
MODELING WITH RENORMALIZATION GROUP AND
RANDOMIZATION

YU CHAO
(B.Eng., Harbin Institute of Technology)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER
ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2014

DECLARATION

I hereby declare that this thesis is my original work and it has been written
by me in its entirely.

I have duly acknowledged all the sources of information which have been
used in this thesis.

This thesis has also not been submitted for any degree in any university
previously.

YU CHAO
14 May 2014

Acknowledgments

First and foremost I would like to express my sincere gratitude to my supervisor, Pro-

fessor Wang Qing-Guo, who always graciously and patiently guides me throughout my

research. He has been supportive since the days I began working and it has been an honor

to be his Ph.D. student. His enthusiasm for research was contagious and motivational for

me. His consideration and valuable advices inspires me to finish this thesis.

This thesis would not have been possible without the financial, academic and tech-

nical supports from National University of Singapore as well as Chinese Ministry of

Education.

I also wish to acknowledge my friends in Singapore, China and elsewhere in the world

for their support and concern. They are always there whenever I need help or advices.

Especially, I want to express my appreciation to Ms. Gan Tian who always stays with me

and spares no effort to give strong backing to me over the years.

Last but not least, I would like to thank my parents for their tremendous love, support,

understanding and encouragement throughout my 20 years study. I sincerely hope this

work makes you proud.

i

Contents

Contents ii

Summary vi

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Modeling . 2

1.2 Optimization and Control . 11

1.3 The Scope of This Thesis . 16

2 Model Assessment through Renormalization Group in Statistical Learning 20

2.1 Introduction . 20

2.2 Review of Renormalization Group . 23

2.3 The Proposed Method . 26

2.4 Design of RGT . 31

2.4.1 Geometrical Grouping . 31

ii

2.4.2 Distributional Grouping . 33

2.5 Assessment Criteria . 35

2.5.1 Data Information . 35

2.5.2 Reliability Index . 39

2.6 Simulation Examples . 42

2.7 Variants of RGT . 44

2.8 Conclusions . 46

3 Improved System Identification with Renormalization Group 48

3.1 Introduction . 48

3.2 Problem Statement and Motivation . 50

3.2.1 System Description . 50

3.2.2 OLS Estimation . 51

3.2.3 Idea of the Proposed Method . 53

3.3 Asymptotic Analysis . 56

3.3.1 The Asymptotic Properties of OLS Estimate 58

3.3.2 The Asymptotic Properties of RGWLS Estimate 60

3.4 Finite-Sample Analysis . 65

3.4.1 Tradeoff between SNR and N 66

3.4.2 RGWLS and GLS . 68

3.5 Simulation Examples . 69

3.6 Conclusions . 73

4 System Identification in Presence of Outliers 74

iii

4.1 Introduction . 74

4.2 Problem Formulation . 77

4.3 The Solution . 84

4.4 Fast Algorithm . 89

4.5 Analysis and Implementation . 98

4.6 In Presence of Both Noise and Outliers 103

4.7 Simulation . 106

4.8 Conclusions . 114

5 Global Optimization Method Based on Randomized Group Search in Con-

tracting Regions 116

5.1 Introduction . 116

5.2 The Proposed Method . 120

5.3 Sample Size . 127

5.4 Sampling Process . 128

5.5 Tuning Parameters . 132

5.6 Convergence Analysis . 132

5.7 Simulations . 140

5.7.1 Low-Dimensional Examples . 140

5.7.2 High-Dimensional Examples . 143

5.8 Conclusions . 147

6 Determining Stabilizing Parameter Regions for General Delay Control

Systems 149

iv

6.1 Introduction . 149

6.2 The Proposed Method . 150

6.3 Stability Criterion . 153

6.3.1 PI Control for Input-Delay Plant 153

6.3.2 PID Control for State-Delay Plant 155

6.3.3 General Dynamic Controller for a Plant with Multiple Delays in

Input and State . 157

6.3.4 The LMI Stability Criterion for a System with Multiple Delays in

Input and State . 159

6.4 Stabilizing Parameter Regions . 161

6.5 Simulation Examples . 163

6.6 Conclusions . 167

7 Conclusions 169

7.1 Main Findings . 169

7.2 Future Works . 171

Bibliography 173

Author’s Publications 195

v

Summary

This thesis develops some new techniques to help assess models in statistical learning,

obtain improved results in system identification, solve global optimization problems and

find stabilizing parameter regions for control systems.

First, we propose a new method for model assessment based on Renormalization

Group. A transformed data set is obtained by applying Renormalization Group to the

original data set. The assessment is first performed on the data level by comparing two

data sets to reveal informative content of the data. Then, the assessment is carried out

at the model level, and the predictions are compared between two models learnt from

the original and transformed data sets, respectively. The computational burden for model

assessment is small since the proposed method requires only two models.

Second, we propose an improved system identification method with Renormalization

Group. A coarse data set is obtained by applying Renormalization Group to a fine data

set. The least squares algorithm is performed on the coarse data set. The theoretical anal-

ysis under certain conditions shows that the parameter estimation error could be reduced.

Then, we solve an outlier detection problem for dynamic systems. The outlier de-

tection problem is formulated as a matrix decomposition problem and further recast as

a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the

vi

SDP with less computational cost than the standard interior-point method. Construction

of subsets of the raw data helps further reduce the computational burden. The proposed

method can make exact detection of outliers when output observations contain no or lit-

tle noise. In case of significant noise, a novel approach based on under-sampling with

averaging is developed to denoise while retaining the salient behaviors of outliers, which

enables successful outlier detection with the proposed method.

Next, we propose a brand-new method for global optimization through randomized

group search in contracting regions. A population is randomly generated within the

search region in each iteration. A small subset of them with top-ranking fitness values

are selected as good points, whose neighborhoods are used to form a new and smaller

search region, in which a new population is generated. The convergence of the proposed

algorithm is analyzed.

Last, we propose a method for determining the stabilizing parameter regions for gen-

eral delay control systems based on randomized sampling. We convert a delay con-

trol system into a unified state-space form and develop the numerical stability condition

which is checked for sample points in the parameter space. These points are separated

into stable and unstable regions by the decision function obtained from some learning

method.

vii

List of Figures

1.1 Illustrative example. 8

2.1 Original and renormalized lattices. 24

2.2 The bond configurations on a square. 24

2.3 Errors in pc estimation from renormalization. 25

2.4 RGT. 28

2.5 Deterministic 2D case. 29

2.6 Pure random 2D case. 31

2.7 The k-means clustering algorithm—deterministic. 34

2.8 The k-means clustering algorithm—pure random. 35

2.9 Non-randomness indices and linear fitting curves. 39

2.10 Reliability indices and linear fitting curves. 41

2.11 Indices and CV.CorrectRates vs P%. 42

2.12 The banana example. 43

2.13 The squares before and after shifting. 45

3.1 Data grouping . 56

viii

3.2 Example for ilustration . 67

4.1 Singular value index when ND = 49. 109

4.2 Step responses of two models. 110

4.3 Observed output. 110

4.4 Measurement. 112

5.1 Flowcharts. 117

5.2 Peak function. 123

5.3 Iterations of illustrative example. 123

5.4 Uniform sampling within a square. 129

5.5 Uniform sampling within A and B. 130

5.6 The rectangles A and B are interconnected. 130

5.7 Rejection sampling. 131

5.8 Counter example. 134

5.9 Disconnectivity of A and B. 136

5.10 Rku+1 ⊂ B (x̄, ε2). 138

6.1 Unity feedback control system. 150

6.2 Stabilizing parameter region for the illustrative example. 152

6.3 Stabilizing parameter region for Example 6.1. 164

6.4 Stabilizing parameter region for Example 6.2. 165

6.5 Stabilizing parameter region for Example 6.3. 166

6.6 Stabilizing parameter region for Example 6.4. 167

ix

List of Tables

1.1 Parameter estimation errors with different methods 9

2.1 Computation of E(CD) . 38

2.2 Comparisons between the proposed method and CV 41

2.3 CD and CD for Ŝm . 45

3.1 Some models as special cases . 51

3.2 REEI of Example 3.1 . 70

3.3 RIV of Example 3.1 . 70

3.4 REEI of Example 3.2 . 71

3.5 RIV of Example 3.2 . 71

3.6 REEF of Example 3.3 . 72

3.7 REEF of Example 3.4 . 73

4.1 Detection Rate . 107

4.2 Computational time . 108

4.3 Computational reduction . 111

4.4 Outlier detection . 113

x

4.5 Parameter Estimation errors . 114

5.1 Comparisons of GA, DE, PSO, and the proposed method 121

5.2 Properties of low-dimensional test functions 141

5.3 Average accuracy and running time for low-dimensional problems 142

5.4 Accuracy for n = 10 . 144

5.5 Accuracy for n = 30 . 145

5.6 Accuracy for n = 50 . 146

5.7 Complexity . 147

xi

Chapter 1

Introduction

With the rapid development of science and technology, modeling methods become more

and more important and have been applied in many fields such as industry, medicine,

biology and finance. A model built from some modeling technique refers to a schematic

description of a system, theory, or phenomenon that accounts for its known or inferred

properties and may be used for further study of its characteristics. In the field of system

identification, which has developed considerably since last century, mathematical models

of dynamic systems are built from measured data. Information retrieved from an identi-

fied model enables researchers and engineers to carry out some modifications to improve

its performance. For example, in control engineering, control techniques are designed

to cause system variables to conform to some desired values. Present-day approaches

[1] to control include classical control methods and modern control methods, which both

have wide applications. Another example is to adopt optimization techniques, which are

mathematically designed to find best values of some objective function under a set of

constraints, to make a system as effective or functional as possible. Nowadays, abundant

1

research efforts have been devoted to the study of optimization techniques for solving

real life problems.

1.1 Modeling

With rapid advances in information technology, abundant data are generated in industry,

medicine, finance and everywhere. Statistical learning is to find information in the data

through modeling and solves the inference problems such as classifications and regres-

sions [2, 3]. Great progress has been made in this field and there are many types of models

available in the literature such as neural networks, decision trees and support vector ma-

chines with related training algorithms, and numerous successful applications have been

reported. One may choose a model and apply a learning method to train its parameters

so as to fit the data. A more complex model with more training usually gives a better

data fit. However, the model performance is evaluated not only on how well a model fits

the training data, but also on whether or not the model can give good predictions on the

unseen test data.

Given a data set, one can always fit it to some model. Is such a model useful or reliable

for prediction purpose? It is a very challenging problem to assess and select a model. Cp

statistic, Akaik information criterion (AIC) and Bayesian information criterion (BIC) are

well-known model assessment methods. They try to estimate in-sample error for model

selection. It is shown [2, 4] that AIC tends to choose complex models whereas BIC often

chooses simple ones since it penalizes heavily on complexity. However, the assessment

based solely on in-sample error may lead to an overfitting problem as the unseen test data

2

set is not taken into consideration and eventually only the performance on the test data

matters in real environments.

Cross-Validation (CV) is probably the simplest and most popular method in model

assessment and selection. It estimates the out-of-sample error. In the K-Fold Cross-

Validation, the data are split roughly into K equal-sized folds. K − 1 folds are used

for training while the remaining fold is for test to estimate the out-of-sample error. This

is repeated for different combinations of training and testing folds. Another popular

method which also estimates the out-of-sample error and suits for any loss function is the

Bootstrap method, which uses all the data for resampling [5, 6]. The idea of Bootstrap is

to draw data from the original set randomly with replacement till a new data set is formed

with the same size as the original data. The above procedure is repeated for K times and

a model is fitted to each set of K bootstrap data sets, respectively. Then the behavior of

the fits can be examined [2]. It is seen that these methods need to split data into K sets

and the resulting data sets are partially overlapped. For example, in a 10-Fold CV, every

training set has 8/9 of its samples same as each of the other nine [7]. They require the

training algorithm to be run for K times, which will increase the computational burden

as much as K times [8]. One also needs to choose the parameter K which is a trade-off

between bias and variance of the prediction errors [2]. A large K will usually obtain low

bias and high variance prediction errors, whereas a small K will make prediction errors

with high bias and low variance. Some researchers have tried to find substitutive criteria

that provide same information as CV but do not need validation sets [9].

Compared with tremendous developments in learning techniques, there seems less

recent progress on model assessment. Therefore, Chapter 2 tries to fill in this gap by

3

presenting a totally new method for data and model assessment using Renormalization

Group (RG).

Although the information obtained from model assessment helps to choose a relative-

ly reliable model, it is also important to improve the stability and reliability of the model

itself. To achieve this, one may employ proper techniques in specific applications. Sys-

tem identification is concerned with building mathematical models of dynamical systems

from measured data [10–12]. The ordinary least squares (OLS) method has since been

the dominant algorithm for parameter estimation due to its simplicity in concept and con-

venience in implementation [13, 14]. Given a data set, one can always get an estimate of

OLS. It is known that the OLS estimate could be biased for a regression model with noise

[15, 16]. And it is a very challenging problem to analyze the properties of OLS estimate

analytically.

With regard to the asymptotic properties of the least square estimates, it is known that

the OLS estimate will converge to its real value when the system is disturbed with white

noise. Otherwise, when the system is disturbed with correlated noise, the OLS estimate

could be biased. Griliches [17] gives the expression of the bias for ARAR(1,1) models.

Phillips and Inder [18, 19] analyze the bias for simple first order ARARX models. S-

tocker [20] presents an expression of the bias for a common model but only gives very

simple examples for illustration. He argues that for complicated models (e.g. models

with higher order or with several exogenous variables), it is not practicable any more to

get fully parameterized bias formulas. These would become very extensive even if the

order of the model or the number of exogenous variables increases only slightly. Zheng

[21, 22] proposes a bias-eliminated least squares (BELS) algorithm to identify system

4

parameters. The instrumental variable (IV) method [23–25] is also a very efficient way

to avoid correlated noise and reduce the estimate bias.

When the number of data points is limited, it is more difficult to analyze the bias.

Many papers in the literature discuss the finite-sample bias of OLS estimate for very

simple models. Even when the system is with white noise, Hurwicz [26] proves that the

OLS method yields biased estimates of regression coefficients, and it is possible to obtain

explicit formula for the bias in very small samples. The general structure of the bias is re-

vealed by Shaman and Stine [27, 28]. Breton and Pham [29] provide an exact formula for

the bias. Patterson [30] exploits Shaman and Stines characterization of the bias in higher

order models. When the system is disturbed with correlated noise, unfortunately, it has

been proved difficult to investigate finite-sample bias analytically [31]. In the absence

of such results, Monte Carlo experiments will provide an alternative source of informa-

tion [31]. Sargent [31], Tjøstheim and Paulsen [32] analyze the bias through simulation.

Maeshiro [33] shows that the bias of OLS estimate is determined by two effects, the dy-

namic effect and the correlation effect. The former is the bias of the parameters when the

disturbance is white noise; the latter is the effect that contaminates the parameters when

the disturbance is correlated with the lagged dependent variable. When the two effects

have opposite signs, the OLS estimate performs well in terms of bias.

It is desirable to reduce the noise effect when estimating parameters. Chapter 3 is

to present an improved system identification method with Renormalization Group. By

theoretical analysis and simulation, it is shown that the proposed method could get a

better estimate under certain conditions.

In system identification, observations may not only be disturbed by noise, but also

5

by outliers. An outlier may be defined informally as the one which deviates remarkably

from the bulk of the available data [34, 35]. Outliers occur frequently in real life and

may cause serious consequences in a wide variety of application fields such as network

packet dropouts [36, 37], signal processing [38], image processing [39], mechanical de-

vices [40], credit card fraud detection [41] and medical data [42]. In context of control

and automation, outliers may occur in the observed signal due to sensor malfunctions

and data transmission errors and could lead to poor performance of system identification

[34]. It is imperative to detect and eliminate outliers for better signal processing. Addi-

tive outliers [43], which affect single observations, are our major concern. A common

empirical way to pick up outliers is visual inspection of data charts based on engineer-

s experience. Such a method is subjective and inaccurate. It becomes inappropriate in

today’s world of large and complex systems with huge data. The three-sigma rule [44]

is a popular statistical technique for outlier detection. However, this procedure is not al-

ways effective in practice because the variance estimate is likely to be inflated by outliers.

Recent statistic techniques includes linear and nonlinear filtering for data cleaning [34].

The linear filters change the character of the normal operating episodes and are gener-

ally ineffective, while the nonlinear filters, such as the MT-cleaner [45] and the Hampel

filter [46], are more effective. However, the MT-cleaner must assume that the clean data

obeys Gaussian distribution and the Hampel filter can behave badly with coarsely quan-

tized data [34]. Robust regression methods such as the least median of squares (LMS)

[47], the least trimmed squares (LTS) [48], the least absolute deviations (LAD) [49] and

the iterative reweighted least squares (IRLS) [50], are inherently less sensitive to out-

liers. However, they are often difficult to implement [34]. Further, LMS and LAD are

6

unstable [51], i.e., a small change of the data can produce a relatively large change in the

identification result.

To compare different methods in the context of system identification, consider the

following discrete-time system,

yt − 1.9yt−1 + 0.95yt−2 = 0.05ut, t = 1, 2, . . . , N,

where ut is a step function. Let θ = [1.9,−0.95, 0.05]T . Suppose the observed output is

disturbed by noise and outliers as

ȳt = yt + zt + et,

where et ∼ N(0, 0.05) is a white noise and zt emulates outliers:

zt =

0.5, if t = 40,

−0.7, if t = 120,

0, otherwise.

The resulting output response under zero initial conditions is generated and is shown in

Fig. 1.1 as the dotted cyan line. If this original data is used for system identification, the

parameter estimation error of ∥∆θ∥2 is 1.76 for the ordinary least square (OLS) method,

and 0.23 for the instrumental variable (IV) method. If the extended three-sigma rule

based on the residual series of dynamic modeling (the detail in Section 4.5) is used,

8 points are detected as outliers because some normal samples at peak and trough are

mistaken as outliers, and the parameter estimation with the data excluding such points

gives the error of 0.19. The corresponding response is the dash-dot blue line. If the

Hampel filter is used, 5 points are detected as outliers with some normal samples being

7

mistaken as outliers, and the parameter estimation with the data excluding such points

gives the error of 0.068, which improves but is still not satisfactory. The corresponding

response is the dashed green line. The parameter estimation errors with LMS, LTS (10%

of trimming), LAD and IRLS are much large and shown in Table 1.1, where these four

methods are all implemented in Matlab R2013a [52–55] with default parameter settings.

It is seen from Table 1.1 that IV is preferred over other methods, which also explains

why it is commonly used for colored noise in regression equation in the area of system

identification. The parameter estimation error with IV is still significant. Therefore,

new automatic and reliable outlier detection is highly desirable in system identification

to obtain better parameter estimation. If the proposed method in Chapter 4 is applied,

the estimation error is reduced to 0.0066 with the solid red line as the corresponding

response.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (second)

observed output
response of three−sigma
response of Hampel
response of our method
suspected outliers by three−sigma
suspected outliers by Hampel
actual outliers

Figure 1.1: Illustrative example.

In some branches of engineering other than control, there have been recently vast

amounts of literature on outlier detection. Hodge et al. [35] surveyed this area and

8

Table 1.1: Parameter estimation errors with different methods

Methods ∥∆θ∥2
∥∆θ∥2
∥θ∥2

× 100%

OLS 1.76 82.92%
IV 0.23 10.82%

Extended three-sigma + IV 0.19 8.94%
Hampel + IV 0.068 3.20%

LMS 2.11 99.30%
LTS 1.52 71.53%
LAD 1.62 76.24%
IRLS 1.52 71.53%

Proposed Method 0.0066 0.31%

grouped relevant techniques into three types: supervised classification, semi-supervised

recognition and unsupervised clustering. The first type techniques assume availability of

the labels for both normal and outlying instances in a training data set. The drawback is

that the accurate labels of training data, which are usually determined manually, might

be exorbitantly expensive to be obtained [56]. Also, the assumption that outliers are

available in training set is not very popular [56]. The second type of the techniques

assume availability of the labelled instances for only one class: outliers or normal data

points. The techniques that assume the availability of only the outliers are limited in

use since it is difficult to cover every possible outlying behavior in the data [56]. In

contrast, the techniques that assume availability of normal instances are relatively more

popular, even though the full scope of normality needs to be known for generalization

[35]. Unsupervised outlier detection techniques are most widely used since they do not

assume availability of the labels for instances. These techniques usually assume that the

normal instances occur much more frequently than outliers and obey some parametric

statistical distribution [56].

Recently, Candès et al. [57] and Wright et al. [58] proposed a new unsupervised

9

technique, Robust Principal Component Analysis (RPCA), which has already had a lot

of important applications such as video surveillance [58], face recognition [59] and latent

semantic indexing [60]. RPCA recovers a low-rank matrix from corrupted observations,

that is, a given corrupted matrix is decomposed into a low-rank matrix and a sparse ma-

trix, where the sparse matrix is thought of as a collection of outliers. The matrix decom-

position problem is recast as a semidefinite programming (SDP) problem and researchers

have proposed some first-order fast algorithms [61–64] to solve it. Although these meth-

ods are fast, there is a limitation that if the ideal matrices contain special structures such

as Hankel and Toeplitz, the resulting matrices might not preserve these structures due to

the use of singular value decomposition (SVD) in the algorithms. Another drawback of

RPCA is that analysis of noise is neglected, though noise is likely to accompany with the

signal.

Fazel et al. [65] tried to recover a low-rank matrix which is contaminated by noise by

solving a rank minimization problem. This problem is also converted to an SDP problem.

The general way to solve the SDP problem is using the interior-point method, which

preserves the linear matrix structure. However, the interior-point method is quite slow and

limited by the problem size. Liu et al. [66] developed a more efficient implementation

of the interior-point method by exploiting the problem structure in the SDP formulation.

This implementation is fast and performs well on large scale data. Liu et al. [66] assume

that the signal is only corrupted by noise and solve a rank-minimization problem of a

certain matrix,

min
L

rank(L),

10

where L is a low-rank matrix.

After comparing these methods, it is seen that a fast algorithm solving an outlier

detection problem and preserving special matrix structure is highly desired. Chapter

4 aims to present such an algorithm. In addition, a realistic but complex situation is

addressed where the observations are in presence of both noise and outliers.

1.2 Optimization and Control

Nowadays, optimization problems are ubiquitous in our daily life. In science and engi-

neering, many practical problems such as decision making and system design and anal-

ysis can be formulated as optimization ones. To optimize is to find the best solution of

a certain problem, such as minimizing cost or maximizing efficiency. A global optimum

of an optimization problem, which is optimal among all possible solutions, is usually

preferred than a local one, which is optimal within a neighboring set of candidate solu-

tions. Global optimization is a very challenging problem and has attracted great research

attention over decades. The standard form of an optimization problem is

min
x

f(x),

subject to gk(x) ≤ 0, k = 1, . . . , p,

hl(x) = 0, l = 1, . . . , q,

(1.1)

where x = [x1, x2, . . . , xn]
T , f(x) is the objective function to be minimized over the

vector variable x, gi(x) ≤ 0 are inequality constraints and hi(x) = 0 are equality con-

straints. The constraints determine the feasible region of (1.1). By convention, (1.1)

defines a minimization problem. A maximization problem can be obtained by negating

11

f(x). In the past decades, researchers have devoted great efforts to find the solution of the

problem specified in (1.1) with a good deal of optimization techniques. The techniques

are classified as either local or global algorithms. Most local optimization algorithms are

gradient-based. Different gradient-based algorithms differ in the logic used to determine

the search direction [67], and they only yield good results with functions which are con-

tinuous, convex and unimodal [68]. However, the problems in engineering sciences are

usually complex, non-linear, non-convex and sometimes described by non-differentiable

functions, demanding more efficient numerical methods for their solutions.

Global optimization algorithms, which are typically not gradient-based, provide a

much better chance of finding the global or near global optimum than the local algo-

rithms. It is important to note that no algorithm so far can surely guarantee convergence

to a global optimum, and it may be more accurate to refer to these algorithms as having

global properties [67]. Global optimization algorithms may be classified as either meta-

heuristics or deterministic algorithms [67]. One popular general purpose deterministic

global optimization algorithm is the DIRECT algorithm [69]. The DIRECT algorithm

makes use of Lipschitzian optimization to locate promising subregions in the design s-

pace. Each of these subregions is then further explored using a local search technique

[67]. The DIRECT algorithm is only effective for low-dimensional cases. The computa-

tional burden will become extremely large when the problem size increases.

Metaheuristics for global optimization have become very popular since last centu-

ry. These methods are typically inspired by some phenomena from nature and have the

advantages of being robust, easy to implement and well suited for discrete optimization

problems [67]. The drawbacks associated with these algorithms are high computational

12

costs, poor constraint-handling abilities, problem-specific parameter tuning and limit-

ed problem size [67]. Boussaı̈d et al. [70] provides a comprehensive review of existing

metaheuristics. Generally, the metaheuristics are classified either as single-solution based

or population based.

The single-solution based metaheuristics start with a single initial solution and move

away from it, describing a trajectory in the search region [70]. Among these single-

solution based algorithms, the simulated annealing (SA) [71] and the tabu search [72]

(TS) are representative and have been studied a lot. The major strengths of SA are that

it optimises functions with arbitrary degrees on non-linearity, stochasticity, boundary

conditions and constraints [73]. It is also statistically guaranteed of finding an optimal

solution. However, it has its disadvantages too. It is very slow. Its efficiency depends

on the nature of the surface it is trying to optimize [73]. However, the availability of

supercomputing resources mitigate these drawbacks and makes SA a good candidate

[73]. TS does not use hill-climbing strategies and its performance could be enhanced by

branch and bound techniques [73]. However, the mathematics behind this technique was

not strong. Furthermore, TS requires a knowledge of the entire operation at a detailed

level and extra overhead in terms of memory usage and adaptation mechanisms compared

with SA [73]. In-depth comparisons between TS and SA can be found in [74] and [75].

Population-based metaheuristics deal with a set of solutions rather than with a single

one. There are three main steps in all the population-based metaheuristics. The first step

is to randomly generate the initial population of individuals according to some solution

representation. Each solution in the population is then evaluated for fitness value in

the second step. The third step is to generate a new population by perturbation of the

13

solutions in the existing population.

The most studied population-based methods are related to Evolutionary Computation

(EC) and Swarm Intelligence (SI) [70]. EC algorithms are inspired by Darwins evolu-

tionary theory, where a population of individuals is modified through recombination and

mutation operators [70]. Popular EC includes the genetic algorithm (GA) [76] and d-

ifferential evolution (DE) [77]. GA perhaps seems to be the most popular algorithm at

present. Its advantage lies in the ease of coding and inherent parallelism [73]. It often

locates good solutions. The use of mutation introduces new information gene pool to

makes GA less likely to get stuck in local optima. However, it has some drawbacks. GA

requires very intensive computation and hence is slow [73]. It also has the coding accu-

racy problem if solutions are represented in binary or Gray code. DE was proposed by

Storn and Price [77] for global optimization over continuous search region. Its theoretical

framework is simple and requires a relatively few control variables but performs well in

convergence [78]. Lately, DE has been applied and shown its strengths in many appli-

cation areas though it is slow [78]. The performance of DE is sensitive to the mutation

strategy and control parameters. Mallipeddi et al. [79] employed an ensemble of mutation

strategies and control parameters from a pool of distinct mutation strategies along with

a pool of values for each control parameter to produce offspring through competition.

They showed that their method outperformed conventional DE and several state-of-the-

art parameter adaptive DE variants. In Swarm Intelligence (SI), the idea is to produce

computational intelligence by exploiting simple analogs of social interaction, rather than

purely individual cognitive abilities [70]. A representative of SI is the particle swarm

intelligence (PSO) [80], which was proposed about the same time as DE. PSO is simple

14

in concept, easy to implement and computationally efficient. However, it is more natural

for continuous optimizations than discrete ones [78]. Recently, some researchers make

combination of different methods to obtain more satisfactory optimization results. For

example, Moradi et al. [81] proposed a novel optimization method combining GA and

PSO to optimize the locations and sizes of distributed generation sources in distribution

systems. Valdez et al. [82] described a hybrid approach for optimization combining PSO

and GA using fuzzy logic, which is shown to outperform both individual optimization

methods on a set of benchmark functions.

The designer should be aware that a metaheuristic will be successful on a given opti-

mization problem if it can provide a balance between the exploration (diversification) and

the exploitation (intensification) [70]. In addition, no single optimization algorithm ex-

ists that will solve all optimization problems. The performance of each algorithm would

be heavily dependent on the nature of the problem itself and the heuristics used [73].

Chapter 5 aims to present a brand-new population-based method for global optimization

problems, which is stand-alone and not related to any of the existing population-based

methods.

Besides optimization techniques, control related designs also retrieve information

from a model to make modifications to improve its performance. Finding stabilizing

regions for control systems in parameter space becomes important in recent years. Stabi-

lizing parameter regions will be instructive for controller tuning with greatest robustness

or controller optimization with regard to other specific indices. Most papers in the liter-

ature discuss about the stabilizing parameter regions for proportional-integral-derivative

(PID) controllers. Wang et al. [83] designed a quasi-Linear Matrix Inequality method

15

to compute the stabilizing parameter regions of multi-loop PID controllers, but it only

dealt with systems with no time delays. Lee et al. [84–86] established some stability

conditions by simple P or PI controllers for a class of unstable processes with time de-

lays, but the application of their methods is confined to single-input single-output (SISO)

systems whose transfer functions only have one zero. Nie et al. [87] gave a frequen-

cy method to calculate the loop gain margins of multivariable feedback system. Liu et

al. [88] introduced a fast calculation approach for PI controller stable region based on

D-partition method. Wang et al. [89] presented an effective graphical method to obtain

exact P controller gain ranges for two input two output (TITO) systems with input time

delay. However, this approach could not handle systems with state-delays. Some other

methods can be found in [90–95]. All the methods seek the solutions for the stabilizing

parameter regions for limited classes of plants or controllers. Therefore, Chapter 6 de-

signs a general algorithm for determining stabilizing parameter regions for delay control

systems based on randomized sampling.

