions given a new input xN+1. 

However, due to the nature of our prior, instead of following the procedure of the 

Bayesian approach outlined previously, we can also bypass some of these steps. In the 

Bayesian framework outlined, the inference of a posterior distribution with which to 

make predictions relied upon the application of Bayes’ theorem. However due to the 

nature of our prior we have in effect explicitly stated the probability of the data (i.e the 

marginal likelihood) in one step. Therefore, we can obtain the predictive distribution of 

tN+1 from the straightforward application of conditional probability  instead of applying 

Bayes theorem. As a result, it could be said that the GP modelling approach is not truly 

Bayesian due to the absence of Bayes’ theorem. In fact, the prior placed upon the space 

of functions comes from the very probabilistic nature of the model (a Gaussian process 

being a random function) instead through the explicit use of Bayes’ formula. 
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Restating the regression problem, we are given a set of N training data points 

( , )N NX tD = , composed of inputs x that are vectors of some fixed input dimension (i.e. 

multiple inputs), and their corresponding scalar outputs or target values t (single output): 

 

 Inputs:  1 2[ , , , ]N N=X x x x…       (3.28) 

 Targets: 1 2[ ( ), ( ), , ( )]N Nt t t=t x x x…      (3.29) 

 

The regression task at hand is to predict a new output or target tN+1, given the new input 

xN+1. However, due to the probabilistic nature of the GP modelling approach, the 

regression process will involve the computation of a posterior probability distribution 

over tN+1, and subsequent determination of a singular prediction estimate 1N̂t +  based upon 

the mean of this distribution. 

 

Utilising the GP modelling approach, we are to specify a Gaussian process prior 

distribution over the space of functions. As discussed previously, the GP prior is a 

collection of random variables that are assumed to have a joint  multivariate Gaussian 

distribution, thus allowing it to be fully specified by its mean µ and covariance matrix C. 

As the Gaussian process is a collection of random variables, we can explicitly state the 

probability of the target data as the joint distribution 
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= ∏t C X x x θ x      (3.30) 

 

The probability of the target data is conditional on the covariance matrix and input data, 

( | , )NP t C X . This joint distribution can then be rewritten as  
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-1t C X t C t     (3.31) 

 

where C is the covariance matrix defined by the parameterised covariance function 

( , ; )m nC x x θ  applied to the input data, µ is the mean of the process, and Z is a 

normalising constant. Furthermore, we can realise the prior belief regarding the Gaussian 

process having zero-mean, µN = 0, allowing us to rewrite the Gaussian process prior as  



Chapter 3: Gaussian Process Models 

 91 

 11 1
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The regression task is now to infer the prediction tN+1, using this Gaussian process prior 

and a new input observation xN+1. Therefore the predictive distribution we desire can be 

interpreted as a conditional probability distribution over tN+1, written as 

1 1(t | , , )N N NP + +C xD , where ( , )N NX tD = .  

 

If we briefly adopt a more concise notational form, (where our prior ( | , )N N NP t C X  is 

denoted as P(tN), and the desired posterior 1 1(t | , , )N N NP + +C xD  is denoted P(tN+1)) we 

can interpret this conditional probability as 
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Therefore we must find the joint probability P(tN+1,tN) of the new input and the existing 

prior probability. Reverting back to the previous notation, we can restate this conditional 

probability as 
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where the conditional probability 1 1( | , , )N N N NP + +t C X x  in the numerator of this 

expression is equivalent to the joint distribution P(tN+1,tN). Therefore, before finding the 

conditional distribution 1 1( | , , )N N NP + +t C xD , we must first define the joint distribution 

1 1( | , , )N N N NP + +t C X x . This can be done by treating the new input observation as a 

continuation of our Gaussian process, where we can apply the covariance function to the 

new observation and therefore update the covariance matrix from CN to CN+1, giving the 

joint distribution:  
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At this stage we can introduce the mechanics of how the covariance matrix CN+1, is to be 

updated through the introduction of a new input. From the training set XN, the covariance 

matrix CN was determined. For predictions, a new covariance matrix (incorporating the 

new input data) CN+1 of size (N+1) × (N+1) is obtained from 
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Where the sub-matrix ( ) ( )1, N+1 N, N+1 C ; , ,C ; =  k x x θ x x θ…  is the vector of covariances 

between the new test point and existing training cases, and ( )N 1, N+1 C ;κ += x x θ  is the 

variance of the individual test case. 

 

Returning to the task of obtaining the conditional probability 1 1( | , , )N N NP + +t C xD , 

remembering the relationship that 
1
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At this point we can see that in order to compute this posterior distribution to find the 

probability of the new target tN+1, we would need to already have observed tN+1, i.e. the 

very quantity which we are hoping to predict. Thankfully, through the use of some 

mathematical substitution made possible by using partitioned inverse equations, see 

Bartnett (1979), we can move forward. These partitioned inverse equations allow the 

specification of 1
1N

−
+C  in terms of NC  and 1

N
−C , and thereby allow us to effectively 

implement a model where the number of basis functions may be much larger than the 

number of observed data points N. This can be seen to be a computational saving (the 

matrix inversion is N×N, rather than (N+1) × (N+1)) as we can in effect fix the 

computational demand to that of O(N 3).  
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The precise details of this mathematical manipulation and the derivation of the GP 

predictive equations have been omitted here for the sake of thesis brevity, but may be 

found in Appendix B. Utilising these expressions we can specify the posterior probability 

of in terms of CN and k, thereby allowing computation. The result of this process is that 

we can define the posterior distribution in a readily interpretable Gaussian form: 
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where the mean and variance are defined as: 

 

 1
1 1

ˆ T
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 2 1
1 1 1

T
N N N Nσ κ −

+ + += − k C k        (3.41) 

 

Therefore, we have arrived at the point where a prediction of the output 1N̂t +  has been 

obtained, together with the uncertainty over that prediction that may be interpreted using 

error bars. 

 

In the next section a more visual interpretation of the GP modelling approach is 

provided, however it is worth pointing that an alternative ‘weight-space’ mathematical 

interpretation of the GP framework has also been developed, see Rasmussen and 

Williams (2006). In this chapter the ‘function-space’ interpretation of the GP method has 

been presented. Through the weight-space-view, the GP modelling approach can be seen 

to be equivalent to the Bayesian linear regression. As the two interpretations can be seen 

to result in the same predictive framework, the function-space viewpoint has been 

preferred solely due to being more intuitive in my experience. 
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3.8) Demonstration of Gaussian Process Modelling 
 

To provide a better understanding of the GP modelling approach, a simple one-

dimensional regression problem is considered, with input x and output f(x). This example 

is aimed at providing a more visual interpretation of the method. 

 

3.8.1) Defining a Gaussian Process Prior 

 

The first step in any application of Bayesian inference is to define a Prior distribution 

over the kinds of function we expect to observe before any data is presented. For a 

Gaussian Process model, we employ a Gaussian Process to define our Prior to represent 

our prior beliefs over the underlying function. For this example, a zero mean Gaussian 

process with a point-wise variance N(0,1) has been taken as our Prior. In Figure (3.2), we 

can see the assumed space where we believe the function is to exist on a chart of the 

output y (= f(x)) versus input x.  
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Figure (3.2): Prior Distribution over functions with 5 sample functions 

 

A number of sample functions from the Gaussian Process have also been drawn onto 

Figure (3.2) to show a number of functions that could possibly be close to what we are 

searching for. Note that these sample functions are just possibilities drawn at random, 
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and do not involve prior knowledge or represent particularly likely candidates that are to 

be corrected in the next step. These sample functions merely provide a visualisation as to 

the variety of possible functions that exist over our function space. The dotted lines at y = 

-2, 0, and +2, can be seen to represent the Prior where the average value of the sample 

functions at each x is zero (at this point in the process we have no data to assume 

otherwise), together with 2 times the point-wise variance (i.e. 2σ = +/- 2) that we have 

used as an indicator as to the variability of the sample functions. Furthermore the 

Gaussian process used has specified a prior variance that is independent of the input x. 

 

In Figure (3.2), the sample functions are drawn at random from the Prior distribution 

over functions. A further assumption has been introduced that implies that the underlying 

function will vary in a smooth manner. The samples shown in Figure (3.2) are all 

characteristically similar in that they have been drawn from a Gaussian process defined 

from the same Covariance function with identical hyperparameters. A random element 

has been introduced to show a few different possible functions based on the same 

Covariance function and hyperparameters. More information on different covariance 

functions and the influence of their hyperparameters is to follow in the next section. 

Again, these are sample functions drawn from the Prior distribution over functions for 

the purposes of visualisation, not the Prior itself. Normally, we are not interested in 

generating random samples from the prior, but in generating a posterior and then making 

predictions. 

 

3.8.2) Compute Posterior 

 

Following the template for Bayesian inference, the next stage is to compute the Posterior 

distribution. In order to make this happen, we must have some observed data to combine 

with our Prior distribution over functions. Therefore consider that we are now given a 

small dataset comprised of 4 pairs of input-output data D = {(x1,y1), …, (x4,y4)}, as 

shown in Figure (3.3). 
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Figure (3.3): Observed Data (4 data points) 

 

Visually, the idea is to move from our Prior space over every possible function, to now 

considering functions that pass through or close to the observed data. We are not 

‘correcting’ the previous sample functions of Figure (3.2), but identifying new functions 

from our function space that are consistent with the observed data. 

 

In Figure (3.3) the observed dataset is displayed as point values, and in Figure (3.4) the 

Posterior distribution over functions is displayed. In Figure (3.4), a number of possible 

functions (in dashed lines) consistent with the observed data are displayed, together with 

the predicted mean of the posterior distribution (solid line) that is normally taken as the 

overall prediction estimate of the GP model. Figure (3.4) also displays error bars 

showing twice the standard deviation (2σ) that provide an estimate as to the uncertainty 

of the predicted mean relative to the input x. From these error bars we can see that the 

variance of the prediction is markedly reduced close to the observed values, indicating 

that we are more certain in these regions and therefore more confident in our model’s 

accuracy. 
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Figure (3.4): Posterior Distribution with 4 sample functions (dashed lines) and 

Predicted Mean (solid line) & 2σ Errorbars 

 

If the size of observed dataset is increased, as in Figure (3.5), we can see the mean of the 

posterior is further adjusted to remain consistent with the data, together with a further 

decrease in variance close to the observed values. Due to the increase in the number of 

data points, we have more evidence with which to analyse the correlations between the 

different data points. As a result, we can be more certain of our model’s accuracy over a 

greater range of the input space. Furthermore, the regions where data is sparser become 

ever more pronounced through the analysis of the uncertainty/errorbars that is made 

readily possible in the GP modelling approach.  
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Figure (3.5): Posterior Distribution (20 data points) with Predicted Mean (solid line) 

& 2σ Errorbars 

 

Note that in this demonstrative example, the choice of covariance function or 

hyperparameters has not been discussed. A reasonable fit to the underlying function was 

achieved primarily because the observed data points were random points that were 

themselves generated from a Gaussian process of closely matching hyperparameters. For 

the identification of unknown functions, a suitable covariance function composed of 

identified hyperparameters must be determined from the available training data. The 

details of this identification process are to be discussed in the next chapter. 
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4) Implementation of GP models 
 

In the previous chapter the theoretical background to the GP modelling approach was 

discussed together with the mathematical framework necessary to facilitate nonlinear 

regression. In this chapter, we are to look more closely at the details of exactly how the 

GP method is to be implemented. Of fundamental importance to the GP modelling 

approach is the specification of a covariance function that allows us to represent 

successfully the correlations between different training data observations. Furthermore, 

in order to provide accurate predictions of system behaviour, the parameters of this 

covariance function must be optimised using the available observations. In practice, both 

of these objectives are subject to mathematical and computational difficulties relating to 

the size and conditioning of the covariance matrix. Methods aimed at tackling these 

implementation difficulties are then discussed in detail. 

 

4.1) Role of the Covariance Function 
 

As a Gaussian Process prior is specified by its mean and covariance matrix, the 

covariance function used to generate this covariance matrix will therefore play a 

fundamental role in the GP modelling approach. Consequently, the covariance function 

must be chosen to reflect our prior assumptions about the function or system we wish to 

identify, and ultimately instil these assumptions into the covariance matrix. Through the 

selection of the covariance function, we are attempting to fix the properties of the 

functions that are to be considered for inference. As a result, this stage of selecting a 

covariance function is somewhat analogous to the selection of a parametric model 

structure. For an example, referring back to the previous demonstrative example, where 

the sample functions in Figure (3.2) are all smooth and stationary (informally, stationary 

means that the functions will look similar at all x locations). These are properties that are 

defined by the chosen covariance function of the GP; other covariance functions that 

exhibit other properties are possible.  

 

Typically, a covariance function will be constructed out of a number of ‘free’ parameters 

θ that may be used to adjust the properties of the Gaussian process prior. The parameters 

of the covariance function are more often referred to as hyperparameters due to the 
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similar role they play to that of the upper-level parameters of neural network structures. 

Therefore, the problem of supervised learning in GP models can be seen to be to the 

problem of identifying suitable hyperparameters for the covariance function. The 

hyperparameters of the covariance function θ must therefore be identified from the 

observed training data. This learning process is examined in the next section, but before 

hyperparameters can be determined a suitable covariance function must first be selected. 

Furthermore, before discussing the nature of various covariance functions it is first 

worthwhile underlining a number of assumptions inherent in the underlying regression 

problem: 

 

• As the covariance function is directly applied to the training data, in order for the 

resultant covariance matrix to reflect the nature of the correlations between inputs 

and outputs of the underlying function, the training data collected must therefore 

adequately reflect the characteristics of the underlying function. This is of course 

common sense, but the GP approach presents particular mathematical 

requirements that may cause difficulties in adhering to this principle. 

 

• For most nonlinear regression problems, and especially those found in the 

identification of real systems, the observed data used for training is likely to have 

been corrupted by noise. As a result, a noise model would be an appropriate 

feature to incorporate into our chosen covariance function.  

 

• An important assumption made in most supervised learning problems is that 

similar inputs should result in similar outputs. This assumption further manifests 

itself as an expectation that two data points close together in input space are likely 

to have a greater correlation than two points that are distant. Furthermore, as we 

assume that similar inputs are likely to result in similar target values, we can 

assume that training points (input and output pairs) near to a test point (input) 

should be informative about the desired prediction (output). Therefore this 

concept of nearness or similarity is something that all regression methods are 

founded upon. In the context of GP models, it is the covariance function that is to 

define the nearness or similarity of the individual data points. 
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Taking this final assumption concerning the nearness or similarity of individual data 

points, it is now useful to reiterate this concept in terms of covariance. Remember that 

the covariance measures the similarity between two random variables, where a high 

covariance is representative of two random variables that are closely related, and a low 

covariance is representative of those that are weakly related. Furthermore, leaving aside 

the mathematics used to define different covariance functions and the GP model as a 

whole, it is worthwhile first attempting provide a more descriptive interpretation of how 

the covariance function is to define the characteristics of the functions that are to be 

considered. 

 

From a purely mechanical point of view, in order to identify our model we have a set of 

training cases of input and output data, but for prediction we will only have an input. 

Therefore, we must build our GP model so that given an input we can generate an 

appropriate output. The result of this is that we are not interested in the covariance 

between inputs and outputs, nor are we expressly concerned with the covariance between 

different inputs. Instead we are interested in relating the covariance between the inputs to 

that of the outputs, and this is achieved through the covariance function C. As a result, 

the covariance between the outputs or targets can be written as a function of the inputs. 

 

cov( ( ), ( )) ( , )m n m nf f C=x x x x       (4.1) 

 

Under our initial assumption, two data points that are close together in input space are to 

be informative about each other’s respective targets, thus reflected in a high covariance. 

Similarly, for two distant points thought to be uninformative, the covariance is to be low. 

Note that this initial assumption may not necessarily be the case for all problems (e.g. 

periodic functions where relationships between relatively distant datapoints must be 

considered). Nevertheless, we can more closely define the role of the covariance function 

to be that of a model of how the covariance is to change as the distance between different 

inputs changes. 

 

To demonstrate this visually we can display the relationship between the covariance k 

and the distance between inputs, 'r = −x x , for two different covariance functions as in 

Figure 4.1(a). For both these covariance functions, the covariance approaches unity 



Chapter 4: Implementation of GP Models 

 102 

between variables whose corresponding inputs are very close, and decreases as the input 

distance is increased. However, for the dashed-line example, the rate of decay in the 

covariance as the input distance is increased is much slower than that of solid-line 

example. Note that both of these covariance functions are in fact of the same squared-

exponential form, see Section (4.3.1.1), but with different hyperparameters. 

 

In combination with an assumed a zero-mean, the two defined covariance functions of 

Figure 4.1(a) can be thought to have each defined a Gaussian process prior. Therefore, 

we can gain a further understanding of the role played by the covariance function through 

drawing sample functions from each Gaussian process prior. In Figure 4.1(b) two sample 

functions have been drawn from the GP priors of the dashed and solid-line covariance 

functions of Figure 4.1(a). Immediately we can see that the more rapidly decaying 

covariance function of the solid line example results in a sample function that varies far 

more rapidly, thus resulting in a less smooth process.  
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   (a)      (b) 

Figure (4.1): Chart (a) shows two different covariance functions where the 

covariance k varies against the input distance r. Chart (b) shows random functions 

drawn from the Gaussian process with the same covariance functions as Chart (a). 

 

Relating the smoothness characteristics of the samples shown in Figure 4.1(b) to the 

covariance functions displayed in Figure 4.1(a), we can understand that for the 

covariance function that decays more rapidly as the distance in input space is increased, 

the degree of similarity between nearby inputs is to reduce more quickly. As a result, the 

random sample function generated from the prior will have the capacity (remember that 

we are specifying a space over functions rather than an actual function) to vary more 
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quickly, as each generated point of the sample function will have a weaker relationship to 

those points immediately preceding them. This relationship between the distance 

between inputs and the potential for the sample function to vary more rapidly (or become 

more ‘wiggly’) can be understood as the characteristic length scale of the process, and 

is one of the possible properties of the GP prior that we can control through the 

hyperparameters of a chosen covariance function.  

 

Returning to our system identification remit, we have seen that through the manipulation 

of the covariance function, the length-scale property of the resultant functions can be 

modified. As a result, for an underlying system that is known to vary in a smooth 

manner, the covariance function and accompanying hyperparameters can be chosen to 

reflect this prior knowledge through manipulation of the length-scale property of the 

Gaussian process prior. Similarly, for systems that are known to vary in a less smooth or 

more abrupt manner, the covariance function and its hyperparameters can be altered to 

reflect this prior knowledge. Overall, in this simple example (where we have restricted 

the discussion to the length-scale property) we can see how the properties of our 

Gaussian process prior can be fixed through the choice of covariance function and its 

hyperparameters to suit the identification task at hand. 

 

4.2) Choice of Covariance Functions 
 

In order to identify a GP model, a suitable covariance function that reflects our prior 

knowledge of the underlying system must be selected. Furthermore, the process of 

selecting or defining a suitable covariance function can also be seen to be the process of 

constructing a valid Gaussian (stochastic) process. As a result, any arbitrary function 

cannot be chosen for use as a covariance function as the construction of stochastic 

processes places particular demands on the nature of this function. 

 

4.2.1) Validity of Covariance Functions 

 

In the selection of an appropriate covariance function, an important constraint exists over 

the validity of any possible function. This constraint states that the covariance function 

must generate a positive semi-definite (or non-negative definite) covariance matrix. 
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Therefore, any arbitrary function of input pairs x and x’ will not in general be a valid 

covariance function. To more accurately define what is meant by a positive semi-definite 

matrix, consider a set of input points xn. We can apply our chosen covariance function, or 

more generally a ‘kernel’ to this data to generate the matrix K  = k(x,x’). The matrix 

generated from the application of a kernel is known as the Gram matrix, where if k is a 

valid covariance function the matrix K can be termed a covariance matrix. Whilst a Gram 

matrix generated from a kernel function need not be positive semi-definite, a covariance 

matrix must adhere to this constraint. 

 

Mathematically, a real n n×  matrix K is said to be positive semi-definite (PSD) if it 

satisfies the condition ( ) 0Q = ≥Tv v Kv  for all vectors where n∈v ℝ , and Q is a 

quadratic form. This can possibly be better understood by stating that for a PSD matrix, 

the eigenvalues of the matrix must be non-negative. The positive definiteness of a matrix 

can also be described in terms of the sign of the determinant of the matrix. As the 

determinant is a scalar function of the matrix, where matrices are symmetric (as is the 

case for covariance matrices), the positive definiteness of the matrix will only remain if 

the matrix and every principal submatrix (formed by removing row-column pairs) have a 

positive determinant. A matrix that does not meet this condition is not positive definite. 

 

4.2.1.1) Why does Positive-Definiteness matter? 

 

The mathematical descriptions of positive definiteness do not provide any great deal of 

information as to why this constraint exists upon the choice of covariance function. 

Therefore, perhaps further comment on the reasoning behind this constraint would be 

worthwhile, as it offers further insight into how the GP modelling approach actually 

works. 

 

Fundamentally, the requirement for positive semi-definiteness originates from the 

mathematics employed in the construction of stochastic processes. Remember that we are 

attempting to construct a stochastic (Gaussian) process with which to apply Bayesian 

inference. In general, the properties of a stochastic process or random field may be 

described by a set of finite-dimensional distributions. For a Gaussian process or Gaussian 

random field, these finite-dimensional distributions are multivariate normal distributions. 

This property allows them to be specified by a mean and covariance as described in the 
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previous chapter. For the specification of non-Gaussian random fields, the definition of 

finite-dimensional distributions is not as straightforward, hence the appeal of Gaussian 

processes. 

 

These finite-dimensional distributions 
1, , k

Ft t…  can therefore be defined at any available 

training data points or coordinates 1{ , , }kt t… , and then utilised to construct our 

stochastic (Gaussian) process. Note that these finite-dimensional distributions are 

cumulative distributions, 
1 1, , 1 1( , , ) P{ , , }

k k k kF x x X x X x= ≤ ≤t t t t…
… … , and must therefore 

be right-continuous and non-decreasing. From this system of finite-dimensional 

distributions, a valid random field or stochastic process is said to exist if certain 

symmetric and compatibility conditions are met. This is known as Kolmogorov’s 

Existence theorem (also known as Kolmogorov’s Extension). Taken together, the 

conditions concerning symmetry and compatibility can be regarded as requirements for 

consistency over the finite-dimensional distributions. Therefore, the question is how do 

we ensure this consistency over the finite-dimensional distribution and therefore create a 

valid stochastic process. This is where the constraint for positive-definiteness comes into 

it:- a positive-definite covariance function will ensure a positive-definite covariance 

matrix, which in turn safeguards the existence of a valid Gaussian process.  

 

4.2.2) Types of Covariance Function 

 

In this chapter we are focusing on describing the properties of a number of existing 

covariance functions. Therefore, a full and precise account of the methodology involved 

in the construction of stochastic processes, and how covariance functions can be derived 

has not been included. This is a complicated area of probability/statistics that more 

detailed resources on this particular subject are better placed to cover. Therefore, I refer 

to the texts by Adler (1981), Billingsey (1986), Doob (1953), and Papoulis (1991). 

Fortunately a number of valid covariance functions have been already defined in the 

existing literature and identified as being particularly suitable for use in the GP 

modelling approach. In particular, reviews of different covariance functions can be found 

in Abrahamsen (1997), Stein (1999), Mackay (1998b), and Rasmussen and Williams 

(2006). These references also include detailed information as to how various covariance 
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functions can be derived. In the forthcoming sections, a number of these different 

covariance functions are to be discussed. 

 

4.2.2.1) Stationary & Non-stationary Covariance Functions 

 

In describing the properties of different covariance functions the most important 

distinction is whether or not the function may be described as stationary or non-

stationary. Stationary covariance functions can be seen to be functions of '−x x  and are 

therefore said to be invariant to translations in the input space. Loosely, this means that 

sample functions drawn from a stationary GP prior will look or behave similarly at all x 

locations (i.e. the process does not depend on the location of the observer). For non-

stationary covariance functions, this is not the case and sample functions may vary wildly 

in terms of variable smoothness over the input space. Furthermore, if a covariance 

function is a function of '−x x  then it may be described as isotropic and therefore 

invariant to all rigid motions. Therefore, for stationary isotropic covariance functions, the 

quantity r introduced as the ‘input distance’ at the start of this chapter can be more 

specifically defined as the Euclidean distance, 'r = −x x .  

 

At this point a possible parallel between stationary and non-stationary covariance 

functions and static and dynamic systems may become apparent. For dynamic systems 

where the output response is to vary significantly over the defined input space, it might 

be thought that a non-stationary covariance function would seem most appropriate. 

Nevertheless, stationary covariance functions are more commonly used for 

implementation and interpretability reasons. Furthermore, existing research has 

demonstrated that excellent models of dynamic systems may be identified using 

stationary GPs. However, one issue to consider arises if a stationary covariance function 

is adopted for a case in which the underlying system is prone to change its behaviour 

during operation (e.g. some systems may heat-up or cool-down influencing the response). 

As a result, in such a case the operating response of the system may not be seen to 

behave consistently across the input range and a non-stationary covariance function 

might be a better choice. 
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4.2.2.2) Smoothness Properties 

 

A further consideration in the selection of a suitable covariance function is the resultant 

smoothness properties of the defined Gaussian process prior. In the opening section of 

this chapter, the role of the covariance function in influencing the characteristics of the 

sample functions drawn from the resultant GP prior was introduced. In particular, it is the 

smoothness characteristics of the resultant sample functions that can be seen to be a 

fundamental differentiator between different covariance functions. In order to describe 

the relative smoothness of functions, mathematicians often employ the terms ‘continuity’ 

and ‘differentiability’. In simple terms, if a function that approaches an infinite gradient 

(i.e. vertical) it can be thought of as being discontinuous and non-differentiable at that 

point. The occurrence of such sample function characteristics can therefore be seen to be 

symptomatic of a rough or non-smooth Gaussian process. 

 

Therefore, through the selection of a suitable covariance function we are endeavouring to 

select the appropriate smoothness properties characterised by the relative 

continuity/differentiability of the sample functions. However, relating the smoothness 

properties of sample functions to a chosen covariance function is not mathematically 

straightforward, and different properties known as the ‘mean-square’ (MS) 

continuity/differentiability are normally employed. MS properties are more easily 

derived and are directly related to the derivatives of the covariance function and moments 

of spectral distribution. Unfortunately, these MS properties are less interpretable than the 

sample function properties as we can more readily judge the nature of the sample 

function continuity visually, as in Figure (4.1b). 

 

The difference between sample function continuity/differentiability and their MS 

counterparts is the level of continuity displayed. Sample function continuity is a much 

stronger property than mean-square continuity, as discontinuities can be allowed under 

the weaker MS properties. Therefore, in general, mean-square continuity does not imply 

sample path continuity, and vice versa. However, for Gaussian random fields such as the 

GP we are defining, mean-square continuity is a necessary and almost sufficient 

condition for continuous sample paths. Furthermore, a random field can be seen to be 

continuous in mean square at *x , if and only if its covariance function ( , ')k x x  is 

continuous at the point ' *x = x = x . For stationary covariance functions this can be 



Chapter 4: Implementation of GP Models 

 108 

reduced to checking continuity at k(0), where 0 signifies a vector of all zeros. As a result, 

it is the properties of the kernel around 0 that determine the smoothness properties of a 

stationary process. For a more in-depth discussion of the geometrical properties of 

stochastic processes, see Adler (1981), Stein (1999) and Abrahamsen (1997). The thesis 

by Paciorek (2003) also contains useful information with specific regard to smoothness 

properties in terms of sample function continuity rather than mean-square continuity  

 

4.3) Examples of Covariance Functions 
 

General Form of Covariance Function 

 

In the application of the GP modelling approach to practical system identification 

problems, a degree of noise is likely to be present on the empirical data. Therefore, only 

noisy function values are typically available, i.e. ( )y f ε= +x . If the assumption that this 

noise is additive independent identically distributed Gaussian noise ε with variance 2
nσ , a 

general form for the covariance function can be stated as  

 

 2( , ; )mn m n n mnC σ δ= +x xC θ        (4.2) 

 

where δmn is a Kronecker delta which is one if and only if m n=  and zero otherwise. Due 

to this independent noise assumption, in comparison to a noise-free implementation, a 

diagonal matrix is added (i.e. K(x,x) + 2nσ I). Other noise models where independence 

from the input is not assumed are also possible. 

 

4.3.1) Stationary Covariance Functions 

 

In Table (4.1) a number of stationary non-degenerate covariance functions have been 

given. Note that instead of displaying the general form (covariance function C with or 

without noise), we are to concentrate on discussing the properties of the different kernels 

k. Furthermore, the variable 'r = −x x  is the input distance measure, and ℓ  is the 

characteristic length-scale hyperparameter. The properties of these covariance functions 

are now to be discussed below. 
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Covariance Function Expression 

 

Squared Exponential 

2

2
( ) exp

2SE

r
k r

 
= − 
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Matérn 

12 2 2
( ) ( )

( )Matern

r r
k r K

νν

ν
ν ν

ν

−  
=   Γ  ℓ ℓ

 

 

Exponential 
( ) exp

r
k r

 = − 
 ℓ

 

 

γ-Exponential 
( ) exp

r
k r

γ  = −     ℓ
 

 

Rational Quadratic 

2

2
( ) 1

2RQ

r
k r

α

α

−
 

= + 
 ℓ

 

 

Table (4.1): Table of stationary covariance functions 

 

4.3.1.1) Squared Exponential Covariance Function 

 

The most widely adopted choice of covariance function found in the GP literature is the 

squared exponential shown in Table (4.1). This function generates a Gaussian 

distribution shape and can be seen to be equivalent to the radial basis functions used in 

other modelling approaches. The squared exponential covariance function is infinitely 

differentiable and therefore has mean-square derivatives of all orders. As a result, a GP 

defined by this covariance function will be very smooth in terms of the sample functions 

drawn from it. The squared exponential covariance function is often implemented in an 

anisotropic form where each input dimension (D) can be assigned a different 

hyperparameter { }dℓ  to control the characteristic length-scale. This form of the squared 

exponential covariance function may be written as 

 

 
2

1 22
1

( ' )1
( , '; ) exp

2

D
d d

d d

x x
C θ θ

=

 −= − + 
 

∑x x θ
ℓ

     (4.3) 

 

where xd is the dth component of x, a D-dimensional vector, and hyperparameters θ = (θ1, 

θ2, { }dℓ ). As this is the most popular covariance function, it is worth discussing in more 
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depth the role of these different hyperparameters. The θ1 hyperparameter can be seen to 

define the vertical scale of the possible variations of the defined function, the θ2, 

hyperparameter can be seen to be a bias term that allows the whole function to be offset 

from zero by some unknown amount. As mentioned above, a separate length-scale 

hyperparameter { }dℓ  has been defined for each input dimension, and can be thought of 

as determining the distance in that particular direction over which the output y is 

expected to vary significantly. Therefore, if a particular input is to be given a very large 

length-scale hyperparameter, this input can be thought of as being irrelevant (or at least 

non-contributory) to the output y, as the output is expected to be a constant function of 

this input.  

 

At this point it is pertinent to introduce a feature of the GP modelling approach known as 

Automatic Relevance Detection (ARD). This feature was first introduced in Mackay 

(1994) and Neal (1996) in the context of Bayesian neural network implementations. The 

ARD facility utilises the anisotropic format of the squared exponential covariance 

function (or indeed any stationary isotropic covariance function) to assess the relative 

importance of contributions made by each input through the comparison of their length-

scale hyperparameters. Therefore, during the optimisation of the GP model (to be 

discussed in section (4.2)) where the hyperparameters of the chosen covariance function 

are to be identified, we can also employ the ARD facility to help optimise the structure of 

the model. As a result, the ARD feature can be seen to be of particular value for system 

identification purposes where there is a lack of prior knowledge regarding the nature of 

suitable inputs. This is one of the attractive features of the GP modelling approach, as 

due to the probabilistic optimisation we can develop a greater understanding of how 

different inputs can influence the model. On a practical level we can see that this facility 

can be utilised to tune the overall model structure employed, where unimportant inputs 

can be eliminated from the model structure and thereby improve computational 

efficiency and ultimately model interpretability. 

 

The squared exponential function embodies the property that points that are close 

together in input space are strongly correlated and hence give rise to similar values of 

target t. The strong smoothness properties can be demonstrated by drawing some sample 

functions from the defined GP prior. In Figure (4.2a) a number of different squared 

exponential covariance functions have been defined using different hyperparameter 
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values, and the impact on the sample functions drawn from the prior can be seen in 

Figure (4.2b). 
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   (a)      (b) 

Figure (4.2): Chart (a) shows three different Squared Exponential covariance 

functions where the covariance k varies against the input distance r. The Chart (b) 

shows random functions drawn from the Gaussian process with the same 

covariance functions as Chart (a). 

 

As expected, through increasing the size of the length-scale hyperparameter ℓ  

(comparing the solid line versus the dotted line) we can see that the sample functions 

have a tendency to vary much more slowly. Furthermore, through reducing the size of the 

θ1 hyperparameter we can be seen to restrict the vertical scale of the variations of the 

sample functions (comparing dashed line versus solid and dotted lines). Overall, the use 

of the squared exponential covariance function implies an assumption that the function to 

be identified exhibits smooth and continuous behaviour with a high correlation between 

outputs and inputs in close proximity.  

 

4.3.1.2) Matérn Class of Covariance Functions 

 

Whilst the squared exponential function can be seen to be the most widely adopted 

covariance function, due to the infinitely differentiable nature of this function there is an 

implicit assumption that the underlying function is to be smoothly varying. This is a 

strong assumption that must be substantiated from prior knowledge of the system or from 

empirical data. Therefore, a facility that allows a less stringent prior assumption over the 

smoothness or differentiability of the underlying function can be seen to be an attractive 
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possibility. A control over the relative smoothness or differentiability of the GP prior 

probability is a feature of the Matérn class of covariance functions, sees Table (4.1).  

 

The Matérn class of covariance functions is given by the expression in Table (4.1) where 

ν  and ℓ  are positive parameters, and Kν  is a modified Bessel function. The parameter 

ν  can be seen to control the differentiability of the sample functions. As ν → ∞  the 

Matérn form approaches the squared exponential (infinitely differentiable) covariance 

function discussed above. In the text by Rasmussen and Williams (2006) the most 

interesting cases for machine learning purposes are stated as 3 / 2ν =  and 5 / 2ν = : 
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3 3
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r r
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= + + −      
   ℓ ℓ ℓ

     (4.5) 

 

In Figures (4.3) and (4.4), both of these covariance functions (for 3 / 2ν =  and 5 / 2ν = ) 

are displayed with two different length-scale hyperparameters, together with sample 

functions drawn from their respective priors. Again, the manipulation of the 

characteristic length-scale hyperparameter can be seen to have a great effect on the 

overall smoothness of the resultant sample functions. In comparison to the squared 

exponential covariance function, the covariance can be made to decay much more rapidly 

resulting in sample functions that can become significantly less smooth and therefore less 

differentiable. Furthermore, as the ν  hyperparameter is increased from 3 / 2ν =  to 

5 / 2ν =  there is a slight reduction in the roughness of the sample functions. This is in 

keeping with the earlier statement that as ν → ∞  the Matern form will become 

equivalent to the squared exponential. In Rasmussen and Williams (2006) it is stated that 

for cases where 7 / 2ν ≥  the processes will be difficult to distinguish from one another, 

and indeed that of the squared exponential.  
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   (a)      (b) 

Figure (4.3): Chart (a) shows two different Matérn (ν=3/2) covariance functions 

where the covariance k varies against the input distance r for two different length-

scales. The Chart (b) shows random functions drawn from the Gaussian process 

defined by the same covariance functions as Chart (a). 
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   (a)      (b) 

Figure (4.4): Chart (a) shows two different Matérn (ν=5/2) covariance functions 

where the covariance k varies against the input distance r for two different length-

scales. The Chart (b) shows random functions drawn from the Gaussian process 

defined by the same covariance functions as Chart (a). 

 

Thus, it can be seen that through the use of the Matérn covariance function we can 

express a lack of prior knowledge about the sample function differentiability. This 

proposal for more control over the relative differentiability of the covariance functions is 

supported in the text by Stein (1999), where the strong smoothness assumptions 

embodied by the squared exponential covariance function are questioned from a practical 

and asymptotic perspective.  
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4.3.1.3.) Exponential, γ-Exponential, and Rational-Quadratic 

Covariance Functions 

 

In the case where 1/ 2ν = , the Matérn form can be seen to be equivalent to the 

exponential covariance function also given in Table (4.1). As a result, the sample 

functions drawn from a process defined by the exponential function can be made to be 

highly non-smooth and therefore non-differentiable. From the exponential class of 

covariance functions the Ornstein-Uhlenbeck process used to model the velocity of a 

particle in Brownian motion can also be defined. A further class of covariance functions 

given in Table (41) is the γ-exponential. This class of function is equivalent to the 

previously discussed Squared-exponential covariance function when γ=2, but is not MS 

differentiable for 2γ < . As a result, Rasmussen and Williams (2006) state that this 

family of covariance functions is less flexible than the Matérn class. 

 

The Rational Quadratic (RQ) covariance function given in Table (4.1) is an interesting 

covariance function as it can accommodate several characteristic length-scales. Due to 

this property, the RQ covariance function can be interpreted as a scale mixture or infinite 

sum of squared exponential covariance functions with different characteristic length-

scales. The RQ covariance function exhibits the same infinitely MS differentiable 

properties of the squared exponential covariance function. 

 

4.3.2) Non-stationary Covariance Functions 

 

The most simple non-stationary covariance function discussed in Mackay (1998b) is the 

one corresponding to a linear trend.  

 

 2 2

1

( , ';{ , }) '
D

lin w c w d d c
d

k x xσ σ σ σ
=

= +∑x x       (4.6) 

 

This linear covariance function can also be generalised into Dot Product covariance 

functions as discussed in Rasmussen and Williams (2006), where polynomial covariance 

functions can then be defined: 
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d d
d

k x x
=

 = =  
 
∑x x x xi       (4.7) 

 

However, this polynomial is not thought to be particularly useful for regression 

problems, as the prior variance will become very large with x  as 1>x . 

 

One of the inherent assumptions of the previously discussed stationary covariance 

functions is that the length-scale is to be fixed in all directions. This is obviously not 

going to be the case for all systems and a non-stationary covariance function with the 

ability vary the length-scale as a function of x has been proposed in Gibbs (1997). This 

spatially varying length-scale covariance function defines an arbitrary positive function 

( )d xℓ  of the input: 
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   (4.8) 

 

A further alternative non-stationary covariance function is the neural network 

covariance function discussed in Williams (1998) and Rasmussen and Williams (2006), 

but based on the Bayesian neural network research found in Neal (1996). In defining this 

function, the input vector is augmented as 1(1, , , )Tdx x=xɶ … , and the hidden layer 

transfer function used is the error function ( ) ( )h z erf z= , rather than a more common 

sigmoid neural network function such as tanh(z) as this is not found to be positive 

definite, 
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( , ') sin

(1 2 )(1 2 )

T

NN T T
k

π
−  Σ=  + Σ + Σ 

x x'
x x

x x x' x'

ɶ ɶ

ɶ ɶ ɶ ɶ
    (4.9) 

 

This covariance function can also be of use in tackling problems where the length-scale 

is to vary across the input space. In Rasmussen and Williams (2006) this function is 

successfully applied to a static step data problem (i.e. slow varying steady-state followed 

by a rapid input transition). 
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In the research of Paciorek and Schervish (2004) further non-stationary covariance 

functions are proposed that are generalisations of Gibbs’ spatially varying covariance 

function. Furthermore, a non-stationary version of the Matérn covariance function was 

outlined, thus allowing control over sample function differentiability to be combined 

with control over length-scale variance. 

 

4.3.3) Combining Covariance Functions 

 

Due to the properties of the Gaussian process it is possible to combine different 

covariance functions in order to define new stationary and non-stationary covariance 

functions. As a result, different aspects of the nonlinearity of the underlying function can 

be treated by individual kernels and combined into a global covariance function. This 

facility is discussed in both Mackay (1998b) and Rasmussen and Williams (2006). 

Furthermore, an informative example is provided in Rasmussen and Williams (2006) 

where a number of covariance functions are combined towards the identification of a 

complex nonlinearity composed of a number of different contributing nonlinearities. 

 

4.3.3.1) Sum of Covariance Functions  

 

Fundamentally, a sum of kernels can be seen to be a kernel itself. If a random process 

1 2( ) ( ) ( )f f f= +x x x  where 1( )f x  and 2( )f x  are independent, then the kernels that 

generate them can also be combined 1 2( , ') ( , ') ( , ')k k k= +x x x x x x  and be considered a 

valid covariance function. This construction can be seen to be particularly useful for 

application in nonlinear problems where a number of different characteristic length-

scales can be observed, and therefore has similarities to the Rational Quadratic 

covariance function. 

 

4.3.3.2) Product of Covariance Functions 

 

Similarly, a product of two kernels can be seen to be kernel. If 1( , ')k x x  and 2( , ')k x x  are 

covariance functions on the same input space then they can be combined as 

1 2( , ') ( , ') ( , ')k k k=x x x x x x . For covariance function over different spaces, 1( , ')k x x  and 



Chapter 4: Implementation of GP Models 

 117 

2( , ')k y y , a product space can be defined as ( , )x y=z , and the covariance functions 

1 1 2( , ') ( , ') ( , ')C k k= +z z x x y y  and 2 1 2( , ') ( , ') ( , ')C k k=z z x x y y  may then also be defined. 

 

Further discussion of these possibilities can be found in Rasmussen and Williams (2006), 

but from an overall perspective we can see that if faced with complex nonlinearities, the 

possibility exists to break the problem down into constituent nonlinear contributions and 

devote an individual covariance function to tackle each component. From this point an 

additive model may be defined through utilising individual covariance functions as 

building blocks for a more global representation. As a result, this feature of the GP 

modelling approach can be seen to be particularly in keeping with the divide-and-

conquer approach that has been adopted in other methods of nonlinear system 

identification. 

 

4.3.3.3) Vertical Rescaling and Convolution 

 

A straightforward method of transforming a given stationary covariance function into a 

non-stationary version is to introduce another function a(x), giving 

( , ') ( ) ( , ') ( ')C a k a≡x x x x x x . This method can also be used to normalise kernels. 

Furthermore, Mackay (1998b) discusses the potential exists to convolve (or ‘blur’) an 

existing covariance function to generate a new one, through integration with an arbitrary 

kernel h, i.e. ( , ') ' ( ) ( , ') ( ' ')C x x dy dy h x y k y y h y x= − −∫ . 

 

4.3.3.4) Nonlinear Mapping (Warping) 

 

A further alternative method of implementing a non-stationary solution is to employ an 

arbitrary nonlinear mapping (also known as warping) of the input u(x) to handle the non-

stationary nonlinearity of the function in tandem with a stationary covariance function to 

operate in u-space.  

 

 ( , ') ( ( , ( ')C k≡x x u x) u x)        (4.10) 

 

As the original input space x need not exhibit the same dimensionality as that of the new 

u-space, we are free to use whatever input mapping is most conducive to identifying a 
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satisfactory model. This facility is demonstrated in Mackay (1998b) to define a periodic 

random covariance function. Examples of this strategy can be found in the paper by 

Sampson and Guttorp (1992), and in Gibbs (1997) where the nonlinear mapping strategy 

is contrasted with the previously mentioned spatially varying length-scale covariance 

function. A more in-depth analysis of ‘Warping’ can also be found in Snelson et al. 

(2004) Snelson (2007). Furthermore, in Girard (2004) empirical data collected from a Ph 

Neutralisation plant is first modelled using a linear model, with the subsequent residual is 

then modelled by a stationary GP model defined with the squared exponential covariance 

function. In this example, the strategy taken is not to actively ’warp’ the covariance 

function to identify a new covariance function, but to modify the input space data in a 

manner that allows the easier implementation of a subsequent GP model (i.e. to define a 

set of latent input variables). 

 

Through the use of this nonlinear mapping strategy, the potential exists for the GP 

modelling approach in its most common form (i.e. a stationary GP defined using a 

Squared Exponential) to be combined with other modelling strategies to form a hybrid 

representation. Such a hybrid approach may be particularly useful for problems where an 

existing but somewhat inaccurate model (such as an analytical model derived from first 

principles) can be combined with the powerful data-driven approach of the GP model. As 

a result, the overall interpretability of the original description may be somewhat retained 

and then combined with the simplest and most interpretable form of the GP model acting 

as a corrective device. This may be an attractive alternative to the use of more complex 

non-stationary covariance functions, which may be less interpretable and more difficult 

to train due to the potential for a greater number of hyperparameters. 

 

4.4) GP Model Optimisation 
 

Due to the probabilistic nature of the GP model, the popular model optimisation 

approach where model parameters, and possibly also the model structure, are optimised 

through the minimisation of a loss function defined in terms of model error (e.g. mean 

square error), is not readily applicable. Furthermore, as GP modelling has also been 

described as a Bayesian probabilistic method, a probabilistic approach to the optimisation 

of the model would seem appropriate. Fortunately, we have already discussed the 
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framework for Bayesian learning in the previous chapter. Essentially, instead of 

minimising model error, it is the probability of the model that is to be maximised. 

Therefore, after the selection of an appropriate covariance function, it is the 

hyperparameters of this function that must be optimised to accurately reflect the 

correlations present in our observed training data set.  

