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ABSTRACT 

 A number of studies have investigated the relationship between surface 

electromyogram (EMG) and torque exerted about a joint.  The standard deviation of the 

recorded EMG signal is defined as the EMG amplitude.  The EMG amplitude estimation 

technique varies with the study from conventional type of processing (i.e. rectification 

followed by low pass filtering) to further addition of different noise rejection and signal-

to-noise ratio improvement stages.  Advanced EMG amplitude processors developed 

recently that incorporate signal whitening and multiple-channel combination have been 

shown to significantly improve amplitude estimation.  The main contribution of this 

research is a comparison of the performance of EMG-torque estimators with and without 

these advanced EMG amplitude processors.   

 The experimental data are taken from fifteen subjects that produced constant-

posture, non-fatiguing, force-varying contractions about the elbow while torque and 

biceps/triceps EMG were recorded.  Utilizing system identification techniques, EMG 

amplitude was related to torque through a zeros-only (finite impulse response, FIR) 

model.  The incorporation of whitening and multiple-channel combination separately 

reduced EMG-torque errors and their combination provided a cumulative improvement.  

A 15
th
-order linear FIR model provided an average estimation error of 6% of maximum 

voluntary contraction (or 90% of variance accounted for) when EMG amplitudes were 

obtained using a four-channel, whitened processor.  The equivalent single-channel, 

unwhitened (conventional) processor produced an average error of 8% of maximum 

voluntary contraction (variance accounted for of 68%).   
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 This study also describes the occurrence of spurious peaks in estimated torque 

when the torque model is created from data with a sampling rate well above the 

bandwidth of the torque.  This problem is anticipated when the torque data are sampled at 

the same rate as the EMG data.  The problem is resolved by decimating the EMG 

amplitude prior to relating it to joint torque, in this case to an effective sampling rate of 

40.96 Hz. 

 

Keywords:  EMG, EMG Amplitude, Torque, EMG-torque Model, Optimal Sampling 

Rate, System Identification, and Linear Torque Model. 
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CHAPTER 1. INTRODUCTION 

“Electromyography is a seductive muse because it provides easy access to physiological 

processes that cause the muscle to generate force, produce movement, and accomplish 

the countless functions that allow us to interact with the world around…To its 

detriment, electromyography is too easy to use and consequently too easy to abuse.” 

[Carlo J. De Luca, 1993] 

The contraction of muscle fibers generates electrical activity that can be measured by 

electrodes affixed to the skin surface on top of the muscle group.  The recorded spikes of 

electrical activity are referred to as the electromyogram signal or “raw” EMG.  The 

surface EMG signal recorded using large electrodes (e.g., diameter 5 mm) that monitor 

the activity of multiple muscle fibers can be well modeled as a zero-mean time-varying 

stochastic process.  Motor units are the smallest functional muscle group.  It is observed 

that the standard deviation of the raw EMG signal is monotonically related to the number 

of the activated motor units and the rate of their activation.  This standard deviation is 

used to approximate the magnitude of the muscular electrical activity referred to as EMG 

amplitude [Clancy and Hogan, 1997].  EMG amplitude has a variety of applications, such 

as a control signal for myoelectrical prostheses, ergonomic assessments, biofeedback 

systems, and it is used to approximate the torque about a joint [De Luca, 1993; Thelen et 

al., 1994; Gottlieb and Agarwal, 1977; Valero-Cuevas et al., 2003].  

1.1. PROJECT MOTIVATION 

After obtaining high quality estimates of EMG amplitudes, a common practice is 

relating them to the tension of individual muscles via mathematical models, even though 



 2 

there are limitations to this method.  The tension produced by individual muscles can not 

be measured non-invasively, thus there is no direct mechanical method to validate the 

model predictions.  In addition, the existence of cross-talk (defined as the interfering 

electrical activity from the surrounding muscles) and the inability to measure this effect 

add to the difficulties of creating this model.   

Considering the mentioned limitations, many researchers [Gottlieb and Agarwal, 

1977; Clancy and Hogan 1997; Thelen et al., 1994] have focused their efforts on relating 

the EMG amplitude to the torque about a joint as the next logical and practical 

alternative.  The effect of cross-talk may be automatically canceled or minimized in the 

case of the torque about the joint [Clancy et al., 2001].  Total net torque about a joint can 

be easily verified via mechanical measurements.  Furthermore, considering co-activation 

effects on underlying group muscles, the system model performance is evaluated against 

the net joint torque contribution, rather than the individual ones that are impossible to 

distinguish. 

Over the last few years, there are clear advances in estimating EMG amplitude yet the 

EMG-torque modeling has not benefited from this progress.  If EMG is a useful indicator 

of the muscular tension, it is necessary to develop accurate means of quantification, both 

in terms of properly measuring and interpreting EMG and in creating mathematical 

models relating EMG-torque.  Amplitude estimation accuracy influences the performance 

of EMG-torque models, because torque about a joint (tension exerted in muscles) is the 

outcome of proper EMG signal interpretation and consequently its careful treatments.  

The importance of EMG signal processing can not be emphasized enough, since 
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electromyography is such a powerful and physiologically easily obtained tool, therefore 

as expressed by De Luca, its misusage can lead to fatal mistakes [De Luca, 1993].   

Demonstrating the benefit of utilizing advanced EMG amplitude processing, Clancy 

and Hogan (1997) showed that the torque estimation error is reduced when using 

improved EMG amplitude processors.  The experiment results were obtained using a 

linear model to relate EMG amplitude from biceps/triceps to the elbow joint torque in the 

case of constant-posture and constant-force contractions.  Additionally, encouraging 

results were also obtained in less constrained conditions (slowly varying force), but 

several trial combinations that lead to unrealistic model performance (considered as 

model non-convergence) were an obstacle that needed further investigation [Bouchard, 

2001].  The result of the previous research inspired the focus of this project:  relating the 

EMG amplitudes from biceps/triceps to the torque about the elbow and proving that 

better EMG amplitude processing leads to better torque predictions during dynamic 

experimental tasks (force-varying contractions). 

1.2. THESIS CONTRIBUTION 

The goal of this project was to demonstrate that the usage of high fidelity processing 

techniques (inclusion of whitening filters and multiple channels) for EMG amplitudes 

leads to improvements in the accuracy of estimating torque.  To achieve this main 

objective, it was necessary to develop a model to relate EMG amplitude to torque and 

compare the model performance, as the EMG amplitude processors were varied among 

four different types.  These four types of processors were obtained using the combination 

of multiple channel recordings with the addition of adaptive whitening.  The four 

processors created were: single-channel-unwhitened, single-channel-whitened, multiple-
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channel-unwhitened, and multiple-channel-whitened.  Further accomplishment was to 

determine the decimation rate required for the data prior to applying them to the system 

identification algorithms.  Decimation solved some model non-convergence problems 

encountered during prior research [Bouchard, 2001].  

In conclusion, there are several important deliverables from the completion of this 

project work.  The first is the model used to relate extension/flexion EMG amplitudes to 

torque about the elbow.  The second is the data pre-processing routine (decimation) 

required to achieve the maximum performance from the model.  Finally, the thorough 

documentation of the results and the steps achieving them, along with the 

recommendations for improvements will serve as starting point for future research.    

1.3. THESIS CONTENT 

The content of this paper is presented in a logical and chronological, order as 

appropriate in order to explain the process involved in completing the project.  

CHAPTER 2 provides background information about the EMG signal starting from its 

recording to amplitude processing techniques, focusing on the adaptive whitening filters 

as a new step that has revolutionized the existing processing methods.  There is also a 

review of some of the most common system identification models.  The chapter ends 

with a brief review of the literature on EMG-torque modeling techniques.  Following the 

background, CHAPTER 2 is the model design development chapter.  It includes all 

physiological concepts and thoughts that were poured into quantifying the EMG to torque 

relationship, reaching into the linear (ARX) model used in this project.  The model then 

is solved, describing most of the algebraic steps involved into obtaining a linear least 

squares error solution.    
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CHAPTER 4 explains the data collection method and the process of obtaining EMG 

amplitudes from the four different processors.  EMG amplitude estimation, decimation, 

and truncation are part of a pre-processing routine used prior to system identification.  

The system identification procedure involves two main steps, training and validation.  

During training, a coefficient vector is fit to the input data based on the least squares error 

minimization.  Model validation requires utilizing a distinct dataset to estimate the output 

using the optimal coefficients.  The details of the train-test paradigm along with 

definitions of model performance quantifiers are also explained in this chapter.  The 

subsequent CHAPTER 5 describes the results obtained after following the tests explained 

in the previous methodology chapter.  The chapter includes general observations and 

hypotheses derived through experimental data interpretation to validate the observations.    

 Interpretation and the study limitations are discussed in detail in the last chapter 

(CHAPTER 6).  This chapter summarizes the main contribution of this research and it 

lays out some suggestions for future work, based on the conclusions drawn. Finally, the 

document ends with the APPENDICES: that includes additional information on the 

experimental data and some additional plots that were not crucial to the results, but 

support their interpretations. 
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CHAPTER 2. PROJECT BACKGROUND 

The content of this chapter is intended to provide background information necessary 

to understand the subsequent sections that describe the specific thesis contribution.  The 

chapter starts with a brief introduction of the physiological raw EMG signal, focusing on 

the random character of EMG.  Then, it continues with a brief description of the 

techniques used to process the EMG amplitude.  At the end, there is a review of 

achievements in relating the surface EMG amplitude to the torque about a joint following 

a summary of modeling techniques. 

2.1. EMG SIGNAL FUNDAMENTALS 

The electromyogram (EMG) is the recording of the electrical activity produced within 

the muscle fibers.  The relation of surface EMG to torque makes EMG an attractive 

alternative to direct muscle tension measurements, necessary in many physical 

assessments.  However, the complexity of the EMG signal origin has been a barrier for 

developing a quantitative description of this relation.  The EMG signal origin and 

character is necessary background to understand the difficulty of establishing a 

relationship between surface EMG and torque.  The description in this section is brief and 

selective; the reader is suggested to review Basmajian and De Luca (1985) for more 

details.  

2.1.1. Electrical Activity Generation 

Electrical activity in the muscles arises from the contraction of the muscle fibers, 

the structure of which is shown in Figure 2.1.  Each muscle fiber contains a bunch of 
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myofibrils (long chains of contractile units).  The myofibrils contain long chains of 

contractile units called sarcomeres, which contribute to the force exerted within the 

muscles.   

 

Figure 2.1:  Muscle Fibers Composition [Perry and Bekey, 1981] 

Each of the myofibrils is chemically activated by local neurons, generating an electrical 

charge that moves up and down the myofibril, activating the chains of sarcomeres (Figure 

2.2).  The charge motion generates an electromagnetic field that induces volume 

conduction, which enables recording of an electrical signal both internally at the muscle 

and externally at the surface over it.  The detected waveform resulting from the 

depolarization of the wave propagating between the motoneuron and end plate is called 

the muscle fiber action potential (MAP).  MAPs are not commonly seen in the general 

EMG literature, because they are recorded using microelectrodes, and can not be picked 

up by the non-invasive surface electrodes.  
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Figure 2.2:  Generation of Electric Field in Muscle Fibers [Perry and Bekey, 1981] 

The muscle fibers contract in groups that are controlled by the central nervous 

system via nerve fibers (axons) transmitting the signal to the ending neurons.  To 

simplify analysis and mathematical interpretation of EMG, the smallest controllable 

functional unit of muscle fibers is defined as a motor unit (MU).  The motor unit consists 

of a single motoneuron, its neuromuscular junction, and the muscle fibers that it excites.  

The number of the muscle fibers contained in a MU varies with the size of the muscle 

within which a MU belongs.  Smaller muscles have MUs that contain 3-10 myofibrils, 

while larger ones contain up to 2000 myofibrils.  It is important to emphasize the similar 

structure of the muscles, regardless of the scaling on the size and the number of 

myofibrils [Perry and Bekey, 1981; Lamb and Hobart, 1998].   

2.1.2. Origin and Character of EMG 

Microelectrodes on the cell surface are not the only way to measure motor action 

potentials.  The living tissues act as volume conductors, therefore a potential at the 

motoneuron source is spread away via ion movements throughout the entire unit volume.  

Applying the same principles of conduction described above, the action potential 
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propagates along the motoneuron to the endplate of the muscle fibers (Figure 2.3).  The 

electrical potential surrounding the muscle fibers changes, because the geometry of the 

conducting volume changes.  Therefore, the conduction times of the muscle fibers in a 

motor unit are different.  The spatio-temporal summation of the individual myofibril 

action potentials recorded by the electrode is called a motor unit action potential 

(MUAP).  Figure 2.3 represents the motor unit action potential as the superposition of 

MUs generated by each of the myofibrils.  Each muscle fiber within the MU (on the left 

of the figure) contributes to the surface potential (on the right of the figure).  [Basmajian 

and De Luca, 1985]. 