1.3 The Scope of This Thesis

In Chapter 2, we present a totally new method for data and model assessment using

Renormalization Group (RG). The proposed method produces a new data set from the

given data set with the members of the former different from those of the latter, which

differentiates our method from the existing ones that only divide the given data into sub-

sets, and thus create no new data. An assessment is performed at the data level without

employing any learning method, whereas the domain works only make assessments at

16

model level. For data assessment, new indices are introduced to quantify the consistency

of two data sets and non-randomness of the given data. The computational cost is ex-

tremely small since it involves no learning. If the assessment result shows that the given

data is random, modeling it is meaningless. Only when the given data is informative,

should one proceed to model it. For model assessment, our method compares predictions

of two models leant from the give data and the transformed data, respectively. The pre-

diction consistency and model reliability are defined accordingly. This assessment relies

on two models one of which has much smaller data size and thus much less computation-

al burden, whereas K-fold CV or similar methods train K models with K usually much

greater than 2, typically set at 10.

In Chapter 3, we present an improved system identification method with Renormal-

ization Group (RG). The proposed method forms a data set based on the system inputs

and outputs. A new data set is produced from the given data set with the members of

the former different from those of the latter. Performing the least squares algorithm, we

obtain an estimate based on the given data and another based on the new data. Comparing

the two estimates through theoretical analysis and simulation, we find that the proposed

method could get a better estimate under certain conditions.

In Chapter 4, we consider an outlier detection problem for a signal from a dynamic

system, which is formulated as a low-rank and sparse matrices decomposition problem:

min
S

rank(L) + γ ∥S∥0

subject to L+ S = D,

where D is a Hankel matrix formed from the measurement signal of a dynamic system,

L is a low-rank matrix, S is a sparse matrix and γ is a trade-off parameter. This prob-

17

lem is further recast as a semidefinite programming (SDP) problem. To solve the SDP

problem, a fast algorithm is presented which preserves Hankel matrix structure with great

reduction of computational cost over the standard interior-point method. The computa-

tional burden is further reduced by proper construction of subsets of the raw data without

violating low rank property of the involved matrix. In addition, a realistic but complex

situation is addressed where the output observations are corrupted by both noise and out-

liers. In this case, we propose a novel approach based on under-sampling and averaging

to reduce noise while keeping the salient behaviors of outliers, whereas the existing fil-

tering methods smooth both noise and outliers. Better parameter estimation is obtained

with the recovered “clean” data than that with the raw data

In Chapter 5, we present a brand-new population-based method for global optimiza-

tion problems. The proposed method is stand-alone and not related to any of the existing

population-based methods. It has two key novelties. Firstly, the region in which each

population lies changes and contracts exponentially, which guarantees convergence of the

proposed algorithm. Secondly, each population is generated with randomization, where

the size of random samples, is chosen [96] to ensure that the empirical minimum is an

estimate of the true minimum within a predefined accuracy with a certain confidence. It

is shown that the proposed method converges and the convergence to local or global op-

tima is analyzed. Our method has no restrictions on the properties of objective functions.

It works on both constrained and unconstrained problems. Also, our method applies to

both continuous and combinatorial optimization problems. The implementation of the

proposed method is easy. Extensive simulation on benchmark problems shows that the

proposed method is fast and reasonably accurate.

18

In Chapter 6, we propose a method for determining stabilizing parameter regions for

general delay control systems based on randomized sampling. We assume that each un-

known parameter follow the uniform distribution in a given range. Then, we generate a

certain number of random sample points in the parameter space. Next, we convert a de-

lay control system into a unified state-space form and develop an efficient LMI stability

criterion. Each point in the parameter space is checked with the developed stability crite-

rion. These points are separated into stable and unstable regions by the decision function

obtained from some learning method. The proposed method is general and applied to a

much broader range of systems than the existing methods in the literature.

19

Chapter 2

Model Assessment through

Renormalization Group in Statistical

Learning

2.1 Introduction

In statistic learning, model assessment is vital for evaluating the usefulness and reliabil-

ity of a model. Existing methods [2] for model assessment includes Cp statistic, Akaik

information criterion (AIC), Bayesian information criterion (BIC), cross-validation (CV)

and the Bootstrap method. Cp statistic, AIC and BIC estimate in-sample error, which

may lead to overfitting problems. CV and Bootstrap estimate out-of-sample error but

split data into different sets, which are partially overlapped. Training models on differen-

t data sets may increase the computational burden. There seems less recent progress on

model assessment compared with vast developments in learning techniques. This chapter

20

aims to present a totally new method for data and model assessment using Renormaliza-

tion Group (RG). RG was first proposed to study the critical phenomena in the quantum

field in 1971 by Kenneth G. Wilson, who won the Nobel Prize for physics in 1982 [97],

due to this great contribution. RG is widely used to analyze various physical problems

[98, 99]. It is observed that some physical system may enter a critical point where certain

physics quantities such as the Hamiltonian, the transformation function and the coupling

constants have the property of “scale invariance” [100]. Renormalization Group designs

some Renormalization Group transformation (RGT) to relate macroscopic physics quan-

tity to microscopic one and invokes “scale invariance” to solve the problem. To see

quickly our RG idea in model assessment, imagine that 100 data points are taken on the

function y = x3 with x in [0, 1] and are fitted to some model. Now every 10 points nearby

are grouped to one new point by averaging and the resulting 10 new points are fitted to

a new model. Obviously, one expects such two models to perform similarly in the given

interval. On the other hand, a pure random data set will produce two models by chance

and they perform totally differently.

Technically, the proposed method groups the given data set into a RG data set, train

one model with the given data and another model with the RG data, and compare their

predictions. The consistent predictions between two models indicates informative data

and reliable models. The contributions of this chapter can be summarized as follows.

• The proposed method produces a new data set from the given data set with the

members of the former different from those of the latter, whereas the existing meth-

ods mentioned above only divide/separate the given data and the data points in the

21

new sets are the same as those in the given set, and thus create no new data.

• An assessment is made at the data level before any learning method is applied to

train a model, whereas the domain works carry out model assessment only. For

this, we introduce new indices to quantify the consistency of two data sets and

non-randomness of the given data. The required computation is extremely fast as

it involves no learning. With this assessment, if the given data is random, it is

meaningless to model it. Only when the data is not random, should one proceed to

model it.

• At the model level, our assessment is to compare predictions of two models leant

from the give data and the transformed data, respectively. The prediction consis-

tency and model reliability are defined accordingly. This assessment relies on two

models one of which has much smaller data size and thus much less computational

burden, whereas K-fold CV or similar methods train K models with K usually

much greater than 2, typically set at 10.

The rest of this chapter is organized as follows. In Section 2.2, Renormalization

Group is reviewed. Section 2.3 presents the proposed method. Section 2.4 details the

implementation issue of the method. Section 2.5 addresses the theoretical issues of the

method with assessment criteria. Section 2.6 gives simulation studies of some well-

known examples. Section 2.7 discusses rich variants of RG. Section 2.8 concludes the

chapter.

22

2.2 Review of Renormalization Group

Renormalization Group (RG) was first introduced in [97] to study the critical phenomena

in physics. A physically different state of a substance is called a phase. A second-

order phase transition means that a substance transforms from one phase to another with

continuous energy change. A critical point refers to a situation where the substances of

two states are fully mixed with each other both in macroscopic and microscopic views.

At a critical point, a phase boundary does not exist anymore. For example, in the classical

Heisenberg-type model [101], all lattice spins tend to align at a low temperature and this

state is one phase whereas at a high temperature, lattice spins orient randomly and this

state is another phase. At a certain temperature Tc, there is no boundary between these

two phases and this temperature is called the critical temperature. The critical phenomena

are unusual and attracted great attentions for study. RG was invented [97] to analyze the

critical behavior of a physical system. It was shown that when a second-order phase

transition occurs, some physical quantities of the system such as the Hamiltonian, the

free energy, the transformation function and the coupling constants would not change

under a RG. This property is used to determine the critical values of relevant parameters

at a critical point.

Let us look at bond percolation [102] to have a concrete idea of RG. For a system

with a two-dimensional (2D) square lattice, a bond exists between two neighboring sites

with a probability p, as exhibited in Figure 2.1a. If a set of sites are connected by bonds,

we call this set a cluster. When p is large enough, there will be a cluster extending from

one side of the lattice to the other, for instance, from left to right. When p is small, this

23

may not be possible. Thus, there must be a critical probability pc, such that when p > pc,

a cluster exists and extends the whole lattice from one side to another whereas for p < pc,

there is no such cluster. Therefore, p > pc and p < pc define two phases of this model

and p = pc is the critical probability. Binney [102] showed that pc = 1
2

for a 2D square

lattice.

A Renormalization Group Transformation (RGT) is now applied to the original lattice

in Figure 2.1a to get a transformed lattice. Every second site in the original lattice is

knocked out and a bond is set up between two neighboring sites of the new lattice if

there are two bonds joining those two sites on the old lattice, which gives rise to the

renormalized lattice in Figure 2.1b.

(a) Original lattice. (b) Renormalized lattice.

Figure 2.1: Original and renormalized lattices.

Figure 2.2 shows all the bond configurations on a square on the old lattice which can

give rise to a bond on the new lattice and a probability is also labeled for the occurrence

of each configuration. Then the probability pt that a bond exists between two sites on the

p3(1-p)p4 p3(1-p) p3(1-p) p3(1-p) p2(1-p)2 p2(1-p)2
Figure 2.2: The bond configurations on a square.

24

new lattice is obtained as

pt = p4 + 4p3(1− p) + 2p2(1− p)2

= 2p2 − p4.

(2.1)

When it is at the critical point, it follows from the “scale invariance” property under RGT

that pt = p = pc, and (2.1) is then solved with

pc =

√
5− 1

2
= 0.618. (2.2)

However, this number is not equal to 0.5. The errors may be due to the following two

causes [102].

• Some pairs of sites are connected on the original lattice, but they are separated on

the renormalized lattice, for example, the sites A and B in Figure 2.3.

• The bond marked with 1 in Figure 2.3 on the original lattice affects the occurrences

of both 1′ and 2′ on the renormalized lattice. In other words, 1′ and 2′ are not com-

pletely independent with each other, which does not fully meet the requirements of

a percolation system.

A B 1 A B1' 2'
Figure 2.3: Errors in pc estimation from renormalization.

In short, the RG may lead to errors but is simple and effective to estimate critical

parameter values. RG has been also applied successfully to dynamical systems [103],

Ricci flow [104] and stock markets [105].

25

2.3 The Proposed Method

Consider the classical binary classification problem in statistical learning with a data set,

S = {S1, S2, ..., SN}, with Si = (xi, yi), i = 1, 2, ..., N , xi ∈ Rp and yi ∈ {−1, 1}.

A learning method is to determine the decision function f(x), which can classify the

data with prediction or generalization capacity. The present chapter is not to develop a

new learning method, but to propose a new approach based on RG to assess the degree

of randomness of the data and reliability of a model built from a learning method for

prediction, assuming that the data are from a process with a fixed probability density.

The core of this approach is the “scale invariance” property of RGT. It follows from this

property that the information contained in the original data set is invariant under RGT,

that is, the transformed data set obtained from RGT should contain the same information

as in the original data set. In the context of statistical learning, the information of the data

set refers here to the probability density function, or the relationship from x to y. Its two

extremes are the purely random and completely deterministic cases. We will define and

compute an index on measure of such information on the data set. Furthermore, a model

learnt from the data set reflects its information. If the information is same for the original

and transformed data sets, then two models learnt from them, respectively, should be

consistent with each other in terms of their predictions. Hence, we will also define and

compute an index on measure of model consistency. It is found that this index will not

be zero for the pure random data. This makes it necessary to find the index with the

case of completely randomized labels and re-scale it for a general case to define another

index on measure of model reliability. The idea and steps of the proposed approach will

26

be described and illustrated by a 2D example in this section, while design of RGT and

relevant indices will be discussed in the next two sections, respectively.

The first step of the proposed method is to perform a RGT on the given data set

to obtain a transformed data set. For easy reference, we call the given data set, S, as

the fine data set and the model obtained from it as the fine model. The data set Ŝ =

{Ŝ1, Ŝ2, ..., ŜN̂}, with Ŝj = (x̂j, ŷj), j = 1, 2, ..., N̂ , x̂j ∈ Rp and ŷj ∈ {−1, 1} obtained

from a RGT on the fine data set is called as the coarse data set and the resulting model

as the coarse model. A RGT on the fine data set is to group a number of data points of

the fine data set into one data point in the coarse data set in a systematic way. There are

different ways to do this grouping, which will be discussed in detail in the next section.

One example of RGT is to group all the data of the fine set in a geometric unit of the

fixed shape and size to one point of the coarse set. In general, one RGT transforms the

fine set to many groups and one group will become one data point in the coarse set. For

each group, one has to specify its representative label (ŷ) and its representative feature

values (x̂) to define one data point in the coarse set. The appealing way to assign the

group label seems the majority rule of the labels of the points in that group, while its

representative x̂ may be determined by the simple average of the xi of the major class.

For example, Figure 2.4a and Figure 2.4b show such a group of 10 points in the fine set

and the resulting point in the coarse set using the above rules.

For clarity and illustration, we construct a 2D example to explain each step of the

proposed method in detail with numerical results. Let the fine data have two features,

xi = (xi(1), xi(2)). Let the fine set have 4000 data points in the square of [-1,1], which

are drawn randomly with uniform distribution. Specify a decision function as xi(2) =

27

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

class1
class2

(a) A group of data in the fine set.

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

class1

(b) One point in the coarse set.

Figure 2.4: RGT.

x2
i (1)− 0.5. Consider first the deterministic case where each data point is assigned with

the green label if it is located on and above the parabola, otherwise with the red label.

The resulting fine set is depicted in Figure 2.5a. Suppose that we use the majority and

average rules mentioned above. The coarse set is then obtained and shown in Figure 2.5b.

The second step of the proposed method is to assess the information of the given data.

Suppose that the label for a coarse unit is assigned according to the majority rule and the

coarse label for each fine data point in this unit is defined as the same as its unit label.

This enables us to compare the fine and coarse labels at each fine data point and define

the data consistency as follows:

CD = 1− 1

2

∑N
i=1 |L(xi)− L̂(xi)|

N
, (2.3)

where L(·)=1 or -1, stands for the fine labels and L̂(·)=1 or -1 for the coarse labels. A

high index value means a high extent of uniformity of two data sets, which should imply

that the given data is informative. For the above example, the data consistency index is

0.9818, indicating a high consistency of two data sets.

28

The third step of the proposed method is to apply some learning method on both

fine and coarse data sets to get the fine and coarse models, f(x) and f̂(x), respectively.

Any learning method can do but the same one should be used on both data sets to avoid

inconsistency due to application of different methods. For this study, the support vector

machines (SVM) is chosen as our classification tool, since it is popular and representative

and has many attractive features and emphatic performance in many applications [106–

109]. The SVM sovles the following optimization problem [110, 111]:

min
ω,b,ξ

1

2
ωTω + C

l∑
i=1

ξi

subject to yi(ω
Tϕ(xi) + b)− 1 + ξi ≥ 0

ξi ≥ 0.

where ϕ is a mapping from xi to a higher dimensional space and C > 0 is the penalty pa-

rameter. In our simulation, the LibSVM kit [112] is employed for the above 2D example

and produces the fine and coarse models in Figure 2.5 marked with black curves. Then

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(a) The fine set and model.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(b) The coarse set and model.

Figure 2.5: Deterministic 2D case.

we assess the reliability of the fine model, comparing predictions of the fine model with

29

those of the coarse model. A model consistency index CM is defined as

CM = 1− 1

2

∑N
i=1 |sign(f(xi))− sign(f̂(xi))|

N
, (2.4)

where sign(f(xi)) and sign(f̂(xi)) are the prediction labels of f(xi) and f̂(xi) on xi in

the fine data set, respectively. A high index value means a high degree of agreement of

predictions of two models and indicates a high similarity of two models, which should

imply that the learnt models are reliable. The model consistency index also captures

the information contained in the data. For our example, the model consistency index is

0.9970, indicating a very high reliability of the models, which is of course true, as the

data are constructed with a perfect decision function.

Next, we consider a purely random data case for comparison (more realistic cases

will be shown in Section 2.6). Take all xi from the above case or randomly choose a new

set of 4000 of xi, which does not matter for this study. Assign now their labels randomly,

which yields the data shown in Figure 2.6a. The majority and average rules above are

applied to get the coarse set shown in Figure 2.6b. The data consistency index is 0.6282,

a much smaller value, which actually indicates that the given data is not informative as

will be shown in Section 2.5. Figure 2.6 also shows the fine and coarse models marked

with black curves. For this case, the model consistency index is 0.6743, a much smaller

value compared with the previous case. The model is not reliable though the consistency

index is not equal to zero but about the lowest, which will be shown in Section 2.5. This

is also obvious since the decision functions in Figure 2.6 are messy and useless.

30

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(a) The fine set and model.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(b) The coarse set and model.

Figure 2.6: Pure random 2D case.

2.4 Design of RGT

A RGT is a way to group the fine data and choose a representative in each group [105].

There are many methods for designing RGT. For example, Kadanoff’s “spin decimation”

transformation was very successful in the traditional Ising model. Other methods include

Migdal-Kadanoff approximation, cumulant expansion and cluster expansion [100, 113].

The choice of methods depends on particular applications. For our problem of assessment

of data-driven models, we present two broad methods of grouping data for RGT based

on geometric and distributional considerations in the feature space, respectively.

2.4.1 Geometrical Grouping

Choose a geometric unit of fixed size. For the 2D case, possible geometric units include,

but not limited to, a square, rectangle, and triangle. It is trivial to have their n-dimensional

counterparts. We have used squares in the previous section for a 2D example. We can

have a cube for 3D and a hypercube for n-D. Suppose a hypercube for illustration. Fill

31

the given feature space with a grid of hypercubes of equal size, one by one without gap

or overlap. Include in the coarse set a non-empty hypercube which has at least one fine

data point in it and exclude all empty hypercubes. The resulting non-empty hypercubes

are numbered as j = 1, 2, ..., N̂ .

The next task of RGT is to form a coarse data set. One has to specify its features, x̂j

and label, ŷj , for unit j, based on all Si = (xi, yi) of the fine set in the same unit. The

label, ŷj , for unit j, is usually determined according to the majority rule on all (xi, yi) of

the fine set in this same unit. Let unit j have N+
j of such xi with yi = 1 and N−

j of xi

with yi = −1. Then the majority rule is defined as follows.

• if N+
j > N−

j , then ŷj = 1;

• if N+
j < N−

j , then ŷj = −1;

• if N+
j = N−

j , then ŷj is the same as the first counted yi in unit j.

Now turn to the issue of setting features. Possible ways to get x̂j are

• calculating the average of all xi in units with the major class only,

• calculating the average of all xi in units,

• choosing the geometric center of the unit, and

• randomly choosing one xi with the major class.

It is found that these different rules make little difference in model assessment, basically

because the unit is of small size and the resultant xi from different rules are quite close

to each other. Thus, in the rest of this chapter, the first rule above to get x̂j is adopted.

32

It follows from the above description of RGT that the major parameter of a RGT is

the number of units, or the size of a unit in each geometric grouping method. It depends

on the transformation ratio, r, which we define as the number of geometric units (the data

points in the coarse set) to the number of data points in the fine set. If this ratio is small,

there will be more fine data points in each unit on average. The majority makes good

sense with less chance error, but it will give fewer data points in the coarse set, which

may have negative effect on modeling accuracy. On the other hand, a large ratio will make

less sense of majority but have more coarse data points. In the previous example, the side

of each small square is chosen 0.1 and the ratio is approximately to 1/10. To see effects

of r, we vary r and run simulations for the 2D example in the previous section. It follows

that for the deterministic case, the consistency indices, CD = 0.9700, 0.9818, 0.9515 and

CM = 0.9985, 0.9970, 0.9922, for r = 1
5
, 1
10
, 1
20

, respectively, while for the pure random

case, CD = 0.5740, 0.6282, 0.6560 and CM = 0.7107, 0.6743, 0.6275, for r = 1
5
, 1
10
, 1
20

,

respectively. It is seen that the ratio in the range of 1
5
− 1

20
does not affect the assessment

much. In the rest of this chapter, the ratio of 1
10

is adopted.

2.4.2 Distributional Grouping

We may also design a RGT based on data distribution by using some clustering method.

For example, the k-means clustering algorithm may be adopted. The k-means clustering

groups N observations into k clusters [114, 115]. The first step is to define k centroids,

one for each cluster. The second step is to associate each xi with the nearest centroid.

The third step is to re-calculate k new centroids as barycenters of the clusters obtained

33

from the previous step, until the k centroids do not change any more. This algorithm

minimizes the within-cluster sum of squares.

When a clustering method is applied to group the fine data to clusters, the resulting

clusters play the same role as the units in the geometrical grouping. k/N is equal to the

transformation ratio r and k is chosen based on the same guidelines as for the latter. And

the rules to determine the features and labels of a cluster to form a coarse data point can

be also same as those for the units before.

To see how the clustering method works as RGT, let us re-visit the 2D example in the

previous section. Take k/N = 0.1, which is equivalent to the transformation ratio of 0.1,

used before. The fine data set and the fine model are shown in Figure 2.7a (same as Figure

2.5a). Perform the k-means clustering algorithm, which produces 400 clusters. The

corresponding coarse data and coarse model are shown in Figure 2.7b. The consistency

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(a) The fine set and model.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(b) The coarse set and model.

Figure 2.7: The k-means clustering algorithm—deterministic.

indices are computed as CD=0.9832 and CM=0.9960, almost same as in Section 2.3, very

high values. The fine and coarse data and models for the pure random case are shown

in Figure 2.8. Its consistency indices are found to be CD=0.6300, nearly the same as in

34

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(a) The fine set and model.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(b) The coarse set and model.

Figure 2.8: The k-means clustering algorithm—pure random.

Section 2.3, and CM=0.4973, a low value, which is lower than before.

2.5 Assessment Criteria

With a RGT, one gets a coarse data set. It is possible to compare it with the fine set

to assess the information contained in the fine data. When a learning method is applied

to both data sets, one obtains two models and can compare their predictions to assess

reliability of the fine model. This section will develop relevant indices to measure data

information and model reliability with illustrations.

2.5.1 Data Information

There are many different learning methods available to train a model from a data set.

Each method has its assumptions and tuning parameters, and will inevitably bring in its

error or bias. Thus, the performance of any learnt model will depend, not only on the data,

but also on the method and parameters chosen. It will be highly desirable to analyze only

35

data to know how informative it is, regardless of a learning method adopted. It would

be meaningless to model a data set if it is purely random. To find a suitable information

index on the fine data, we look at how random the labels assigned by the majority rule

for the coarse data are. Imagine that if the fine data is purely random, then the labels

on the fine data are random, and each unit or cluster in the coarse feature space has 1/r

fine data points with equal number of each label on average, which gives rise to equal

probability for each label of the coarse unit/cluster. In other word, labels of the coarse

data are random. Suppose that the coarse labels for all the fine data points in a coarse

unit/cluster are same and defined as that of the majority. One can then compare the coarse

label with the fine label on each fine data point. Their consistency will be a low value

determined by chance.

On the other hand, if the fine data is deterministic, then the labels on the fine data are

divided by the decision function, and each unit or cluster in the coarse feature space has

1/r fine data points with the same label, which in turn assigns that label to the coarse

unit/cluster, unless the unit/cluster intersects with the decision function. In other word,

labels of the coarse data are deterministic except for boundary units/clusters. Then, when

one compares two labels of two data sets at each fine data point, and their consistency

will be almost one. In the view of the above observations, we thus define the consistency

index on the given fine data in (2.3).

To make the value of CD in (2.3) more meaningful, we also evaluate the index for the

corresponding random case. Given the fine data set S, keep xi unchanged, but assign their

labels randomly. Apply the same RGT as before, which results in the same units/clusters

as before, but the majority rule will assign a new set of coarse labels due to changes of

36

labels of fine data. We then evaluate the consistency index on the so-formed fine data,

denoted by CD. This number shall give the lower bound for this consistency index. The

non-randomness index of a given data set is then defined as

D =
CD − CD
1− CD

× 100%. (2.5)

The smaller D is, the more randomly the data distributes. The larger D is, the less

randomly the data distributes. For the 2D example, the deterministic case yields D =

95.10% from (2.5) with CD = 0.9818 and CD = 0.6282 from Section 2.3. The determin-

istic case gives a high value of D, indicating a high non-randomness of the data, whereas

the pure random case gives D equal to 0.

For applications, one needs to know CD. We now present the geometric grouping case

for its calculation. Suppose that a RGT randomly groups N data into N̂ identical units

with the distribution, Z = N1 ×N2 × ...×NN̂ , where Nj = N+
j +N−

j , Nj denotes the

number of data in the jth unit, while N+
j and N−

j denote the numbers of ‘1’ class and

‘-1’ class data in the jth unit, respectively. It follows that

CD =

∑N̂
j=1 max(N+

j , N
−
j)

N
. (2.6)

We use the expectation E(CD) in place of CD in (2.5). Since the N̂ units are identical,

(2.6) reduces to

E(CD) =
N̂

N
E(max(N+

1 , N1 −N+
1)), (2.7)

where the random variables N1 and N+
1 obey the binomial distributions, N1 ∼ B(N, 1

N̂
)

and N+
1 ∼ B(N1,

1
2
). It is easy to verify that

max(N+
1 , N

−
1) =

N1

2
+ |N+

1 − N1

2
|. (2.8)

37

Substituting (2.8) into (2.7) gives

E(CD) =
N̂

N
E(

N1

2
+ |N+

1 − N1

2
|). (2.9)

Note that if Nj = 0, (2.9) still holds. However, the proposed method excludes empty

units. We can use (2.9) when the transformation ratio r is less than 0.1, where the prob-

ability of appearance of an empty unit is very small. To get exact E(CD) which excludes

empty units, it is possible to use the enumeration method for simple cases. For example,

when N = 20 and N̂ = 2, then it can be shown that E(CD) = 0.6254. For a general

case where N and N̂ are large, we employ the Monte Carlo method to simulate E(CD)

based on all possible data distributions. Simulation results show that E(CD) is related to

N̂
N

, which equals to the transformation ratio r. Table 2.1 shows the computation of E(CD)

given different values of r. It is observed from Table 2.1 that the larger r is, the nearer

Table 2.1: Computation of E(CD)

r 0.01 0.05 0.1 0.2 0.5
E(CD) 0.48 0.57 0.62 0.66 0.78

E(CD) approaches 1, and the smaller r is, the nearer E(CD) approaches 0.5.

It is useful to know how the index D behaves with regard to randomness of data,

hopefully it functions from 0 to 1 linearly. For the 2D example, suppose that P% denotes

the percentage of the fine data points with the major class label. For instance, P%=80%

means that 80% of the data above xi(2) = x2
i (1)−0.5 are randomly chosen and assigned

with ‘1’ while the remaining 20% data with ‘-1’, and a similar assignment is done for the

data below the parabola. Let P%=50%, 60%, 70%, 80%, 90% and 100%, respectively.

For each value, we apply the RGT and compute D. The results are shown in Figure 2.9a

38

with crosses, where the solid line is its linear fitting. Construct similarly the 3D case

as follows. Take 80000 data points in a cube of [-1,1] uniformly and apply a RGT to

group the cube into 8000 identical units. Specify the decision function as the paraboloid

xi(3) = x2
i (1) + x2

i (2)− 0.6625 and assign their labels to a given level of P%. Calculate

then CD, CD and D and show D vs P% in Figure 2.9b. It follows from Figure 2.9 that D

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P%

D

non−randomness
linear fitting

(a) 2D.

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P%

D

non−randomness
linear fitting

(b) 3D.

Figure 2.9: Non-randomness indices and linear fitting curves.

functions almost linearly and gives a good gauge of non-randomness.

2.5.2 Reliability Index

In practice, one needs to use some learning method to train a model. Thus, it requires

evaluation of models, in addition to data assessment. If the fine and coarse models are

trained from the purely random data, then their prediction consistency will be a low val-

ue. However if the models are trained by the deterministic data, then their prediction

consistency will be almost one. Thus, the consistency index CM on the two models is de-

fined in (2.4). Like the data assessment, we also evaluate this index for the corresponding

39

random case. Keep xi unchanged, but assign their labels randomly. Apply the same RGT

and learning method as before, the models will change due to changes of labels of data.

We then evaluate the consistency index between the so-formed models: CM . This number

shall give the lower bound for this consistency index. Then we define the reliability index

as

R =
CM − CM
1− CM

× 100%. (2.10)

The smaller R is, the less reliable the models are. The larger R, the more reliable the

models are. For the 2D example, the deterministic case yields R = 99.08% from (2.10)

with CM = 0.9970 and CM = 0.6743 from Section 2.3. The deterministic case gives a

high value of R, which shows a high reliability of the models. On the other hand, the

pure random case gives R equal to 0.

It should be noted that CM and CM have different values from CD and CD, respectively.

This is because the formers are affected by a chosen learning method while the latter are

not. Parameters of a classification tool may also be a factor and should be chosen to have

minimal impact on the final assessment.

We also want to know how the index R behaves with regard to randomness of data,

hopefully it functions from 0 to 1 linearly. For the 2D example, let P%=50%, 60%, 70%,

80%, 90% and 100%. For each value, we apply the RGT and the learning method to

compute its R. The results are shown in Figure 2.10a with crosses, where the solid line

is its linear fitting. The same procedure is performed on the 3D case above and R vs P%

is shown in Figure 2.10b. It follows from Figure 2.10 that R functions almost linearly

and makes a good sense of reliability.

40

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P%

R

reliability
linear fitting

(a) 2D.

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P%

R

reliability
linear fitting

(b) 3D.

Figure 2.10: Reliability indices and linear fitting curves.

The proposed method is very different from the cross validation (CV) and will be now

compared with the latter, since CV is the most popular model assessment methodology

in the learning domain. For the 2D case, Table 2.2 shows the non-randomness index D,

the reliability index R, the correct prediction rate of 5-fold CV and 10-fold CV, and their

respective computational time for data sets. At the data level, the proposed method is

Table 2.2: Comparisons between the proposed method and CV

P%
Proposed method 5-fold CV 10-fold CV

D Time R Time rate Time rate Time
50% 1.05% 0.08s 3.19% 85.42s 0.5200 265.33s 0.5155 623.02s
60% 5.81% 0.08s 11.61% 80.60s 0.5363 233.98s 0.5293 608.37s
70% 22.35% 0.08s 35.74% 70.70s 0.5938 194.91s 0.5962 518.59s
80% 44.73% 0.08s 59.93% 51.57s 0.6793 125.26s 0.6910 378.81s
90% 68.93% 0.08s 79.28% 14.18s 0.8135 31.25s 0.8190 88.70s
100% 95.10% 0.08s 97.48% 2.16s 0.9955 4.57s 0.9965 10.22s

super fast to get D and is independent of any learning method. At the model level, our

method only needs to train two models and takes short computational time whereas a

K-fold CV needs to train K models. Therefore, our method is more efficient. Also, it

is observed from Table 2.2 that D and R, and the correct prediction rates of CV have a

41

similar rising trend vs P%. To see more clearly, the indices CD, CM , D and R, and the

correct prediction rates of 5-fold CV and 10-fold CV are shown in Figure 2.11. It follows

0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P%

C
D

, C
M

 and CV.CorrectRate

C

D

C
M

5−fold CV.CorrectRate
10−fold CV.CorrectRate

(a) CD, CM and CV.CorrectRates.