 

4.4.1) Optimising Hyperparameters 

 

The overall problem of learning unknown parameters from data can be seen to 

correspond to the first level of Bayesian inference discussed previously. The overall goal 

of this first level of Bayesian inference was to obtain the predictive distribution 

1 1( | , , )N N N NP t t X x+ +  of the new target tN+1 given the training data (t, X) and a new input 

xN+1. In order to realise this posterior distribution, a prior distribution over the 

hyperparameters can first be defined ( | , )N NP t Xθ , followed by the integration of the 

model over the hyperparameters 

 

 1 1 1 1( | , , ) ( | , , , ) ( | , )N N N N N N N N N NP t t X x P t t X x P t X dθ θ θ+ + + += ∫   (4.11) 

 

As discussed in the previous section on Bayesian modelling, the computation of such 

integrals can prove difficult due to the intractable nature of the nonlinear functions. One 

solution to the problem of intractable integrals is to adopt numerical integration methods 

such as the Monte-Carlo approach. These numerical methods offer considerable 

flexibility and accuracy of approximation. Unfortunately, significant computational 

expense may be required in order to achieve a sufficiently accurate approximation. An 

alternative approach based on the Maximum Likelihood optimisation method has also 

been developed and is applied to maximise the marginal likelihood or evidence. 

Therefore, by searching for hyperparameters that maximise the probability of the training 

data, we are optimising the properties of the Gaussian process prior that is to be used to 

generate new predictive distributions. Both of these methods are discussed below, 

beginning with the Marginal Likelihood maximisation approach. 
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4.4.2) Marginal Likelihood (Evidence) Maximisation 

 

This method of optimisation is based upon the application of Bayesian inference and is 

commonly referred to as Marginal Likelihood or ‘Evidence’ maximisation, see Mackay 

(1992c), Rasmussen (1996) and Gibbs (1997). This optimisation strategy dispenses with 

the need for potentially time-consuming or computationally intensive MCMC methods of 

numerical integration with the computational burden scaling linearly with the number of 

hyperparameters. Instead, an approximation to the integral is made through the use of the 

most probable values of hyperparameters θMP. 

 

 1 1 1 1( | , , ) ( | , , , )N N N N N MP N N NP t P t+ + + +t X x θ t X x≃     (4.12) 

 

The basis for the approximation is the assumption that the posterior distribution 

( | , )N NP t Xθ  is sharply peaked around θMP relative to the variation in the predictive 

distribution 1 1( | , , , )N N N NP t t X x θ+ + . Therefore, this optimisation strategy relies upon the 

identification of the most probable hyperparameters from the training data, signified by 

the posterior distribution ( | , )N NP t Xθ . The inference of this posterior probability is 

performed through the straightforward application of Bayes’ theorem: 

 

 ( | , ) ( | , ) (N N N NP P P∝θ t X t X θ θ)       (4.13) 

 

where ( | , )N NP t X θ  is the marginal likelihood or evidence (or probability of the data), 

and ( )P θ  is a prior over the hyperparameters. Note that this posterior probability has 

been expressed as proportionality, rather than as a function due to the omission of the 

denominator that is independent of the hyperparameters.  

 

Overall, this Bayesian method of determining the hyperparameters can be seen to offer 

significant advantages over other model selection and optimisation methods utilised by 

alternative modelling approaches. In particular, by performing optimisation through the 

analysis of the marginal likelihood, the automatic implementation of Occam’s Razor 

detailed in the previous chapter can be used to regulate complexity of the model and 

thereby curtail overfitting. 
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4.4.2.1) Marginal Likelihood Loss Function 

 

The marginal likelihood component ( | , )N NP t X θ  of the previous proportionality has 

been discussed in the previous chapter on Bayesian learning, and (assuming a zero-mean) 

may be stated as: 

 

 11 1
( | ,{ }) exp ( )

2
T

N N n N N N
N

P x
Z

− = − 
 

t C t C t      (4.14) 

 

If we ignore the Prior over the hyperparameters P(θ) for the moment, we can restate the 

marginal likelihood as a loss function that is to be maximised. The log of the marginal 

likelihood is first taken for numerical scaling purposes (note that the negative log 

transforms this into a minimisation), resulting in the loss function  

 

 11 1
( ) log( ) log(2 )

2 2 2N

T
N N N

N
L π−= − − −θ C t C t     (4.15) 

 

The three components of the log marginal likelihood function have interpretable roles as 

described in Rasmussen and Williams (2006). The only component that includes the 

observed target data is 11

2 N

T
N N

−− t C t  and can be interpreted as a ‘data-fit’ term. The term 

1
log( )

2 N− C  is dependent only on the choice of covariance function and the input data, 

and may be interpreted as ‘complexity’ penalty. The final component log(2 )
2

N π−  acts a 

normalisation constant. The discussion example in Rasmussen & Williams (2006) shows 

that the ‘data-fit’ term can be seen to decrease monotonically as the length-scale 

increases. This is what would be expected, as an increase in length-scale would be 

symptomatic with a loss of flexibility in the model. By contrast, the negative 

‘complexity’ term will be seen to increase with an increase in length-scale due to the 

model becoming ever less complex.  

 

Furthermore, the marginal likelihood itself will become more peaked as the number of 

included training data points is increased. This is in agreement with what would be 
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expected, as with more available data a better insight into the underlying function will be 

forthcoming, resulting in a more likely approximation. Relating the marginal likelihood 

to the length-scale, for problems where few points are available, the slope of the log 

marginal likelihood is shallow as both short and intermediate values of the length scale 

can be considered as consistent with the data. If the length-scale increased to be larger 

than 1, the marginal likelihood can be seen to decrease rapidly as the model no longer 

provides a good approximation to the data. With larger amounts of data, the ‘complexity’ 

term of the loss function becomes more severe and therefore acts to discourage adoption 

of length-scales that are too short, and therefore guards against overfitting. 

 

4.4.2.2) Gradient Calculations 

 

The next stage is to find the maximum/minimum of this loss function and therefore 

locate the most probable hyperparameters. As we are endeavouring to locate the 

maximum of the log marginal likelihood, this process is therefore equivalent to locating 

the Maximum A-Posteriori  (MAP) estimate of this distribution. Therefore, given the 

nonlinear loss function L(θ), we can analytically express the partial derivatives of the log 

marginal likelihood with respect to hyperparameters θ as follows: 

 

 1 1 11 1
( )

2 2
TN N

N N N N N

L
trace

θ θ θ
− − −∂ ∂∂ = − +

∂ ∂ ∂
C C

C t C C t     (4.16) 

 

In order to perform these gradient calculations, a nonlinear (local) optimisation algorithm 

is required. Furthermore, it is important to note that the calculation of the derivative of 

the likelihood again relies upon the efficient calculation of the inverse covariance matrix. 

As stated previously, the inversion of large matrices is a computationally expensive 

process of the order O(N3). Therefore, to ensure that a viable optimisation is achieved, 

the size of the covariance matrix to be inverted (and therefore the size of the training set) 

must not be unfeasibly large. Once the inversion has been computed, the remaining 

components of the log likelihood and its derivatives are less computationally demanding 

being of the order O(N2).  

 

To perform the nonlinear optimisation, a conjugate gradients approach to the problem 

has been successfully implemented to locate a local maximum of the log marginal 
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likelihood. In this thesis we follow the same implementation as Rasmussen (1996) where 

a Polack-Ribiere version of the conjugate gradients methods is utilised in tandem with 

the Wolfe-Powell stopping conditions. Further information on various different types of 

conjugate gradients methods can be found in Fletcher (1987, 1993). Compared with 

methods relying upon MCMC integration, this conjugate gradients approach can find a 

reasonable approximation to a local maximum after relatively few function and gradient 

evaluations. 

 

4.4.2.3) Multiple Local Maxima 

 

As with any nonlinear local optimisation based on the identification of local maxima, the 

MAP estimation through the conjugate gradients method may be subject to problems 

where the marginal likelihood is multi-modal. In such cases the algorithm may become 

stuck in bad local maxima that ultimately results in a poor estimation of the most 

probable hyperparameters. Fortunately, other researchers into the GP model, (Rasmussen 

(1996), Gibbs (1997)) have found that for simple covariance functions, the scale of the 

problem presented by multiple local maxima is not something that cannot be overcome if 

a degree of care is taken over the optimisation procedure. 

 

Furthermore, it is worth remembering that these alternative local maxima are merely 

different interpretations of the data. Therefore, for applications where the training dataset 

is relatively small, a large number of potential interpretations of the data (and therefore 

local maxima) will be possible as relatively little information has been presented to the 

optimisation procedure. However, given sufficient data, a more acute or obvious 

interpretation of the data should begin to emerge, resulting in a local maximum that is 

significantly larger than alternative modes. As a result, we can then dismiss other local 

maxima (interpretable as alternative models) as being less likely. This can be seen to 

relate back to the previous discussion regarding the automatic Occam’s Razor effect that 

is inherent with optimisation through the marginal likelihood.  

 

In addition, further links between the type of covariance function being optimised and the 

propensity for encountering problematic multiple local maxima can be made. As more 

complex covariance functions (consisting of more hyperparameters) are likely to offer 

greater model flexibility, and therefore more possible interpretations of the training data, 
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the potential for more local maxima should increase. Therefore, this might lead to further 

problems finding the ‘most probable’ hyperparameters using the marginal likelihood 

maximisation technique. Thus, an alternative optimisation strategy, such as MCMC 

methods detailed below, may be required for determining the hyperparameters of more 

complex covariance functions. 

 

Nevertheless, we can outline strategies aimed at minimising problematic multiple local 

maxima. One possible strategy is to attempt multiple runs of the optimisation algorithm 

utilising different initial values for the hyperparameters. As the algorithm is dependant 

on the evaluation of the partial derivatives of the likelihood, unsuitable initial 

hyperparameter values that result in very small derivative values may cause 

computational difficulties. Therefore, different initial conditions could be either be 

selected at random, or deterministically where we may purposely avoid initial points of 

the training data (or regions of operating space) that have proven to be problematic. 

Performing multiple runs of the optimisation procedure may also prove useful if more 

than one set of training data is available. In cases where a number of viable alternative 

sets of hyperparameters have been obtained, the final selection of hyperparameters can 

then be performed through analysing the performance of each model through model 

validation. 

 

A further option for improving the optimisation procedure is make use of the Prior 

component of the Bayesian inference. So far, the prior over the hyperparameters ( )P θ  

has been ignored, and the marginal likelihood used as in Maximum Likelihood 

optimisation. Therefore, the role of the prior over hyperparameters had been relegated to 

merely being a set of initial values for θMP. From a certain perspective, this dismissal of 

the Prior distribution from the optimisation procedure can be seen to be somewhat 

contrary to the spirit of Bayesian inference, as without the inclusion of prior knowledge, 

possible values for the most probable hyperparameters θMP that are incorrect or 

inconsistent with the data or covariance function may be allowed. However, as discussed 

in the previous chapter, the determination of suitable prior distributions based on ‘a 

priori’ system knowledge is a difficult task. One possibility discussed in the research by 

Neal (1996) and Gibbs (1997) is to employ Gamma distributions as priors over θMP. 



Chapter 4: Implementation of GP Models 

 125 

4.4.3) Monte-Carlo Alternative 

 

Another possible optimisation strategy is to perform the integration over θ is through 

using numerical MCMC methods as described in Williams and Rasmussen (1996), and 

Neal (1997). The MCMC approach employs a Markov chain to approximate the integral 

together with sampling methods to calculate an approximation to the overall predictive 

distribution, as described by: 

 

 1 1 1 1
1

1
( | , , , (.)) ( | , , , (.), )

T

N N N N N N N N t
t

P t C P t C
T+ + + +

=
∑x X t x X t θ≃   (4.17) 

 

where the θt are samples drawn from the posterior distribution over θ, ( | , , (.))N NP Cθ X t . 

The resultant accuracy of the MCMC approximation is dependent on the number of 

samples taken from the posterior distribution over θ, and as each term in this summation 

is a Gaussian distribution, the MCMC approximation to the desired predictive 

distribution can be termed a mixture of Gaussians. Furthermore, as we are sampling from 

the posterior over θ, prior distributions over the hyperparameters P(θ) will be required as 

in the previous strategy based on the maximisation of the marginal likelihood. 

 

Typically, in order to facilitate a good approximation to the integral, a large number of 

samples must be taken from the posterior. Therefore, the adoption of the MCMC 

approach carries a potentially high computational cost, especially for problems where 

large numbers of observations are included in the training set and must be stored as the 

algorithm proceeds. As a result, methods to improve the efficiency of the algorithm may 

be required. In particular, the method used to sample from the posterior distribution over 

θ will influence the efficiency of the approach, as the samples taken from the posterior 

must adequately represent the underlying distribution. For example, if a particular region 

of θ space is not adequately sampled, the overall approximation to the integral will 

suffer, especially if this region has a high associated probability. 

 

A further step toward improving the efficiency of the MCMC method for use in Gaussian 

processes found in the work presented by Williams and Rasmussen (1996) and Neal 

(1997), is the adoption of the Hybrid Monte-Carlo method developed by Duane et al. 
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(1987). The key objective of adopting this particular method of MCMC is to avoid 

random walk behaviour of the more popular Gibbs and Metropolis sampling approaches. 

The Hybrid MCMC is a stochastic dynamics sampling algorithm that introduces an 

auxiliary momentum vector (gradient information) with which to move across the sample 

space in larger steps and thereby sample from the posterior more efficiently and converge 

more rapidly to the target distribution. 

 

4.4.4) Which Optimisation Method? 

 

In the existing literature on GP models, a preference for the optimisation through 

marginal likelihood maximisation has been indicated. As a result, it is the method 

adopted in this thesis. Although this method fundamentally relies upon an approximation, 

and may be prone to difficulties associated with multiple local maxima, given a decent 

set of training data this method has been proven to provide very good estimates for 

optimal hyperparameters. Furthermore, as well as providing sufficient training data 

conducive to obtaining a good estimation of the most probable hyperparameters, a 

number of possible strategies (multiple restarts, different initial conditions or express 

priors) exist so that the problems associated with multiple local maxima may be 

mitigated. Furthermore, the fundamental result of optimisation through the marginal 

likelihood, where a set of most probable hyperparameters are obtained, is an attractive 

result in itself, as it can provide the user with an insight into the data being modelled.  

 

The marginal likelihood maximisation has a further advantage over the MCMC 

alternative when examined in computational terms. Upon the completion of the algorithm 

only one set of final hyperparameters exist, leaving a single covariance matrix that must 

be stored and subsequently inverted in order to make predictions. If further training data 

points are to be included at a later date, only one inverse covariance matrix must 

therefore be updated using the partitioned inverse equations detailed previously. This is 

not the case for the MCMC method where all the inverse matrices must be stored if new 

points are to be included, thus adding to the potential computational expense of the 

MCMC approach. 

 

However, in terms of overall accuracy and flexibility, the MCMC method has potential 

advantages. As the MCMC method gradually builds a more exact approximation of the 
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integral, for problems where more complex covariance functions are being employed the 

MCMC may provide a better result. Furthermore, for problems where the size of the 

training set is relatively small and therefore the amount of matrices to be stored does not 

prove to be infeasible, the performance of the MCMC method may be preferable to that 

of the marginal likelihood maximisation method. 

 

4.5) Mathematical & Computational Implementation 
 

In the identification of a GP model, we wish to construct a covariance matrix that defines 

a Gaussian process with which to infer new test predictions. This covariance matrix is to 

be specified through the application of a covariance function to a set of training 

observations. In the discussion so far, we have mentioned the various choices of 

covariance function that are available to us, together with strategies for the determination 

of optimum hyperparameters from our set of training data. What has not been discussed 

are issues relating to the actual training dataset itself. Therefore, in this section the 

requirements for this training dataset are to be discussed together with the computational 

implementation of the GP model. 

 

4.5.1) Size of the Covariance Matrix 

 

As can be seen from the predictive equations (3.40) and (3.41), the identification of a GP 

model revolves around the specification and manipulation of the covariance matrix. As a 

result, the GP modelling approach can be seen to be particularly susceptible to any 

mathematical or computational difficulties found when performing matrix manipulation. 

In particular, it is the inversion of the covariance matrix that has been proven to be the 

main source of difficulty in the GP modelling approach. The inversion of large matrices 

is a well-established computational problem encountered across many research fields 

where large amounts of data must be analysed and manipulated. Consequently, the 

potential size of the covariance matrix to be inverted is something that any researcher 

must be conscious of. Furthermore, as the size of the training data set (N) dictates the 

size of the resultant covariance matrix (N×N), the number of observed data points 

included in the training set must therefore be kept within reasonable limits if the GP 

model (as prescribed by the predictive equations) is to be implemented directly.  
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From a more fundamental perspective, we can also see that by placing limits on the size 

of the covariance matrix, we are also potentially restricting the amount of information we 

can include in the training dataset. Therefore, this mathematical constraint can be seen to 

impact the potential flexibility of the GP modelling approach, e.g. for complex nonlinear 

problems where thousands of data-points are necessary to adequately characterise the 

system. Therefore, in recent years a variety of methods aimed at overcoming this 

constraint on the size of the covariance matrix have been proposed. These strategies are 

often referred to as Approximate Methods, and are to be discussed in Section (4.5.5). 

 

4.5.2) Conditioning of the Covariance Matrix 

 

Another implication of the mathematical framework of the GP modelling approach is that 

in order for the inversion of the covariance matrix to remain accurate and 

computationally viable, the matrix to be inverted must not be ‘ill-conditioned’. The term 

‘ ill-conditioned’ matrix relates to the condition number of a matrix, which provides a 

measure of stability or sensitivity of a matrix to certain numerical operations (i.e. how 

numerically ‘well-posed’ is the problem?). A low condition number is indicative of a 

problem that is ‘well-conditioned’, ‘too large’ a condition number is indicative of ‘ill-

conditioning’, and an infinite condition number is indicative of a matrix that is singular 

and therefore does not have an inverse. A further aspect to the conditioning requirements 

placed upon the covariance matrix has been outlined in the previous section detailing the 

theory of various covariance functions. In order for a valid Gaussian process to be 

defined and subsequently used as a Prior with which to infer predictions, the covariance 

matrix must be Positive Semi-Definite (PSD) in order to ensure consistency. In the 

simplest terms the constraint for PSD can be most easily interpreted as the requirement 

that the eigenvalues of the covariance function must be non-negative.  

 

Therefore, we have a constraint fundamental to the GP theory that the covariance matrix 

must be conditioned to be PSD, and a practical constraint on the conditioning of the 

covariance matrix that it may be suitably conditioned for numerical manipulation. 

Furthermore, these two conditioning requirements can be seen to be somewhat 

complimentary, and therefore difficult to decouple from one another upon examination of 

the matrix. However, by ensuring positive semi-definiteness we should also go some way 

to ensuring a well-conditioned and therefore invertible matrix.  
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One aspect of ensuring that the covariance matrix is appropriately conditioned to meet 

the PSD requirement is to employ a valid covariance function as described in the opening 

sections of this chapter. However, the characteristics of the training data to be utilised by 

the chosen covariance function also play an important role in determining whether or not 

the resultant covariance matrix is suitably conditioned. Furthermore, as well as ensuring 

that the type of data included in the training dataset is conducive to the construction of a 

valid GP model, the training data collected must also meet the demands of the system 

identification task to be undertaken. Therefore, gaining an appreciation of the potential 

problems associated with the inclusion of particular types of data (e.g. steady-state, 

rough, smooth, oscillatory etc.) in the training dataset would be a useful step in ensuring 

the successful implementation of a GP model. 

 

4.5.2.1) Dealing with Non-Positive Definite Matrices 

 

As discussed previously, the covariance matrix to be generated from the application of 

the covariance function to the training data must be Positive Semi-Definite in order to 

meet the consistency requirements of the GP model. In other words, the eigenvalues of 

the covariance matrix must be non-negative. Therefore, if we can identify the cause of 

negative eigenvalues in the covariance matrix we can hopefully take steps to eliminate 

their presence and ensure a suitably conditioned matrix. A good resource for dealing with 

this problem of Non-positive definite matrices is Wothke (1993). 

 

4.5.2.1.1) Negative Eigenvalues from Problematic Data 

 

One of the principal causes of negative eigenvalues, and therefore matrices that are not 

positive definite, is the presence of unsuitable data in the training set. In particular, the 

presence of equilibrium or constant data in the training dataset can be a major 

contributory factor in the definition of a not positive definite matrix. If a variable can be 

seen to remain almost constant (such as when recording the steady-state response of the 

system under identification), it will exhibit zero variance and result in a covariance 

matrix that may be non-positive-definite. Further covariance matrix problems may also 

be encountered where a near perfect linear dependency (or correlation) exists between 

two variables. Therefore, from an overall perspective, we can see that the conditioning 

requirements placed upon the covariance matrix have potential implications for the 
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nature of the types of system response data we can readily utilise. This in turn will have 

implications for the experimental design aspects of the system identification process. 

 

4.5.2.1.2) Eigenvalue Decomposition 

 

A possible strategy for diagnosing the cause of matrix conditioning problems is to 

perform an eigenvalues decomposition of the covariance matrix. Through this analysis, 

we may be able to locate problematic training cases and therefore make adjustments to 

the training dataset more easily. Furthermore, performing such eigenvalue decomposition 

may also be of interpretable benefit if the GP model is to be viewed through the weight-

space interpretation of Rasmussen and Williams (2006). Software development 

environments such as Matlab, should allow the straightforward computation of the 

eigenvalues of a given matrix. Furthermore, the condition number of a matrix may also 

be computed and thus establish whether or not a matrix is indeed ill-conditioned. 

However, the size and dimensions of the matrix to be computed may impact on the 

viability of conducting this kind of analysis repeatedly. 

 

4.5.2.1.3) Training Data Pre-processing 

 

As an alternative strategy to performing eigenvalue decomposition, it may be possible to 

identify problems in the training dataset by simply maintaining an awareness of the 

empirical data that is to be included. Therefore, it may be possible to tackle conditioning 

problems that result from problematic data (such as prolonged steady-state response data) 

directly without resorting to further computational manipulation. However, for more 

complex implementations where the nature of a multitude of inputs must be accounted 

for, it may not be particularly straightforward to detect exactly the cause of conditioning 

problems, or determine possible remedies. One possible strategy would be to add each 

input dimension to the covariance matrix in turn, whilst maintaining an awareness of the 

conditioning of the matrix at each stage. 

 

Moving forward, once a problematic region of data has been identified, the next stage to 

be tackled is to determine what course of action should be taken. The most 

straightforward approach would be simply to remove any data points from the training 

dataset that are causing conditioning difficulties. Furthermore, as we also have 
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constraints on the overall size of the training dataset to meet, this may prove to be a 

sensible approach. In the case of equilibrium data such as that resulting from a prolonged 

steady state response, these training cases can be interpreted as repeated and therefore 

redundant data, and therefore prime candidates for elimination. However, before 

removing any data from the training dataset the overall principle that we are also 

potentially removing relevant information from the modelling process must also be 

appreciated. For the case where we wish to eliminate equilibrium data, the potential 

exists to be too aggressive with the removal process resulting in the loss of important 

information in the transition between transient and steady-state operating regions. 

 

A further option in attempting to improve the conditioning of the covariance matrix is to 

gain an appreciation of the noise level of the underlying system or function. For a system 

response that exhibits a high level of noise, prolonged periods of constant or repeated 

data would seem to be improbable. As a result, the resultant conditioning of the 

covariance matrix may not be as adversely affected by periods close to equilibrium. This 

is something that can be used to our advantage through the introduction of a random 

element or ‘jitter’ to the raw empirical data where the level of noise present in the data 

can be increased so as to combat any conditioning errors encountered. The addition of a 

small ‘jitter’ term or ridge adjustment to the diagonal elements of the covariance matrix 

acts to attenuate the estimated dependency between variables, and has been shown to 

improve the overall conditioning of the covariance matrix in Neal (1996). Furthermore, 

this strategy can be seen to be equivalent to the ridge regression regularisation methods 

that are often used in other modelling approaches. Of course by introducing noise, we are 

also potentially introducing error into the model, therefore such a ‘jitter’ term should not 

be inappropriately large and be in keeping with the relative magnitude of transitions 

observed in the system under investigation. 

 

Overall, we can see that the specification of a good training dataset can prove to be a 

challenging aspect of the GP modelling approach that may involve significant pre-

processing of the empirical data. Not only must the training dataset be of a reasonable 

size, but also appropriately conditioned so as to meet the requirements of the 

mathematical framework of the GP model. Furthermore, we can see that such 

requirements have significant implications for the experimental design procedure utilised 

to collect the training data in the first place. 
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4.5.3) Implications for Experimental Design 

 

At this point we have established the impact that the peculiarities of the mathematical 

framework of GP models can have on the size and condition of the covariance matrix. 

Furthermore, such requirements can be seen to extend their influence into the 

experimental design process that is to be adopted in order to generate the training data. In 

much of the current literature devoted to the GP modelling approach this is an aspect that 

has not been discussed in great detail. This is probably due to the statistics and machine 

learning origins of the method where the design of the training data set may not be 

something that the researcher has complete control over. However, the objective of this 

project has been to provide guidance for the implementation of GP models towards 

system identification tasks, and as a result the design of experimental procedures to 

collect data is something that is of fundamental importance. 

 

In the previous discussion, the size of the covariance matrix has been identified as a 

potential source of implementation problems due to the algorithm’s need for repeated 

matrix inversion. As the size of the covariance matrix is dictated by the size of the 

training dataset, this constraint can be seen to have a direct influence on the choice of 

sampling rate employed in the collection of data from a system. Through the existence of 

an upper limit on the size of the covariance matrix, we may be forced into choosing a 

sample rate that would be lower than normally recommended by standard system 

identification procedures (e.g. rules of thumb based on the limits associated with Nyquist 

sampling theory) so as not to include excessive data. A further pressure on the choice of 

sampling rate comes from the knowledge that large quantities of equilibrium or repeated 

data can have a detrimental effect on the conditioning of the resultant covariance matrix. 

This result can be due to an overly high sampling rate where a large number of points are 

collected resulting in data points so close together that any variance is diminished, 

therefore affecting the conditioning of the covariance matrix. 

 

Nevertheless, the choice of sampling rate must also be adequate to meet the demands of 

the system identification task. Fundamental in this task is that we retain enough 

information within the sampled data so as to adequately represent the underlying 

function, i.e. we can capture the dominant nonlinearities exhibited. Furthermore, another 

important facet to the development of a good mathematical model is that, through the 
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experimental design process, we attempt to gather as much information about the system 

as possible. In essence, we would wish the training dataset to cover as much of the 

operating range of the system as possible. Therefore we must balance the demands for a 

reasonably sized training dataset with the requirements that as much of the operating 

range be included, and indeed sampled in a manner so as to adequately represent the 

behaviour of the system. 

 

We can now move on to consider the impact of the conditioning requirements of the GP 

approach on the experimental design component of the system identification process. 

Previously we have pointed to the potential for equilibrium or steady-state data to cause 

conditioning problems in the covariance matrix. For the identification of engineering 

systems this would appear to be a serious problem, as the empirical data gathered from 

such applications routinely includes both equilibrium and transient behaviour as the 

system is moved through various operating points. Furthermore, many systems are 

explicitly designed to remain in relatively stable operating regions so as to facilitate 

manual or even automatic control. These operational constraints therefore present further 

challenges to the design of the training dataset.  

 

Furthermore, the types of excitation signals that are readily employed to gather response 

data are also very likely to include periods of constant or equilibrium data as, in seeking 

to identify nonlinear dynamic systems, researchers often design inputs that elicit a 

response that takes a significant time to develop. For example, in response to a step input, 

a system may have an initial transient or oscillatory behaviour, leading eventually to a 

steady-state response. For the identification of this system, all of this information will 

need to be captured in order to fully characterise the system response. Similarly, many 

engineering systems may exhibit a delay in the response to an input (dead-time), or a 

saturation of the output in response to an input. In all of these cases, the potential for the 

inclusion of steady-state or constant data in the training set is great, especially if previous 

inputs or outputs are to be utilised as regressors. Thus, whilst the presence of equilibrium 

data in the training dataset and the impact on the conditioning of the covariance matrix 

may be easy to identify, strategies to overcome this problem whilst holding true to the 

demands of the system identification task are needed. This problem is not something that 

is unique to identification using GP models as many other modelling approaches 

(including linear regression) are also subject to matrix conditioning problems that result 
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from incompatible training data. The main solution to this problem is to ensure that the 

experimental procedure employed endeavours to excite the system sufficiently so as to 

ensure the empirical data collected does not contain prolonged periods of steady-state 

data. In the next chapter the problems associated with the pre-processing of training data 

and its impact on experimental design procedures are to be investigated with a number of 

practical examples. However, at this point, the computational implementation of the GP 

model is to be discussed. 

 

4.5.4) Direct Implementation of the GP model 

 

If we now assume that a well-conditioned covariance matrix has been constructed we can 

look into the direct implementation of the GP model. In the direct implementation of the 

GP model the goal is to compute the predictive equations (3.40) and (3.41) exactly. 

However, as discussed previously, the size of the covariance matrix as dictated by the 

number of included training points (N) can prove to be computationally challenging. This 

is due to the repeated multiplication and inversion of the potentially large covariance 

matrix that is required not only by the predictive equations, but also by the optimisation 

techniques discussed previously. A number of different ‘approximate’ methods have 

been proposed that deal directly with the size constraints of the GP modelling approach 

and these are discussed in the next section.  

 

Before discussing the precise details of the direct implementation it is also first useful to 

discuss the computational limits that have been established for this direct implementation 

of the GP model. For the GP modelling approach, the overall computational burden for 

the direct implementation has been estimated as O(N3) by Rasmussen and Williams 

(2006). This has led to the recommendation that for large problems (N>10000), further 

approximation methods (described in the next section) should be adopted. Earlier texts 

by Mackay (1998b) and Gibbs (1997) put a feasible limit of (N<1000) points upon the 

size of the covariance matrix. In my own experience working with data sets for the 

identification of dynamic engineering applications, the lower limit of (N<1000) data 

points is more realistic for those working with average desktop PC computational 

facilities. 
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An exact implementation of the GP model predictive equations outlined in Gibbs and 

Mackay (1997) is as follows: 

 

The predictive equations to be computed are 

 

1
1 1
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1 1 1
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Given a new test input xN+1, to calculate a single prediction 1N̂t + , the following procedure 

can be followed: 

 

1) Construct the vector, ( ) ( )N 1 1, N+1 N, N+1 C ; , ,C ;+  =  k x x θ x x θ…  

2) Invert covariance matrix, 1
N
−C  

3) Calculate the vector, 1
N N
−=v C t  

4) For the mean prediction, find the dot product, 1 1
ˆ T
N Nt + += k v  

5) Evaluate covariance of test input, ( )N 1, N+1 C ;κ += x x θ  

6) Calculate the scalar, 1
1 1

T
N N N

−
+ +k C k  

7) Subtract for variance prediction, 2 1
1 1 1

T
N N N Nσ κ −

+ + += − k C k  

 

For subsequent test inputs, xN+2 and so on, to calculate new predictions only the new 

vector kN+2 need be constructed, as the vector v will not have changed. Therefore, after 

the initial test input (where the matrix must first be inverted 1
N
−C  and applied to a vector 

tN), the calculation of the remaining prediction horizon requires only the evaluation of 

the dot product, i.e. 2 2
ˆ T
N Nt + += k v , to be repeated, therefore reducing the remaining 

computational demand to around that of O(N).  

 

With regard to the implementation of the Marginal Likelihood maximisation algorithm 

used to find the most probable hyperparameters θMP , we can also see that that each 

calculation of the gradient of the log likelihood requires the inversion of the covariance 

matrix. Gibbs and Mackay (1997) break down each evaluation so that they require 4 

matrix to vector applications, and 1 dot product calculation. However the evaluation of 
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1( )N
Ntrace

θ
− ∂

∂
C

C  can be seen to avoid a full calculation of 1N
−C  as the trace operator only 

requires diagonal elements. 

 

4.5.4.1) Using Matrix Decomposition 

 

Whilst this direct method of implementing the GP model has significant computational 

disadvantages due to the need for the repeated explicit inversion of the covariance 

matrix, a further disadvantage is that through this inversion and the subsequent 

application and dot product computations involving this matrix the overall accuracy and 

computational stability of this method can become compromised. This is due to potential 

for ill-conditioning in the covariance matrix, as discussed earlier. As a result alternative 

methods for the direct implementation of the predictive equations have been developed 

so as to avoid the need for the explicit inversion of the covariance matrix. Rather than 

attempt the direct inversion of matrices (involving the definition of an adjugate matrix 

divided by the determinant), alternative methods that rely upon the decomposition of the 

covariance matrix can be adopted to help mitigate the potential for numerical 

inaccuracies and ultimately lessen the computational expense.  

 

The LU matrix decomposition method applied in Gibbs and Mackay (1997) allows a 

square matrix to be decomposed into upper and lower triangular matrices (of identical 

size), allowing more rapid inversion of these smaller matrices and subsequent 

multiplication (i.e. C-1 = U-1L-1). Furthermore, the authors reported that numerical errors 

were reduced through the adoption of this decomposition. Nevertheless, such 

decomposition still employs inversion techniques that can prove time-consuming for 

large datasets. A further alternative is to take advantage of the requirement that the 

covariance matrix must be symmetric and positive semi-definite, and implement 

Cholesky decomposition of the covariance matrix instead. The Cholesky decomposition 

is a special case of LU decomposition that allows the decomposition of a square positive 

Hermitian matrix into the product of the lower triangular matrix and its transpose (i.e. 

C=LLT). The use of Cholesky decomposition has been recommended in Rasmussen and 

Williams (2006) as it has been shown to be both faster and more computationally stable. 

Furthermore, through the implementation of Cholesky decomposition in development 

environments such as Matlab, a check on the conditioning of the covariance matrix can 
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be performed. Therefore, the underlying software may generate a potentially informative 

error message when the conditioning of the covariance matrix has deteriorated. 

 

The text by Rasmussen and Williams (2006) has provided the following useful guide for 

implementing the GP predictive equations using Cholesky decomposition: 

 

Applying Cholesky decomposition, we can generate L = Cholesky(K ). For the 

calculation of the predictive mean ( 1
1 1

ˆ T
N N N Nt −

+ += k C t ) we first simplify this equation into 

the form 1 1
ˆ T
N Nt + += k α  where 1

N N
−

α = C t . Then through substituting the Cholesky 

decomposition ( T
N LL=C ) and solving for α , we find \ ( \ )T

NL Lα = t . We can then 

express the predictive mean as 1 1
ˆ T
N Nt + += k α . For the predicted variance, we can make 

further use of the Cholesky decomposition and define 1\ NL +v = k , and then express the 

variance as 2
1

T
Nσ κ+ = − v v . 

 

4.5.5) Approximate Implementations of the GP model 

 

In the direct implementation the GP model the overall computational demand can be seen 

to scale with the size of the training dataset to the order of O(N3). As a result, the 

implementation of this direct approach presents a significant difficulty for those working 

on problems that involve large quantities of data. Furthermore, the computational load 

required by the method may prove to be beyond that of users with access only to average 

desk-top computing facilities. Therefore the development of methods aimed at reducing 

the computational demands of the GP modelling approach have received a great deal of 

attention and remain a focus of ongoing research. 

 

As discussed previously, the predictive equations of the GP model involve both the 

storage and inversion of a potentially large covariance matrix. Furthermore, the 

implementation of the direct method can be seen to revolve around the problem of 

solving the linear system 2( )nK Iσ+ =v y  for v, (Note that for consistency with existing 

literature we have substituted the 2( )nK Iσ+  for the previously used CN which assumes 

Gaussian independent noise, and y for targets tN).  
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In tackling this problem of reducing the computational demand, a number of different 

approaches have been developed. Useful reviews of these approximate methods can be 

found in Seeger (2003), Rasmussen and Williams (2006) and Quinonero-Candela et al. 

(2007). The review paper by Quinonero-Candela et al. (2007) builds upon that found in 

Rasmussen and Williams (2006) in providing a unifying view of the techniques used to 

approximate the GP model for regression. The former paper states that the various 

options can be generally categorised into two different approaches to the problem:  

 

1) Using Fast matrix-vector multiplication methods (MVM ) to approximate the 

direct implementation of the GP model. 

2) Using Sparse matrix methods to approximate the covariance matrix. 

 

In this section an overview of the main ideas behind these approaches has been provided, 

rather than a full mathematical exploration. 

 

4.5.5.1) Fast Matrix Vector Multiplications (MVM) 

 

The primary cause of the demanding computational requirements of the direct 

implementation of the GP model has been isolated as the need for the repeated inversion 

of the potentially large covariance matrix (or the solution to the linear system 

2( )nK Iσ+ =v y  for v). As a result, efficient computational methods aimed at solving this 

problem and therefore speeding up GP regression have been proposed. The fast MVM 

methods proposed in Wahba (1995) and Gibbs and Mackay (1997) tackle this problem 

through the use of iterative methods such as conjugate gradients. The paper by Gibbs and 

Mackay (1997) takes its inspiration from the methods proposed by Skilling (1993), and 

provides a detailed resource for the reconfiguration of the GP predictive equations and 

the maximum likelihood optimisation loss function into expressions that avoid the 

explicit inversion of the covariance matrix. Overall, the number of iterations of the 

conjugate gradients method completed can be seen to dictate the computational demand 

of the fast MVM method. Every iteration of the conjugate gradients method has a 

computational demand of the order of O(n2), however an approximate solution can be 

arrived at if the algorithm is terminated after k iterations, giving an overall computational 

demand of O(kn2). 
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With regard to the overall task of improving the computational efficiency of the GP 

model, the reviews of Quinonero-Candela et al. (2007) and Rasmussen and Williams 

(2006) are somewhat dismissive of this option. This is primarily due to the overall 

computational demand incurred by the deployment of these methods still being seen to 

scale nonlinearly as O(n2), and thus not offering the computational savings that are 

desired. As a result, the fast MVM methods have been stated as being of the most 

potential benefit for problems where the number of input dimensions is relatively small. 

 

4.5.5.2) Sparse Matrix Methods 

 

The most straightforward method of reducing the computational burden of the GP 

approach is to restrict the size of the training dataset and therefore reduce the size of the 

covariance matrix. This most obvious of strategies has been named the Subset of Data 

(SOD) approach and entails the definition of a subset of the training dataset for use in the 

construction of the covariance matrix. This approach is to be discussed below, but suffers 

from the fundamental drawback that through the elimination of training data from the 

training dataset we are of course potentially throwing away valuable information about 

the underlying system and therefore compromising the performance of the resultant 

model.  

 

Therefore alternative methods to “sparsify” the covariance matrix have been proposed. 

The idea here is somehow to retain the bulk of the information contained in the full 

training dataset, but reduce the rank (i.e. the number of linearly independent rows) of the 

resultant covariance matrix so as to facilitate a less computationally demanding 

implementation of the GP model. These sparse methods are to approximate the full 

posterior and therefore the predictive equations of the GP model through the use of 

expressions that involve matrices of lower rank m n<  (where m is the rank of the sparse 

covariance matrix, and n is the rank of the full GP covariance matrix). 

 

In Rasmussen and Williams (2006) the discussion of approximate methods for large 

datasets begins with a proposal for a method for improving computational efficiency 

through the eigendecomposition of the GP model kernel. As a result of this 

eigendecomposition, a method of reducing the rank covariance matrix may then be 

forthcoming. However the discussion points out that the problem of approximating the 
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kernel in terms of eigenvalues and eigenvectors is a computationally demanding one in 

itself, and may therefore negate any resulting benefit in the subsequent implementation 

of the GP model prediction framework. Therefore, methods aimed at reducing the 

computational demand of eigendecomposition are proposed as a possible way forward. 

One such method is the Nyström approximation described below, but before examining 

the details of the various methods, a discussion of the subset selection procedures used to 

define each sparse method is required. 

 

4.5.5.3) Subset Selection 

 

In constructing a reduced rank or sparse version of the covariance matrix K (note that due 

to the potential modification of the covariance matrix it may be more correctly termed as 

the Gram matrix) the first step is the selection of a subset of datapoints. The selection of 

this ‘included’ or ‘active’ subset of data can be seen to be something common to all 

Sparse methods, where the included latent variables are to be treated exactly by the GP 

model framework and the remaining variables are to be approximated by a less 

computationally demanding method. This means that, unlike the previously mentioned 

Subset of Data (SOD) method, the data not included in the subset is not going to be 

completely eliminated from the approximation.  

 

This subset of data is to be of size m n< , where n is the size of the overall training 

dataset, and is denoted as I (as in ‘included’ datapoints) in Rasmussen and Williams 

(2006), with the ‘remaining’ n m− datapoints then said to form the set R. If the training 

datapoints are then assumed to be ordered in a manner so that the subset I appears first, 

the matrix K can be partitioned without loss of generality as the following: 

 

 
( )

( ) ( )( )

mm m n m

n m m n m n m

K K
K

K K
−

− − −

 
=  
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       (4.18) 

 

where the top m n×  block can also be denoted to as Kmn and its transpose as Knm. 

 

In the review by Quinonero-Candela et al. (2007) a slightly different perspective is taken 

where the active set is known as a set of ‘inducing’  variables. This review paper builds 

on the previous account by Quinonero-Candela and Rasmussen (2005) that sought to 
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provide a unified view of the various sparse matrix methods that had been developed. 

This is achieved through the reinterpretation of the various sparse methods as “exact 

inference with an approximate prior”, rather than the more common interpretation of 

“approximate inference with the exact prior”. As a result the ‘effective’ prior being 

employed by each algorithm can be computed from the analysis of the posterior. The 

overall objective of this reinterpretation is to provide a means of direct comparison 

between the various sparse matrix methods. 

 

As only the active set is to be treated fully in the sparse model, the process of 

determining which datapoints are to be included is critical to the success of the 

approximation. One possible strategy is to carefully build the subset of data through the 

manual selection of datapoints based on ‘a priori’ knowledge of the underlying system 

characteristics. This method of selecting an optimum training data subset can be seen to 

be particularly in keeping with the system identification process where the pre-

processing of empirical data is often an important stage. However, for implementations 

where ‘a priori’ knowledge is limited, or for complex nonlinearities composed of 

multiple dimensions, the determination of a suitable subset may become a challenging 

problem. As a result, a simple strategy such as the random selection of datapoints may be 

a suitable course of action. 

 

As an alternative, more iterative approaches to the selection of the active set have also 

been proposed. In particular, ‘Greedy Approximation’ methods have been shown to be of 

great potential where the active set is selected and updated according to some criterion. 

Such an algorithm would initiate with an empty active set I with the remaining set R 

containing all indexed training observations. Then, using an iterative method, each 

indexed training example is added to the active set in turn and the selection criterion 

evaluated. If the criterion is met, and the active set can be seen to be further optimised, 

the training example under review will be included in the active set. As a result, many of 

these algorithms can be seen to have significant parallels with the ‘active learning’ 

methods briefly mentioned in Section (2.3.2). Note that the computational expense of 

considering all training examples with respect to the criterion in one sitting may prove to 

be prohibitive and therefore working subsets of data may also need to be defined, see 

Rasmussen and Williams (2006) for a general description of the Greedy Approximation 

algorithm. 
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The next question that arises is what kind of selection criteria should be used to 

determine the active subset of data. Various methods have been proposed including the 

‘Informative Vector Machine’ (IVM) of Lawrence et al. (2003), the ‘Informative Gain’ 

criterion of Seeger et al. (2003), the online learning algorithm of Csato and Opper 

(2002), minimisation of the residual sum of squares as in Luo and Wahba (1997), and 

maximising the effective posterior instead of the effective marginal likelihood as in 

Smola and Bartlett (2001). A further method could be the maximisation of the marginal 

likelihood (i.e. the same optimisation used to identify hyperparameters) with respect to 

the inducing inputs as described by Snelson and Ghahramani (2006). In addition, the 

selection of the active set of data can also be incorporated into the existing optimisation 

of the hyperparameters as in Seeger et al. (2003). 

 

A final aspect to consider in the determination of a suitable active set is that there is no 

fundamental reason why the subset has to be chosen from the training dataset itself. The 

review by Quinonero-Candela et al. (2007) states that subset selection from a disjoint of 

the training dataset may be a viable alternative, and points to the paper by Snelson and 

Ghahramani (2006) where the discrete selection of training/test cases has been replaced 

by an algorithm more in keeping with continuous optimisation. After determining a 

suitable subset of data, we can now turn our attention toward describing some of the 

various sparse methods that have been proposed. 

 

4.5.5.4) Subset of Data (SoD) 

 

The Subset of Data (SoD) method can be seen to be the most straightforward method of 

sparse matrix approximation, where an active subset of data m is to be selected from the 

whole training dataset n. The existing predictive equations and optimisation expressions 

remain unchanged by this method, resulting in an overall computational demand of 

O(m3), where m n< . As discussed previously, the Subset of Data approximation method 

would seem to be fundamentally handicapped in comparison to alternative sparse 

methods, as training data that is not included in the active subset is simply discarded 

rather than approximated. However, in comparison to the more sophisticated sparse 

methods, the computational demand of the SoD method is independent of n. 

Furthermore, through the use of carefully selected data or the greedy selection methods 

discussed previously, the resultant active subset to be used by the SoD method can 
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become more optimised. As a result, the SoD method may still provide a good 

approximation to a ‘full’ GP model and should not be wholly discounted in favour of 

more sophisticated sparse methods.  