 

Figure 2.3:  Observed Motor Unit Action Potential, MUAP [Basmajian and De 

Luca, 1985].   
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The recorded MUAP is an attenuated version of the action potential generated in 

the muscle fibers because of the filtering effect that is due to the transmission line 

between the motoneuron and electrode.  In particular, the tissue acts as a low pass filter 

with a cutoff frequency proportional to the distance of the electrode to the signal source 

[Lindstrom and Magnusson, 1977].  Usually, the individual MUAP is recorded using fine 

wire electrodes, although under certain conditions surface electrodes can be used.  The 

duration of the MUAPs can vary from a few milliseconds to 14 ms, and their amplitudes 

vary from microvolt ranges to a maximum of 5 mV.  Typical surface EMG electrodes are 

used to record the myoelectric activity of the skeletal muscle as a whole, rather than 

individual MUAPs.  Generally, the pick-up area of an electrode includes more than one 

motor unit, because muscle fibers of different motor units are mixed throughout the entire 

muscle [Lamb and Hobart, 1992]. 

The MUAP is the response of the motor unit MU to a single motoneuron 

excitation.  If the stimulus is modeled as an impulse dirac function, δ(t), then the MUAP 

is considered the impulse response h(t).  The repetitive sequence of stimulations to the 

motor units results into a series of impulse responses referred to as the motor unit action 

potential train (MUAPT).  Each of the motor unit responses to the impulse train is 

independent from the sequence and the total series response has a random character.  

Therefore, the superposition of the MUAPTs is the physiological EMG signal and can be 

modeled as stochastic process (sum of independent random variables).     
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Figure 2.4:  EMG Signal Origin Block Diagram [Basmajian and De Luca, 1985] 

A schematic representation of the EMG generation is shown in Figure 2.4.  The 

symbol mp(t, F), myoelectric signal as a function of time (t) and the number of firings (F), 

represents the physiological EMG and it is not recordable or measured.  The detected 

EMG signal that is utilized in the research is the observed signal m(t, F) that is 
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contaminated with electronic noise (almost white) and has lost some of the high 

frequency components due to the filtering effects at the electrodes  [De Luca, 1993]. 

 To conclude, considering the EMG signal as a time varying stochastic process 

gives the possibility to model it as a zero-mean Gaussian distribution, because EMG is 

the sum of a large number of MUAPs [Papoulis, 2002].  This random character of the 

EMG signal enables the later described approximation of EMG amplitude as the square 

root of the detected signal’s variance.  In addition, the recorded EMG signal is dependent 

on the type, geometry, and position of the recording electrodes.  The depolarization wave 

also causes chemical changes that result in a mechanical twitch, which is slower than the 

electrical response, and delayed by 50-100 msec.  This mutual relation of EMG and 

mechanical activity to the MUAPs inspires the establishment of an EMG-torque 

relationship that will be discussed in detail in the upcoming chapters.   

2.1.3. Factors that Effect EMG Signal 

There are many factors identified in the research as having a great influence on 

EMG interpretation.  Even though they all are important, a common practice among 

researchers has been to focus on the effects that have the most impact on the application 

for which the EMG signal is used [DeLuca, 1993; Farina, Merletti, and Enoka, 2004; 

Perry and Bekey, 1981; Lamb and Hobart, 1992].  This section also will follow the same 

rule, and briefly describe some of the factors that directly effect the EMG signal 

interpretation and analysis when estimating torque.  Quantifying the factors that effect 

EMG signals is a complex task, because there is not enough information to validate the 

assumptions.  Considering the varieties in the structure of electrodes and living tissues, it 

also is impossible to generalize the observations over all subjects and cases. 
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De Luca (1993) categorizes the factors that effect EMG signal and force into three 

groups:  causative, intermediate and deterministic factors.  The causative factors are the 

basis of EMG signal and they are both intrinsic and extrinsic.  The extrinsic factors are 

related to the electrode structure and its placement on the skin overlying the muscle.  

Such instances include the electrode configuration, location, and the orientation of 

detection surfaces relative to the muscle fibers.  On the other hand, the intrinsic causative 

factors are related to the physiological, anatomical and biochemical character of EMG 

signals.  These factors can not be controlled, but their knowledge and understanding help 

with the accuracy of EMG interpretation.  The causative intrinsic factors include the 

number of active MUs at the time, the pH level in the muscle fibers, the blood flow, and 

geometry of the fibers.  The intermediate factors (i.e. cross-talk, conduction volume and 

velocity, superposition, etc.) are the effects that are influenced by the causative factors 

and in consequence they influence the deterministic factors (i.e. number of MUs 

activated, MU firing rate, MUAP shape and duration, etc.).  The amount of the effect that 

the deterministic and the intermediate factors have on EMG is an application-based 

evaluation. 

Table 2.1 from Farina et al. (2004) represents a summary of the known effects to 

EMG interpretation.  The presence of subcutaneous fatty tissues becomes a significant 

factor, because the loss of the high frequency components reduces the spectrum of the 

EMG signal.  Besides the stability of the position of the electrodes and the stability of the 

MU firing rate, the issue of crosstalk is always present.  Crosstalk is defined as the 

interference pattern recorded from a distant muscle when the electrodes are intended to 

monitor another muscle.  Crosstalk is an issue that can be misleading when EMG is 
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explained by the properties of volume conduction.  Simulation and analyses have shown 

that the crosstalk can neither be measured nor eliminated with the existing technology.  

Therefore, it should be recognized while utilizing EMG to estimate muscle forces 

[Farina, Merletti and Enoka, 2004].   

Table 2.1:  Factors that Influence Surface EMG [Farina, Merletti, and Enoka, 2004] 

Non-physiological 

Anatomic 

 

 

 

 

 

 

 

 

Detection System 

 

 

 

 

 

Geometrical 

 

Physical 

 

Physiological 

Fiber membrane 

properties 

 

 

 

Motor unit properties 

 

Shape of the volume conductor 

Thickness of the subcutaneous tissue layers 

Distribution of the MUs territories in the muscle 

Size of the motor unit territories  

Distribution and the number of fibers in the MU territories 

Length of the fibers 

Spread of the endplates and tendon junction within MUs 

Spread of the innervations zones and tendon regions among MUs 

Presence of more than one pinnation angle 

Skin electrode contact (impedance or noise) 

Spatial filter for signal detection 

Inter-electrode distance 

Electrode size and shape 

Inclination of the detection system relative to the fiber 

orientation 

Location of the electrodes over the muscle 

Muscle fiber shortening 

Shift of the muscle relative to the detection system 

Conductivities of the tissues 

Amount of the crosstalk from the nearby muscles 

 

Average muscle fiber conduction velocity 

Distribution of the MU conduction velocities 

Distribution of the conduction velocities within in MUs  

Shape of the intracellular action potential 

Number of recruited MUs  

Distribution of motor unit discharge rates 

Statistics and coefficient of variation for discharge rate 

MU synchronization 
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2.2. SURFACE EMG AMPLITUDE ESTIMATION TECHNIQUES 

If the EMG amplitude is defined as the standard deviation of the raw EMG signal, 

then it can be estimated by applying standard statistical techniques [Clancy and Hogan, 

1997].  Since raw EMG is a stochastic process in nature, its statistical processing can be 

used for predictive purposes.  The estimation of the EMG amplitude has been refined and 

improved since the early EMG amplitude developed from a simple rectifier and low-pass 

filtering [Imnan et al., 1952].  The state of art EMG amplitude processing includes six 

stages that will be discussed separately after a brief presentation of the complete process.   

2.2.1. Standard EMG Amplitude Estimation 

 The most common technique of detection for EMG amplitude is the rectification 

process followed by a smoothing step.  According to Hof and Van Den Berg (1981), the 

recorded EMG signal is described as the product of a zero-mean stochastic process with 

the time-varying EMG intensity.  Therefore the intensity of the EMG signal (EMG 

amplitude) can be obtained by proper rectification and smoothing [Hof and Van Den 

Berg, 1981].  The early researchers in the field studied and utilized non-linear analog 

circuits, such as a full wave rectifier and a low pass filter made of simple passive 

components (resistors and capacitors), to detect the signal [Bigland and Lippold, 1954].  

This method eventually led to the use of the statistical moving average mean absolute 

value (MAV) and the moving average root mean square (RMS).  

Moving Average Mean Absolute Value: ∑
+−=

=
t

Nti

it x
N

MAV
1

1
  (2.1) 

Moving Average Root Mean Square: ∑
+−=

=
t

Nti

it x
N

RMS
1

21
    (2.2) 
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where in both expressions  N is the number of samples in each smoothing window 

of the moving average filter; t is the time at which this interval starts; and xi is the 

signal being smoothed in the time-domain.   

EMG amplitude can also be computed in software using either one of the above 

formulae.  The amplitude estimates found using RMS and MAV calculations exhibit very 

similar performance.  However, the MAV method has been initially used more than the 

RMS, because of the lesser amount of time necessary for computations. Currently, the 

computation time is not as problematic especially when processing is performed offline. 

The process of detection is followed by smoothing and relinearization.  The 

method of accomplishing the two last steps differs between RMS and MAV.  In the case 

of RMS, the detection of the signal is achieved by squaring all the terms.  The resulted 

squared terms are smoothed by taking their average and then relinearized by taking the 

square root of the mean.  The detection for the MAV method is done by taking the 

absolute value of the terms.  The result is smoothed by taking the average of these terms.  

In this case, there is no need to relinearize.   

2.2.2. Advanced EMG Amplitude Estimation 

The EMG signal processing is a crucial factor in the way that EMG amplitude is 

interpreted and used in different applications.  Therefore, specifying and understanding 

the steps involved in the processing technique is extremely important.  The estimator has 

evolved from the use of a simple rectification and a low-pass filter.  An advanced EMG 

amplitude estimator consists of the following six stages (Figure 2.5):   

1. Noise rejection filter 

2. Adaptive whitening 

3. Multiple Channel Combination and Gain Normalization  
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4. Rectification and Demodulation 

5. Smoothing 

6. Relinarization 

 

Figure 2.5:  Six Stages Multi-Chan-Whit EMGamp Processor [Clancy et al., 2001] 

 

In the above figure, inputs mk (k = 1-4) are the recorded signals from the surface 

electrodes placed on top of each of the muscle groups.  The output )(ˆ ts  is the estimated 

EMG amplitude (EMGamp).  The pictorial presentation of the signal transformation for 

each of the channels is given in Figure 2.6.   

 Each of the surface EMG signal mk is transformed to the EMG amplitude kŝ  after 

passing through all the stages of the processor.  In the first stage, motion artifact is 

attenuated with a high-pass filter.  In the second stage, the signal is whitened.  The 

adaptive whitening has demonstrated better performance for low-amplitude levels.  Stage 

three rectifies the signal and then raises it to a power to make it nonlinear.  In stage four, 

the demodulated samples are averaged (smoothed).  In stage five, the signal is 
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relinearized by raising it to the inverse of the power applied previously.  During the 

“Detect” and “Relinearize” stages, d=1 for MAV and d=2 for RMS. 

 

Figure 2.6:  Single-Chan-Whit process for EMGamp estimation [Clancy et al., 2004] 

 The smoothing step is omitted when the EMG amplitude obtained is used to estimate 

torque.  Additional detail of these steps is given in the following sections. 

2.2.3. Noise Rejection Filters 

High pass filters, prior to RMS and MAV, are used to eliminate the noise from 

motion artifact.  The power density of motion artifact is mostly below 20 Hz; therefore, a 
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high-pass filter with cutoff frequency between 10-20 Hz is sufficient to reduce/eliminate 

these effects.  Cutoff frequencies greater than 20 Hz can cause loss of EMG signal, 

considering that the roll-off of the real filters can coincide with the median frequency of 

the EMG signal, especially during fatigue [Clancy, Morin, and Merletti, 2002].  The high 

pass filter can be analog incorporated into the hardware instrumentation and/or digital 

implemented in software.  The advantage of using digital filters is the ease of 

implementing high order filters to achieve sharp roll-off and eliminate more of the noise 

power ensuring that the loss of useful information is minimal.  In some cases, analog 

filters are used in addition to digital filters to prevent saturation caused if the EMG signal 

is corrupted by large amplitude motion artifact.   

2.2.4. Adaptive Whitening  

The whitening step is recently included in EMG signal processing software 

algorithms.  The term whitening originates from the power of the white light spectrum 

spreading out uniformly over all frequencies.  Whitening an EMG signal is the process of 

decorrelating the neighboring samples in the time domain.  Doing so, the statistical 

bandwidth increases therefore the approximation of standard deviation is more accurate 

[Bendat and Piersol, 1986].  The adaptive whitening removes the additive noise described 

in the physiological model of EMG created by Clancy and Farry (2000) presented in 

Figure 2.7.   
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Figure 2.7:  Model of EMG used for adaptive whitening filters [Clancy and Farry, 

2000]   

A more detailed description of the model and the math behind it can be found in the 

original source.  Briefly, the signal wi is a zero mean Gaussian random process of unit 

variance that serves as a start for modeling the EMG.  This signal is passed through a 

shaping filter, Htime that creates the low-pass effect of the tissues and skin layers on real 

EMG signal while still maintaining unit standard deviation.  The output (ni) is then 

multiplied by the amplitude of EMG (si) resulting to the noise-free EMG (ri). The signal 

vi is a zero-mean random process representing additive electronic noise and random noise 

from  the electrode-skin interface that is summed with ri to complete the model of the 

measured surface EMG, mi.  Recalling the physiological description of EMG in the 

previous section, this model is consistent with the character of the raw EMG in Figure 

2.4. 