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P%

D, R and CV.CorrectRate

D
R
5−fold CV.CorrectRate
10−fold CV.CorrectRate

(b) D, R and CV.CorrectRates.

Figure 2.11: Indices and CV.CorrectRates vs P%.

that the correct prediction rate of CV has the same tendency as CD, CM , D and R. But

note that unlike CV which splits data to folds with overlapping, our method produces

new data from the original data, which avoids the repeated use of data.

2.6 Simulation Examples

In this section, three practical examples are given to illustrate the proposed method.

Example 2.1. Consider the banana data [116]. This is a popular binary classification

problem in machine learning. It has 5300 data points with two features. The fine data

with normalization is shown in Figure 2.12a. RGT is done by geometrical grouping

with squares of side of 0.1. We have 233 identical squares and the transformation ratio

approximately equals to r = 0.04. The coarse data under the default RGT of Section 2.4

is obtained and shown in Figure 2.12b. It follows from Section 2.5 that CD = 0.8983,

42

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(a) The fine model.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

demension1

de
m

en
si

on
2

class1
class2
Support Vectors
decision function

(b) The coarse model.

Figure 2.12: The banana example.

CD = 0.5764 and D = 75.99%, indicating a high non-randomness of the data. With the

SVM, the fine and coarse models are trained on two data sets, and exhibited in Figure

2.12a and Figure 2.12b with black curve, respectively. It follows that CM = 0.9551. With

label randomization, one gets CM = 0.6713. Thus, the reliability index for this example

is calculated from (2.10) as R = 86.34%, which implies a reliable fine model. The SVM

model given in [116] has the prediction accuracy of 88.44%.

Example 2.2. Consider the “Astroparticle Physics” data [110]. It has 7089 data

points with four features. We apply the k-means clustering method to group the fine data

to clusters. With 709 clusters and the transformation ratio of r = 0.1, it follows from

Section 2.5 that CD = 0.9595, CD = 0.6194 and D = 89.36%, indicating a high non-

randomness of the data. With the SVM, the fine and coarse models are trained on two

data sets. It follows that CM = 0.8965. With label randomization, one gets CM = 0.6239.

Thus, the reliability index for this example is calculated from (2.10) as R = 72.48%,

which implies that the reliability of the fine model is good. The raw SVM model in [110]

has the prediction accuracy of 75.2%.

43

Example 2.3. Consider the “Cod RNA” data [117]. It has 59535 data points with

eight features. The k-means clustering method is applied to do the RGT. With 5814

clusters and the transformation ratio of r = 0.1, it follows from Section 2.5 that CD =

0.8806, CD = 0.6098 and D = 69.40%, indicating a mediocre non-randomness of the

data. With the SVM, the fine and coarse models are trained on two data sets. It follows

that CM = 0.8471. With label randomization, one gets CM = 0.6296. Thus, the reliability

index for this example is calculated from (2.10) as R = 58.72%, which implies the fine

model is not quite reliable. We use the SVM parameters given in [117] to train a SVM

model and obtain the prediction accuracy of 74.12%.

2.7 Variants of RGT

It should be noted that it is possible to generate multiple sets of coarse data under a sin-

gle RGT with a fixed parameter, r, by making geometric perturbations of units/clusters.

Figure 2.13 shows simple plots of the squares before and after shifting for illustration.

This section is to study robustness with regards to such perturbations.

Look again at the 2D example of Section 2.3. Use one RGT with a fixed parameter,

say, the squares with r = 0.1. With the first square exactly on the origin, the resulting

coarse set with 400 units, Ŝ1, is obtained. If one shifts each square horizontally to the

right by a perturbation, δ, say, δ = 0.02, a new coarse set with 420 units, Ŝ2, is obtained.

Continue this process and a total of five coarse sets, Ŝm, m = 1, 2, ..., 5, can be found. If

δ = 0.01, one gets 10 coarse sets. Alternatively, one can shift squares vertically or with

any particular angle with the x-axis. This creats unlimited possibilities. Thus, one can

44

1-1 0 1
-1

(a) Original squares.

1-1 0 1
-1

(b) Shifted squares.

Figure 2.13: The squares before and after shifting.

always get as many coarse sets as desired. For illustration, take Ŝm, m = 1, 2, ..., 5 for

further study.

Consider first the deterministic data case. For each Ŝm, m = 1, 2, ..., 5, as before, the

label of each unit of a coarse set is determined by the majority rule and the labels of all the

fine data points in the unit follows that unit label. Then this set of labels is compared with

the original labels at each fine data point, and the consistency index CD can be computed

by (2.3). On the other hand, for the random data case, the above procedure yields the

consistency index CD. The results are shown in Table 2.3. It is seen that both CD and

Table 2.3: CD and CD for Ŝm

Ŝ1 Ŝ2 Ŝ3 Ŝ4 Ŝ5

Deterministic 0.9818 0.9805 0.9822 0.9810 0.9825
random 0.6282 0.6252 0.6262 0.6260 0.6228

CD are very stable with their averages being 0.9816 and 0.6257, respectively. Finally, the

two cases are compared to calculate

D =
CD − CD
1− CD

× 100% = 95.08%,

45

which is almost the same as the value calculated in Section 2.5. It is worth pointing out

that due to averaging, more sets are utilized in evaluating the non-randomness index in

this section than that in Section 2.5 which relies on a single set and the former statistic

should be more powerful than the later [118].

It is obvious that the above analysis on the multiple coarse sets can be carried over to

the model level following Section 2.5 and the details are omitted for brevity.

2.8 Conclusions

In this chapter, a new model assessment method has been proposed based on Renormal-

ization Group. Its implementation rules and performance criteria are presented accord-

ingly. By Renormalization Group, a coarse data set is created from the original fine data

set and it is different from the latter in terms of their features and labels. This new data set

enables us to assess data information without using any learning method. The proposed

method does not require a separate validation data set. If the assessment shows that the

data is random, the modeling or learning is useless and should not be performed at all.

These characterize the proposed method and distinguish it from the existing methods in

the domain. In addition, a model is trained on the coarse set, which is impossible with

other methods which only divide the data to different sets with the same data points as

the original ones. The predictions from the coarse model are compared with those of

the model based on the fine data to evaluate model consistency and thus reliability of the

learnt model. The proposed method is shown to work well with examples. It should be

pointed out that the proposed method requires sufficient data. Furthermore, its theoretical

46

properties and additional potential values are to be investigated.

In this chapter, we illustrate the proposed method for classification problem. The

method can be also applied to regression problem with trivial modifications. In this case,

simple averaging or a weighted average of responses, yi, of fine points in a unit may

be used to obtain the coarse response, ŷj , instead of the majority rule for classification,

whereas the coarse feature can be determined in the same way as in classification. The

comparison of fine and coarse data and models can be made with regard to, say, the

standard squared errors for regression.

47

Chapter 3

Improved System Identification with

Renormalization Group

3.1 Introduction

The previous chapter discusses about model assessment methods, which help with eval-

uating the informativeness and usefulness of a given model. A relatively good model

may be chosen based on the assessment information. However, to get a good model,

it is important to improve the stability and reliability of the model itself by employing

some techniques. This chapter presents a technique helping to get good models in sys-

tem identification, which is concerned with building mathematical models of dynamical

systems from measured data [10]. In the field of system identification, the ordinary least

squares (OLS) method [10] has since been the dominant algorithm for parameter estima-

tion, while its estimate could be biased for a regression model with noise [15]. It is very

challenging to analyze the properties of OLS estimate analytically. When the number of

48

data points is unlimited, the OLS estimate will converge to its real value if the system

is disturbed with white noise. For correlated noise, the OLS estimate could be biased

and researchers have proposed some methods [21, 23] to avoid correlated noise and re-

duce the estimate bias. When the number of data points is unlimited, analyzing the bias

becomes more difficult. Many papers [26, 27, 30, 33] in the literature only discuss the

finite-sample bias of OLS estimate for very simple models.

In this chapter, we present an improved system identification method with Renormal-

ization Group (RG). Technically, the proposed method groups the given data set into a

RG data set. Performing the least squares algorithm, the proposed method obtains an

estimate based on the given data and another estimate based on the RG data. Through

comparisons of the two estimates, we find the proposed method could get a better es-

timate under certain conditions. The contributions of this chapter are summarized as

follows.

• The proposed method forms a data set based on the system inputs and outputs, and

produces a new data set from the given data set with the members of the former

different from those of the latter, whereas none of the existing methods has a similar

idea.

• We present theoretical analysis and simulation results for an academic model to

illustrate the effectiveness of our method.

The rest of this chapter is organized as follows. Section 3.2 states our problem and

motivation. Section 3.3 details the asymptotic analysis. Section 3.4 discusses the finite-

49

sample case. Section 3.5 presents the simulation examples. Section 3.6 concludes the

chapter.

3.2 Problem Statement and Motivation

In this section, we first describe the system and give some details of OLS estimation.

Then we state the problem and give our motivation. In the end, we illustrate the idea of

the proposed method by a simple example.

3.2.1 System Description

Consider a linear dynamic model

yt = α1yt−1+α2yt−2+. . .+αnyt−n+β0ut+β1ut−1+β2ut−2+. . .+βmut−m+εt, (3.1)

where ut is input, yt is output and εt is noise. Let et be a white noise which has the

properties:

• E [et] = 0,

• E [e2t] = σ2
e ,

• E [etes] = 0 for all t ̸= s.

In (3.1), εt may have three forms:

εt = et, (3.2)

εt = λ1εt−1 + λ2εt−2 + . . .+ λnεt−n, (3.3)

εt = et + λ1et−1 + λ2et−2 + . . .+ λnet−n. (3.4)

50

According to [10], we summarize some special cases of (3.1) in Table 3.1.

Table 3.1: Some models as special cases

αi βi εt Name of model structure
αi ̸= 0 βi = 0 (3.2) AR
αi ̸= 0 βi = 0 (3.3) ARAR
αi ̸= 0 βi = 0 (3.4) ARMA
αi ̸= 0 βi ̸= 0 (3.2) ARX
αi ̸= 0 βi ̸= 0 (3.3) ARARX
αi ̸= 0 βi ̸= 0 (3.4) ARMAX

3.2.2 OLS Estimation

We rewrite (3.1) as

yt = φT
t θ + εt, (3.5)

where

θT =

[
α1, . . . , αn, β0, . . . , βm

]
, (3.6)

and

φT
t =

[
yt−1, . . . , yt−n, ut, . . . , ut−m

]
. (3.7)

The parameter vector θ is chosen to minimize the loss function

J =
1

2

N∑
t=1

(
yt − φT

t θ
)2
. (3.8)

The OLS estimate is given by

θ̂ =
(
ΦTΦ

)−1 (
ΦTY

)
, (3.9)

51

where Y = [y1, . . . , yN]
T , Φ = [φ1, . . . , φN]

T and E = [ε1, . . . , εN]
T . The estimation

error is given by

∆θ = θ̂ − θ

=
(
ΦTΦ

)−1 (
ΦTY

)
− θ

=
(
ΦTΦ

)−1 (
ΦT (Φθ + E)

)
− θ

=
(
ΦTΦ

)−1 (
ΦTE

)
.

(3.10)

The bias of the estimate is the expectation of ∆θ, that is

E [∆θ] = E
[
θ̂
]
− θ = E

[(
ΦTΦ

)−1 (
ΦTE

)]
, (3.11)

and the variance of the estimate is given by

cov
[
θ̂
]
= E

[(
θ̂ − E

[
θ̂
])(

θ̂ − E
[
θ̂
])T]

. (3.12)

When εt is white noise, we have [119]

E [∆θ] = 0,

and

cov
[
θ̂
]
= σ2

e

(
ΦTΦ

)−1
.

When εt is correlated noise, the OLS estimate could be biased.

With different weights wt assigned to the measurements [10], the criterion (3.8) be-

comes

J =
1

2

N∑
t=1

wt

(
yt − φT

t θ
)2
. (3.13)

Then the resulting estimate is given by

θ̂W =
(
ΦTWΦ

)−1 (
ΦTWY

)
, (3.14)

52

where W = diag(w1, . . . , wN) is the weighting matrix. The estimation error is given by

∆θW = θ̂W − θ

=
(
ΦTWΦ

)−1 (
ΦTWE

)
.

The bias of the estimate is given by

E [∆θW] = E
[(
ΦTWΦ

)−1 (
ΦTWE

)]
, (3.15)

and the variance of the estimate has the same form with (3.12). When εt is white noise

with E(E) = 0 and E(EET) = Q, the estimate is unbiased. Furthermore, it has been

shown [120] that when W = Q−1, θ̂ is a best linear unbiased estimate (BLUE) and the

variance of the estimate is given by

cov
[
θ̂W

]
=
(
ΦTQ−1Φ

)−1
. (3.16)

When εt is correlated noise, the weighted least squares (WLS) estimate could be biased.

The weighted least squares method is efficient but it depends on knowing the variance

structure, which is seldom available in practice.

3.2.3 Idea of the Proposed Method

For system identification, one can always fit some model based on system inputs and

outputs by OLS. However, when the system is equipped with correlated noise, the OLS

estimate may be biased. This chapter studies the estimation error of OLS analytically

and find some way to reduce it. We present an improved identification method using

Renormalization Group (RG). RG was first proposed to study the critical phenomena in

the quantum field in 1971 by Kenneth G. Wilson, who won the Nobel Prize for physics in

53

1982 [97], due to this great contribution. RG is widely used to analyze various physical

problems [98, 99, 121]. Renormalization Group designs some Renormalization Group

transformation (RGT) to relate macroscopic physics quantity to microscopic one and

invokes “scale invariance” to solve the problem.

Considering the system (3.5), we first form a data ST
t = (yt, φ

T
t), t = 1, 2, . . . , N

and construct a data set S = {S1, S2, . . . , SN}. Then we perform a RGT on S to ob-

tain a transformed data set SR = {SR1, SR2, . . . , SRK}, with ST
Rj = (yRj, φ

T
Rj), j =

1, 2, . . . , K. A RGT on S is to group a number of data points of S into one data point

in SR in a systematic way. There are different ways to do this grouping. One example is

to group all the data of S using K-means clustering method [122]. We define r = K
N

as

the transformation ratio. For each group, the coarse data may be determined by simple

linear superposition of all the fine data that belong to this group. Then the weighted least

squares method is performed on the coarse data. For easy reference, we call the data set,

S, as the fine data set and least squares estimate based on S as the OLS estimate. The

data set SR obtained from a RGT on the fine data set is called as the coarse data set and

the resulting estimate as the Renormalization Group weighted least squares (RGWLS)

estimate. In this chapter, through both theoretical analysis and simulation examples, we

will show that the estimation error of RGWLS could be smaller than that of OLS estimate

under certain conditions.

To see quickly the idea of the proposed method, we consider a simple model

yt = 0.8yt−1 + 0.5ut + γ(et − 0.8et−1),

where y0 = 0, ut is a unit step signal, et is a white noise. Let E [e2t] = 1 and γ = 0.0625.

54

The model is simulated over 30 steps. We have

θT = [0.8, 0.5],

φT
t = [yt−1, ut], t = 1, 2, . . . , 30,

Y = [y1, . . . , y30]
T ,

Φ = [φ1, . . . , φ30]
T .

Then the OLS estimate is obtained based on (3.9). Next we carry out the RG method.

We first form the fine data as ST
t = (yt, φt) = (yt, yt−1, ut) = (yt, yt−1, 1) and the fine

data set as S = {S1, S2, . . . , S30}. Then a RGT is performed on the fine data set S to get

the coarse data set SR. In this case, it is done by K-means clustering method based on

Euclidean distance measure with K = 5, and for each group, the coarse data is obtained

by the linear superposition of all the fine data in this group. We have

SR1 = S1,

SR2 = S2,

SR3 = S3 + S4,

SR4 = S5 + . . .+ S8,

SR5 = S9 + . . .+ S30.

It follows that

yR1 = y1,

yR2 = y2,

yR3 = y3 + y4,

yR4 = y5 + . . .+ y8,

yR5 = y9 + . . .+ y30,

φR1 = φ1,

φR2 = φ2,

φR3 = φ3 + φ4,

φR4 = φ5 + . . .+ φ8,

φR5 = φ9 + . . .+ φ30,

εR1 = ε1,

εR2 = ε2,

εR3 = ε3 + ε4,

εR4 = ε5 + . . .+ ε8,

εR5 = ε9 + . . .+ ε30.

55

The spatial distribution of different groups of the fine data is shown in Figure 3.1a and

the system response is shown in Figure 3.1b. It is obvious that yRj , φRj and εRj satisfy

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

y
t−1

y
t

Spatial distribution of fine data

group 1
group 2
group 3
group 4
group 5

(a) Spatial distribution of fine data

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

t

y
t

System response

measurements
group 1
group 2
group 3
group 4
group 5

(b) System response

Figure 3.1: Data grouping

yRj = φT
Rjθ + εRj, j = 1, 2, 3, 4, 5.

Choosing the weighting matrix as W = diag(1, 1, 1
4
, 1
16
, 1
484

), the RGWLS estimate is

obtained based on (3.14). Employing the Monte Carlo method, the simulation is repeated

100 times. Then we get E (∥∆θ∥2) = 0.38 and E (∥∆θR∥2) = 0.19, where ∥·∥2 denotes

the l2-norm. Therefore, the RGWLS estimate is better than the OLS estimate.

3.3 Asymptotic Analysis

It is known that the bias of the OLS estimate is related to the number of data N if N is

finite. If the system is disturbed by white noise, it is possible to obtain explicit formula

for the bias in very small samples [26–30]. However, if the system is disturbed by colored

noise, it has been proved to be difficult to investigate finite-sample bias analytically [31].

56

In the absence of such results, researchers [31–33] perform Monte Carlo experiments to

provide alternative sources of information. In this section, we discuss the properties of

the OLS and RGWLS estimates as N → ∞, analytically.

With (3.10) being multiplied and divided by N , we have

lim
N→∞

∆θ = lim
N→∞

[(
ΦTΦ

N

)−1(
ΦTE
N

)]
. (3.17)

Property 1 [123]: If the limits lim
N→∞

H(N) and lim
N→∞

G(N) both exist, and lim
N→∞

G(N) is

nonsingular, then

lim
N→∞

[
G−1(N)H(N)

]
=
[
lim

N→∞
G(N)

]−1 [
lim

N→∞
H(N)

]
. (3.18)

With the above property, (3.17) is equivalent to

lim
N→∞

∆θ =

[
lim

N→∞

(
ΦTΦ

N

)]−1 [
lim

N→∞

(
ΦTE
N

)]

=

 lim
N→∞

N∑
t=1

(
φtφ

T
t

)
N

−1 lim

N→∞

N∑
t=1

(φtεt)

N

 .

(3.19)

When the system (3.1) is asymptotically stable with εt a stationary stochastic process

that is independent of the input signal, Söderström [23, 124, 125] show that the sums
N∑
t=1

(φtφT
t)

N
and

N∑
t=1

(φtεt)

N
tend to the corresponding expected values with probability one as

the number of data points, N , tends to infinity. Then (3.19) becomes

lim
N→∞

∆θ =
[
E
(
φtφ

T
t

)]−1
[E (φtεt)] . (3.20)

As can be seen from (3.20), when E
(
φtφ

T
t

)
is non-singular and E (φtεt) = 0, θ̂ will

converge to θ. Otherwise, the OLS estimate could be biased.

The instrumental variable (IV) method, which is an efficient method to reduce the

bias of OLS estimate as N → ∞, was introduced by Reiersøl [126]. This method has

57

been popular for quite a long period. The basic IV method [23] for estimating θ in (3.5)

is given by

lim
N→∞

θ̂ =

[
lim

N→∞

1

N

N∑
t=1

Ztφ
T
t

]−1 [
lim

N→∞

1

N

N∑
t=1

Ztyt

]
, (3.21)

where the elements in matrix Zt are called instruments or instrumental variables. They

can be chosen in different ways. A calculation for the IV estimate (3.21) gives

lim
N→∞

∆θ =

[
lim

N→∞

1

N

N∑
t=1

Ztφ
T
t

]−1 [
lim

N→∞

1

N

N∑
t=1

Ztεt

]
=
[
E
(
Ztφ

T
t

)]−1 [
E
(
Ztε

T
t

)]
.

(3.22)

In order to let θ̂ converge to θ, it is necessary that E
(
Ztφ

T
t

)
is nonsingular and E (Ztεt) =

0. As to the accuracy properties of the IV estimates, it is shown that
√
N
(
θ̂ − θ

)
con-

verges in distribution to a gaussian distribution, which is denoted by

√
N
(
θ̂ − θ

)
∼ N (0, PIV) .

Explicit expressions for the covariance matrix PIV are given in [23, 127].

3.3.1 The Asymptotic Properties of OLS Estimate

It can be seen from (3.20) that when εt is white noise, the OLS estimate will converge to

its real value. However, when εt is colored noise, the OLS estimate could be biased. It is

known that ∆θ is related to model structure, input signal and noise properties. But these

factors cannot be reflected in (3.20) explicitly. Therefore, for formulation of the estima-

tion error and easy illustration of the proposed method, we consider a simple ARMA(1,1)

model with zero initial conditions, which is given by

yt = α1yt−1 + εt |α1| < 1, (3.23)

58

where εt = et + λ1et−1. According to (3.6) and (3.7), we have θ = α1 and φt = yt−1. It

follows from (3.20) that

lim
N→∞

∆α1 =
[
E
(
y2t−1

)]−1
[E (yt−1εt)] . (3.24)

Introducing the lag operator Lzt = zt−1 into (3.23), we obtain

yt =
εt

(1− α1L)
=

∞∑
p=0

αp
1εt−p. (3.25)

Then

E(y2t−1) = E

[(
∞∑
p=0

αp
1εt−1−p

)2
]

= E

(∑
p

∑
q

αp
1α

q
1εt−1−pεt−1−q

)
=
∑
p

∑
q

αp
1α

q
1E(εt−1−pεt−1−q)

=
∑
p

∑
q

αp
1α

q
1E [(et−1−p + λ1et−2−p)(et−1−q + λ1et−2−q)]

=
∑∑
p=q

αp
1α

q
1(1 + λ2

1)σ
2
e + 2

∑∑
q=p+1

αp
1α

q
1λ1σ

2
e

=
∞∑
p=0

α2p
1 (1 + λ2

1)σ
2
e + 2

∞∑
p=0

α2p+1
1 λ1σ

2
e

=
(1 + λ2

1)

1− α2
1

σ2
e +

2λ1α1

1− α2
1

σ2
e

=
(1 + λ2

1 + 2λ1α1)

1− α2
1

σ2
e .

(3.26)

We also have

E(yt−1εt) = E(
∞∑
p=0

αp
1εt−1−pεt)

=
∞∑
p=0

αp
1E[(et−1−p + λ1et−2−p)(et + λ1et−1)],

(3.27)

where

E[(et−1−p + λ1et−2−p)(et + λ1et−1)] =

λ1σ

2
e , for p = 0;

0, for p > 0.

59

Hence

E(yt−1εt) = λ1σ
2
e . (3.28)

Substituting (3.26) and (3.28) into (3.24) gives

lim
N→∞

∆α1 =

[
(1 + λ2

1 + 2λ1α1)

1− α2
1

σ2
e

]−1

(λ1σ
2
e)

=
λ1(1− α2

1)

1 + λ2
1 + 2λ1α1

.

(3.29)

In order to obtain a neater result, we consider a special case that λ1 = −α1. Then (3.29)

becomes

lim
N→∞

∆α1 = −α1. (3.30)

3.3.2 The Asymptotic Properties of RGWLS Estimate

RG is performed on the fine data set to obtain the coarse data set. The RGT groups all

fine data based on the K-means clustering method and takes linear superposition of all

the fine data as the coarse data in each group. Introduce the notations

yRj =
∑
t∈j

yt,

φRj =
∑
t∈j

φt,

εRj =
∑
t∈j

εt, j = 1, . . . , K,

(3.31)

where yRj , φRj and εRj satisfy

yRj = φT
Rjθ + εRj. (3.32)

The parameter θ is chosen to minimize the loss function

JR =
1

2

K∑
j=1

[
wj

(
yRj − φT

RjθR
)2]

, (3.33)

60

where wj is the chosen weight. The RGWLS estimate is given by

θ̂R =
(
ΦT

RWΦR

)−1 (
ΦT

RWYR

)
, (3.34)

where YR = [yR1 . . . , yRK]
T , ΦR = [φR1, . . . , φRK]

T , ER = [εR1, . . . , εRK]
T , and W =

diag(w1, . . . , wK). The estimation error of RGWLS is given by

∆θR = θ̂R − θ

=
(
ΦT

RWΦR

)−1 (
ΦT

RWYR

)
− θ

=
(
ΦT

RWΦR

)−1 (
ΦT

RW (ΦRθ + ER)
)
− θ

=
(
ΦT

RWΦR

)−1 (
ΦT

RWER
)
.

(3.35)

Next we analyze the properties of lim
N→∞

∆θR. Let nj be the number of fine data in the

jth group so that

n1 + . . .+ nK = N. (3.36)

Suppose nj tends to infinity. Similarly with (3.17) and (3.19), we have

lim
N→∞

∆θR = lim
N→∞

[(
ΦT

RWΦR

)−1 (
ΦT

RWER
)]

=
(
lim

N→∞
ΦT

RWΦR

)−1 (
lim

N→∞
ΦT

RWER
)

=

[
lim

N→∞

K∑
j=1

(
wjφRjφ

T
Rj

)]−1 [
lim

N→∞

K∑
j=1

(wjφRjεRj)

]

=

[
K∑
j=1

lim
nj→∞

(
wjφRjφ

T
Rj

)]−1 [
K∑
j=1

lim
nj→∞

(wjφRjεRj)

]
.

(3.37)

Let wj = 1/n2
j . Substituting (3.31) into (3.37) gives

lim
N→∞

∆θR =

[
K∑
j=1

lim
nj→∞

(
1

n2
j

(
∑
t∈j

φt)(
∑
t∈j

φT
t)

)]−1 [
K∑
j=1

lim
nj→∞

(
1

n2
j

(
∑
t∈j

φt)(
∑
t∈j

εTt)

)]

=

[
K∑
j=1

lim
nj→∞

(
1

n2
j

(
∑
t∈j

φt)(
∑
s∈j

φT
s)

)]−1 [
K∑
j=1

lim
nj→∞

(
1

n2
j

(
∑
t∈j

φt)(
∑
s∈j

εTs)

)]
.

(3.38)

61

As nj → ∞, suppose
K∑
j=1

lim
nj→∞

(
1
n2
j
(
∑
t∈j

φt)(
∑
s∈j

φT
s)

)
and

K∑
j=1

lim
nj→∞

(
1
n2
j
(
∑
t∈j

φt)(
∑
s∈j

εTs)

)
converge to E

(
φtφ

T
s

)
|t,s∈j and E (φtεs) |t,s∈j , respectively. Then (3.38) is rewritten as

lim
N→∞

∆θR =

[
K∑
j=1

E
(
φtφ

T
s

)
|t,s∈j

]−1 [K∑
j=1

E (φtεs) |t,s∈j

]
. (3.39)

Compared with (3.20), the estimation error of RGWLS (3.39) is more complicated to be

analyzed because of the data grouping.

In order to make a quantitative description of lim
N→∞

∆θR, we still consider the simple

model (3.23). It follows from (3.39) that

lim
N→∞

∆α1R =

[
K∑
j=1

E (yt−1ys−1) |t,s∈j

]−1 [K∑
j=1

E (yt−1εs) |t,s∈j

]
. (3.40)

In (3.40),

E (yt−1ys−1) |t,s∈j = E

[
(

∞∑
p=0

αp
1εt−p−1)(

∞∑
q=0

αq
1εs−q−1)

]
|t,s∈j (3.41)

When t = s,

E (yt−1ys−1) |t,s∈j =
∞∑
p=0

∞∑
q=0

αp
1α

q
1E (εt−p−1εt−q−1) |t∈j

=
∑
p

∑
q

αp
1α

q
1E [(et−p−1 + λ1et−p−2) (et1−q−1 + λ1et1−q−2)] |t∈j

= (
∑∑
p=q

α2p
1 (1 + λ2

1) σ
2
e +

∑∑
p=q+1

α2q+1
1 λ1σ

2
e +

∑∑
q=p+1

α2p+1
1 λ1σ

2
e) |t∈j

=
1 + λ2

1 + 2λ1α1

1− α2
1

σ2
e |t∈j ;

(3.42)

62

when t < s,

E (yt−1ys−1) |t,s∈j =
∞∑
p=0

∞∑
q=0

αp
1α

q
1E (εt−p−1εs−q−1) |t,s∈j

=
∑
p

∑
q

αp
1α

q
1E [(et−p−1 + λ1et−p−2) (es−q−1 + λ1es−q−2)] |t,s∈j

= (
∑∑
q=s−t+p

α2p+s−t
1 (1 + λ2

1)σ
2
e +

∑∑
q=s−t+p−1

α2p+s−t−1
1 λ1σ

2
e

+
∑∑

q=s−t+p+1

α2p+s−t+1
1 λ1σ

2
e) |t,s∈j

=
αs−t
1 (1 + λ2

1) + αs−t−1
1 λ1 + αs−t+1

1 λ1

1− α2
1

σ2
e |t,s∈j .