 

4.5.5.5) Nyström Approximation 

 

The Nyström approximation method involves the analysis and approximation of the 

eigenfunctions and eigenvectors of the kernel. The Nyström method is described in Press 

et al. (1992), and has been proposed as a sparse method for GP regression in Williams 

and Seeger (2001). This method allows the covariance (or more generally the Gram) 

matrix K to be approximated by a reduced rank or sparse version Kɶ  that can then be 

substituted into the GP predictive equations. By then choosing the number of 

eigenvalues/vectors to be included in the approximation to be the same as the size of our 

defined subset I, the Nyström approximation of K can be written as: 

 

 1
nm mm mnK K K K−=ɶ         (4.19) 

 

This approximation Kɶ  can then be substituted for K in the main GP predictive equations. 

Note that it is only the matrix K that is to be substituted, the covariance function k is not 

going to be to be substituted by kɶ . The computation demand associated with the method 

is O(m2n) for the required matrix computations, and O(n) and O(mn) for the evaluation of 

the predictive mean and variance respectively. In the paper by Williams et al. (2002), the 

experimental results point out that the Nyström method performs poorly relative to other 

methods when the size of the active set m is small. Furthermore, due to the fact that the 

covariance function is not completely replaced by an approximation kɶ , numerical errors 

may be encountered. 

 

4.5.5.6) Subset of Regressors (SoR) 

 

The Subset of Regressors (SoR) method takes advantage of an equivalence between the 

GP model’s mean predictor and that of a finite-dimensional generalised linear regression 

model. This method originates from Wahba (1990) and Poggio and Girosi (1990), and 

has been adapted for use in Sparse GP models by Smola and Bartlett (2001). Therefore 
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the SoR model is a finite linear-in-the-parameters model with a particular prior on the 

weights. For any input x*, the corresponding function value f* is given by: 

 

 * *
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In order to formulate an approximation to this model only a subset of regressors are 

considered so that: 
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We can then formulate the predictive distribution in the same manner as described in the 

‘weight-space’ interpretation of the GP model (Rasmussen and Williams, 2006), to find 

the mean and variance: 
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From these predictive equations we can see that in contrast to the SoD method, the SoR 

method is to employ all n datapoints of the training set in the approximation. However, a 

major disadvantage of the SoR method is that due to its basis upon a linear-in-the-

parameters model, the GP model becomes degenerate. Under the unifying view of 

Quinonero-Candela et al. (2007) where methods are described in terms of approximate 

priors, the degenerate nature of the SoR model can be seen to restrict the variety of 

possible functions that will be plausible under the posterior. Furthermore, as the SoR 

model can be seen to have only m degrees of freedom, this implies the restriction that we 

can only draw m linearly independent functions from the prior, with subsequent 1m+  

functions being a linear combination of the previous functions. 

 

The main consequence of this degeneracy is that the resultant predictive distributions can 

become unreasonable. For covariance functions that decay as the distance between inputs 
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increases, we would expect that the predictive variance to increase as the distance 

between inputs is increased, thus indicating an increase in uncertainty. Unfortunately, the 

due to the restrictions placed by the SoR model on the approximate prior over functions, 

the predictive distribution can in some cases have no prior variance. This can result in 

predictive distributions in which the variance tends to zero for far apart inputs (i.e. the 

opposite of what would be desired). Overall, whilst the SoR method can be seen to be a 

useful approach in terms of approximating the GP mean prediction, the accompanying 

predictive variances can at best be described as overconfident, and at worst absurd. The 

computation demand associated with the SoR method is O(m2n) for the initial matrix 

computations, and O(m) and O(m2) for the evaluation of the predictive mean and 

variance respectively. 

 

4.5.5.7) Further Sparse Methods 

 

A number of other sparse matrix methods have been proposed in recent years that can be 

seen to overcome the main weakness of the SoR approximate method, i.e. the greatly 

reduced scale and therefore usefulness of the variance output. Notable methods discussed 

in the review by Quinonero-Candela et al. (2007) include the Deterministic Training 

Conditional (DTC) Approximation (that is equivalent to the method of Projected Latent 

Variables (PLV) proposed in Seeger (2003) and also discussed in Rasmussen and 

Williams (2006) as Projected Process Approximation (PPA)), and the Partially 

Independent Training Conditional (PITC) and Fully Independent Training Conditional 

(FITC) (also known as the Sparse Pseudo-input Gaussian Process (SPGP) which was 

proposed by Snelson and Ghahramani (2006) and further discussed in Snelson (2007)). 

 

These different sparse methods are more complex and without fully exploring the unified 

view of sparse methods proposed in Quinonero-Candela et al. (2007), where each sparse 

method is interpreted through their effective priors, it is difficult to provide a detailed 

explanation of these methods. In essence, the DTC and SoR sparse approximations can 

both be seen to impose a deterministic relationship between the training and inducing 

latent variables that results in inducing training conditionals where the covariance matrix 

has been set to zero. For the PITC and FITC sparse methods, the approximation to the 

training conditional is to include a portion of the true covariance matrix (a block-

diagonal in the case of PITC) and set the remaining elements of the matrix to zero. 
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Overall, the computational demand of these different methods has been found to be 

similar at O(m2n). As a result, it is difficult to draw conclusions as to which method 

would be the preferred choice for a given application.  

 

4.5.6) Which Approximation Method? 

 

As many of the sparse methods have been estimated as having a similar computational 

demand, it does not appear immediately obvious as to which method should be preferred. 

Furthermore, the reviews of Quinonero-Candela et al. (2007) and Rasmussen and 

Williams (2006) also present final conclusions that are somewhat inconclusive and 

recommend further empirical investigations. However, such an evaluation of the various 

methods on offer can be seen to be a challenging task where many contributing factors 

can determine the suitability of a particular approximate method, together with numerous 

possible measures of approximation accuracy and computational efficiency. Issues such 

as the complexity of the underlying function, dimensionality of the model input, and the 

degree of noise present on the targets have been identified as being potentially influential 

in determining the suitability of a chosen approximation (e.g. the SoR method is 

degenerate which may limit flexibility). For assessing the predictive performance of an 

approximation, measures such as such as mean square error or negative log likelihood 

may be utilised, and for computational performance the time taken for testing, pre-

computation (i.e. operations required before test predictions are made), and 

hyperparameter learning may all be useful measures of efficiency. Overall, some 

approximate algorithms may be seen to perform better under some criteria, and 

comparatively worse under others.  

 

For the more complex varieties of sparse matrix methods proposed (i.e. discounting the 

SoD method), as the computational demand would seem to be similar, the most 

important distinguishing feature between them would appear to be how the predictive 

variance is to be treated. Therefore, the selection of an appropriate approximate method 

could be based upon the need for an accurate representation of the variance of the 

prediction. In some applications, this measure of prediction uncertainty may be 

considered superfluous (see Seeger (2004) for a discussion as to the worth of the variance 

output from a machine learning perspective), and it is the predictive mean that we are 

interested in. As a result, the SoR method may become a strong candidate due to the 
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relative straightforward nature of the approximation. If the predictive variance is to be of 

great importance, the more sophisticated approximate methods of the PP/DTC, PITC and 

FITC should be considered. However, before making any concrete recommendations it 

must be pointed out that due to the vagaries presented by current empirical evidence, a 

more simple SoD method may still prove to be competitive. Referring to the results of 

the empirical example presented in Rasmussen and Williams (2006), the measure of 

model error (for a fixed subset size) can be seen to be reduced if more complex sparse 

methods (SoR and PP/DTC) are adopted in comparison to the SoD method. However, the 

results point to the fact that the overall ‘mean runtime’ (indicative of the computational 

load) associated with the more complex sparse methods is substantially higher than the 

equivalent SoD method. As a result, a more simple SoD approximate constructed from a 

larger subset of data can remain competitive in both predictive accuracy and 

computational load, than a more complex sparse method composed of a smaller subset of 

data. Note that the authors do not present this evidence as a definitive result, but merely 

as indicative of the problem of assessing the relative performance of competing 

approaches. 

 

In the selection of an appropriate approximation a further consideration is the intended 

implementation or application of the GP model. In particular a significant proportion of 

the computational demand of the GP model can be seen to be take place before 

predictions may actually be computed (i.e. the pre-computation involving the inversion 

of the covariance matrix and application to the target vector, and the optimisation of the 

hyperparameters). In some applications it is reasonable to assume that the time taken for 

pre-computation and training is not of great concern, and it is the speed of prediction that 

is of overriding importance (e.g. real-time implementations involving a trained GP 

model). In contrast, other applications may require that the identified GP model must be 

adaptable, where the speedy re-training of the hyperparameters takes precedence over the 

speed of prediction (e.g. implementations where relatively few predictions are computed, 

but the model must be modified or updated repeatedly). As a result, it is the practical 

demands of the problem under investigation that must dictate whether or not any 

approximate methods are required, and ultimately which method would be preferable. 
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4.5.6.1) Implications for System Identification 

 

Returning to the specific demands of system identification, further comment on the 

overall usefulness of these approximate methods is worthwhile. The primary objective of 

these methods are to reduce the computational demand of the GP model, either through 

optimising the covariance matrix through sparse matrix methods, or through 

reconfiguring the mathematical implementation of the model through fast (MVM) 

methods. However, none of these methods are aimed at tackling the matrix conditioning 

problems also discussed. Therefore, regular system identification issues such as the 

design of experiments and collection of data that can be seen to directly influence the 

conditioning of the covariance matrix must also be considered before any approximate 

methods are employed.  

 

In the discussion concerning the matrix conditioning aspects of the GP model the need 

for significant pre-processing of the training set was identified as being likely for system 

identification problems. Furthermore, we can see that through the pre-processing of the 

training set and potentially removing problematic data we are in fact adopting a Subset of 

Data (SoD) sparse approximate method even before actively considering the 

computational load. As a result it may be the case that through the pre-processing of the 

training data, the final subset of m data to be employed may be of a size that is 

computationally feasible. This in turn may diminish the need for more exotic 

approximate methods to be employed. In essence, the implementation strategy should 

first endeavour to pre-process the training data to tackle any conditioning problems, 

before then considering whether or not any further approximate methods are required. 

 

The potential need for the pre-processing of the training data to meet the conditioning 

requirements of the GP model can also be seen to suggest that a more manual or “hands-

on” approach to subset selection may be preferable to the use of more random or iterative 

selection methods where datapoints are greedily added upon evaluation against some 

criteria. In this way, any prior knowledge of the underlying system can be utilised in 

avoiding conditioning problems as well as meeting the demands of the system 

identification task and regulating the overall size of the subset of data. Furthermore, 

through the manual pre-processing of the training dataset any specific issues such as 

ensuring the inclusion of particularly important regions of operating space can be tackled 
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directly. After all, the most important issue to be borne in mind is whether or not any 

sparse method employed can be seen to impact detrimentally on the overall integrity of 

the training data to be employed in the construction of a GP model. Therefore, in the first 

stages of pre-processing, a more manual approach to subset selection of the training 

dataset would seem to be a sensible strategy. After this stage, a more iterative selection 

approach could then be employed to further improve the subset. For example, by 

carefully adding more points to increase the accuracy of the model, or through carefully 

removing points to increase the computational efficiency. 

 

Nevertheless, for some applications such a detailed manual pre-processing of the training 

dataset may not be viable. In cases where the size of the initial training dataset is very 

large, or where prior knowledge is limited, a random or iterative approach to subset 

selection should be considered. However for the relatively simple nonlinear dynamic 

systems considered in the next chapter, this thesis is to adopt the subset of data (SoD) 

approximation where the selection or pre-processing of training data is to be performed 

by hand. As a result, the general guideline that for the direct implementation of the GP 

model the training dataset should contain (n<1000) is to be followed. 

 

4.5.6.2) Further Possibilities 

 

As has been discussed previously, the direct implementation of the GP model has been 

shown to be problematic due to the need for the inversion of a potentially large 

covariance matrix. To tackle this problem, the sparse matrix methods discussed in the 

previous section attempt to reduce the computational footprint of the covariance matrix 

through approximation, whilst endeavouring to retain as much information as possible in 

the modified covariance matrix. In tackling the implementation difficulties of the GP 

model a further two possibilities have been proposed and are worthy of discussion. 

 

4.5.6.2.1) Multiple GP models 

 

An obvious alternative to this problem of squeezing as much information into as small a 

space as possible is to split up the information into number of smaller spaces. In essence, 

the idea would be to follow the precedent laid out in other forms of mathematical 

modelling where a ‘divide and conquer’ approach is taken, and a multiple model or 
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network of models are specified in place of a single global model. Such a scheme could 

follow the previously discussed Operating Regime approach, see Murray-Smith and 

Johanson (1997), where the operating range of the system under investigation is 

partitioning into a number of local regions. Using empirical data collected from each 

local operating region a local GP model could then be identified. As each individual GP 

model would be identified from a subset of the overall set of training data, the resultant 

size of each covariance matrix will then be significantly smaller and therefore easier to 

implement. 

 

The next stage to consider is how this group of local GP models are to be combined into 

a global representation of the system. In particular, the switching between individual GP 

models is something that must be considered carefully, as in addition to the prediction 

estimate each GP model is to provide a predictive variance. The paper by Rasmussen and 

Ghahramani (2002) proposes a scheduler or manager that probabilistically assigns points 

to each local expert model. The paper by Shi et al. (2003) utilises a probabilistic 

approach with a hierarchical arrangement to structure a mixture of GP models. In both of 

these papers, the inference required the use of MCMC methods to maintain the validity 

of the Bayesian framework.  

 

A further example that specifically aims to implement a ‘local model network‘ comprised 

of local GP models is the paper by Gregorčič and Lightbody (2007). In this paper a 

global GP utilising the squared exponential covariance function is first identified to 

divide the operating range of the system into local regimes composed of clusters of 

training data. This is achieved by examining the variance output of the global GP model 

where a low variance is taken to be indicative of a suitable region for the identification of 

a local model due to the presence of sufficient data, thus providing the centres for local 

validity functions. Subsequently, a linear covariance function is then employed to 

identify a local linear model in each operating regime. The problem of ensuring that the 

variance output of this multiple GP model remains indicative of model uncertainty is 

solved through blending the different local models through their parameters, rather than 

blending the multiple models through their respective outputs. Overall, this prospect of 

employing the GP model within the well developed multiple modelling strategy would 

appear to be a promising avenue for further research. 
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4.5.6.2.2) Derivative Observations 

 

A further alternative to the previously discussed methods of approximation is to 

incorporate derivative observations into the GP model, as in Leith et al. (2002) and Solak 

et al. (2003). The idea behind this approach is to summarise any training data that is close 

to an equilibrium point by defining a local linear model to cover this region of operating 

space. Therefore, standard linear regression solutions (i.e. linear least-squares) can be 

used to estimate a derivative observation from perturbation data in the vicinity of an 

equilibrium point. After obtaining a set of derivative observations, these can then be 

combined with the existing training data (function observations) in the covariance matrix.  

 

Therefore, through the identification of a number of derivative observations we can 

potentially summarise a significant proportion of the training data very concisely, and 

utilise the remaining space (i.e. the majority of the covariance matrix) for the inclusion of 

function observations collected in off-equilibrium regions. Therefore, this strategy of 

utilising derivative observations for equilibrium regions and function observations for 

off-equilibrium regions, can also be thought of as being in keeping with the divide and 

conquer methodology of the multiple model approach, where the derivative observations 

can be interpreted as local linear models. This has particular relevance in the 

identification of nonlinear dynamic systems where real applications can often be seen to 

exhibit prolonged periods of operation near to equilibrium points, with off-equilibrium 

data being comparatively sparse. As a result, the benefits of incorporating derivative 

information can be seen to be particularly relevant to the system identification and 

engineering applications considered in this thesis, and are therefore to be discussed in 

greater detail in the next chapter, see section (5.4). 
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5) Nonlinear Dynamic System Identification with 

GP models 
 

In the previous two chapters, the mathematical background and computational 

implementation of the GP modelling approach has been discussed. In this chapter, we are to 

investigate the application of the GP modelling approach for the specific task of identifying 

nonlinear dynamic systems. Notable extensions to the GP framework that are particularly 

relevant for nonlinear system identification (Uncertainty Propagation and Derivative 

Observations) are also discussed. To support this investigation, a number of simulated 

example systems are first identified with the GP modelling approach. Finally, a number of 

real laboratory-scale nonlinear systems are to be identified from empirical data. Through 

utilising these different examples, the implementation of the GP model from a practical 

engineering perspective can therefore be discussed. Furthermore, rather than focussing 

solely on judging the accuracy of the identified GP models (as is common in machine 

learning applications of the method), the robustness qualities of the identified models are 

also to be assessed. As the main overall objective of the system identification process is to 

provide both an accurate and robust approximation to the underlying system (especially if 

the model is to be ultimately used for control purposes, see Section (2.2.1)), the ability of 

the identified GP models to represent the full range of behaviour exhibited by the example 

applications must be judged carefully. 

 

5.1) Background of GP models in System Identification 
 

The recent interest in the GP modelling approach as a method for nonlinear system 

identification can be seen to originate from the ideas presented in Murray-Smith et al 

(1999), Leith et al (2000), and Leithead et al (2000). In these papers, a non-parametric 

modelling approach was proposed for use in the identification of local models (as part of a 

multiple model type structure) in off-equilibrium regions. In such operating regions, the 

popular strategy of identifying local linear models has been shown to be fundamentally 

limited, as discussed in Shorten et al (1999). Much of the difficulty associated with 

representing such off-equilibrium regions is due to the potential absence of prior 

knowledge, coupled with a lack of sufficient data with which to identify local models. To 

combat this lack of prior knowledge, non-parametric empirical modelling methods have 
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therefore been proposed as a solution. However, due to the scarcity of the available data, 

such data-based modelling approaches may also struggle to identify a meaningful 

description.  

 

The reason why the GP model offers a viable alternative is the fact that due to the Bayesian 

probabilistic nature of the approach, the relative scarcity of the empirical data (or density of 

data) can be reflected in the approximation through the variance output. In addition, the GP 

model is to directly use whatever data is available in computing each prediction (i.e. the 

covariance matrix is directly defined from applying the covariance function to the training 

data), rather than rely solely on parameters defined through optimisation. As a result, the 

GP modelling approach has been shown to perform well in identifying models from small 

datasets as the number of structural parameters (hyperparameters of the covariance 

function) to be identified is typically less than that of other complex learning systems (see 

Kocijan et al (2003a) for a practical comparison of the GP modelling approach with a 

Neural Network alternative). Further good general sources of information on applying the 

GP modelling approach toward dynamic system identification problems are Gregorčič and 

Lightbody (2002), Murray-Smith et al. (2002), Kocijan et al. (2003b), Wang et al (2005), 

Ažman and Kocijan (2007), Kocijan and Ažman (2007), and Kocijan and Likar (2007). In 

Gray et al (2003), and Thompson and Murray-Smith (2006), some of the more practical 

implementation issues associated with the GP model are also discussed, with some of this 

research forming the basis of this thesis. 

 

A further motivating factor behind the GP modelling approach are the possibilities that 

exist for the incorporation of the GP methods into the well established ‘divide and conquer’ 

multiple modelling strategy discussed previously. As stated above, the paper by Murray-

Smith et al. (1999) proposed the use of local GP models to identify off-equilibrium 

operating regions, and then combining these local GP models with local linear models used 

to identify equilibrium regions. A further strategy in keeping with this desire to retain the 

local linear modelling approach and combine it with the GP model is the incorporation of 

derivative observations into the GP modelling approach (as mentioned in Section 

(4.5.6.2.2)). This extension to the GP modelling approach takes advantage of the fact that 

as differentiation is a linear operation, the derivative of a GP remains a GP. As a result, as 

long as the derivative of the covariance function is employed, these derivative observations 

can be handled by the same predictive framework as the normal functional observations. 
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As derivative observations can be thought of as equivalent to linearisations about an 

equilibrium operating point, through incorporating derivative observations we can develop 

a global model built out of multiple local linear models that can be blended almost 

seamlessly with any off-equilibrium functional observations. Whilst in certain applications 

direct access to derivative observations may be available (e.g. sensors measuring speed and 

acceleration), it is also possible to generate them through the application of standard linear 

regression techniques to any available equilibrium functional observations. An important 

outcome of adopting this approach is that significant improvements in the computational 

efficiency of the overall GP modelling approach may be realised. By using computationally 

efficient linear regression techniques to identify derivative observations from (commonly 

abundant) equilibrium data, the more computationally expensive standard GP methods can 

then be reserved for the more scarce off-equilibrium data. This divide and conquer strategy 

based on the combination of functional and derivative observations is discussed in more 

detail in a forthcoming section, and previous detailed sources include Leith et al (2002), 

Solak et al (2003) and Kocijan et al (2003c).  

 

This overall synergy between the methods employed in the multiple model approach and 

that of the GP modelling approach is further described in the review by Gregorčič and 

Lightbody (2004, 2008). Furthermore, as discussed in section (4.5.6.2.1), another paper by 

Gregorčič and Lightbody (2007) proposed another interesting but related alternative where 

local linear GP models (in this case linear covariance functions are used) in the 

development of a local model network model structure. Further notable contributions to the 

field of GP modelling for dynamic system identification include the consideration of non-

Gaussian noise models as discussed in Murray-Smith and Girard (2001). In the previous 

section discussing covariance functions (Section (4.3)), the general form of covariance 

function assumed additive independent identically distributed Gaussian noise. However, in 

the identification of real systems it is not unlikely that noise is dependent on other 

variables. A further important development in GP models for system identification 

purposes is the development of more a complex multi-step ahead prediction method where 

the uncertainty over one prediction can be propagated to the next prediction. This 

‘Uncertainty Propagation’ or ‘Prediction with Uncertain Inputs’ was first proposed in 

Girard et al (2002) and expanded on in Girard (2004), and will be discussed in more detail 

in a forthcoming section. 
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5.1.1) Control with GP models 

 

In this thesis the problem of applying automatic control to nonlinear dynamic systems 

identified by GP models has not been investigated. However, it is worthwhile to provide a 

brief overview of the existing research into this aspect, as one of the primary drivers behind 

the development and maturation of any system identification approach is whether or not the 

methods are well suited to solving existing control problems or if new control design 

strategies are made possible. 

 

One application of the GP model used in the context of control is the development of 

Nonlinear Model Predictive Control (NMPC) strategies, as described in Kocijan and 

Murray-Smith (2004) for a Ph Neutralisation process. The general idea behind MPC 

strategies is to employ an explicit model of the process to predict the future behaviour of 

the process up to a chosen prediction horizon, and then optimise the manipulated variable 

against some cost function to obtain an optimal future process response. This input 

information is then directed to the process, and the control horizon is then completed before 

the whole sequence is repeated again. For more general information on NMPC, see the 

reviews by Henson (1998), Qin and Badgwell (2000) and Allgöwer and Zheng (2000). In 

the paper by Kocijan and Murray-Smith (2004), the interesting development is that the 

NMPC algorithm is implemented with constraints placed on the variance output of the GP 

model. Therefore, the process can be controlled in a robust manner that prohibits the 

operation in regions of operating space that the GP model deems ‘unsafe’ as designated by 

a high variance output. This exploitation of the variance output of the GP model for control 

purposes is one of the main attractive features of the GP modelling approach, as variance 

information is not normally so readily available. Further papers that have also investigated 

control using GP models include Murray-Smith et al (2003) where the variance output is 

used to implement ‘cautious’ control, Murray-Smith and Sbarbaro (2002), Sbarbaro and 

Murray-Smith (2005), and Likar and Kocijan (2007). Furthermore, the incorporation of 

derivative observations into the control system is discussed in Kocijan and Leith (2004), 

and the application of ‘Fault Detection’ using GP models is discussed in Jurirčič and 

Kocijan (2006).  
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5.2) Applying the GP Model 
 

In applying the GP modelling approach, we are to assume a Multiple-Input-Single-Output 

(MISO) model structure, where the inputs x  are to be mapped to a single output y . For the 

identification of dynamic systems, we are interested in utilising information from previous 

states to provide information about future states. Therefore, regressors such as previous 

inputs and outputs are important quantities that we must build into our model. As a result, 

the simple NARX (Nonlinear ARX) model structure discussed in Section (2.5.3.1) can be 

seen to be an appropriate choice for the overall structure of the GP model: 

 

( ) ( ( 1), ( 2), , ( ), ( 1), ( 2), , ( ))y k f y k y k y k L u k u k u k L ε= − − − − − − +… …   (5.1) 

 

Where ε  is white noise, and k is used to denote a consecutive number of data samples. 

 

The selection of appropriate regressors is a key stage of the optimisation of any model 

structure. In order to make this selection prior knowledge of the system can prove to be an 

invaluable resource in tackling this problem. Furthermore, through a model testing and 

validation stage it may become clear which inputs are most important. However, a further 

facility of the GP modelling approach that can be used in the selection of inputs is the 

Automatic Relevance Detection (ARD) feature of certain covariance functions. This feature 

was briefly discussed in Section (4.3.1.1) in relation to the most popular Squared 

Exponential covariance function. The ARD facility allows the relative importance of each 

input dimension to be assessed through the relative size of the corresponding trained 

hyperparameter, and therefore allows any redundant or non-contributing inputs to be 

identified and then eliminated from the model structure. 

 

5.3) Multi-Step Ahead Prediction 
 

After the identification of the GP model hyperparameters, the next stage to consider is how 

the model is to be employed for prediction. A standard approach to implementing multi-

step (or k-step) ahead prediction is to make repeated one-step ahead predictions up to the 

desired prediction horizon, whilst all the time feeding back the predictive mean (model 

output) as part of the model input. This ‘iterative’ approach can be contrasted with a 
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‘direct’ approach where the model is designed to predict a certain number (l) of steps into 

the future. The direct approach suffers from the requirement that the model must include all 

the required inputs to begin with (i.e. ( ), ( 1), , ( 1)u k u k u k l+ + −… ), thus resulting in an 

increase in the dimensionality of the input space. Furthermore, such a model can only 

predict exactly l steps ahead and cannot be readily employed in applications where previous 

outputs are required, thus restricting the flexibility of such an implementation. However, an 

important drawback of the iterative one-step ahead prediction method is that it is an 

approximation, where the prediction relies on previous predictions that may result in an 

accumulation of prediction error. Nevertheless, this prediction method is the standard 

approach used in most modelling problems. 

 

5.3.1) Uncertainty Propagation 

 

An alternative method of iterative multi-step ahead prediction has been proposed for use in 

the GP modelling approach where the uncertainty or variance over each prediction is fed 

back along with the predictive mean at each time step. In this method the input at which we 

wish to calculate the prediction becomes a normally distributed random variable, therefore 

allowing the uncertainty over each prediction to be propagated onto subsequent predictions 

by updating this input random variable. The result of adopting this strategy is that the 

variance over each prediction can potentially be made more informative, resulting in less 

constrained (or wider) error bars where the model has been asked to repeatedly predict in 

regions where the amount of training data is limited (i.e. a previous prediction with a high 

corresponding variance (high uncertainty) can be taken into account when calculating 

subsequent predictions). This method is discussed in more detail below and was first 

proposed in Girard et al (2002) and is expanded on in Girard (2004). In this section a 

summary of the overall method has been provided. A full mathematical derivation of this 

extension can be found in Girard (2004), and a slightly more concise version is also given 

in Kocijan et al. (2003c).  

 

Firstly, given a set of training data 1{ , } N
i i iD t == x , we are to employ a zero-mean GP with 

covariance function ( , )i jC x x  to model the input/output relationship i i it y ε= + , where 

( )i iy f= x , iε  is white noise of zero-mean and variance tv  and inputs ix  are noise free. As 

discussed previously, given a new test input x  (note that the previously used notation of 
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*x  is replaced for simplicity), the predictive distribution of the corresponding output 

( )y f= x  can be readily obtained using the previous mean and variance predictive 

equations (3.40) and (3.41). Rewriting these equations in the same form as Girard (2004), 

and adopting 1β −= K t , the predictive equations become: 

 

 
1

( ) ( , )
N

i i
i

Cµ β
=

=∑x x x         (5.2) 

 2 1

1

( ) ( , ) ( , ) ( , )
N

ij i j
i

C K C Cσ −

=

= −∑x x x x x x x      (5.3) 

 

This predictive distribution can also be described by: 2( , ) ( ( ), ( ))yp y D N µ σ=x x x  

 

At this point we wish to consider a new input that is corrupted by noise (i.e. an uncertain 

input), such that = + xx u ε  where ~ ( , )Nx xε 0 Σ . Therefore, the input can now be 

considered a random variable that is normally distributed. In order to make a new 

prediction at this random input ~ ( , )N xx u Σ , the existing predictive distribution must be 

integrated over this new input distribution: 

 

 ( ,u, ) ( , ) ( , )x xp y D p y D p d= ∫Σ x x u Σ x      (5.4) 

 

As ( , )p y D x  is a nonlinear function (as given by equation (3.8)) of x , the new predictive 

distribution ( , u, )xp y D Σ  is not Gaussian and cannot be readily integrated without 

resorting to methods of approximation. In Girard (2004), a number of different 

approximation strategies are discussed and can be broadly categorised into either 

numerical or analytical approximations. The proposed numerical approximation relies on 

the use of Markov-Chain Monte Carlo (MCMC) techniques with which to sample tx  from 

the Gaussian input distribution, ~ ( , )N xx u Σ , whilst the analytical approximations are 

dependent on the choice of covariance function The Gaussian (Squared Exponential) and 

linear covariance functions are shown to result in integrals that may be computed exactly, 

thus allowing the exact mean and variance to be calculated. In other cases, an 

approximation to these integrals is proposed where a Taylor approximation to the selected 
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covariance function is utilised. From this approximation to the covariance function, an 

approximate mean and variance of the predictive distribution can be obtained. 

 

5.3.2) When to use Uncertainty Propagation? 

 

The uncertainty propagation extension to the GP modelling approach has been primarily 

discussed and implemented for the identification of nonlinear dynamic systems, and 

especially for the purposes of control. In the literature dedicated to machine learning, the 

application of uncertainty propagation for GP models is not given much consideration. 

Therefore, as this proposed extension can be seen to add a further level of complexity it is 

worth discussing when uncertainty propagation is best employed. 

 

The main outcome of including the uncertainty propagation extension is an overall 

‘flattening’ effect on the output predictive distribution. Therefore, in comparison to the 

standard or ‘naïve’ implementation of the GP model, the predictive distribution is wider 

(increasing the variance) and the mean value can become less pronounced. As the 

predictive distribution is wider (and may also be less uniform Gaussian shape if the 

numerical Monte-Carlo approximation is calculated), the location of the mean of the 

predictive distribution can be found to be slightly different to that found with the ‘naïve’ 

implementation. In the examples presented in Girard (2004), this discrepancy between the 

means found in the naïve and non-naïve cases is not normally huge, and at some points in 

the prediction horizon either implementation may be more accurate (i.e. closer the recorded 

output). Therefore, it is difficult to argue for the inclusion of uncertainty propagation purely 

in terms of improving the quality of the mean prediction. 

 

Where the uncertainty propagation extension does offer potential advantages is the effect 

on the variance prediction. As the predictive distribution is wider, the variance output is 

therefore boosted and is thus less constrained to the mean. For systems where the model is 

found to represent the data very accurately, increasing the scale of the variance output is 

perhaps not something that appears to be particularly worthwhile. However, for systems 

that are less accurately modelled, if the model is to be tested on a long prediction horizon 

and previous outputs are to be used as future inputs, it is clear that a growth in uncertainty 

over the predictions is to be expected. Furthermore, despite the best intentions, the potential 

remains for certain areas of operating space or test conditions not to be reflected in the 
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training data of the model (especially in a method where pressure exists to reduce the size 

of the training set). In addition, for the identification of real-systems the potential exists for 

unexpected disturbances or some low-level non-stationary behaviour to introduce some 

differences between previously recorded and test behaviour. Therefore, it is perfectly 

plausible for the model to make mean predictions based on evidence in the training dataset 

that are not as accurate as the variance output would suggest (i.e. the variance output 

(depicted as error-bars) does not fully envelope the real recorded response). Therefore, 

through the use of uncertainty propagation, the boosted variance output will have a far 

greater chance of enveloping the real response. 

 

Fundamentally, this potential discrepancy between test and training data is something that 

all data-driven modelling approaches have to deal with and is known as the generalisation 

ability of the model. However, whereas most modelling approaches have only an output 

prediction to consider, the GP modelling approach also has a variance output that should 

ideally reflect the potential error in the model. Therefore, reflecting this growth in 

uncertainty through the variance output of the model allows the GP model to become more 

informative. Furthermore, it is worth noting that this growth in the uncertainty as the 

prediction horizon extends is not unbounded or exponential, the capability exists to ‘catch’ 

the system (reducing the variance) at later test points as reported in Girard (2004). 

 

Another aspect to consider regarding the use of uncertainty propagation is that the method 

adds further level of complexity to the predictive framework of the approach, and thus 

potentially adds further computational expense. Overall, whilst the expressions for mean 

and variance are slightly more complex, and a further input covariance matrix (defined by 

the size of the input vector) must be computed, as the size of the main covariance matrix is 

not increased and that the repeated inversion of this potentially large matrix is the main 

computational bottleneck, the additional computational expense of implementing 

uncertainty propagation does not appear to be too much of a problem. Nevertheless, whilst 

no additional large-scale matrix inversion is required, it is likely that by including the 

propagation of uncertainty the evaluation speed of the GP model will be further slowed. 

This has implications for the on-line application of the GP model, and with the exception of 

a small number of papers outlining model-predictive control with GP models (see Section 

(5.1.1)), there have been little dedicated investigations into the real-time implementation of 

the GP model (with and without uncertainty propagation) and how it compares to other 
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black-box methods. Such a comparison would be a worthwhile future direction for research 

as it may more clearly define the types of problem in which the GP model is most 

appropriate (e.g. RBF networks are typically found to be slower to evaluate than MLP 

networks, a significant disadvantage in certain applications). 

 

Overall, the concept of taking into account the uncertainty of the input (and propagating 

output uncertainty to subsequent predictions) would seem to be eminently sensible for 

applications where time-series data is to be modelled. Furthermore, due to the probabilistic 

nature of the GP model, implementing this consideration of input uncertainty is something 

that is more feasible than in other modelling approaches. However, most modelling 

approaches or implementations of multi-step ahead prediction do not seek to include the 

uncertainty over the input, and it is merely understood that the accuracy of the model may 

reduce as the prediction horizon is extended. Therefore, the uncertainty propagation can be 

seen to be a useful but perhaps unnecessary extension if only the mean prediction is to be 

used. But if the variance is to be actively employed in some manner, such as in the design 

of control systems (see Section (5.1.1)), the uncertainty propagation may prove to be an 

important addition. As this thesis is investigating the use of GP models for identification 

purposes, rather than actively seeking to employ the variance output, we are more interested 

in the accuracy of the mean predictions. As a result, the application of this propagation of 

uncertainty extension has not been a priority, and the examples investigated have employed 

the standard or ‘naïve’ implementation of the GP model. 
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5.4) Derivative Observations 
 

The concept of incorporating derivative observations into the GP model framework has 

been previously discussed in Section (5.1). Overall, the proposal is particularly interesting 

for system identification purposes as it offers a method to efficiently include derivative 

information (either directly available from data, or generated from identified linearisations) 

into the GP modelling approach. The main advantage of this proposal is the compatibility 

with the divide-and-conquer strategy of other multiple model approaches, where local 

linear models (in the form of derivative observations) can be combined with functional 

observations to form a global representation.  

 

Furthermore, in the identification of real nonlinear systems, it is often the case that much of 

the available empirical data is found close to various equilibrium operating points, with the 

availability of off-equilibrium transient data being typically scarce (see Section (2.5.6.1.2) 

for more discussion on this point). As one of the main difficulties of the GP modelling 

approach is the heavy computational demand associated with inverting the covariance 

matrix (the size of which is dictated by the size the training dataset), any method that can 

reduce this demand is worthy of consideration (e.g. the sparse matrix methods discussed in 

Section (4.5.5)). The incorporation of derivative observations is an attractive extension as 

the typically abundant equilibrium empirical data can be summarised using derivative 

observations identified from computationally efficient linear optimisation, thus leaving the 

remaining off-equilibrium data to be treated as normal function observations by the GP 

model. 

 
In addition, as discussed in Section (4.5.2), the presence of prolonged periods of steady-

state data can have a negative effect on the conditioning of the covariance matrix. 

Therefore, as steady-state response data can often result from operating near to equilibrium 

points, summarising such data in the form of a derivative observation through local 

linearisation would appear to be an attractive alternative to deleting this problematic data all 

together. 
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5.4.1) Identifying Derivative Observations from Data 

 

Whilst in certain applications derivative observations may be directly available from 

empirical data, it is also possible to identify them from applying simple linear regression 

techniques to the training data. Therefore, derivative observations can be generated for any 

system using linearisation around suitable operating points. In order to perform 

linearisation, small signal or perturbation data close to this operating point is required as 

local linearity is only guaranteed near to the defined operating point of continuous systems. 

Although it is possible to identify linearisations at any point, as with other modelling 

approaches based on local linear models (e.g. Local Model Networks) it is normal to 

identify linearisations at equilibrium points. Equilibrium operating points are important 

when considering the stability of the system, which therefore has implications for control 

purposes.  

 

The linearisation at an equilibrium operating point can be achieved through applying the 

Taylor series approximation (i.e. a function at x a=  can be approximated by 

( ) ( )( )y f a f a x a′= + − , for a 1st order Taylor approximation where the higher order terms 

can be ignored by ensuring small scale perturbations from a). Therefore, the linearisation 

involves the calculation of the slope or gradient (derivative) of the linear model ̂=y Xθ , 

through applying standard linear regression (i.e. gradient can be found by 

1ˆ ( )T T−=θ X X X y , variance from 2 21 ˆˆ( )T

N
σ = y - Xθ , and local linear covariance matrix 

from 2 1( )Tσ −Σ = X X ). 

 

5.4.2) Gaussian Process Derivatives 

 

Fundamentally, as differentiation is a linear operation, the derivative of a Gaussian Process 

remains a Gaussian Process. Therefore, in order to incorporate derivative observations, the 

covariance function to be employed for function observations must be differentiated, and 

this derivative covariance function used to handle the derivative observations. For the most 

popular Gaussian (Squared Exponential) covariance function, the existing covariance 

function relating any two data points in the case of two functional observations is: 
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=
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∑x x      (5.5) 

 

For the case of mixed set of derivative and functional observations: 
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x    (5.6) 

 

In the case of two derivative observations, (where ,e dδ  is a Kroneckor operator between 

the eth component derivative in ix  and the dth component derivative in vector jx ): 
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δ
=

∂∂  = − − − − − ∂ ∂  
∑

xx
 (5.7) 

 

In the existing literature, only the Gaussian covariance function has been considered for this 

extension to the GP model. However, it is clear that any covariance function that is 

differentiable may offer a suitable alternative. It is also worth noting that although the 

covariance function is altered through differentiation, no new hyperparameters are defined 

so the optimisation procedure is unchanged by this extension. As a result, the dataset used 

for training need not include the derivative observations. 

 

Furthermore, although we are to employ a derivative covariance function to handle the 

derivative observations, the overall covariance matrix is still to be populated in a manner 

that allows the existing GP predictive equations to be applied for output predictions. In 

addition, the previously discussed proposal for uncertainty propagation is something that 

can also be incorporated with the derivative observations extension. In this next section we 

will briefly cover the incorporation of derivative observations in the standard or ‘naïve’ 

multi-step ahead implementation of the GP model, but full details of incorporating 

combining uncertainty propagation and derivative observations can be found in Kocijan et 

al. (2003c) and Girard (2004). 
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5.4.3) Incorporating Derivative Observations 

 

Using the same notation as Kocijan et al. (2003c), the incorporation of derivative 

observations can be achieved in the following manner. A possible for the grouping of the 

data in the input matrix X and the target vector t is: 
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eq eq

eq eq
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⋮

⋮

    (5.8) 

Where: 

 

1oeqY  is a vector of target response points out of equilibria 

oeqY  is a vector of input response points out of equilibria 

oeqU  is a matrix of input points out of equilibria 

eqU  is a matrix of equilibria input points 

eqY  is a vector of equilibria response points 

( )

f

y k

 ∂
 ∂ 

 is a vector of derivative observations of response component (vector of a 

linear model coefficient in different points). 

( )

f

u k

 ∂
 ∂ 

 is a vector of derivative observations of input component (vector of a 

linear model coefficient in different points). 

 

Therefore, the target vector t now contains derivative observations rather than just output 

measurements, and the input matrix X has also been extended to include the values of the 

regressors associated with each derivative observation. Furthermore, in this model 

structure, a derivative observation vector (
( )

f

y k

 ∂
 ∂ 

 and 
( )

f

u k

 ∂
 ∂ 

), exists for each 
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component of the input matrix. Therefore, the dimension of the input space is 

( )Dn D n D+ ⋅ ×  and the dimension of the target vector is ( ) 1Dn D n+ ⋅ × , where D is the 

number of derivative observation vectors, n is the number of function observations (input-

output training data), and nD is the number of derivative observations (input-output 

equilibrium training data). 

 

From this organisation of the input matrix and target vector, a corresponding organisation 

of the covariance matrix is given by: 
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 [ ]( ) ( , )k C v= =x x x         (5.11) 

 

Therefore, utilising these matrices, the standard GP predictive equations can be computed 

to give the mean and variance components of the output predictive distribution. 
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5.5) Experimental Methods and Objectives 
 

In the remaining parts of this chapter, a number of simulated and experimental example 

systems are to be identified using the GP modelling approach. Therefore, before delving 

fully into the specific characteristics of the systems to be identified, a brief discussion of 

what precise aspects of the GP modelling approach are to be investigated is worthwhile. 

Furthermore, this section is to provide a means to reiterate some of the main findings of the 

previous sections, and therefore justify some of the implementation methods and model 

design choices that are to be made in the process of identifying the example systems 

investigated. 

 

5.5.1) Implementation of GP Models 

 

One of the more overlooked aspects within the literature of GP models is how best to 

implement the approach for a given application. This is partly due to the application 

specific nature of any system identification task, i.e. what will work on one problem, may 

not work on another. Nevertheless, a more practical guide to the implementation of GP 

models to for a variety of nonlinear systems would be a useful addition to the field. In 

Chapter 4, a detailed discussion of the implementation aspects of the GP modelling 

approach was presented. In this section we focus on some of the main points of this 

discussion that are to be investigated in the forthcoming examples.  

 

In the development of a suitable mathematical model one of the key stages of the system 

identification process is to select an appropriate model order. However, as the GP model is 

a nonparametric method, this component of the identification process is not required. 

Instead the GP model is to be completely defined through the selection of an appropriate 

covariance function together with a suitable set of training data. The choice of covariance 

function will impact heavily on the types of nonlinearity that the resultant GP model will be 

able to represent effectively, and the design of the training dataset will have a profound 

bearing on the relative accuracy of any identified GP model. 

 

With regard to the design of the training dataset, as this component will contain the 

information with which to identify the GP model, the selection of an appropriate set of 

inputs or regressors will play an important role in the development of an accurate model. 
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Therefore, for complex systems where a large number of regressors will be required to 

characterise the system, the identification of these regressors is an important part of the 

identification process. For the relatively simple example applications examined in this 

thesis the identification of suitable regressors was found to be quite straightforward as the 

number of regressors required was quite low (typically used only a single input variable 

together with a few delayed input and output variables). However, for more complex 

systems the task of identifying suitable regressors may become more challenging and the 

use of delay-embedding theory (see Takens (1981)) may be of particular relevance in order 

to identify the nonlinear mapping through dynamic reconstruction of the observed time-

series data. 

 

5.5.1.1) Choice of Covariance Function 

 

For the choice of covariance function, any covariance function that results in a positive 

semi-definite covariance matrix may be employed. However, whilst a number of different 

covariance functions and even combinations of covariance functions have been proposed, 

see Section (4.3), a limited amount of practical research is available with which to select an 

appropriate covariance function. As a result, the most popular squared exponential or 

Gaussian covariance function has become almost uniformly adopted in the GP modelling 

approach. The use of this stationary function imposes the assumption that the input-output 

data to be approximated varies in a smooth and consistent manner. In the case of real 

engineering systems such qualities are common, as most real systems are designed to 

operate smoothly for ease of use. 

 

However, it is also clear that many systems will exhibit responses that fail to meet this 

assumption of smooth and stationary behaviour. Therefore this reliance on the squared 

exponential function can be seen to be limiting the potential flexibility of the GP model. 

Nevertheless, the squared exponential covariance function has been used successfully in the 

identification of a variety of systems, so a further investigation into the flexibility and 

ultimate limitations of the Squared Exponential function is worthwhile. Therefore, in the 

experimental results presented in this thesis the choice of covariance function has been 

initially restricted to the popular Squared Exponential function. From this point we can then 

move onto identifying the potential limitations that this choice imposes, and then seek to 

offer alternatives. 
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A further reasoning behind the selection of the Squared Exponential covariance function is 

that it is well known from other approaches (e.g. RBF Networks), and the hyperparameters 

can be interpreted more easily than for other covariance functions. In addition, some of the 

extensions (uncertainty propagation and derivative observations) to the standard GP 

modelling approach have been proposed with this covariance function specifically in mind. 

Whilst other covariance functions can be used with these extensions (i.e. an approximation 

based upon a Taylor-series expansion for uncertainty propagation), as yet very few further 

developments or experimental investigations have been presented. 

 

5.5.1.2) Design of Training Dataset 

 

The design of a suitable training dataset is paramount in the successful identification of any 

model developed primarily from empirical data. In Section (4.5), the size and conditioning 

aspects of the covariance matrix and its implications for the design of the training dataset 

were discussed in detail. In the forthcoming examples, we are to investigate some of the 

issues raised in this discussion. 