The shape of adaptive whitening filters is formed based on the power spectral 

density (PSD) of the noiseless signal and the additive noise.  Briefly, the shape of the 

original whitening filter is the inverse square root of the PSD taken from the true EMG 

signal.  The adaptive whitening involves incorporating a noise attenuation stage that 

operates based on the relative power of the signal over the existing noise.  Adaptive 

whitening is necessary, because it is observed that the noise exhibits a larger relative 
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magnitude during low level contractions, where the relative EMG intensity is lower.  The 

time duration of the whitening filter is short; hence, the EMG amplitude remains 

essentially constant during that period, making the adaptive whitening process quasi-

stationary [Clancy and Bouchard, 2001]. 

 

Figure 2.8:  Adaptive whitening of EMGamp estimation [Clancy and Farry, 2000]      

The whitening process proposed by Clancy and Farry (2000) includes three stages 

used to improve amplitude estimation (Figure 2.8).  Without including the details (they 

can be found in the mentioned source) the first stage of this process whitens the noiseless 

EMG amplitude si, but also a filtered version of the additive independent noise vi.  The 

second stage optimally estimates the noise-free whitened signal im  by adaptively 

removing the noise through a Wiener filter.  The third stage applies an adaptive gain 

determined based on the transformations of EMG signal from the two previous stages.  

This step is used to maintain the variance of the EMG signal throughout the complete 

whitening stage [Clancy and Farry, 2000]. 
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2.2.5. Multiple Channel Combination and Gain Normalization 

This step involves the combination of EMG recordings obtained from several 

electrodes placed adjacent to each other, on the skin overlying the same muscle.  The 

reason for the combination of multiple channels is that the SNR improves with the 

increase in the volume of muscles recorded.  Since the gain and the distance from the 

muscle differ from electrode to electrode, the combination of the recordings is followed 

by the gain normalization process.  This ensures equal contribution from each of the 

recordings, and can be considered as decorrelation of the signal spatially.  Research has 

shown that using several electrodes for measuring the EMG from a muscle results in 

more accurate EMG amplitude estimation.  SNR performance improvements of up to 

91% have been observed using multiple channels, as compared to the results from a 

single channel processing [Hogan and Mann, 1980b].  There are also some disadvantages 

to the multiple electrode recording combination including that the chance of defects that 

may arise due to noise, shorted electrodes, etc. is increased with the number of channels 

[Hogan and Mann, 1980a].  

2.3. BIOMECHANICAL SYSTEM MODELING TECHNIQUES 

System identification is a study of the dynamics and physical behavior of systems 

under external disturbances.  Specifically, it is a set of standardized guides on building 

system mathematical models based on observations made on system reactions.  The 

external data that can be manipulated and measured by the user are referred to as inputs 

and others as disturbances, even though most of the time their difference does not affect 

the modeling process.  The measured/observed response of the system is referred to as its 
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output.  This section gives a brief description of the system identification.  Detailed 

reference of the models and system identification techniques are found in Ljung (1999). 

The dependence of the recorded EMG signal and muscle tension on mutual 

physiological factors inspires on-going research work to develop mathematical models 

relating EMG to torque.  The experimental studies have explored both linear and 

nonlinear models to achieve better accuracy.  Some researchers have even built complex 

models that describe the details of muscles, however little or no improvement is seen in 

doing so.  Keeping in mind the ultimate goal of this research, this section also illustrates 

the forgoing theory of mathematical modeling with some EMG-torque examples found in 

the literature.  

2.3.1. Overview of Modeling Techniques 

Modeling of the complex relationship between muscular activity and torque has 

been approached in two different methods; a priori (morphological) and a posteriori 

(black box) type of modeling techniques [Westwick, 1995]. The morphological modeling 

technique involves designing a model based on the physical characteristics of the system.  

The parameters are flexible and well adapted to the system itself.  The drawback of this 

method is the large number of parameters that result in a high level of complexity.  

Additionally, it requires a thorough understanding of the system structure, while most of 

the times, the system is unknown and it is considered as a black box (Figure 2.9).  The 

black box type of modeling is referred to as system identification, and it is used to obtain 

a relationship between inputs and outputs, rather than determining the structure of the 

system.  Although this modeling technique is more practical than the first one, the results 

require careful interpretation and validation with the physical concepts.   
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Figure 2.9:  System Identification Problem (black-box type of modeling) 

The construction of a model via system identification commonly involves three 

steps.  The first step is input/output data collection, which is mostly completed through 

prior experiments.  The second stage is narrowing the model choice to several that fit the 

system physical capabilities.  The last step is model validation, which involves 

performance error measures.  If this last step fails to achieve the error requirements, than 

the steps are repeated until the desired results are obtained.  The data collection process is 

explained in detail in another chapter, the following sections describe basics of system 

identification standard models.  The types of models described in this study are linear 

time invariant.  Even though these types of systems are limited, the theory developed 

through them can be used to approximate real systems. 

2.3.2. Parametric System Identification 

The parametric model is a set of differential or difference equations that describe 

the operation of the system in terms of inputs and outputs.  These equations also include a 

number of parameters that can be varied to alter the behavior of the model.  The values of 

the parameters are numerically estimated to give the best agreement between the 

experimentally measured output and the model estimated output.  The matching criterion 

is usually the minimization of the squared error, where error is defined as the difference 

between the measured and predicted outputs. 
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 Parametric system identification is basically a simplification of general standard 

equations for dynamic systems.  Figure 2.10 shows a general block diagram of a dynamic 

system.  Although many are tempted to use a large number of parameters to describe the 

system, the number of parameters to identify should be small.  The accuracy of 

coefficients estimation decreases with the number of the parameters to be estimated 

[Ljung, 1999]. 

Figure 2.10:  Generic Dynamic System Block Diagram (discrete time signals) 

The general equation (Z-transform) for the dynamic system is: 
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The polynomials represent the components used to find the transfer functions (eq. 2.4) 

derived from the state space equation of the system behavior.  The shift operator z
-1

 is 

consistent with the z-transform and the negative power represents the right shift in 

sample-time.  In equation 2.3 the term z
-d

 next to coefficient matrix [B] represents the 

time lag between input and output which means that some leading coefficients of [B] are 

zero when there is a delay in the system.  The order of the polynomials is described by 

na, nb, nc, nd and nf.  The values of these variables are determined in the process of the 

system identification, to better match the behavior of the system. If both sides of the 

equation are divided by the feedback term A(z
-1

), then: 
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where the input terms next to u(k) can be grouped to form the transfer function G(z
-1

) and 

disturbance terms next to e(k) form H(z
-1

).  In other words, G(z
-1

)  and H(z
-1

) are the 

transformations of the inputs and disturbances, respectively to obtain the output [Ljung, 

1999 Chapter 4].  

Table 2.2:  Common Black-Box Models, Simplification of General Expression 

POLYNOMIALS USED NAME OF THE MODEL 

B(z
-1

) FIR – Finite Impulse Response (na = 0) 

A(z
-1

); B(z
-1

) ARX – Auto Regressive with eXogenous  input 

A(z
-1

); B(z
-1

); C(z
-1

) ARMAX - Auto Regressive Moving Average with eXogenous  output 

A(z
-1

); C(z
-1
) ARMA - Auto Regressive Moving Average 

A(z
-1

); B(z
-1

); D(z
-1

) ARARX - Auto Regressive Auto Regressive with eXogenous  output 

A(z
-1

); B(z
-1

); C(z
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); D(z
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) ARARMAX – combination of ARARX with Moving Average 

B(z
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); F(z
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) OE -  Output Error 

B(z
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); D(z
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) BJ – Box Jenkins 
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Simplifying the general equation 2.3 or 2.4, there are several types of standard 

models that can be developed.  Table 2.2 summarizes the special case of a priori type of 

modeling techniques.  System identification has no restriction on the number of inputs 

and outputs to the model.  The common use of single/multiple input and output systems 

has created a specific nomenclature for each of the cases.   

� SISO – Single Input, Single Output 

� MISO – Multiple Inputs, Single Output 

� SIMO – Single Input, Multiple Outputs 

� MIMO – Multiple Inputs, Multiple Outputs 

The system identification literature describes the solutions and techniques for the single 

input, single output models (SISO); however, superposition enables the use of the 

techniques for any case. 

2.3.3.  EMG-Torque Relationship Modeling 

There are many applications that the tension exerted by the muscle group during 

the various activities is useful, however direct measurements are unnatural, invasive, 

expensive, and they may also not be possible presently.  The assumption of torque being 

related to the nervous excitation of the individual muscle or the muscle group, relates 

torque to the magnitude of electrical muscle activity (EMG signal).  A relation between 

EMG and torque simplifies the situation, because EMG is readily obtained by either 

surface or wire electrodes depending upon whether the muscle group or individual 

muscle measurements are needed [Perry and Bekey, 1981].  Although many studies have 

made a great impact in the EMG field, there is no consensus on a standardized set of 
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models that relate a specific muscle (muscle group) to tension (torque).  In addition, the 

progress in obtaining EMG amplitudes is not yet incorporated into the existing models.   

The development of generic prediction models has been less successful, perhaps 

due to variations in muscle composition.  However, different procedures used to record 

and analyze EMG also need to be considered when determining the relationship between 

muscular forces and the EMG signal.  Several investigators have agreed that it is 

necessary to incorporate the control strategy for the muscles being investigated, 

including: the force generation rate, joint angle, muscle length, and muscular co-

activation [Solomonow et al, 1990].  It is also determined that changes in recording 

procedures, including variations in electrode placement, recording configuration and limb 

position, significantly alter the EMG-torque relationship of the biceps and triceps brachii 

[Woods and Bigland-Ritchie, 1983].   

The interaction of muscles during contractions must be accounted for during 

analyses.  Principal components have been used to minimize the effects of cross-talk, the 

overlapping affects of independent variables, but generalization may not be possible due 

to the large number of assumptions and originality of the situations examined [Hughes 

and Chaffin, 1997].  In general, predicting torque is difficult because so many factors can 

influence the resulting exertion.  The muscle being investigated, procedures 

implemented, and the form of the force-EMG relationship are vital components for 

accurately determining force levels.  Various approaches have utilized relatively simple 

models under controlled conditions to determine the torque produced by different 

muscles groups about different joints.   
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Studies of the relationship between surface EMG and force have found that there 

exist both linear and non-linear relationships.  Woods and Bigland-Ritchie (1983) 

investigated the degree of linearity in the torque to EMG relationship and found that 

linearity existed for muscles such as the adductor pollicis and soleus.  They have also 

found that other muscles, such as the biceps and triceps, behaved non-linearly from 0-

30% MVC (maximum voluntary contraction), and then linearly above this range.  On the 

other side, Moritani and DeVries (1978) determined that a linear relationship existed 

between the electrical muscle activity of the biceps brachii and the muscular tensions 

produced during exertions.  Others have concluded that surface EMG, after processing 

using rectification and integration, varies linearly with tension generated at a constant 

muscle length or during contractions with constant velocity [Milner-Brown and Stein, 

1975].   

Characteristics of the muscle of interest may also influence the EMG to torque 

relationship.  Muscles of uniform fiber composition exhibit a linear relationship while a 

random non-even composition of fibers behaves more nonlinearly [Woods and Bigland-

Ritchie, 1983].  The main fiber type can also influence the linearity with slow twitch 

muscles behaving more linearly as compared to the non-linear characteristics of fast 

twitch fibers [Zuniga and Simons, 1969].  Furthermore, the muscles display nonlinear 

behavior at lower torque levels due to selective recruitment of motor units at different 

distances from the electrodes.  In addition, the dependence on frequency coding (the 

frequency of the incoming action potentials) for force modulation in the muscles results 

in linearity while muscles such as the bicep brachii recruit throughout the total range of 
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force and behave nonlinearly, with the discontinuity at approximately 30% of the 

maximum voluntary contraction [Woods and Bigland-Ritchie, 1983].   

The degree of linearity is dependent on the muscle being investigated, but other 

factors must be also considered.  Milner-Brown and Stein (1975) suggest sampling bias, 

synchronization, and tension non-linearity also influence the behavior of EMG to torque 

relationship.  Frequency coding has been shown to increase the linearity [Ray and Guha, 

1983], whereas tension, length, and velocity characteristics within muscles are 

nonlinearities that affect the overall relationship [Perry and Bekey, 1981].  Moreover, 

Zuniga and Simons (1969) determined that there is a nonlinear relationship between 

averaged EMG potential and muscle tension.  In addition to muscle characteristics, the 

electrode arrangement, type of measurement, fatigue, and level of physical conditioning 

level may influence the apparent EMG to torque relationship [Zuniga and Simons, 1969].   