(3.43)

when t > s,

E (yt−1ys−1) |t,s∈j =
∞∑
p=0

∞∑
q=0

αp
1α

q
1E (εt−p−1εs−q−1) |t,s∈j

=
∑
p

∑
q

αp
1α

q
1E [(et−p−1 + λ1et−p−2) (es−q−1 + λ1es−q−2)] |t,s∈j

= (
∑∑
p=t−s+q

α2q+t−s
1 (1 + λ2

1)σ
2
e +

∑∑
p=t−s+q−1

α2q+t−s−1
1 λ1σ

2
e

+
∑∑

p=t−s+q+1

α2q+t−s+1
1 λ1σ

2
e) |t,s∈j

=
αt−s
1 (1 + λ2

1) + αt−s−1
1 λ1 + αt−s+1

1 λ1

1− α2
1

σ2
e |t,s∈j .

(3.44)

Substituting λ1 = −α1 into (3.42), (3.43) and (3.44) gives

E (yt−1ys−1) |t,s∈j =

σ2
e , for t = s;

0, for t ̸= s.

(3.45)

Hence
K∑
j=1

E (yt−1ys−1) |t,s∈j = Kσ2
e . (3.46)

From (3.40), we also have

E (yt−1εs) |t,s∈j = E

(
∞∑
p=0

αp
1εt−p−1εs

)
|t,s∈j . (3.47)

63

When t = s,

E (yt−1εs) |t,s∈j =
∞∑
p=0

αp
1E (et−p−1 + λ1et−p−2) (et + λ1et−1) |t∈j

= λ1σ
2
e |t∈j ;

(3.48)

when t < s,

E (yt−1εs) |t,s∈j =
∞∑
p=0

αp
1E (et−p−1 + λ1es−p−2) (et + λ1es−1) |t,s∈j

= 0 |t,s∈j ;
(3.49)

when t > s, let k ≥ 2 be a positive integer, then

E (yt−1εs) |t,s∈j =
∞∑
p=0

αp
1E (et−p−1 + λ1et−p−2) (es + λ1es−1) |t,s∈j

=
{ ∑

p=0
t=s+1

(1 + λ2
1) σ

2
e +

∑
p=1

t=s+1

α1λ1σ
2
e

K∑
j=1

E (yt−1εs)

+
∑

p=k−1
t=s+k

αk−1
1 (1 + λ2

1) σ
2
e +

∑
p=k

t=s+k

αk
1λ1σ

2
e

+
∑

p=k−2
t=s+k

αk−2
1 λ1σ

2
e

K∑
j=1

E (yt−1εs)
}
|t,s∈j .

(3.50)

Substituting λ1 = −α1 into (3.48), (3.49) and (3.50) gives

E (yt−1εs) |t,s∈j =

−α1σ

2
e , for t = s;

0, for t < s;

σ2
e , for t = s+ 1.

(3.51)

Denoting fj = dj/(nj − 1) where dj is the number of St such that St and St+1 belong to

the jth group, we have

E (yt−1εs) |t,s∈j = −α1σ
2
e + fjσ

2
e . (3.52)

Hence
K∑
j=1

E (φtεs) |t,s∈j = −Kα1σ
2
e +

K∑
j=1

fjσ
2
e . (3.53)

64

Substituting (3.46) and (3.53) into (3.40) gives

lim
N→∞

∆α1R = −α1 +

K∑
j=1

fj

K
. (3.54)

Dividing (3.54) by (3.30), we have

lim
N→∞

∆α1R

lim
N→∞

∆α1

=
−α1 +

K∑
j=1

fj

K

−α1

. (3.55)

With |α1| < 1, it is easy to verify ∣∣∣∣∣ limN→∞
∆α1R

lim
N→∞

∆α1

∣∣∣∣∣ < 1, (3.56)

if and only if

K∑
j=1

fj

2K
< α1 < 1,

0 <

K∑
j=1

fj

K
< 1.

(3.57)

When
K∑
j=1

fj/K approaches to α1, ∆α1R tends to zero and the RGWLS estimate will

have greatest improvement. In addition, when K = N , then nj = 1 and fj = 0. It is

easy to see that (3.54) becomes

lim
N→∞

∆α1R = −α1, (3.58)

which is the same as (3.30), implying that RGWLS is reduced to OLS.

3.4 Finite-Sample Analysis

In this section, we study the properties of the OLS and RGWLS estimates when N is

finite. We discuss the tradeoff between signal to noise ratio (SNR) and N , and compare

65

the RGWLS method with the generalized least squares (GLS) method. If the system is

disturbed with colored noise, it is difficult to develop the finite-sample properties of the

least squares estimate analytically [31]. We provide examples for illustration in Section

3.5.

3.4.1 Tradeoff between SNR and N

It is known that the finite-sample properties of OLS estimate is related to SNR and the

number of data points N . Generally, a higher SNR and a larger N will lead to a better

OLS estimate. There might be some cases that SNR is high for part of total data, and

when N increases, SNR will decrease. Hence, for such cases, there should be a tradeoff

between SNR and N . The following example is given for illustration.

Consider a model

yt = 2ut + γet, (3.59)

where θ = 2, ut = 0.01t, et is white noise with and γ is a chosen parameter that is used

to adjust the noise level, say γ is used to adjust SNR. Suppose the system is simulated

for 1000 steps with γ = 100 when t ≤ 500 and γ = 1 when t > 500. We study effects

of SNR on estimation using OLS. The K-means clustering method is used to obtain 20

groups of data based on SNR levels so that these 20 groups of data have different levels

of SNR. We rank them from the 1st to 20th group with the 1st having highest SNR and

the 20th the lowest SNR. Then, we do two kinds of simulations. Firstly, we perform OLS

on each group of data and obtain θ̂1, . . . , θ̂20 and ∆θ̂1, . . . ,∆θ̂20, where ∆θ̂i = θ̂i − θi.

Secondly, we perform OLS on the accumulated groups, that is, on the first group to get

66

θ̄1 and ∆θ̄1 (∆θ̄1 = θ̄1 − θ1), and then on the first two groups combined to get θ̄2 and

∆θ̄2, and so on. Both kinds of simulations are repeated for 1000 times (Monto Carlo

method) and E
∣∣∣∆θ̂1

∣∣∣ , . . . , E ∣∣∣∆θ̂20

∣∣∣, and E
∣∣∆θ̄1

∣∣ , . . . , E ∣∣∆θ̄20
∣∣ are approximately ob-

tained from these 1000 runs each. The resulting E
∣∣∣∆θ̂i

∣∣∣ of different groups are shown in

Figure 2a and the resulting E
∣∣∆θ̄i

∣∣ of accumulated groups are shown in Figure 2b. It is

0 5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

4

groups

E(|∆θ̂|) for different groups of data

(a) E
(∣∣∣∆θ̂

∣∣∣) for different groups of data

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

groups

E(|∆θ̄|) for accumulated groups of data

accumulated data
all data

(b) E
(∣∣∆θ̄

∣∣) for accumulated groups of data

Figure 3.2: Example for ilustration

seen from Figure 2a that for this example, E
∣∣∣∆θ̂i

∣∣∣ increases with i, which means that the

estimate is better for the group with a higher SNR. Figure 2b shows that the best estimate

is θ̄4. This means that the OLS estimate of a subset of the total data could be better than

that of the total data if the SNR of the subset is higher than that of the whole set.

67

3.4.2 RGWLS and GLS

According to (3.31), the data matrices are expressed as

YR = TY,

ΦR = TΦ,

ER = TE ,

(3.60)

where T is a mutation matrix given by

T =

0 1 0 0 0 0 · · ·

1 0 0 0 1 0 · · ·

0 0 1 1 0 1 · · ·

...
...

...
...

...
... . . .

.

Substituting (3.60) into (3.35) yields

∆θR =
(
ΦTMΦ

)−1 (
ΦTME

)
, (3.61)

where M = T TWT . Then we have

E
(
∆θR∆θTR

)
= E

((
ΦTMΦ

)−1 (
ΦTMEETMΦ

) (
ΦTMΦ

)−1
)
. (3.62)

It is difficult to make further analysis if Φ is stochastic and Φ and E are correlated.

Assume that Φ is non-stochastic, ΦT and E are uncorrelated with E(E) = 0 and

E(EET) = R. The GLS estimate θ̂G is BLUE of θ. Let G be a N ×N matrix. Consider

the transformed specification

GY = GΦθ +GE . (3.63)

The resulting OLS estimate is

θ̂G =
(
ΦTGTGΦ

)−1 (
ΦTGTGY

)
, (3.64)

68

and the estimation error is

∆θG = θ̂G − θ

=
(
ΦTGTGΦ

)−1 (
ΦTGTGE

)
=
(
ΦTQΦ

)−1 (
ΦTQE

)
,

(3.65)

where Q = GTG. Then we have

E
(
∆θG∆θTG

)
= E

((
ΦTQΦ

)−1 (
ΦTQEETQΦ

) (
ΦTQΦ

)−1
)

=
(
ΦTQΦ

)−1 (
ΦTQE

(
EET

)
QΦ
) (

ΦTQΦ
)−1

=
(
ΦTQΦ

)−1 (
ΦTQRQΦ

) (
ΦTQΦ

)−1
.

(3.66)

Söderström [125] shows that when Q = R−1, θ̂G is BLUE of θ. And the desired trans-

formation G can be designed based on the matrix Q.

There is a big difference between our method and the GLS method. It is difficult to

analyze (3.62) since the assumptions for GLS do not hold. The mathematical expectation

cannot be taken through the nonlinear operators. Therefore, we provide examples in

Section 3.5 to show the effects of our method for finite-sample cases.

3.5 Simulation Examples

In this part, examples are given to illustrate the proposed method. We take very large N

for asymptotic analysis in the first two examples. Finite-sample cases are considered in

the remaining examples.

When N is large, we introduce the notation REEI by

REEI =
∥∆θR∥2
∥∆θ∥2

,

69

which describes the size of the ratio between the estimation errors of RGWLS and OLS.

Apparently, if REEI < 1, the RGWLS estimate does have improvement. We will discuss

how the number of data points, the noise level and the transformation ratio affect REEI .

Similarly, we introduce the notation RIV by

RIV =
∥∆θIV ∥2
∥∆θ∥2

,

where ∆θIV is the estimation error obtained with IV method. The instrumental variable

Zt could be chosen according to [128].

Example 3.1. Consider an ARMA(1,1) model,

yt = 0.95yt−1 + γεt, (3.67)

where εt = et − 0.95et−1, y0 = 1000, and γ is a chosen parameter that is used to adjust

the noise level. Choose Zt = 1/(t)2, where t = 1, 2, . . . N − 1. Simulation results are

shown in Table 3.2 and Table 3.3.

Table 3.2: REEI of Example 3.1

r=1/20 r=1/40
HHHHHHγ

N
5000 10000 20000 5000 10000 20000

5 0.056 0.057 0.056 0.029 0.030 0.030
25 0.082 0.088 0.110 0.046 0.053 0.062
50 0.128 0.168 0.241 0.076 0.109 0.151

Table 3.3: RIV of Example 3.1
HHHHHHγ

N
5000 10000 20000

5 0.160 0.082 0.043
25 0.042 0.026 0.018
50 0.035 0.027 0.023

70

Example 3.2. Consider a second order system with exogenous input,

yt = 1.5yt−1 − 0.7yt−2 + ut−1 + γεt, (3.68)

where ut = 1, εt = et − 1.5et−1 + 0.7et−2 and y0 = y1 = 0. Choose Zt = [1/(t)2, 1, t],

where t = 1, 2, . . . N − 2. Simulation results are shown in Table 3.4 and Table 3.5.

Table 3.4: REEI of Example 3.2

r=1/20 r=1/40
HHHHHHγ

N
5000 10000 20000 5000 10000 20000

0.1 0.399 0.472 0.496 0.259 0.347 0.410
0.5 0.598 0.694 0.759 0.505 0.586 0.660
1 0.707 0.868 0.885 0.635 0.789 0.853

Table 3.5: RIV of Example 3.2
HHHHHHγ

N
5000 10000 20000

0.1 0.101 0.006 0.262
0.5 0.274 0.022 2.460
1 0.732 0.050 1.771

Generally, as can be observed from Table 3.2 to Table 3.5:

• for all simulation cases, REEI < 1;

• for the same γ and r, a larger N leads to a larger REEI ;

• for the same N and r, a smaller γ leads to a smaller REEI ;

• for the same N and γ, a smaller r results in a smaller REEI ;

• We have REEI < RIV for some cases but not all. Note that the result of our method

depends on how to choose grouping methods and the parameter, while the result of

71

IV relies much on the selected instrumental variables. The RG method provides a

new option for system identification under coloured noise with comparable results

to the IV one at least. Since the RG is new, future research on it may advance it

with much better results.

Although it is difficult to analyze the finite-sample properties of least squares estimate

analytically, we still perform Monte Carlo experiments to get approximate results. In

the following part, two examples are presented for illustration. The simulation for each

example is repeated 100 times to obtain E (∥∆θ∥2) and E (∥∆θR∥2). Denote

REEF =
E (∥∆θR∥2)
E (∥∆θ∥2)

, (3.69)

which describes the size of the ratio between the finite-sample bias of RGWLS estimate

and that of OLS estimate. Apparently, if REEF < 1, the RGWLS estimate is better than

the OLS estimate. We study how N , γ and r affect REEF .

Example 3.3. Considering model (3.67), simulation results are shown in Table 3.6.

Table 3.6: REEF of Example 3.3

r=1/20 r=1/40
HHHHHHγ

N
500 1000 2000 500 1000 2000

5 0.381 0.162 0.097 0.715 0.186 0.090
25 0.089 0.057 0.067 0.159 0.049 0.031
50 0.067 0.069 0.090 0.100 0.041 0.042

Example 3.4. Considering model (3.68), simulation results are shown in Table 3.7.

As can be observed from Table 3.6 and Table 3.7, REEF < 1 for all simulation cases.

Although it is difficult to make theoretical analysis, the proposed method still leads to a

better estimate. In addition, N , γ and r are all not necessarily linked to REEF , which

72

Table 3.7: REEF of Example 3.4

r=1/20 r=1/40
HHHHHHγ

N
500 1000 2000 500 1000 2000

0.1 0.119 0.196 0.288 0.087 0.103 0.153
0.5 0.528 0.556 0.575 0.414 0.478 0.500
1 0.577 0.645 0.715 0.537 0.562 0.618

differs from the asymptotic case. In the future, we will try to study how other factors

influence the result, such as model structures and input signals.

3.6 Conclusions

In this chapter, an improved system identification method has been proposed based on

Renormalization Group. Given a fine data set, it is easy to obtain the OLS estimate. By

Renormalization Group, a coarse data set is created from the original fine data set. This

new data set enables us to get the RGWLS estimate. Through comparisons, we find that

the estimation error of RGWLS estimate could be smaller than that of the OLS estimate.

Thus, the proposed method could have improvement. It should be pointed out that the

proposed method requires sufficient data. Furthermore, its in-depth theory and additional

potential values are to be investigated.

73

Chapter 4

System Identification in Presence of

Outliers

4.1 Introduction

The previous chapter presents an improve system identification method with RG when

the observed output is corrupted with noise. In practice, the observations may be con-

taminated not only by noise, but also by outliers. The existence of outliers may result

in poor outcome of system identification. Researchers have proposed some methods for

outlier detection. In context of control and automation, visual inspection is an empir-

ical way to pick up outliers. However, it is subjective, inaccurate and thus unreliable.

Popular statistical techniques include the three-sigma rule [44], the linear and nonlinear

filters [45, 46], but they are not effective [34]. Robust regression methods [47–49] are

inherently less sensitive to outliers but often difficult to implement [34]. In the field of

image processing, there have been recently some works on outlier detection. Candès et

74

al. [57] and Wright et al. [58] proposed the Robust Principal Component Analysis (RP-

CA), which recovers a low-rank matrix from the corrupted data matrix. Researchers have

proposed some first-order fast algorithms [61–64] to solve RPCA. Although these meth-

ods are fast, there is a limitation that the linear structures such as Hankel and Toeplitz

cannot be preserved in the resulting matrices. Liu et al. [66] developed an efficient im-

plementation of the interior-point method to recover a low-rank matrix which reserves

the linear matrix structure. However, only noise instead of outliers was considered.

In this chapter, we consider an outlier detection problem for a signal from a dynamic

system. It is formulated as a low-rank and sparse matrices decomposition problem:

min
S

rank(L) + γ ∥S∥0

subject to L+ S = D,

where D is a Hankel matrix formed from the measurement signal of a dynamic system, L

is a low-rank matrix, S is a sparse matrix and γ is a trade-off parameter. A fast algorithm

is developed which preserves Hankel matrix structure and solves the problem accurately.

Furthermore, a realistic but complex situation is addressed where the output observations

contain both noise and outliers, and the decomposition method in general will fail due

to the presence of noise. A novel approach based on under-sampling and averaging is

proposed to de-noise while keeping the salient behaviors of outliers. It overcomes the

drawback of the existing denoising techniques which smooth both noise and outliers.

The effectiveness of proposed method is illustrated with extensive simulation.

The rest of this chapter is organized as follows. Section 4.2 formulates our problem

and Section 4.3 gives the general solution. Section 4.4 details the fast algorithm, while

Section 4.5 discusses the analysis and implementation. Section 4.6 handles noise and

75

outliers together. Section 4.7 shows simulation studies and Section 4.8 concludes the

chapter.

List of notations:

Rm Real m× 1 vectors.

Rm×n Real m× n matrices.

Rn×n
s Real symmetric n× n matrices.

Rn×n
d Real diagonal n× n matrices.

σi ith largest singular value of a given matrix.

1n n-dimensional vector with all components one.

∥w∥2 2-norm of the vector w: ∥w∥2 =
√

n∑
i=1

|wi|2 .

w ∗ v convolution of the vector w and the vector v.

I Identity matrix.

M > 0 The matrix M is positive definite.

MT Transpose of the matrix M .

trace(M) Trace of the square matrix M .

rank(M) Rank of the matrix M .

∥M∥0 0-norm of the matrix M : number of nonzero entries of M .

∥M∥1 1-norm of the matrix M : ∥M∥1 =
∑

i,j |Mij|.

∥M∥∞ l∞-norm of M seen as a long vector: ∥M∥∞ = maxi,j |Mij|.

∥M∥F Frobenious norm of the matrix M : ∥M∥F =
√

trace(MTM).

∥M∥∗ Nuclear norm of the matrix M : ∥M∥∗ =
∑

i=1 σi.

76

M ◦N Hadamard product of matrices M and N : (M ◦N)ij = MijNij .

diag(w) diag(w) = diag(w1, w2, . . . , wn) for w = [w1, w2, . . . , wn]
T .

vec(M) vec(M) = [m11, . . . ,mp1,m12, . . . ,mp2, . . . ,m1q, . . . ,mpq]
T

for M =

m11 m12 · · · m1q

m21 m22 · · · m2q

...
...

mp1 mp2 · · · mpq

.

mat(M) mat(M) =

m11 m12 · · · m1q

m21 m22 · · · m2q

...
...

mp1 mp2 · · · mpq

for M = diag(m11,m21, . . . ,mp1,m12,m22, . . . ,mp2, . . . ,m1q,m2q, . . . ,mpq).

4.2 Problem Formulation

Outliers refer to the data points in a data set that are inconsistent with expected normal

behavior based on most of the available data [34, 56]. Outliers may occur in the measured

data due to human mistakes, instrument errors, faults in systems and so on. Processing

or analyzing data with the contaminated data can lead to serious consequences. Outli-

er detection is receiving increasing attention in a wild range applications in science and

engineering such as bioinformatics, computer vision, image processing and system mod-

elling. Our goal is to detect outliers from the measured data and recover the clean data.

77

If the clean data is used for data analysis or signal processing, better results could be

expected.

In context of system identification, consider a discrete-time system described by

yt + a1yt−1 + . . .+ anyt−n = b0ut + b1ut−1 + . . .+ bmut−m, t = 1, 2, . . . , N, (4.1)

where ut is the input and yt the true output. Suppose the observed output is given by

ȳt = yt + zt, (4.2)

where zt is zero or an outlier. Let

θT =

[
a1, . . . , an, b0, b1, . . . , bm

]
, (4.3)

and

φT
t =

[
ȳt−1, . . . , ȳt−n, ut, ut−1, . . . , ut−m

]
.

With the data of {ut, ȳt, t = 1, 2, . . . , N}, the least squares estimate for θ which mini-

mizes the loss function,

J =
1

2

N∑
t=1

(
ȳt − φT

t θ
)2
,

is given by

θ̂ =

[
N∑
t=1

φtφ
T
t

]−1 [N∑
t=1

φtȳt

]
. (4.4)

However, the ordinary least squares (OLS) estimate from (4.4) could be biased even if zt

is a white noise [10, 125]. The instrumental variable (IV) method [129, 130] is to reduce

the bias of the OLS estimate and yields the following estimate:

θ̂ =

[
N∑
t=1

Ωtφ
T
t

]−1 [N∑
t=1

Ωtȳt

]
, (4.5)

78

where the elements in matrix Ωt are called instruments or instrumental variables. It is

obvious that the outliers in ȳ may cause big errors in parameter estimation and should be

eliminated from the observed signal before (4.5) is applied.

It is noted that there are some works on outlier detection and clean data recovery

in computer vision. For example, in the domain of video surveillance, people would

like to obtain a good model for the background variations of a scene. When the scene is

photoed, the image signal of the background variation is corrupted by possible foreground

objects. The resulting data matrix D formed by columns of grayscale frames can be

expressed as D = L + S, where L is from the background variations and S from the

foreground objects. The goal for the image processing is to recover the clean data L

from the observed corrupted data D. Due to the nature of imaging, it is reasonable to

assume that L is low-rank. Further, the foreground objects occupy only a fraction of

image pixels, and S is thus sparse. As a result, the processing job is transferred to a

mathematical problem of decomposing D into a low-rank L and a sparse S. A number

of algorithms [57, 58, 61–64] have been developed to solve such a problem.

For our problem, it is not trivial to form D with desirable features as above. Let

Y = [ȳ1, ȳ2, . . . , ȳND
]T , where ND ≤ N . Then, D = Y or D = [Y, Y, . . . , Y] will be

both of rank 1 only and their ranks cannot be reduced anymore. Therefore, it is desirable

to rearrange the measured output ȳ in a matrix form, which can be decomposed into a

79

low-rank matrix and a sparse matrix. Construct a Hankel form from ȳi as follows,

D =

ȳ1 ȳ2 ȳ3 · · · ȳq

ȳ2 ȳ3 · · · · · · ȳq+1

ȳ3
... . . . · · · ȳq+2

...
...

...

ȳp ȳp+1 ȳp+2 · · · ȳND

, (4.6)

where p+ q − 1 = ND and ND ≤ N . Without loss of generality, we assume that p ≥ q,

otherwise we can use DT . It follows from (4.2) that

D = L+ S, (4.7)

where

L = [Lp, Lp+1, Lp+2, . . . , LND
] =

y1 y2 y3 · · · yq

y2 y3 · · · · · · yq+1

y3
... . . . · · · yq+2

...
...

...

yp yp+1 yp+2 · · · yND

(4.8)

and

S =

z1 z2 z3 · · · zq

z2 z3 · · · · · · zq+1

z3
... . . . · · · zq+2

...
...

...

zp zp+1 zp+2 · · · zND

. (4.9)

Usually, outliers occur rarely in z, which makes S a sparse matrix. The matrix L is intrin-

sically low-rank if we choose p, q ≫ n, which is always possible for system identification

80

since the data points are much more than the system order. Without loss of generality, we

show the low-rank property of L for the following second order system,

yt + a1yt−1 + a2yt−2 = but.

Let Up = [u1, u2, u3, . . . , up]
T . One sees that

Lp+2 = −a1Lp+1 − a2Lp + bUp+2,

Lp+3 = −a1Lp+2 − a2Lp+1 + bUp+3

= (a21 − a2)Lp+1 + a1a2Lp − a1bUp+2 + bUp+3

Lp+4 = −a1Lp+3 − a2Lp+2 + bUp+4,

= (a21 + a1a2 + a22)Lp+1 + (a22 − a21a2)Lp + (a21 − a2) bUp+2 − a1bUp+3 + bUp+4,

...

and

L = [Lp, Lp+1, Up+2, Up+3, Up+4, . . . , UND
]

1 0 −a2 a1a2 a22 − a21a2 · · · · · ·

0 1 −a1 a21 − a2 a21 + a1a2 + a22 · · · · · ·

0 0 b −a1b a21b− a2b · · · · · ·

0 0 0 b −a1b · · · · · ·

0 0 0 0 b · · · · · ·

...
...

...
...

...

0 0 0 0 0 · · · b

∆
= AB.

The matrix L has the same rank as A since B is an upper triangular non-singular matrix.

The most popular input signals for identification test are step and pseudo random binary

sequence (PRBS). If the input is a step function, Up+2 = Up+3 = Up+4 = . . . = UND
and

81

rank(A) = 3, which is very small compared with q or p. For a PRBS with ut = 0 or 1,

we form its complement series defined by ūt = 0 if ut = 1; ūt = 1 if ut = 0. Conduct

the test of ut and collect its response yt, followed by the test of ūt with its response ȳt.

Then (yt + ȳt) is the response to (ut + ūt), the step test.

Note that S in (4.9) can be re-written as a linear mapping:

S = A(z) = z1A1 + z2A2 + · · ·+ zND
AND

, (4.10)

where A1, A2, . . . , AND
∈ Rp×q, are linear independent coefficient matrices given by

A1 =

1 0 · · · 0

0
. . . · · · 0

...
...

0 0 · · · 0

, A2 =

0 1 0 · · · 0

1 0 · · · · · · 0

0
... . . . · · · 0

...
...

...

0 0 0 · · · 0

, · · · , (4.11)

and ND ≤ pq. Substituting (4.10) into (4.7) yields

D = L+A(z). (4.12)

Our problem is stated as follows.

Problem 4.1. Recover L in (4.12), where D and Ai (i = 1, 2, . . . , ND) are given, L is

low-rank and A(z) is sparse.

One may formulate Problem 4.1 as the rank minimization problem for L conditional

on sparse A(z) as follows:

min
z

rank(L) + γ ∥A(z)∥0

subject to L+A(z) = D,

(4.13)

82

where γ is a chosen parameter. To see why above optimization can find exact decompo-

sition, consider a simple example as follows. Let y = 1, 1, 1, 1, 1 and z = 0, 0, 0, 5, 0.

Then we have ȳ = y + z = 1, 1, 1, 6, 1 and

D =

1 1 1

1 1 6

1 6 1

 .

With γ = 1√
3
, the optimization problem becomes

min
z

f = rank(L) + 1√
3
∥A(z)∥0

subject to L+A(z) = D,

We present three cases of matrix decompositions as follows.

Case 1: Outlier is correctly detected and separated accurately from the clean data:

L1 =

1 1 1

1 1 1

1 1 1

 , S1 =

0 0 0

0 0 5

0 5 0

 ,

and we have f = 2.15.

Case 2: Outlier is correctly detected but not fully separated from the clean data:

L2 =

1 1 1

1 1 4

1 4 1

 , S2 =

0 0 0

0 0 2

0 2 0

 ,

and we have f = 4.15.

83

Case 3: Outlier is wrongly detected:

L3 =

0.5 1 1

1 1 6

1 6 1

 , S3 =

0.5 0 0

0 0 0

0 0 0

 ,

and we have f = 3.58. It is easy to see that only Case 1 achieves the minimum value of

the cost function f , which is the case by simulation with any number of cases.

4.3 The Solution

Problem (4.13) is highly non-convex. Fortunately, it is shown [58] that a relaxed tractable

substitute is obtained by replacing the rank with the nuclear norm, and 0-norm with 1-

norm, so that we have the convex surrogate of (4.13) as

min
z

∥A(z)−D∥∗ + γ∥A(z)∥1

subject to L+A(z) = D.

(4.14)

The problem in (4.14) can be recast [131] as the following semidefinite programming

(SDP) problem:

min
z,W,U,V

γ1T
pW1q +

1

2
(trace (U) + trace (V))

subject to

 1
2
U 1

2
(A(z)−D)T

1
2
(A(z)−D) 1

2
V

 ≥ 0,

−Wij ≤ A(z)ij ≤ Wij,

L+A(z) = D,

(4.15)

where W ∈ Rp×q, U ∈ Rq×q
s and V ∈ Rp×p

s . Problem (4.15) can be solved by the

primal-dual interior-point method [132, 133], which is outlined as follows.

84

Consider an SDP problem:

min
Z

trace(CZ)

subject to F(Z) = h,

Z ≥ 0,

(4.16)

where Z ∈ Rl×l
s , the coefficients C ∈ Rl×l

s and h ∈ Rm are known, and F(·) is a linear

mapping from Rl×l
s to Rm. Its Lagrange dual function Jd(x,X) is given by

Jd (x,X) = inf
{

trace (CZ)− xT (F (Z)− h)− trace(XZ)
}

= inf
{

trace (CZ)− xTF (Z)− trace(XZ) + xTh
}

=

hTx, if Fadj(x) +X = C,

−∞, otherwise,

where x ∈ Rm and X ∈ Rl×l
s are the Lagrange multipliers, and Fadj(·) is the adjoint

mapping of F(·), for which there holds

trace(Fadj(w)Y) = wTF(Y)

for all w ∈ Rm and Y ∈ Rl×l
s . The dual problem of (4.16) is to maximize Jd (x,X), that

is,

max
x,X

hTx

subject to Fadj(x) +X = C,

X ≥ 0.

(4.17)

The SDPs in (4.16) and (4.17) are a Lagrange dual. Let Z∗ and (x∗, X∗) be the optimal

solutions of (4.16) and (4.17), respectively. The optimal duality gap
(
trace(CZ∗)− hTx∗)

is zero if and only if the complementary slackness condition, trace(X∗Z∗)=0, holds[134–

136], which is equivalent [137] to X∗Z∗ = 0. Now the optimal conditions for (4.16) and

85

(4.17) become

F(Z∗) = h, Z∗ ≥ 0,

Fadj(x
∗) +X∗ = C, X∗ ≥ 0,

X∗Z∗ = 0.

(4.18)

The primal-dual interior-point method [135] perturbs the complementary slackness con-

dition to

XZ = µI, µ > 0.

Then compute the solution following the central path equations:

F(Z) = h, Z ≥ 0,

Fadj(x) +X = C, X ≥ 0,

XZ = µI.

(4.19)

An infeasible primal-dual interior-point algorithm is described in details in [138] and

[139] to solve (4.19). For completeness, it is summarized in Algorithm 4.1. Other primal-

dual interior-point algorithms[140] are similar to this one.