 

In particular, as the size of the training dataset dictates the size of the covariance matrix, in 

order to ensure that the identified GP model remains computationally viable, the number of 

datapoints included in the training set should not be too large. In Section (4.5.4) an upper 

limit of ~1000 datapoints was proposed as being suitable for the direct implementation of 

the GP model for system identification purposes on average desktop PC facilities and a 

number of approximate methods have also been proposed for larger datasets. In the 

examples presented here, we are to stick to this limit of ~1000 datapoints, and therefore 

investigate the identification of GP models using relatively small datasets. Therefore, 

important issues such as the choice of sampling rate and the design of the input signal are to 

be discussed. Furthermore, any aspects where prior knowledge of the system can be utilised 

are to be made clear. 

 

Given this constraint over the size of training dataset, the task of creating a dataset that 

captures the essence of the underlying process becomes a significant challenge to ensure 

that we make the most of the space available. In addition, the choice of covariance function 

can be seen to extend an influence toward the suitability of any training dataset, i.e. the 

squared exponential function’s requirement for smoothly varying data. Furthermore, during 
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the optimisation of the hyperparameters and ultimately the computation of new predictions, 

the covariance matrix built from this combination of covariance function and training data 

must be inverted many times. Consequently, not only is the size of the training set 

important, but the conditioning of the resultant matrix must also be appropriate in order to 

allow efficient and accurate inversion. Furthermore, as discussed in Section (4.5.3), the 

requirement for a well conditioned covariance matrix has implications for the design of the 

data collection experiments. 

 

In section (4.5.2) one of the most likely causes of covariance matrix ill-conditioning was 

identified as the presence of large amounts of steady-state data in the training dataset. 

Therefore, one of the main experimental design strategies that can be employed is to 

endeavour to keep the system excited (i.e. not operating under equilibrium conditions) for 

the duration of the experiment. Such an approach can be undertaken through the use of 

random excitation signals. However, as will be discussed in the forthcoming examples it is 

also necessary to allow the system to approach steady-state in order to include this 

information in the training dataset. As a result, the excitation signal used to collect the 

training data must be considered carefully. Furthermore, in some of the examples presented 

in this thesis it has also been necessary to manually remove prolonged periods of steady-

state data from the training dataset. Through this removal of problematic steady state 

datapoints it could therefore be construed that an asynchronous approach to sampling is 

being taken. However, the approach taken was to remove certain sections of data and then 

reconstruct a complete training dataset from the portions of the overall dataset that are to be 

kept. As a result, a uniform sample interval (synchronous sampling) was maintained in the 

training dataset.  

 

An alternative approach to tackling the problem of ill-conditioning caused by steady-state 

data is to employ some method of regularisation, as mentioned in Section (4.5.2.1.3). Such 

an approach would add a further level of noise or ‘jitter’ to the data so that prolonged 

periods of steady state data can be made more variable, see Tikhonov and Arsenin (1977). 

However, for the examples presented in this thesis we are to concentrate on the pre-

processing of the training dataset without the use of such regularisation techniques. In this 

way, the problems encountered with the data can be stated more clearly and therefore 

tackled directly, rather than masked through the addition of an artificial noise component. 
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5.5.1.3) Further Developments 

 

The initial experimental results presented are focused on presenting the capabilities of the 

most straightforward implementation of the GP model when applied to relatively simple 

nonlinear static and dynamic systems. However, through the selection of a particular 

covariance function (Squared Exponential) and the restriction of the number of training 

points included in the covariance matrix, the potential flexibility of the approach has been 

compromised somewhat. As a result, through the course of this chapter a number of 

potential strategies have been investigated with a view to providing a solution to some of 

the problems encountered. 

 

In order to tackle the constraints over the size of the training dataset, in Section (4.5.5) a 

number of approximate methods were discussed. Furthermore, is Section (5.4) an 

alternative method based on the use of derivative observations was discussed. In the 

forthcoming results, some of these methods are to be investigated. In the final part of this 

chapter, the proposals for ‘mixed model’ implementations of the GP model are also to be 

demonstrated. Overall, these methods are aimed at overcoming some of the weaknesses in 

the GP modelling approach that have been encountered. 

 

5.5.2) Examining Performance of the GP model 

 

In order to support the proposal for considering GP models as a tool for nonlinear system 

identification, it is necessary to demonstrate that accurate models of system behaviour can 

be obtained. From a fundamental perspective, there would be not much point in persevering 

with the GP modelling approach, let alone recommending it, if the resultant predictive 

performance is poor. Consequently, careful validation procedures conducted on separate 

test datasets (i.e. cross-validation), must be adopted in order to provide evidence of the 

accuracy of the identified models. This is especially important to provide a feel as to the 

performance of the GP model, as no direct numerical comparison of the GP models with 

other different modelling procedures is to be presented in this thesis. A detailed numerical 

comparison between the GP modelling approach and other machine learning methods is 

provided in Rasmussen (1996), and a more practical system identification comparison can 

be found in Kocijan et al (2003a). 
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For the evaluation of the GP modelling approach a number of different measures of 

performance can be utilised. These include the standard quantitive measures of model 

accuracy that can be used to evaluate the mean prediction, such as Mean Square Error 

(MSE) and Mean Relative Square Error (MRSE): 
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Where iy  is the system output, ˆiy  is the model output and ˆi ie y y= −  is the prediction or 

model error at the ith case of the test dataset (of size N). 

 

Furthermore, as the GP model is a probabilistic approach, where an output predictive 

distribution is provided, it is also possible to evaluate the performance of the model using 

more probabilistic measures. For the GP model, the negative Log Predictive Density (LPD) 

and negative Log-Likelihood (LL) have been used as valuable indicators of model 

performance: 
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The LPD estimate (smaller or ‘more negative’ the better) accounts for the model 

uncertainty (variance output), and trades it off against the accuracy of the model. As a 

result, this measure of performance is to especially indicate when the predictions are 

‘overconfident’ (high model error & low variance), rather than predictions that are ‘good’ 

(low model error & low variance) or ‘bad’ (high model error & high variance). The 

negative LL estimate (smaller or ‘more negative’ the better) is the same loss function used 

to train the hyperparameters of the covariance function, and provides an overall indication 

as to the probability of the model. As a result, the LL measure is less useful for assessing 
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model performance as it will be modified every time the training dataset and model setup 

are changed.  

 

Along with these quantitative measures of model performance, of further importance is to 

assess the model in more subjective or qualitative terms. In this way, the model validation 

stage can ensure that the identified model is fit for its intended purpose. Therefore, 

important aspects such as the overall plausibility and interpretability of the model can be 

assessed. Furthermore, together with close scrutiny of the prediction error, the variance 

output of the GP model can provide some valuable insight as to the model performance in 

local operating regions (e.g. a high variance is likely to be due to a lack of training data in a 

particular region). 

 

As the variance output of the GP model is one of the most potentially attractive features of 

the approach, the characteristics of this extra output information must also be investigated. 

In an ideal situation, the location and magnitude of the variance output would exactly 

mirror that of the prediction error between the model and the process. In this way, we 

would then have a measure of the model error that is available at all times or ‘online’, 

rather than only when validation tests are being completed. As discussed earlier, this extra 

information could then be integrated into some form of model-based predictive control or 

fault detection implementation. However, fundamentally model error is not what the 

variance output signifies; instead it is a measurement of uncertainty over each prediction, 

not a measure of the error itself. In other words, the level of agreement between the test 

data and the information found within the training dataset is what governs the resultant 

variance output. Therefore, test data presented to the GP model that does not fall within the 

boundaries of the training set, or shows significantly different characteristics, should result 

in a potentially inaccurate prediction estimate together with a marked increase in the 

magnitude of the variance output. Therefore, something that should be closely examined for 

each example application is the relationship between the level of the variance output and 

the degree of model error. 

 

Of further interest in the examination of the variance output, is the proposal for uncertainty 

propagation from one prediction to the next, see Section (5.3). Overall, the idea that the 

uncertainty surrounding one prediction should then be reflected in subsequent predictions 

appears to be sensible. However, as discussed in Section (5.3.3), the uncertainty 
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propagation algorithm is primarily of use in applications where the variance output is to be 

actively employed in some manner. As this thesis is primarily concerned with identification 

and not control, the uncertainty propagation extension has not been implemented. 

Furthermore, as the outcome of adopting this extension is well understood to be an overall 

‘flattening effect’ on the output predictive distribution, rather than an increase in the 

accuracy of the GP mean prediction, there is no great reason to repeat this demonstration. 

 

5.6) Simulated Examples 
 

Before tackling the identification of the real laboratory based nonlinear systems from 

experimental data, the GP modelling approach is first to be applied to some initial 

simulated examples. These examples are aimed at demonstrating the power of the GP 

modelling approach when confronted with the task of identifying strongly nonlinear 

mathematical functions from a small number of training observations. Furthermore, these 

examples are intended to demonstrate the full process of applying the method. The previous 

demonstrative example, see Section (3.8), was aimed at conveying the theoretical 

procedure, where the hyperparameters were not identified from the training data. Instead, 

the posterior was generated using the same random process as the datapoints. In these 

simulated examples and for the experimental results to come, the hyperparameters of the 

covariance function are to be identified from the training data. A further intention of these 

simulated examples is to highlight the differences between implementations of the GP 

modelling approach where static nonlinearities are to be identified, such as those found in 

the regression or interpolation problems found in machine learning and statistics, and the 

more typical dynamic time-series problems found in engineering which are the focus of this 

research. 

 

5.6.1) ‘Smooth’ Data - Static Nonlinear Example 

 

In this opening example we are to consider one-dimensional static nonlinearities. Consider 

the following smoothly varying nonlinear mathematical function: 

 

sin(x)
y

x
=          (5.16) 
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In this example we are to attempt to identify the unknown y from a number of observed 

inputs and outputs {x, y} and therefore build a 1 dimensional mapping from x to y so that 

when presented with a different set of inputs x*, we may be able to predict the resultant 

outputs. For this static nonlinear problem, we can simply define an input range, [ ]0 20∈x  

and calculate the resultant outputs. To make things slightly more realistic, some random 

noise can be added to the function. For the initial part of this opening example the noise is 

to be kept very low, however it will be increased in a later example. A number of training 

observations can then be selected through sampling of the original function calculations 

(every 2 seconds, resulting in 10 datapoints), as in Figure (5.1). 
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Figure (5.1): Shows one-dimensional simulated example function, with 10 evenly 

spaced training observations marked. 
 

The next stage of the GP modelling process is to select an appropriate covariance function 

with which to generate the covariance matrix that specifies the Gaussian process prior. As 

indicated earlier, the most popular choice of covariance function is the Squared Exponential 

function and it is this one that we are to employ for this problem. Furthermore, as the 

choice of this function implies a smoothly varying function, it would seem appropriate for 

this simulated example. Lastly, this covariance function is to be combined with the simple 

noise model as described in section (4.3). 
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The task is now to perform maximum likelihood optimisation to identify a set of optimal 

hyperparameters for the covariance function. In this simple one-dimensional example we 

are to find three hyperparameters of the Squared Exponential covariance function: a vertical 

variance or amplitude hyperparameter θ1, a length-scale parameter θ2, and a noise 

parameter θ3. For this example, a set of default initial values of these hyperparameters 

(log(-1) for all 3) were selected, equivalent to uniform priors over each hyperparameter. By 

applying the methods detailed in Section (4.4.2), the hyperparameters were calculated as 

θMP.= (θ1 = 2.7677 θ2 = 0.4566, θ3 = 0.0023) Following the identification of a set of optimal 

hyperparameters, the covariance matrix K may then be fully specified. The next stage is 

then to employ the predictive equations (3.40) and (3.41) toward the goal of predicting new 

output target values given a series of test inputs x*.  

 

Regarding the choice of data to be employed to test the GP model, it is at this point that we 

can define the major difference between the static nonlinear mapping problems considered 

here, and the more conventional dynamic time-series data examples found in engineering 

applications. As we have collected a set of training data that evenly covers the whole of our 

defined input range (0 20x< < ), any test data subsequently collected will also lie in close 

proximity to these training points. In effect, the test data will closely match the training data 

and therefore lead us to the expectation that the resultant GP model predictions should 

closely match the underlying function (assuming that we have included sufficient training 

points). This point may seem an obvious one, but it is worth stating as a lot of the GP 

modelling literature demonstrates the approach with such static one-dimensional examples 

of this kind. Therefore, it is important to point out that in such cases, the training and test 

data are often quite similar and a good model should not be an unexpected outcome. 

Furthermore, it is also important to make clear that as no previous output information is to 

be used as additional inputs, this example should be termed as a simulation rather than a 

prediction. 

 

In Figure (5.2a) we can see that the GP model predictions do achieve a good fit to the 

underlying function, with a Mean-Square Error (MSE) of 3.67e-005, Log Predictive 

Density (LPD) of 3.9632, and log likelihood (LL) of 0.9607. Furthermore, due to the even 

spread of the training points, even though there are relatively few training data points (10 in 

this case), the variance output of the GP model is relatively low and consistent across most 

of the defined operating range of the input. However, we can see a marked increase in the 
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variance at x 18>  and also the beginnings of model error in the mean prediction. This 

growth in the model error and variance is further indicated in Figure (5.2b), and is due to 

the lack of training points in this region of input space. Notice also the slight growth of the 

variance for test points occurring between the evenly spaced training points. 
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   (a)      (b) 

Figure (5.2): One-dimensional simulated example function. Chart (a) shows GP mean 
predictions (dotted line) vs Underlying function (solid line) together with GP model 
variance shown as 2σ errorbars (95% confidence interval). Chart (b) shows GP Model 
Error (solid line) and Variance (2σ) output (dashed line). 
 

The decay in the prediction accuracy in regions where training data is lacking is something 

that all empirically based modelling approaches will be subject to. Therefore, the process of 

collecting a suitable empirical dataset that covers the entire operating range of interest is of 

fundamental importance. Furthermore, it is worth reiterating that, fundamentally, the GP 

modelling approach is a method of interpolation, where a curve is to be fitted between 

observed values. This means that outside of the input range that is populated with training 

observations, the GP model will not provide any reliable estimates of the underlying 

function (i.e. the extrapolation ability of the GP model is poor). However, due to the 

existence of the variance output (that should increase substantially in regions where training 

data is limited), we can at least display a lack of confidence in any predictions made in 

these sparse regions. 

 

As would be expected, through further reduction of the number of included training points 

the accuracy of the model diminishes and the variance output increases in regions of input 

space where data are sparse. Furthermore, a reduction in the number of training points can 

lead to optimisation problems (in this example, N<8 results in a failure of the optimisation 

algorithm), as there is simply insufficient information available with which to identify the 
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hyperparameters. By contrast, an increase in the number of training points included will 

result in greater prediction accuracy at the expense of an increased computational burden. 

 

Therefore, for online applications a temptation may exist to train the model offline using a 

large dataset to obtain suitable hyperparameters, then for reasons of computational 

efficiency use a smaller dataset with which to make predictions. However, such an 

approach is untenable as the GP model is defined by the information present in its 

covariance matrix (i.e. hyperparameters such as the length-scale are defined by the precise 

spatial relationship between training points), rather than as a parametric form where 

parameters may be interchanged or manipulated. This is perhaps an obvious but important 

point, the hyperparameters are not transferable between different models, and although their 

individual roles may be interpretable, the interdependency of the hyperparameters leads to 

an overall lack of interpretability that prevents any meaningful manual adjustment. 

 

5.6.2) ‘Sparse’ Data Region - Static Nonlinear Example 
 

As discussed previously, one of the primary drivers behind the research into the GP 

modelling approach was the method’s potential use in the identification of models in off-

equilibrium operating regimes. The main difficulty associated with identifying models of 

such operating regimes using empirical methods is in obtaining enough empirical data. In 

the previous example, the general impact of the number of included training points on the 

GP model’s predictive accuracy was discussed. Furthermore, the growth of the variance 

output in operating regions where training data is sparse was also made clear.  

 

In this example, we are to build on this second point and demonstrate why the GP model is 

a good choice for tackling identification in sparse regions of operating space. Furthermore, 

rather than employ an arbitrarily chosen nonlinear function to generate empirical data, a 

simple Simulink model, see Figure (5.3), is instead utilised to generate nonlinear data. 
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Figure (5.3): Simple 1-dimensional Static Nonlinear System 

 

Through the course of this chapter, a number of different Simulink models are to be utilised 

for the generation of example training and test datasets, as a greater control over the type of 

nonlinearity and scale of the input range is possible. Therefore, whilst such models are no 

substitute for the real system applications, they do offer the possibility to easily try out 

different strategies and demonstrate different aspects of the GP modelling approach. In this 

example, the ‘Signal Builder’ block is used to generate an input signal composed of a 

number of positive and negative step inputs. This data is then fed through a simple 1st order 

transfer function block that has the effect of slowing down this transient behaviour in order 

to allow a set of smoothly varying data to be collected. As this smoothly varying data is 

one-dimensional (i.e. not input and output data), it is to be interpreted in a similar manner 

to that of the previous static nonlinear example. In this example, the Squared exponential 

covariance function is again used to define a Gaussian Process prior. 

 

As this example is to demonstrate how the GP model is to tackle the identification task in 

regions of sparse data, the data signal was designed in a manner to reflect 3 different local 

operating regimes. At small and large values of x the output y is to vary smoothly and have 

relatively small amplitude variation (i.e. regions 20x <  and 40x > ). In the middle of these 

regions of input space (i.e. 20 40x> < ), the scale of the amplitude variation of the data 

signal is to be considerably larger. The data collected from this system was initially 

sampled every 0.2 seconds to provide 300 training points (note that in terms of sampling 

the input x is interpreted as a timescale). Then the middle section of the data was further 

sampled by a factor of 5 so that the training data in the region 20 40x> <  is observed 

every 1 second, resulting in an overall training dataset of 220 points. This training dataset is 

shown in Figure (5.4). 
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Figure (5.4): Training Data of Sparse Data Example 

 

The next stage is to identify the hyperparameters of the covariance function through the 

optimisation of the marginal likelihood. As the covariance function is the same as that used 

in the previous example, the same 3 hyperparameters need to be identified. Using the same 

initial values (log(-1) for all 3), the hyperparameters were calculated as θMP.= (θ1 = 0.9851 

θ2 = 2.9812, θ3 = 0.0757). As before, due to the static nature of the problem, the test data 

will invariably be of a similar constitution to that of the training data. However, in order to 

investigate the quality of the model identified in the sparse middle region of the data, the 

full complement (sampled every 0.01s) of the generated x data is to be used as the test 

input. Once again, this example can be understood as a simulation rather than a prediction. 

The GP model’s mean predictions are shown in Figure (5.5) and compared with the 

underlying test data. 
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Figure (5.5): GP Mean predictions (dotted line) vs. Underlying function (solid line) 

 

Overall, we can see that the GP model achieves a good level of approximation in the upper 

and lower regions of the input space where training data is plentiful. As would be expected, 

the quality of the model predictions is significantly reduced in the middle region where 

training data is more sparse. Using the same measures of model performance as before 

gives a Mean-Square Error (MSE) of 0.0918, Log Predictive Density (LPD) of -0.2169, and 

log likelihood (LL) of -7.7237. The variance output of the GP model can again be plotted 

on the same axis and compared with the model error as shown in Figure (5.6). 
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Figure (5.6): GP Model Error (dashed line) and Variance (2σ) output (solid line) 
 

In Figure (5.6) we can see that, as well as a substantial increase in the model error present 

in the middle region of the input space, the variance output of the GP model is also 

significantly larger. It is this facility to indicate the confidence over each prediction that 

makes a probabilistic approach such as the GP model an attractive alternative to other 

modelling approaches.  

 

Fundamentally, any empirical modelling approach will struggle to identify operating 

regions where data is limited; therefore the reduction of the model accuracy in this example 

is not something that should be unexpected. Nevertheless, the GP model does provide a 

reasonable attempt at identifying this sparsely populated region of operating space with the 

identified function at least bisecting the included training points. This is the other main 

advantage of utilising the GP method to tackle this kind of problem, as whatever data that is 

available will be used directly in making predictions in this region, rather than just 

employing a function whose characteristics are primarily identified from data in other 

operating regions (i.e. the GP model ‘constrains’ the identified function to at least touch the 

few included training points). 
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5.6.3) ‘Noisy’ Data - Static Nonlinear Example 

 

In the previous two examples, the level of noise present on the data was minimal. In this 

example, the effect of a larger level of noise on the identification process of the GP model 

is to be discussed. Returning to the simple nonlinear example used in the first example 

(equation (5.16)), a significant level of random noise is to be added to the data, and the 

computed values are to be sampled in the same manner as before to obtain 10 training 

points, as depicted in Figure (5.7).  
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Figure (5.7): Shows Noisy simulated example function, with 10 evenly spaced training 

observations marked. 

 

The effect that this additional noise has had on the training observations can be readily 

understood by plotting the previous noise-free training points and underlying function on 

the same chart as the noisy training observations, as in Figure (5.8). 
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Figure (5.8): Shows Noisy simulated example function, with noisy (large markers) and 

noise-free (small markers) training observations marked. 

 

As would be expected, the added noise has significantly modified the position of the 

training observations. Therefore, it is likely that any identified GP model will also be less 

accurate in approximating the underlying function. This is indeed the case as can be seen in 

Figure (5.9), where a significant error between the identified GP model (dotted line) and the 

underlying function (dashed line). Furthermore, as the GP model has provided a smooth 

estimate of behaviour, the model prediction has completely failed to capture the noise 

present in the data. This is again to be expected, as by including only 10 training points, it 

is impossible to capture the higher frequency oscillatory behaviour present in the noise. In 

order to approximate such behaviour, it would appear that the model would have to include 

a far larger number of training observations. 
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Figure (5.9): GP Mean predictions (dotted line) vs. Noisy Underlying Function (solid 

line) vs. Underlying function (dashed line) for 10 training observations. 

 

In many modelling approaches, in order to successfully model systems where a large 

amount of noise is present, it is common practice to employ larger amounts of empirical 

data and perhaps even more complex model structures. Of course by doing so, the risk of 

‘overfitting’ the data becomes more pronounced, where the model has begun to identify the 

noise rather than just the underlying function. In Chapter 3, the potential benefits of using 

the Bayesian approach of the GP model to tackle the problem of model complexity where 

made clear. Therefore, in this example it is worth retraining the GP model to include a far 

larger number of training points in order to demonstrate whether or not overfitting is to 

become a significant problem. 

 

Using the same noisy nonlinear data, instead of sampling to provide 10 training points, this 

new implementation is to employ 400 training points. The effect of including more training 

points on the quality of the GP mean predictions is depicted in Figure (5.10). Overall, we 

can see that the new predictions of the GP model are very close to that of the underlying 

function, whilst the model has still not approximated the noise present in the data. 
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Figure (5.10): GP Mean predictions (dotted line) vs. Noisy Underlying Function (solid 

line) vs. Underlying function (dashed line) for 400 training observations. 

 

Therefore, it is clear that as with other modelling approaches, the identification of noisy 

systems will require a significantly larger training dataset in order to provide accurate 

predictions of the underlying function. Furthermore, in contrast with other complex model 

architectures used for empirical modelling, the GP model does not tend to overfit the data. 

In some respects this reluctance of the GP model to begin modelling the noise present in the 

data is due to the automatic implementation of the Occam’s Razor principle which 

implements a preference for the simplest solution (see Section (3.5.4.1)). However, a 

further aspect in play is that the specified Squared Exponential covariance function is only 

capable of providing smooth (infinitely differentiable) posterior functions. Therefore, any 

GP model specified with such a covariance function will fail to model such a sharply 

varying almost discontinuous (or non-differentiable) function. 
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5.6.4) ‘Spiky’ Data - Static Nonlinear Example 

 

In the previous example, the GP model specified with a Squared Exponential was 

demonstrated as being unable to identify a sharply varying or ‘spiky’ example function. 

Whilst in the previous example this was beneficial in that the smoothly varying underlying 

function could be successfully identified given enough training points, despite a large noise 

component present in the training data. On the other hand, this inability to approximate 

more sharply varying data can be seen to be a fundamental limitation of the GP modelling 

approach when this most popular Squared Exponential covariance function is employed. 

For many real applications (including the two examples considered later in this chapter), 

this limitation to smoothly varying systems is not something that is unduly troublesome. 

However, for systems that exhibit a less smooth response, alternative methods must be 

pursued.  

 

A possible strategy is to employ a different covariance function that has less strong 

assumptions over the smoothness properties of the underlying function. In Section (4.3.1.2), 

the Matérn class of covariance functions was identified as being suitable for such a task. 

The Matérn class of covariance functions allows the relative smoothness or differentiability 

of the GP prior to be controlled through the parameter ν . In this example, a Matérn 

covariance function is to be compared with the more popular Squared Exponential 

covariance function for the approximation of a ‘spiky’ static dataset. 

 

The spiky dataset to be approximated was generated using a simple Simulink model as in 

Figure (5.3), however the denominator of the transfer function block was changed from 

(0.25s+1) to (3s+1), and the ‘signal builder’ block was used to define a number of positive 

and negative steps that vary in and around zero (rather than gradually increasing as in 

Figure (5.3). The ‘spiky’ dataset generated is depicted in Figure (5.11) and can be seen to 

vary considerably less smoothly than in the opening two examples of this section, but is 

also not extremely discontinuous as in the noisy previous example. As in the previous 

examples this dataset is to be used for both training and testing the GP model, and this 

example can be understood as a simulation rather than prediction. For the purposes of 

comparison, two training different sized datasets were sampled from this data, one 

containing 100 points and the other containing 34 points. The location of the smaller set of 

training observations is marked on Figure (5.11). 
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Figure (5.11): Shows ‘Spiky’ example function, with 34 training observations marked. 

 

The Squared Exponential covariance function is first used to approximate the data using the 

100-point training dataset (see Test 1 below) and then the 34-point training dataset (see 

Test 2). This process is then repeated for the Matérn covariance function (see Test 3 and 4). 

For the Matérn case, as discussed previously at higher values of the differentiability 

parameter, 7 / 2ν ≥ , sample functions taken from prior defined by the Matérn covariance 

function become almost indistinguishable from those defined by the Squared Exponential. 

Therefore, for this example the differentiability parameter is chosen to be 3 / 2ν = , and the 

covariance function given by equation (4.4). 

 

Test 1 – Squared Exponential Covariance Function(100 training points) 

 

In Figure (5.12) the GP predictions are compared with the underlying data for the model 

trained on 100 training points. The hyperparameters were calculated as θMP.= (θ1 = 1.3877 

θ2 = 0.9999, θ3 = 0.0783) and the validation measures calculated as Mean-Square Error 

(MSE) of 0.0028, Log Predictive Density (LPD) of 1.5058, and log likelihood (LL) of 
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7.2224. The variance output of this GP model can again be plotted on the same axis and 

compared with the model error as shown in Figure (5.13).  

 

Overall, we can see that the GP model identified using the Squared Exponential covariance 

function provides a good approximation to the ‘spiky’ dataset. However, looking more 

closely at the sharp peaks of this dataset, there is a noticeable error between the model and 

the underlying data. This deficiency is due to the smoothness assumptions inherent in the 

choice of this particular covariance function.  
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Figure (5.12): ‘Spiky’ Data Example (100 training points, Sq. Exp Cov. Function) - 

GP Mean predictions (dotted line) vs. Underlying function (solid line) 

 

This mistaken assumption over the smoothness properties is further demonstrated in the 

complete lack of correlation between the model error and predictive variance as shown in 

Figure (5.13). In this example, the optimisation procedure has failed to find an optimal set 

of hyperparameters that would allow a smoothly varying function (as defined by the chosen 

prior) to accommodate the included training points. As a result, the variance associated with 

each prediction remains consistently large across the entire defined input range (i.e. the 

variance does not even tend to zero when test and training points are the same).  
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Figure (5.13): ‘Spiky’ Data Example (100 training points, Sq. Exp Cov. Function) - 

GP Model Error (solid line) and Variance (2σ) output (dashed line) 

 

The next question that arises is that if the optimisation procedure has not exactly been a 

success, why does the GP model’s mean predictions still provide a good approximation? 

The primary reason behind this outcome is the large quantity of training data, which 

significantly reduces the difficulty of this or indeed any interpolation task. Therefore, by 

including large quantities of training data, a poor choice of covariance function or failure of 

the optimisation process may be possibly overcome. Of course, by reverting to this kind of 

‘brute-force’ strategy of including more and more training data, the computational expense 

and efficiency of the model may become unrealistic, and the risk of compromising the 

conditioning of the covariance matrix also becomes more pronounced (i.e. a low sampling 

interval may result in repetition in the data). 

 

Test 2 – Squared Exponential Covariance Function (34 training points) 

 

In this next test the size of the training set is reduced to 34 evenly space training points and 

the Squared Exponential covariance function retrained to obtain the following 

hyperparameters θMP.= (θ1 = 1.8898, θ2 = 1.0182, θ3 = 0.3845). As before, the GP mean 
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predictions are compared with the underlying data in Figure (5.14), and the variance output 

of the GP model is compared with model error in Figure (5.15). Using the same model 

validation measures as before, we calculated a Mean-Square Error (MSE) of 0.0444, Log 

Predictive Density (LPD) of 0.0389, and log likelihood (LL) of -41.2297. Overall, the 

performance of the GP model trained on a smaller number of training datapoints is 

considerably poorer. Furthermore, the scale of the variance output is considerably larger 

than that of the previous test case. Neither of these outcomes can be seen to be surprising, 

as if the optimisation procedure is not capable of identifying suitable hyperparameters for 

the covariance function when a larger quantity of training data is available, it will naturally 

struggle even more when much of this information is taken away. 
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Figure (5.14): ‘Spiky’ Data Example (34 training points, Sq. Exp Cov. Function) - GP 

Mean predictions (dotted line) vs. Underlying function (solid line) 
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Figure (5.15): ‘Spiky’ Data Example (34 training points, Sq. Exp Cov. Function) - GP 

Model Error (solid line) and Variance (2σ) output (dashed line) 

 

Furthermore, through the reduction of the size of the training dataset the previous ‘safety-

net’ of a large dataset and therefore an easier interpolation task is taken away, and we can 

see that the GP model fails to even reach some of the observed training values. This is 

better illustrated in Figure (5.16) where the training observations are plotted on to the same 

chart as in Figure (5.15). Therefore, in this example where the training dataset has been 

reduced in size we can better demonstrate that the Squared Exponential covariance function 

is an unsuitable choice for problems involving sharply varying or ‘spiky’ data. 
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Figure (5.16): ‘Spiky’ Data Example (34 training points (Marked), Sq. Exp Cov. 

Function) - GP Mean predictions (dotted line) vs. Underlying function (solid line) 

 

Test 3 – Matérn Covariance Function (100 training points) 

 

Using the same training datasets, the Matérn covariance function (with 3 / 2ν = ) combined 

with a simple noise model is now to be employed to approximate the data. In Figure (5.17) 

the GP predictions are compared with the underlying data for the model trained on 100 

training points. The hyperparameters were calculated as θMP.= (θ1 = 2.8529, θ2 = 1.1249, θ3 

= 0.0001), where these 3 hyperparameters play a similar role to that of the previous 

Squared Exponential covariance function. Using the same performance measures, the 

following were calculated, Mean-Square Error (MSE) of 0.00064, Log Predictive Density 

(LPD) of 2.1252, and log likelihood (LL) of 6.9822. The variance output of this GP model 

can again be plotted on the same axis and compared with the model error as shown in 

Figure (5.18). 

 

Overall, the predictive accuracy of the identified GP model can be seen to be superior to the 

model identified with the Squared Exponential covariance function in Test 1, using the 

same data. In fact, the mean predictions of the GP model can be seen to be almost 
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indistinguishable from the underlying function, with the sharper peak regions of the data 

being better approximated by this Matérn GP model than the Squared Exponential GP 

model. This improvement in the predictive performance can be put down to the less 

constraining smoothness assumptions that are implied by using the Matérn covariance 

function. As the choice of this covariance function results in a GP prior that is capable of 

generating less differentiable sample functions, the sharper regions of data can be better 

approximated. 
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Figure (5.17): ‘Spiky’ Data Example (100 training points, Matérn Cov. Function) - GP 

Mean predictions (dotted line) vs. Underlying function (solid line). 

 

Regarding the variance output of the GP model, in Figure (5.18) the variance can be seen to 

be near zero at test points that are co-incidental with training points (as would be desirable), 

however the growth and decay of the variance output can be seen to be very rapid in the 

small intervals between the test points.  
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Figure (5.18): ‘Spiky’ Data Example (100 training points, Matérn Cov. Function) - GP 

Model Error (solid line) and Variance (2σ) output (dashed line). 

 

Test 4 – Matérn Covariance Function (34 training points) 

 

The Matérn covariance function is now to be applied to the problem of approximating the 

underlying function using the smaller training (34 point) dataset. Training the 

hyperparameters resulted in θMP.= (θ1 = 2.3542, θ2 = 1.0800, θ3 = 0.2114). In Figure (5.19) 

the GP predictions are compared with the underlying data for the model trained on 34 

training points, and the variance output of this GP model is again plotted on the same axis 

as the model error, as shown in Figure (5.20). Using the same performance validation 

measures the following were calculated, Mean-Square Error (MSE) of 0.0124, Log 

Predictive Density (LPD) of 0.3731, and log likelihood (LL) of –40.901. Overall, the 

predictive accuracy of the identified GP model is certainly less than that of the previous 

example that was trained on a larger number of training points. A more interesting 

comparison is the performance of this Matérn GP model with that of the Squared 

Exponential GP model identified with the same 34 training points. Therefore, in the Figure 

(5.19), the training points have been plotted as well as the mean predictions to allow easier 

comparison with Figure (5.16). 



Chapter 5: Nonlinear Dynamic System Identification with GP Models 

 196 

5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Input, x

y

 

Figure (5.19): ‘Spiky’ Data Example (34 training points (Marked), Matérn Cov. 

Function) - GP Mean predictions (dotted line) vs. Underlying function (solid line) 

 

In comparing the Matérn GP model with the Squared Exponential model, we can see that 

the predictive performance of the former is considerably better than that of the latter (i.e. 

MSE drops from 0.0440 to 0.0124). Most notably the mean predictions also manage to 

cope better with the sharper peaks/troughs in the data. Furthermore, unlike the Squared 

Exponential GP model, the mean predictions of the Matérn GP model successfully bisect 

the included training points.  

 

Turning our attention to the variance output of this Matérn GP model as depicted in Figure 

(5.20), we can see that the overall level of the variance output is considerably higher than 

that of the previous example that included more training data. Furthermore, the variance 

output fails to reach zero even at test points that are equal to observed training points. 

Nevertheless, in comparison to the Squared Exponential Model, the level of the variance 

does reflect the location of the training data rather than just remain constant across the input 

space. Taken together, the reasonable mean predictive performance and the rather high (but 

still reactive) variance output of this Matérn GP model suggests that the size of the training 

set (34 points) is approaching the lower limit of including enough information with which 
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to identify suitable hyperparameters. This is indeed to found to be the case when a further 

few training points are removed, and the GP mean predictions become highly inaccurate. 
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Figure (5.20): ‘Spiky’ Data Example (34 training points, Matérn Cov. Function) - GP 

Model Error (solid line) and Variance (2σ) output (dashed line). 

 

Furthermore, up until this point we have not commented on the inconsistencies present in 

the validation performance measures of these 4 test examples. Whilst the MSE measure of 

model accuracy can be seen to reflect what may be visually interpreted in the 

accompanying figures (i.e. the MSE of the larger training datasets outperform the smaller 

datasets, and the Matérn GP models outperform their comparably sized Squared 

Exponential GP models). The more probabilistic measures of performance do not concur 

with the MSE measures, as the LPD and LL of the Squared Exponential models are smaller 

and therefore ‘better’ than those of the Matérn examples. This is slightly troubling but as 

the near constant variance output of both Squared Exponential models seems to indicate 

that the optimisation process has not been entirely successful, the variance output cannot be 

seen to be particularly reliable. Therefore, this highlights the need to employ a number of 

different measures of model performance, and also to ensure that such validation measures 

also concur with what is visually interpretable or subjectively plausible. 
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Overall, this ‘spiky’ data example has attempted to show (over the 4 tests) the limitations of 

the Squared Exponential covariance function when used to tackle sharply varying data. This 

is important due to the fact that the Squared Exponential covariance function has become 

almost ubiquitous in its selection for GP model implementations (especially for system 

identification purposes). In this example a Matérn covariance function was found to be 

more suitable for this kind of problem, and this is to be expected due to its less stringent 

prior assumption over the smoothness or differentiability of the underlying function. In the 

forthcoming sections devoted to identifying real experimental systems, the smoothness 

properties of these systems are found to be compatible with that of the popular Squared 

Exponential covariance function. Nevertheless, for some applications this will not be the 

case and the use of alternative covariance functions (such as the Matérn covariance function 

used here) is something that should be considered. 
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5.6.5) Lorenz Attractor – A Dynamic Nonlinear Example 
 

The Lorenz attractor is a 3 dimensional model structure defined by 3 differential equations 

that was developed by Edward Lorenz in 1961 from a simplified analytical model of 

thermal convection in a layer of fluid. The Lorenz attractor is perhaps the most widely 

known example of a chaotic system, and played an important role in the general 

development of chaos theory. Chaotic systems can be described generally as nonlinear 

deterministic systems that are very sensitive to initial conditions, are highly periodic, and 

exhibit behaviour where phase space (trajectory) overlaps occur in different regions of the 

operating space (termed topological mixing). The deterministic characteristic is important 

as unlike systems that exhibit random behaviour, chaotic systems can be described exactly 

through analytical or parametric models. However, despite this characteristic, the prediction 

of future behaviour is difficult due to the particular properties of chaotic behaviour. Of 

paramount importance in the analysis of chaotic behaviour is the sensitivity to initial 

conditions where even miniscule changes in the initial conditions can lead to drastically 

different responses as the system behaviour evolves over time. This feature of chaotic 

systems is popularly known as the ‘Butterfly effect’. This terminology originates from the 

influential paper by Lorenz (1972) titled ‘Predictability: Does the flap of a butterfly’s 

wings set off a tornado in Texas?’ and also relates to the shape of trajectory of the Lorenz 

attractor as depicted in Figure (5.22). The differential equations that describe the Lorenz 

attractor are: 

 

( )
dx

y x
dt

σ= −          (5.17) 

( )
dy

x z y
dt

ρ= − −         (5.18) 

dz
xy z

dt
β= −          (5.19) 

 

Where , , 0σ ρ β > , and σ is called the Prandtl number, and ρ is called the Rayleigh number. 

Typically, these values are constants, and for chaotic behaviour given the values 

10σ = , 28ρ = , 8 / 3β = . Given a set of initial conditions for x, y and z, the behaviour of 

the system can then be simulated through applying numerical methods. For this example 

the initial conditions where 2x = − , 3.5y = − , 21z =  and the ‘ode45’ Runge-Kutta solver in 

Matlab was utilised to generate the data. The three differential equations are displayed in 
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Figure (5.21) for a 40 second time-scale, and the phase plane or trajectory of the system 

displayed in Figure (5.22). 
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Figure (5.21): Lorenz Attractor  - /dx dt (solid line), /dy dt(dotted line) and /dz dt 

(dashed line). 
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Figure (5.22): ‘Butterfly Effect’ of Lorenz Attract or  - Chart (a) shows trajectory 

/dy dt  vs. /dx dt. Chart (b) shows trajectory /dz dt vs. /dx dt. 

 

In this example, the simulated time-series data of the Lorenz attractor is to be used to 

demonstrate the process of identifying nonlinear dynamic systems using the GP modelling 

approach. Therefore, a detailed investigation into the Lorenz attractor or chaotic behaviour 
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in general is not conducted. For more detailed information on chaos theory, the textbooks 

by Alligood (1997) and Gollub and Baker (1996) are good resources. As chaotic systems 

are highly nonlinear whilst remaining deterministic, they are often used in the comparison 

and benchmarking of alternative prediction methods. In Girard (2004) the Mackey-Glass 

series (generated from a model of blood cell count in leukaemia patients) was used as an 

example application for the GP model. However, as the Mackey-Glass time-series is 

described by only one variable and is therefore not particularly comparable with the typical 

problems of system identification where both input and output data exists. 

 

As the Lorenz attractor is a 3 dimensional dynamic model, it is first necessary to decide 

which quantity we wish to predict (i.e. model output), and which quantities are to be used 

as model inputs. Furthermore, as this example is dynamic in nature, previous inputs and 

outputs may also be used as inputs to the model. Firstly, in order to avoid confusion and 

inconsistencies in the nomenclature used, we are to rename the previous characteristic 

equations as: 

 

( ) ( )
dx

A k y x
dt

σ= = −        (5.20) 

( ) ( )
dy

B k x z y
dt

ρ= = − −       (5.21) 

( )
dz

C k xy z
dt

β= = −        (5.22) 

 

To begin with the identification problem was defined as trying to identify C(k) using A(k) 

and B(k) as the model inputs (see Test 1 below). A second implementation is then tackled 

where the identification problem was defined as trying to identify C(k) using A(k) and B(k) 

together with the previous output C(k-1) (i.e. one-step back) as the model inputs, resulting 

in an ARX model structure (see Test 2 below). Therefore, as previous output information is 

to be used as an additional input, this example application can therefore be termed as one-

step ahead prediction rather than simulation. However, before tackling these models, a 

couple of important issues regarding the practical implementation of the approach to 

dynamic problems must first be discussed. 
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5.6.5.1) Incorporating Delayed or Regressed Inputs/Outputs 

 
Firstly, it is the construction of the model structure that is to be an important point of 

discussion in this example implementation of the GP modelling approach. As discussed 

previously, one of the main difficulties of the GP modelling approach is that it is 

computationally expensive to include large quantities of data in the training dataset. 

Consequently, this puts pressure on the amount of training data that can be readily included, 

which may result in the choice of a sampling rate that is slower (i.e. larger intervals 

between points) than would normally be employed for identification purposes. However, it 

is perhaps unreasonable to place such a constraint on the size and sampling rate of any test 

dataset that the model is to be applied to (e.g. we may have to sample every 0.1 seconds in 

order to reduce the size of the training data, but we might want to predict every 0.05 

seconds). This issue is particularly important when dynamic systems are considered where 

previous inputs and outputs are routinely employed as model inputs. In effect, if a previous 

output y(k-1) is to be used as an input, the training data may be sampled in such a manner 

that y(k-1) corresponds to X seconds previous, whereas the test dataset may be sampled in a 

manner that y(k-1) corresponds to Y seconds previous (e.g. for training data sampled every 

0.1 seconds, one-step back corresponds to 2-steps back if the test data is sampled every 

0.05 seconds). 

 

Therefore, an important aspect in the implementation of the GP modelling approach for 

dynamic problems is to ensure that the training and test data are pre-processed in such a 

manner that allows the desired model structure to be maintained. As a result, unless the 

training data and test data are to be sampled at the same rate, once the training dataset has 

been pre-processed, the test data must also be processed in order to ensure consistency. 

Furthermore, the process of creating a training dataset must also keep in mind any 

subsequent requirements over the ultimate use of the model (e.g. the need to test at a certain 

interval). Otherwise, it is possible to create a training dataset that has discarded information 

that may be needed to make test predictions. As an example, if the training data is sampled 

every 0.5 seconds and the test data sampled every 0.1 seconds, a model trained using a 

previous output y(k-1) as the input, should be tested with a model that employs the 5th 

previous output y(k-5). Therefore, the test data must be processed to start predictions (k=1) 

at the 5th point in the dataset, whilst holding onto the previous 5 data points for prediction 

(and updating this variable as the prediction horizon proceeds). As a result, for problems 
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that are to include multiple inputs composed of different delayed inputs/outputs, the task of 

ensuring the consistency of the training and test data sets becomes more challenging. 

 

This need to process the test data in order to remain compatible with the model structure is 

certainly not something that is unique to the GP modelling approach. However, due to the 

possible need to minimise the number of included training points, the potential for different 

sampling rates to be employed for training and test data is perhaps greater than in 

alternative approaches. Furthermore, this need for careful processing of the test data can be 

seen to be a notable drawback of utilising this nonparametric approach where the data is 

directly included in the model (i.e. the covariance matrix can be interpreted as a precise 

spatial mapping). For parametric models, where the training data is used only to optimise a 

number of parameters, careful processing of test data is not something that is normally 

required if the test and training data are similarly sampled (as would normally be the case). 

 

5.6.5.2) Normalising and Rescaling Data 

 

Another important aspect with regard to the implementation of the GP modelling approach 

is the potential need for the rescaling and normalisation of the training data. Firstly, in order 

to remain consistent with the Bayesian framework of the approach where a zero-mean prior 

is defined, the output or target training data should also have a zero mean (note that in the 

previous simulated examples the functions varied in and around zero). This can be easily 

achieved through calculating the mean value of the target data, and then subtracting this 

value (or offset) from the target data. A further potential source of problems is the scaling 

of the input variables, where if large differences in the relative scaling of different inputs 

exist, the optimisation of the hyperparameters can become difficult. Therefore, by 

calculating the standard deviation of the different inputs, the scaling of each input 

dimension can be checked and then re-scaled if considerable differences exist. 