Recent advances in the research field have demonstrated that linear models can 

predict shoulder forces during isometric contractions [Laursen et al., 1998].  

Additionally, Milner-Brown and Stein (1975) concluded that there was a simple linear 

relationship between surface EMG and force within the first dorsal interosseus muscle of 

the hand.  However, on the other side, Woods and Bigland-Ritchie (1983) have found 

that under isometric conditions, the relationship between integrated, smoothed, or 

rectified EMG and muscle force depends on the physiological characteristics of the 

muscle.  If the muscle mechanics are known, they can be incorporated into a Hill-type 

model that can be used to predict muscle forces [Dowling, 1997].  Linear algebraic 

equations may not suffice when attempting to explain dynamic situations.  The velocity 

of contractions and the tension produced can be related using Hill’s hyperbolic equation 
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[Perry and Bekey, 1981].  All the above show that the degree of linearity depends on the 

muscle being investigated, many muscles seem to exhibit a linear relationship between 

force and EMG, but nonlinear models seem to capture more of the physiological 

behavior.  The usage of linear or nonlinear model depends on the focus of the research 

work and it is really a matter of perspective of the researchers.   

Although clear progress has not been made toward development of generic 

models, some of the models developed for specific cases have made impact in the field.  

Armstrong et al. (1982) used rectified EMG signals of the forearm flexor muscles to 

predict the finger forces produced during tasks involving pinching, grasping and pressing.  

Grant et al. (1994) predicted grip force from EMG measures and ratings of perceived 

exertions, and reported that as much as 74% of the variation could be explained.  

Sommerich et al. (1998) studied typing tasks in an attempt to determine a dose-response 

relationship for general hand intensive tasks and create generic biomechanical 

assessments.  Buchanan et al. (1993) used surface EMG and anatomical parameters to 

estimate isometric muscle forces about the wrist using an EMG coefficient method.  

Although there are limitations with this model, including the lack of repeatability and 

restriction to “static isometric conditions,” torque at the wrist could be estimated with 

coefficients of variation less than 10%.   

Several studies have examined muscle torques produced about the elbow.  A 

multi-channel surface EMG approach by Clancy and Hogan (1997) was used to develop a 

third order polynomial algebraic relation with an estimation error of approximately 3% to 

predict torques about the elbow.  Furthermore, a model created by Wyss and Pollak 

(1984) approximated muscle forces about the elbow with 10% error.  The EMG-torque 
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relationship of abdominal muscles required quadratic regression but still did not account 

for all of the variation around a linear regression line [Stokes et al., 1989].  Extensive 

work has been conducted on the lumbar musculature during static and dynamic situations 

with EMG based models being in the focus [Hughes et al., 1994; McGill, 1992; 

Nussbaum et al., 1995].   

In summary, there is a substantial amount of work investigating surface EMG to 

torque models which confirms the importance of utilizing EMG as a physiologically 

powerful tool.  The above experimental studies are not constrained only to static 

conditions, individual progress has been made establishing both linear and nonlinear 

relationships for quasi-isotonic (slowly force varying) and even extending to fully 

dynamic conditions.  While the accomplishments have made an impact in the field, there 

are clear problems that still exist in some of these studies.  First, most of the earlier (more 

than two decades ago) investigators assumed that the antagonist muscle can be safely 

neglected, since the mechanical activities of agonist and antagonist muscles are 

considered independent from each other.  Secondly, even though calibration is a common 

practice nowadays, some researchers neglect the importance of it while some others go 

beyond and suggest calibrating to each subject separately [Hasan and Enoka, 1985].   

The most relevant factor that should remain from this review is the necessity for a 

method to obtain accurate torque estimation.  There is no consensus on the degree of 

linearity, because the findings are influenced by many factors, such as the dynamic range, 

the level of the force contraction, and the size of the muscles.  The level of the details and 

the type (physiological or black-box) on the various EMG-torque models is also relative 

to the focus of the study and it is driven by the main objective, improving the accuracy of 
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torque predictions.  Although the same objective is intended, several important 

contributions in the literature, such as combination of multiple surface EMG recordings 

to improve the SNR and the adaptive whitening filters to improve the statistical 

bandwidth, have not yet been used to improve torque estimations.   

The experimental data used for the present research thesis are carried over from 

previous research.  This prior research also modeled EMG amplitude to torque 

incorporating both agonist and antagonist muscles during tasks that involved force 

varying contraction.  However, it avoided several of the earlier mentioned difficulties by 

examining constant posture efforts (similar to strict isometric conditions), whereas many 

of the above researchers examined fully dynamic tasks.  These simplifications were 

intended to allow for an assessment of the newly developed EMG amplitude processors.  

The results were positive demonstrating a clear improvement in torque prediction when 

advanced processing techniques were used to obtain EMG amplitudes.  This present 

research is anticipated to further investigate the results for more profound knowledge and 

to re-examine the encountered model convergence problems. 
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CHAPTER 3. SURFACE EMG TO TORQUE MODEL DESIGN  

In the previous chapter there was a brief review of the literature achievements on 

EMG-torque relationship.  As mentioned, there is not any generic model established yet, 

therefore researchers create models that best fit their design application or that are 

derived from earlier experimental work (Hill-type model).  The primary focus of this 

research thesis was not to find the best model, but rather demonstrate the importance of 

incorporating the advances of EMG amplitude processing into each model.  Hence, the 

results presented in later chapters will display the improvements in EMG-torque model 

performance as a function of EMG amplitude method.  Since the EMG-tension 

relationship for each individual muscle is not possible, the EMG-torque relation can 

alleviate some issues such as measurements for mechanical verification, co-contraction, 

and cross-talk.  This chapter describes the design process of a linear EMG-torque model 

that will be used to compare four different types of processors. 

3.1. EMG-TORQUE MODEL DESIGN  

This section is a summary of the theory involved to design the EMG-torque model.  

The concept of torque for the skeletal muscles is derived from the motion of the bones 

about a joint due to muscle contractions.  Since surface EMG signal measures the activity 

of the skeletal muscles, a mathematical relationship can be established between the EMG 

amplitude and net joint torque.  Using the principles of system identification, the model is 

standardized to a parametric type ARX (FIR) model.   



 35 

3.1.1. Physical Interpretation of the EMG-Torque Model 

   The level of the tension produced in the muscle is controlled through the 

recruitment of motor units and their firing rate adjustments.  The motor recruitment is 

hypothetically
1
 done orderly based on the size of the muscle fibers.  For tasks that involve 

slow force variations, as the tension level varies from low to high, the low frequency 

motor units are the first to be activated while the ones with high minimum frequency are 

the last [Hannerz, 1974].  The tension developed by the muscle also depends on both the 

conduction velocity and the geometry of the muscle fibers.  The assumption that 

muscular force depends only on the firings of the motor units (rate and number of units) 

makes the relation between EMG to force non-linear in a sense that the number of MUs 

recruitment is higher for the higher contraction levels.  As mentioned, the dependence on 

the conduction velocity and the geometry dependent parameters also contribute to the 

non-linearity.   

 The surface EMG is a non-invasive, easily obtained, measure of electrical activity 

in the skeletal muscle.  Since both electrical and mechanical activities are mutually 

related through several mentioned physiological parameters, relating EMG amplitude to 

muscle tension would be ideal.  However, there are two fundamental issues with this 

model.  First, it is extremely difficult to measure EMG from only one muscle.  In 

practice, surface mounted electrodes capture EMG generated from the muscles in a 

surrounding area, which are not necessarily the ones under investigation.  This condition, 

known as cross-talk and already discussed in Section 2.1.3, is one of the main factors 

affecting EMG signal interpretation.  Additionally, there is no practical method for 

                                                 
1
 Based on the EMG models created for isometric low force level contractions 
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accurately measuring the tension provided by an individual muscle.  These two factors 

prevent the use of EMG amplitude to force models in terms of isolated muscle 

contribution as a method for evaluating performance of an EMG amplitude estimator 

[Clancy and Bouchard, 2001].   

 Another mechanical activity commonly related to EMG is the torque produced 

about a joint as muscular force is exerted.  The problem of cross-talk is still present.  

Although unlike in the case of EMG to individual tension relation, it is not as influential 

to the net torque estimates [Clancy, Morin, and Merletti, 2002].  In addition, the model 

performance can be easily quantified by comparing the torque estimates to the actual 

torque about the joint that can be measured using a dynamometer.  The prediction of the 

net torque requires the usage of both agonist and antagonist muscles.  Muscles that 

perform a desired action are known as agonist muscles, whereas those that oppose the 

action are antagonist.   

 Some researchers have separated the contributions of agonist and antagonist 

muscles, assuming that the agonist muscles are inhibited while the antagonist ones are 

contracted.  Doing so, the net torque is a result of the inhibition or agonist muscles 

[Lawrence and De Luca, 1983; Vredenbregt and Rau, 1973; Woods and Biggland-

Ritchie, 1983; Zuniga and Simons, 1969].  On the other hand, Hasan and Enoka (1985) 

have experimentally determined the existence of co-contraction in contraction levels 

exceeding 20% MVC.  Therefore, in the cases of 50% MVC it is necessary to 

acknowledge the contribution of both agonist and antagonist muscles.   
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Figure 3.1:  Raw Surface EMG to Torque Model [Clancy and Hogan, 1997] 

 

Four surface electrodes affixed on top of the muscles (biceps and triceps) record the EMG signals.  After amplified, 

filtered, and sampled they are applied to the EMG amplitude processor.  The EMG amplitude estimations for 

flexion F(n) and extension E(n) are decimated to obtain F(k) and E(k) respectively.  The amplitude estimates are 

used as two inputs to a system identification algorithm to predict the net torque about the joint (T).   
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Figure 3.1 shows a block diagram modified from the diagram from Clancy and Hogan 

(1997) and represents the model that is used to predict torque about the elbow joint from 

biceps and triceps muscle groups considering both agonist and antagonist muscles.  Even 

though the contributions of flexion and extension are attributed to agonist and antagonist 

muscles, the model is designed based on their algebraic sum, rather than their 

independent contributions.  The EMG amplitude processing (first stage from the left of 

Figure 3.1) and the data pre-processing (second stage in the same figure) stages will be 

discussed in detail in subsequent chapters.  For now, it is assumed that the data are 

available and ready to be used in the EMG-torque model.   

3.1.2. Mathematical Modeling for EMG-torque 

Several studies, as mentioned in section 2.3.3, have determined that there exists a 

mathematical relationship between EMG-torque (linear or nonlinear).  The internal 

change in the muscles may be produced by processing the EMG signal [Perry and Bekey, 

1981].  It is not clear whether non-linear or linear models are the best choice.  The linear 

models are widely used because of the simplicity in their design associated with the linear 

least squares solution [Inman et al, 1952; Thelen et al. 1994; Clancy et al., 2001], 

whereas the researchers using nonlinear models argue that they better describe the EMG 

physiological nature [Solmonow et. al, 1986; Vredenbregt and Rau, 1973; Woods and 

Biggland-Ritchie, 1983; Zuniga and Simons, 1969]. 

Without generalizing the model results, Gottlieb and Agarwal (1977) related EMG to 

torque using the following transfer function: 
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where ERA is the EMG amplitude obtained from the averaged rectifier output [Gottlieb 

and Agarwal, 1977].  This model is the Laplace transform of the differential equation 

with two degrees of freedom (time constants) and it assumes a continuous time domain 

system/signal, but it is agreed that it is easier to work with difference equations that 

represent the system for discrete time signals (samples).  The conversion amongst them is 

straight-forward if the sampling rate is known.  Another limitation is that the model can 

be used only for “isometric” tasks, because it does not include any physiological 

parameters (e.g. joint angle). 

The model used for the purpose of this thesis is created by modifying the EMG-

torque (ARX) model used by Stephan Bouchard (2001).  The proposed model is an FIR 

(zeros-only) model and the degrees of freedom depend on the order of the system.  

Bouchard’s model includes the feedback matrix of the ARX model, which is equivalent 

to the poles of a system.  Even though it may require higher order to capture all the 

dynamics of a system, a zeros-only model is mathematically possible and easier to 

implement.  The model form is written as:  

( ) ( ) ( ) ( )
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nbkEekEekEekT

nb

nb

−++−+−+

−−−−−−−=

�

�

21

21

21

21
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Referring to Figure 3.1 that shows the complete EMG-torque modeling process and the 

above equation, the decimated flexion [F(k), where k is the decimated discrete-time 

sample index] and extension [E(k)] EMG amplitudes were related to torque [T(k)] via the 

dynamic, linear, FIR model [Ljung, 1999, pp. 80–83].  In equation 3.2, the ei represent 

the extensor model coefficients, the fi are flexor model coefficients.  The nb is the model 

order as defined in section 2.3.2.  The model mathematical expression in 3.2 does not 
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change for the time-varying EMG amplitudes that are not decimated, therefore only the 

final results are presented.    