It is pointed out [140] that the number of iterations of the interior-point method is

usually small and the most significant cost in each iteration is solving (4.20) and (4.21)

in Algorithm 4.1, which are obtained by linearization of the nonlinear equations of (4.19).

The general way to solve (4.20) and (4.21) is described as follows. The equations (4.20)

and (4.21) have the following form:

H(∆ZX + Z∆X) = D1, (4.22)

F(∆Z) = r, (4.23)

Fadj(∆x) + ∆X = D2, (4.24)

86

Algorithm 4.1 Infeasible primal-dual interior-point method
1: Initialization. Given the initial values of Z, x and X with Z > 0 and X > 0. Choose

the positive tolerances ϵ1, ϵ2 and ϵ3.
2: Compute residuals and evaluate stopping criteria. Terminate if the specified maxi-

mum number of iterations is reached or the following three conditions are satisfied:

∥F(Z)− h∥2 ≤ ϵ1,
∥Fadj(x) +X − C∥F ≤ ϵ2,
trace(XZ) ≤ ϵ3.

3: Compute the Nesterov-Todd scaling matrix [138]. The matrix Φ defines a congruence
which jointly diagonalizes Z and X−1:

ΦTZΦ = diag(λ), ΦTX−1Φ = diag(λ)−1,

where Φ ∈ Rl×l and λ ∈ Rl with λi > 0. The computations of Φ and λ are given in
details in [139] and [140].

4: Compute the affine scaling directions ∆Za, ∆xa and ∆Xa. Solve the linear equa-
tions:

H(∆ZaX + Z∆Xa) = −diag(λ)2,
F(∆Za) = −(F(Z)− h),

Fadj(∆xa) + ∆Xa = −(Fadj(x) +X − C),
(4.20)

where H(·) is defined [141] as

H(M) =
1

2
(ΦTMΦ−T + Φ−1MTΦ).

5: Select µ. The parameter µ is selected as

µ =
trace(ZX)

l

(
trace ((Z + αp∆Za) (X + αd∆Xa))

trace(ZX)

)δ

,

where
αp = min {1, sup {αp|Z + αp∆Za ≥ 0}} ,
αd = min {1, sup {αd|X + αd∆Xa ≥ 0}} ,

and δ is an algorithm parameter (a typical value is δ = 3).
6: Compute the centering-corrector steps, ∆Zc, ∆xc and ∆Xc. Solve the linear equa-

tions:
H(∆ZcX + Z∆Xc) = µI −H(∆Za∆Xa),

F(∆Zc) = 0,
Fadj(∆xc) + ∆Xc = 0.

(4.21)

7: Update iterates.

Z := Z+βp (∆Za +∆Zc) , x := x+βd (∆xa +∆xc) , X := X+βd (∆Xa +∆Xc) ,

where
βp = min {1, sup {βp|Z + βp (∆Za +∆Zc) ≥ 0}} ,
βd = min {1, sup {βd|X + βd (∆Xa +∆Xc) ≥ 0}} .

Go to step 2. 87

where D1, r and D2 are known. The solution of (4.22) is given [139] by

∆X = −ΦΦT∆ZΦΦT + 2Φ(D1 ◦ Λ)ΦT , (4.25)

where Λij = 1/(λi + λj). Substituting (4.25) into (4.24) gives an equivalent set of linear

equations to (4.22)-(4.24):

−T−1∆ZT−1 + Fadj (∆x) = R, (4.26)

F (∆Z) = r, (4.27)

where T = (ΦΦT)−1 > 0 and R = D2 − 2Φ(D1 ◦ Λ)ΦT . It follows from (4.26) that

∆Z = T (Fadj (∆x)−R)T. (4.28)

Substituting (4.28) into (4.27) gives

H∆x = r + F (TRT) , (4.29)

where

H∆x = F (TFadj (∆x)T) .

Eq. (4.29) is a positive definite set of linear equations of order m (the number of vari-

ables). The overall cost of solving (4.29) includes two parts: the cost of forming H and

computing the solution of (4.29). The later part is O(m3) if the equations are solved

by Cholesky decomposition. The former part depends on the structure of F(·). General

implementations of the interior-point method require that F(·) is expressed [66] as

F (Z) = [trace (F1Z) , trace (F2Z) , . . . , trace (FmZ)]
T ,

88

where F1, F2, . . . , Fm are coefficient matrices. In this case, the entries of H are given

[66] by

Hij = trace (FiTFjT) , i, j = 1, . . . ,m. (4.30)

Computing (4.30) requires O (max {ml3,m2l2}) since each of the m matrix products

(i.e., FiT) needs O(l3) and each of the m2 traces of matrix products (i.e., trace (FiTFjT))

requires O(l2) [66]. Therefore, the overall cost of solving (4.29) is O (max {m3,ml3,m2l2}).

Now, come back to (4.15). Suppose that p = O(ND) and q = O(ND). Then, the com-

putational cost per iteration is at least O(N6
D) since (4.15) has ND + pq + p(p + 1)/2 +

q(q + 1)/2 variables.

4.4 Fast Algorithm

In this section, we present the fast algorithm for solving (4.15) by exploiting its structure.

Let

Z =

1
2
U ZT

21 0 0

Z21
1
2
V 0 0

0 0 Z33 0

0 0 0 Z44

,

89

where Z21 ∈ Rp×q, Z33 ∈ Rpq×pq
d and Z44 ∈ Rpq×pq

d . Then, (4.15) is rewritten as

min trace(Z)

subject to Z ≥ 0,

Z21 =
A(z)−D

2
,

Z33 =
γ

2
(diag (vec (W −A(z)))) ,

Z44 =
γ

2
(diag (vec (W +A(z)))) .

(4.31)

The Lagrange dual function Jd(X) is given by

Jd(X) = inf (trace(Z)− trace(XZ)) ,

where

X =

X11 XT
21 0 0

X21 X22 0 0

0 0 X33 0

0 0 0 X44

90

is the Lagrange multiplier with X11 ∈ Rq×q
s , X22 ∈ Rp×p

s , X33 ∈ Rpq×pq
d and X44 ∈

Rpq×pq
d . One sees that

Jd(X) = inf (trace(Z)− trace(XZ))

= inf

{
1

2
trace(U) +

1

2
trace(V) + γ

∑
i,j=1

Wij −
1

2
trace(X11U)− 1

2
trace(X22V)

−trace
(
X21 (A(z)−D)T

)
− γ

2

∑
i,j=1

(mat(X33)ij (Wij −A(z)ij))

−γ

2

∑
i,j=1

(mat(X44)ij (Wij +A(z)ij))

}
= inf

{
trace(DTX21)

+
1

2
(trace(U)− trace(X11U)) +

1

2
(trace(V)− trace(X22V))

+γ
∑
i,j=1

Wij −
γ

2

∑
i,j=1

(mat(X33)ijWij)−
γ

2

∑
i,j=1

(mat(X44)ijWij)

−trace
(
A(z)XT

21

)
+

γ

2
trace

(
A(z)mat(X33)

T
)
− γ

2
trace

(
A(z)mat(X44)

T
)}

=

trace(DTX21), if

X11 = X22 = I,

γ

2
X33 +

γ

2
X44 = γI,

Aadj(X21)−
γ

2
Aadj(mat(X33)) +

γ

2
Aadj(mat(X44)) = 0,

−∞, otherwise.

where Aadj(·) is the adjoint mapping of A(·) and defined as

Aadj(M) =
[
trace

(
AT

1M
)
, trace

(
AT

2M
)
, . . . , trace

(
AT

ND
M
)]T

,

91

for all M ∈ Rp×q. The dual problem of (4.31) is then given by

max trace(DTX21)

subject to X33 ≥ 0,

X44 ≥ 0, I XT
21

X21 I

 ≥ 0,

γ

2
X33 +

γ

2
X44 = γI,

Aadj(X21)−
γ

2
Aadj(mat(X33)) +

γ

2
Aadj(mat(X44)) = 0.

(4.32)

Let Z∗ and X∗ be the optimal solutions of (4.31) and (4.32), respectively. Under zero

optimal duality gap, (4.18) and (4.19) are applied to (4.31) and (4.32) to get

2Z∗
21 = A(x∗)−D, Z∗

33 =
γ

2
(diag (vec (W ∗ −A(x∗)))) ,

Z∗
44 =

γ

2
(diag (vec (W ∗ +A(x∗)))) , Z∗ ≥ 0,

γ

2
X∗

33 +
γ

2
X∗

44 = γI, Aadj(X
∗
21)−

γ

2
Aadj(mat(X∗

33)) +
γ

2
Aadj(mat(X∗

44)) = 0, X∗ ≥ 0,

Z∗X∗ = 0,

and the central path equations become

2Z21 = A(z)−D, Z33 =
γ

2
(diag (vec (W −A(z)))) ,

Z44 =
γ

2
(diag (vec (W +A(z)))) , Z ≥ 0,

γ

2
X33 +

γ

2
X44 = γI, Aadj(X21)−

γ

2
Aadj(mat(X33)) +

γ

2
Aadj(mat(X44)) = 0, X ≥ 0,

ZX = µI,

(4.33)

where µ > 0. Algorithm 4.1 in Section 4.3 can be invoked to solve (4.33) but with a high

computational cost. In this regard, we develop a more efficient procedure for solving the

linearized equations of the nonlinear equations of (4.33).

92

It follows from (4.26) and (4.27) that a set of linearized equations for (4.33) are given

by

∆Z33 −
γ

2
(diag (vec (∆W −A(∆z)))) = B1, (4.34)

∆Z44 −
γ

2
(diag (vec (∆W +A(∆z)))) = B2, (4.35)

2∆Z21 −A(∆z) = B3, (4.36)

γ

2
∆X33 +

γ

2
∆X44 = B4, (4.37)

−Aadj(∆X21) +
γ

2
Aadj(mat(∆X33))−

γ

2
Aadj(mat(∆X44)) = b, (4.38)

T

0 ∆XT
21 0 0

∆X21 0 0 0

0 0 ∆X33 0

0 0 0 ∆X44

T +

1
2
∆U ∆ZT

21 0 0

∆Z21
1
2
∆V 0 0

0 0 ∆Z33 0

0 0 0 ∆Z44

= R,

(4.39)

where B1 ∈ Rpq×pq
d , B2 ∈ Rpq×pq

d , B3 ∈ Rp×q, B4 ∈ Rpq×pq
d , b ∈ RND ,

T =

T11 T T
21 0 0

T21 T22 0 0

0 0 T33 0

0 0 0 T44

∈ R(2pq+p+q)×(2pq+p+q)

s ,

R =

R11 RT
21 0 0

R21 R22 0 0

0 0 R33 0

0 0 0 R44

∈ R(2pq+p+q)×(2pq+p+q)

s ,

93

are known, with T11 ∈ Rq×q
s , T33 ∈ Rpq×pq

d , T44 ∈ Rpq×pq
d , R11 ∈ Rq×q

s , R33 ∈ Rpq×pq
d ,

R44 ∈ Rpq×pq
d and T > 0. It follows from (4.36) that ∆Z21 =

1
2
(A(∆z) + B3). If ∆X21

in (4.39) is known, we have

∆U = 2(R11 − T11∆XT
21T21 − T T

21∆X21T11),

∆V = 2(R22 − T21∆XT
21T22 − T22∆X21T

T
21).

(4.40)

Therefore, (4.39) is reduced to

1

2
A(∆z) + T22∆X21T11 + T21∆XT

21T21 = R21 −
1

2
B3, (4.41)

T33∆X33T33 +∆Z33 = R33, (4.42)

T44∆X44T44 +∆Z44 = R44. (4.43)

Our strategy to solve the simultaneous equations (4.34)-(4.38) and (4.40)-(4.43) is

to find ∆X21 in terms of ∆z, then obtain ∆z, and lastly compute other variables. To

simplify (4.41), we compute a block diagonal congruence transformation such that G1 0

0 G2

 T11 T T

21

T21 T22

 GT

1 0

0 GT
2

 =

 I Σ

Σ I

 ,

where

Σ =

 diag(σ1 . . . σq)

0

 ,

with 0 ≤ σk < 1, k = 1, . . . , q (since T is positive definite). The matrices G1 and G2 are

computed by

G1 = QTL−1
1 , G2 = P TL−1

2 ,

where L1 and L2 are obtained from the Cholesky decompositions of T11 = L1L
T
1 and

T22 = L2L
T
2 , and the diagonal matrix Σ ∈ Rp×q and the orthogonal matrices P ∈ Rp×p,

94

Q ∈ Rq×q are obtained from the singular value decomposition (SVD):

L−1
2 T21L

−T
1 = PΣQT . (4.44)

Define ∆X̃21 = G−T
2 ∆X21G

−1
1 , R̃21 = G2(R21 − 1

2
B3)G

T
1 , and Ã(·) = G2A(·)GT

1 , i.e.,

Ã(z) = z1Ã1 + z2Ã2 + · · ·+ zND
ÃND

,

where Ãi = G2AiG
T
1 . Then, (4.41) is reduced to

1

2
Ã(∆z) + ∆X̃21 + Σ∆X̃T

21Σ = R̃21, (4.45)

and we also have

Ãadj(∆X̃21) =
[
trace

(
Ã1

T
∆X̃21

)
, trace

(
Ã2

T
∆X̃21

)
, . . . , trace

(
˜AND

T
∆X̃21

)]T
=
[
trace

(
G1A1

TGT
2G

−T
2 ∆X21G

−1
1

)
, trace

(
G1A2

TGT
2G

−T
2 ∆X21G

−1
1

)
, . . . ,

trace
(
G1AND

TGT
2G

−T
2 ∆X21G

−1
1

)]T
=
[
trace(A1

T∆X21), trace(A2
T∆X21), . . . , trace(AND

T∆X21)
]T

= Aadj(∆X21).

(4.46)

Now we find ∆X̃21 in (4.45) by exploiting the techniques in [66] as follows. Suppose a

mapping

S : Rp×q → Rp×q, S(M) = M + ΣMTΣ,

where S(·) is self-adjoint and can be factored as

S(M) = L(Ladj(M)),

95

with the mapping L(·) : Rp×q → Rp×q, defined by

L(M)ij =

√
1− σ2

i σ
2
jMij + σiσjMji, i < j,√

1 + σ2
iMii, i = j,

Mij, i > j,

and its adjoint Ladj(·) : Rp×q → Rp×q, by

Ladj(M)ij =

Mij, i > q,

Mij + σiσjMji, q ≥ i > j,√
1 + σ2

iMii, i = j,√
1− σ2

i σ
2
jMij, i < j.

The inverse mappings of L(·) and Ladj(·) are

L−1(M)ij =

(Mij − σiσjMji)/

√
1− σ2

i σ
2
j , i < j,

Mii/
√

1 + σ2
i , i = j,

Mij, i > j,

and

L−1
adj(M)ij =

Mij, i > q,

Mij − σiσjMji/
√
1− σ2

i σ
2
j , q ≥ i > j,

Mii/
√

1 + σ2
i , i = j,

Mii/
√

1− σ2
i σ

2
j , i < j.

Then, it follows from (4.45) that

∆X̃21 = S−1(R̃21 −
1

2
Ã(∆z)). (4.47)

To find ∆z, substituting (4.46) and (4.47) into (4.34)-(4.38), (4.42) and (4.43), and

eliminating all variables except ∆z give

H∆z = g, (4.48)

96

where g is known and H satisfies

H∆z = Ãadj

(
S−1

(
Ã (∆z)

))
+ 2γ2Aadj

(
mat

((
T 2
33 + T 2

44

)−1
)
◦ A (∆z)

)
, (4.49)

for all ∆z, i.e.,

Hij = trace
(
L−1(ÃT

i)L−1(Ãj)
)
+ 2γ2trace

(
AT

i

(
mat

(
(T 2

33 + T 2
44)

−1
)
◦ Aj

))
,

i, j = 1, . . . , ND.

(4.50)

One way to solve (4.48) for ∆z is to compute each element of H (i.e., (4.50)) and then

factor H using Cholesky decomposition. Liu et al. [66] suggest another method to solve

(4.48) which is numerically more stable. Note that S(·) is positive definite, so is H .

Factoring H with Cholesky decomposition yields

H = HT
LHL =

[
HT

1 , H
T
2

] H1

H2

 , (4.51)

where

H1 =
[
vec
(
L−1(Ã1)

)
, vec

(
L−1(Ã2)

)
, . . . , vec

(
L−1(ÃND

)
)]

,

and

H2 =
√
2γ
(
T 2
33 + T 2

44

)− 1
2 [vec (A1) , vec (A2) , . . . , vec (AND

)] .

It is suggested [66] to use a QR decomposition of HL to factor H and then to solve

(4.48). After ∆z is found from (4.48), ∆X̃21 is computed from (4.47) and ∆X21 from

∆X21 = GT
2∆X̃21G1. Substituting these into (4.34)-(4.39) yields ∆U , ∆V and ∆W .

For later reference, we name Algorithm 4.1 with (4.20) and (4.21) solved by the gen-

eral way (4.22)-(4.30) as the standard method, while Algorithm 4.1 with (4.20) and (4.21)

solved by the fast implementation (4.34)-(4.51) as the proposed method. In addition, if

97

D, L and S have certain linear structure (Hankel, Toeplitz, etc.), such a structure is pre-

served in the resulting matrices since it is determined by the mapping A and A does not

change throughout the proposed method.

Let us now analyze the complexity for each iteration of the proposed method. Re-

member the assumptions that p ≥ q and ND ≤ pq. The cost of computing G1 and G2 is

O(p3). The cost of computing the SVD (4.44) is O(pq2) [142]. Computing the mapping

Ã(·) = G2A (·)GT
1 =

ND∑
i=1

(
G2AiG

T
1

)
requires O(NDp

2q). It costs O(q2) [66] to evaluate S(·) and its inverse. Forming H2 costs

O(pqND) since T33 and T44 are diagonal. Equation (4.48) is solved by QR decomposition

and the computational cost is O(2N2
Dpq). Therefore, if ND ≥ p, the overall cost is

O(N2
Dpq), otherwise, O(NDp

2q). Especially, if we assume p = O(ND) and q = O(ND),

the overall computational cost per iteration is O(N4
D), which has been reduced greatly

from O(N6
D) of the standard method.

4.5 Analysis and Implementation

When can the outliers be found with the proposed algorithm? This is an important theo-

retical issue. Cand‘es et al. [57] solve the following convex optimization problem,

min
S

∥L∥∗ + γ ∥S∥1

subject to L+ S = D.

(4.52)

Let the singular value decomposition of L ∈ Rp×q be

L = ŪΣV̄ T =
∑r̄

i=1
σiūiv̄

T
i ,

98

where r̄ is the rank. The incoherence conditions with parameter µ are

max
i

∥∥ŪT ei
∥∥2
2
≤ µr̄

p
, max

i

∥∥V̄ T ei
∥∥2
2
≤ µr̄

q
,
∥∥Ū V̄ T

∥∥
∞ ≤

√
µr̄

pq
, (4.53)

where ei’s are canonical basis vectors.

Theorem 4.1. [57] Suppose that L ∈ Rp×q obeys (4.53) and the support set of S is

uniformly distributed among all sets of cardinality m̄. Then, there is a numerical constant

c such that with probability at least 1 − cp−10 (over the choice of support of S), (4.52)

exactly recovers L and S with γ = 1√
max(p,q)

, provided that

rank(L) ≤ ρr̄pµ
−1(log(p))−2 and m̄ ≤ ρspq,

where ρr̄ and ρs are some positive numerical constants.

In view of the above theorem, the separation of the low-rank and sparse matrices

works and thus the outliers are detected in our context if the low-rank component is of

reasonably low rank and the sparse component reasonably sparse [57], indeed.

It follows from the Theorem 4.1 that the general choice for γ is γ = 1√
max(p,q)

[57].

For our application, we usually use a square Hankel matrix, p = q. It follows that

γ =
1
√
p
. (4.54)

This choice works well in all our simulation studies to be presented in Section 4.7, though

our S may not meet the distribution assumption in Theorem 4.1 exactly.

Consider next computational burden of the proposed method. As analyzed in Sec-

tion 4.4, the complexity of each iteration in the algorithm is dominated by size of D

matrix. It is possible to apply the method to a small subset of the output series so as to

99

reduce complexity greatly provided that the conditions of Theorem 4.1 are still satisfied,

which mainly means that the L matrix from this subset has low rank and S is sparse.

Furthermore, the method can work by formally setting the size of z being equal to the

total number of the data points used, that is, every data point is possibly with outlier,

provided that actually there are few outliers, that is, the found z vector has most elements

being zero. Such a universal setting for z/Ai gives the maximum amount of complexity.

Obviously, it is impossible to have outlier for each data point in practice, otherwise they

are no longer outliers. The universal setting above can be avoided and a great deal of

computation can be saved if some screening procedure is used to locate possible outlier

points and assign z/Ai corresponding to these few points only.

One possible screening procedure to find suspected outliers (may not be exact) is

the following three-sigma rule which we adapt from the static case in the literature to our

dynamic system case. Initially, we apply the estimation in (4.4) to the entire measurement

data set to find θ̂ = [â1, . . . , ân, b̂0, b̂1, . . . , b̂m]
T . We then calculate the predicted output

from

ŷt + â1ŷt−1 + . . .+ ânŷt−n = b̂0ut + b̂1ut−1 + . . .+ b̂mut−m,

and form the estimation error series or the residual: δyt = ȳt − ŷt. Let σ be the standard

derivation of δyt. The samples whose δyt are outside the interval [−3σ,+3σ] are viewed

as suspected outliers. This three-sigma rule in general picks up outliers as well as some

other points with big noise in noisy environment, but the size of z vector has been sub-

stantially reduced already. Formally, suppose that the suspected outliers using the above

rule are at i = k1, k2, . . . , kd, d ≪ N . Then assign the size of z as d and Ai accordingly

100

for i = k1, k2, . . . , kd. Finally invoke the proposed method for exact outlier detection.

To reduce the size of Hankel matrix, we can split the original data set of ȳt to subsets

as follows.

• Take the surrounding data of one or few suspected outliers to form a new set Ȳkj

of ND points. It is suggested that ND is in the range of 20 ∼ 30 in order to make

ND/2 larger than the order of the system. For example, let k1 be a single suspected

outlier and ND = 21. Form a subset of data as Ȳk1 = {ȳk1−α, . . . , ȳk1 , . . . , ȳk1+β}

where β − α = 20.

• Take under-sampling of the data to form a subset, i.e., take one from every ns points

of ȳt to form a subset Ȳkj of ND points around ȳkj . Again, we suggest that ND is

20 ∼ 30. For example, let k1 be a single suspected outlier, ns = 10 and ND = 21,

then set

Ȳk1 = {ȳk1−αns , . . . , ȳk1−ns , ȳk1 , ȳk1+ns , . . . , ȳk1+βns},

where β − α = 20. Let the corresponding outlier-free set be

Yk1 = {yk1−αns , . . . , yk1−ns , yk1 , yk1+ns , . . . , yk1+βns}.

It follows from the discrete system theory that the series in Yk1 satisfies (4.1) with

a different set of coefficients, which implies that the Hankel matrix in form of (4.8)

formed from Yk1 is still of low-rank.

The proposed method is then applied to the subsets Ȳkj and the computational burden

would be reduced.

101

To know outlier detection performance of our method, one may wish to know if the

outliers are correctly detected. To measure it, introduce the detection rate as

Detection rate =
number of correctly detected outliers

number of true outliers
× 100%. (4.55)

In many applications, the recovered L̂ will be used for actual data processing. It would

be useful to measure how accurate the recovered data are in comparison with the actual

data. Thus, define the detection accuracy [131] as

Accuracy =
∥A(ẑ)−A(z)∥F

∥A(z)∥F
+

∥∥∥L̂− L
∥∥∥
F

∥L∥F
, (4.56)

where (A(ẑ), L̂) is the solution of (4.14).

Once the proposed method is applied, the resulting data may be used to construct a

new and “clean” output series for use in system identification. Recall that the proposed

method produces the vector ẑ. The first way to get the “clean” set is to exclude those

points of ȳt corresponding to outliers (the elements of ẑ being nonzero) and use the rest

which can meet the system equation (4.1). For later reference, we name this as removing

outliers (RO). The second way is to subtract ẑ from ȳt to form the recovered series ŷ

(RS). The third way is to use ŷ after the outlier points are removed (RO & RS).

Finally, the performance of the system identification is evaluated by the following

parameter estimation error,

∥∆θ∥2 =
∥∥∥θ̂ − θ

∥∥∥
2
. (4.57)

102

4.6 In Presence of Both Noise and Outliers

In the preceding sections, we detect outliers by the decomposition of data matrix into

low-rank and sparse matrices. The proposed solution can work perfectly, that is, full and

exact detection of all outliers if there are strictly low-rank and exactly sparse matrices.

However, the observations ȳt are often corrupted by measurement noise in practice as

well, that is,

ȳt = yt + et + zt, (4.58)

where et is a noise and zt is zero or an outlier. The existence of noise may reduce the

accuracy of outlier detection. To our best knowledge, no noise is considered in the litera-

ture on outlier detection. One may attempt to filter out the noise before detecting outliers.

One obvious way to do so is a low-pass filter since the noise has high frequencies than

the system spectrum in most system identification applications. To be specific, choose a

low-pass Butterworth filter of order 10 for simulation studies in the next section.

In general, what is needed to use the proposed method effectively is denoising, which

means the reconstruction of a signal from a mixture of signal and noise [143]. The ex-

isting denoising methods include Kernel estimators, Spline estimators, Fourier transform

and wavelet transform [143]. Among these methods, wavelet based denoising has proven

quite effective in a wide range of applications such as signal processing [143], image

processing [144], microscopy [145] and geophysics [146].

Consider a finite length signal with additive noise,

ȳ = y + σNe,

where ȳ is the noisy signal, y is the clean signal, e is a Gaussian noise with e ∼ N(0, 1)

103

and σN is the noise level. Wavelet denoising is to recover y from ȳ, and performed in the

following three steps. The discrete wavelet transform (DWT) is first performed on ȳ by

passing it through a series of low-pass (g) and high-pass (h) filters. Let cj and dj be the

approximation and detail coefficients at jth decomposition level, respectively, and ↓ 2 be

the down-sampling operation. Then cj and dj are given [147] by

c1 = (ȳ ∗ g) ↓ 2,

d1 = (ȳ ∗ h) ↓ 2,

cj = (cj−1 ∗ g) ↓ 2, for j > 1,

dj = (cj−1 ∗ h) ↓ 2, for j > 1,

where the down-sampling is in accordance with the Nyquist sampling theorem. Denote

cj,k and dj,k as the kth value of approximation coefficients and detail coefficients at jth

decomposition level, respectively. The second step of wavelet denoising is shrinking the

coefficients dj,k by thresholding to obtain d̂j,k. Thresholding is applied to dj,k rather than

cj,k, since the approximation coefficients represent ‘low-frequency’ terms which usually

contain important components of the signal and are less affected by the noise. There are

two general thresholding rules: hard thresholding and soft thresholding. The function of

hard thresholding is defined [143] as

d̂j,k =

0, |dj,k| ≤ λ,

dj,k, |dj,k| > λ,

where λ is the threshold limit. While the function of soft thresholding is defined [143] as

d̂j,k =

0, |dj,k| ≤ λ,

sign (dj,k) (|dj,k| − λ) , |dj,k| > λ.

104

The threshold limit λ can be chosen based on the SureShrink [148, 149]. Lastly, the

denoised signal is obtained by the inverse DWT of the processed coefficients. The pro-

cessed approximation coefficients ĉj and the recovered signal ŷ are calculated [147] by

ĉj−1 = (ĉj ↑ 2) ∗ g′ + (d̂j ↑ 2) ∗ h′, for j > 1,

ŷ = (ĉ1 ↑ 2) ∗ g′ + (d̂1 ↑ 2) ∗ h′,

where g′ is a low-pass reconstruction filter, h′ is a high-pass reconstruction filter and the

↑ 2 operation adds one zero between adjacent samples.

The denoising methods could reduce the noise. However, they may also weaken the

saliency of outliers, which makes outlier detection more difficult. Therefore, it is highly

desirable to design a technique that reduces the noise effect while keeping the salient

behaviours of outliers. We present such a technique as follows.

Consider the system (4.1) with the output observations given by (4.58). Use our three-

sigma rule to find suspected outliers. Let the suspected outliers be at i = k1, k2, . . . , kd,

d ≪ N . Adopt the under-sampling, that is, take one from every ns points of ȳt to form a

smaller data set Ȳkj of ND points around ȳkj for each kj , j = 1, 2, . . . , d. For example,

let j = 1, ns = 10 and ND = 21, so that we form a new set of more time separated 21

points as follows:

Ȳk1 = {ȳk1−αns , . . . , ȳk1−ns , ȳk1 , ȳk1+ns , . . . , ȳk1+βns}, (4.59)

where β − α = 20. To reduce noise in Ȳk1 as much as possible while keeping the outlier

point as intact as possible, we keep ȳk1 from filtering. But for other points in Ȳk1 , we

resort to the fine data points around them for filtering. Say for ȳk1−αns , take

ỹk1−αns =

∑9
i=1 (ȳk1−αns+i−5)

9

105

to replace ȳk1−αns . The filtered data set for Ỹk1 is formed as

Ỹk1 = {ỹk1−αns , . . . , ỹk1−ns , ȳk1 , ỹk1+ns , . . . , ỹk1+βns} (4.60)

and is used in the proposed method to detect the true outlier. It is seen that the averaging

is applied to non-outlier points so that noise can be reduced, where as it is not applied to

the suspected outlier points so that their salient feature remains. For easy reference, the

above technique to form the filter set (4.60) is called under-sampling with averaging.

Unlike the noise free case where most elements of the solution ẑ to (4.14) are exactly

zero with few nonzero elements viewed as outliers, ẑ in the noise case is non-zero for all

its elements. These elements differ only in their magnitudes, and have to be differentiated

between noise and outliers. To this end, use the under-sampling to find a subset Ȳ0 like

(4.59) with the same parameters ns and ND but exclude any suspected outliers. Then,

obtain the solution ẑ0 for this set Ȳ0 with the proposed method, and compute the standard

derivation of ẑ0 as σ0. Now for the solution ẑ to each filter set Ỹkj , its element ẑt is

regarded as an outlier if |ẑt| > 3 ∼ 5σ0.