 

At this point the potential need for the normalisation of the training target data and re-

scaling of the training input data has been discussed. However, for models that are to 

employ previous outputs as model inputs, this normalisation and rescaling of the training 

data must be treated with care. As discussed before, it is fundamental that the input training 

and input test data are consistent with one another from a timing perspective, but also now 

from a scaling perspective. Therefore, employing previous output/target data (that has been 
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normalised) as a model input, and subsequently training hyperparameters under this 

condition, means that the corresponding test input data (i.e. the previous output) must also 

be normalised accordingly. This means that when performing multiple-step ahead 

prediction, the calculated output prediction must be normalised before being fed back for 

use as a model input. 

 

Overall, whilst these implementation issues regarding the incorporation of previous 

inputs/outputs and the normalisation and rescaling of the data are important, it is also worth 

noting that it is often the case that a reasonable model can be identified even if these 

considerations are not implemented perfectly. As the processing of the training and test data 

can become quite complex, and time-consuming if a number of iterations of training and 

testing procedure are required, it is sometimes easy to overlook some of the more subtle 

aspects and assume that everything is correct as a reasonable model performance has been 

achieved. Nevertheless, if these strategies are correctly employed, a greater level of model 

performance should be possible.  

 

Test 1 – Predicting C(k) using A(k) and B(k) as inputs 

 

In this example the following model structure is employed: C(k) is the model output, and 

use A(k) and B(k) are the model inputs. The differential equations were then employed to 

generate the dataset displayed in Figure (5.21). In order to adhere to the basic principles of 

cross-validation, this data is then split into separate training and test datasets. Therefore, it 

is important to be clear that the data used to train the model will not be used as a test 

dataset. For this example, the data was partitioned evenly (at 20 seconds) into test and 

training datasets. The original empirical data generated from the differential equations was 

done so at an interval of 0.01 seconds for 40 seconds, resulting in 2000 points each in the 

test and training datasets. Therefore, in order to reduce the computational burden, the 

training dataset was then sampled by a factor of 4 to give 500 points, and the test data was 

sampled by a factor of 2 to give 1000 points. This difference in the sampling rate of the 

training and test datasets will not be important for this test as no previous output 

information is to be fed back as an additional input. 

 

After this initial processing of the data, the next stage to consider is the normalisation and 

scaling of the data. Examining the mean and standard deviation of the three quantities the 
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following values were calculated: ( ( )) 3.91, ( ( )) 6.94mean A k std A k= − = ), 

( ( )) 3.92, ( ( )) 8.03mean B k std B k= − = , and ( ( )) 23.80, ( ( )) 8.37mean C k std C k= = . 

Overall, we can see that the standard deviation of the three variables is quite similar, so 

rescaling of the data to be employed as inputs is not required. However, as the mean of 

target C(k) is significantly different from the prior zero-mean assumption inherent in the 

GP modelling approach, the target values should be offset by this mean value. As no 

previous regressive outputs are to be used in this implementation as model inputs, this 

normalisation of the target data will not affect the input data. However, this offset value 

must be retained and added to the computed predictions.  

 

The next stage to consider is the selection of an appropriate covariance function along with 

the optimisation of suitable hyperparameters. For this example, the Squared Exponential 

covariance function was employed with the same initial values chosen for hyperparameters 

as before (-1 for all). As this example model is to employ two inputs, a second length-scale 

hyperparameter is required (i.e. vertical variance or amplitude hyperparameter θ1, a length-

scale parameter θ2 (for A(k)  input dimension), a length-scale parameter θ3 (for B(k)  input 

dimension), and a noise parameter θ4.). Applying the same marginal likelihood 

maximisation optimisation scheme as before results in θMP.= (θ1 = 2.0439 θ2 = 5.1122, θ3 = 

10.0623, θ4 = 1.9969). Now that the GP prior has been defined, the predictive mean of the 

posterior can then be calculated for all test inputs and compared with the real function data 

as in Figure (5.23) on the next page. 

 

Overall, the GP model has provided a reasonable representation of the behaviour of target 

function but significant error can be seen to exist. This is reflected in the validation 

measures of performance where the following were calculated: Mean-Square Error (MSE) 

of 6.4987, Log Predictive Density (LPD) of -10.2683, and log likelihood (LL) of -

1.1795e+003. As before, it is informative to plot the model error on the same chart as the 

variance output of the GP model as in Figure (5.24). 
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Figure (5.23): Lorenz Example - GP Mean predictions (dotted line) vs. Underlying 

function (solid line). 
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Figure (5.24): Lorenz Example - GP Model Error (solid line) and Variance (2σ) 

output (dashed line). 

C 



Chapter 5: Nonlinear Dynamic System Identification with GP Models 

 207 

In Figure (5.24), the peaks in the model error can be seen to mostly correspond with the 

peaks in the variance output. Furthermore, a notable increase in the overall level of the 

variance output can be observed in the middle portion of the test data between t = ~27 

seconds and t= ~31 seconds. We can interpret this increase in the variance output, and sharp 

increase in the model error at the beginning of this region of test data, by referring to the 

training data included in the model (first 20 seconds of data in Figure 5.22). In the region 

( 27 31t< < ) of the test data, the model inputs A(k) and B(k) can be seen to shift upward to 

a higher value and continue oscillating. However, in the first 20 seconds of this dataset that 

has been used for training, this upward shift in the observed data is not present. As a result, 

the training dataset does not contain sufficient information in the form of observed data 

with which to make accurate predictions at these input values, thus leading to more 

uncertain predictions that have a higher variance. This can be further understood by 

referring to the trajectory chart of Figure (5.22b), where the less frequent oscillations that 

occur at higher values can be interpreted as the right-hand ‘wing’ of the ‘butterfly’. In this 

example, we have not included enough observations from this right-hand ‘wing’ in order to 

make accurate predictions there. 

 

Overall, this example demonstrates the fundamental dependency that the GP modelling 

approach has on the quality of the training dataset. Of course by including more 

observations in the training dataset the quality of the model may be improved, but this may 

lead to considerable computational expense. Therefore, if strict controls are to be placed on 

the size of the training dataset, it is clear that the quality of the training dataset must be 

improved using some other strategy. It is at this point that prior knowledge of the system 

and available data can prove to be of significant importance. Rather than just employing an 

arbitrarily chosen block of the available data, if the training dataset can be pre-processed 

more carefully to cover a greater range of the operating space more evenly, a better overall 

model can often result. Conversely, if there are specific regions of operating space that are 

more common or more important, the training data should be concentrated into covering 

those areas. Either way, using prior knowledge of the system together with the overall 

objectives of the model can play an important role in developing the most suitable model. 

 

In order to demonstrate this aspect of choosing the training dataset more carefully, the same 

analytical model and initial conditions were again used to generate data, but the time-scale 

of the collected data was extended to 100 seconds in order to gain a better appreciation of 
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the long-term behaviour of the system, see Figure (5.25). Overall, the input oscillations can 

be seen to repeatedly alternate about zero in an aperiodic manner, and this is indeed the 

case if alternative initial conditions are employed. Therefore, the initial model trained on 

the first 20 seconds of data can be seen to be particularly lacking in sufficient observations 

of the input data where the oscillations occur above zero. As a result, if the model is 

retrained to include more observations in this region of input space, the performance of the 

model should be improved. To demonstrate this, the model is now to be trained on the data 

present in the region 20 40t< <  where input oscillations occur above and below zero, and 

the performance of the model compared with the original model trained on the data 

contained in the region 0 20t< < . 
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Figure (5.25): Lorenz Attractor - A(k) (solid line), B(k) (dotted line) and C(k) (dashed 

line). 

 

As before, the training datasets of both models are to be sampled so as to include 500 data 

points, and the same optimisation procedure followed. In order to test these two models, the 

data contained in the region 80 100t< <  is to be used, and the model performance can seen 

in Figure (5.26) and Figure (5.27). Overall, we can see that the level of error present in the 

model trained on the data 20 40t< <  is mostly superior to that of the model trained on the 

data 0 20t< <  with the large peaks in the model error corresponding to the larger 
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amplitude oscillations. The variance output of this newly trained model is also typically 

lower and more consistent between these peaks in model error. For the model trained on the 

data on the original 0 20t< <  data, the validation measures where Mean-Square Error 

(MSE) of 9.6090, Log Predictive Density (LPD) of -12.6828, and log likelihood (LL) of -

1.1795e+003. For the model trained on the data on the new 20 40t< <  data, the validation 

measures where Mean-Square Error (MSE) of 5.3996, Log Predictive Density (LPD) of -

19.4800, and log likelihood (LL) of -1.2148e+003.  
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   (a)      (b) 

Figure (5.26): Lorenz Example (trained on 0 20t< < ) - Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dashed line). 

 

80 82 84 86 88 90 92 94 96 98 100
5

10

15

20

25

30

35

40

45

time (seconds)
80 82 84 86 88 90 92 94 96 98 100
0

1

2

3

4

5

6

7

8

9

10

time (seconds)

E

 
   (a)      (b) 

Figure (5.27): Lorenz Example (trained on 20 40t< < ) - Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dashed line). 

 
From these validation measures we can see that MSE accuracy of the model has improved 

as expected. In contrast, the LPD measure that relates to the variance output of the models 

shows that the first model has less uncertainty about its predictions. However as a 

C 
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significant level of error still exists in both models, this is not something that is unduly 

concerning. 

 
It is also worth pointing out that whilst this new GP model trained on the data contained in 

20 40t< <  provides a slightly better performance than that trained with the data contained 

in 0 20t< < , this is partly due to the fact that the test region 80 100t< <  contains 

considerable amounts of input data above and below zero. If the test data is to primarily 

include input response data below zero the first model identified with data 0 20t< <  is 

likely to perform better as it has a greater concentration of training observations that are 

similar to the test points, whereas the second model has training data that is spread more 

evenly across input space. This is indeed the case in the data region 40 60t< < , where the 

first model outperforms the second. This is important in relation to this particular example 

application as due to the chaotic nature of the response and sensitivity to initial conditions, 

it is often possible to generate input data that oscillates above or below zero for prolonged 

periods of time before switching. Therefore, in order to identify a robust model that 

performs well across the input range, it is necessary to select the training data carefully in 

order to include as much information as possible in the limited space available.  

 

Furthermore, it is necessary to employ test data that examines the performance of the model 

across as much of the input space as possible. Therefore, it is worth testing both of these 

models on a larger dataset 50 100t< <  in order to confirm which model is superior. For the 

model trained on the data on the original 0 20t< <  data, the validation measures where 

Mean-Square Error (MSE) of 6.3394, Log Predictive Density (LPD) of -10.1268, and log 

likelihood (LL) of -1.1795e+003. For the model trained on the data on the new 20 40t< <  

data, the validation measures where Mean-Square Error (MSE) of 4.9244, Log Predictive 

Density (LPD) of -12.0030, and log likelihood (LL) of -1.2149e+003. From the MSE 

validation measures we can see that accuracy of the model trained using the data 

20 40t< <  is remains slightly better than the model trained using the data 0 20t< < , and 

the LPD measure now also indicates that this model is less uncertainty associated with it. 

Note that for this example, the model performance is not plotted as the charts are difficult to 

read due to the frequency of the oscillations and length of the timescale.  

 

Overall, the significant error in the model demonstrates the difficulty of predicting the 

chaotic behaviour of the Lorenz attractor using the chosen inputs: A(k) and B(k). This is due 

to the fact that these input variables are not particularly informative of the desired output 
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C(k) (i.e. a relationship between the input and output oscillations is not easy to interpret). 

Therefore, in order to improve this model C(k) additional or alternative inputs would be 

required.  

 

Test 2 – Predicting C(k) using C(k-1), A(k) and B(k) as inputs 

 

As this example application is dynamic in nature, the previous states of the inputs and 

outputs are available for use in predicting future behaviour. In this example the previously 

used inputs, A(k) and B(k), are to be augmented with previous or delayed output 

information C(k-1) as an additional input to the model. Therefore, this GP model can now 

be understood as an implementation of one-step ahead prediction This example is to 

employ the same initial conditions and therefore use the same data as in the previous model 

implementation. As before, employing an additional input in the model structure means that 

another length-scale hyperparameter must be added to the squared exponential covariance 

function. Furthermore, as this additional input is to be the previous output fed back, the 

normalisation that was performed in the original pre-processing of the training data must 

also be applied to this input data C(k-1). As before, after the test predictions are computed, 

the offset that results from this normalisation can then be added to the output predictions. 

 

In addition, as the training data has been sampled to include 500 points resulting in a 0.04 

second interval between data points, and the test data has been sampled so that a 0.02 

second interval between data points exists, the previous output must be incorporated in a 

manner that ensures consistency in the timing. Therefore, the delayed or previous output 

(one-step back) of the training data is equivalent to the previous output (two-steps back) of 

the test data, i.e. 2×0.02s = 0.04s. As a result, the output must be stored in a variable after 

each prediction so it can then be used to calculate the appropriate subsequent prediction (2 

steps in advance in this case). This process can be better understood by writing out the form 

of the inputs/outputs as below: 

 

At the first test case, k=1: 

Model Input: [ ]( 2) ( ) ( )C k A k B k−  

Model Output: [ ]( )C k  

Previous Output (stored for next prediction): [ ]( 1)C k −  

At the second test case, k+1: 
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Model Input: [ ]( 1) ( 1) ( 1)C k A k B k− + +  

Model Output: [ ]( 1)C k +  

Previous Output (stored for next prediction): [ ]( )C k  

At the third test case, k+2: 

Model Input: [ ]( ) ( 2) ( 2)C k A k B k+ +  

Model Output: [ ]( 2)C k +  

Previous Output (stored for next prediction): [ ]( 1)C k +  

And so on…. 

 

An obvious problem of including previous or regressed outputs is that for the initial test 

predictions, this input information would not appear to be available (i.e. for the first test 

case we need ( 2)C k −  and ( 1)C k − ). In some applications we can employ knowledge over 

the initial conditions of the system in order to provide this input information. Furthermore, 

in this simulated example, where test data has been selected from a larger set of empirical 

data, it is straightforward to include some observations of the output that immediately 

precede the chosen start of the test data (i.e. we can include observations ( 2)C k −  and 

( 1)C k −  for use as input information, with the remaining observations of ( )C k  being used 

for comparison with the model predictions).  

 

However, in other cases it is possible that such initial conditions are not available (e.g. 

applying the model online to fresh datasets) and we must make the first few predictions 

using whatever input information is available (i.e. only ( )A k  and ( )B k ). A problem with 

adopting such an approach is that the hyperparameters have been identified using the full 

complement of inputs in the training data, and therefore do not remain optimised if one or 

more of the inputs and accompanying hyperparameters are removed from the model set-up. 

This is due to the coupling that exists between the identified hyperparameters, and means 

that if the model set-up is altered, the hyperparameters must be retrained on similarly re-

configured training data in order to remain optimal. As the optimisation of the 

hyperparameters can become a computationally demanding process if a large quantity of 

data is included in the training dataset, the retraining of the hyperparameters to identify a 

GP model that is only going to be used to predict a few initial test cases would seem to be 

computationally expensive from an overall perspective. Furthermore, for this particular 
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application, the GP model identified using only ( )A k  and ( )B k  as the model inputs has 

been shown to be of limited accuracy in Test 1. Therefore, the resulting overall model will 

provide a poor level of predictive accuracy for the initial test predictions, but is likely to 

improve significantly dramatically when the previous outputs become available and can be 

used as model inputs, as will be demonstrated in this example. Therefore, the strategy 

involving the inclusion of initial conditions in the form of recorded previous output data has 

been adopted for the applications investigated in this thesis.  

 

Firstly, we are to employ the same training and test dataset as in the first part of Test 1 

where the model is trained on the data included in the region 0 20t< <  and tested on data 

in the region 20 40t< < . The hyperparameters where identified as before, resulting in 

θMP.= (θ1 = 51.2158, θ2 = 9.4911, θ3 = 59.5256, θ4 = 28.2600, θ5 = 0.0039), and the model 

performance is compared with the underlying data in Figure (5.28), and the model error and 

variance output of the GP model shown in Figure (5.29). 
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Figure (5.28): Lorenz Example - GP Mean predictions (dotted line) vs. Underlying 

function (solid line). 
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Overall, we can see that the accuracy of the model has improved dramatically by including 

the previous output as a model input, with the GP mean predictions being practically 

indistinguishable from the underlying test data, with validation measures Mean-Square 

Error (MSE) of 1.7524e-004, Log Predictive Density (LPD) of -9.2260, and log likelihood 

(LL) of 1.7919e+003. This great improvement in the model performance is not something 

that should be unexpected as the inclusion of the previous output information provides an 

input that is likely to be highly correlated with the desired output. Examining the model 

error and variance output of the GP model in Figure (5.29), we can clearly see that as in the 

previous example (shown in Figure (5.24)) both quantities grow in the middle portion of 

the test dataset as the training dataset includes a smaller number of observations in this 

region of input space. 
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Figure (5.29): Lorenz Example - GP Model Error (solid line) and Variance (2σ) 

output (dashed line). 

 
As in the previous example, we can attempt to modify the training dataset to better cover 

the whole of the input range. Therefore, the model identified using data contained in the 

region 0 20t< <  is to be compared with a model identified using data contained in the 
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region 20 40t< < , with the data contained in the region 80 100t< <  being used as the test 

data. The performance of the two models can be seen in Figure (5.30) and Figure (5.31).  
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   (a)      (b) 

Figure (5.30): Lorenz Example using previous output (trained on 0 20t< < ) - Chart 

(a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart 

(b) shows GP model error (solid line) and Variance (2σ) output (dashed line). 
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   (a)      (b) 

Figure (5.31): Lorenz Example using previous output (trained on 20 40t< < ) - Chart 

(a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart 

(b) shows GP model error (solid line) and Variance (2σ) output (dashed line). 

 

Overall, we can see that both models provide an accurate representation of the underlying 

data. For the model trained on the data on the original 0 20t< <  dataset, the validation 

measures where Mean-Square Error (MSE) of 1.4252e-004, Log Predictive Density (LPD) 

of -3.7094, and log likelihood (LL) of 1.7919e+003. For the model trained on the data on 

the new 20 40t< <  dataset, the validation measures where Mean-Square Error (MSE) of 

2.7576e-004, Log Predictive Density (LPD) of -43.3763, and log likelihood (LL) of 

1.7377e+003. Therefore, in the measure of model error (MSE) the first model is actually 
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slightly superior to the second model, whilst in the measure of variance (LPD) it is the 

other way round. As in the previous example, the model error of the first model can be seen 

to be increase at test cases where the inputs ( )A k  and ( )B k  are above zero, where there is 

fewer included training observations. For the second model, the model error can be seen to 

be slightly lower than in the first model for some of the test cases, but increases sharply at 

test cases that coincide with the transition of the oscillating inputs  ( )A k  and ( )B k  from 

below zero to above zero. Furthermore, through closer inspection of the model error and 

predictive variance of each model we can gain a greater appreciation of their different 

characteristics. Due to the more even spread of training data (in relation to the input space 

( )A k  and ( )B k ) of the second model trained on the data region 20 40t< < , the variance 

level of this model is consistently lower than that of the model trained on the data region 

0 20t< < . This means that the second GP model is more confident over the predictions it 

has made, and is perhaps overconfident at certain test points where the model error is 

actually larger than that found in the first model where the model error and variance are 

more in tune with one another. 

 

From inspecting the training datasets of both models, it is difficult to see exactly why the 

second model performs slightly worse than the first model with regard to modelling the 

output when this transition in the inputs occurs. It is clear that, unlike the first model, the 

training dataset of this second model is not particularly deficient in covering the available 

input space of this example, as the variance output of the model remains quite small. 

Instead, the slight advantage of the first model in representing this transition is due to this 

model’s training dataset being slightly more informative at these particular test cases. This 

is an interesting result, as it shows that as long as some training data is included from across 

the operating range, and informative inputs are employed, a good model can be identified. 

Furthermore, this model is competitive with the alternative model where the training data is 

more evenly spread.  

 

The informative nature of the training data is not something that has been given much 

consideration in the example applications so far. This is primarily due to the static nature of 

the nonlinearities considered, where the problem can almost be reduced to including as 

much data in the training dataset as is computationally feasible. However, for the 

identification of nonlinear dynamic systems, the design of the training dataset must also 

take into account the characteristics of the system under investigation.  
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One of the most important aspects of creating a training dataset is the selection of a suitable 

sampling rate for the experimental data collection and data pre-processing stages. In this 

example so far, the training data has been sampled using a 0.04 second interval between 

data points to provide a training dataset of 500 points, and the test data sampled so that  

0.02 second interval between data points exists. Using this data along with previous output 

information has allowed us to identify some models of decent accuracy. However, one 

thing that has not been made clear so far is that it is considerably more computationally 

expensive and therefore slower to compute predictions where previous outputs are to be 

included as model inputs. This is due to the need to evaluate the predictive equations at 

each individual step in time in order to feed back the newly computed output. In the 

previous static examples, the predictive equations could be computed in a single iteration as 

the full compliments of test inputs are immediately available. Therefore, in order to speed 

up the identification of hyperparameters and evaluation of predictions it is worthwhile 

attempting to carefully reduce the size of the training dataset whilst retaining sufficient 

model performance, i.e. trade-off the computational efficiency of the model against model 

accuracy. 

 

The problem with attempting to reduce the size of the training dataset is that we are 

potentially eliminating important information. Obviously, if the sampling rate is kept 

constant, by reducing the number of observations included in the training dataset, we are 

reducing the size of the time-scale that is to be included. Therefore, less information is 

likely to be included in the training dataset as the time-series may be too short to exhibit the 

full characteristics and operating range of the system. An alternative strategy is to reduce 

the sampling rate used in processing the training data. This will obviously allow us to 

include a longer time-series, thus potentially increasing the amount of operating space 

covered by the training dataset. The downside to reducing the sampling rate used for the 

training dataset is that we run the risk of failing to capture the some of the more subtle 

characteristics of the system, especially regions of the response that vary quickly. As the 

Lorenz attractor system is characterised by its highly oscillatory behaviour, if the sampling 

rate is reduced significantly these rapid changes and higher frequency characteristics are 

not going to be represented as well by using a smaller numbers of points. This is 

demonstrated below where the training data 0 20t< <  was sampled by a factor of 2 

resulting in a training dataset of 250 points, with the data contained in the region 

80 100t< <  again being used as the test data. The hyperparameters where identified as 
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before, resulting in θMP.= (θ1 = 40.5500, θ2 = 10.2231, θ3 = 48.8862, θ4 = 29.4780, θ5 = 

0.0049), and the and the model performance is compared with the underlying data in Figure 

(5.32). The validation measures where Mean-Square Error (MSE) of 30.2199, Log 

Predictive Density (LPD) of 1.7260, and log likelihood (LL) of 717.5159. 
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   (a)      (b) 

Figure (5.32): Lorenz Example using previous output (trained on 0 20t< < , Smaller 

250 point dataset) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying 

function (solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) 

output (dashed line). 

 

The performance of this model can be seen to be substantially poorer than that of the 

previous model identified with twice the number of training examples. This is to be 

expected, but as discussed above, it is not purely the reduction in the number of points that 

is to blame for this decrease in model performance. It is the fact that the sampling rate 

employed is too slow and fails to capture the nature of the system dynamics. The effect of 

reducing the sampling rate is to concentrate the training data around the middle of the 

operating range, resulting in a model that fails to represent the underlying data at the 

extremities of the operating range. Looking more closely at the variance output of the 

model in comparison to the model error, it would appear that that these quantities are not 

well correlated at all. The variance output can be seen to grow substantially where the 

output transient is fastest (i.e. as it passes through the middle of the oscillation), and drops 

to a low level when the output transient slows down near the peak/trough of the oscillation. 

This is in contrast to the model error which is at its greatest when the output nears these 

peaks/troughs. This reinforces the point that we cannot use the variance output (or the LPD 

measure) as a definitive guide to the level of model error in the identified model. The 
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training data has failed to capture the dynamics at the extremities, so a model trained with 

this deficiency cannot hope to indicate this uncertainty. 

 

Overall, this example has demonstrated the process of applying the GP modelling approach 

to a complex nonlinear system. As the GP modelling approach is dependent on the quality 

of the training data, in this example we have outlined the fundamental requirements behind 

identifying a suitable model. Firstly, that the training dataset must include data from across 

the operating range of the system in order to provide a robust model, and secondly that the 

training data must be sampled at an appropriate rate so that the dynamics of the system may 

be well represented. However, as the models where identified using portions of training 

data collected from a generated time-series, it is perhaps not truly demonstrative of the 

system identification process as no control over the input signals was possible. Therefore, 

in the next examples to follow, we are to take control over the input signals and apply the 

GP modelling approach to real laboratory-scale nonlinear systems. 
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5.7) Coupled Tank System 
 

The GP modelling approach is now to be applied to a real laboratory-scale nonlinear 

dynamic system. The Coupled or ‘Twin’ Tank System, shown in Figure (5.33), is 

comprised of two water tanks identical in size and shape, coupled together through a small 

hole of known diameter between the dividing wall of the tanks. The system’s control input 

is a variable flow rate into the first tank controlled through a variable speed water pump, 

with the height of the water present in both tanks used as measured variables. An output 

pipe is present in the second tank to prevent overflow. The system displays nonlinearity 

throughout the operating range due to orifice flow behaviour between the tanks and at the 

output flow pipe. The system is open-loop stable under all operating conditions with 

relatively long time constants (2-5 minutes) being observed. 
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Figure (5.33): Coupled Tank System 

 

This system can be seen to exhibit a first order nonlinear response between H1 and H2 

across the entire operating range, where output data varies with excitation input data in a 

smooth and continuous manner. Consequently, the behaviour of this system would seem to 

be highly appropriate for the smoothly varying requirements imposed by the squared 

exponential covariance function employed in the most common GP model architecture. 

Further studies into this system can be found in Gong and Murray-Smith (1998), Chong 

and Li (2000), and Chan (2003). In this example application a number of different GP 

models are to be identified. In the next section, the process of developing a suitable training 

dataset for the identification of a GP model is to be examined using a simulated version of 

the Coupled Tanks system. Following on from this discussion, the experimental methods 
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applied to the collection of empirical data are described and an existing analytical model 

developed from first principles is also examined. Utilising the information gained from 

these initial investigations the GP modelling approach is then applied to empirical data 

collected from the real system. 

 

5.7.1) Simulated Coupled Tanks System 

 

In order to identify a GP model, a training dataset must first be created from any available 

empirical data. In contrast to the previous examples, in this application we are to take 

control over the input or excitation signals so that the full system identification process can 

be demonstrated. To provide a more in-depth investigation into the development of a 

suitable training dataset a number simulated models have also been employed, where a 

number of simple first order system models were developed to generate training and test 

datasets. The responses of these simulated models are designed to resemble the overall 

characteristics of the two real systems rather than provide an exact approximation. Using 

these simulated examples allowed different sets of training data to be collected more easily, 

and facilitated a greater degree of experimentation (e.g. model set-up, system dynamics, 

excitation signals, sampling rate etc.) than would be possible given the operational 

constraints present in performing data collection experiments on the real systems. The 

simple model structures were constructed using Simulink component of the Matlab 

environment as shown in Figure (5.34). 

 

 
Figure 5.34: - Simulink Diagram of Simulated System 

 

For the excitation signal “Input Voltage”, the various options within Simulink’s ‘Sources’ 

menus can be employed. Particularly useful are the random number generators to allow 

Pseudo-Random signals for inputs, and the ‘Signal Builder’ block that allows the user to 

construct a specific input from various transition steps. This input signal is to represent the 

input voltage used to control the water pump and therefore the inflow into Tank 1. The 
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initial 1st Order transfer function block ‘H1 T.F.’ represents the dynamics of the height of 

water in the first tank, and the second transfer function block ‘H2 T.F.’ represents the 

dynamics of the height of water in the second tank. The values for the numerators and 

denominators of both transfer functions were arbitrarily chosen, however the second 

transfer block was designed to vary along a similar timescale and with a lower amplitude 

than the first transfer block, thereby mimicking the overall nature of the real system where 

the height of water in the second tank (H2) varies smoothly in tandem with that of the 

height of water in the first tank (H1). Furthermore, the time constants associated with these 

transfer functions are much lower than for the real system (~20 seconds rather than ~5 

minutes). 

 

In previous sections of this thesis (see Sections (4.5.2) and (4.5.3)), important aspects 

regarding the size and conditioning of the covariance matrix and the implications for 

experimental design have been discussed. Of particular relevance to the process of 

experimental design is the fact that including prolonged periods of equilibrium or steady-

state data in the training dataset can adversely affect the conditioning of the covariance 

matrix. As a result, in order to avoid this problem of matrix ill-conditioning, the input 

signals used must adequately excite the system so that the response data does not remain in 

steady-state for long periods. However, a significant problem can be seen to exist where the 

inputs and outputs can be seen to vary at different rates. To demonstrate this problem we 

can plot the response of both transfer function blocks to a step input signal, see Figure 

(5.35). In this chart we can see that if the full transient responses (H1 and H2 in the real 

system) are to be included, the corresponding input signal (pump input voltage in the real 

system) that remains constant must also be included, thus potentially degrading the 

conditioning of the training data. In contrast, we can see that as the transients associated 

with the H1 and H2 vary along a comparable time-scale, the problem of avoiding the 

inclusion of constant or equilibrium data would appear to be more easily dealt with. 
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Figure (5.35): Step Response of Simulated System – Input Voltage (solid line), Height 

(H1) of water in Tank 1 (dotted line), Height (H2) of water in Tank 2 (dashed line). 

 

5.7.1.1) Random Noise Excitation Signal 
 

Therefore, if we are to model the relationship between the input voltage and the level of 

water in either tank, it would appear that the use of step excitation inputs is not a viable 

option. An alternative course of action would be to use an input signal that is constantly 

excited across the timescale and is therefore unlikely to result in prolonged periods of 

steady-state data being included in the training dataset. In Figure (5.36) a random (sampled 

Gaussian noise) excitation signal has been generated and applied to the simulated system. 

Random excitation inputs are especially popular in the development of black box models as 

they offer a suitable method of manipulating the system in an unbiased manner that reflects 

the lack of prior knowledge of the system that is often inherent. 
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Figure (5.36): Coupled Tanks Simulated System (Random Noise Excitation Signal)– 

Input Voltage (solid line), Height (H1) of water in Tank 1 (dotted line), Height (H2) of 

water in Tank 2 (dashed line). 

 

As in the previous Lorenz attractor example, in order to adhere to the basic principles of 

cross-validation, this data set is to be split into separate training and test datasets. For this 

example, the data set was partitioned evenly (at 400 seconds) into test and training datasets. 

The original empirical data generated from the simulated system was done so at an interval 

of 0.05 seconds for 400 seconds, resulting in 8000 points each in the test and training 

datasets. Therefore, in order to reduce the computational burden, the training dataset was 

then re-sampled using a factor of 20 to give 400 points, and the test data were re-sampled 

by a factor of 4 to give 2000 points.  

 

Using this random excited training data we can train three different models, firstly we 

model the relationship between the Input Voltage and H1, secondly the relationship 

between the Input Voltage and H2, and thirdly the relationship between H1 and H2. As in 

the previous dynamic example, the previous output is to be used as a second input for these 

models (i.e. one-step ahead prediction). Therefore, due to the difference in sampling rates 

between the test and training data sets (a factor of 5), the test data is to employ the output 
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point 5 steps before the current time (i.e. (k-5)) in order to remain consistent with the 

training data. In addition, the target data is again normalised in accordance with the zero-

mean prior assumption, whilst the inputs are not rescaled, as their standard deviations are 

not hugely different. The squared exponential covariance function is again chosen, and the 

hyperparameters found using the same maximum likelihood maximisation scheme as 

before. These three model implementations (M1, M2, M3) were then tested with the model 

performance and variance output displayed in Figure (5.37), Figure (5.38) and Figure 

(5.39), with the validation measures given in Table (5.1). 
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   (a)      (b) 

Figure (5.37): Coupled Tanks Simulated Example (Model M1: Input V→H1) - Chart 

(a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart 

(b) shows GP model error (solid line) and Variance (2σ) output (dotted line). 
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Figure (5.38): Coupled Tanks Simulated Example (Model M2: Input V→H2) - Chart 
(a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart 
(b) shows GP model error (solid line) and Variance (2σ) output (dotted line). 
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   (a)      (b) 

Figure (5.39): Coupled Tanks Simulated Example (Model M3: H1→H2)- Chart (a) 

shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart 

(b) shows GP model error (solid line) and Variance (2σ) output (dotted line). 

 

Validation Measure M1: Input V→H1 M2: Input V→H2 M3: H1→H2 

MSE 0.0080 0.2412 0.0025 

LPD -273.7931 -3.0388e+003 -432.9226 

LL 880.8169 512.6326 1.2552e+003 

 

Table (5.1): Validation measures of Coupled Tank Simulated Model 

 

Overall, we can see that the GP modelling approach achieves a good level of model 

performance for models M1 and M3, whilst the model M2 is significantly less accurate. For 

the model M3, as the input H1 and output H2 can be seen to vary smoothly with one 

another, it is not surprising that this model implementation has been successful. As a result, 

it is this model implementation that we will focus on when applying the GP modelling 

approach to the real empirical data. For the model M1, as the input (Input Voltage) and the 

output H1 are quite closely correlated (as shown in Figure (5.36)), the GP model can be 

seen to achieve a decent approximation. This is not the case for the model M2 where the 

input and output are not closely correlated, and a substantially poorer level of accuracy is 

found. This lack of model accuracy is due to the training data not providing sufficient 

information with which to make predictions, as the output varies at a far slower rate to that 

of the input. Therefore, the full response of the output to a change in the input is never 

captured by the training data, leading to error in the model. Indeed, it important to point out 

that the relationship between the Input Voltage and H2 can be understood as a second rather 
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than a first order system. As a result, the current ARX structure of model M2 is 

insufficiently complex (i.e. not enough inputs), leading to a poor description of this second 

order relationship. 

 

Furthermore, in all of 3 of these models it is worth drawing attention to the fact that the 

variance output of each GP model is not particularly informative of the presence of model 

error. Whilst the LPD measure is better (more negative) for model M3 over M1, therefore 

in keeping with the MSE measure, the LPD measure of M2 is better than either despite 

attaining a substantially poorer accuracy. This again reinforces the fact that the variance 

output of the GP model is predominantly only really informative of where training data is 

sparse. In this example, the random excitation signal is sufficiently long enough that the 

whole operating range is covered relatively evenly by the training data. Therefore, the error 

in model M2 is predominantly due to the unsuitability of this model implementation, where 

the relationship between fast input transients to slower output transients is to be mapped. 

This aspect is something that we will return to in Section (5.7.6) where a mixed-model 

implementation is discussed, but for the moment we will concentrate on modelling the 

relationship between H1 and H2. 

 

A problem with conducting system identification tests using such a random excitation 

signal (shown in Figure (5.36)) is that this kind of operating response is not particularly 

representative of how the real coupled tanks system is normally operated. In operating the 

real coupled tanks system, the system can be seen to settle into steady-state operating points 

very readily, and the recorded system response consists typically of relatively slow 

transitions between steady-state operating points. Therefore, the random excitation signal 

shown in Figure (5.36) is slightly artificial and whilst it offers a straightforward method for 

avoiding the inclusion of problematic steady-state data, it may be difficult to implement in 

practice. Another important aspect that has not yet been considered is the performance of 

these GP models for data that actually reaches steady-state. As the system is likely to spend 

a significant proportion of time under such operating conditions, the identified model must 

be able to provide accurate predictions of such steady-state behaviour. 
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5.7.1.2) Random Step Excitation Signal 

 

In Figure (5.40) a different excitation signal is now applied to the simulated coupled tanks 

system where the input consists of a number of step transitions of different magnitudes. The 

magnitude of these input steps have been chosen arbitrarily to appear somewhat random in 

nature, and the time between steps was chosen to be ~25 seconds so as to let the full 

transients of H1 and H2 be captured. This time between steps was selected from inspecting 

the step response shown in Figure (5.35), where at ~25 seconds after the input step, both H1 

and H2 both approach equilibrium.  
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Figure (5.40): Coupled Tanks Simulated System (Random Step Excitation Signal) – 

Input Voltage (solid line), Height (H1) of water in Tank 1 (dotted line), Height (H2) of 

water in Tank 2 (dashed line). 

 

Therefore, by ensuring the time between steps is kept within such a margin, we can avoid 

including large quantities of problematic equilibrium data. Note that it is important to 

ensure that neither the inputs (H1 and H2(k-1)) or the outputs reach steady-state, so this 

upper limit on the time between steps should be enforced rigorously, otherwise the 

conditioning of the covariance matrix can begin to degrade quickly. This problem becomes 
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most apparent if the optimisation process ends in an abrupt manner, resulting in poorly 

identified hyperparameters. As before, this data set is then split into training and test 

datasets. The first 600 seconds of the time history is to be used as training data, and the 

second 600 seconds used as a test dataset. For this example, H2 is to be identified using H1 

and the previous H2 as the model inputs. The squared exponential covariance function is 

again utilised and the hyperparameters optimised as before. The sampling rates chosen for 

the training and test data remain the same as in the previous example, resulting in a training 

dataset of 600 points and a test dataset of 3000 points. Note that the timescale of the whole 

dataset for this example has been extended from 1000 to 1200 seconds to allow more of 

these slower transitions to be included. The predictive performance of the model can be 

seen in Figure (5.41), and the validation measures were calculated as: Mean-Square Error 

(MSE) of 3.2688e-004, Log Predictive Density (LPD) of -0.0140, and log likelihood (LL) 

of 1.4375e+003. Overall, the identified model can be seen to provide accurate predictions 

of the underlying function, with the model error and model variance remaining low with the 

odd spike coinciding with the larger input transitions. 
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Figure (5.41): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 600 

training points from first 600 seconds of Figure (5.40))- Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dotted line). 

 

We are now to contrast the performance of this model with the previous model identified 

using the more ‘noisy’ random excitation signal shown in Figure (5.36). In order to provide 

a fair comparison, the training data selected from this dataset was extended to include 600 

points from the first 600 seconds. The model performance can be seen in Figure (5.42), and 

the validation measures where calculated as: Mean-Square Error (MSE) of 0.0016, Log 
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Predictive Density (LPD) of -870.8319, and log likelihood (LL) of 1.8728e+003. Overall, 

we can see that the GP model identified from the more ‘noisy’ random training data 

provides a good approximation to the underlying system, but does not quite match the MSE 

performance of the model identified using the more slowly varying step inputs. However, 

the variance output of the model trained on the noisy data is lower than that of the model 

trained on the random step data (indicating a more successful optimisation, probably due to 

better training set conditioning of the noisy data as it includes no steady-state data). Of 

particular importance is the that accuracy of this ‘noisy’ data trained model where the 

output begins to reach steady-state is noticeably poorer than that of the step input trained 

model, especially at the lower and higher ends of the output operating range. This is to be 

expected as the ‘noisy’ training data does not include as much information near to steady-

state as the step training dataset. A further by-product of the faster transitions included in 

the ‘noisy’ training dataset is that the data has a tendency to concentrate in the middle of the 

input range leaving the extremities of the operating range more sparsely populated by 

training observations. It is this tendency that is reflected in the model’s poorer predictive 

performance at transitions that take place in the lower and higher regions of the output 

operating range. 
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Figure (5.42): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 600 

training points from first 600 seconds of Figure (5.36))- Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dotted line). 

 

So far in this example application, it is the conditioning of the covariance matrix that has 

driven the process of identifying a suitable training dataset. However, in the 

implementation of the GP modelling approach, the size of this training dataset must also be 
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considered carefully, due to the large computational expense of including large quantities of 

training data. In the examples so far, the training datasets have included 600 points, which 

could not readily be described as very large. However, it is at around this size that the 

computation time associated with optimising hyperparameters and then predicting 1000+ 

test cases becomes slightly prolonged (~15 minutes on my PC: 1.6 GHz, single-core, 1Gb 

RAM). Therefore, in order to speed this process up it is worth discussing methods to reduce 

the computational expense of the GP model. If the two existing excitation signals are to be 

retained, there are two different strategies that can be applied to reducing the size of the 

training dataset: 1) Reduce the length of the time-scale included, or 2) Decrease the 

sampling rate used to collect the data. Both approaches are to be investigated for the two 

random excitation signals shown in Figure (5.36) and Figure (5.40).  

 

Firstly, to reduce the size of the training dataset, the timescale of both excitation signals 

was reduced from 600 seconds to 300 seconds resulting in a training dataset of 300 points 

with the existing sampling rate. The model performance of both models is shown in Figure 

(5.43) and Figure (5.44), and the validation measures of the model in Figure (5.43) where 

calculated as: Mean-Square Error (MSE) of 0.0443, Log Predictive Density (LPD) of -

1.2257, and log likelihood (LL) of 704.7914, and for the model in Figure (5.44) the 

validation measures where calculated as: Mean-Square Error (MSE) of 0.0119, Log 

Predictive Density (LPD) of -693.2591, and log likelihood (LL) of 948.7873. 
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Figure (5.43): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300 

training points from first 300 seconds of Figure (5.40))- Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dotted line). 
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Figure (5.44): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300 

training points from first 300 seconds of Figure (5.36))- Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dotted line). 

 

Overall, we can see that the two models offer a good approximation to the underlying 

function over the majority of the operating space. However, the model identified using the 

random step input data can be seen to have a particular deficiency in predicting at the 

higher levels of the output H2. This is due to the removal of important training data 

observations from the training dataset by reducing the included timescale (i.e. transients at 

this higher region are included in the original data (Figure (5.38) but at t > 300 seconds). 

The model identified by the ‘noisy’ random data is slightly less affected by this curtailment 

of the training dataset at the higher end of the operating range, but is more affected at the 

lower end of the operating range. This is again evidence of the tendency for data collected 

from more rapidly varying signals to become concentrated toward the middle of the 

operating range (i.e. the minimum hold time is not of sufficient length). 

 

This potential omission of observations from important regions of operating space is a 

significant problem with employing random excitation signals for the collection of training 

data. In order to ensure that the full input range of the system is covered by the training 

data, it is therefore necessary to design excitation signals that are of sufficient duration to 

make up for this lack of precise control over the input. Furthermore, it is worth reiterating 

the point that the GP modelling approach can be thought of as a method of interpolation. As 

a result, any predictions carried out on test points that lie out with the training data are very 

likely to be inaccurate with a correspondingly large variance output. 
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Instead of shortening the length of the included excitation signal, an alternative strategy 

based on reducing the sampling rate (or increasing the interval between datapoints) can be 

pursued. Unlike the previous example application (Lorenz attractor), as this simulated 

coupled tank system (and especially the real version) varies more slowly, the potential 

deterioration in model accuracy when the sampling rate is reduced should be less rapid. 

Using the same two excitation signals, the sampling rate of the training data was increased 

by a factor of two (from 1 second to 2 seconds, resulting in 300 datapoints collected from 

the 600 second duration excitation signals), with the test data sampled as before (0.2 

seconds) thus requiring an adjustment in the implementation of the input H2(k-1) from 5 

steps previous to 10 steps previous. The model performance of both models is shown in 

Figure (5.45) and Figure (5.46), and the validation measures of the model in Figure (5.45) 

where calculated as: Mean-Square Error (MSE) of 0.0367, Log Predictive Density (LPD) of 

-349.8891, and log likelihood (LL) of 626.7114, and for the model in Figure (5.46) the 

validation measures where calculated as: Mean-Square Error (MSE) of 0.0447, Log 

Predictive Density (LPD) of -1.6761e+003, and log likelihood (LL) of 556.7409. 
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Figure (5.45): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300 

training points from first 600 seconds of Figure (5.40))- Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dotted line). 
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Figure (5.46): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300 

training points from first 600 seconds of Figure (5.36))- Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dotted line). 

 

Overall, both of these models can be seen to offer a reasonable approximation to the 

underlying function, however a significant level of model error is demonstrable across the 

whole of the test dataset, and particularly at test cases where large transients occur. This is 

to be expected, as by reducing the sampling rate and therefore the size of the training 

dataset from 600 to 300 points, the more subtle characteristics of the system response have 

been lost from the training dataset. This is in contrast to the previous models identified with 

data from a shortened excitation signal, where the model error is specific to certain regions 

of the operating range that are not covered by the training data. 

 

5.7.1.3) Small Step Excitation Signal 

 

In the previous implementations of the GP modelling approach, a random excitation signal 

was employed to collect the training data. Whilst such an approach has been shown to 

provide suitable training data and therefore good models, a disadvantage of using random 

signals is that the length of the signal must be of sufficient duration so that training data can 

be collected from the full operating range of the system. Furthermore, as the sampling rate 

used to collect the training data cannot be reduced without potentially losing important 

information, in order to reduce the size of the training set alternative methods to decrease 

the size of the training dataset should be considered. Assuming the sampling rate of the 
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training data is kept at a minimum that remains viable to capture the dynamics of the 

system, it is therefore the length of the excitation signal that could be modified.  

 

Therefore, instead of employing a random excitation signal, a more deterministic approach 

to the design of the excitation signal and therefore the training dataset could be adopted. 

Fundamentally, due to the interpolation characteristics of the GP model, the greatest source 

of model error is normally due to the lack of training data in certain regions of the operating 

space. Therefore, any excitation signal must attempt cover the entire operating range of the 

system (i.e. input range is 0 to 10). Taking this prior knowledge and combining it with the 

other important knowledge over the duration of individual transients, it is therefore possible 

to design an excitation signal that excites the system across the whole of the operating 

range whilst remaining shorter in terms of timescale than the previously employed random 

signals. In essence, the idea is to cram as much information into as small a training dataset 

as possible. As a result, the computational expense of the GP model may then be reduced 

without resorting to further complex methods (e.g. sparse matrix methods). 