3.2. MODEL SOLUTION 

The model represented in equation 3.2, is the FIR version of the ARX model.  This 

model is obtained using the standard linear difference equation of the ARX model that is 

found using the information given in Table 2.2 [Ljung, 1999].  Ljung writes the general 

model as: 

y(t) + a1y(t-1)+… + anay(t-na) = b1u(t-1)+...+bnbu(t-nnb) + e(t).   (3.3) 

The adjustable parameters in the equation are put in matrix form 

θ = [a1 a2 … ana    b1  b2 … bnb]
T
.   (3.4) 

The FIR model used for EMG-torque is the special case of ARX, obtained by setting the 

parameter na=0.  The system is dual input – single output, therefore the equation is 

adapted for the MISO case.  In equation 3.2, the coefficients -e1-nb and f1-nb represent 

Ljung’s b1-nb coefficients.  Analogous coefficient matrix is given by: 

θ = [-e1   - e2 … -enb    f1   f2 … fnb]
T
   (3.5) 

The vector of the known input EMG amplitude samples (decimated) are represented in the 

φ(k) vector.  If the measurements are repeated over time then the vector φ(k) becomes a 

matrix with N rows, where N is the number of samples.  In general N >> nb for the system 

identification to be possible.  The inputs to this EMG-torque model φ(k) are written as:    
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The output matrix T(k) for N samples is given by: 
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The problem involves solving the equation 3.7 to obtain the coefficient matrix.   

TkkT θϕ ⋅= )()(   (3.7) 

The solution can not be obtained by taking the inverse of the data matrix, [φ(k)]
-1

, because 

the inverse of the matrix exists only for square matrices (in this case the number of the 

unknowns exceeds the number of the existing linear equations).  Therefore there is not a 

unique solution, but rather a method referred to as linear squares error minimization of 

error can be used to obtain the “best-fit” coefficient matrix.  The optimal value for θ is 

referred to as θ̂  and is given as: 
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Applying vector calculus concepts, the minimum is denoted as the value at which the 

gradient of the matrix is zero.  Hence, the minimum value of θ̂  is found by computing 

the gradient of the difference between the measured output and the predicted output 

||T(k)-φ(k)θ||.  Therefore the coefficient matrix producing minimum error is equal toθ̂ .  

The gradient of the error matrix is expressed as: 

θϕϕϕθ )()(2)()()()()( kkTkkTkkTE TTT +−−=∆         (3.9)   
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Equating the expression to zero, and solving for θ, yields to the minimization matrix in 

the least squared sense. 
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After calculatingθ̂ , an estimate of the torque about a joint can be calculated as the 

product of the EMG amplitude estimates from both extensor and flexor muscles and θ̂ .  

In practice, the coefficient matrix θ̂ is computed using a “training” dataset, then the 

resulting θ̂  is used to estimate the torque produced by another independent “test” dataset.  

The difference between the estimated torque and the real torque in the test dataset is the 

error and it is used to quantify the model performance.  More on the testing procedure 

will be described in subsequent chapters. 
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CHAPTER 4. DATA COLLECTION AND ANALYSIS METHODS 

This chapter explains the data collection method that followed some of the described 

literature suggestions.  Then, it continues by describing the process of obtaining EMG 

amplitudes from four different processors.  The EMG amplitude estimates are also 

decimated to improve the model performance by eliminating erroneous spikes existent in 

estimated torque as will be in detail discussed later.  The entire pre-processing procedure 

is presented in a block diagram form and it is utilized as necessary during performance 

testing.  System identification involves two main steps, training and validation.  During 

training, a coefficient vector is fit to the input data based on the least squares error 

minimization.  Model validation requires utilizing a distinct dataset to estimate the output 

using the optimal coefficients.  The train-test along with model performance measures 

procedure is explained in detail in the present chapter. 

4.1. EMG DATA COLLECTION 

Recording the EMG signal using surface electrodes faces challenges related to the 

signal power and external/internal noise.  As explained earlier, some of the internally 

generated noise found in EMG system can neither be eliminated nor reduced.  However, 

errors due to recording devices, electrode placement, skin effects, and some other 

external error sources (2.1.3) can be reduced by taking the necessary precautions.  This 

data collection section explains some of the potential noise sources along with some 

suggestions for minimization and then it continues by describing the experiment 

conducted to collect the EMG data used in this project.  The description of the apparatus 

and experimental procedure is brief, since the experiment is not part of this thesis 
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contribution.  More details can be found elsewhere [Clancy, 1999; Bouchard, 2001; 

Clancy and Farry, 2000]. 

4.1.1. Noise Reduction Precautions 

One of the most important sources of error in EMG recording is the placement of 

the electrodes.  The tight spacing of the electrodes in a multiple channel recording can 

produce correlated signals, increases the chance of short circuits, and enables electrical 

coupling.  In addition, the PSD of the recorded EMG signal depends on the location of 

the electrode in relation to the innervation zone (MUAP generation site) the myotendon 

zone and the lateral edge of the muscle [De Luca, 2002].  The center position between the 

innervation on the top and myotendons on the bottom is preferred (see Figure 4.1).   

 

Figure 4.1:  EMG Electrode Placement [De Luca, 2002] 
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The principle of EMG electrode functionality derives from a layer of charge 

created in the interface between the metal of the electrode and an electrolyte solution.  

The charge layer creates a potential gradient that translates into voltage picked up by the 

electrode.  The voltage is dependent on the type of the electrode material, hence it is 

crucial to use electrodes of the same material to minimize the potential difference 

(especially in a multi-channel application).  In addition, some of the power of the initial 

EMG signal is lost due to the effect of skin-electrode impedance.  To reduce its 

impedance, skin is prepared using conducting-paste, rubbing alcohol, or lipid solvents.  

The amplifier is also chosen to have input impedance at least 100 times more than 

expected electrode-skin impedance, thus reducing the power loss even more. [Clancy, 

Morin, and Merletti 2002] 

Surface electrodes suffer from motion artifact due to displacement and 

deformation (stretch) of the underlying skin.  Both effects are minimized by cleansing the 

skin with solvents, rubbing a conductive paste, and affixing the electrodes carefully prior 

to recording EMG.  Motion artifacts can also be reduced through signal conditioning both 

on-line and off-line.  Since the typical power density of these types of motion artifacts is 

below 20 Hz, they can be largely attenuated using high-pass filter at that frequency either 

in the processing software or integrated in the hardware [Clancy, Morin, and Merletti 

2002].   

The cables of the electrodes have an intrinsic capacitance, which if exposed to a 

varying magnetic field (electric field) can produce alternating currents (1-50Hz).  The 

cumulative effect of the voltage created by the product of the skin-electrode interface 

impedance and the displacement current in addition to the magnetic coupling in some 
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cases is comparable to the magnitude of the real EMG.  Shielding the cables can improve 

the magnetic environment, although electrostatic discharges spreading through 

measurements can be a harmful side effect [Clancy, Morin, and Merletti 2002].  The 

usage of active electrodes is a better solution, because the voltage buffer transforms high 

impedance at the electrode to low impedance at the output where the signal is fed to the 

cables [De Luca, 2002]. 

The interference of power line current and its harmonics (60 Hz in U.S. and 50 Hz 

in Europe) can have power densities larger than EMG itself and are a commonly 

appearance in EMG recordings.  The effect of the power lines can be reduced by notch 

filters at 60Hz or by differential amplifiers that have a high common mode rejection ratio 

(CMRR).  The second is preferred, because the notch filters omit real signal in addition to 

the noise.  A CMRR of 90 dB is generally advised in the literature, even though current 

technology can provide a CMRR of 120dB.  The reasons for not using amplifiers with 

120dB at CMRR are the price, their stability, and the power line signal may not be in 

phase [De Luca, 2002].    

4.1.2. Apparatus and Experimental Procedure 
ii
 

 

The experiment conducted to collect this set of EMG data was consistent with the 

suggestions mentioned in the previous section (4.1.1) and literature [De Luca, 2002; 

Merletti, 1999; Clancy, Morin and Merletti, 2002] for noise minimization.  The data 

collection experiment was conducted previously; thus, the experiment description is 

summarized from other sources [Clancy, 1999; Bouchard, 2001; Clancy and Farry, 

2000].  The subjects had signed consent for their participation and proper human studies 

                                                 
ii
 Parts of this section are taken from the paper submitted to the Journal of Biomechanics (attached to 

Appendices) authored by Clancy, E.A; Bida, O.; Rancourt, D. 
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permission was taken prior to the experiment.  The apparatus (Figure 4.2) used to collect 

the EMG data was a Biodex exercise machine (Biodex Medical Systems, Inc., Shirley, 

NY). Each of the subjects were seated in a lightly cushioned seat and secured using 

seatbelts.  The subject's right arm was positioned in the plane parallel to the floor, with 

the shoulder abducted 90
o
, the forearm oriented in the parasaggital plane, the wrist fully 

supinated and the elbow flexed 90
o 

(Figure 4.4).  The wrist was rigidly attached to the 

Biodex dynamometer with a cuff at the styloid process.  The position of the dynamometer 

was maintained throughout the entire experiment [Clancy, 1999]. 

 

Figure 4.2:  Biodex Exercise Machine for the Experiment [Bouchard, 2001] 
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  The skin above the investigated muscles was cleaned with an alcohol wipe and a 

small amount of conducting paste was used to rub the subject’s arm.  The EMG active 

amplifying electrodes (Liberating Technologies Inc. model MYO115, Holliston, MA) 

were placed over each of the biceps and triceps muscles, midway between the elbow and 

the midpoint of the upper arm, centered on the muscle midline.  The two contacts (4 mm 

diameter, stainless steel, separated 15 mm center-to-center) of each electrode-amplifier 

(Figure 4.3) were oriented along the muscle’s long axis. Adjacent electrode-amplifier 

centers were spaced 1.75 cm apart, transversely across the arm.  The ground electrode 

was applied over the acromion process.  Each electrode-amplifier had a gain of 725, a 

common mode rejection ratio of 90 dB at 60 Hz, and a second-order 10–2000 Hz 

bandpass filter.   

 

Figure 4.3:  Surface EMG Electrodes and Acquisition Box [Bouchard, 2001] 

 The output from each of the electrode-amplifier was electrically isolated, 

amplified, and low pass filtered (fourth-order filter at 2000 Hz).  Amplification stage 
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contained a negative gain configuration standard opamp with a selectable gain (-1 to -25).  

Recordings with the two contacts of each electrode-amplifier shorted gave a measure of 

equipment noise, which averaged 2.1±1.7% of the root mean square EMG at 50% 

maximum voluntary contraction (MVC).  The EMG and dynamometer signals were 

sampled at 4096 Hz using a 16-bit A/D converter (Computer Boards model CIO-

DAS1600/16, Mansfield, MA). 

 Fifteen healthy subjects (eight male, seven female; aged 23–65 years) each 

completed one experiment.   

Table 4.1:  Subject Information (Code, Age, and Gender) 

SUBJECT CODE (Exp. LB) AGE GENDER 

02 31 F 

03 49 M 

05 29 F 

07 65 M 

08 43 F 

09 60 M 

10 41 F 

12 62 F 

13 50 M 

16 28 M 

17 58 F 

18 41 M 

19 31 F 

20 23 M 

21 65 M 

 

Subjects initially performed two 2 second MVCs each in flexion and extension, the 

averages of which were used as the subject’s MVCs for the experiment.  Next, they 

performed a 0% MVC (rest contraction) and separate flexion and extension 50% MVCs 

for five seconds, utilizing force feedback on a computer screen.  These contractions were 

used to calibrate the advanced EMG amplitude processors [Clancy and Farry, 2000].   
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 The subjects then performed dynamic (constant-posture, force-varying) target 

tracking contractions positioned as in Figure 4.4.  A computer screen displayed either 

their elbow joint torque (the dynamometer signal) or the algebraic difference between 

real-time biceps and triceps EMG amplitude, as a biofeedback signal.  The EMG 

amplitude difference provided a biofeedback signal that was similar in character to the 

torque feedback, albeit with increased variance.  The computer produced a second 

“pursuit” display on the screen which moved randomly between 50% MVC extension 

and 50% MVC flexion.  The random pursuit profile followed a uniform random 

distribution with a bandwidth of either 0.25 Hz (slow tracking) or 1 Hz (fast tracking).   

 

Figure 4.4:  Subject During Experiment [Bouchard, 2001] 
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Subjects completed 15 slow tracking trials (three sets of five) and 15 fast tracking trials 

(three sets of five), each of 30 s duration.  The subject’s arm was removed from the wrist 

cuff between all recording trials to allow 2–3 minutes of rest to avoid fatigue. 