4.7 Simulation

Case studies are presented for illustration of the proposed method in this section. We

consider the following discrete-time system,

yt − 1.9yt−1 + 0.95yt−2 = 0.05ut, t = 1, 2, . . . , N. (4.61)

The coefficient matrices Ai ∈ Rp×q are chosen as in (4.11). Let p = q = (ND+1)/2 and

γ = 1√
p
. For example, if ND = 19, then p = q = 10 and γ = 0.32. The proposed method

106

was implemented by CVXOPT (version 1.1.6) [150] in Python 2.7, and simulated on a

3.40 GHz processor with 8 GB of memory.

To see detection performance of our method, we compare the proposed method with

the Hampel filter method implemented in Matlab R2013a. Consider (4.61) with the mea-

surement given by ȳ = y + z, where 10% entries of z are disturbed uniformly at random

by outliers and the remaining entries of z are zero. For different ND, results are shown in

Table 4.1. As can be seen, the proposed method has achieved precise detection of outliers

while the Hampel filter has not.

Table 4.1: Detection Rate

ND Proposed method Hampel filter
19 100% 100%
49 100% 40%
99 100% 75%
149 100% 64.71%
199 100% 66.67%
299 100% 51.61%
399 100% 52.63%

To see the speed of our method, we compare the proposed method with the stan-

dard method which is implemented by YALMIP [151] and SDPT3-4.0 [133] in Matlab

R2013a. Consider the the previous case. For different ND, results are shown in Table

4.2. Blank entries in Table 4.2 indicate that the simulation ceased because of memory

limitations. As can be seen, the detection rate and the accuracy of the proposed method

are as good as those of the standard method, but the time per iteration has been reduced

significantly. The standard method cannot handle this problem when ND > 99. Our

method performs well on large scale data. Note that the standard method and the pro-

posed method are implemented in different kinds of softwares, Matlab and Python, re-

107

Ta
bl

e
4.

2:
C

om
pu

ta
tio

na
lt

im
e

St
an

da
rd

m
et

ho
d

Pr
op

os
ed

m
et

ho
d

N
D

Ti
m

e
pe

ri
te

ra
tio

n
A

cc
ur

ac
y

D
et

ec
tio

n
ra

te
Ti

m
e

pe
ri

te
ra

tio
n

A
cc

ur
ac

y
D

et
ec

tio
n

ra
te

19
0.

11
s

7.
07

×
10

−
7

10
0%

0.
01

0s
2.
97

×
10

−
6

10
0%

49
0.

09
s

1.
32

×
10

−
7

10
0%

0.
02

2s
3.
70

×
10

−
7

10
0%

99
1.

09
s

2.
12

×
10

−
7

10
0%

0.
14

s
1.
25

×
10

−
6

10
0%

14
9

0.
57

s
9.
86

×
10

−
6

10
0%

19
9

1.
38

s
8.
62

×
10

−
7

10
0%

29
9

5.
71

s
1.
00

×
10

−
6

10
0%

39
9

16
.4

4s
1.
01

×
10

−
6

10
0%

108

spectively, since the related toolboxes are separately programmed in Matlab and Python.

For a fair comparison of the running speeds of two methods, the common practice is to

count time of running a same standard test program [152] for each case and compare. The

running time is 0.31s for Matlab R2013a while 0.50s for Python 2.7, and Matlab R2013a

is faster than Python 2.7 for the same program. In other word, if the proposed method had

been implemented in Matlab R2013a, the running time would have been further reduced.

Hence, the comparisons in Table 4.2 is justified but not in favor of our method.

The proposed method can improve system identification. For example, when ND =

49, the singular values of D and resulting low-rank matrix L̂, which are sorted descend-

ingly, are depicted in Figure 4.1, where there are obviously three dominating singular

values of L̂, indicating that the model is of second-order. Figure 4.2 shows the step re-

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

S
in

gu
la

r
V

al
ue

Singular Value index

D

L̂

Figure 4.1: Singular value index when ND = 49.

sponses of two models, one of which is identified with the raw signal of order 20 and the

other with the recovered signal of order 2. The results clearly show that the identifica-

tion outcome is much more satisfactory with the recovered signal than that with the raw

109

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Step responses

Identified by raw signal
Identified by recovered signal
actual signal

Figure 4.2: Step responses of two models.

signal.

To see computational saving from subset construction in Section 4.5, suppose that

ND = 199 and ȳ is corrupted by 2 outliers at i = 40, 120. Finding the suspected outliers

based on the three-sigma rule yields 9 suspected points at i = 12 ∼ 18, 40, 120, as

shown in Figure 4.3. Performing our method on the different subsets formed as described

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (seconds)

ȳ

observed output
suspected outliers
actual outliers

Figure 4.3: Observed output.

in Section 4.5 yields the results, which are shown in Table 4.3. For the surrounding

110

data case, we take 3 subsets of data with ND = 29: Ȳ1 = {ȳ1, ȳ2, . . . , ȳ29}, Ȳ2 =

{ȳ26, ȳ27, . . . , ȳ54} and Ȳ3 = {ȳ106, ȳ107, . . . , ȳ134}, which cover all suspected samples.

For the under-sampling case, we produce three subsets of samples with ns = 2 and ND =

29: Ȳ1 = {ȳ1, ȳ3, . . . , ȳ57}, Ȳ2 = {ȳ2, ȳ4, . . . , ȳ58} and Ȳ3 = {ȳ90, ȳ92, . . . , ȳ146}. As can

Table 4.3: Computational reduction

Total Time Detection rate
All the data 31.09s 100%

All the data with reduced z 3.57s 100%
Surrounding data 0.31s 100%
Under-sampling 0.33s 100%

be seen, for the cases in Row 3-5, outliers are detected correctly and the computational

burden is reduced compared with that of “All the data”.

To see performance of the under-sampling with averaging technique in presence of

both outliers and noise, consider the following measurement,

ȳt = yt + 0.05et + zt,

where et is a white noise with et ∼ N(0, 1). Let the outliers be at i = 40, 120. The mea-

surement is shown in Figure 4.4. Using the three-sigma rule yields 8 suspected outliers

at i = 12 ∼ 17, 40, 120. Let ns = 2 and ND = 29. We apply the proposed method

to the following subset, Ȳ0 = {ȳ61, ȳ63, . . . , ȳ117}, and yield ẑ0 with its standard deriva-

tion σ0 = 0.038. Then, use 3σ0 as the threshold to pick up outliers. With different data

preprocessing approaches, the detection results are shown in Table 4.4, where CD and

WD represent the number of correct detections and wrong detections, respectively. A

low-pass Butterworth filter of order 10 with the cutoff frequency of 5Hz is chosen as

the low-pass filter. For wavelet denoising, we choose a 3-level wavelet decomposition

111

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

Time (second)

ȳ

Figure 4.4: Measurement.

with db8 as the mother wavelet and adopt the soft thresholding. As can be observed, for

the “Three-sigma” and the “PM” cases, outliers are correctly detected, while some nor-

mal points are also detected as outliers. For the “Low-pass+PM” and the “Wavelet+PM”

cases, the detection results are poor, since no true outliers are found. For the “Under-

sampling averaging+PM” case, the true outliers are correctly detected and no normal

points are detected as outliers.

To see the performance of system identification, we perform the OLS method on the

raw data ȳt as the benchmark and obtain ∥∆θ∥2 = 1.76, which is very poor because of

measurement noise and outliers. Note that though the measurement noise is white in the

output equation (4.2), the equivalent noise in the system equation (4.1) is colored [10].

Therefore, the IV method should be used for parameter estimation and Ωt = [1/t2, 1, t]

is chosen as the instrumental variable, which yields the error of 0.23. Better results are

obtained with our outlier detection method followed by IV estimation with “clean” data

sets and shown in Table 4.5.

112

Ta
bl

e
4.

4:
O

ut
lie

rd
et

ec
tio

n

T
hr

ee
-s

ig
m

a
Pr

op
os

ed
M

et
ho

d
(P

M
)

L
ow

-p
as

s+
PM

W
av

el
et

+P
M

U
nd

er
-s

am
pl

in
g

av
er

ag
in

g+
PM

C
D

W
D

C
D

W
D

C
D

W
D

C
D

W
D

C
D

W
D

O
ut

lie
rs

2
2

5
2

2
0

3
0

1
2

0
N

or
m

al
po

in
ts

19
7

19
2

0
19

5
0

19
4

2
19

6
2

19
7

0

113

Table 4.5: Parameter Estimation errors

Three-sigma Low-pass+PM Wavelet+PM Under-sampling average+PM

IV

RO 0.19 0.29 0.23 0.23
RS - 0.076 0.052 0.024

RO & RS - 0.17 0.048 0.0066
Raw signal 0.23

One sees that for different “clean” data sets, use of “RS” and “RO & RS” produces

less error than that of “RO”, and for different processing techniques, the under-sampling

with averaging one achieves best estimation and remarkable improvement over the orig-

inal IV one.

4.8 Conclusions

In this chapter, we formally solve an outlier detection problem in the context of system

identification. The problem is formulated as the matrix decomposition problem with

a low-rank matrix and a sparse matrix. The matrix decomposition problem is recast

as an SDP problem. A fast algorithm is proposed to solve such an SDP problem with

significant computational saving compared with the standard method and it can preserve

Hankel matrix structure in the resulting matrices. It should be pointed out that our method

is also applicable for other linear structures such as Toeplitz and moment matrices since

different structures can be accommodated by setting relevant mapping Ai matrices. The

proposed method has achieved satisfactory detection rate and accuracy. Furthermore, the

techniques for constructing subsets while retaining the matrix property are presented for

additional reduction of computational burden. In case of significant noise with outliers,

an under-sampling with averaging technique for data preprocessing is devised to attenuate

114

the noise effect while keeping the salient behaviour of outliers and enables application

of the proposed method for correct outlier detection while other filtering techniques fail.

Significant improvement of parameter estimation is achieved from the recovered “clean”

data with the proposed method over the one based on the raw data.

115

Chapter 5

Global Optimization Method Based on

Randomized Group Search in

Contracting Regions

5.1 Introduction

Chapter 3 and Chapter 4 present new methods helping with getting good models. Once a

model is obtained, researchers and engineers may carry out further designs based on it to

meet the needs of production and life such as saving cost and improving efficiency. Opti-

mization techniques are vitally important for model based designs in modern engineering

and planning. The techniques are classified as either local or global algorithms, where

global optimization algorithms may be classified as either metaheuristics or deterministic

algorithms [67]. Metaheuristics for global optimization, which have become very popular

since last century, are typically inspired by some phenomena from nature. Metaheuristics

116

are usually single-solution based or population-based, where the later deals with a set of

solutions rather than a single one. There are three main steps in all the population-based

metaheuristics as shown in Figure 5.1a.

(a) General population-based meta-
heuristics.

(b) Proposed method.

Figure 5.1: Flowcharts.

This chapter aims to present a brand-new population-based method for global opti-

mization problems. The proposed method is stand-alone and not related to any of the

existing population-based methods. It has two key novelties as shown in Figure 5.1b.

Firstly, the region in which each population lies changes and contracts exponentially,

which guarantees convergence of the proposed algorithm. Secondly, each population is

generated with randomization, where the size of random samples, is chosen [96] to en-

sure that the empirical minimum is an estimate of the true minimum within a predefined

accuracy with a certain confidence. Its main ideas and contributions are highlighted in

comparison with the existing population-based methods such as GA, DE and PSO as

follows.

117

• Generation of search region. A search region is the region in which the samples

are drawn to form a population. We believe that there is a higher chance for better

points of the next population to appear near the good points of this population than

the bad points. Hence, the samples in the current population are ranked ascendingly

based on their fitness values and a small subset of top-ranking ones are selected as

good points. The group search is then constrained around these good points to

generate the next population. Therefore, in our context of group search, the search

region is chosen as the intersection of the neighborhoods of the good points and

the feasible region. The size of the neighborhoods is set smaller and smaller over

iterations to reflect the fact that these good points generally get better and better

over the populations as well as closer and closer to the optimum. The contracting

neighbors imply that the search region also contracts over iterations, which ensures

convergence. The existing methods such as GA, DE and PSO do not have regional

concept and operate only on individual samples.

• Generation of populations. In each iteration, a population is randomly generated

within the search region. The randomized sampling is adopted since it is most gen-

eral with no restrictions on the problem and least likely to trap in a local optima, so

as to find a global optima for the general applicability. And the good points of the

current population carry over to the next population and the optimal fitness value

will not deteriorate over iterations. It is worth noting that in some application [96],

the performance by randomized algorithms can match or even surpass that of an

analytical one. Besides, generation of new population by random sampling is sim-

118

ple in concept and easy to implement, while GA and DE produce new population

by “selection”, “crossover” and “mutation” operators, and PSO updates every indi-

vidual by some mathematical formulas. It is however noted that the randomization

alone is neither efficient nor effective to find the global minimum if the population

is generated only once, or repeatedly on the same original feasible region.

• Features. The features of our method are shown in comparison with the existing

popular methods in Table 5.1. Our method requires ranking of fitness values and

its computational time obviously increases linearly with the population size. The

optimal fitness value is associated only with the position of one neighborhood, and

its influence on next population is not as strong as PSO. In addition, since our

method adopts the elitist selection, the optimal fitness value does not get worse

over iterations.

• Applications. Our method has no restrictions on the properties of objective func-

tions such as modality, separability and differentiability. It works on both con-

strained and unconstrained problems. Also, our method applies to both continuous

and combinatorial optimization problems, while DE and PSO favor continuous op-

timization problems. The implementation of the proposed method uses sampling

and does not need other complicated techniques. Moreover, our method only has

three design parameters, which are not sensitive on simulation results. Hence, it is

not necessary to customize the parameters for different problems.

• Performance. The memory requirement of our method is small. We only need to

record the positions of the retained points and the size of search region for each

119

iteration. Hence, the simplicity and rapidity are to be expected. In addition, simu-

lation results in Section 5.7 show that our method has a very good accuracy on the

global optima of low-dimensional examples and works reasonably well on high-

dimensional problems.

The rest of this chapter is organized as follows. Section 5.2 presents the proposed

method. Section 5.3 clarifies how to choose the sample size and Section 5.4 details the

sampling process. Section 5.5 discusses tuning parameters. The convergence analysis is

given in Section 5.6. Section 5.7 presents simulation studies and Section 5.8 concludes

the chapter.

5.2 The Proposed Method

To motivate our method, consider a geographer example. Suppose that a geographer

wants to measure the highest altitude of a certain district with infinite points. It is obvi-

ously impossible for him to measure the altitude of every point in the district. One may

adopt the iterative search in the spirit of hill climbing. If he starts with a single point and

move away from it over iterations, he will easily get stuck at some local optimum. An

advisable way is to start with a group of points instead of a single one and adopt the group

search within the search region iteratively. With no information about the terrain, he may

take a set of random samples and measure their altitudes. He finds a few samples with

highest altitudes. He naturally narrows his search around these points. He then repeats

his random sampling and altitude evaluation until he finds an approximate highest point.

Our method generalizes the geographer example.

120

Ta
bl

e
5.

1:
C

om
pa

ri
so

ns
of

G
A

,D
E

,P
SO

,a
nd

th
e

pr
op

os
ed

m
et

ho
d

Fe
at

ur
es

G
A

D
E

PS
O

Pr
op

os
ed

m
et

ho
d

R
an

ki
ng

of
so

lu
tio

ns
Y

es
N

o
N

o
Y

es
In

flu
en

ce
of

po
pu

la
tio

n
si

ze
on

co
m

pu
ta

tio
na

lt
im

e
E

xp
on

en
tia

l
L

in
ea

r
L

in
ea

r
L

in
ea

r
In

flu
en

ce
of

op
tim

al
fit

ne
ss

va
lu

e
on

po
pu

la
tio

n
fo

rn
ex

ti
te

ra
tio

n
M

ed
iu

m
L

es
s

M
os

t
M

ed
iu

m
N

o
de

te
ri

or
at

io
n

of
op

tim
al

fit
ne

ss
va

lu
e

ov
er

ite
ra

tio
ns

N
o

Y
es

N
o

Y
es

121

Suppose that we want to solve a complex minimization problem given in (1.1) by it-

erative search. To avoid premature convergence to a local optimum, we search by a group

of points instead of a single one for each iteration. Without restrictive assumptions on

properties of the given problem, we opt to take random samples within the search region

for each iteration. With such a group of samples, we naturally view those with small

fitness values as good samples, and believe that there is a higher chance for better points

to appear in the neighbors of these good points than bad ones. Therefore, we narrow our

next search region in the former. The above process continues till some stopping rule is

hit. A formal frame of our method is given in Algorithm 5.1. It is described in details

Algorithm 5.1
1: Initialization of population.
2: Evaluation of fitness values.
3: Generation of new search region based on good points.
4: Verification of terminate conditions.

if any terminate condition is met
Output.

end do
5: Generation of new population.
6: Repetition from step 2.

and illustrated as follows with the Peak example [153], which ships with MATLAB and

has been taken as a standard example to examine whether an optimization algorithm is

able to find the global minimum. The Peak function is given by

f(x) = 3(1− x1)
2e(−x2

1−(x2+1)2) − 10(
x1

5
− x3

1 − x5
2)e

(−x2
1−x2

2) − 1

3
e(−(x1+1)2−x2

2), (5.1)

where x = [x1, x2]
T . Its feasible region is −5 ≤ x1, x2 ≤ 5. The surface plot and contour

lines are respectively shown in Figure 5.2a and Figure 5.2b, where the global optimum is

at (0.2283,−1.6255) with the global minimum fmin(x) = −6.5511.

122

−5

0

5

−5

0

5
−10

−5

0

5

10

x1

The peak function

x2

f(~x)

(a) Surface plot.

Contours of the peak function

x
1

x
2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
global minimum

(b) Contour lines.

Figure 5.2: Peak function.

Initial samples and rho

x
1

x
2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
global minimum
N samples
best n samples
neighbourhoods boundary

(a) Iteration 1.

Iteration 1

x
1

x
2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
global minimum
N samples
best n samples
neighbourhoods boundary

(b) Iteration 2.

Iteration 2

x
1

x
2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
global minimum
N samples
best n samples
neighbourhoods boundary

(c) Iteration 3.

Iteration 14

x
1

x
2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
global minimum
N samples
best n samples
neighbourhoods boundary

(d) Iteration 15.

Figure 5.3: Iterations of illustrative example.

123

1. Generate randomly an initial population of N samples within the initial search

region, which is the feasible region. The choice of population size N will be dis-

cussed in Section 5.3. For the Peak example, in order to show our method clearly

by graphics, we let N = 50. The initial population is randomly generated and

shown in Figure 5.3a as red crosses.

2. Evaluate the fitness values at the N samples and rank them ascendingly based on

their fitness values, where the ranked samples are denoted by {x(k,1), x(k,2), . . . , x(k,N)},

where x(k,i) is the ith best sample of kth iteration. A small subset of top-ranking

M points are selected, where M ≪ N . For the Peak example, evaluate the fitness

values at the 50 samples and rank them to obtain {x(1,1), x(1,2), . . . , x(1,50)}. Let

M = 5. We then have the selected points as {x(1,1), x(1,2), . . . , x(1,5)}, which are

shown in Figure 5.3a as blue plus signs.

3. Let a new search region be the intersection of the feasible region and the neighbor-

hoods of the selected points. The neighborhood of a point is a geometric unit of

any shape with the center being the point itself. For convenience of sampling, we

choose an n-dimensional hypercube as a neighborhood for an n-dimensional case.

Let ρ(k) be the half side length of the neighboring hypercube in kth iteration. The

total volume of these hypercubes is then given by

Vk = M(2ρ(k))
n. (5.2)

Define the volume shrinkage ratio ν over iterations as

ν =
Vk+1

Vk

× 100%. (5.3)

124

It is a turning parameter. Its selection will be discussed in Section 5.5. Once ν is

chosen, it is fixed throughout iterations. It follows from (5.2) and (5.3) that ρ(k) is

updated as

ρ(k) = ρ(k−1)ν
1
n . (5.4)

The volume of the hypercube is gradually reduced over iterations, which implies

the contraction of the search region. For the Peak example, choose a square as the

neighborhood. At the initialization stage, the search region is the feasible region

with V1 = 100. Let ν = 20%. To generate five hypercubes for the next iteration,

we have V2 = V1 × ν = 20 from (5.3) and ρ2 = 1 from (5.2) with n = 2. For

all future iterations, ρ(k) is updated according to (5.4). The neighboring squares of

x(1,1) ∼ x(1,5) are shown in Figure 5.3a as black squares with dash dot line.

4. Terminate if any of the following conditions is met:

(i) k = K0, where K0 is the predefined maximum number of iterations;

(ii) ρ(k) < ε1, where ε1 is a positive tolerance on optimum;

(iii) 0 <
M∑
i=1

∣∣f(x(k−1,i))− f(x(k,i))
∣∣ < ε2, where ε2 is a positive tolerance on

minimum.

Then, output the optimal solution found by the proposed algorithm. Otherwise, go

to step 5. For the Peak example, choose K0 = 100 and ε1 = ε2 = 10−8.

5. Generate randomly (N − M) points within the search region, which form a new

population together with the M selected points. For the Peak example, N = 50

125

and M = 5. A new population of 45 samples is produced and shown in Figure

5.3b as red crosses.

6. Go to step 2.

For the Peak example, the algorithm stops after 15 iterations because the condition (iii)

is hit. To see better on how the process works, Figure 5.3 also shows the second, third

and last iterations. As can be seen from Figure 5.3d, our algorithm finds the approximate

global minimum.

Algorithm 5.1 has a global consciousness of search. But like other ones in the litera-

ture, it cannot always guarantee convergence to the global optimum. It may be modified

so as to traverse all the local optima and find the global optimum with arbitrary accuracy

if the number of local optima in the feasible region is limited. This inspires us to adopt an

repeated use of Algorithm 5.1. In order for it not to converge to the same local optimum

with different iterations, a small neighborhood of the current optimum is removed from

the feasible region for the next use of Algorithm 5.1. These ideas form Algorithm 5.2,

which is described as follows.

Algorithm 5.2
1: Execution of Algorithm 5.1.
2: Reduction of feasible region.
3: Repetition from step 1.

1. Run Algorithm 5.1 until the termination condition (ii) is met. Let x∗ be the re-

sultant optimal solution and ρ∗ be the half side length of the current neighboring

hypercubes.

2. Remove the neighborhood of x∗ from the feasible region.

126

3. Go to step 1.

Suppose that the minimum distance of any two local optima is d. Set ε1 < d√
n

so that

each removed neighborhood has no other optima than the found one.

5.3 Sample Size

For one iteration of our method, N samples are randomly generated within the search

region. Define the empirical minimum as

femp(x) = min
i=1,2,...,N

f(x(i)). (5.5)

One needs to determine the sample size N to make femp(x) a good estimate of the true

minimum in the search region. The randomized algorithms [154–157] have been applied

to solve hard problems arising in control synthesis and verify performance of complex

systems where the deterministic algorithms fail. In their context, randomized algorithms

are used to estimate the probability that a system with uncertain parameters restricted to

a box attains a given level of performance by sampling a certain number of points.

Theorem 5.1 ([154]). Let ϵ, δ ∈ (0, 1). If

N ≥

⌈
ln 1

δ

ln 1
1−ϵ

⌉
, (5.6)

then, with probability no less than (1− δ), the empirical minimum satisfies the following

inequality

P {f(x) < femp(x)} ≤ ϵ, (5.7)

that is,

P {P {f(x) < femp(x)} ≤ ϵ} ≥ 1− δ. (5.8)

127

Theorem 5.1 states that if N satisfies (5.6), the empirical minimum is an estimate of

the true minimum within a predefined accuracy of ϵ with confidence of δ [155]. Note

that in Theorem 5.1, the choice of N is independent of problem scale. In our method,

Theorem 5.1 is iteratively used and a same N is chosen for every iteration. Intuitively,

if a large N is chosen, our method tends to converge with a small number of iterations,

whereas a small N may lead to a large number of iterations. Consider two extreme cases

for discrete feasible region. If N is infinite large, we may only need to sample once (all

points) to obtain the global optimum. On the other hand, if N = 1, it may take infinite

iterations to get the global optimum. Hence, there is trade-off between N and the number

of iterations. Generally, we let both ϵ and δ vary between [0.001, 0.02], giving N in the

range of [200, 5000].

5.4 Sampling Process

When N is fixed, samples are randomly generated based on the distribution of x in the

search region. The distribution depends on the features of the given problem. In our

context, we treat an optimization problem as a kind of black-box problem with no prior

information on the distribution, or each point in the search region is equally likely to be

optimum. Hence, we adopt the uniform distribution, that is, we take samples uniformly at

random within the search region. The implementation of uniform sampling is discussed

as follows.

The realization of uniform sampling depends on the shape of a search region. We first

consider a simple case that the search region is one hyperrectangle. In this case, sampling

128

uniformly within the whole region is equivalent to sampling uniformly on each dimension

of the hyperrectangle and then making a combination, since each dimension is taken as a

random variable and all the random variables are independent to each other [158]. Con-

sider a simple 2-dimensional example shown in Figure 5.4. Suppose that we would like

to take 20 samples uniformly at random within a square bounded by [1, 2]. We first re-

spectively take 20 points uniformly and randomly within x1 ∈ [1, 2] and x2 ∈ [1, 2] to get

{x1,(·,1), x1,(·,2), . . . , x1,(·,20)} and {x2,(·,1), x2,(·,2), . . . , x2,(·,20)}, which are shown as blue

crosses and green circles in Figure 5.4. Then, combining these points yields 20 uniform

samples within the square, say, {(x1,(·,1), x2,(·,1)), (x1,(·,2), x2,(·,2)), . . . , (x1,(·,20), x2,(·,20))},

which are shown as red plus signs. For easy reference, we name this procedure as one-

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x
1

x
2

search region

Figure 5.4: Uniform sampling within a square.

hyperrectangle sampling.

Next, suppose that the search region contains multiple hyperrectangles which are of

the same size but mutually exclusive. We propose a possible solution and explain it

through a 2-dimensional example as shown in Figure 5.5. Let the search region consist

of two same-sized rectangles, say, A and B. Move B to B1, and arrange B1 and A next

129

to each other along their long sides. Take samples within the union rectangle of A and

B1, and then map the points from B1 to B.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

A

B

B
1A

x
1

x
2

union region

Figure 5.5: Uniform sampling within A and B.

Consider now a more general case of several hyperrectangles with arbitrary sizes

and intersections. We consider a 2-dimensional example shown in Figure 5.6, where the

magenta line encompasses the search region. No technique is found in the literature on

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

A

B

search region

Figure 5.6: The rectangles A and B are interconnected.

the realization of uniform sampling within an irregular region. In our simulation, we use

a simple substitute to approximate the uniform sampling within such a search region. We

130

take N (j) samples uniformly at random within the jth hyperrectangle, where

N (j) =
V (j)∑
V (j)

N,

and V (j) is the volume of the jth hyperrectangle.

When the feasible region is irregular (not hyperrectangular), the search region being

the intersection of it with hyperrectangles may also be irregular. Uniform sampling in

such a region is even harder than the previous case. We adopt the rejection sampling tech-

nique [96] to approximate the uniform sampling within an irregular shaped region. We

take samples uniformly at random within the hyperrectangles and discard samples out-

side the feasible region. This is illustrated in Figure 5.7 by a 2-dimensional case, where

the blue dot line encompasses the feasible region, the black dash-dot line circumscribes

a neighboring square, the magenta line encloses the search region, and the reserved and

rejected samples are represented by green plus signs and red crosses, respectively.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Rejection sampling

x
1

x
2

rejected samples
reserved samples
feasible region
neighbourhood
search region

Figure 5.7: Rejection sampling.

131

5.5 Tuning Parameters

The proposed method has three parameters: the population size N , the volume shrinkage

ratio ν and the number of retained samples M . Usually, a large N is preferred for large-

scale problems. A large ν favors exploration and thus a slow convergence speed while a

small ν endorses exploitation and thus a fast convergence speed. A large M is favored for

complex multimodal functions (containing many local optima) and a small M is sufficient

for unimodal functions or simple multimodal functions.

To compare the influence of different sets of parameters on the results of optimization,

we enumerated and tested all parameter combinations from N = {200, 500, 1000, 2000, 5000},

ν = {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and M = {1, 2, 5, 10, 20, 50, 100} on the popular

benchmark problems, which are widely used in literature [159–161]. Our extensive sim-

ulation shows that the influence on the results with different values of parameters does not

make great difference, but the set {N = 500, ν = 0.1,M = 5} has a good overall per-

formance for low-dimensional examples (n < 10) and {N = 500, ν = 0.5,M = 50} is

generally good for high-dimensional problems (n ≥ 10). Hence, these parameter settings

are suggested for use.

5.6 Convergence Analysis

The convergence of the proposed method is analyzed for the case of closed and bounded

feasible region in this section. Consider Algorithm 5.1, when K0 is infinite large, ε1

and ε2 are infinite small. Under these conditions, Algorithm 5.1 keeps running and its

convergence analysis makes sense.

132

Recall that in the kth iteration, N points are generated in the search region and M

top-ranking points are selected and denoted by x(k,i), i = 1, 2, . . . ,M . Let S(k+1,i),

i = 1, 2, . . . ,M , be their corresponding neighborhoods, within which a new population

is generated: x(k+1,i), i =, 1, 2, . . . ,M . Note that the size of S(k,i),

ρ(k) = ρ(2)ν
k−2
n , 0 < ν < 1, (5.9)

reduces gradually and approaches to 0 when k → ∞. Hence, after a large number of

iterations, say, k > K, S(k,i), i = 1, 2, . . . ,M , become very small. The samples within it

have nearly same fitness values and their value set is denoted by fS(k,i)
. For one or several

particular iterations, the neighboring squares S(k,i), i = 1, 2, . . . ,M , may be mutually

exclusive. However, they in general cannot be always mutually exclusive for all k ≥ K.

For illustration, consider M = 2. Suppose that S(k,1) and S(k,2) are mutually exclusive

onwards for a number of iterations. The size of S(k+j,i) decreases over j = 1, 2, . . ., it

becomes much smaller relative to their distance, and fS(k+j,1)
and fS(k+j,2)

tend to have

a less overlapping set. It is almost certain to have some J > 0 such that fS(k+J,1)
and

fS(k+J,2)
differentiate from each other, that is, max fS(k+J,1)

< min fS(k+J,2)
. Then x(k+J,1)

and x(k+J,2) will both be in S(k+J,1). The next search region is formed by S(k+J+1,1) and

S(k+J+1,2) around or inside S(k+J,1) . In other words, S(k+J+1,1) and S(k+J+1,2) move

away from S(k+J,2) but together to S(k+J,1), causing their overlapping, that is, these two

neighbors are no longer mutual exclusive for this particular iteration. We thus make the

following reasonable assumption.