 

In Figure (5.47) an excitation signal composed of a number of small step transitions that 

covers the full range of the operating space was developed. As before, it is important to 

avoid including steady-state data, and the size and number of transitions were chosen so 

that the input could be stepped up and down through the range within a reasonably short 

timescale. It is also worth pointing out that although the response of this simulated system 

should remain symmetrical, in that an input step should result in the same length of 

transient whether it is positive or negative, the real coupled tank system does not display 

such perfect symmetry. Therefore, this has influenced the inclusion of ‘downsteps’ as well 

as ‘upsteps’. Furthermore, including the ‘downsteps’ allows the training dataset to be 

populated by the full range of data a second time, thus improving model performance. 
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Figure (5.47): Coupled Tanks Simulated System (Small Step Excitation Signal) – 

Input Voltage (solid line), Height (H1) of water in Tank 1 (dotted line), Height (H2) of 

water in Tank 2 (dashed line). 

 

Utilising the same sampling rates as before, two training datasets where collected from this 

excitation data and used to identify two GP models. The first of these models is to use the 

original sampling rate of 1 second resulting in a training dataset of 300 datapoints, and the 

second model is to use a 2 second sampling rate thus resulting in a training dataset of 150 

datapoints. The performance of these two models can be seen in Figure (5.48) and 

Figure(5.491), and the validation measures of the model in Figure (5.48) where calculated 

as: Mean-Square Error (MSE) of 3.6230e-004, Log Predictive Density (LPD) of -455.8357, 

and log likelihood (LL) of 1.1774e+003, and for the model in Figure (5.49) the validation 

measures where calculated as: Mean-Square Error (MSE) of 0.0300, Log Predictive 

Density (LPD) of -465.9639, and log likelihood (LL) of 410.8031. 
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Figure (5.48): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 300 

training points from 300 seconds of Figure (5.47))- Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dotted line). 
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Figure (5.49): Coupled Tanks Simulated Example (Model: H1, H2(k-1) → H2, 150 

training points from 300 seconds of Figure (5.47))- Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dotted line). 

 

The performance of the model in Figure (5.48), where 300 training datapoints are included 

in the training dataset, can be seen to be very competitive with the previous models 

identified with 600 datapoints. Therefore, as this model performs significantly better than 

the previous models identified from the same size of training dataset (300 datapoints), this 

can be seen to be a substantial reduction in the computational expense of the model without 

much sacrifice in the predictive performance of the model. This is further demonstrated in 

the model shown in Figure (5.49) where a model identified from 150 datapoints 

H2 

H2 
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outperforms in both MSE and LPD the previous models identified from twice the amount 

of data. 

 

Overall, in this example we have demonstrated that it may be possible to employ prior 

knowledge of the system in the design of the training dataset used to identify the GP model. 

Instead of relying on random excitation signals that are routinely used to identify black-box 

models, by taking more control over the exact nature of the empirical data included, there 

can be significant reductions in the size of the training dataset required. This can therefore 

lead to a reduction in the computational burden of the approach. However, it is worth 

pointing out that the design of the excitation signal and therefore the training set must 

always take into account the specific characteristics of the application. For the simulated 

Coupled Tank system adopting an experimental approach where the input is stepped up and 

down the operating range quickly is a viable method as the system varies in a consistent 

manner across the whole of the operating range. This may not be the case for other 

applications. Furthermore, this ‘small step’ approach has practical benefits when 

considering the real Coupled Tank system where the transients are very slow and the length 

of time taken to collect data can become very long. Therefore, conducting an experimental 

approach that stimulates the system across the whole operating range in a straightforward 

and systematic manner is an attractive proposition, as moving from one steady-state 

operating point to another and then back again is a slow process. 

 

5.7.2) Experimental Methods for Coupled Tank System 

 

The Coupled Tanks (CE5) system manufactured by TecQuipment has been equipped with 

differential pressure sensors (Sensym SX01D) that measure the difference between 

atmospheric pressure and the pressure at the base of each tank and return an electrical 

signal. The resultant signals are then amplified to provide a suitable range of measurement 

of the depth of water in both tanks. Measurements from the Coupled Tank system were 

automatically recorded through a PC data acquisition device (National Instruments 6024E) 

controlled with National Instruments LabVIEW software. Through this software the height 

of water in both tanks (H1 and H2), together with the input voltage applied to the water 

pump, was recorded over the duration of the experiments.  
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To identify nonlinear systems it is desirable to collect empirical data across as much of the 

operating range as possible. The system was subjected to a series of small and large step 

inputs and the response recorded. The system response to large inputs is often difficult to 

record, as operational restrictions must be enforced (e.g. to avoid water overflow). As a 

result, the restrictions existing when operating close to the boundaries of the operating 

envelope are reflected in the smaller quantities of data collected close to the system’s limits 

(Heights near maximum of 0.3m). Additionally, the water pump response to input voltage 

can be seen to be linear only within a certain range, where the input voltage can be directly 

transformed to input flow rate through an identified constant. Outside of this range (close to 

minimum and maximum flow rate), flow rates tend to be related to the pump input voltage 

in a nonlinear fashion. The Two-Tank system is a stable system that displays high damping, 

as overshoots and oscillatory behaviour are not observed in its current configuration. The 

system tends to settle into equilibrium readily, with equilibrium points existing across the 

operating range. This makes the system suitable for modelling using local linear techniques 

and small perturbation theory.  

 

The Coupled Tanks system response is relatively slow with time constants typically being 

several minutes. Consequently, the sampling rate chosen to acquire the data must not be too 

high that an excessive amount of slow varying data is produced, but also not so low as to 

inadequately represent the system response. Therefore, a sampling rate of 10 seconds was 

implemented. For this system, it is worth noting that negative input transients tend to result 

in faster output transient responses than equivalently sized positive transients.  

 

5.7.3) Analytical Model of the Coupled Tanks System 

 

The conventional method for analysing dynamic systems similar to the two-tank system is 

to apply the principle of continuity of mass and energy (Bernoulli’s theorem). This results 

in a nonlinear model of the system described by the following equations:  

 

Tank 1 (Height of water H1, Cross-sectional area A1, Inflow Qvi and Outflow Qv1) 

 

1
1

1 vvi QQ
dt

dH
A −=        (5.23) 
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Tank 2 (Height of water H2, Cross-sectional area A2, Inflow Qv1 and Outflow Qvo) 

 

vov QQ
dt

dH
A −= 1

2
2        (5.24) 

 

The rate of change of volume (cross-sectional area A, multiplied by height H, for 

rectangular shaped tanks) of liquid in each tank must be equal to the difference between the 

flow rate into and out of each tank. If the hole which links the two tanks and the outflow 

pipe are treated as simple orifices, the flow rate through each hole can be related to the fluid 

heights through the following equations 

 

)(2 21111 HHgaCQ dv −=       (5.25) 

)(2 3222 HHgaCQ dvo −=       (5.26) 

 

where a1 and a2 are the cross sectional areas of the orifice and outlet pipe, H3 is the height 

of the outlet pipe above the base of the tanks, g is the gravitational constant, and Cd1 and 

Cd2 are discharge coefficients of constant value. The system can be seen to be nonlinear due 

to the presence of the square root covering the difference in water levels of the two tanks. 

From these expressions it is possible to formulate ordinary differential equations that 

describe the system at different operating or initial conditions. When the system is 

operating in it’s natural operating state of H1 > H2 with H2 > H3, the system can be 

described by 

 

)(2),,,( 21
111

211 HHg
A

aC

A

Q

dt

dH
tQHHf do

o −−==     (5.27) 

 

1 1 2 22
2 1 2 1 2 1 3( , , , ) 2 ( ) 2 ( )d d

o

C a C adH
f H H Q t g H H g H H

dt A A
= = − − −  (5.28) 

 

Utilising the same coefficients as in Gong and Murray-Smith (1998), the simulated 

response of the analytical model was then compared with experimental data collected from 

the real system when subjected to the same input, see Figure (5.50).  
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Figure (5.50): Nonlinear Analytical Model (dotted lines) vs. Real Data (sold lines), 

with the water level in Tank 1 (H1) greater than the water level in Tank 2 (H2). 

 

Overall, the analytical model can be seen to approximate the behaviour of the recorded 

response from the system, but the model has significant errors present. The time constants 

associated with the transients of the simulated system are slightly faster than in reality, and 

the steady state values are significantly different. As certain quantities identified in the 

model (H1, H2, A1, A2, and Qvi) are well known, they are therefore unlikely to introduce 

significant error into the model. Instead, the paper by Gong and Murray-Smith (1998) has 

pointed to a deficiency in the model structure through this assumption for orifice type flow 

behaviour. As the outlet of the second tank is not strictly an orifice (rather a short section of 

pipe with a drain tap), other flow properties, such as turbulent or laminar flow, that are not 

well represented by the model of orifice flow will be present. A possible strategy indicated 

in Gong and Murray-Smith (1998) for reducing this model error is to introduce a variable 

discharge coefficient into the model that is dependent on the depth of water in the second 

tank. Nevertheless, whilst it would be possible to improve the predictive performance of 

this existing analytical model, this research is focused on the application of the 

nonparametric GP model alternative. 

 

H(m) 
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5.7.4) Application to the Real System 

 

In this section, we are now to tackle the identification of the real Coupled Tanks system 

using empirical data collected from the system. To collect the training data, the previously 

discussed experimental approach where the system is excited by a number of small positive 

and negative step inputs was adopted. In this way, we can attempt to collect empirical data 

from the whole operating range of the system in a more concise manner than would be 

achievable if random excitation signals were to be adopted. A further reasoning behind the 

adoption of the small step excitation approach instead of the random excitation approach is 

that for many real world applications it is not practically possible to employ large rapidly 

changing input signals due to operational circumstances and constraints. In many 

applications, such large and abrupt input transients cannot be performed repeatedly without 

potentially damaging the system. For the Coupled Tanks system in particular, the use of 

very large input transients was discouraged for fear of water overflowing from the first 

tank. Consequently, it is often the case that small perturbation data, collected from the open 

loop response at various equilibrium points, is used to identify models. Nevertheless, we 

would want to investigate the performance of the identified GP model for large input 

transients. This is because of the fact that, for any test data very similar to the training data 

used, an identification method that fails to find an accurate description could certainly not 

be recommended. Therefore, training on small step data and testing on larger input 

responses is a useful method of assessing the flexibility of the identified model and the 

suitability of the identification method used. 

 

The small step excitation input and output response can be seen in Figure (5.51a) where the 

data was collected using a sampling rate of 10 seconds leading to a dataset of 2672 

datapoints. As discussed previously, in order to avoid considerable computational expense, 

it is recommended that the size of the training set be reduced to a more manageable level 

(i.e. below 1000 datapoints). Furthermore, as the system response is smooth and slowly 

varying, this empirical dataset can be re-sampled without fear of losing valuable 

information. Therefore, the excitation data shown in Figure (5.51a) was re-sampled by a 

factor of 20 to provide a training dataset of 134 datapoints with a sample interval of 200 

seconds. A further important consideration in the pre-processing of the training dataset is 

the conditioning of the data itself. Most importantly, the existence of large amounts of 

steady-state data in the training dataset can lead to ill-conditioning in the covariance matrix 
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of the GP model. For the excitation data shown in Figure (5.51a), both the input and output 

signals can be seen to remain sufficiently excited (i.e. the period between the step 

transitions is relatively small) so as to remove the need to eliminate any steady-state data by 

hand. Therefore, the only pre-processing employed for this training dataset was the re-

sampling of the empirical data. The effect of this pre-processing can be seen in Figure 

(5.51b). 
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   (a)      (b) 

Figure (5.51) Coupled Tanks System – Small Step Training Data. Chart (a) shows 

recorded data with input (dotted line) and output (solid line). Chart (b) shows pre-

processed Training Data (134 datapoints). 

 

In order to validate the GP models identified from this training dataset, four further test 

datasets where collected from the Coupled Tanks system. These are shown in Figure (5.52), 

where the first test dataset is composed of a number of large positive and negative 

transitions or ‘pulses’, the second test dataset is composed of a single large positive ‘pulse’ 

where the steady-state performance of the model can also be assessed, the third dataset is 

composed of a number of small positive step transitions designed to test the model on data 

that is more similar to that present in the training dataset, and the fourth test dataset is a 

mixture of different size and more rapidly varying transitions. The test datasets shown in 

charts (b), (c), and (d) of Figure (5.52) where collected using the same sampling interval 

(every 10 seconds) as that used to collect the empirical data used for training. However, the 

test dataset shown in chart (a) of Figure (5.52) was collected using a different sampling 

interval of 4 seconds. This difference is the result of a lack of experimental consistency 

rather than for any other practical reason. For the purposes of testing the GP models 

identified, these test datasets are not going to be re-sampled. Therefore, for any previous or 

regressed inputs/outputs that are to be incorporated into the model structure, an awareness 

H(m) H(m) 
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of the different sampling rates is required. For the test datasets shown in charts (b), (c), and 

(d) of Figure (5.52), 1-step back of the training data will be equivalent to 20 steps back of 

the test data, and for chart (a), 1-step back of the training data will be equivalent to 50 steps 

back of the test data.  
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   (c)      (d) 

Figure (5.52): Coupled Tanks System – Test Datasets. Chart (a) shows a number of 

large positive and negative ‘pulse’ transitions. Chart (b) shows a single large positive 

step transition with a long period in ‘steady-state’. Chart (c) shows a number of small 

positive steps inputs followed by a large negative transient. Chart (d) shows mixture of 

slow and fast transitions. All charts show system input (dotted line) and output (solid 

line). 

 

Before the hyperparameters of the Squared Exponential covariance function are optimised 

it is first necessary to define the precise model structure that we wish to employ. As in the 

simulated version, a simple ARX model structure is to be used where the model inputs are 

to be the current input H1(k) and previous output H2(k-1), with the  model output being 

H2(k). Next, the training target data must be normalised in accordance with the zero-mean 

H(m) H(m) 

H(m) H(m) 
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GP prior assumption, and the scaling of the input variables is checked to ensure no large 

differences are found. Applying the same marginal likelihood maximisation optimisation 

scheme as before results in θMP.= (θ1 = 0.1965, θ2 = 0.0796, θ3 = 0.0696, θ4 = 0.0007). Now 

that the GP prior has been defined, the predictive mean of the posterior can then be 

calculated for all test inputs and compared with the real system data. The four test datasets 

are then to be identified using the GP prior with the results presented below followed by a 

discussion of the model’s performance. 

 

Test 1 – Large ‘Pulses’ Test  
 

In this test the performance of the GP model identified using the small step training data is 

tested on the large positive and negative ‘pulse’ transitions shown in Figure (5.52a). The 

GP mean predictions can be seen in Figure (5.53) and the validation measures were 

calculated as Mean-Square Error (MSE) of 5.2375e-005, Log Predictive Density (LPD) of -

249.1887, and log likelihood (LL) of 742.1701. 
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   (a)      (b) 

Figure (5.53): Coupled Tanks System – Large ‘Pulses’ Test Data - Chart (a) shows GP 

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows 

GP model error (solid line) and Variance (2σ) output (dotted line). 

 
Test 2 – Large Step and ‘Steady-State’ Test 
 

In this test the performance of the GP model identified using the small step training data is 

tested on the large positive step transition followed by a prolonged period of near steady-

state behaviour shown in Figure (5.52b). The GP mean predictions can be seen in Figure 

(5.54) and the validation measures were calculated as Mean-Square Error (MSE) of 

H(m) 
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2.0191e-004, Log Predictive Density (LPD) of -3.1304e+003, and log likelihood (LL) of 

742.1701. 
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   (a)      (b) 
Figure (5.54): Coupled Tanks System – Large Step and ‘Steady-State’ Test Data - 

Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). 

Chart (b) shows GP model error (solid line) and Variance (2σ) output (dotted line). 

 

Test 3 – Small Steps Test 
 
In this test the performance of the GP model identified using the small step training data is 

tested on the small positive step transitions shown in Figure (5.52c). The GP mean 

predictions can be seen in Figure (5.55) and the validation measures were calculated as 

Mean-Square Error (MSE) of 1.9965e-005, Log Predictive Density (LPD) of -145.4783, 

and log likelihood (LL) of 742.1701. 
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   (a)      (b) 
Figure (5.55): Coupled Tanks System – Small Step Test Data - Chart (a) shows GP 

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows 

GP model error (solid line) and Variance (2σ) output (dotted line). 
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Test 4 – Mixture of Slow and Fast Transitions Test 
 

In this test the performance of the GP model identified using the small step training data is 

tested on the mixture of slow and fast transitions shown in Figure (5.52d). The GP mean 

predictions can be seen in Figure (5.56) and the validation measures were calculated as 

Mean-Square Error (MSE) of 4.3327e-005, Log Predictive Density (LPD) of -45.5146, and 

log likelihood (LL) of 742.1701. 
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Figure (5.56): Coupled Tanks System – Mixture of Slow and Fast Transitions Test 

Data - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function 

(solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) output 

(dotted line). 

 

Overall, the performance of the GP model in each of the four test cases can be seen to 

provide a reasonable representation of the system behaviour, with the whole operating 

range being successfully covered by the training dataset. However, a significant level of 

error can be seen in the GP mean predictions of Tests 1, 2 and 3 in particular. Firstly, it is 

important to point out that although the predictive performance of this GP model does not 

initially appear to be particularly impressive, it is worth remembering that the data 

employed has been collected from a real system. All the previous examples examined in 

this thesis have employed simulated data where the datasets used for training and validation 

are not affected by inconsistencies such as noise, model uncertainties or disturbances. As a 

result, obtaining a perfect representation of the underlying system from imperfect data is 

more challenging problem. Nevertheless, it is important to closely analyse the performance 

of the model to see if any improvements can be made. 

 

H(m) 
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In analysing the performance of the GP model in Test 1 and Test 2, a conclusion that could 

be drawn is that the training data, which consists of only small step transitions, has not 

provided enough information with which to allow accurate predictions of larger step 

transitions to be made. However, in the case of Test 4, which is also mainly made up of 

large transitions, the GP model can be seen to perform much better. A further troubling 

result is that the GP model’s performance in Test 3 is slightly disappointing given that the 

test data is pretty similar in nature to that of the training data. Therefore, from an overall 

perspective the performance of this GP model would appear to be somewhat inconsistent or 

unreliable. As a result, such a mixed outcome is perhaps more difficult to contend with than 

a model that is simply poor, and can therefore be disregarded. One aspect that can be 

clearly understood is that the GP model has failed to represent the very slow positive drift 

in the level of the output (between the large positive and negative transitions) seen in Test 

2. This kind of subtle behaviour is something that the GP modelling approach will fail to 

capture, as despite this drift in the test output, the level of the test input remains constant. 

Furthermore, as the training data has been pre-processed to reduce the presence of data near 

steady state, this more subtle nonlinear behaviour is not included in the training dataset 

with the resultant growth in model error not being reflected in a growth in the variance 

output of the GP model. In addition, the variance output from the model in Test 2 is not at 

all correlated with the model error, and an unfeasibly good LPD measure is the result. 

 

One possible strategy for improving the performance of the model is to include more data 

in the training set through reducing the sampling interval between observations. Through 

adopting such an approach, more rapidly varying and subtler nonlinearities can be better 

represented in the training data. However, for the case of the Coupled Tanks system, as the 

system response is slow and readily settles into steady-state conditions across the operating 

range, including more data in the training dataset does not offer any great improvement in 

the performance of the model. In fact, for the same reasons, reducing the amount of data in 

the model by a factor of two (giving a training set of 67 points) has also been found to have 

only a small negative effect on the accuracy of the GP model. Furthermore, due to the 

smoothly varying nature of the data, the reduction of the training set can also lead to an 

improvement in the model performance as a greater interval between observations can 

further reduce the potential inclusion of repeated data, therefore improving the conditioning 

of the training dataset and leading to better hyperparameters being identified. 
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Therefore, if the sampling rate chosen for pre-processing and the size of the training dataset 

are not found to be the deficient, it is perhaps the nature of the training dataset that is the 

limiting factor in the performance of this GP model. In Tests 1 and 2 the performance of the 

model was found to be somewhat lacking when attempting to predict large transitions. As 

the training dataset is composed of only small step transitions it is plausible that if larger 

transitions are included in the training dataset the accuracy of the model could be improved. 

Furthermore, such a strategy would seem to be appropriate if a closer analysis of the system 

characteristics is performed. In particular, the transient response of the system to different 

size input transitions is not likely to vary in the same consistent manner as that displayed in 

the simulated version of the system. As the simulated version of the system employed 

constant transfer function parameters, the amplitude of the output transient response varies 

in a consistent manner directly dependent on the size of the input transient. For the case of 

the real Coupled Tank system, we already know that this same consistency is not upheld, as 

previous analytical models based on constant discharge coefficients have found to be 

inadequate. In essence, the behaviour of the output response will vary in a less predictable 

manner than that of the simulated version, where the real response is dependent on the size 

of the input transient as well as on the current region of operating space. Nevertheless, it is 

still uncertain whether or not this variation is the major cause of model error, as we have 

seen in Test 4 that the GP model has performed much better on similarly large transients. 

 

Therefore, to investigate whether or not the small step training data is the problem, an 

alternative training dataset is to be employed to identify a second GP model, which is to be 

validated using the same four test datasets. This new training dataset is to contain larger 

step transitions than in the previous model, whilst still hopefully maintaining coverage of 

the whole operating range. In order to create this new training dataset, two existing 

empirical datasets were combined and then pre-processed in accordance with the previous 

guidelines where the size and conditioning aspects of the data must be considered. 

Therefore, the overall size of the training dataset was restricted through employing the 

same sampling rate as before (resulting in a 200 second interval between observations). 

Furthermore, in order to reduce the problem of ill-conditioning in the covariance matrix, it 

was necessary to manually remove certain regions of steady state data from the empirical 

dataset. As discussed in Section (5.5), it also possible to employ a form of regularisation to 

the data through adding noise to the diagonal of the covariance matrix. However, in this 

example we are to concentrate on removing problem data as it more informative of the 
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problem than simply masking it with noise. The effect of this pre-processing on the training 

data can be seen in Figure (5.57b) where 81 datapoints are included.  
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Figure (5.57) Coupled Tanks System – Larger Step Training Data. Chart (a) shows 

recorded data with input (dotted line) and output (solid line). Chart (b) shows pre-

processed Training Data (81 datapoints). 

 

With regard to the process of combining or piecing together different datasets into a more 

substantial training dataset, this is something that should be done with care and avoided if 

possible. As the recorded data is a dynamic time-series, it is clear that by simply splicing 

two datasets together the potential exists to introduce behaviour into the time-series that is 

uncharacteristic of the system. As a result, if previous inputs and outputs are to be used in 

the model structure, in the region where data overlaps, this previous information can prove 

to be noticeably inconsistent with other regions of data. Therefore, as this data set is to be 

used first to train hyperparameters and then retained in the covariance matrix, it is possible 

to introduce significant error into the model. Consequently, in order to minimise this risk an 

effort should be made to combine these different training datasets at points in the time-

series where the data is in a similar operating region. In the training dataset shown in Figure 

(5.58), the two datasets were combined where the output level had reached a similarly high 

value. Applying the same marginal likelihood maximisation optimisation scheme as before 

results in θMP.= (θ1 = 0.7879, θ2 = 0.2174, θ3 = 0.0921, θ4 = 0.0042). Now that the GP prior 

has been defined, the predictive mean of the posterior can then be calculated for all test 

inputs and compared with the real system data. The same four test datasets are now to be 

identified using the GP prior with the results presented below followed by a discussion of 

the model’s performance. 
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Test 5 – Large ‘Pulses’ Test  
 

In this test the performance of the GP model identified using the ‘larger’ step training data 

is tested on the large positive and negative ‘pulse’ transitions shown in Figure (5.52a). The 

GP mean predictions can be seen in Figure (5.58) and the validation measures were 

calculated as Mean-Square Error (MSE) of 2.1095e-005, Log Predictive Density (LPD) of 

2.6727, and log likelihood (LL) of 311.9477. 
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  (a)      (b) 

Figure (5.58): Coupled Tanks System (larger training steps) – Large ‘Pulses’ Test 

Data - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function 

(solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) output 

(dotted line). 

 

Test 6 – Large Step and ‘Steady-State’ Test 
 

In this test the performance of the GP model identified using the ‘larger’ step training data 

is tested on the large positive step transition followed by a prolonged period of near steady-

state behaviour shown in Figure (5.52b). The GP mean predictions can be seen in Figure 

(5.59) and the validation measures were calculated as Mean-Square Error (MSE) of 

1.1253e-004, Log Predictive Density (LPD) of -15.8432, and log likelihood (LL) of 

311.9477. 
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   (a)      (b) 

Figure (5.59): Coupled Tanks System (larger training steps) – Large Step and 

‘Steady-State’ Test Data - Chart (a) shows GP Mean predictions (dotted line) vs. 

Underlying function (solid line). Chart (b) shows GP model error (solid line) and 

Variance (2σ) output (dotted line). 

 

Test 7 – Small Steps Test 
 

In this test the performance of the GP model identified using the ‘larger’ step training data 

is tested on the small positive step transitions shown in Figure (5.52c). The GP mean 

predictions can be seen in Figure (5.60) and the validation measures were calculated as 

Mean-Square Error (MSE) of 2.3790e-005, Log Predictive Density (LPD) of 3.2935, and 

log likelihood (LL) of 311.9477. 
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  (a)      (b) 

Figure (5.60): Coupled Tanks System (larger training steps) – Small Step Test Data - 

Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). 

Chart (b) shows GP model error (solid line) and Variance (2σ) output (dotted line). 
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Test 8 – Mixture of Slow and Fast Transitions Test 
 

In this test the performance of the GP model identified using the ‘larger’ step training data 

is tested on the mixture of slow and fast transitions shown in Figure (5.52d). The GP mean 

predictions can be seen in Figure (5.61) and the validation measures were calculated as 

Mean-Square Error (MSE) of 2.5033e-005, Log Predictive Density (LPD) of -2.3593, and 

log likelihood (LL) of 311.9477. 
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Figure (5.61): Coupled Tanks System (larger training steps) – Mixture of Slow and 

Fast Transitions Test Data - Chart (a) shows GP Mean predictions (dotted line) vs. 

Underlying function (solid line). Chart (b) shows GP model error (solid line) and 

Variance (2σ) output (dotted line). 

 

Inspecting the GP mean predictions of the 4 tests, we can see a significant overall 

improvement in the accuracy of the GP mean predictions across the majority of the 

operating range. However, in both Test 5 and Test 7 a significant level of error is present in 

model at high output levels. This is due to the excitation data included in the training 

dataset not quite reaching the same high output levels, therefore resulting in a loss of model 

accuracy and growth in the corresponding variance output. In Test 6, the new GP model 

still does not provide a better representation of the low level positive drift discussed earlier, 

but as this new training dataset is not radically different to the previous training dataset this 

problem is not likely to be solved. In Test 8, the new GP model does not offer a significant 

improvement over the previous model, with both models providing a decent level of 

approximation of the slower transitions, and a slightly weaker performance on the faster 

transitions. Such an outcome is to be expected as the training data is composed of slower 

transitions and is sampled in such a manner to capture these slower dynamics in relatively 

few points.  
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In order to ease comparison of this new model with that of the previous model trained on 

the original training dataset the validation measures are tabulated below (remember that test 

data used for Test 1 is the same as that in Test  5, Test 2 is the same as Test 6, etc.). 

 

 
Original Training Data MSE LPD LL 

Test 1 5.2375e-005 -249.1887 742.1701 
Test 2 2.0191e-004 -3.1304e+003 742.1701 
Test 3 1.9965e-005 -145.4783 742.1701 
Test 4 4.3327e-005 -45.5146 742.1701 

 
Table (5.2): Validation measures from Tests 1 to 4. 

 
New Training Data MSE LPD LL 

Test 5 2.1095e-005 2.6727 311.9477 
Test 6 1.1253e-004 -15.8432 311.9477 
Test 7 2.3790e-005 3.2935 311.9477 
Test 8 2.5033e-005 -2.3593 311.9477 

 
Table (5.3): Validation measures from Tests 5 to 8. 

 

Overall, the use of this second training dataset (where larger step transitions are employed) 

has improved the MSE accuracy of the model in three of the four test cases. In Test 7, the 

MSE performance of the second GP model is worse than that of the original model due to 

the fact that the second training set fails to fully cover the whole operating range. 

Therefore, the suspicion that the original small step training dataset does not excite the 

system enough to gather information with which to predict large transitions accurately 

would appear to be true. Also worth noting is the fact that the LPD performance of the 

second model is worse than that of the original model, despite the model error being mostly 

improved. The reason for this apparent inconsistency is that the original training dataset 

was better conditioned (less steady-state data), therefore allowing a more successful 

optimisation stage to be completed. This is also indicated by the fact that the Log 

Likelihood (LL) measure being higher for the first GP model. 

 

As discussed previously, the use of such small step training data has imposed an 

assumption that the scale of variation or flow rates remains consistent for large and small 

step inputs. Furthermore, such a deficiency would appear to be similar to that built into the 

analytical model where the discharge coefficients were defined as constants. In addition, 

this lack of consistency in the system response over the operating range can be understood 
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as an example of non-stationary behaviour, and of course the GP model has been defined 

using a stationary covariance function. Nevertheless, it is likely that the GP model could be 

improved through the use of a longer excitation signal composed of both larger and smaller 

steps, such as a randomly generated input signal. However, the key objective of using the 

more deterministic small-step excitation approach was to ensure that the whole of the input 

range would be covered in a relatively short time-scale. Therefore, any random excitation 

signal must also be designed to be sufficiently long in order to ensure that the whole of the 

input range is covered. Furthermore, due to the slow time-constants associated with the 

system, the sampling rate used to collect the data maybe large enough to avoid including 

large quantities of data in the training dataset. In addition, further methods of reducing the 

computational demand could also be adopted such as including derivative observations or 

sparse matrix methods. A potential problem of adopting a more random excitation approach 

is the time that may be necessary to collect the data. For example, the small step training 

dataset shown in Figure (5.51) took ~7 hours to collect, and in order to ensure that the full 

operating range of the system is covered a similar or perhaps even longer period may be 

necessary. Whilst this is certainly not an impossible task, and something that I believe 

should have been pursued, unfortunately it has not been possible to undertake further 

experimental work. In many ways this is reflective of some of the more practical limitations 

that are routinely encountered in the identification of real systems, where large quantities of 

suitable empirical data are not always available.  

 

A further practical aspect that has not yet been discussed is the reliability or consistency of 

the empirical data. Whilst the inclusion of larger step transitions in the training data has 

proven to improve the predictive accuracy of the GP model, another possible reason why 

the first GP model identified using the small step training data does not perform as well as 

expected is due to subtle variations in the system’s properties. It is difficult to substantiate 

this proposal, but both the small step training data shown in Figure (5.51) and the test data 

shown in Figure (5.52d) where both recorded ~2-3 months after the other datasets used for 

training and testing. In addition to the presence of intangible inconsistencies such as noise, 

it is possible that the properties of the system can have changed by a small amount. This is 

especially plausible as the measurement devices employed in the experimental apparatus 

were recalibrated on more than one occasion. It is this potential drift in the measurements 

that is perhaps the main reason why the GP model trained on the small step training data 

performs much better on the test data collected at around the same time (in Test 4) than in 
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the other test cases. Overall, as with other empirically based modelling approaches, the GP 

modelling approach will be especially vulnerable to changes in the properties of the system. 

As the GP model can be interpreted as a precise mapping between input and output, any 

changes in the system that have not been reflected in the training data are not going to be 

predicted with any great accuracy by the model. 

 

5.7.5) Incorporating Derivative Observations 

 

In Section (5.4) the use of derivative observations was discussed as potentially useful 

extension to the GP modelling approach. Through this extension empirical data points 

(function observations) that are close to equilibrium or have reached steady-state can be 

summarised into derivative observations. As a result, the computational demand associated 

with inverting the covariance matrix (whose size is dictated by the number of function 

observations included in the training dataset) may be reduced. Incorporating derivative 

observations is often described as being in keeping with the divide-and-conquer strategy 

prevalent in many multiple model approaches, as the identification of derivative 

observations at equilibrium operating points is somewhat equivalent to identifying local 

linear models. In this section the process of identifying derivative observations and then 

incorporating them into the GP modelling approach using data collected from the Coupled 

Tank system is to be demonstrated. As the second training dataset composed of slightly 

larger input transitions (see Figure (5.57)) was found to provide a slightly better model 

accuracy, it is this training dataset that is now to be used to identify a number of derivative 

observations. Furthermore, the previously adopted model structure of including the 

previous output as a second model input is to be retained. 

 

In the previous GP model of the Coupled Tanks system, the training data was sampled 

using a sampling interval of 200 seconds resulting in a dataset of 81 datapoints. 

Furthermore, before this final re-sampling was performed, the majority of the steady-state 

data was removed from the training dataset in order to improve the conditioning of the 

subsequent covariance matrix. In this example, instead of simply discarding this steady 

state empirical data it is to be used to identify derivative observations at these equilibrium 

operating points using the linearisation methods described in Section (5.4.1). Turning our 

attention to the function observations that are to be included, as the steady-state parts of the 

excitation data are to be used to form the derivative observations, we can therefore focus on 
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including only off-equilibrium or transient data as function observations. In the previous 

GP model, the manual pre-processing performed was aimed at minimising the inclusion of 

steady-state data, whilst still retaining enough information so that the transition between the 

input transient and steady state behaviour could be captured. In this implementation, an 

effort has been made to be more ruthless in removing steady-state data, leaving only 

transient behaviour included as function observations. This division of the empirical data 

into separate datasets that are to be used either as function or derivative observations can be 

seen in Figure (5.62). The result of this process is a training dataset consisting of 39 

function observations and 9 derivative observations. 
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Figure (5.62) Coupled Tanks System – Larger Step Training Data. Chart (a) shows 

recorded data used for function observation (39 datapoints) with input (dotted line) 

and output (solid line). Chart (b) shows recorded data used to identify 9 derivative 

observation with input (dotted line) and output (solid line). 

  

In order to validate the performance of this model the same test datasets (shown in Figure 

(5.52)) that were used previously can again be employed. Furthermore, in order to simplify 

the model implementation, these test datasets are to be re-sampled so that the sample 

interval of 200 seconds is consistent for both test and training datasets. As a result, the 

delayed or previous output H2(k-1) that is to be used as an additional model input will be 

indexed  one-step back in both the test and training datasets. After performing the same 

normalisation and scaling checks as before, the hyperparameters of this new GP model can 

then be identified and model predictions computed. Note that the optimisation and 

predictive procedures are largely unaffected by including derivative observations when 

uncertainty propagation is not also performed, see Section (5.4.2). If we now apply this new 

GP model (consisting of 39 function observations and 9 derivative observations) to the test 
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dataset shown in Figure (5.52d), where a mixture of slow and fast transitions are present, 

the GP mean predictions can be seen in Figure (5.63) with the validation measures 

calculated as Mean-Square Error (MSE) of 5.2375e-005 and Log Predictive Density (LPD) 

of -7.8533, and log likelihood (LL) of 133.5611. 
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Figure (5.63): Coupled Tanks System (39 function observations, 9 derivative 

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP 

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows 

GP model error (solid line) and Variance (2σ) output (dotted line). 

 

Overall, this new implementation of the GP model (39 function observations, 9 derivative 

observations) has provided a reasonable approximation to the test dataset. The model does 

seem to perform less well at higher levels of the output, and it is also worth pointing out 

that as the test data has been re-sampled to match the sampling interval of the training data, 

the faster transitions included in this test dataset have been affected. Nevertheless, this same 

test dataset is now going to be used to validate the performance of a number of different 

model implementations so that the effect of incorporating these derivative observations can 

be analysed. Firstly, in order to provide a comparison for this new GP model (39 function 

observations, 9 derivative observations), the performance of the previous GP model (81 

function observations, 0 derivative observations) on the same test data is now to be plotted, 

see Figure (5.64). The validation measures were calculated as Mean-Square Error (MSE) of 

3.2537e-005 and Log Predictive Density (LPD) of 2.9138, and log likelihood (LL) of 

311.9477. Overall, the MSE performance of this existing GP model is superior as would be 

expected from including twice as many datapoints (function observations) in the training 

dataset. However, the LPD performance of the model including derivative observations is 

slightly superior. 
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  (a)      (b) 

Figure (5.64): Coupled Tanks System (81 function observations, 0 derivative 

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP 

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows 

GP model error (solid line) and Variance (2σ) output (dotted line). 

 

If we now include the identified derivative observations with this original training dataset 

of 81 function observations, we can investigate whether adding such derivative information 

improves the accuracy of the model. This performance of this implementation of the model 

can be seen in Figure (5.65), and the validation measures were calculated as Mean-Square 

Error (MSE) of 3.1775e-005 and Log Predictive Density (LPD) of -15.0374, and log 

likelihood (LL) of 311.9477. 
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  (a)      (b) 

Figure (5.65): Coupled Tanks System (81 function observations, 9 derivative 

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP 

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows 

GP model error (solid line) and Variance (2σ) output (dotted line). 
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Overall, the effect of incorporating the derivative observations has been minimal with only 

a small increase in the accuracy of the description as compared to the previous case where 

no derivative observations. However, it is worth stating that the proposal for including 

derivative observations is not expressly aimed at improving the accuracy of models that 

have already been found to offer good predictions. Instead, the use of derivative 

observations is aimed at reducing the computational demand of the GP modelling approach 

through allowing empirical data near to equilibrium operating points to be summarised. 

Therefore, in order to provide some comparison to the previous model shown in Figure 

(5.63), where 39 function observations and 9 derivatives were employed, the existing 

training dataset pre-processed to include 81 training datapoints is to be re-sampled by a 

factor of two, providing a training dataset of 41 function observations (with a 400 second 

sample interval). GP model predictions using this training dataset (41 function 

observations, 0 derivative observations) were then computed and plotted in Figure (5.66), 

and the validation measures were calculated as Mean-Square Error (MSE) of 3.2790e-005 

and Log Predictive Density (LPD) of -3.7751, and log likelihood (LL) of 147.5693. 
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  (a)      (b) 

Figure (5.66): Coupled Tanks System (41 function observations, 0 derivative 

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP 

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows 

GP model error (solid line) and Variance (2σ) output (dotted line). 

 

From the result shown in Figure (5.66) we can see that the performance of the GP model 

defined using the alternative training dataset (39 function observations, 9 derivative 

observations) shown in Figure (5.63) is perhaps not as great as first thought. As both 

training sets contain a similar amount of function observations, it can be deduced that the 

slightly more aggressive data selection process adopted in the pre-processing shown in 
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Figure (5.62) has not provided the model with same level of information with which to 

make accurate predictions (especially at higher levels of the output). This can be confirmed 

by implementing a GP model that uses only the 39 function observations without the 

accompanying derivative observations, see Figure (5.67), where the validation measures 

were calculated as Mean-Square Error (MSE) of 5.3451e-005 and Log Predictive Density 

(LPD) of -5.4487, and log likelihood (LL) of 133.5611. The result shown in Figure (5.67) is 

very similar to that shown in Figure (5.63), and confirms the previous case that the 

inclusion of derivative observations only has a small positive effect on the accuracy of the 

resultant model. 
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Figure (5.67): Coupled Tanks System (39 function observations, 0 derivative 

observations) – Mixture of Slow and Fast Transitions Test Data - Chart (a) shows GP 

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows 

GP model error (solid line) and Variance (2σ) output (dotted line). 

 

Overall, in this application the incorporation of derivative observations has not been found 

to offer any large benefit in terms of improving the model accuracy, or allowed the number 

of functional observations to be reduced greatly. In terms of improving the model accuracy, 

this can perhaps be expected, as defining a linearisation at an equilibrium point is not going 

to provide any great deal of information with which to make predictions away from each 

equilibrium point. More importantly, the lack of benefit shown in a computational sense 

must also be appreciated in the context of the example system. As the Coupled Tanks 

system exhibits a slow and smoothly varying response, it is therefore possible to capture the 

dynamics of this response with relatively few datapoints. In other cases the system response 

may be more complex or less smooth, thus requiring a larger number of functional 

observations to be included with which to capture the dynamics. In such as case, the 
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potential benefits of summarising any data that is close to equilibrium in a small number of 

derivative observations, so that the computational expense may be better spent on including 

more functional observations, may become more apparent. As mentioned in Section (5.4), 

the abundance of data close to equilibrium is a feature of many engineering applications. 

Nevertheless, for the practical applications investigated in this thesis, the benefits of 

applying this extension to the GP modelling approach are not massive. This is due to the 

fact that the great majority of data close to equilibrium has instead been eliminated from the 

training dataset in order to improve the conditioning of the covariance matrix. Therefore, 

incorporating derivative observations may be seen as an alternative to simply removing 

equilibrium data, and something that does offer a slight increase in model accuracy. 

 

It is also worth pointing out that in this implementation the number of datapoints used to 

identify the derivative observations was quite low (e.g. 4 or 5 points). Therefore, it is likely 

that if a larger number of datapoints were included in each linearization a more accurate 

derivative observation could be obtained. Furthermore, as each derivative observation can 

be interpreted as a local linear model, a further improvement to the overall description 

could be obtained if the performance of each local model was validated individually. 

Therefore, if the inclusion of derivative observations in the GP model is thought to be 

important to gaining a good overall description, it is perhaps wise to retain access to a 

significant portion of steady-state data. In the implementation presented here, the design of 

the training dataset and the pre-processing employed has acted to remove most of the 

steady-state data, significantly reducing the potential for accurate local linear models to be 

identified. 

 

5.7.6) Mixed Model Implementation 

 

So far in this example application, the objective of the modelling process has been to 

identify a model of the relationship between the input H1 and the output H2. As both 

measurements can be seen to vary along a similar timescale, matrix conditioning problems 

that result from the inclusion of steady-state data can be mostly avoided, as discussed in 

Section (5.7.1). However, whilst in this application it has been possible to select input and 

output variables that vary smoothly in tandem with one another; this is certainly not going 

to be the case for all applications. As a result, in the current implementation of the GP 

modelling approach we would seem to be restricted to problems where the input and output 
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data are constantly varying in a smooth manner. As discussed earlier, this restriction has 

been imposed through the selection of the most popular Squared Exponential covariance 

function. 

 

Therefore, in order to tackle problems where the data do not vary along a similar timescales 

one possible strategy is to employ more sophisticated non-stationary covariance functions. 

In Section (4.3.2) a number of non-stationary covariance functions were outlined, and in 

Section (4.3.3) methods of combining covariance functions were also discussed. However, 

the use of more complex covariance functions has not been the subject of much practical 

investigation. Therefore, instead of changing the covariance function, an alternative 

strategy would be to change the nature of the data in order to make the situation more 

compatible with the existing methodology that employs the squared exponential covariance 

function. This proposal for changing the nature of the data has also already discussed in 

Section (4.3.3.4) where it was referred to as ‘Nonlinear Mapping’ or ‘Warping’. However, 

this concept can also be interpreted as a ‘mixed’ or ‘hybrid’ model implementation where 

the identification problem is divided into two parts, where the input space data is first 

mapped or ‘warped’ on to a intermediate or latent function space using some sort of initial 

model, followed by the application of a GP model that is to model the relationship or 

residuals between this new intermediate value and the desired output. 

 

Utilising a ‘mixed’ or ‘hybrid’ model implementation that is composed of more than one 

type of model for the purposes of system identification is certainly not without precedent, 

and can be interpreted as a further form of model complexity optimisation as the 

identification task is divided into more manageable components. A general discussion of 

the various possible combinations of different models can be found in Nelles (2001), and 

particularly well known cases of mixed models are the Hammerstein and Wiener model 

structures which utilise linear dynamic and nonlinear static components in combination. 

Mixed model implementations can often involve the combination of analytical models 

developed from first principles with models developed from empirical data. As a result, 

such a mixed model may have an advantage over models developed solely from data in that 

they make use of any existing model that is available. This means that any prior knowledge 

and interpretability associated with the existing model can be retained, rather than 

disregarded in the creation of a completely new description. Further advantages of adopting 

a mixed model approach are that the extrapolation and robustness properties of the model 
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can be improved, as a greater level of prior knowledge is retained the model it is less likely 

to be dumbfounded by missing or suspect data. 

 

In this example, we are to demonstrate the potential use of the GP model in such a mixed 

model implementation, and also attempt to identify a model of the Coupled Tanks system 

that describes the relationship between the input voltage and the height of water in the 

second tank (H2). Therefore, the recorded height of water in the first tank (H1) is not going 

to be employed by this description. As a result, we must first find some method of 

modelling (or mapping) the recorded input voltage data onto an intermediate or latent input 

space, where this data is found to vary on a similar timescale to that of the recorded H2 

output data. After this initial model or mapping is performed, the GP modelling approach is 

then to model the residual to provide a prediction of the system output. For the initial model 

or nonlinear map, the analytical model of the Coupled Tanks system outlined in Section 

(5.7.3) would seem to be useful. Although this model was not found to be particularly 

accurate, it does offer a reasonable overall depiction of the system response and as it has 

been developed from first principles, such a model contains a level of interpretability that is 

desirable.  

 

In order to identify the GP model we must first create a suitable training dataset in order to 

identify hyperparameters. In this example, we are to make use of the previous small step 

training dataset, and then test the model on one of the 4 previously used test datasets. In 

order to make use of the analytical model, the input voltage recorded must first be 

converted into an input flow rate Qvi through multiplying the voltage by the constant 7.6e-6. 