4.2. EMG AMPLITUDE ESTIMATION METHOD 

For the present study, all data analysis was performed off-line using MatLab (The 

Mathworks, Natick, MA).  In order to determine the influence of amplitude processors on 

torque estimation, four different EMG amplitude (EMGamp) processors were compared.  

In each case, an amplitude estimate was produced in six stages separately for the biceps 

and triceps muscle groups (Figure 2.5).  The design of the EMG amplitude processor is 

explained in detail in the background chapter, while this section describes the experiment 

in a more practical perspective.  Before creating amplitude estimates from the raw EMG 

data (stored in forms of A/D channels for each of the electrode locations), it was 

necessary to calibrate the noise-rejection, adaptive whitening, and spatial uncorrelation.  

The calibration requires the additive noise signal, which in this case is the 0% MVC 

signal recorded while subjects were fully resting.  This recording is assumed to capture 

the 60 Hz noise as well.  The electrode locations encoded in the channel number are 

given in Table 4.2 and further description is found in the APPENDICES: (I).  The A/D 

channels 1-4 are used to estimate biceps EMG amplitude and channels 8-11 are used to 

estimate triceps EMG amplitude in multiple channel processing.  In the case of single 

channel processing, channels 2 and 9 are used for flexion and extension EMG 

amplitudes, respectively.   
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Table 4.2:  A/D Electrode Channels from the Experimental Data 

A/D Channel Contents 

1 EMG: Biceps, most lateral location 

2 EMG: Biceps, lateral center 

3 EMG: Biceps, medial center 

4 EMG: Biceps, most medial location 

8 EMG: Triceps, most medial location 

9 EMG: Triceps, medial center 

10 EMG: Triceps, lateral center 

11 EMG: Triceps, most lateral 

16 Dynamometer 
  

For all processors (Table 4.3), the EMG data were first high-pass filtered at 15 Hz using a 

non-causal, effective 10
th
 order, FIR filter.  The detection was performed with an absolute 

value operation (MAV, d=1) and the smoothing stage was omitted, since smoothing was 

incorporated within the subsequent pre-processing step.     

Table 4.3:  Four Processors Types (Processor 1-4) 

Single Channel Unwhitened (S-CH-UNWHIT) 

Single Channel Whitened (S-CH-WHIT) 

Multiple Channel Unwhitened (M-CH-UNWHIT) 

Multiple Channel Whitened (M-CH-WHIT) 

 

Processor type 1 is the single-channel, unwhitened processor.  The raw EMG signal for 

each muscle group from one of the electrodes located centrally on the muscle was 

digitally high-pass filtered and rectified.  Processor 2 is a single-channel, whitened 

processor obtained by adaptively whitening the same electrode channel as Processor 1 

before the rectification stage.  The adaptive whitening technique is explained briefly in 

section 2.2.4 and it has been implemented in a stand-alone MATLAB toolbox [Clancy, 

2004].  Processor 3 is a four-channel, unwhitened processor.  After rectification, the four 

EMG signals from a muscle group were normalized in magnitude and ensemble 
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averaged.  Processor 4 is a four-channel, whitened processor.  Each of the four channels 

from Processor 3 was adaptively whitened prior to rectification.  The settings for optional 

properties for the amplitude estimation function can be found in APPENDICES:  (II). 

4.3. SYSTEM IDENTIFICATION PROCEDURE 

After estimating the amplitudes off-line using the EMG toolbox, the data were further 

processed as necessary to improve the model performance [Ljung, 1999 pp. 386].  The 

torque estimates were then obtained using a train and test procedure, where the 

coefficients were computed using a train dataset and were validated using another dataset 

referred to as the test dataset.  The performance of the model design was evaluated using 

conventional measures that will be discussed in detail in this section. 

4.3.1. Data Pre-Processing 

 Some of the data manipulation to achieve the desired results involves 

normalization to % MVC and A/D offset subtraction for torque as well as decimation and 

truncation of both EMGamp(s), and torque (Figure 4.5).  Normalization to maximal 

voluntary contraction % MVC is a common practice when trying to relate EMG to torque 

[Merletti, 1999].  The EMG amplitudes estimates were to % MVE (where 100% MVE - 

EMG amplitude level corresponding to 100% MVC) in extension/flexion units; hence, it 

was only necessary to normalize torque to %MVC according to either flexion or 

extension.   
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Figure 4.5:  Block Diagram of EMG Data Pre-processing for System ID Algorithm 
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the end.  Adding up the effect based on the orders of filters in each of the amplitude 

processing stages, it is necessary to subtract 500 ms on each side prior to system 

identification (ID) and 500 ms after it.  The number of samples subtracted was based on 

the new decimated sampling rate.  Additionally, A/D converter offset was subtracted 

from the torque signal to account for imbalance in the dynamometer output. 

4.3.2. Torque Estimation Procedure 

 The EMG data used for this project were previously collected as described.  Data 

were collected from fifteen subjects using a multiple channel data acquisition system.  In 

addition to four channels of EMG amplitudes for each of the muscle groups, the torque 

about the elbow joint was measured using a dynamometer.  As mentioned, for each 

subject, three sets of data recordings were performed.  Within each set of three, data were 

recorded five times using various feedback mechanisms for controlling elbow torque.  

Each of these five subsets was recorded at two different tracking speeds (0.25 Hz and 1 

Hz) totaling to 3 × 5 × 2 = 30 sets of EMG data for each subject.   

 Referring to the model solution in section 3.2, it is required to fit a set of 

coefficients to the input data matrix (EMGamps for flexion and extension) to estimate 

torque.  For convenience the model mathematical expression is repeated here:  

( ) ( ) ( ) ( )
( ) ( ) ( )nbkFfkFfkFf

nbkEekEekEekT

nb

nb

−++−+−+

−−−−−−−=

�

�

21

21

21

21
  (4.1) 

The optimal fit coefficients were determined using a linear least squares solution.  The 

input data matrix φ(k) in section 3.2 was created using the toeplitz routine to increment 

the samples of amplitude estimation (flexion and extension) and the model order as in 

equation 4.1.  The system solution involves matrix inversions that can be implemented 
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using QR-factorization (qr) or the pseudo-inverse (pinv). QR-factorization expresses the 

matrix as the product of a real orthonormal or complex unitary matrix and an upper 

triangular matrix.  Pseudo-Inverse is the process of inverting an overdetermined linear 

system (matrix has more rows than columns).  The advantage of using the QR-

factorization method is computation simplicity due to elimination of redundancy 

[Kolman and Hill, 2001].   

 Since the results and the computation time for both methods were the same, only 

the results from pseudo-inverse techniques will be discussed.  The model coefficients are 

determined utilizing a train-test evaluation routine.  Specifically, coefficients were fit to 

the input data from a training trial and then used to compute the torque via equation 4.1 

from a different test trial.  The error signal is defined as the difference between the 

measured and the model estimated torques.  If all possible combinations are used for the 

data combination, there would be a total of 30 × 29 combinations of training and test data 

sets.  Because of the large computation time, a comprehensive cross-validation is 

sufficient for the scope of this research.  Therefore, the 15 trials at a given tracking speed 

were organized as three sets of five contractions. (The two speeds are evaluated 

separately)  Within a set, optimal coefficients were trained to one trial, and then tested on 

the four remaining trials.  There were a total of 180 error signals available per type of 

processor (15 subjects × 3 sets per subject × 1 training trial per set × 4 test trials per 

training trial).  As mentioned, one second of data from the beginning and end of each 

error signal was removed (trimmed), since these data were corrupted by the startup 

transients of the various processing filters.  
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 In summary, the following parameters were varied in the computations performed 

using MatLab (R13, Version 6.5): 

• EMG amplitude estimator type: single-channel-unwhitened, single-channel-

whitened, multiple-channel-unwhitened, multiple-channel-whitened 

• Integer-valued decimation rate subjectively chosen from 1 to 900 

• Matrix inversion method either pinv. or qr factorization 

• EMG-torque model order from 1 to 60 

The performance of the model implemented for this research matches the performance 

obtained using the built-in ARX parametric model function in MatLab System ID 

toolbox.  The toolbox is suggested to be utilized in the future, when more complicated 

models are necessary.  

4.3.3. Model Performance Measures 

 The resulting EMG-torque error signal from 180 combinations for each processor 

type was investigated in several ways.   The error mathematical expression used is: 

( )∑
=

−=
N

k

kTkTkError
1

)()(ˆ)(    (4.2) 

where N is the sample duration of the truncated estimated torque )(ˆ kT  and measured 

torque T(k).  The measured torque was truncated to equate the number of samples with 

the estimated torque.  All errors were normalized to twice the torque at 50% flexion 

MVC, denoted %MVCF.  Throughout this thesis results of model performance will be 

evaluated using two main time domain error measures:  the percent mean absolute error 

(%MAE) as computed for each trial   

( ))(100% kErrormeanMAE ⋅= , (4.3) 
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and the percent variance accounted for (%VAF), defined by Kearney [Kirsch, Kearney, 

Crago, 1994] as: 

( )[ ]

( ) 
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The power spectral density (PSD) of each error sequence was another method used to 

evaluate the error frequency distribution and identify the character of the error.  The PSD 

was estimated using Welch periodograms (Hamming window, 1024-point FFT, 50% 

overlap).  

 

Figure 4.6:  System Identification Procedure [Created based on Ljung, 1999]   
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The final stage of the system identification (System ID) procedure is the model 

validation.  During this stage, the model performance results (%VAF and %MAE) are 

interpreted in the physiological sense of the real system behavior.  If the expectations are 

not satisfied, then there is need for model re-design (Figure 4.6).    
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CHAPTER 5. PROJECT RESULTS 

There were several important results derived after completing the described test 

procedure.  This chapter starts with the decision on the final decimation rate as a solution 

to model non-convergence problems that were observed during prior research.  Then, it 

continues with a graphical description of the model performance where the outcomes are 

contrasted for the four types of processors. 

5.1. DECIMATION  
 

The process of decimation includes low-pass filtering and down-sampling.  

Decimation is used if the system is over-sampled and if it contains high frequency noise 

components.  The necessity for decimation prior to system identification was determined 

because some of the prediction torque sequences exhibited a few large “spikes.”  The 

observed errors were referred to as spikes because they had much larger amplitude 

compared to the test torque and lasted only a few samples (see Figure 5.1). The spikes 

occurred infrequently (~15% to 20% of combinations) but their magnitude caused the 

overall %VAF (and MAE) to be unrealistic.  During prior EMG-torque work, the trials 

exhibiting the described error were considered to be “non-convergent” [Clancy et al., 

2001].  Figure 5.1 shows a typical example of observed torque spikes.  The time domain 

torque plots are on the left of the picture.  The amplitude of torques spiked to 20, 000 % 

MVCF when there was no decimation (c.f., time sample about 2*10^4 when d=1).  
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Figure 5.1:  Changes of Predicted Torque while Increasing Decimation Rate  

The figure above shows the transformations of the torque predictions as a function of the 

sampling rate.  On the left side of the figure, the torques both predicted (red dashed line) 

and measured (blue solid line) are plotted versus sample time for four decimation rates 

(top to bottom: 1, 20, 60, and 100).  On the right side of the figure, the gains of the 

coefficients computed during the system identification (extension) are plotted for each of 

the decimation rates.  The purpose of this figure is the graphical presentation of the 

observed spikes.  When the decimation rate is d=1 the torque amplitude exceeds 10
4
 and 

the coefficients gain exceed 100 dB outside the system band (~ 4-10 Hz).  As the 
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sampling rate is increased to d = 100 the model performance improves (%VAF = 

87.755), the spikes disappear, and the left side gain plot shows the expected LPF like 

performance with a max gain of 0 dB.  During previous research, where the spikes were 

initially observed, a decimation rate of 20 was utilized, but as seen in this figure that rate 

was not enough.     

Further investigation demonstrated that the errors were related to sampling rate.  The 

raw EMG sampling rate of 4096 Hz was more 1000 times the natural bandwidth of the 

EMG-torque system that contained 99.9% of the power within about 4 Hz, even at fast 

tracking bandwidth.  Figure 5.2 shows the average torque power accumulation rate for 

fast tracking bandwidth.   
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Figure 5.2:  Signal Power Accumulation (average PSD torque) vs. Frequency 
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The occurrence of the noise spikes was associated with the cases that the system was 

calibrated with torque trials (training sessions to determine fit coefficients) that contained 

no power beyond 4 Hz (99% chance).  If the test trials were contaminated with noise 

extended to larger frequencies, the system produces models with unrealistically high gain 

at frequencies above 4 Hz.  The high gains beyond the system band are shown for a 

typical example on the right side of the picture (Figure 5.1).  Hence, even a small amount 

of noise power at frequencies above 4 Hz in a test trial caused a noise spike in the 

predicted torque.  Although the occurrence was infrequent because most of the torque 

power was contained within 4 Hz, they were an obstacle to further improvements.  This 

phenomena encountered with oversampling is also described as common in the system 

identification literature [Ljung, 1999].   