Assumption 5.1. For the iteration index sequence {k}, there exist K > 0 and a subse-

133

quence {ki} of {k} with k1 ≥ K such that the following probability is zero:

Prob
{
S(k1,1) ∩ S(k1,2) = Φ, S(k2,1) ∩ S(k2,2) = Φ, . . .

}
= 0.

Assumption 5.1 almost always holds in practice. One seeming counter-example is

shown in Figure 5.8. It looks possible that S(k,1) and S(k,2) keep on two arms of the

−5 0 5
0

2

4

6

8

10

12

14

16

18

20

x

neighboring squares

S
(K,1)

S
(K,2)

Figure 5.8: Counter example.

parabola for all k ≥ K. This requires the best two samples of N ones to be always

separate in the above two arms, which is unlikely to hold forever, since two best samples

are likely to be biased to one arm once over a sufficient number of iterations under the

randomized sampling at each iteration. As verification, we run 10000 times of simulation

of the above case with our algorithm under K0 = 2 million. No run gave S(k,1)∩S(k,2) =

Φ for the 2nd million of iterations.

The only real exception to Assumption 5.1, which we can think of is that the ob-

jective function is constant locally, where the fitness values of all the samples from one

population onwards are same and best. In this case, x(k,i), i = 1, 2, . . . ,M , are arbitrarily

assigned and so are S(k+1,i), i = 1, 2, . . . ,M . Then, x(k,1) can keep jumping over M

areas without convergence while S(k+1,1) and S(k+1,2) can keep mutually exclusive. This

134

will fail Assumption 5.1. Other optimization algorithms in the literature will encounter

the same problem for such a case.

Theorem 5.2. Under Assumption 5.1, the sequence
{
x(k,1)

}
generated by Algorithm 5.1

is convergent with probability 1.

Proof. Note that the feasible region is closed and bounded. According to the Bolzano-

Weierstrass theorem [162], the feasible region is sequentially compact. Then, there exists

a convergent subsequence {x(ki,1)} of {x(k,1)}, i = 1, 2, Let x(ki,1) converge to x̄(1),

i.e., x(ki,1) → x̄(1) as i → ∞. Take a subsequence of {x(k,2)} by letting k = ki: {x(ki,2)}.

For this sequence, {x(ki,2)}, there similarly exists a convergent subsequence {x(kij ,2)
},

that is, x(kij ,2)
→ x̄(2) as j → ∞. Note that kij is an infinite integer subset of the

infinite integer set of ki. If we take a subsequence of the convergent sequence {x(ki,1)}

as {x(kij ,1)
}, then it must converge to the same limit as its mother sequence, that is,

x(kij ,1)
→ x̄(1). Thus, we have

x(kij ,1)
→ x̄(1), as j → ∞,

x(kij ,2)
→ x̄(2), as j → ∞.

For ease of exposition, use l in place of kij , giving

x(l,1) → x̄(1), as l → ∞,

x(l,2) → x̄(2), as l → ∞.

We now show x̄(1) = x̄(2) with probability 1 by contradiction, that is, the probability

of x̄(1) ̸= x̄(2) is zero under Assumption 5.1. Suppose x̄(1) ̸= x̄(2). It follows that∥∥x̄(1) − x̄(2)

∥∥ = α > 0, where α is a constant. Since x(l,1) and x(l,2) converge to x̄(1) and

135

x̄(2), respectively, there are K1 and K2 for ε1 = 3α
8

such that

||x(l,1) − x̄(1)|| < ε1 =
3α
8
, l > K1

||x(l,2) − x̄(2)|| < ε1 =
3α
8
, l > K2.

(5.10)

Let K = max{K1, K2}. It follows from (5.9) that ρ(l) → 0 as l → ∞, there is K ′ > K

for ε2 = α
8
√
n

such that

ρ(l+1) < ε2 =
α

8
√
n
, l > K ′. (5.11)

The equations (5.10) and (5.11) together implies

S(l+1,1) ∩ S(l+1,2) = Φ, l > K ′, (5.12)

and see Figure 5.9 for illustration, where the regions A and B are disconnected. Invoking

−8 −6 −4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

x̄(1)

x̄(2)

√
nρ(l) =

α

8

3α
8

A

B

S(l+1,2) ||x(l,2) − x̄(2)||

Figure 5.9: Disconnectivity of A and B.

Assumption 5.1, the probability for (5.12) is zero.

Apply the above argument to {x(k,1)}, {x(k,2)}, . . . , {x(k,i)} for each i, i = 3, 4, . . . ,M ,

one by one. More specifically, use the above {l} in {x(k,3)} to create its subsequence,

{x(l,3)}, and then produce a common index series {l′} such that subsequences of {x(k,i)}:

136

{x(l′,i)}, i = 1, 2, 3, converge to a common limit. By induction on i, we can have a

common index series {l} such that with probability 1, there holds

x(l,i) → x̄, as l → ∞, i = 1, 2, . . . ,M. (5.13)

We now show that the original sequence {x(k,1)} converges to x̄ as well, that is, for

any ε > 0, there is an integer K such that

∥∥x(k,1) − x̄
∥∥ < ε, k > K, (5.14)

provided that there are convergent subsequences {x(ku,i)}, i = 1, 2, . . . ,M , with a com-

mon index ku = l satisfying (5.13). It follows from (5.13) for ku = l that for ε1 = ε
2
,

there is K1 > 0 such that for any ku > K1

∥∥x(ku,i) − x̄
∥∥ < ε1, i = 1, 2, . . . ,M. (5.15)

In addition, it follows from (5.9) that there is K2 > 0 such that for any ku > K2,

ρ(ku) <
ε

2
√
n
(1− ν

1
n). Then, we have

ku+1−1∑
j=ku+1

ρ(j) = ρ(ku)(ν
1
n + ν

2
n + . . .+ ν

ku+1−ku−1

n)

= ρ(ku)
1−ν

ku+1−ku−1
n

1−ν
1
n

≤ ρ(ku)
1

1−ν
1
n

< ε
2
√
n
.

Let K = max{K1, K2}. There is K ′ > K such that

Rku+1 =
M∪
i=1

S(ku+1,i) ⊂ B (x̄, ε2) , ku > K ′,

where B(x̄, δ) = {x : ∥x− x̄∥ < δ} and ε2 = ε1 +
√
nρ(ku+1), and see Figure 5.10

for illustration. Our construction of S(k,i) with exponential contracting size over k, k =

137

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x̄

ε1

ε2

√
nρ(ku+1)

S(ku+1,i)

||x(ku,i) − x̄||
B(x̄, ε2)

Figure 5.10: Rku+1 ⊂ B (x̄, ε2).

ku + 1, ku + 2, . . . , ku+1 − 1, yields

Rk ⊂ B (x̄, ε3) , k = ku + 1, ku + 2, . . . , ku+1 − 1, (5.16)

where ε3 = ε1 +
ku+1−1∑
j=ku+1

√
nρ(j) = ε1 +

√
n

ku+1−1∑
j=ku+1

ρ(j) <
ε
2
+ ε

2
= ε. It implies that for

each population, k = ku + 1, ku + 2, . . . , ku+1 − 1, its N samples x(k,i) satisfy

∥∥x(k,i) − x̄
∥∥ < ε, for k = ku + 1, ku + 2, . . . , ku+1 − 1, i = 1, 2, . . . ,M. (5.17)

Then, (5.15) and (5.17) together shows that (5.14) holds for k = ku, ku+1, . . . , ku+1−1.

For ku+1, it follows from (5.13) again that (5.15) holds for ku ⇒ ku+1. By the above

argument, (5.17) holds for k = ku+1 + 1, ku+1 + 2, . . . , ku+2 − 1. Then, (5.14) holds for

ku+1, ku+1 + 1, ku+1 + 2, . . . , ku+2 − 1. By the induction, (5.15) and (5.17) hold for all

ku+v, v = 0, 1, 2, . . ., implying (5.14) with K = ku.

Remark 5.1. In all our simulations, {x(k,1)} showed convergence.

Assumption 5.2. The distance between any two local optima is strictly positive.

138

Assumption 5.3. There is K > 0 such that pk > 0 for all k ≥ K, where pk = Prob{x∗ ∈

S(k,1)} and x∗ is a local optimum.

Theorem 5.3. Under Assumptions 5.1 - 5.3, the sequence {x(k,1)} generated by Algo-

rithm 5.1 converges to a local optimum x∗ with probability 1.

Proof. Let α be the minimum of distances of any two local optima. It follows from

(5.16) in the proof of Theorem 5.2 that the size (ε3) of Rk converges to zero under

Assumption 5.1. Thus, given ε < α
2

, there is K > 0 such that the size of Rk is less

than ε, and it can contain at most one optimum. By Theorem 5.2, {x(k,1)} converges to

x̄ with probability 1. Let x∗ be a local optimum. We prove x̄ = x∗ by contradiction.

If there is no optimum in Rk, then pk = 0 for k = K,K + 1, . . ., which contradicts

Assumption 5.3. Otherwise, there is one optimum in Rk. Let β = ∥x̄− x∗∥. For ε < β
2
,

there is K > 0 such that Rk ∈ B(x̄, ε), which is mutually exclusive with B(x∗, ε). Then,

pk = 0 for k = K,K + 1, . . ., which contradicts Assumption 5.3.

The probability pk = 1 is a special case of Assumption 5.3. It means that x∗ is in

every S(k,1), k ≥ K. Obviously, {x(k,1)} converges to x∗.

Corollary 5.1. Under Assumptions 5.1 - 5.2, the sequence {x(k,1)} generated by Algo-

rithm 5.1 converges to a local optimum x∗ with probability 1 if pk = 1.

Remark 5.2. If x∗ is sampled at Kth iteration, where Rk contains one optimum for

any k ≥ K, x∗ will be forever retained, which is equivalent to pk = 1 for k ≥ K, and

{x(k,1)} converges to x∗.

139

Finally, consider briefly the convergence of Algorithm 5.2. Algorithm 5.2 calls Al-

gorithm 5.1 infinitely. We consider the case that K0 is finite large, ε1 and ε2 are finite

small for Algorithm 5.1. Under Assumptions 5.1 - 5.3, Algorithm 5.1 terminates when

it finds a solution very near some local optimum. A small neighborhood of the found

solution, which contains this local optimum, is then removed from the feasible region.

Suppose that the number of local optima in the feasible region is limited, which is likely

to hold for most applications. Then, Algorithm 5.2 will traverse all local optima and find

the global one.

5.7 Simulations

In order to test the performance such as applicability, accuracy and speed of the pro-

posed method, Algorithm 5.1 is applied to both low-dimensional and high-dimensional

benchmark problems (Algorithm 5.2 cannot be examined by simulation since it takes an

infinite long time). It is programmed in MATLAB R2013a and run on a 64-bit Windows

7 system with 3.40GHz Inter Core i5 processor and 8 GB RAM.

5.7.1 Low-Dimensional Examples

The low-dimensional problems are taken from [159, 160], which include five test func-

tions with different properties as shown in Table 5.2. The initial search region for each

unconstrained problem is a region bounded by [L,U]. For the constrained G8 problem,

the initial search region is its feasible region. Jamil et al. [159] and Hedar [160] have

taken these problems as benchmarks for comparing global optimization methods. These

140

Table 5.2: Properties of low-dimensional test functions

Test function n [L,U] Modality Continuity Differentiability Constraint
Booth 2 [−10, 10] unimodal continuous differentiable unconstrained

Goldstein 2 [−2, 2] multimodal continuous differentiable unconstrained
Hartman3 3 [0, 1] multimodal continuous differentiable unconstrained

Tripod 2 [−100, 100] multimodal discontinuous non-differentiable unconstrained
G8 problem 2 - multimodal continuous differentiable constrained

problems are not chosen in favor of our method.

Let N = 500, ν = 0.1,M = 5, K0 = 100 and ε1 = ε2 = 10−8. We run Algorithm 5.1

on each problem to get an accuracy |f(x∗)− fopt(x)| and a running time, where f(x∗) is

the minimum value found by our algorithm and fopt(x) is the global minimum in theory.

The result of a single run has some randomness. Therefore, we repeat the process for 51

times to get the average accuracy and average running time. Average results are compared

with those with existing popular algorithms and shown in Table 5.3, where “-” means that

a certain algorithm cannot be applied to a given problem using off-the-shelf MATLAB

toolboxes [153]. These algorithms are selected for comparison algorithms because they

are classical, mature and widely adopted to solve global optimization problems [67, 70].

The best results among all methods are highlighted in bold. As can be seen from Table

5.3, the proposed method applies to all these problems. Generally, the proposed method is

very effective for all these low-dimensional problems. It gets the most accurate solutions

among all methods for Goldstein, Tripod and G8 problem. For Booth and Hartman3, our

results are as accurate as the best ones by other methods. Our method has relatively short

running times.

141

Ta
bl

e
5.

3:
A

ve
ra

ge
ac

cu
ra

cy
an

d
ru

nn
in

g
tim

e
fo

rl
ow

-d
im

en
si

on
al

pr
ob

le
m

s

Te
st

fu
nc

tio
n

Pa
tte

rn
Se

ar
ch

G
en

et
ic

A
lg

or
ith

m
Si

m
ul

at
ed

A
nn

ea
lin

g
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
Pr

op
os

ed
M

et
ho

d
A

cc
ur

ac
y

Ti
m

e
(s

)
A

cc
ur

ac
y

Ti
m

e
(s

)
A

cc
ur

ac
y

Ti
m

e
(s

)
A

cc
ur

ac
y

Ti
m

e
(s

)
A

cc
ur

ac
y

Ti
m

e
(s

)
B

oo
th

1.
26

e-
10

0.
05

26
7.

58
e-

07
0.

08
36

7.
81

e-
05

0.
57

3
3.

91
e-

11
0.

15
2

3.
33

e-
10

0.
01

09
G

ol
ds

te
in

7.
39

e-
10

0.
09

31
14

.7
8

0.
09

03
2.

59
e-

07
0.

56
5

61
.9

4
0.

17
5

4.
62

e-
10

0.
01

61
H

ar
tm

an
3

1.
79

e-
05

0.
05

86
0.

06
2

0.
10

3
3.

69
0.

49
2

12
.1

3
0.

11
2

3.
01

e-
05

0.
10

2
Tr

ip
od

2.
00

0.
03

11
36

.3
0

0.
14

1
0.

35
0.

54
7

0.
96

0.
23

2
0.

03
92

0.
04

18
G

8
pr

ob
le

m
0.

09
6

0.
02

90
0.

01
6

0.
78

5
-

-
-

-
2.

50
e-

05
0.

05
39

142

5.7.2 High-Dimensional Examples

We take the CEC2013 testbed [161] as our high-dimensional problems, as it is well rec-

ognized as a benchmark set of optimization problems. It includes 28 numerical test

functions, where f1 ∼ f5 are unimodal functions, f6 ∼ f20 are multimodal function-

s and f21 ∼ f28 are composition functions. We test these functions at three problem

dimensionality, n = 10, 30 and 50, respectively. For each of these functions, the initial

search region is a hypercube bounded by [−100, 100]. Let N = 500, ν = 0.5,M = 50,

K0 = 20n and ε1 = ε2 = 10−8. We run our method on each problem for 51 times to

record the best, worst, median, mean, and standard deviation of the accuracy. Results are

shown in Tables 5.4, 5.5 and 5.6 for n = 10, 30, 50, respectively. Very accurate solutions

are highlighted in bold. As can be observed from Table 5.4 - 5.6, the proposed method

is able to find the approximate global minimal values for many of the 28 test functions

such as f1, f3, f5, f6, f7, f9, f10, f16 for n = 10 and f1, f5, f10, f16 for n = 30, 50.

It outperforms most of the selected algorithms [163] of CEC2013 on f7, f9, f12, f13,

f15, f16, f18, f20, f23 and f25. Like other methods [164, 165], our method encounter-

s difficulties for the composition functions which are characterized as difficult problems

[161].

In regard to the complexity, we follow its definition in [161]. Let T0 be the time of

running a standard test program which performs some simple mathematical operations,

T1 be the time of executing 200,000 evaluations of f14 for a certain dimension, T2 be

the complete computation time for the algorithm with 200,000 evaluations of the same

dimensional f14 and T̂2 is the average of T2 (over 5 runs). Then, (T̂2 − T1)/(T0)

143

Table 5.4: Accuracy for n = 10

Func. Best Worst Median Mean Std.
f1 2.01e-09 1.00e-08 4.97e-09 5.08e-09 1.92e-09
f2 338.55 5.51e+05 4.10e+04 6.57e+04 8.86e+04
f3 2.49e-04 8.94 0.084 0.29 1.24
f4 3031.19 1.90e+04 8862.60 9111.58 3271.10
f5 2.73e-05 1.15 3.36e-04 0.023 0.16
f6 0.019 9.82 0.35 1.19 2.62
f7 1.42e-08 2.06e-04 2.38e-08 1.33e-05 4.76e-05
f8 20.00 20.46 20.30 20.29 0.12
f9 1.34e-06 1.53 3.12e-06 0.26 0.44
f10 4.59e-09 0.064 0.032 0.032 0.018
f11 1.99 10.94 4.97 5.01 1.79
f12 0.99 7.96 3.98 4.23 1.53
f13 0.99 17.48 8.09 8.17 3.73
f14 3.66 635.39 150.06 167.74 140.60
f15 3.66 296.64 151.44 145.20 78.32
f16 3.88e-08 0.020 3.53e-06 0.0042 0.0068
f17 5.56 18.43 14.93 14.72 2.15
f18 2.84 19.70 14.20 13.91 3.33
f19 0.099 1.02 0.66 0.64 0.18
f20 0.43 3.42 1.57 1.68 0.67
f21 200.00 400.19 400.19 392.34 39.25
f22 27.89 457.66 173.01 178.07 104.63
f23 18.07 399.38 81.35 103.39 82.41
f24 104.88 200.00 200.00 190.75 28.33
f25 103.74 200.00 200.00 194.39 22.67
f26 101.99 200.02 103.98 106.35 13.49
f27 300.00 400.00 300.00 335.29 48.26
f28 100.00 300.00 300.00 237.25 93.72

144

Table 5.5: Accuracy for n = 30

Func. Best Worst Median Mean Std.
f1 1.63e-08 3.93e-08 2.83e-08 2.82e-08 5.96e-09
f2 3.32e+05 5.69e+06 1.51e+06 1.78e+06 1.07e+06
f3 6.58 5.63e+06 1.74e+05 1.02e+06 1.55e+06
f4 2.10e+04 5.26e+04 3.41e+04 3.36e+04 7946.14
f5 0.0012 58.85 12.56 18.13 16.72
f6 14.19 78.75 15.31 24.57 20.92
f7 0.058 8.40 1.26 2.00 2.06
f8 20.80 21.04 20.96 20.95 0.057
f9 2.88 9.48 6.72 6.77 1.48
f10 1.45e-08 0.034 0.0074 0.0086 0.0088
f11 16.91 50.74 32.83 32.83 7.15
f12 20.89 47.76 31.84 32.83 6.24
f13 23.31 117.07 66.38 67.94 21.46
f14 762.17 2194.69 1486.47 1493.16 345.97
f15 723.64 2224.89 1437.00 1487.09 332.25
f16 0.0077 0.032 0.015 0.016 0.0052
f17 49.07 89.87 64.52 65.30 7.48
f18 49.85 81.76 65.71 66.25 7.61
f19 2.05 4.40 2.80 2.95 0.61
f20 15.00 15.00 15.00 15.00 3.70e-05
f21 200.00 443.54 300.00 336.43 101.55
f22 487.76 2444.88 1557.59 1522.39 426.52
f23 939.93 2804.85 1649.38 1640.93 411.30
f24 200.15 218.96 202.53 203.99 4.26
f25 200.02 256.70 236.35 222.87 22.73
f26 200.01 200.19 200.07 200.08 0.034
f27 306.23 553.05 375.46 380.23 44.70
f28 300.00 300.00 300.00 300.00 6.00e-08

145

Table 5.6: Accuracy for n = 50

Func. Best Worst Median Mean Std.
f1 3.36e-08 1.19e-07 5.75e-08 6.24e-08 1.79e-08
f2 1.22e+06 7.19e+06 2.79e+06 3.13e+06 1.20e+06
f3 8.13e+04 1.22e+08 2.09e+07 2.99e+07 2.90e+07
f4 3.13e+04 5.75e+04 4.21e+04 4.30e+04 6630.71
f5 0.0032 94.94 45.27 49.43 23.38
f6 43.45 48.22 45.09 44.99 1.05
f7 2.86 23.34 10.51 11.27 4.69
f8 21.00 21.19 21.13 21.13 0.041
f9 10.15 22.24 15.89 16.11 2.79
f10 5.28e-08 0.10 0.027 0.032 0.021
f11 48.75 110.44 76.61 77.00 11.72
f12 55.72 110.44 78.60 79.34 12.63
f13 95.96 262.36 169.10 171.45 34.99
f14 1700.11 5082.22 3354.87 3349.36 697.86
f15 2532.21 5720.08 3779.75 3821.00 508.17
f16 0.0096 0.044 0.023 0.022 0.0075
f17 105.08 161.21 135.58 134.93 14.18
f18 103.83 158.24 134.07 132.52 11.61
f19 3.19 8.23 5.34 5.46 1.10
f20 16.80 25.00 25.00 24.57 1.76
f21 200.00 1122.19 200.00 573.61 397.66
f22 2368.39 5531.07 3598.38 3580.49 682.76
f23 2787.25 5218.98 4127.58 4138.58 548.57
f24 210.10 246.93 226.47 227.33 8.89
f25 273.48 310.18 289.49 288.82 8.86
f26 200.26 356.66 330.32 294.30 64.58
f27 484.54 909.06 726.01 713.64 90.85
f28 400.00 400.00 400.00 400.00 5.17e-07

146

reflects the complexity of the algorithm. Results calculated on n = 10, 30, 50 are shown

in Table 5.7. According to Table 5.7, the complexity of the proposed method grows

Table 5.7: Complexity

n T0 (s) T1 (s) T̂2 (s) (T̂2− T1)/(T0)
10

0.11
1.33 5.25 35.64

30 1.89 13.14 102.27
50 2.52 20.89 167.00

nearly linearly with n as expected.

5.8 Conclusions

In this chapter, we have proposed a new global optimization method based on random-

ized group search in contracting regions. The samples in each population are always

randomly generated in the search region. A group of good samples are retained for

elitism instead of the best one. which avoids premature convergence to a local optimum.

The search region is limited around the retained samples and reduced over iterations as

better solutions are obtained. The reduction of search region over iterations guarantees

the convergence, and differentiates our method from existing methods which all operate

on the fixed region. The proposed method is fast and easy to implement. Moreover, the

proposed method is shown to be very effective for low-dimensional benchmark problems

and work reasonably well on high-dimensional ones. In short, this is a very different

method for global optimization with simplicity, clarity, efficiency and effectiveness.

There could be a few directions for future research. Efficient methods on uniform

sampling in irregular regions are in high demand. Adaptive schemes which adjust three

147

tuning parameters instead of constant settings may be developed to improve the perfor-

mance of the proposed method. Our method may be combined with other methods to

complement each other.

148

Chapter 6

Determining Stabilizing Parameter

Regions for General Delay Control

Systems

6.1 Introduction

The previous chapter presents a new global optimization method which helps with model

based designs. Model based designs play a vitally important role in different fields. In

control engineering, information retrieved from a plant is used to design control systems

to meet the needs of real applications. Finding stabilizing regions for control systems

in parameter space is important for controller tuning or controller optimization. The

existing approaches such as [83, 84, 89, 92, 93] in the literature seek the solutions for the

stabilizing parameter regions for limited classes of plants or controllers.

In this chapter, we design a general algorithm for determining stabilizing parameter

149

regions for delay control systems based on randomized sampling. Each unknown param-

eter is assumed to follow the uniform distribution in a given range and a certain number

of random sample points are generated in the parameter space. Next, given a delay con-

trol system, we convert it into a unified state-space form. Efficient LMI stability criterion

is developed for a control system with multiple delays in both input and state. Then

each point in the parameter space is checked by the developed stability criterion. After

that, these points are separated into stable and unstable regions by the decision func-

tion obtained from some learning method. The effectiveness of the proposed method is

illustrated by simulation examples.

The rest of this chapter is organized as follows. Section 6.2 presents the idea of

proposed method. Section 6.3 develops the stability criterion. Determining stabilizing

parameter regions is discussed in Section 6.4. Section 6.5 gives simulation examples and

Section 6.6 concludes the chapter.

6.2 The Proposed Method

We consider a unity feedback control system as shown in Figure 6.1. The plant may haveController Plant-+reference input output
Figure 6.1: Unity feedback control system.

some unknown parameters that may affect the system stability and the parameters of the

controller are also needed to be designed. Hence, knowing stabilizing parameter regions

150

is instructive for robustness analysis and design. Some methods [84–86] can give ana-

lytical solutions for stabilizing parameter regions, but these methods usually have many

constraints and could only be applied to limited plants or controllers. Some numerical

methods [93, 94] also have some restrictions on system structures and their algorithms

might be difficult to be implemented. The objective of this chapter is to provide stabi-

lizing parameter regions with a new approach which is totally different from the existing

methods in this specific area. We illustrate the idea of our method with a simple example.

We consider the model in [92] as follows,

G(s) =
s3 + 4s2 − s+ 1

s5 + 2s4 + 32s3 + 14s2 − 4s+ 50
,

with a PI controller

C(s) = Kp +
Ki

s
,

where Kp and Ki are unknown parameters. With the method in [92], the stabilizing

parameter region is shown in Figure 6.2a.

We employ the idea of randomized sampling. Suppose that each unknown parameter

follows the uniform distribution in a given range, that is, Kp ∈ [−10, 15], Ki ∈ [10, 40]

and they distribute uniformly in their respective range. Then a certain number of random

points are sampled in the parameter space. Throughout this chapter, N = 5000 is used

for all simulation cases.

Next, we check whether each of these points could stabilize the system by some

stability criterion. The characteristic equation of the closed-loop system is

s6 + 2s5 + (Kp + 3)s4 + (4Kp +Ki + 14)s3

+(4Ki −Kp − 4)s2 + (Kp −Ki + 50)s+Ki = 0.

151

We can simply calculate the closed-loop poles for stability testing. If a point of [Kp, Ki]

could stabilize the system, it is labeled as ‘stable’. Otherwise, if a point could not stabilize

the system, it is labeled as ‘unstable’. However, calculating the closed-loop poles is not

possible for systems with time delays. In this case, we present a Linear Matrix Inequality

(LMI) stability criterion which will be discussed in next section.

Lastly, the points in the parameter space are divided into stable and unstable regions

by the decision function obtained from some learning method, such as the Neural Net-

works and the Support Vector Machines (SVM) [2]. We choose SVM as the classification

tool and employ the LibSVM [112] kit with its arguments ‘-t’=2 (Radial Basis Function

(RBF) as kernel) and ‘-c’=1000000 (penalty parameter) to solve the problem. The re-

sulting stabilizing parameter region is shown in Figure 6.2b. It is seen from Figure 6.2a

(a) Result in [92].

−10 −5 0 5 10 15
10

15

20

25

30

35

40

K
p

K
i

unstable
stable
decision function

(b) Result with the proposed method.

Figure 6.2: Stabilizing parameter region for the illustrative example.

and Figure 6.2b that the stable region from the proposed method is almost same as that

in [92]. Hence, our method is effective and straightforward.

152

6.3 Stability Criterion

As stated in previous section, it is impossible to calculate the closed-loop poles for sys-

tems with time delays. Therefore, in this section, we present an effective algorithm for

stability testing which can be applied to a much wider range of systems. Given a delay

system with PI or PID controller, we first convert it into a unified state-space form, which

is a generalization of the method in [166] where a delay-free system is considered. Next,

we present a conversion of delay systems with general dynamic controllers. Lastly, we

present an LMI stability criterion for the unified state-space form.

6.3.1 PI Control for Input-Delay Plant

Consider a plant:
ẋ(t) = Ax(t) + Bu(t− d),

y(t) = Cx(t),

(6.1)

with a PI controller:

u(t) = F1y(t) + F2

∫ t

0

y(τ)dτ.

Let

z(t) =

 z1(t)

z2(t)

 =

 x(t)∫ t

0
y(τ)dτ

 ,

so that

z(t− d) =

 z1(t− d)

z2(t− d)

 =

 x(t− d)∫ t−d

0
y(τ)dτ

 .

153

The vector z(t) can be viewed as a new state variable of the system, whose dynamics is

governed by

ż(t) =

 A 0

C 0

 z(t) +

 B

0

u(t− d), (6.2)

where

u(t) = F1Cz1(t) + F2z2(t)

= F1[C 0]

 z1(t)

z2(t)

+ F2[0 I]

 z1(t)

z2(t)

 .
(6.3)

Let C̄1 = [C 0] and C̄2 = [0 I]. Equation (6.3) can be rewritten as

u(t) = (F1C̄1 + F2C̄2)z(t),

or

u(t− d) = (F1C̄1 + F2C̄2)z(t− d). (6.4)

Substituting (6.4) into (6.2) yields

ż(t) = Ãz(t) + Ã1z(t− d), (6.5)

where

Ã =

 A 0

C 0

 , and Ã1 =

 B

0

 (F1C̄1 + F2C̄2).

When (6.1) is with a PID controller u(t) = F1y(t) + F2

∫ t

0
y(τ)dτ + F3

dy(t)
dt

, the

conversion could not be proceeded. This is because u(t) depends on u(t − d) since

dy(t)
dt

= CAx(t)+CBu(t−d). Then the control signal cannot be expressed only by state

vectors as (6.3) or (6.4). In such a case, we could use a practical D controller:

s

1 +
s

Nd

,

154

where Nd is chosen by users to limit derivative gain on higher frequencies. Then, the

practical PID controller falls in a format of general dynamic controller, which is handled

in Section 6.3.3 below.