This input flow rate of the training dataset can be seen in Figure (5.68a), and the recorded 

H1 and H2 values shown as solid lines in Figure (5.68b). The input flow rate signal shown 

in Figure (5.68a) was then fed through the analytical model using the ‘ode45’ Matlab solver 

in order to simulate predictions of H1 and H2. These simulated values of H1 and H2 are 

shown as dotted lines in Figure (5.68b) and as expected can be seen to differ from the real 

recorded values by a significant amount. This whole process was then repeated for the test 

dataset shown in Figure (5.69). Therefore, through applying the input flow rate signal to the 

analytical model, we have identified values of H1 and H2 that can now be thought of as a 

nonlinear mapping of the original input space. Furthermore, as both of these simulated 

values can be seen to vary along a similar timescale to that of the recorded H2 output, either 

quantity could now be employed in the GP model. As the GP component of this mixed 
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model is to be interpreted as a corrective device, the simulated output H2 is therefore going 

to be used as the input to the GP model.  
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Figure (5.68) Coupled Tanks System – Mixed Model – Small Step Training Data. 

Chart (a) shows recorded Input Flow data. Chart (b) shows simulated H1 and H2 

values (dotted lines with H1>H2) and recorded H1 and H2 values (solid lines with 

H1>H2). 
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Figure (5.69) Coupled Tanks System – Mixed Model – Mixture of Slow and Fast 

Transitions Test Data. Chart (a) shows recorded Input Flow data. Chart (b) shows 

simulated H1 and H2 values (dotted lines with H1>H2) and recorded H1 and H2 

values (solid lines with H1>H2). 

 

Before optimisation of the hyperparameters of the GP model can take place it is first 

necessary to complete the definition of the model structure, and utilising the same ARX 

structure of the previous GP models, the previous model output H2(k-1) is again going to 

be employed as an additional model input. Furthermore, it is also necessary to pre-process 

H(m) Qvi 

H(m) Qvi 
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the training data in order to reduce computational expense and avoid ill-conditioning of the 

covariance matrix. Therefore, the same procedure that was applied for the previous GP 

model identified from this training dataset was applied here, where the data was re-sampled 

to provide a sampling interval of 200 seconds resulting in a training dataset of 134 

datapoints. After performing the previously outlined normalisation of the training targets, 

and ensuring that the scaling of the two model inputs is not significantly different, the 

hyperparameters of the GP model can then be optimised and the predictive mean and 

variance of the test data computed. The GP mean predictions can be seen in Figure (5.70) 

and the validation measures were calculated as Mean-Square Error (MSE) of 2.5148e-004, 

Log Predictive Density (LPD) of -21.1800, and log likelihood (LL) of 634.4323. 
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Figure (5.70): Coupled Tanks System – Mixed Model – Mixture of Slow and Fast 

Transitions Test Data - Chart (a) shows GP Mean predictions (dotted line) vs. 

Underlying function (solid line). Chart (b) shows GP model error (solid line) and 

Variance (2σ) output (dotted line). 

 

Overall, the accuracy of the mixed-model is not as good as that found previously where the 

GP model was used to model the relationship between H1 and H2, see Test 4. However, 

such an outcome is unlikely, as the H2 output from the initial analytical model is not as 

well correlated and therefore less informative than the recorded H1 values that were 

previously used as the input to the GP model. Nevertheless, we would hope that the mixed 

model significantly outperforms the simulated model, as without such an outcome the 

effect of adding the GP model stage would be pointless. Comparing the mean predictions in 

Figure (5.70a) with the simulated values of H2 (the GP model input) in Figure (5.69b) this 

is certainly the case. Looking closely at the model error in Figure (5.70b), the greatest 

differences between the GP mean predictions and the underlying data occur during the 

H(m) 
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transitions between steady-state operating points. This is unsurprising as the simulated H2 

values used as the GP model input do not reflect the more subtle characteristics of the 

transient response. With regard to the variance output of the GP model, a good level of 

correlation between the variance and the model error can be seen. 

 

In this implementation, the potential use of the GP model as part of a mixed or hybrid 

modelling approach has been demonstrated. In this way the interpretability of the existing 

analytical description of the system can be retained, and then combined with the powerful 

empirically based identification methods of the GP approach. This approach has been 

shown to somewhat overcome the problem of the modelling the relationship between an 

input variable that is not smoothly varying and an output variable that is smoothly varying. 

Therefore, adopting such an approach may allow the GP modelling approach to be used in 

implementations where the nature of the empirical data may not seem to be particularly 

suitable. For this particular application, the mixed model could be further improved by 

attempting to improve the performance of the initial analytical model. Currently, the initial 

analytical model employs the same parameter values that have already been found to be 

less than optimal. Therefore, some further analysis into the characteristics of the system 

could yield a significant improvement in the quality of this initial model, thereby increasing 

the accuracy of the mixed model. Furthermore, whilst it is desirable to maintain the 

interpretability of the initial analytical model, there is no reason why a more empirically 

based method could be employed instead to create a suitable mapping between the input 

voltage and some intermediate or latent function space. Of course in selecting an initial 

model structure or nonlinear mapping that is to be combined with the GP modelling 

approach, it is necessary to maintain an awareness of the overall complexity of the resultant 

description. If two complex sub-models are to be employed in series, the computational 

demand and therefore speed of evaluation may become prohibitive. 
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5.8) Heat Transfer System 
 

The Heat Transfer System, shown in Figure (5.71), measures the temperature of air blown 

through a heating element toward a heat detector placed a certain distance along a plastic 

insulated tube from the heating element. The system input is a desired temperature value 

converted into a voltage input to the heater element power supply. A fan built into the 

system in close proximity to the heating element provides the system with a constant 

airflow through the insulated tube. The level of airflow can however be adjusted through 

the altering the angle of the fan intake (blower angle), therefore allowing the amount of 

ambient air accessible to the fan to be limited. The system output is a measured temperature 

provided by a thermister device that may be placed in one of three different positions along 

the insulated tube of constant diameter. The small output voltage from the thermister is then 

scaled to the same 10V range as the input voltage range to allow easy comparison. 
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Figure (5.71): Heat Transfer System 

 
The Heat Transfer system exhibits nonlinear behaviour throughout its operating range and 

has a stable open-loop response. The system response can be typically described as that of a 

first order system with a time delay which is approximately ‘pure’. The system transient 

response is significantly faster than that of the Coupled Tanks system with rise times of a 

few seconds only. The position of the output temperature sensor dictates the magnitude of 

the pure time delay (or deadtime), as a change in input temperature will take some time to 

propagate through the tube to the detector. As would be expected, the greater the distance 

between heating element and temperature sensor, the longer the delay. The angle of the fan 

air intake (Blower Angle) may also be varied to alter the transient behaviour of the system. 
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A larger blower angle will allow more air to pass through the heating element resulting in a 

cooling effect on the system. The transient behaviour of the system will be slightly slower 

as the heater power would have to be similarly increased to maintain the same temperature. 

A small blower angle can be seen to reduce the operating range of the system as heat is 

retained in the system, resulting in the base temperature of system operating range being 

significantly higher than that observed for large blower angles. Other significant 

nonlinearities that are present in the system include heat losses from the heating element 

and insulated tube, and turbulent airflow through the tube as a result of fan dynamics and 

boundary effects.  

 

Due to the presence of such nonlinearities, no accurate analytical mathematical model of 

the Heat Transfer system has been developed from first principles. As a result, the 

application of black-box non-parametric identification methods would seem appropriate. 

Previous detailed investigations into the Heat Transfer System can be found in Gollee 

(1994) and Johansen and Foss (1995b), and the system is also used as a tutorial example in 

the appendix of Ljung (1999). As in the previous Coupled Tanks system application, an 

initial simulated version of the Heat Transfer system is investigated to demonstrate the 

specific characteristics of this application. After this initial investigation, the experimental 

methods used to collect empirical data are then described. The GP modelling process is 

then implemented to identify models from data collected at two different sensor positions. 

 

5.8.1) Simulated Heat Transfer System (1st Order + Delay) 

 

Before tackling the identification of the Heat Transfer system using real empirical data, a 

simple simulated version of this application is first investigated where the precise problems 

of dealing with the pure delay or deadtime in the Heat Transfer system are discussed. In the 

literature provided by the system’s manufacturer, TecQuipment, the general structure of the 

Heat Transfer system is identified using the transfer function model (5.29). 
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Although it may be possible to estimate suitable values for these parameters we are instead 

focusing on the development of a GP model of the system. However, we can use the fact 
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that the system is thought to demonstrate a first order response as the basis for developing a 

simulated version of the system. Overall, as the Heat Transfer system displays a first order 

response, the greatest distinction between this system and the previously tackled Coupled 

Tanks system is the presence of the pure delay or deadtime between an input transition and 

the output response. To investigate this aspect further a simulated model, see Figure (5.72) 

that loosely replicates the behaviour of the Heat Transfer system was employed. 

 

Figure (5.72): - Simulink Diagram of 1st Order + Delay System 

 

In this example, the first transfer function block ‘T.F.1’ is employed to smooth the sharp 

step transitions of the original input so that the input information will be vary in a similar 

manner to that of the output, thereby reducing the potential conditioning problems 

associated with including steady-state data. The output of this first transfer function 

therefore symbolises the input voltage that would be applied to the real system, and the 

output from the second transfer function block ‘T.F.2’ to be used as the output of the 

system. The ‘Transport Delay’ block of the Simulink model then implements a delay of 4 

seconds between the output of the second transfer function block and the measured output. 

In Figure (5.73) the delay between the input transient and output response can be seen 

clearly. Using this simulated model structure, the previously employed identification 

approach was performed where a set of training data composed of small positive and 

negative input steps were collected, together with a test dataset composed of larger input 

transitions. Both the training and test data were sampled at the same rate for simplicity with 

a sample interval of 1 second, resulting in a training dataset of 116 points. 
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Figure (5.73): Step Response of (1st Order + Delay) Simulated System – Step Input 

(solid line), Smoothed Input (dotted line), Model Output (dashed line). 

 

The problem that arises from the presence of this delay or ‘deadtime’ between the input 

transient and the output response is that if we wish to capture the full character of the 

output response we have to include the corresponding input data that has already reached 

steady state. Furthermore, if we wish to capture the precise nature of the input transition, 

we need to include the corresponding output data that remains at steady-state for the 

duration of the delay. Therefore, as this delay is increased the link between the current input 

value and its corresponding output value will become less significant. Furthermore, if a 

number of these transitions between transient and steady-state behaviour are to be included 

in the training dataset, this can result in including a significant amount of steady-state data 

in the training dataset. As a result, the conditioning of the training dataset can begin to 

suffer which can lead to problems identifying suitable hyperparameters. If both the delay 

between input and output and the difference in length of the input and output transient can 

be seen to be minimal, through the careful selection and sampling of transient data, 

conditioning problems associated with inverting the covariance matrix may be minimised. 

However, when confronted with a noticeable delay, the set-up of the GP model must also 

be considered.  

 

Fundamentally, the presence of this delay or deadtime between the input transient and 

corresponding output response has meant that the relationship between the input and output 

has diminished. Therefore, the previously used model structure where the current input and 
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previous output where employed as model inputs (one-step ahead prediction) is not likely 

to provide an accurate description of the system. This is indeed shown to be the case in 

Figure (5.74), where significant error exists between the model predictions and test data, 

with validation measures: Mean-Square Error (MSE) of 0.7532, Log Predictive Density 

(LPD) of -512.1717, and log likelihood (LL) of 54.5609. 
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   (a)      (b) 

Figure (5.74): Heat Transfer Simulated Example (Model Inputs: Input (k), Output (k-

1))- Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function (solid 

line). Chart (b) shows GP model error (solid line) and Variance (2σ) output (dotted 

line). 

 

Therefore, to tackle this problem we must attempt to modify the structure of the model so 

that a greater correlation between the output and certain inputs can be established. As the 

relationship between the ‘current’ input and the ‘current’ output has been diminished by the 

presence of the delay, a suitable strategy to adopt would be to include previous inputs into 

the model structure. By including previous inputs that are delayed an appropriate length of 

time (i.e. equivalent to the delay in the system) we can therefore hopefully provide more 

relevant information with which to predict the current output. Initially, the previous input 

(one-step back or (k-1)) was added to the model structure, requiring that the training dataset 

be re-configured, the hyperparameters retrained, and the test data also re-configured to 

accommodate this alternative structure. In Figure (5.75) the performance of this new model 

can be seen to be slightly better than the previous model structure where no previous input 

information was utilised, with validation measures: Mean-Square Error (MSE) of 0.3832, 

Log Predictive Density (LPD) of -218.3926, and log likelihood (LL) of 63.7730. Whilst 

this model is slightly better than the previous one, significant model error still remains. This 

V 
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is due to the fact that the additional input (1-step back) still does not contain the 

information needed to account for the delay in the system. 
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Figure (5.75): Heat Transfer Simulated Example (Model Inputs: Input (k), Input (k-

1), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying 

function (solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) 

output (dotted line). 

 

This can be addressed by considering the properties of the simulated model where a 4 

second delay was implemented. In addition as the training and test data have both been 

sampled so as to provide a 1 second interval between observations, we can easily deduce 

that the previous input (4-steps back) would likely provide more meaningful information 

regarding the start point of the output transition. Therefore, by replacing the previously 

introduced input (1-step back) with this alternative input (4-steps back) we should see an 

increase in model performance. This is shown to be the case in Figure (5.76) where the 

model predictions become almost indistinguishable from the underlying test data, with 

validation measures: Mean-Square Error (MSE) of 0.0044, Log Predictive Density (LPD) 

of -28.8988, and log likelihood (LL) of 240.4052. However, it is again worth noting that the 

LPD measure of this improved model has become slightly worse (i.e. higher variance) 

indicating that by altering the model structure we may have slightly diminished the 

conditioning of the resultant covariance matrix. 

V 
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Figure (5.76): Heat Transfer Simulated Example (Model Inputs: Input (k), Input (k-

4), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying 

function (solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) 

output (dotted line). 

 

Overall, this simulated example has attempted to show how the presence of delay or 

deadtime in a system can cause conditioning problems in the covariance matrix due to the 

potential inclusion of steady-state data, as transients in the output will develop across a 

potentially longer time-scale than that of the input. Furthermore, it has also demonstrated 

how this delay property can be tackled through the modification of the structure of the GP 

model to include previous input information. This is an example of how prior knowledge 

can be incorporated into the identification process of the GP model. However, it is very 

easy to take into account prior knowledge of user defined simulated systems, and such 

information may not be so forthcoming in the application of the methods to the real Heat 

Transfer system.  

 

5.8.2) Experimental Methods for Heat Transfer System 

 

The same experimental approach taken toward the Coupled Tanks system was applied to 

the Heat Transfer system (manufactured by TecQuipment) with the open loop response 

being recorded under different operating conditions using National Instruments (6024E) 

data acquisition hardware and LabVIEW software. The blower angle was kept at a constant 

70 degrees in order to investigate the effect of the pure delay (sensor position) on the 

accuracy of the GP model. The 70-degree blower angle was selected to allow the full 

operating of the system to be investigated, as larger and smaller blower angles act to restrict 

V 
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the overall range of the system. The choice of sampling rate for the collection of data was 

an important consideration as the transient behaviour of the system is very rapid in 

comparison to that of the Coupled Tank system. In addition, the recorded data must 

accurately portray the pure delay time present in the system, or the resultant model will not 

reflect the true system characteristics. A sampling rate of 0.05s was initially found to be 

sufficient to correctly recreate the input and output voltage traces at the different operating 

conditions. As before, the precise sampling rate used to define the training datasets is likely 

to be modified to meet the previously outlined requirements over the size and conditioning 

of the covariance matrix. 

 

A further important practical observation is that the Heat Transfer system has a tendency to 

heat up significantly as time elapses. The result of this is the base level of the input and 

output measurements can be seen to drift as time goes on, and the operating range of the 

system can begin to be restricted as lower output levels cannot be reached. Overall, this can 

be seen to be an example of non-stationary behaviour and as we are employing a stationary 

GP model, an effort was made to maintain a consistent approach toward data collection so 

that the effect of this underlying behaviour can be minimised in the data. In practical terms, 

this meant switching the machine on and leaving it to settle for a short period (~20 minutes) 

before conducting experiments, and switching the machine off to cool down after short 

period (~20 minutes) once completing a number of experiments. 

 

As in the previous example application, the approach taken to the design of the excitation 

signal, and therefore the design of the training dataset, was to vary the input voltage 

(applied to the heating element) in a series of small upward and downward steps across the 

full operating range of the system. Subsequently, larger step responses were also recorded 

with which to validate the models identified. In addition, a number of training and test 

datasets were collected where the system was excited in a more arbitrary or random 

fashion. The squared exponential covariance function was again utilised as the system can 

be seen to operate in a smoothly varying manner. 

 

5.8.3) Application to the Real System 

 

In this section, we are to tackle the identification of the Heat Transfer system using 

empirical data collected from the system. Firstly, a GP model is to be identified using data 
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collected at sensor position 1 where the delay between the input transient and output 

response is thought to be relatively minor. This process is then to be repeated for data 

collected at sensor position 3 where the delay is thought to be considerably larger. 

 

5.8.3.1) GP Model at Sensor Position 1 

 

As in the previous example, a excitation signal composed of a number of small positive and 

negative step inputs was utilised to generate a training dataset that would allow the whole 

of the input range to be covered by observations within a reasonable timescale. This dataset 

is shown in Figure (5.77a) where the data was collected using a sampling rate of 0.05 

seconds. In order to reduce the size of the resultant covariance matrix, this training dataset 

was then re-sampled by a factor of 5 resulting in a sample interval of 0.25 seconds and a 

training dataset of 98 datapoints. Furthermore, in order to limit the potential for ill-

conditioning caused by the inclusion of steady-state data, certain parts of the training 

dataset were carefully removed. These parts included the initial period of inactivity at the 

start of the training dataset, the middle portion where the input has reached its maximum, 

and the final period of inactivity at the end of the training dataset. The effect of this pre-

processing can be seen in Figure (5.77b). 
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Figure (5.77): Heat Transfer System (Sensor Position 1) – Small Step Training Data. 

Chart (a) shows recorded data with input (dotted line) and output (solid line). Chart 

(b) shows pre-processed Training Data (98 datapoints). 

 
In order to validate the GP models identified from this training dataset, two further test 

datasets where collected from the Heat Transfer system whilst operating under the same 

conditions. These are shown in Figure (5.78), where the first test dataset is composed of a 

V V 
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mixture of large and small input transitions, and the second test dataset is composed of 

more rapidly varying transitions that are designed to appear somewhat random in nature. 

After identifying a GP model using the small step training dataset this ‘random’ test dataset 

shown in Figure (5.78b) is also going to be used to train a GP model in order to provide 

some comparison between different training datasets. The test data shown was collected at 

the same rate as the original sampling rate used to collect the training data (0.05 seconds), 

and this data is not going to be re-sampled. Therefore, for any previous or regressed 

inputs/outputs that are to be implemented, 1-step back of the training data will be 

equivalent to 5 steps back of the test data. 
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Figure (5.78): Heat Transfer System (Sensor Position 1) – Test Datasets. Chart (a) 

shows mixture of large and small transitions with input (dotted line) and output (solid 

line). Chart (b) shows more rapidly varying ‘random’ transitions  with input (dotted 

line) and output (solid line). 

 

In the datasets shown in Figure (5.77) and (5.78) the delay present between input transient 

and output response would appear to be quite consistent across the whole of the operating 

range at around 0.5 seconds. Therefore, as in the previous simulated example, it may be 

possible to employ this prior knowledge into the development of a suitable model structure. 

However, in more complex systems where large numbers of variables may be present, it 

may not be possible to formulate any strong conclusions about the system’s characteristics. 

Therefore, a more automated approach to the selection of model inputs that does not rely on 

the availability of prior knowledge would be a desirable feature for this black box 

modelling approach. Fortunately, such a feature has previously been discussed in Section 

(4.3.1.1), where the Automatic Relevance Detection (ARD) facility of the anisotropic form 

of the squared exponential function was introduced. Using this ARD feature, the question 

V V 
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of which inputs to employ in the model structure can be addressed by examining the 

optimised length-scale hyperparameters wd of the squared exponential covariance function 

for a number of different model set-ups. 

  

Therefore, from the optimised covariance function a length-scale hyperparameter wd exists 

for each delayed input that indicates the relative importance of one delayed variable over 

another, as the covariance function contains a summation of distances between the training 

points of each input. Consequently, a large wd may be interpreted as a significant input for 

prediction as it dictates a large contribution of the input in direction d to the covariance. 

Additionally, as wd is inversely proportional to the horizontal scale of variation in direction 

d, a large wd can also be interpreted as fast variation in the same direction. A further 

important consideration to note is that the relative weights between different variables 

should not be compared directly (e.g. previous outputs should not be compared with 

previous inputs). From performing the hyperparameter optimisation the relative weights of 

each delayed input variable can therefore be assessed and an impression of the optimal 

model set-up can be obtained. However, in order to be certain of the best model the 

predictive performance of each model must also be assessed, and the balance between 

model performance and model complexity (computational effort) must be traded off.  

 

In this example five different GP model set-ups (M1 to M5) were considered where only 

the input is ‘stepped-back’ more than once in order to limit complexity. After performing 

optimisation and then prediction using the test data shown in Figure (5.78a), the 

hyperparameters and resultant validation measures are shown in Table (5.4). Looking at the 

table, as expected the introduction of previous inputs to the model set-up has increased the 

MSE accuracy of the model substantially (i.e. the performance of model M1 is significantly 

poorer than the others). However, as in the simulated case, this improvement in model 

accuracy is not also accompanied by an improvement in the LPD measurement. It is 

somewhat unclear why this is the case, but through employing additional inputs, the 

potential exists to damage the conditioning of the covariance matrix. From closer 

inspection of the length-scale hyperparameters of the more complex model structures, the 

previous input one-step back (k-1) appears to have the least significance in terms of 

contributing to the prediction. Furthermore, from inspecting the hyperparameters of model 

M5, the most important previous inputs appear to be those at (k-2) and (k-3), which 

correspond to delays of 0.5 and 0.75 seconds in accordance with the sampling rate of the 
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training data. This second figure of 0.75 seconds is slightly higher than would be expected 

from visually inspecting the data where a delay of ~0.5 seconds was observed. 

Furthermore, the model M3 has slightly less model error associated with it, so it may be 

worth attempting to re-configure the model set-up to use less inputs than in model M5, but 

use the more inputs deemed more ‘important’ by this ARD facility of the GP model.  

 

Included 
Inputs/Hyps 

 
Model 

M1 

 
Model 

M2 

 
Model 

M3 

 
Model 

M4 

 
Model 

M5 

W1 
Output(k-1) 

 
28.895 

 
11.109 

 
10.568 

 
10.669 

 
10.216 

W2 
Input(k) 

 
33.065 

 
59.930 

 
54.336 

 
55.312 

 
55.570 

W3 
Input(k-1) 

 
- 

 
11.978 

 
11.549 

 
11.983 

 
12.573 

W4 
Input(k-2) 

 
- 

 
- 

 
95.269 

 
93.160 

 
251.307 

W5 
Input(k-3) 

 
- 

 
- 

 
- 

 
151.936 

 
343.462 

W6 
Input(k-4) 

 
- 

 
- 

 
- 

 
- 

 
124.974 

MSE 0.1933 0.0573 0.0523 0.0534 0.0547 
LPD -92.769 -44.183 -39.667 -38.335 -40.412 
LL 44.806 85.724 86.425 86.695 87.367 

 

Table (5.4) – Table of 5 different model structures (M1 to M5) with optimised 

hyperparameter values. 

 

Nevertheless, after some experimentation with different combinations of inputs, the overall 

model performance could not be improved beyond that displayed in models M3 and M4. 

Furthermore, it is worth pointing out that due to the interaction or coupling between 

different hyperparameters, it is sometimes the case that removing seemingly less important 

inputs from the model structure can have a large negative effect on the overall model 

performance. Therefore, it is important to view the ARD facility of the GP model as a 

potentially useful guide to optimising the model structure, but not to view any such 

guidance as unquestionable evidence. Furthermore, it is important to understand that 

usefulness of the ARD facility is also dependent on the GP model hyperparameters being 

successfully optimised. If the model structure has been modified in such a manner that 

reduces the overall likelihood of the model, the weightings of individual hyperparameters 
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will not be particularly informative as they may not have been optimised very successfully. 

As a result, any model structures found to be potentially suitable candidates should be 

validated through the use of further test datasets, with the model complexity then traded off 

against model performance. The predictive performance of the model M3 is shown in 

Figure (5.79). 
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   (a)      (b) 

Figure (5.79: Heat Transfer System (Sensor Position 1) – (Model M3 with inputs: 

Input (k), Input (k-1), Input (k-2), Output (k-1)) - Chart (a) shows GP Mean 

predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows GP 

model error (solid line) and Variance (2σ) output (dotted line). 

 

From Figure (5.79) we can see that the GP predictions of model M3 do provide a 

reasonable level of accuracy when compared with the underlying data. However, the GP 

model predictions can be seen to be significantly worse in the latter half of the test dataset, 

and it is worth noting that the value of the output dips below zero between around 31 to 34 

seconds where the output level reaches ~-0.3. Within this particular region the test data is 

outwith the range covered by the training dataset of which the smallest value of the output 

is ~-0.1. In an ideal situation both the training and test datasets would vary in a range 

between 0 and 10, however due to the previously mentioned propensity for the system to 

retain heat in the system, the base level or calibration of the input and output measurements 

can drift significantly. As this is an important characteristic of the system it is perhaps 

unwise to compensate for this drift, however as the GP model is fundamentally a precise 

mapping of input to output based on empirical data, in some ways we are not providing a 

fair test of the methodology. This again demonstrates the potential for practical problems to 

influence the overall viability of empirical modelling techniques such as the GP model.  

 

V 
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If the ‘base’ or zero level of the output measurement of both the training and test data are 

reset by adding an offset, (training data shifted up by 0.1, test data shifted up by 0.3), we 

can see that the model performance (using the same M3 model structure) is improved 

significantly over the latter half of the test dataset. The increased accuracy of the model can 

be seen in Figure (5.80), and the validation measures were calculated as Mean-Square Error 

(MSE) of 0.0178, Log Predictive Density (LPD) of -10.3213, and log likelihood (LL) of 

86.4249. However, it is worth noting that the predictive performance in certain parts of the 

first half of the test dataset (at ~14 seconds) is slightly worse.  
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   (a)      (b) 

Figure (5.80): Heat Transfer System (Sensor Position 1) with Re-set Output Scale -  

(Model M3 with inputs: Input (k), Input (k-1), Inpu t (k-2), Output (k-1)) - Chart (a) 

shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart 

(b) shows GP model error (solid line) and Variance (2σ) output (dotted line). 

 

Returning to the problem of identifying the most suitable model structures, in order to gain 

further assurance over the slight superiority of model M3 over model M4, both models 

were further tested using a different test dataset composed of more rapidly varying data as 

shown in Figure (5.78b). This dataset was generated by manual operation of the input, but 

done so in an effort to appear almost random or arbitrary. As in the previous test dataset, 

the output of this rapidly varying test data can be seen to dip below zero in the initial part of 

the dataset where the input is zero, thus indicating a calibration problem or fluctuation in 

the base level of the output range. As we are more interested in the performance of the 

model on the rapidly varying aspects of this test data, rather than re-iterating the point that 

test data outwith the range of the training data will result in significant error, the base level 

of the test data was reset to zero by adding an offset of 0.35 (identified from looking closely 

V 
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at the initial part of Figure (5.78b) where the input is at zero and the output is at -0.35). In 

order to remain consistent the training dataset is also offset by 0.1. From inspecting the 

validation results of the two different models, the model structure M3 was found to still 

maintain a very small advantage over M4 in terms of predictive performance, with an MSE 

of 0.0372 compared to 0.0375. The full validation measures for model M3 were calculated 

as Mean-Square Error (MSE) of 0.0372, Log Predictive Density (LPD) of -4.1627, and log 

likelihood (LL) of 86.4249. The predictive performance of the model M3 on this rapidly 

varying or ‘random’ test dataset can be seen in Figure (5.81). Overall, the identified model 

provides a good representation of the underlying system, however, the model does struggle 

to cope with the sharp peaks of the test dataset. This can be put down to the fact that only 

slower step variations are included in the training dataset. Nevertheless, this test dataset has 

shown that for this application the training dataset composed of small step excitation data 

has provided a good platform with which to identify a GP model using only ~100 training 

data observations. 
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   (a)      (b) 

Figure (5.81): Heat Transfer System (Sensor Position 1) – ‘Random’ Test Data -  

(Model M3 with inputs: Input (k), Input (k-1), Inpu t (k-2), Output (k-1)) - Chart (a) 

shows GP Mean predictions (dotted line) vs. Underlying function (solid line). Chart 

(b) shows GP model error (solid line) and Variance (2σ) output (dotted line). 

 

Before moving on to consider the identification of GP models from data collected at 

position 3, it is also worth investigating the use of random excitation data as the source of 

the training dataset. In the previous Coupled Tanks example application, the small step 

training data was found to be somewhat limited, as certain characteristics of the system 

were not excited. In particular, the small step transitions included in the training dataset did 

not provide sufficient information with which to predict larger transitions very accurately. 

V 
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In the tests so far, the GP models identified from small step excitation data of the Heat 

Transfer system at sensor position 1 do not appear to be display the same limitations. As a 

result, we can understand that the Heat Transfer system at sensor position 1 does not exhibit 

the same kind of variation in transient response across the operating range as was seen in 

the Coupled Tanks system. Nevertheless, performing identification with data collected 

using random excitation signals may provide a useful comparison. Therefore, the rapidly 

varying dataset that was previously used to test the model, see Figure (5.78b), is now to be 

employed as a training dataset.  

 

As before, the first stage to consider is the pre-processing of this rapidly varying dataset. 

Overall, it is unlikely that any great conditioning problems associated with presence of 

steady-state data will be encountered due to the nature of the excitation signal. As can be 

seen in Figure (5.78b), in the initial and final few seconds of the data there is some data 

where little excitation is present, so it is worthwhile removing these regions. Of greater 

concern is the sampling rate used to further process the training dataset. As this dataset is of 

greater length, if the same sampling rate as before is employed (0.25 seconds) the overall 

size of the resultant training dataset is 167 points. Whilst this is well within the range of 

what is computationally feasible, it is still significantly larger than the 98 datapoints 

included in the previous small step training dataset. After selecting the same model 

structure as before (Model M3), the hyperparameters are then optimised and test predictions 

are then calculated on the same test data as before (shown in Figure 5.78a). The GP model 

predictions and variance can be seen in Figure (5.82) with the validation measures 

calculated as Mean-Square Error (MSE) of 0.0113, Log Predictive Density (LPD) of -

10.5118, and log likelihood (LL) of 112.3860. 
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   (a)      (b) 

Figure (5.82): Heat Transfer System (Sensor Position 1) – ‘Random’ Training Data 

(167 datapoints) - (Model M3 with inputs: Input (k), Input (k-1), Input (k-2), Output 

(k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function 

(solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) output 

(dotted line). 

 

Overall, the performance of the GP model identified using this rapidly varying  ‘random’ 

training dataset can be seen to be slightly superior to that of the previous small step training 

datasets. However, as we have included more points in this training dataset, it is worthwhile 

reducing the size of this training dataset in order to confirm any superiority. As discussed 

previously, it would be possible to either re-sample the training dataset to reduce the 

number of points included, or shorten the length of the included excitation signal. As 

adopting the latter strategy can lead to the removal of datapoints from potentially important 

regions of the operating range, the re-sampling of the training dataset would be the 

preferred course of action as long as the dynamics of the underlying can still be captured. 

For this example, the training data was re-sampled by a factor of two resulting in a sample 

interval of 0.5 seconds between training observations and a dataset of 85 points. If the same 

model structure is employed, as the sample interval has been doubled it is important to note 

that the delayed information present in the previous inputs will have also changed (i.e. 

previous inputs (k-1) and (k-2) are now delayed 0.5 and 1 seconds, instead of 0.25 and 0.5 

seconds). The performance of the model trained using this smaller dataset can be seen in 

Figure (5.83) and the validation measures were calculated as Mean-Square Error (MSE) of 

0.0311, Log Predictive Density (LPD) of -0.4813, and log likelihood (LL) of -51.3729. 
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   (a)      (b) 

Figure (5.83): Heat Transfer System (Sensor Position 1) – ‘Random’ Training Data 

(85 datapoints) - (Model M3 with inputs: Input (k), Input (k-1), Input (k-2), Output 

(k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function 

(solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) output 

(dotted line). 

 

As would be expected, the reduction of the size of the training dataset has led to a decrease 

in the accuracy of the model. Of greater interest is the fact that the validation measures 

from this test are worse than those found with the model trained with small step training 

data shown in Figure (5.80), where the MSE was calculated as 0.0178. Therefore, for 

training datasets of comparable size (98 and 85 datapoints) this example shows that models 

trained on the small step training data would appear to perform better than those trained on 

the rapidly varying ‘random’ data. Furthermore, it is worth pointing out that the 

performance of the model trained on the larger ‘random’ training dataset did not outperform 

this small step training data by a great deal. 

 

Another important aspect of using rapidly varying ‘random’ excitation data is the tendency 

for the training data to be concentrated around the middle of the operating range. As a 

result, due to the sparsity of training data at the extremities of the operating range, the GP 

model’s predictions can become inaccurate in these regions with the variance increasing 

substantially as confidence in the prediction has diminished. This characteristic can be seen 

in Figure (5.83) where as the test output reaches close to zero at around t= 33 seconds, there 

is a marked increase in the variance output of the model. Furthermore, as the ‘random’ 

training data and test data are not completely dissimilar in nature, in that they both consist 

mainly of large rapid transitions, in some ways this validation test is not providing a stern 

test of the model performance in the extremities of the operating range. To investigate this 
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aspect, the GP model trained on the ‘random’ training data was then tested on data that 

closely resembles that of the original small step training dataset. This new small-step test 

dataset is different from the original small-step training dataset so that both models can be 

tested fairly. Firstly the GP model trained on the ‘random’ dataset composed of 85 points 

was used for prediction, with the performance shown in Figure (5.84), and the validation 

measures calculated as Mean-Square Error (MSE) of 0.0214, Log Predictive Density (LPD) 

of 0.3886, and log likelihood (LL) of -51.3729.  
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Figure (5.84): Heat Transfer System (Sensor Position 1) – ‘Random’ Training Data 

(85 datapoints) – Small Step Test - (Model M3 with inputs: Input (k), Input (k-1), 

Input (k-2), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. 

Underlying function (solid line). Chart (b) shows GP model error (solid line) and 

Variance (2σ) output (dotted line). 

 

Next, the previous GP model identified using small step training data composed of 98 

points was applied to the same test data, with the performance shown in Figure (5.85), and 

the validation measures calculated as as Mean-Square Error (MSE) of 0.0085, Log 

Predictive Density (LPD) of -9.7277, and log likelihood (LL) of 86.4249. Overall, the GP 

model trained on the small step training data can be seen to be superior to the GP model 

trained on the more rapidly varying ‘random’ training data. Again, this is perhaps to be 

expected, as the training data employed by this model closely resembles that of the test 

data. 
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   (a)      (b) 

Figure (5.85): Heat Transfer System (Sensor Position 1) – ‘Small Step’ Training Data 

(98 datapoints) – Small Step Test - (Model M3 with inputs: Input (k), Input (k-1), 

Input (k-2), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. 

Underlying function (solid line). Chart (b) shows GP model error (solid line) and 

Variance (2σ) output (dotted line). 

 

More interesting is the variance output of the two GP models. In particular, as the variance 

level of the model trained on the ‘random’ excitation data grows substantially in the 

extremities of the operating range (i.e. close to maximum and minimum values); this 

example clearly demonstrates the tendency for the training data to become concentrated in 

the middle portion of the operating range, leading to problems in other regions of operating 

range. For the GP model trained on the small step training data this tendency is greatly 

reduced. By including more datapoints in the ‘random’ training dataset, such as reverting to 

the previous model containing 167 points, the level of variance can be reduced and the 

model accuracy improved, however both quantities remain comparatively worse than that 

of the GP model trained on the small step data. 

 

5.8.3.2) GP Model at Sensor Position 3 

 

In this section we are now going to apply the GP modelling approach to identifying the 

Heat Transfer system where the output voltage is to be measured at sensor position 3. As 

sensor position 3 is located significantly further away from the heating element than sensor 

position 1, the delay between changes in the input being reflected in the response of the 

output is thought to be greater. As in the previous case, the squared exponential covariance 

function is to be employed and the identification process is to first investigate the use of 
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small step excitation data as the source of training data. The small step excitation input and 

output response can be seen in Figure (5.86a) where the data was collected using a 

sampling rate of 0.05 seconds. Before pre-processing this empirical data shown in Figure 

(5.86a), it is first important to examine the behaviour of the output response before 

attempting to reduce the size of the training dataset. Firstly, in comparison to the situation 

at sensor position 1, the overall scale of the variation of the output has been reduced 

significantly (max value of ~6.5V rather than ~9V). This is understandable as the distance 

between the heating element and sensor has increased meaning that less heat will reach the 

sensor due to losses. Secondly, the output transient response can be seen to be slightly 

slower than that found at sensor position 1. As the distance between the heating element 

and sensor is increased, any changes in the input will take longer to propagate through the 

insulation tube to the output and also be subject to the loss of heat reducing the magnitude 

of any transition. Lastly, as expected a very slight increase in the ‘pure’ delay or deadtime 

between input transient and output response can be seen in the upward steps of the 

excitation data, but this delay seems to diminish significantly when downward steps of the 

data are considered. Therefore, unlike the previous case, the pure delay in the system is not 

consistent across the operating range. 

 

Overall, these changes to the properties of the system can be seen to effect the requirements 

for pre-processing of the empirical data into a viable training dataset. As before, in order to 

reduce the size of the resultant covariance matrix, the empirical dataset was re-sampled by a 

factor of 5 resulting in a sample interval of 0.25 seconds. However, even after re-sampling, 

the data is still found to include a significant proportion of steady-state data. As in the 

previous example at sensor position 1, as the delay between input transient and output 

response is increased, the relationship between the current input value and its corresponding 

output value will decrease. Therefore, if we wish to capture the full character of the output 

response this means that we have to include the corresponding input data that has already 

reached steady state. However, at sensor position 3 this situation is further compounded by 

the fact that the output transient response is slower than at sensor position 1, meaning that 

even more of the corresponding steady-state input data must be included. 

 

Therefore, in order to limit the ill-conditioning caused by the inclusion of steady-state data, 

certain parts of the training dataset were to be carefully removed. As was the case for 

sensor position 1, these parts included the initial period of inactivity at the start of the 
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training dataset and the final period of inactivity at the end of the training dataset. However, 

for the case of sensor position 3, this strategy was extended to remove steady-state data 

from each step transition. This process was done manually by selecting valid regions of 

data using the time-scale as an index for the sake of simplicity, however more automatic 

approaches designed to include or remove data based upon meeting some criteria could also 

be considered. It is also important to ensure that the specific data values where each 

transient begins and finishes are not removed. The effect of this pre-processing can be seen 

in Figure (5.86b) where the training dataset includes 104 datapoints.  
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Figure (5.86) Heat Transfer System (Sensor Position 3) – Small Step Training Data. 

Chart (a) shows recorded data with input (dotted line) and output (solid line). Chart 

(b) shows pre-processed Training Data (104 datapoints). 

 

After identifying GP models from this training datasets, two further test datasets were 

collected from the Heat Transfer system using sensor position 3. These are shown in Figure 

(5.87), where the first test dataset is composed of a mixture of large and small input 

transitions, and the second test dataset is composed of more rapidly varying transitions that 

are designed to appear somewhat random in nature. As in the previous example, after 

identifying a GP model using the small step training dataset this ‘random’ test dataset 

shown in Figure (5.87b) is also going to be used to train a GP model in order to provide 

some comparison between different training datasets. As the pre-processing involved in the 

development of the small step training dataset of this example has become slightly 

awkward, a comparison with the ‘random’ dataset where pre-processing is likely to be 

limited is worthwhile. The test data shown was collected at the same rate as the original 

sampling rate used to collect the training data (0.05 seconds), and this data is not going to 

be re-sampled. Therefore, for any previous or regressed inputs/outputs that are to be 

V V 
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implemented, 1-step back of the training data will be equivalent to 5 steps back of the test 

data. Of further importance is the fact that in both test datasets shown in Figure (5.87), the 

base level of the output is again inconsistent due to variations in the plant. As in the 

previous example, before attempting to predict with such data, this base or zero level of the 

output is to be reset to zero. The level of offset required for each dataset is obtained from 

inspecting the initial few datapoints of each dataset where the input is yet to be excited. 
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Figure (5.87): Heat Transfer System (Sensor Position 3) – Test Datasets. Chart (a) 

shows mixture of large and small transitions with input (dotted line) and output (solid 

line). Chart (b) shows more rapidly varying ‘random’ transitions with input (dotted 

line) and output (solid line). 

 

The next stage to consider in the identification process is the optimal structure of the GP 

model. Firstly, from inspecting the data visually, in comparison to the situation at sensor 

position 1 the increase in the delay between the input transient and output response has 

been found to be only marginal for the upward transitions, and this delay can be seen to 

almost disappear in the downward transitions. Therefore, the process of inspecting the 

hyperparameters of different model structures where multiple delayed inputs have been 

included is not going to yield any significantly different result. The delay present in the 

system is still around ~ 0.5 seconds for the upward transitions. A further difficulty 

encountered is that despite the effort made to remove steady-state data from the training 

dataset, the overall conditioning of this data is far from perfect. The result of this is that if 

more and more inputs are added to the model structure, in order to repeat the previous 

process of examining hyperparameters of more complex structures, the overall conditioning 

of the covariance matrix degrades to the point where the optimisation process stops early 

having failed to optimise the hyperparameters.  

V V 
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One way round this would be to increase the sampling interval between training 

observations to improve the overall conditioning and thus allow more inputs to be added to 

the structure. The problem with this is by increasing the sample interval the previous inputs 

become more widely dispersed, resulting in previous inputs that are actually of little use. 

For example, at a sample interval of 0.25 seconds we might want to include Input(k-3), 

equivalent to 0.75 seconds previous, but are prevented from doing so by conditioning 

problems. If we re-sample the data to provide a sample interval of 0.5 seconds, not only is 

Input(k-3) now equivalent to 1.5 seconds previously, we have also lost the resolution in the 

data needed to include the desired information at 0.75 seconds previous. Therefore, in order 

to maintain this resolution, instead of re-sampling the data to alleviate conditioning 

problems it is perhaps wise to first find an upper limit on the amount of inputs that can be 

included without compromising the optimisation process, and then investigate the use of 

different combinations of the available inputs. This is an area where prior knowledge of the 

system can play an important role in providing a good model structure and therefore a good 

representation. 

 

As the delay between the input transient and output response can be seen to have increased 

only marginally, the first model structure employed was that found to work best in the 

previous example identified at sensor position 1. This model structure was previously 

termed M3 (see Table (5.4)) where the model consisted of four inputs (Output(k-1), 

Input(k), Input(k-1), Input(k-2)). Applying this model structure to the data collected at 

sensor position 3 and testing on the dataset shown in Figure (5.87a) resulted in a model 

with the validation measures: Mean-Square Error (MSE) of 0.0534, Log Predictive Density 

(LPD) of -117.9385, and log likelihood (LL) of 158.7032. This result was then regarded as 

a benchmark to be beaten through making use of the prior knowledge obtained from 

analysing the change in system properties that result from moving the sensor from position 

1 to position 3. After some experimentation with various combinations of inputs, the largest 

number of model inputs that could be included in the model structure without encountering 

conditioning problems was found to be five. Therefore, if we include an additional delayed 

input we can still optimise the hyperparameters effectively. From testing a number of 

different combinations, the best model structure was found through adding a further 

delayed input (Input(k-3)) to the previous model structure (therefore equivalent to model 

structure M4) which resulted in the following validation measures: Mean-Square Error 

(MSE) of 0.0522, Log Predictive Density (LPD) of -132.5880, and log likelihood (LL) of 
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166.5851. The addition of this further delayed input information makes sense in a practical 

sense as the delay has been seen to increase slightly in certain areas of the training data. 

The performance of this model can be seen in Figure (5.88).  

 

0 10 20 30 40 50 60
-1

0

1

2

3

4

5

6

7

time (seconds)
0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (seconds)

E

 

   (a)      (b) 

Figure (5.88): Heat Transfer System (Sensor Position 3) – (Model M4 with inputs: 

Input (k), Input (k-1), Input (k-2), Input (k-3), O utput (k-1)) - Chart (a) shows GP 

Mean predictions (dotted line) vs. Underlying function (solid line). Chart (b) shows 

GP model error (solid line) and Variance (2σ) output (dotted line). 

 

Overall, the model can be seen to provide a reasonable approximation to the underlying 

data, however significant discrepancies remain. Furthermore, this model is considerably 

poorer than that of the model found at sensor position 1 using similar training data and 

similarly rescaled to account for base level drift (see Figure (5.80) where an MSE of 0.0178 

was obtained).  

 

In order to provide further validation, the more rapidly varying ‘random’ test data was then 

applied to the identified GP model, see Figure (5.89), resulting in the validation measures: 

Mean-Square Error (MSE) of 0.0860, Log Predictive Density (LPD) of -152.2902, and log 

likelihood (LL) of 170.8908. In both these test cases, the identified GP model can be seen 

to provide a decent if not outstanding approximation to the underlying data. Given that the 

system is prone to drift in terms of its output measurement in particular, and that the 

empirical data was offset in a somewhat heuristic manner, it is perhaps not surprising that a 

more exact match was not forthcoming. However, it is clear that the GP model identified 

through the use of the small step training data has not been as successful as that in the 

previous example where the output data was collected at sensor position 1. 