The solution to this problem was to decimate the EMG amplitude signals prior to 

performing the system identification.  Progressively lowering the effective sampling rate, 

the spikes reduced both in occurrence rate and magnitude.  A factor of decimation of 100 

(effective sampling rate of 40.96 Hz) extinguished all observed spikes.  As seen from the 

%VAF values plot in Figure 5.3 the performance of the EMG-torque saturates for rates 

above 100 and eventually decreases as the decimation rate exceeds 400.  This eventual 

drop in the performance is due to the decrease of the cutoff frequency of the low-pass 

filter included in the decimation process.  The low cutoff frequencies eventually remove 

signal power within the natural bandwidth.  The optimal sampling rate of 40.96 Hz is 

approximately 10 times the highest signal frequency, which is consistent with the rate 

recommended by Ljung (1999) and captured all of the signal power.  Concluding, the 

decimation rate of 100 is used to obtain the consequent results. 
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Figure 5.3:  Decimation Rate Evaluation Plot 

5.2. COMPARISON OF EMG AMPLITUDE PROCESSORS 

Applying decimation with a factor of 100 and the additional pre-processing steps 

(truncation and A/D offset subtraction) described, the EMG amplitudes obtained from 

four different processors were used to estimate torque.  The method of estimation is 

explained earlier hence this section presents the drawn results.   
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Figure 5.4:  Raw EMG (flexion & extension) and Torques 

Figure 5.4 shows the raw EMG signal and the predicted torque from two different 

processors in a typical example.  The predicted torque in both cases captures most of the 

dynamics exhibited in the actual torque. 

The values obtained for performance evaluating expressions, % MAE in eq. 4.3 

and % VAF in eq. 4.4, were averaged across the 180 combinations for each processor.  

Figure 5.5 shows mean and median values of %VAF and MEA, as a function of the 

system identification model order, for each of the four EMG amplitude processors.  The 

plot shows the results obtained for the fast tracking speed using PINV to invert matrices, 

whereas the slow tracking speed and the use QR-factorization performance results are 

shown in APPENDICES: (III)   
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Figure 5.5:  Median (left) and Mean (right) of % VAF and % MAE for fast tracking 

Assuming that better EMG-torque performance is indicated by higher %VAF and lower 

% MAE, for all EMG-torque processors the plots show a progressive increase in 

performance as model order is increased up to about 10–15
th
 order.  The improvement 

seems to stop passing the 20
th
 order and it is expected to eventually decay as the model 

order starts fitting into the noise.  The distribution characteristics (mean, median, and 

standard deviation) for these data are shown in the following tables.  
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Table 5.1:   Distribution Info of % VAF Values for Each Processor (Fast Tracking) 

Processor 1-4 % VAF n = 1 n = 2 n = 3 n = 4 n = 5 n = 10 n = 15 n = 20 

S-CH-UNWHIT MEDIAN 51.32 57.56 63.86 69.55 73.64 83.29 84.70 84.94 

  MEAN 49.17 53.03 56.48 59.65 62.60 68.50 69.07 69.07 

  STDEV 43.03 44.17 45.71 47.40 49.31 54.54 56.99 57.41 

M-CH-UNWHIT MEDIAN 55.49 62.65 69.05 73.41 77.57 84.80 85.51 85.79 

  MEAN 54.58 59.89 63.47 66.66 69.33 74.73 75.37 75.52 

  STDEV 33.73 32.40 32.19 32.13 32.19 32.66 33.03 32.95 

S-CH-WHIT MEDIAN 59.98 65.23 69.99 74.64 78.70 88.31 89.33 89.35 

  MEAN 56.91 61.98 66.06 69.81 73.15 80.35 81.39 81.47 

  STDEV 31.42 29.99 29.36 28.93 28.75 28.62 29.16 29.49 

M-CH-WHIT MEDIAN 61.99 69.61 75.72 79.60 82.88 89.45 89.98 90.14 

  MEAN 61.31 67.92 71.97 75.50 78.33 84.09 84.83 84.97 

  STDEV 26.27 22.71 21.21 20.02 19.18 17.84 17.86 17.92 

 

Table 5.2:   Distribution Info of % MAE Values for Each Processor (Fast Tracking) 

Processor 1-4 % MAE n = 1 n = 2 n = 3 n = 4 n = 5 n = 10 n = 15 n = 20 

S-CH-UNWHIT MEDIAN 10.64 9.90 9.42 8.77 8.16 6.50 6.24 6.20 

  MEAN 11.21 10.73 10.27 9.82 9.36 8.25 8.04 8.01 

  STDEV 3.97 3.99 4.09 4.20 4.35 3.97 5.03 5.10 

M-CH-UNWHIT MEDIAN 10.25 9.41 8.74 8.03 7.56 6.34 6.10 6.08 

  MEAN 10.51 9.89 10.51 8.99 8.59 7.61 7.45 7.42 

  STDEV 3.66 3.59 3.63 3.68 3.75 4.01 4.08 4.10 

S-CH-WHIT MEDIAN 9.98 9.40 8.68 8.02 7.36 5.65 5.43 5.40 

  MEAN 10.15 9.55 9.01 8.49 7.98 6.63 6.37 6.33 

  STDEV 3.27 3.13 3.09 3.27 3.27 3.35 3.47 3.52 

M-CH-WHIT MEDIAN 9.49 8.62 7.88 7.11 6.56 5.31 5.12 5.02 

  MEAN 9.53 8.74 8.20 7.69 7.25 6.12 5.94 5.90 

  STDEV 3.01 2.71 2.63 2.59 2.58 2.71 2.76 2.77 

 

As seen, the performance of the processors follows a ranking order with the whitened 

multiple-channel processor providing the best performance, followed by multiple-channel 

unwhitened, then single-channel whitened, then single-channel unwhitened.  It is also 

noticed that the median results are higher than the mean, suggesting that there are still a 

few influential large errors that drag the mean downward.   

 Finally the PSD of the error is graphed to gain an insight on the origin of the 

error.  The plots show that 80-90% of the error power was within the first 0.5 Hz (shown 

in the figure below).   
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Figure 5.6:  PSD of Error Accumulation Rate 
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Figure 5.7:  The Average PSD of Error as Estimated from Welsh Periodogram 
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Even though Figure 5.6 suggests that almost all error is accumulated at low frequencies, 

the windowing effect and the spectral leakage in the Welsh periodogram do not allow 

further resolution (Figure 5.7).  Therefore, it is hard to determine the origin of the 

remaining error.  

After a closer study of the trials with the largest error, it was identified that the 

error was due to DC shift on the estimated torque as compared to measured one.  

Moreover, some trials matched were almost perfectly, except for the existence of a 

positive/negative offset (Figure 5.8).   
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Figure 5.8:  High DC Offset Error on Estimated Torque 
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The figure shows the changes of the estimated torque as the decimation rate is increased 

(1, 20, 60, 100).  The performance of the system indicated by % VAF is getting 

negatively larger and the DC shift remains as the only apparent error as the AC portion of 

the estimated torque starts looking exactly like the measured one.  Because most of the 

error power is contained at such low frequencies and the observation of DC shift 

suggested the same, it can be hypothesized that there is a large amount of error remaining 

at approximately DC.  More investigation of the error plots is required to ensure the 

hypothesis is correct. 

In conclusion, the optimum EMG-torque model (15
th
 order) produced an average 

error of 6% MVCF with a %VAF of 90% when the EMG amplitude estimates were 

obtained from a multiple channel whitened processor.  The typical model performance 

was shown previously in Figure 5.4.  The results for the slow tracking speed data were 

similar and are shown in the appendices.  The next largest error in torque estimation 

seems to be due to a DC offset.   
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CHAPTER 6. DISCUSSION AND CONCLUSIONS 
iii 

 This last chapter contains two main sections, the discussion and conclusions.  The 

first part contains the interpretation of the previously anticipated results and then in the 

second part conclusions are derived from them.  In addition, this chapter includes the 

study limitations and the suggestions for future work. 

6.1. DISCUSSION OF RESULTS  

The objective of this research was to demonstrate that incorporation of the recent 

advances in EMG amplitude processors into EMG-torque estimation model produce 

lower torque prediction errors.  The results presented are achieved considering several 

assumptions on physiological characteristics of the EMG-torque system. 

6.1.1. Advances to EMG-torque Estimation 

Keeping in mind the main objective, various analyses were conducted to 

demonstrate that improvement in EMG amplitude processing reduces the estimation error 

in the torque prediction models.  The results derived were consistent with the 

expectations showing that both whitening and multiple-channel combination of the EMG 

lead to reduced EMG-torque prediction errors.  Even lower errors are obtained when the 

two techniques are used in combination.  Another important result was identifying and 

resolving the problem of oversampling.  This problem arises when EMG data (typical 

bandwidth from 20–500 Hz) and torque data (typical bandwidth ≈ 5-10 Hz) are 

simultaneously sampled at the highest required rate.  Thus, to preserve information in the 

                                                 
iii
 Parts of this chapter are taken from the paper submitted to the Journal of Biomechanics (attached to 

Appendices) authored by Clancy, E.A; Bida, O.; Rancourt, D. 
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EMG data, the torque data are oversampled.  If the so overasmpled torque data are used 

to calibrate EMG-torque models, the resultant transfer functions produce unrealistic gains 

at frequencies above the typical band of torque data.  This issue was observed and solved 

by decimating the data to a rate of 40.96 Hz that correspond to approximately ten times 

the highest torque frequency, as recommended by Ljung (1999). 

6.1.2. Study Limitations and Future Suggestions 

Several assumptions were necessary to complete this project.  First, the 

experimental design consisted of constant-posture non-fatiguing contractions about the 

elbow.  Most practical contractions are more fully dynamic (posture varying).  Second, 

the mechanical model for the elbow treated the joint as a simple hinge, with only one 

agonist and one antagonist muscle group.  This assumption enables the possibility of 

obtaining one single EMG amplitude estimate using electrodes that are placed anywhere 

on the skin overlying that muscle group.  Consequently, the combination of multiple 

channels improves the EMG amplitude estimation.  In addition, there are only two inputs 

to the model (EMGamp flexion and EMGamp extension) as opposed to several EMG 

amplitudes, representative of each individual muscle recording.  Increasing the number of 

muscles in the model would not necessarily improve the EMG amplitude estimates and 

would increase the complexity of system identification.  Another important assumption to 

consider is that each muscle group contributed only to a certain torque component, such 

as extensor (flexor likewise) torque was a result of extension (flexion likewise) only.  

Otherwise, the cross-terms of EMG amplitude had to be incorporated in the model 

requiring corresponding torque components for mechanical validation.  
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 The EMG-torque model was identified using a zeros-only system design, 

corresponding to a standard parametric model in the literature (FIR type of ARX model).  

The reason for selecting a standard linear model was the level of simplicity in the 

solution and the information available on the system identification techniques.  Nonlinear 

models can be more accurate, for example including hysteresis to capture any systematic 

differences in the EMG-torque relation between concentric and eccentric contractions. 

Another advantage is that nonlinear models can potentially capture additional subtle 

behavior in an EMG-torque relationship such as the electromechanical delay between 

action potential activation and muscle fiber contraction.  Electromechanical delay (EMD) 

is defined as the temporal delay (26-131 ms) that exists between the onset of muscular 

activity and the generation of force [Strojnik and Komi, 1998].   In the case of abrupt 

changes in muscle activation from 0%MVC to 50% MVC, the EMD is a dynamic 

parameter, hence it is dependent on the number of motor units activated and the fatiguing 

effects.  However, during slow varying force tasks (25% MVC to 50% MVC) the 

electromechanical delay is constant (60 ms); therefore, its inclusion in the model can be 

potentially neglected [Vint, McLean, and Harron, 2001]. 

Although the EMG-torque model for this study included both “AC and DC 

characteristics” of the system, it is highly recommended in the literature to separate them 

as part of the data preprocessing routine [Ljung 1999, pp. 458-460].  The investigation of 

the trials displaying large errors demonstrated that the operating point (DC bias) 

contaminated in the inputs (EMGamp) and output (torque) data influenced the dynamics 

of the system, resulting in a DC shift in the estimated torque.  Even though many system 

identification paradigms remove the DC component of each signal prior to identification 
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so that only the system dynamics (AC portion) are identified,  a complete output response 

(torque) is found by adding the estimated AC portion to a separate estimate of the output 

DC value.  Further studies are suggested, since a complete system response requires 

separate torque data for model validation and should not have influenced the relative 

comparison of EMG amplitude processors 

The selection of contraction bandwidth that sufficiently excites the system is one 

of the main issues that need to be addressed in the future.  Although tracking targets were 

at low frequency, 1 Hz is about as fast as subjects were able to track.  Faster speeds 

would require ballistic force trajectories.  Therefore, the contraction bandwidth was 

limited to a 1 Hz tracking target.  If higher frequencies are required in the future, the 

tracking target will need to produce a deterministic trajectory so that ballistic movements 

(which are inherently faster) can be utilized.   

Finally, precautions were taken when recording the data in order to avoid 

hardware problems such as electrode failures, the distances between the electrodes, and 

their placement on the skin.  The skin was properly prepared to reduce the impedance 

prior to placing the electrodes; active electrodes rejected the cable motion artefact; digital 

high pass filters were utilized to eliminate noise due to physiological motion artefact; and 

the low-pass filters along with decimation attenuated other interferences such as UV 

lights and power harmonics.  

6.2. SUMMARY AND CONCLUSIONS 

This research focused on demonstrating that advances in EMG amplitude processors 

result in EMG-torque model performance improvements.  Advances in EMG amplitude 

estimation were applied to the EMG-torque problem for constant-posture, non-fatiguing, 
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force-varying contractions about the elbow.  Results from 15 subjects showed that EMG 

whitening and multiple-channel combination both reduce EMG-torque errors and their 

combination provides an additive benefit.  The dynamic relationship between EMG 

amplitude and joint torque was formulated as a standard linear least squares problem.  

Using 15
th
-order and higher linear FIR models, EMG-torque errors with a four-channel, 

whitened processor produced an average error of 6% MVCF (%VAF of 90%) at the fast 

tracking speed.  By comparison, the single-channel, unwhitened (conventional) processor 

produced an average error of 8% MVCF (%VAF of 68%).   

Accomplishing the objective, the issue of non-convergent trials was isolated and 

resolved by decimating and low pass filtering the data prior to system identification.  The 

EMG amplitude sampling rate was reduced to 40.96 Hz and both EMG amplitude and 

torque were low-pass filtered at the Nyquist rate, using an 8
th
 order, zero-phase, 

Butterworth filter.  The power spectral density analysis showed that the chosen cutoff 

frequency of the filter preserved 99.9% of the system power.  

Concluding, the primary interest was the influence of different EMG amplitude 

processors on EMG-torque prediction performance.  As such, the study was limited in 

several manners in order to be able isolate the effect of EMG amplitude without the 

complexity of less restrictive EMG-torque models.  The expectation is that the benefits 

shown here of improved EMG amplitude processors would transfer to many other EMG-

torque modeling problems.  Certainly, it now seems justified to progressively release 

these restrictions and validate these benefits in more general applications in future work. 
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APPENDICES: ADDITIONAL INFORMATION, PLOTS, AND FIGURES 

I.   LBXXXX EXPERIMENT DATA FILE DESCRIPTION 

 

The file name code is LBSSTT where SS stands identifies the subject (02-05, 07-10, 12, 

13, 16, 17, 18, 20, 21) and TT identifies the experiment trial (20-29, 40-49, 60-69).  

There are 15 subjects and 3 sets of 10 trials per subject.  The different trials within a set 

were obtained using different feedback mechanisms and bandwidths for the tracking 

signal.  One out of four trials was used to train the EMG-torque model the other four to 

test it. 

Table 0.1:   Trial ID Name Codes 

TRIAL ID (TT) Feedback Mechanism  Target Bandwidth (Hz) 

20 (train) EMG, Single Channel Unwhitened 0.25 

21 (test) EMG, Multiple Channel Unwhitened 0.25 

22 (test) EMG, Single Channel Whitened 0.25 

23 (test) EMG, Multiple Channel Whitened 0.25 

24 (test) Dynamometer 0.25 

25 (train) EMG, Single Channel Unwhitened 1 

26 (test) EMG, Multiple Channel Unwhitened 1 

27 (test) EMG, Single Channel Whitened 1 

28 (test) EMG, Multiple Channel Whitened 1 

29 (test) Dynamometer 1 

40 (train) EMG, Single Channel Unwhitened 0.25 

41 (test) EMG, Multiple Channel Unwhitened 0.25 

42 (test) EMG, Single Channel Whitened 0.25 

43 (test) EMG, Multiple Channel Whitened 0.25 

44 (test) Dynamometer 0.25 

45 (train) EMG, Single Channel Unwhitened 1 

46 (test) EMG, Multiple Channel Unwhitened 1 

47 (test) EMG, Single Channel Whitened 1 

48 (test) EMG, Multiple Channel Whitened 1 

49 (test) Dynamometer 1 

60 (train) EMG, Single Channel Unwhitened 0.25 

61 (test) EMG, Multiple Channel Unwhitened 0.25 

62 (test) EMG, Single Channel Whitened 0.25 
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63 (test) EMG, Multiple Channel Whitened 0.25 

64 (test) Dynamometer 0.25 

65 (train) EMG, Single Channel Unwhitened 1 

66 (test) EMG, Multiple Channel Unwhitened 1 

67 (test) EMG, Single Channel Whitened 1 

68 (test) EMG, Multiple Channel Whitened 1 

69 (test) Dynamometer 1 

 

Each of the files contained 16 channels from the DAQ describing the electrode positions 

as follows.  The table lists only the channel used for this study. 

Table 0.2:  A/D Channel Name Codes 

A/D Channel Contents 

1 EMG: Biceps, most lateral location 

2 EMG: Biceps, lateral center 

3 EMG: Biceps, medial center 

4 EMG: Biceps, most medial location 

8 EMG: Triceps, most medial location 

9 EMG: Triceps, medial center 

10 EMG: Triceps, lateral center 

11 EMG: Triceps, most lateral 

16 Dynamometer 
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II. OPTIONAL PROPERTIES FOR AMPLITUDE ESTIMATION ALGORITHM 

EMG amplitude estimation as taken from the EMG toolbox User Manual. 

Syntax : EMGamp = e_amp(EMGin, EMGinfo) 

 

EMGinfo – obtained from calibration  

EMGin – input EMG channel (CH 2 for flexion and CH 9 for extension) or Multiple 

Channels (CH 1:4 for flexion and CH 8:11 for extension) 

Calibration for EMG amplitude estimation as in EMG toolbox  User Manual.  

 

Syntax: EMGinfo = e_cal(SandNmat, sCal, NoiseMat, SampFreq [, 'PropertyName', 

PropertyValue, ...] 

SandNmat - Noisy signal Matrix (Input Channel).  This signal is specifically recorded 

for calibration process.  Trial 10 is used for flexion and trial 12 for extension.  The 

channels are the same as the input channels shown for EMGin.  

NoiseMat – Noise recorded per trial, rest Trial 15 (take corresponsing channel) For 

example: NoiseMat for flexion is trial 15 (CH 2 for single-channel and CH 1:4 for 

multiple-channel) and for extension is still trial 15 but different channels. 

Properties as set of this project: 

sCal: 0.5 

SampFreq:  4096 Hz 

High Pass Filter Settings 

Causality 'Flag': Default value is 'Noncausal'. 

HpassFlag 'Flag':  Default value is 'Filter'. 

HpassOrder Order: Default value is set by e_h_pass() and Order = 5.  

HpassWn: Default value is set to correspond to 15 Hertz.  

Whitening Filter Settings 

WhiteFlag 'Flag':  Depends, S-CH-WHIT and M-CH-WHIT is ‘ON’ else ‘OFF’.  
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WhiteEdges EdgeString: Default is set by e_whiten().  

WhiteMaxGain MMaxGain: Default is set by e_cal_wh().  

WhiteNfft NNfft: Default is set by e_cal_wh().  

WhiteOrder Order: Default is set by e_cal_wh().  

White_sSpec sSpec: Default is set by e_cal_wh().  

WhiteSum SumString: Default is set by e_whiten().  

WhiteSmFilt FiltOption: Not Used.  

WhiteSmFilt = 'MAV':  

WhiteSmFixWin Window = 1024 = 250ms.  

Multiple Channel Combination Setting 

UncorrFlag 'Flag': Default is 'GainOnly', if multiple channels. 

Demodulation Settings 

DemodFlag 'Flag': Default value is 'On'. 

DemodM M: Default d = 1 (MAV) 

Smoothing Filter Setting 

SmoothFilt FiltOption: ‘butter’ 

SmoothEdges EdgeString: Default value is set by e_smooth().  

SmoothWn: 0 < Wn < 1= > Wn = 20/2048 which is 20Hz 

SmoothOrder: Order = 8 

 

For example EMGinfo for Extension in the case of Single Channel Processor 

EMGinfoExt = e_cal(SandNmatE, 0.5, NmatE, 4096, 'WhiteFlag', Wflag, 'WhiteSmFilt', 

'MAV', 'WhiteSmFixWin', 1024);    

The code looks exactly the same for all the other cases.  For more information on the 

settings and the EMG toolbox functionalities refer to the User Manual created and 

maintained by Clancy (2004) found in the website: 

http://ece.wpi.edu/~ted/emg0_04/front.html 
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III. EXTRA FIGURES AND PLOTS 
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Figure 0.1:  Estimation Error PSD (Welsh Periodogram) for all 4 Processors 

 

The power density spectra (PSD) of estimation error are approximated using Welsh 

periodogram for all four processors.  Figure 0.1 is used to support the argument that the 

estimation error for all processors behaves similarly in frequency domain. Figure 5.7 

shows only two of the processors (s-ch-whit, m-ch-whit).   
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Figure 0.2:  System Performance (% VAF & MAE) using QR Factorization (Fast 

Tracking) 

The system performance versus system ID order using QR factorization to compute the 

inverse of the matrices is given to support the argument that the pseudo-inverse and the 

QR factorization give equal results.  Figure 0.2 is contrasted with Figure 5.5 and the 

results seem to match perfectly. 
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Figure 0.3:  System Performance (% VAF & MAE) using Pseudo-Inverse  (Slow 

Tracking) 

Figure 0.3 is contrasted with Figure 5.5 and the processor performance ranking order 

seems to follow the same pattern.  The model gives better results for slow target tracking 

tasks which is consistent with the statement that the subjects have trouble tracking 

ballistic random trajectories.  Regardless, the positive influence of EMG amplitude 

processor on the EMG-torque model performance is proven for both cases (fast and slow 

bandwidth signal target). 
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Figure 0.4:  System Performance (% VAF & MAE) using AC part of EMG 

Amplitudes (Fast Tracking + PINV) 

Figure 0.4 is contrasted with Figure 0.3 and Figure 5.5.  The processor performance 

ranking order seems to follow yet the same pattern.  The model gives even better results 

when only the AC portion of EMG recordings and measured torque are used in the 

system.  This is another observation toward solving the remaining problems and leading 

again to the assumption that the inclusion of DC in the models is erroneous. 
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Figure 0.5:  Coefficients Frequency Response for a typical EMG-Torque model 

(Slow Tracking) 

The most important factor observed in this figure is the shape change as the number of 

zeros (model order) is increased. Notice that as the order of the system passes the value 

ten little or no improvement is seen within 5Hz (bandwidth of the system).  Higher orders 

seem to add shape to frequencies outside the system bandwidth.  This observation is 

consistent with the system saturation after 15
th
 order seen in many of the plots shown 

above.  
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Figure 0.6:  Coefficients Frequency Response for a typical EMG-Torque model 

(Fast Tracking) 

This plot is equivalent with Figure 0.5 for fast target tracking tasks.  Similarly, as order 

increases more shape is added to the response.  In this plot it is also observed that during 

low order the fast later zeros do not leave time for the previous ones to create the dip 

effect.  This is observed on the high-pass look alike response for second and fifth orders.  
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Abstract 

Numerous studies have investigated the relationship between surface EMG and 

torque exerted about a joint.  These studies have used conventional EMG amplitude 

(EMGamp) processing, such as rectification followed by low pass filtering, to pre-

process the EMG before relating it to torque.  Recently, advanced EMGamp processors 

that incorporate signal whitening and multiple-channel combination have been shown to 

significantly improve EMGamp processing.  In this study, we compared the performance 

of EMGamp-torque estimators with and without these advanced EMGamp processors.  

Fifteen subjects produced constant-posture, nonfatiguing, force-varying contractions 

about the elbow while torque and biceps/triceps EMG were recorded.  EMGamp was 

related to torque using a linear FIR model.  Both whitening and multiple-channel 

combination reduced EMG-torque errors and their combination provided an additive 

benefit.  Using a 15
th
-order linear FIR model, EMG-torque errors with a four-channel, 

whitened processor averaged 6% of maximum voluntary contraction (or 90% of variance 

accounted for).  By comparison, the equivalent single-channel, unwhitened 

(conventional) processor produced an average error of 8% of maximum voluntary 

contraction (variance accounted for of 68%).  In addition, the study describes the 

occurrence of spurious peaks in estimated torque when the torque model is created from 

data with a sampling rate well above the bandwidth of the torque.  This problem occurs 

when the torque data are sampled at the same rate as the EMG data.  The problem is 

corrected by decimating the EMGamp prior to relating it to joint torque, in our case to an 

effective sampling rate of 40.96 Hz. 

Keywords:  EMG, EMG amplitude, Torque, EMG-torque model, Optimal sampling rate 
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