 

V 
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Figure (5.89): Heat Transfer System (Sensor Position 3) – ‘Random’ Test Data -  

(Model M4 with inputs: Input (k), Input (k-1), Inpu t (k-2), Input (k-3), Output (k-1)) - 

Chart (a) shows GP Mean predictions (dotted line) vs. Underlying function (solid line). 

Chart (b) shows GP model error (solid line) and Variance (2σ) output (dotted line). 

 

Fundamentally, this change in the location of measurement has added further complexity to 

the system that has not been fully grasped by the training data employed. Therefore, it 

would seem appropriate to consider alternative excitation signals with which to design a 

suitable training dataset. As in the previous ‘sensor position 1’ example, the more rapidly 

varying ‘random’ test data shown in Figure (5.87b) is now to be employed as the source of 

a set of training data, with the other test data shown in Figure (5.87a) used for validation. 

From inspecting the excitation of this ‘random’ data, problems associated with steady-state 

data would not appear to be likely; however the previously implemented offset on this 

‘random’ excitation data is to be retained. Of greater consideration is the size of the training 

dataset. Whilst it is good practice to compare similarly sized training datasets in order to 

compare the performance of different excitation signals, in the case of the small step 

training data, the conditioning problems encountered were such that the size of the dataset, 

and by implication the sample interval, was not a wholly free choice. A larger amount of 

data resulted in a failure of the optimisation scheme due to matrix ill-conditioning, and a 

smaller amount of data resulted in poorly optimised hyperparameters due to a lack of 

information. Therefore, as these specific circumstances are not present in the case of the 

‘random’ excitation data, the opportunity exists to employ different sampling rates more 

effectively. This is important, as we have seen that by changing the position of the output 

sensor, we have added complexity to the system. Therefore, in order to tackle this 

additional complexity, the potential to include more training data observations is valuable. 

 

V 
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Initially, the sampling rate chosen to apply to the ‘random’ excitation data is the same as 

that implemented on the small step training data, resulting in a sample interval of 0.25 

seconds and a training set of 232 observations. The same model structure M4 was then 

employed in order to compute predictions. The predictive performance of this model can be 

seen in Figure (5.90) and the validation measures were calculated as Mean-Square Error 

(MSE) of 0.0172, Log Predictive Density (LPD) of -61.4704, and log likelihood (LL) of 

267.1939.  
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Figure (5.90): Heat Transfer System (Sensor Position 3) – ‘Random’ Training Data 

(232 datapoints) - (Model M4 with inputs: Input (k), Input (k-1), Input (k-2), Input (k-

3), Output (k-1)) - Chart (a) shows GP Mean predictions (dotted line) vs. Underlying 

function (solid line). Chart (b) shows GP model error (solid line) and Variance (2σ) 

output (dotted line). 

 

Overall, the performance of this model trained on the ‘random’ excitation data can be seen 

to be superior to that found using the small step training data. However, the accuracy of the 

model is noticeably poorer for the initial step transitions in the test dataset, despite the fact 

that the model employs more than twice the amount of training observations. If the number 

of observations included in the training set is reduced from 232 points through doubling the 

sample interval to 0.5 seconds, resulting in 114 points after organising initial conditions, the 

model performance is actually significantly worse than that found using the small step 

training data of similar size and on the same test dataset, with validation measures: Mean-

Square Error (MSE) of 0.1235, Log Predictive Density (LPD) of -0.6448, and log 

likelihood (LL) of -50.0829. Through increasing the sample interval between training 

observations, the full character of the faster transitions present in this ‘random’ excitation 

data becomes impossible to capture. Furthermore, by changing the interval between points, 

V 
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the model structure is also modified as discussed previously, with the three delayed inputs 

at (k-1), (k-2), and (k-3), now corresponding to 0.5, 1, and 1.5 seconds rather than 0.25, 0.5 

and 0.75 seconds respectively. This means that the model structure is now failing to include 

important information that was found to correspond to 0.75 seconds previous. 

 

If we now consider including more training datapoints, the model structure will again have 

to be modified in order to maintain consistency with what is thought to be optimal. 

However, in this case the problem of loosing resolution and therefore important delayed 

information is not encountered. Nevertheless, after some experimentation, the performance 

of the model shown in Figure (5.90) could not be improved significantly despite the 

inclusion of significantly more datapoints. Therefore, as was the case for the model 

identified from small step data, the accuracy of the model is again limited by the quality of 

the excitation data present in the training dataset. As a result, whilst it may be possible to 

identify an improved GP model using a different ‘random’ excitation signal, the 

shortcomings of the employed ‘random’ excitation signal are not immediately obvious. 

Furthermore, it is also important to be aware that by changing the position of the output 

sensor, we have added a further level of complexity to the system that is perhaps not easily 

identifiable using only two measured variables. In essence, it is perhaps unrealistic to 

expect the GP modelling approach using a stationary covariance function to obtain as good 

a representation as that found at sensor position 1, let alone a perfect representation of the 

system response at sensor position 3. This is especially true due to the inherent 

inconsistency of the measurements that result from the equipment heating up and cooling 

down through operation. Therefore, to have obtained a reasonably accurate description of 

the system using a relatively small number of training observations cannot be deemed as a 

disappointment. 
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5.9) Summary of Experimental Results 
 

As this project has focused on the implementation of the GP modelling approach a number 

of different example applications have been investigated. Therefore, rather than 

concentrating on a single application where the goal is to improve the final accuracy of a 

particular model, the experimental work has been presented in a manner that aims to 

illustrate the identification process. As a result, to conclude this chapter a short summary of 

all the experimental work completed in this thesis is provided. 

 

Simulated Static Nonlinear Examples 

 

In Section (5.6) a number of simulated static nonlinear examples were first investigated in 

order to demonstrate some of the specific properties of the GP modelling approach. Most 

notable amongst these properties is the growth in the variance output at test predictions 

made away from training data observations, and the performance of the model in operating 

regions where data is sparse.  Furthermore, the ability of the GP modelling approach to 

avoid overfitting noisy data was demonstrated. A further simulated static example was used 

investigate the ability of the GP modelling approach to identify a less smooth or more 

‘spiky’ nonlinear function. As expected, a GP model defined using the Squared Exponential 

covariance function was found to struggle in terms of identifying the sharper, less 

continuous transitions of the data, especially when the number of training observations 

included was reduced. Therefore, an alternative GP model defined using the Matérn 

covariance function was identified and found to perform significantly better. Through 

utilising the Matérn covariance function, a less stringent prior assumption over the 

smoothness or differentiability of the underlying function can be made. This example aims 

to demonstrate that through use of alternative covariance functions (rather than exclusively 

relying on the Squared Exponential function) better quality GP models may be identified.  

 

Simulated Dynamic Nonlinear Examples 

 

In Section (5.6.5) a further simulated example was then employed to demonstrate the 

application of the GP modelling approach to dynamic nonlinear problems. In this example a 

more complex Lorenz attractor that exhibits chaotic nonlinear behaviour was successfully 

identified. Through this example the inclusion of previous output behaviour as an 
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additional model input was discussed, as well as the normalisation and re-scaling of 

empirical data. Furthermore, the need to ensure that the intended structure of the model is 

preserved through maintaining awareness over the pre-processing applied to both training 

and test datasets is also made clear. Finally, the creation of the training dataset from 

selecting a subset of data from the empirical time series was discussed. Important choices 

are required in order to reduce the potential computational demand of the GP approach and 

the subset selection of data was performed through both limiting the length of the time-

scale included, and altering the sampling rate used to capture the data. In either case, it is 

important to cover the entire operating range with training data, and also to ensure that the 

sampling rate allows the dynamics of the response to be accurately captured by the data. 

 

Coupled Tanks System Example 

 

In Section (5.7) the GP modelling approach was used to identify a model from empirical 

data collected from a real laboratory nonlinear system. As discussed earlier, one of the 

challenges in implementing the GP modelling approach is that the input data must not 

remain at steady state for any prolonged period of time so that the covariance matrix does 

not become ill-conditioned. As a result, the GP modelling approach was shown to be most 

suited to modelling the relationship between the H1 and H2 variables, as both variables 

vary smoothly along similar timescales.  

 

Through the use of a simulated version of the Coupled Tanks system, random excitation 

signals were first shown to be suitable experimental strategies, as the inclusion of steady 

state data can be mostly avoided. However, in order to ensure that the entire operating 

range is covered, the length of the excitation signal must be sufficient for the data to be 

captured from the whole of the input range. Furthermore, such a random excitation signal 

must be designed carefully in order to allow the full output response to fast input transitions 

to be captured. Otherwise the data may become concentrated within the middle of the 

operating range. An alternative strategy where a number of small positive and negative step 

transitions where used as excitation signals was then shown to be a promising experimental 

approach for this simulated version of the system. Through this more deterministic strategy, 

prior knowledge regarding the system dynamics and overall size of the operating range 

could be taken into account. As a result, a training dataset that captures of the dynamics of 
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the system whilst covering the whole operating range could be created that is significantly 

smaller than would be readily found through employing random excitation signals. 

 

Once applied to the problem of identifying a GP model from the real empirical data, the 

‘small step’ excitation approach was found to provide a good overall description of the 

underlying system. The performance of this model was then improved by using an 

alternative training dataset where the step transitions included were slightly larger. The 

model found using this alternative dataset was found to be superior due to the subtle 

variations in the transient response of the Coupled Tanks system when different sized input 

transitions are considered. Furthermore, inconsistencies in the empirical data were also 

found to be present, leading to inconsistencies in the performance of the identified GP 

models. It is worth re-stating that any empirically based modelling approach will struggle to 

predict accurately if the behaviour present in the test data has changed from that present in 

the training data. Furthermore, it is important to highlight the fact that the variance output 

of the GP model is not likely to indicate that such an error in the model exists. In the 

examples presented in this thesis, the variance output was found only to be reliable in 

indicating regions where training data is sparse. Whilst in such regions the model prediction 

is more likely to be erroneous, it is important to remember that if the model is tasked with 

making predictions from regions that are well covered by training data, but the training data 

is not particularly indicative of the behaviour in these regions, the GP mean predictions are 

likely to be inaccurate (high model error) whilst the corresponding variance output may 

remain small (i.e. indicating over-confidence). 

 

The incorporation of derivative observations was then demonstrated for the Coupled Tanks 

system. This extension is primarily aimed at reducing the computational demand of the GP 

modelling approach through the approximation of any empirical data (function 

observations) found near equilibrium. This data was used to identify a number of derivative 

observations and then combined with the remaining function observations. Overall, this 

extension was found to offer a slight increase in the predictive performance of the GP 

model when the derivative observations where combined with the previously used training 

dataset created from small step excitation data. However, the inclusion of derivative 

observations was not found to offer much benefit in terms of reducing the computational 

demand of the GP model. This outcome was thought to be partly due to the particular 

properties of the example application where small training datasets could already be 
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realised due to the slowly varying nature of the output response. In addition, if larger 

quantities of steady-state data are used to first identify and then validate these local linear 

models, an improved the result may be obtained. 

 

Finally, a GP model was combined with an existing analytical model of the Coupled Tanks 

system in order to demonstrate the potential use of the approach in the development of 

‘mixed-model’ implementations. Through this approach, the problem of identifying a 

model of the second-order relationship between input voltage (input flow rate) and output 

H2 was tackled. The existing analytical model was employed as an initial model or 

nonlinear map of the input voltage to an intermediate or latent function space, and the GP 

model then used to identify the residual. Overall, the mixed-model identified was found to 

offer a reasonable approximation of the underlying system, but significant model error was 

present. Nevertheless, such a mixed-model or nonlinear mapping approach could prove 

useful in adapting the GP modelling approach for use in applications where the data does 

not seem initially compatible. 

 

Heat Transfer System Example 

 

In section (5.8) the GP modelling approach was applied to the problem of identifying a 

Heat Transfer system using real empirical data. An important feature of this application is 

the delay or ‘deadtime’ between transitions in the input being reflected in the output 

response. Such a characteristic was found to exacerbate the problem of the input and output 

data not varying along similar timescales and therefore increasing the potential for 

including steady-state data in the training dataset. In order to tackle this problem, the model 

structure of the GP model was changed so that previous input information was used as 

current model inputs. The use of the Automatic Relevance Determination (ARD) facility of 

the GP model was found to offer a useful source of information with which to aid the 

determination of an optimal model structure. Overall, the GP model was found to provide 

excellent predictions of the system response at sensor position 1 (close to the heating 

element), and slightly less good predictions at sensor position 3 (further away from the 

heating element). This was put down to the added complexity of the system when operating 

under this configuration. 
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6) Conclusions 
 

The objective of this thesis was to investigate the use of Gaussian Process (GP) models 

for the identification of nonlinear systems. This was carried out through attempting to 

model a number of different simulated and real nonlinear systems. As the majority of the 

existing research into the GP modelling approach has focused primarily upon the 

mathematics and potential of the framework for use in machine learning problems, this 

thesis has concentrated on addressing the implementation issues associated with the 

approach. Therefore, a concerted effort was made to use as much empirical data drawn 

from real laboratory systems as possible so that the practical implementation issues 

associated with system identification could be identified. From an overall perspective, 

the GP model proved capable of successfully representing the behaviour of the variety of 

nonlinear systems investigated. However, significant effort combined with the use of 

prior knowledge was required in the process of designing a suitable training data set with 

which to successfully identify the hyperparameters of the GP model. In this final chapter 

a summary of the major discussion points and outcomes from this project are presented, 

together with some recommendations for future research. Furthermore, this chapter is 

intended to act as a guide to the implementation of GP models for system identification 

purposes.  

 

6.1) Summary of GP Modelling Approach 
 

One of the more challenging aspects of the GP modelling approach is the theoretical 

background of the methodology. As the origins of the GP modelling approach lie in the 

fields of statistics and machine learning, some of the mathematical concepts employed by 

the method are not immediately interpretable by those from a more engineering-based 

background. In particular, the application of Bayesian probability theory is not something 

that is often encountered by those working on typical system identification or automatic 

control problems. Furthermore, it is difficult to provide a more visual interpretation of 

the GP methodology where diagrams can be used to aid description (e.g. Neural 

Networks are often described using diagrams of the neuron structure). A further problem 

in gaining a foothold into the theory of the GP methodology is that the properties of the 

approach are often described or defined in terms of how they compare with alternative 



Chapter 6: Conclusions 

 301 

methods of machine learning, such as Neural Networks or kernel based methods. Whilst 

the fields of machine learning and system identification are closely linked, significant 

differences exist in the application of methods and the types of problem investigated. As 

a result, a significant proportion of the existing literature devoted to GP models is not 

easily digestible by those unfamiliar with machine learning or probabilistic analysis. 

 

Therefore, before discussing the specific methodology of the GP model, in Chapter 2 a 

review of the field system identification was completed where some of the more popular 

methods used to identify nonlinear systems from empirical data were discussed. One of 

the main intentions of providing this background discussion is to draw attention to the 

fact that some of the more complex modelling approaches based on Neural Networks and 

other multiple model implementations have notable disadvantages. In particular, a 

significant challenge routinely encountered in identifying complex multiple model 

descriptions is the optimisation of the model parameters and structure. Furthermore, 

multiple model structures based on the identification of local linear models have been 

found to be of questionable accuracy when tasked with predicting outside of equilibrium 

operating regions. In addition, in many cases the complexity of the model structures 

requires that a large amount of training data be available so that optimal model 

parameters and structure can be identified, thus avoiding underfitting/overfitting through 

trading-off Bias/Variance model error.  

 

The primary motivation for the use of GP models is that through the application of 

Bayesian probability, some of the problems associated with optimising complex model 

structures can be avoided. Furthermore, through the specific use of Gaussian processes, 

some of the mathematical difficulties associated with employing Bayesian analysis can 

also be avoided. Both of these aspects are discussed in detail in Chapter 3. The result of 

this discussion is that the GP modelling approach can be seen to be highly suitable for 

empirical modelling problems where the amount of data is limited, as the optimisation 

through Bayesian probability automatically implements a preference for simpler model 

descriptions (Automatic Occam’s Razor) therefore reducing the potential for overfitting. 

Furthermore, as the training data is retained within the covariance matrix, what training 

data is available ultimately forms part of the model structure. As stated at the beginning 

of this section, the disadvantages of the GP modelling approach are that the model is not 

particularly interpretable, and due to the need to retain training data information in the 
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form of a covariance matrix (rather than retain information in the form of a number of 

identified parameters), the modelling approach can become computationally demanding 

if a large number of training observations are required to identify an accurate description. 

A further interesting feature of the GP modelling approach is the fact that the output from 

the model is a probability distribution. This feature means that the uncertainty or variance 

of each prediction is readily available, something that is not the case for the majority of 

modelling approaches.  

 

 

6.2) Guide to GP Model Implementation 
 

In this section a guide to the implementation of the GP modelling approach is to be 

provided. Whilst a great deal of this information has already been presented in earlier 

sections of this thesis, especially Section (5.5), it is worth reiterating the main outcomes. 

Overall, the system identification process of the GP modelling approach can be described 

by the following: 

 

1) Examine Prior Knowledge of System 

2) Collect Experimental Data 

3) Select Covariance Function 

4) Create Training Dataset 

5) Optimise Hyperparameters 

6) Compute Predictions 

7) Validate Results 

 

As with any system identification process, the GP modelling approach is iterative where 

modifications to any stage may be required. However, the identification of a GP model 

can be generally decomposed into two components: 1) Select a suitable covariance 

function, and 2) Design a ‘good’ training dataset. From this point optimal 

hyperparameters can be identified and predictions can be made. 
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6.2.1) Choice of Covariance function 

 

In the implementation of the GP modelling approach, one of the key stages is the 

selection of a suitable covariance function. This covariance function is to be used to 

generate the prior distribution (defined as a Gaussian process that is specified by a zero-

mean assumption, together with a covariance matrix generated from applying the 

optimised covariance function to the training data observations) with which the 

predictive distributions are to be inferred through Bayesian inference. The overall role 

played by the covariance function is described in Section (4.1), together with a 

description of a number of existing covariance functions in Section (4.2). The Squared 

exponential covariance function is the most popular covariance function and its use 

implies an assumption of stationary and smoothly varying nonlinear behaviour. Whilst 

other covariance functions have been proposed, there is relatively little existing research 

into the practicalities of adopting them. Furthermore, the smoothness assumptions of the 

Squared Exponential covariance function make it suitable for identifying many real 

systems as such applications are normally designed to be operated in a smooth or 

consistent manner in order to facilitate manual or automatic control. Therefore, it is this 

covariance function that has been primarily used in the experimental investigations 

undertaken. Nevertheless, in some circumstances the smoothness assumptions inherent in 

this choice of covariance function may be unrealistic, and an alternative function should 

be considered. In particular, the Matèrn covariance function may be useful for systems 

that exhibit a rougher response. Overall, we can see that prior knowledge of the systems 

characteristics can prove to be important in selecting an appropriate covariance function. 

 

 

6.2.2) Design of Training Dataset 

 

For the purposes of system identification, the training dataset must be created through the 

combination of excitation signal design and pre-processing of empirical data. 

Furthermore, in the design of a suitable training dataset, the size and conditioning of this 

dataset must also be considered carefully. 
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6.2.2.1) Size of Training Dataset 

 

In Chapter 4 the mathematical and computational implementation of the GP modelling 

approach was discussed. As stated previously, one of the disadvantages of the GP 

modelling approach is that the method can become computationally demanding if the 

training dataset is to include a large number of observations. As a result, reasonable 

upper limits on the size of this training dataset were discussed, and for the direct 

implementation of the GP model using average desktop PC facilities this limit was set at 

N<1000. For larger scale problems a number of approximate methods were also 

discussed including sparse matrix methods, fast matrix vector multiplications and 

derivative observations. Overall, the existing literature has not provided conclusive 

evidence as to which of these methods is preferable. Furthermore, the use of simple 

Subset of Data methods where excess data is simply discarded has been found to remain 

competitive in many cases. In addition, in the experimental work carried out in this 

thesis, through careful pre-processing of the training data, the size of the training dataset 

could be kept under N<1000, therefore making the use of such approximate methods 

unnecessary. Nevertheless, these extensions to the GP modelling approach should be 

considered for more complex systems. 

 

Overall, in acting to constrain the size of the training dataset, one of the main tools at our 

disposal is in modifying the sampling rate chosen to collect the data. However, it is 

important to remember that whilst it may be tempting to reduce the sampling rate 

(increase sample interval) in order to include a longer time-series that may provide 

observations across a broader operating range, this will lead to a loss in the resolution of 

the data. As a result, some of the more subtle aspects of the system’s response may not 

be adequately described by the training data. This can therefore lead to a poor model 

accuracy (GP mean predications), and also unrealistically low variance predictions. 

Therefore, it is important to choose the sampling rate carefully so as to retain the ability 

to include as much information as possible. 

 

6.2.2.2) Conditioning of Dataset 

 

A further important aspect of the computational implementation of the GP modelling 

approach is the conditioning of the covariance matrix. In order for the hyperparameters to 
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be optimised and predictions to be computed various matrix inversion and multiplication 

operations must be performed accurately, therefore the covariance matrix must not be ill-

conditioned. Whereas the definition of a valid covariance function has a role to play in 

the specification of a well-conditioned (positive semi-definite) covariance matrix, 

another aspect that is not given much coverage in the existing literature is that the 

training dataset must also be carefully constructed. This aspect is especially important for 

system identification purposes, et as one of the key stages in the development of an 

empirical model is the design of the experimental approach and the collection of 

excitation data. This is perhaps different from typical problems found in statistics and 

machine learning where the data to be analysed may not be within the control of the 

modeller.  

 

In the examples investigated in this thesis one of the main causes of ill-conditioning in 

the covariance matrix was the presence of steady-state data in the training dataset. 

Therefore in order to ensure a well conditioned covariance matrix the presence of steady-

state data must be minimised through the use of an appropriate experimental design 

strategy (discussed below) and careful pre-processing of the training dataset. With regard 

to pre-processing of the training data, the main strategy employed in the work presented 

in this thesis was to manually eliminate portions of the training data that were found to 

contain prolonged periods of steady-state data. Through adopting this strategy, it was 

possible to ensure a well conditioned covariance matrix. An alternative strategy that can 

also be used in addition to the manual editing of the training dataset is to employ some 

method regularisation. Through adding a small level of noise to the diagonal of the 

covariance matrix, it is possible to improve the conditioning of the covariance matrix. 

However, it is important to remember that through the addition of noise, the accuracy of 

the model may be diminished if care is not taken. 

 

6.2.2.3) Experimental Design 

 

The excitation signal must be designed so that the dynamics of the system are sufficiently 

excited across as much of the operating range as possible. As the GP model can be 

understood as an interpolation method, the extrapolation properties (i.e. making 

predictions outside of the range covered by training data) of an identified model have 

been found to be poor. Of further importance is that the excitation signal must be 
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sufficiently excited, as one of the key practical outcomes from this work is that the 

presence of even small quantities of data near steady state is likely to lead to a significant 

deterioration in the conditioning of the covariance matrix. However, for system 

identification problems the potential for encountering steady-state regions of data is 

great, as input and output variables may vary in a quite deliberate manner (e.g. step 

inputs, delayed responses etc.). Therefore, we are unlikely to be always dealing with two 

or more variables that vary smoothly or even roughly in tandem with one another in 

some arbitrary manner.  

 

One straightforward strategy for the design of the excitation signal is to employ 

randomly varying inputs. Through the use of random inputs, the potential to record long 

periods of steady-state data is greatly reduced. However, a downside with such an 

approach is that the slower dynamics of the system being investigated can fail to be 

accurately conveyed by such training data. Furthermore, the extremities of the operating 

range can be sparsely populated by observations as the recorded data becomes 

concentrated within the middle of the operating range. Therefore, in some applications a 

more deterministic approach to the design of the excitation signal may prove to be a 

preferable strategy. This was the case for the Coupled Tanks system investigated in this 

thesis where the slow transient response could be captured by the training data more 

successfully using a number of step transitions. A further benefit of utilising this strategy 

was that function observations could be captured from the entire operating range of the 

system in a smaller timescale. This is important as it allowed a smaller training dataset to 

be created, therefore decreasing the computational burden of the GP modelling approach. 

 

6.2.2.4) Model Structure Selection 

 

Another important stage in the modelling process is in the selection of suitable inputs or 

regressors. This is a stage where prior knowledge of the system can prove invaluable as 

any characteristics of the system (e.g. delayed output response) can be accommodated 

into the structure of the GP model. Furthermore, it is possible that utilising certain 

variables as inputs or outputs may appear to cause problems in adhering to the demands 

of the chosen covariance function (e.g. mapping very fast input transitions to very slow 

output transitions). In such a case alternative covariance functions should be considered, 

and the ‘mixed-model’ approach detailed in section (5.7.6) may also be worthy of 
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investigation. Furthermore, if previous inputs/outputs are to be employed as additional 

model inputs, it is important to ensure these delayed inputs are incorporated in a manner 

consistent with the desired model structure. As the size of the training dataset must be 

kept within reasonable limits, a discrepancy between the sample intervals of the training 

and test datasets can result. Therefore, in order to maintain the integrity of the model 

structure it is important to ensure that these delayed variables are incorporated correctly. 

Further adjustments to regressors may also be required if any variables require 

normalisation. 

 

The Automatic Relevance Detection (ARD) feature of the Squared Exponential 

covariance function is another feature that can be used to identify an optimal model 

structure. This feature allows the relative importance of different inputs to be assessed. 

However it is worth reiterating that the ARD feature is not foolproof and is dependent on 

the model structure selected being sufficiently viable so that the hyperparameters can be 

successfully optimised. Furthermore, more complex systems than that examined in this 

thesis may require a more sophisticated approach to selecting optimal regressors. 

 

6.2.3) Training Hyperparameters 

 

In order to compute accurate predictions of system behaviour, the hyperparameters of the 

selected covariance function must be optimised using training data collected from the 

system. In Chapter 4, the optimisation of hyperparameters using marginal likelihood 

maximisation and Monte-Carlo methods is described A clear preference in the literature 

has been shown for the marginal likelihood maximisation, and this method has been used 

in the experimental work carried out. Furthermore, the optimisation of hyperparameters 

through this method has been found to perform robustly as long as a suitably conditioned 

training dataset has been created. Therefore, through attempting optimisation of the 

hyperparameters, the conditioning of the training dataset can be assessed. 

 

6.2.4) GP Model Validation 

 

As with any modelling approach it is important to validate the identified model through 

comparing the predictions from the model with the observed output response. Separate 
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test or validation datasets must therefore collected from the experimental set-up so that 

the generalisation ability of the model can be assessed through cross-validation. Standard 

measures of prediction accuracy (e.g. mean square error) can then be used to examine the 

performance of the model. In addition, the variance output of the model should also be 

examined closely to provide a further indicator of the performance of the GP model. The 

variance at individual test cases can be easily understood through plotting error bars (2σ) 

on prediction charts, and an overall indication of the uncertainty in the model can be 

given through computing the log predictive density. If the predictive accuracy of the 

model is found to be deficient in a particular area of the operating space it is common 

that the variance output of the model is also higher in this region. Therefore, this 

information can the be used to modify the training dataset in order to improve the 

accuracy of the model in this particular region. Nevertheless, it is also important to 

remember that it is also possible to obtain poor model predictions in combination with a 

low variance output. Such a result is likely due to the training dataset not accurately 

representing some aspect of the system’s behaviour. Once again, it may be necessary to 

modify the training dataset to address any particular problems encountered. Finally, it is 

also important to reiterate that if the variance output of the model is to be utilised 

directly, such as in the basis of model predictive control algorithm, it may be worthwhile 

implementing the ‘propagation of uncertainty’ extension to the GP model. 

 

6.2.5) Final Thoughts 

 

The overall outcome from this discussion is that in the creation of a suitable training 

dataset a number of different practical considerations (overall matrix size, overall matrix 

conditioning, coverage of operating range, dynamics appropriately sampled, etc.) must be 

borne in mind. As a result, the use of prior knowledge of the system has been found to be 

very important in the creation of this training dataset. This means that the methods 

applied here cannot truly be described as a ‘black box’ approach. Furthermore, it is worth 

returning to the question over the overall interpretability of the GP modelling approach. 

As the training data is retained in the model (in the form of the covariance matrix), from 

a certain perspective, the GP model can be thought of as highly interpretable. This is due 

to the fact that the quality of the model can be directly linked to the location or relative 

sparsity of the training data (assuming the dynamics are captured well, and the 

covariance matrix is appropriately conditioned). This is contrast to alternative multiple 
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modelling approaches where the structure and parameters of individual sub-models or 

neurons must be identified from data and prior knowledge. In essence, the overall 

robustness of the GP method means that the problem of identifying an accurate model is 

almost reduced to creating a suitable training dataset. Therefore, whilst the actual 

theoretical background of the GP model and the identified hyperparameters of the 

covariance function may not be especially easy to interpret, the actual process of 

identifying GP models can easily be understood as it is the training dataset that must be 

‘optimised’ through pre-processing rather than a large number of parameters. 

Nevertheless, for applications where large numbers of input dimensions are present, the 

problem of pre-processing a suitable training dataset may become challenging.  

 

6.3) Future Work 
 

Throughout the course of this thesis a number of potential extensions to the GP 

modelling approach have been discussed. In particular, the following extensions could 

prove to be worthwhile avenues for future research: 

 

More Complex Applications 

 

As this thesis has been concerned with discussing the general implementation of a 

relatively unproven method of nonlinear system identification, the experimental 

applications investigated have been relatively simple (i.e. only a few input dimensions, 

smoothly varying system responses). Therefore, the next obvious stage to consider is the 

application of the GP methodology to more demanding multivariate applications (e.g. 

multiple output problems). Through applying the GP modelling approach to more 

complex applications, some of the methods and extensions presented here could be 

developed further. 

 

Alternative Covariance Functions 

 

One of the most important future directions for research should be into the use of 

alternative covariance functions. Whilst in the experimental applications investigated in 

this thesis have been successfully tackled using the most popular Squared Exponential 
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covariance function, this is due to the smoothly varying characteristics of those systems. 

Other applications where less smooth responses are to be identified will not be as well 

approximated by this ‘standard’ GP model implementation. Furthermore, the fact that the 

Squared Exponential covariance function is stationary is another notable limitation. 

Therefore, further investigations into the use of alternative covariance functions should 

be a priority if the full potential of the GP modelling approach is to be realised. 

Fortunately, a number of different covariance function have already been proposed, see 

Section (4.2) together with methods to combine different covariance functions. However, 

these proposed alternative covariance functions have not been the subject of much 

experimental investigation. Therefore, in order to address this current lack of 

information, an investigation into the suitability of these different covariance functions 

for different nonlinear problems would be a valuable addition to the field. 

 

For engineers charged with identifying real nonlinear systems, this would ideally involve 

the use of empirical data collected from real systems. If the use of different covariance 

functions remains exclusively researched within the machine learning and computing 

science communities, it is possible that standardised or benchmark test data sets, or 

simple simulated static nonlinearities, will continue as the prime investigative tools. Such 

investigations can prove to be valuable resources, but the application of methods to real 

world dynamic systems may prove to be more enlightening to those working on system 

identification problems. Overall, it would be desirable to establish better links between 

types of observed behaviour and the covariance functions best suited to identify them, as 

unlike Neural Network approaches that can act as universal function approximators, the 

properties of different covariance functions can sometimes be made more interpretable 

and applicable to specific problems. However, it is worth pointing out that the adoption 

of alternative covariance functions has implications for training data selection and overall 

interpretability. One of the advantages of the Squared Exponential function is that the 

hyperparameters have interpretable roles, and that we can optimise them using the 

Bayesian marginal likelihood maximisation method. With more complex covariance 

functions the potential exists for greater optimisation difficulties associated with multiple 

local optima. Hence, the potential need to use MCMC methods may become apparent. 

The overall consequence may be that the more complex GP model may require a more 

complex and time-consuming model optimisation strategy. Therefore, some of the 
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original advantages of the GP modelling approach may be lost, as the added complexity 

may result in alternative non-Bayesian modelling approaches becoming more attractive. 

 

Approximate Methods 

 

In Section (4.5.5) a number of alternative approximate methods were discussed, where 

the objective is to reduce the computational demand of the GP modelling approach. 

Although various methods have been proposed and empirical investigations have been 

conducted, as yet there is no definitive answer as to which would be the preferred method 

in a particular situation. This is a difficult thing to analyse, as many contributing factors 

exist. Nevertheless, further analysis of these methods from a practical perspective would 

be a valuable addition to the field. As a result, the trade-off between model accuracy and 

computational expense could be better implemented. Furthermore, the current literature 

devoted to exploring the majority of these approximate methods (especially sparse matrix 

methods) has been developed primarily for use in machine learning cases where static 

nonlinearities are commonly used as example implementations. As a result, the use of 

many of these approximate methods has not been explored towards system identification 

problems. In addition, as discussed in Section (4.5.6), many of the approximate methods 

do not initially appear to be particularly in keeping with the demands of the system 

identification problem, where careful pre-processing of the training data has been 

required. This is at odds with some of the random subset selection methods typically 

used to sample training data from empirical data.  

 

As part of the experimental work carried out in this thesis, an attempt was made to adapt 

the Subset of Regressors sparse matrix method for use in forming an approximation to 

the GP model of the Heat Transfer system. Unfortunately, computational problems where 

encountered where the approximated covariance matrix was routinely found to be ill-

conditioned, thus leading to poor quality predictions. This is despite the fact that in some 

cases the same covariance matrix was found to be adequately conditioned for the 

standard GP predictive methods to be employed. It is certainly possible that some 

mistakes in the implementation of the method were made, but it is also the case that 

existing research is not very clear as to whether or not such an approximate method is 

well suited for application to GP models of dynamic systems where previous input and 

output information are to be used as model inputs. Nevertheless, further research into 
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these methods would be very useful as although the systems investigated in this thesis are 

relatively simple, and therefore allow accurate models to be identified from small 

training datasets, more complex applications may necessitate the use of approximate 

methods. 

 

Derivative Observations 

 

Although this extension to the GP modelling approach was investigated using the 

empirical data from the Coupled Tanks system, any overall benefit in terms of reducing 

the computational expense of the resultant model was not clearly evident. As discussed in 

Section (5.7.5), it is possible that the specific characteristics of the example system made 

it an unsuitable candidate for demonstrating the full ability of this extension. 

Nonetheless, this is an interesting extension to the GP modelling approach that is 

straightforward to implement. Therefore, further investigations into the incorporation of 

derivative observations may prove to be valuable. 

 

Mixed-Model Implementations 

 

Another extension to the GP modelling approach that was explored through the 

experimental work carried out on the Coupled Tanks system was the use of a ‘Mixed’ 

model or Nonlinear Mapping approach. Through this extension, some of the 

implementation difficulties associated with the GP approach can be bypassed through 

employing an initial model structure or nonlinear mapping that can be used to generate 

intermediate or latent function values that are more compatible with the standard GP 

modelling approach (e.g. Squared Exponential covariance function). Such an approach 

can be seen to have considerable appeal in that existing descriptions of a particular 

system can potentially be retained and then improved through the use of a secondary GP 

model stage. As this extension can perhaps extend the usefulness of the GP modelling 

approach, further investigations into the use of ‘Mixed’ models would be useful. 

 

Multiple GP Models  

 

A further potential research avenue is the use of multiple GP models, as discussed 

previously in Section (4.5.6.2.1). Through this proposal, some of the implementation 
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problems associated with the GP modelling approach could be tackled through applying 

a ‘divide and conquer’ approach. Therefore, instead of attempting to include large 

quantities of training data into a single covariance matrix in order to specify a ‘global’ 

GP model of the system, the operating range could be partitioned into local operating 

regimes as in alternative multiple modelling approaches. At present, there has been only 

a limited amount of research into this aspect, as detailed in Section (4.5.6.2.1), but further 

investigations could prove to be useful. However, it is worth bearing in mind some of the 

initial motivation behind the GP modelling approach was that the problems associated 

with optimising complex networks could be avoided. Therefore, in some respects there 

may be limited appeal in moving in the reverse direction. 

 

Control System Design with GP models 

 

The need for better or more informative models is often motivated by the desire to obtain 

better or more precise control systems. Therefore, perhaps one of the most important 

avenues for future research would be the continuation of research into automatic control 

systems that make use GP models. In existing research, see Section (5.1.1), the variance 

output has shown promise with regard to implementing model predictive or adaptive 

control. However, as yet the GP model has not been proven to be particularly useful or 

compatible with other control algorithms. Therefore, great potential research avenues 

exist with regard to implementing controllers based on GP models.  

 

Real-Time Implementation 

 

Related to the application of GP models to control system design is the question of how 

well the methodology is suited to real-time implementation. As a significant amount of 

the existing literature, and indeed this thesis, has been concerned with managing the 

computational demands of the GP model, this is an important topic. Once the training 

data has been finalised and the hyperparameters identified, the computational 

requirement for the prediction at a new test point still requires the inversion of the 

covariance matrix. Therefore, for control applications that require real-time or near 

instantaneous updates as to the model’s predicted output, this burden of calculation might 

prove to be problematic. As a result, a practical investigation using real hardware would 

be valuable in order to assess the potential of the GP model as an ‘online’ estimator of 
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system behaviour. Such an investigation may also prove to be informative with regard to 

the suitability of some of the extensions to the GP model that have been discussed. 

Further considerations that could be investigated include the potential of the GP model to 

be adapted to allow new data to be added online. Through adding data to the training 

dataset whilst the system is online, or modifying it in some other way, the potential exists 

to tune the performance of the model if required. For example, if through the operation of 

the system we encounter new or off equilibrium operating regions, we may wish to learn 

this behaviour and incorporate it into our model. Such a feature is also comparable with 

the Active Learning strategies discussed in Section (2.3.2.1). Initially, such a feature 

would appear to be computationally demanding, as hyperparameters may need to be re-

optimised if the training dataset is modified. Nevertheless, such a feature is worthy of 

investigation as it may also prove worthwhile in the application of approximate methods 

where the goal is to optimise the efficiency of the training dataset. 
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Appendix A – Probability Definitions and 

Background 
 

This section provides information regarding the axioms of probability and background 

definitions most relevant to Bayesian analysis. Most of this information is readily 

available in many standard mathematics or statistics textbooks and has been gathered 

together for inclusion here to provide a convenient source using common notation 

throughout. 

 

Probability of an Event 

 
In the mathematical treatment of probability theory, the probability of an event A is 

represented by a real number in the range from 0 (an impossible event) to 1 (a certain 

event), and written as P(A) with interval [0, 1]. 

 

Probability of an Opposite Event 

 
The probability of an event opposite to A, is defined as the complement rule: 

 

P(not A) = )(1)( APAP −=  

 

Joint Probability 

 
Joint probability is the probability of two events in conjunction. That is, it is the 

probability of both events together. The joint probability of A and B is written as ),( BAP  

or )( BAP ∩ . 

 

If two events are independent, the joint probability is: 

 

P(A and B) = P(A,B) = )( BAP ∩  = )()( BPAP  
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Addition Rule 

 
If two events are mutually exclusive (i.e. two events that may not occur at the same 

time), then the probability of either occurring is: 

 

P(A or B) = )( BAP ∪  = )()( BPAP +  

 

If two events are NOT mutually exclusive (i.e. two events that may not occur at the 

same time), then the probability of either occurring is: 

 

P(A or B) = )()( BPAP + - P(A and B) 

 

Conditional Probability 

 
Conditional probability is the probability of some event A, given the occurrence of some 

other event B. Conditional probability is written ( | )P A B  and is read as ‘the probability 

of A, given B. 

 

The conditional probability of A given B is defined as: 

)(

),(

)(

)(
)|(

BP

BAP

BP

BAP
BAP =∩=  

Rewritten:   )()|(),( BPBAPBAP =  

 

This relationship is termed the Product Rule and is the fundamental rule of probability 

calculus as it allows us how to combine conditional probabilities for individual variables, 

to define joint probabilities for sets of variables. 

 

Marginal Probability 

 
Marginal probability or prior probability is the probability of one event, regardless of the 

other event. Marginal probability is obtained by summing (or integrating, more 

generally) the joint probability over the unrequired event. This is called marginalisation. 

The marginal probability of A is written P(A), and the marginal probability of B is written 

P(B). 
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Bayes’ Theorem 

 

The simplest form of Bayes theorem relates the joint probability P(A,B)of two events (A 

and B) in terms of marginal and conditional probabilities. This can be expressed as: 

 

)()|()()|(),( APABPBPBAPBAP ==  

 

By rearrangement, we obtain Bayes’ theorem: 

 

 
)(

)()|(
)|(

BP

APABP
BAP =  

 

The different components of Bayes’ theorem are often defined using the terminology: 

 

Posterior =  Likelihood x Prior__  

   Marginal Likelihood 

 

The Prior P(A) is the prior or marginal probability of the event A as it does not take into 

account any information about the event B. The posterior ( | )P A B  is the conditional 

probability of A given B, and ( | )P B A  is the conditional probability of B given A and is 

termed the likelihood. P(B) is the marginal probability of B (also termed the ‘evidence’) 

and acts as a normalising constant. 

 

Bayes’ theorem is often further expressed as proportionality as the posterior probability 

is proportional to the product of the prior probability and the likelihood: 

 

)()|()|( APABLBAP ∝  

 

What is Likelihood? 

 
In popular usage, the term ‘likelihood’ is often used interchangeably for probability, 

however in probability theory a separate technical definition exists. In an informal sense, 

likelihood works in reverse to probability. For example, if probability allows us to 

predict unknown outcomes based on known parameters, then the likelihood allows us to 
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determine unknown parameters based on known outcomes. The likelihood function 

remains a conditional probability function, but is considered a function of its second 

argument with the first argument held fixed. 

 

 Given B, we use conditional probability P(A|B) to reason about A. 

 Similarly, given A, we use the likelihood function L(B|A) to reason about B. 
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Appendix B – Deriving GP Predictive Equations 
 

This section is to provide details of how the mean and variance predictions of the GP 

predictive posterior distribution can be derived, see Section (3.7.1) for the background. 

This derivation comes from Gibbs (1997). 

 

The conditional probability to be solved in Section (3.7.1) was stated as: 

 

1 1
1 1

( | , , )
(t | , , )

( | , )
N N N N

N N N
N N N

P
P

P
+ +

+ + = t C X x
C x

t C X
D     (B.1) 

 

where ( , )N NX tD =  is a set of N training data points, and NC , 1N+C , 1N+t , 1N+x  where 

defined as before. Using the Gaussian process model the following was then derived: 

 

1 1
1 1 1 1 1

1

1
(t | , , ) exp ( )

2
T TN

N N N N N N N N N
N

Z
P

Z
− −

+ + + + +
+

 = − − 
 

C x t C t t C tD   (B.2) 

 

This distribution is Gaussian with respect to 1tN+ , and in order to find the mean and 

variance a partitioned inverse form of 1N+C  is defined, see Bartnett (1979).  

 

The covariance matrix is defined as: 

 

[ ] [ ]
[ ]

1

1
1

N N

N T
N κ

+
+

+

 
=  

    

C k
C

k
       (B.3) 

 

where the sub-matrix ( ) ( )1 1, N+1 N, N+1 C ; , ,C ;N+  =  k x x θ x x θ…  is the vector of 

covariances between the new test point and existing training cases, and 

( )N 1, N+1 C ;κ += x x θ  is the variance of the individual test case. 

 

 

 



Appendices 

 320 

The inverse is then defined as: 

 

11
1

1

N N
N T

N µ
+−

+
+

 
≡  
 

M m
C

m
       (B.4) 

 

Using the fact that 1
1 1 1N N N

−
+ + +=C C I , the following can be written: 

 

1 1
T

N N N N N+ + =C M + k m I        (B.5) 

1 1N N Nm+ + =C m + k 0         (B.6) 

1 1
T T T
N N Nκ+ + =k M + m 0        (B.7) 

1 1 1T
N N κµ+ + =k m +         (B.8) 

 

Through multiplying equation (B.5) by 1
N
−C , and then substituting the resultant 

expression into equation (B.7) we obtain: 

 

( )
1

1 1
1 1

1 1 1

N N
N T

N N Nκ

−
+ +

+ −
+ + +

-C k
m =

-k C k
       (B.9) 

 

Substituting this into equation (B.6) then gives us: 

 

( ) 11
1 1 1

T
N N Nµ κ

−−
+ + += -k C k                  (B.10) 

 

With the remaining components of (B.4) can be defined as: 

 

1
1 1N N Nµ −

+ += −m C k                   (B.11) 

1
1 1

1 T
N N N Nµ

−
+ += +M C m m                  (B.12) 
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Returning to predictive posterior distribution in equation (B.2), we can write down the 

dependence of the exponent on 1tN+  in terms of the elements of 1
N
−C  as defined in (B.4): 

 

1 1 2
1 1 1 1 1 12( ) const.T T T

N N N N N N N N N Nt tµ µ− −
+ + + + + +− = + +t C t t C t m t              (B.13) 

 

Using the expressions derived above for µ  and 1N+m , it is then straightforward to 

calculate the mean and variance of the Gaussian predictive distribution 

1 1(t | , , )N N NP + +C xD  as: 

 

1
1 1

ˆ T
N N N Nt −

+ += k C t                   (B.14) 

2 1
1 1 1

T
N N N Nσ κ −

+ + += − k C k                  (B.15) 
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