6.3.2 PID Control for State-Delay Plant

Consider a plant:
ẋ(t) = Ax(t) + A1x(t− d) + Bu(t),

y(t) = Cx(t),

(6.6)

with a PID controller:

u(t) = F1y(t) + F2

∫ t

0

y(τ)dτ + F3
dy(t)

dt
.

Let z1(t) = x(t) and z2(t) =
∫ t

0
y(τ)dτ . We have

ż1(t) = ẋ(t) = Az1(t) + A1z1(t− d) +Bu(t),

and

ż2(t) = y(t) = Cz1(t).

Denoting z(t) = [zT1 (t), z
T
2 (t)]

T , we have

ż(t) = Āz(t) + Ā1z(t− d) + B̄u(t),

where

Ā =

 A 0

C 0

 , Ā1 =

 A1 0

0 0

 , B̄ =

 B

0

 .

155

Combining (6.6) and the definition of z yields

y(t) = Cz1(t) =

[
C 0

] z1(t)

z2(t)

 ,

∫ t

0

y(τ)dτ = z2(t) =

[
0 I

] z1(t)

z2(t)

 ,

and

dy(t)

dt
= Cẋ(t)

= CAx(t) + CA1x(t− d) + CBu(t)

= [CA, 0]z(t) + [CA1, 0]z(t− d) + CBu(t).

Denoting C̄1 = [C 0], C̄2 = [0 I], C̄3 = [CA 0], Cd = [CA1 0], ȳ1(t) = C̄1z(t),

ȳ2(t) = C̄2z(t), and ȳ3(t) = C̄3z(t) + Cdz(t− d), we have

u(t) = F1ȳ1(t) + F2ȳ2(t) + F3ȳ3(t) + F3CBu(t).

Suppose that (I−F3CB) is invertible. Let ȳ(t) = [ȳT1 (t), ȳ
T
2 (t), ȳ

T
3 (t)]

T , C̄ = [C̄T
1 , C̄

T
2 , C̄

T
3]

T ,

C̄d = [0, 0, CT
d]

T , and F̄ = [F̄1, F̄2, F̄3], where

F̄1 = (I − F3CB)−1F1,

F̄2 = (I − F3CB)−1F2,

F̄3 = (I − F3CB)−1F3.

Then (6.6) is equivalent to
ż(t) = Āz(t) + Ā1z(t− d) + B̄u(t),

ȳ(t) = C̄z(t) + C̄dz(t− d),

156

with

u(t) = F̄ ȳ(t),

i.e.,

ż(t) = Āz(t) + Ā1z(t− d) + B̄F̄ C̄z(t) + B̄F̄ C̄dz(t− d)

= (Ā+ B̄F̄ C̄)z(t) + (Ā1 + B̄F̄ C̄d)z(t− d),

(6.7)

which is also in the form of (6.5) with Ã = (Ā+ B̄F̄ C̄) and Ã1 = (Ā1 + B̄F̄ C̄d).

Remark 6.1. The systems (6.1) and (6.6) only contain one time delay. However, it

would not be difficult to make conversion for systems with multiple time delays, which

is omitted here for brevity.

The previous two cases only tackle delay systems with PI or PID controller whose

parameters appear in a linear form. In practical control systems, the controllers may be

of higher orders and the parameters of controllers may also appear in a nonlinear form,

such as the lead-lag compensators [167]. Thus, we consider the conversion for delay

systems with general dynamic controller as follows.

6.3.3 General Dynamic Controller for a Plant with Multiple Delays

in Input and State

Consider a plant (6.8)
ẋ(t) = Ax(t) + A1x(t− d1) + A2x(t− d2) + . . .+ Ahx(t− dh)

+Bu(t) + B1u(t− dh+1) + B2u(t− dh+2) + . . .+Blu(t− dh+l),

y(t) = Cx(t).

(6.8)

157

under the following dynamic controller:

C(s) =
b0s

m + b1s
m−1 + · · ·+ bm−1s+ bm

sn + a1sn−1 + · · ·+ an−1s+ an
,

whose minimal state-space realization can be expressed by
v̇(t) = Acv(t) +Bcy(t),

u(t) = Ccv(t) +Dcy(t).

Let z1(t) = x(t) and z2(t) = v(t). Denoting z(t) = [zT1 (t), z
T
2 (t)]

T , we have

z(t) =

 z1(t)

z2(t)

 =

 x(t)

v(t)

 ,

and

z(t− di) =

 z1(t− di)

z2(t− di)

 =

 x(t− di)

v(t− di)

 .

Combining the above expressions gives (6.9)

ż1(t) = Az1(t) + A1z1(t− d1) + . . .+ Ahz1(t− dh) +BDcCz1(t) +BCcz2(t)

+B1DcCz1(t− dh+1) + B1Ccz2(t− dh+1) + . . .

+BlDcCz1(t− dh+l) +BlCcz2(t− dh+l).

(6.9)

and

ż2(t) = BcCz1(t) + Acz2(t),

i.e.,

ż(t) = Ãz(t) +
k∑

i=1

Ãiz(t− di), (6.10)

158

where

Ã =

 A+BDcC BCc

BcC Ac

 ,

Ãi =

 Ai 0

0 0

 , for 0 < i ≤ h,

 Bi−hDcC Bi−hCc

0 0

 , for h < i ≤ k,

and k = h+ l.

Remark 6.2. The system (6.5) is a special case of (6.10).

6.3.4 The LMI Stability Criterion for a System with Multiple

Delays in Input and State

Theorem 6.1. The system (6.10) is asymptotically stable if there exist symmetric positive

definite matrices P , Q1, ..., Qk and W1, ..., Wk, such that Ω Ψ

∗ Λ

 < 0, (6.11)

where (6.12) holds,

Ω =

ÃTP + PÃ+
k∑

i=1

Qi −
k∑

i=1

Wi PÃ1 +W1 PÃ2 +W2 . . . P Ãk +Wk

∗ −Q1 −W1 0 . . . 0

∗ ∗ −Q2 −W2
.

∗ ∗ ∗ . . . 0

∗ ∗ ∗ ∗ −Qk −Wk

.

(6.12)

159

Ψ =

d1Ã
TW1 . . . dkÃ

TWk

d1Ã
T
1W1 . . . dkÃ

T
1Wk

...

d1Ã
T
kW1 . . . dkÃ

T
kWk

,

and

Λ =

−W1 0 . . . 0

∗ −W2
.

∗ ∗ . . . 0

∗ ∗ ∗ −Wk

.

Here and in the sequel, a block induced by symmetry is denoted by an ellipsis ∗.

Proof. Define the Lyapunov functional as

V (z(t)) = zT (t)Pz(t) +
k∑

i=1

(∫ t

t−di
zT (s)Qiz(s)ds

)
+

k∑
i=1

(
di
∫ 0

−di

∫ t

t+α
żT (s)Wiż(s)dsdα

)
.

The derivative of V (z(t)) is

V̇ (z(t)) = zT (t)P ż(t) + żT (t)Pz(t)

+
k∑

i=1

(
zT (t)Qiz(t)

)
−

k∑
i=1

(
zT (t− di)Qiz(t− di)

)
+

k∑
i=1

(
d2i ż

T (t)Wiż(t)
)

−
k∑

i=1

(
di
∫ t

t−di
żT (s)Wiż(s)ds

)
.

It follows from Jensen’s inequality [168] that

−di

∫ t

t−di

żT (s)Wiż(s)ds ≤ − [z(t)− z(t− di)]
T Wi [z(t)− z(t− di)] .

160

Then we have (6.13).

V̇ (z(t)) ≤ zT (t)P

[
Ãz(t) +

k∑
i=1

(
Ãiz(t− di)

)]
+

[
Ãz(t) +

k∑
i=1

(
Ãiz(t− di)

)]T
Pz(t)

+
k∑

i=1

(
zT (t)Qiz(t)

)
−

k∑
i=1

(
zT (t− di)Qiz(t− di)

)
+

k∑
i=1

{
d2i

[
Ãz(t) +

k∑
i=1

(
Ãiz(t− di)

)]T
Wi

[
Ãz(t) +

k∑
i=1

(
Ãiz(t− di)

)]}
−

k∑
i=1

{
[z(t)− z(t− di)]

T Wi [z(t)− z(t− di)]
}
.

(6.13)

Let

w(t) =

[
zT (t) zT (t− d1) · · · zT (t− dk)

]T
,

and

Γ =

[
Ã Ã1 · · · Ãk

]
.

One sees

V̇ (z(t)) ≤ wT (t)

[
Ω +

k∑
i=1

(
d2iΓ

TWiΓ
)]

w(t).

By Schur complement, (6.11) guarantees[
Ω +

k∑
i=1

(
d2iΓ

TWiΓ
)]

< 0.

Therefore, the system (6.10) is asymptotically stable.

6.4 Stabilizing Parameter Regions

Each point in the parameter space corresponds to a sample of the parameter vector p,

which is denoted by pi, i = 1 . . . N . We check whether each of these points could

stabilize the system by the developed LMI stability criterion. If a point pi could stabilize

161

the system, it is labeled as ‘stable’. Otherwise, if pi could not stabilize the system, it is

labeled as ‘unstable’.

The points in the parameter space can be separated into stable and unstable regions

by the decision function obtained from some learning method. In this chapter, we choose

SVM as the learning method due to its superior performance in a wide range of appli-

cations. Support Vector Machines (SVM), which was first introduced by Vapnik [169],

has shown many attractive features in the fields of small sample, non-linear and high di-

mensional pattern recognition [106]. It can be promoted to classification and regression

problems. It employs the Structural Risk Minimization principle [106]. The goal of SVM

is to find a decision function that minimizes the structural risk, which could be converted

into a quadratic programming problem. In addition, the solution of an SVM problem is a

globally optimal solution [170].

In this chapter, SVM is employed to solve a binary classification problem. Given the

data set S = {S1, S2, ..., SN} with Si = (pi, yi), i = 1, 2, ..., N , where pi is a point in the

parameter space and yi = 1 (stable) or -1 (unstable) is the label of the point, SVM is to

solve the following problem:

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjϕ(pi)
Tϕ(pj),

subject to
N∑
i=1

αiyi = 0,

0 ≤ αi ≤ C,

where α is the Lagrange multiplier, C > 0 is the penalty parameter which can be set by

users and ϕ(·) is a mapping from pi to a higher dimensional space.

There have already been many SVM tool kits that can be used to solve the classifica-

162

tion problems. LIBSVM [112] is a simple and effective one developed by Chih-Jen Lin’s

research group. Throughout this chapter, the LibSVM kit is employed to do simulation

with proper arguments.

6.5 Simulation Examples

In this section, four examples are presented to illustrate the effectiveness of the proposed

method.

Example 6.1. The analytical method in [84] cannot deal with a process containing

multiple zeros, while our method does not have this constraint. Consider the plant:

G(s) =
(0.4s+ 1)(0.2s+ 1)

(s− 1)(0.5s+ 1)(0.1s+ 1)
e−ds,

with a P controller C(s) = kI2. This control system is converted to the form in (6.10)

with

Ã =

−11 −8 20

1 0 0

0 1 0

 ,

Ã1 =

−1.6k −12k −20k

0 0 0

0 0 0

 .

Let p = [d, k]. Performing our method with the LibSVM arguments ‘-t’=2 and ‘-c’=100,

the stabilizing parameter region is obtained and shown in Figure 6.3.

Example 6.2. The graphical method in [89] cannot deal with a process containing

163

0 0.5 1 1.5
0

5

10

15

20

25

30

d

k

unstable
stable
decision function

Figure 6.3: Stabilizing parameter region for Example 6.1.

state-delays. However, our method does not have this restriction. Consider the plant:

ẋ(t) =

 −12.5 −25

1 0

 x(t)

+

 0 10

1.5 0

x(t− d) +

 1

0

 u(t),

y(t) =

[
0 25

]
x(t),

(6.14)

with a P controller u = −ky. This control system is converted to the form in (6.10) with

Ã =

 −12.5 −25− 25k

1 0

 , Ã1 =

 0 10

1.5 0

 .

Let p = [d, k]. Performing our method with ‘-t’=2 and ‘-c’=1000, the stabilizing param-

eter region is obtained and shown in Figure 6.4.

Example 6.3. Consider the plant (6.14) with d = 0.5 under the controller

C(s) =
a

s+ b
. (6.15)

Note that b appears in a nonlinear fashion, which is different from parameters of PID

164

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

d

k

unstable
stable
decision function

Figure 6.4: Stabilizing parameter region for Example 6.2.

controllers. We can rewrite (6.15) as
v̇(t) = −bv(t) + y(t),

u(t) = av(t).

This control system is converted to the form in (6.10) with

Ã =

−12.5 −25 a

1 0 0

0 25 −b

 , Ã1 =

0 10 0

1.5 0 0

0 0 0

 .

Let p = [b, a]. Performing our method with ‘-t’=2 and ‘-c’=1000, the stabilizing param-

eter region is obtained and shown in Figure 6.5.

Example 6.4. The proposed method also works well with a high-dimensional param-

165

−5 0 5 10
−5

0

5

10

b

a

unstable
stable
decision function

Figure 6.5: Stabilizing parameter region for Example 6.3.

eter space. Consider the plant:

ẋ(t) =

 −12.5 −25

1 0

 x(t)

+

 0 10

1.5 0

x(t− d1) +

 1

0

u(t− d2),

y(t) =

[
0 25

]
x(t),

with a controller:
v̇(t) = −bv(t) + y(t),

u(t) = v(t).

This control system is converted to the form in (6.10) with

Ã =

−12.5 −25 0

1 0 0

0 25 −b

 , Ã1 =

0 10 0

1.5 0 0

0 0 0

and Ã2 =

0 0 1

0 0 0

0 0 0

 .

166

Let p = [d1, d2, b]. Performing our method with ‘-t’=2 and ‘-c’=1000, the stabilizing

parameter region is obtained and shown in Figure 6.6.

Figure 6.6: Stabilizing parameter region for Example 6.4.

The above examples have well illustrated the effectiveness of the proposed method

which can be applied to a much wider range of systems than the existing methods in the

literature.

6.6 Conclusions

This chapter proposes a new and general method for determining the stabilizing param-

eter regions for delay control systems. We first take a certain number of random sample

points in the parameter space. Next, we represent a delay control system in a unified

state-space form. Then the numerical stability condition is developed and checked for

sample points in the parameter space. These points are divided into two classes accord-

ing to whether they can stabilize the system. The stabilizing parameter regions could be

well defined by the decision function obtained from some learning method. The effec-

tiveness of the proposed method is well illustrated with examples. The proposed method

167

does not have essential constraints and has a wide range of applications. Note that our

method could be applied to a higher-dimensional parameter space, though the stabilizing

parameter regions are difficult to be shown by graphics.

It should be noted that the presented LMI stability criterion is only sufficient since

it is based on Lyapunov theory. A sufficient and necessary stability criterion and the

additional potential values of the proposed method are to be investigated in future works.

168

Chapter 7

Conclusions

7.1 Main Findings

This thesis develops some new techniques to help with assessing models in statistical

learning, improving the outcome of system identification, solving global optimization

problems and finding stabilizing parameter regions for control systems.

In Chapter 2, we propose a new method for model assessment based on Renormal-

ization Group. Renormalization Group is applied to the original data set to obtain the

transformed data set with the majority rule to set its labels. The assessment is first per-

formed on the data level without invoking any learning method, and the consistency and

non-randomness indices are defined by comparing two data sets to reveal informative

content of the data. When the indices indicate informative data, the next assessment is

carried out at the model level, and the predictions are compared between two models

learnt from the original and transformed data sets, respectively. The model consistency

and reliability indices are introduced accordingly. Unlike cross-validation and other s-

169

tandard methods in the literature, the proposed method creates a new data set and data

assessment. Besides, it requires only two models and thus less computational burden for

model assessment.

In Chapter 3, we propose an improved system identification method with Renormal-

ization Group. Renormalization Group is applied to a fine data set to obtain a coarse

data set. The least squares algorithm is performed on the coarse data set. The theoreti-

cal analysis under certain conditions shows that the parameter estimation error could be

reduced.

In Chapter 4, the outlier detection problem for dynamic systems is formulated as a

matrix decomposition problem with low-rank and sparse matrices, and further recast as a

semidefinite programming (SDP) problem. A fast algorithm is presented to solve the re-

sulting problem while keeping the solution matrix structure and it can greatly reduce the

computational cost over the standard interior-point method. The computational burden is

further reduced by proper construction of subsets of the raw data without violating low

rank property of the involved matrix. The proposed method can make exact detection of

outliers in case of no or little noise in output observations. In case of significant noise,

a novel approach based on under-sampling with averaging is developed to denoise while

retaining the saliency of outliers, and so-filtered data enables successful outlier detection

with the proposed method while the existing filtering methods fail. Use of recovered

“clean” data from the proposed method can give much better parameter estimation com-

pared with that based on the raw data.

In Chapter 5, we propose a brand-new method for global optimization through ran-

domized group search in contracting regions. For each iteration, a population is randomly

170

produced within the search region, where the population size is chosen to ensure that the

empirical optimum is an estimate of the true optimum within a predefined accuracy with

a certain confidence. Fitness values are evaluated at the samples in the population. A

very small subset of them with top-ranking fitness values are selected as good points.

Neighborhoods of these good points are used to form a new and smaller search region, in

which a new population is generated. It is shown that the proposed algorithm always con-

verges and the convergence to local or global optima is analyzed. It is easy to implement

the algorithm. Extensive simulation on benchmark problems shows that the proposed

method is fast and reasonably accurate.

In Chapter 6, we propose a method for determining the stabilizing parameter regions

for general delay control systems based on randomized sampling. A delay control system

is converted into a unified state-space form. The numerical stability condition is devel-

oped and checked for sample points in the parameter space. These points are separated

into stable and unstable regions by the decision function obtained from some learning

method. The proposed method is very general and applied to a much wider range of

systems than the existing methods in the literature.

7.2 Future Works

The model assessment method proposed in Chapter 2 is illustrated for classification prob-

lem. We would like to extend our method to regression problem with trivial modifica-

tions. A coarse response, ŷj , of a unit may be obtained simple averaging or a weighted

average of responses, yi, of fine points in the same unit, while the coarse feature can be

171

determined in the same way as in classification. We can use the standard squared errors

for regression to make comparisons at both data and model.

In Chapter 3, system identification with Renormalization Group is new and we may

advance it with much better results.

In Chapter 4, we would like to investigate more effective methods for system identi-

fication when the output is with both noise and outliers.

The global optimization method proposed in Chapter 5 adopts the rejection sampling

method for sampling uniformly within an irregular shaped search region. Due to the

“curse of dimensionality”, the rejection sampling method will not be very efficient in

a high-dimensional space. Therefore, we may study some more efficient substitutes on

sampling uniformly in a high-dimensional space. In addition, once the tuning parameters

are chosen, they are fixed throughout iterations. To further improve the performance of

the proposed method, we will develop some adaptive schemes which incessantly adjust

the parameters.

The method for determining the stabilizing parameter regions proposed in Chapter

6 uses the LMI stability condition to check the sample points in the parameter space.

This condition is only sufficient since it is based on Lyapunov theory. A sufficient and

necessary stability criterion is to be investigated.

172

Bibliography

[1] G. F. Franklin, M. L. Workman, and D. Powell, Digital control of dynamic systems.

Addison-Wesley Longman Publishing Co., Inc., 1997.

[2] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. New York: Springer, 2009.

[3] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction to Statistical Learning

Theory,” Lecture Notes in Computer Science., no. 3176, pp. 169–207, 2004.

[4] M. R. E. Symonds and A. Moussalli, “A Brief Guide to Model Selection, Mul-

timodel Inference and Model Averaging in Behavioural Ecology Using Akaike’s

Information Criterion,” Behavioral Ecology and Sociobiology, vol. 65, no. 1, pp.

13–21, 2011.

[5] J. Myung and M. Pitt, “Model Selection Methods,” Amsterdam Workshop on Mod-

el Selection, 2004.

[6] J. Shao, “Bootstrap Model Selection,” Journal of the American Statistical Associ-

ation, vol. 91, no. 434, pp. 655–665, 1996.

173

[7] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-Validation,” Encyclopedia of

Database Systems, pp. 532–538, 2009.

[8] K. Polat and S. Günes, “An Expert System Approach Based on Principal Compo-

nent Analysis and Adaptive Neuro-Fuzzy Inference System to Diagnosis of Dia-

betes Disease,” Digital Signal Processing, vol. 17, no. 4, pp. 702–710, 2007.

[9] A. Camstra and A. Boomsma, “Cross-Validation in Regression and Covariance

Structure Analysis,” Sociological Methods & Research, vol. 21, no. 1, pp. 89–115,

1992.

[10] L. Lennart, “System identification: theory for the user,” PTR Prentice Hall, Upper

Saddle River, NJ, 1999.

[11] J. Schoukens, System identification. Wiley, 2012.

[12] F. Ding, “System identification: New theory and methods,” 2013.

[13] D. Vecchia and J. Splett, “Outlier-resistant methods for estimation and model fit-

ting,” ISA Transactions, vol. 33, no. 4, pp. 411–420, 1994.

[14] R. Klopfenstein Jr, “Data smoothing using a least squares fit c++ class,” ISA trans-

actions, vol. 37, no. 1, pp. 3–19, 1998.

[15] J. C. Peyton Jones and K. R. Muske, “Identification and adaptation of linear

look-up table parameters using an efficient recursive least-squares technique,” ISA

transactions, vol. 48, no. 4, pp. 476–483, 2009.

174

[16] K. Natarajan, A. Gilbert, B. Patel, and R. Siddha, “Frequency response adapta-

tion of pi controllers based on recursive least-squares process identification,” ISA

transactions, vol. 45, no. 4, pp. 517–528, 2006.

[17] Z. Griliches, “A note on serial correlation bias in estimates of distributed lags,”

Econometrica: journal of the Econometric Society, pp. 65–73, 1961.

[18] P. C. B. Phillips and M. R. Wickens, Exercises in econometrics. P. Allan, 1978,

vol. 2.

[19] B. A. Inder, “Bias in the ordinary least squares estimator in the dynamic linear

regression model with autocorrelated disturbances,” Communications in Statistics-

Simulation and Computation, vol. 16, no. 3, pp. 791–815, 1987.

[20] T. Stocker, “On the asymptotic bias of ols in dynamic regression models with

autocorrelated errors,” Statistical Papers, vol. 48, no. 1, pp. 81–93, 2007.

[21] W. X. Zheng, “On a least-squares-based algorithm for identification of stochastic

linear systems,” IEEE Transactions on Signal Processing, vol. 46, no. 6, pp. 1631–

1638, 1998.

[22] ——, “On least-squares identification of armax models,” in Proceedings of the

15th IFAC Triennial World Congress, Barcelona, Spain, 2002.

[23] T. Söderström and P. Stoica, Instrumental variable methods for system identifica-

tion. Springer Berlin et al., 1983.

175

[24] S. Victor, R. Malti, and A. Oustaloup, “Instrumental variable method with optimal

fractional differentiation order for continuous-time system identification,” in Pro-

ceedings of the 15th IFAC SYSID Conference, vol. 15, no. 1, 2009, pp. 904–909.

[25] X. Liu, J. Wang, and W. X. Zheng, “Convergence analysis of refined instrumen-

tal variable method for continuous-time system identification,” Control Theory &

Applications, IET, vol. 5, no. 7, pp. 868–877, 2011.

[26] L. Hurwicz, “Least squares bias in time series,” Statistical Inference in Dynamic

Economic Models, no. 10, pp. 365–383, 1950.

[27] P. Shaman and R. A. Stine, “The bias of autoregressive coefficient estimators,”

Journal of the American Statistical Association, vol. 83, no. 403, pp. 842–848,

1988.

[28] R. A. Stine and P. Shaman, “A fixed point characterization for bias of autoregres-

sive estimators,” The Annals of Statistics, pp. 1275–1284, 1989.

[29] A. Breton and D. T. Pham, “On the bias of the least squares estimator for the first

order autoregressive process,” Annals of the institute of Statistical Mathematics,

vol. 41, no. 3, pp. 555–563, 1989.

[30] K. Patterson, “Finite sample bias of the least squares estimator in an ar (p) mod-

el: estimation, inference, simulation and examples,” Applied Economics, vol. 32,

no. 15, pp. 1993–2005, 2000.

176

[31] T. J. Sargent, “Some evidence on the small sample properties of distributed lag es-

timators in the presence of autocorrelated disturbances,” The Review of Economics

and Statistics, vol. 50, no. 1, pp. 87–95, 1968.

[32] D. Tjøstheim and J. Paulsen, “Bias of some commonly-used time series estimates,”

Biometrika, vol. 70, no. 2, pp. 389–399, 1983.

[33] A. Maeshiro, “Teaching regressions with a lagged dependent variable and autocor-

related disturbances,” Journal of Economic Education, pp. 72–84, 1996.

[34] R. K. Pearson, “Outliers in process modeling and identification,” IEEE Transac-

tions on Control Systems Technology, vol. 10, no. 1, pp. 55–63, 2002.

[35] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial

Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.

[36] D. Zhang, L. Yu, and Q.-G. Wang, “Fault detection for a class of network-based

nonlinear systems with communication constraints and random packet dropouts,”

International Journal of Adaptive Control and Signal Processing, vol. 25, no. 10,

pp. 876–898, 2011.

[37] W. Liu, Z. Wang, and M. Ni, “Controlled synchronization for chaotic systems

via limited information with data packet dropout,” Automatica, vol. 49, no. 8, pp.

2576–2579, 2013.

[38] M. Davy and S. Godsill, “Detection of abrupt spectral changes using support vec-

tor machines an application to audio signal segmentation,” in IEEE International

177

Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2. IEEE,

2002, pp. 1313–1316.

[39] G. G. Hazel, “Multivariate gaussian mrf for multispectral scene segmentation

and anomaly detection,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 38, no. 3, pp. 1199–1211, 2000.

[40] M. J. Desforges, P. J. Jacob, and J. E. Cooper, “Applications of probability density

estimation to the detection of abnormal conditions in engineering,” Proceedings of

the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineer-

ing Science, vol. 212, no. 8, pp. 687–703, 1998.

[41] R. J. Bolton, D. J. Hand et al., “Unsupervised profiling methods for fraud detec-

tion,” Credit Scoring and Credit Control VII, pp. 235–255, 2001.

[42] H. He, J. Wang, W. Graco, and S. Hawkins, “Application of neural networks to

detection of medical fraud,” Expert Systems with Applications, vol. 13, no. 4, pp.

329–336, 1997.

[43] W. W.-S. Wei, Time series analysis. Addison-Wesley Redwood City, California,

1994.

[44] F. Pukelsheim, “The three sigma rule,” The American Statistician, vol. 48, no. 2,

pp. 88–91, 1994.

[45] R. D. Martin and D. J. Thomson, “Robust-resistant spectrum estimation,” Pro-

ceedings of the IEEE, vol. 70, no. 9, pp. 1097–1115, 1982.

178

[46] R. K. Pearson, “Exploring process data,” Journal of Process Control, vol. 11, no. 2,

pp. 179–194, 2001.

[47] P. J. Rousseeuw, “Least median of squares regression,” Journal of the American

statistical association, vol. 79, no. 388, pp. 871–880, 1984.

[48] D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “On

the least trimmed squares estimator,” Algorithmica, pp. 1–36, 2007.

[49] P. Bloomfield and W. L. Steiger, Least absolute deviations. Springer, 1984.

[50] P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted

least-squares,” Communications in Statistics-Theory and Methods, vol. 6, no. 9,

pp. 813–827, 1977.

[51] S. P. Ellis, “Instability of least squares, least absolute deviation and least median of

squares linear regression,” Statistical Science, vol. 13, no. 4, pp. 337–350, 1998.

[52] A. Leontitsis, LMS Toolbox. http://www.mathworks.com/matlabcentral/fileexchange/801-

lms-toolbox, 2004.

[53] J. Agulló, C. Croux, and S. Van Aelst, “The multivariate least-trimmed squares

estimator,” Journal of Multivariate Analysis, vol. 99, no. 3, pp. 311–338, 2008.

[54] M. A. Branch and A. Grace, MATLAB: optimization toolbox: user’s guide version

1.5. The MathWorks, 1996.

[55] B. Jones, MATLAB: Statistics Toolbox; User’s Guide. MathWorks, 1997.

179

[56] V. Chandola, A. Banerjee, and V. Kumar, “Outlier detection: A survey,” ACM

Computing Surveys, to appear, 2007.

[57] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?”

Journal of the ACM (JACM), vol. 58, no. 3, p. 11, 2011.

[58] J. Wright, A. Ganesh, S. Rao, Y. G. Peng, and Y. Ma, “Robust principal component

analysis: Exact recovery of corrupted low-rank matrices via convex optimization,”

Advances in neural information processing systems, vol. 22, pp. 2080–2088, 2009.

[59] R. Basri and D. W. Jacobs, “Lambertian reflectance and linear subspaces,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 2, pp.

218–233, 2003.

[60] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-

man, “Indexing by latent semantic analysis,” JASIS, vol. 41, no. 6, pp. 391–407,

1990.

[61] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange multiplier method for exact

recovery of corrupted low-rank matrices,” arXiv preprint arXiv:1009.5055, 2010.

[62] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast convex optimiza-

tion algorithms for exact recovery of a corrupted low-rank matrix,” Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), vol. 61, 2009.

[63] A. Ganesh, Z. Lin, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast algorithm-

s for recovering a corrupted low-rank matrix,” in 3rd IEEE International Work-

180

shop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-

SAP). IEEE, 2009, pp. 213–216.

[64] M. Ayazoglu, M. Sznaier, and O. I. Camps, “Fast algorithms for structured ro-

bust principal component analysis,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). IEEE, 2012, pp. 1704–1711.

[65] M. Fazel, H. Hindi, and S. Boyd, “Rank minimization and applications in system

theory,” in Proceedings of the American Control Conference, vol. 4. IEEE, 2004,

pp. 3273–3278.

[66] Z. Liu and L. Vandenberghe, “Interior-point method for nuclear norm approxima-

tion with application to system identification,” SIAM Journal on Matrix Analysis

and Applications, vol. 31, no. 3, pp. 1235–1256, 2009.

[67] G. Venter, “Review of optimization techniques,” Encyclopedia of aerospace engi-

neering, 2010.

[68] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming: theory

and algorithms. John Wiley & Sons, 2013.

[69] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization

without the lipschitz constant,” Journal of Optimization Theory and Applications,

vol. 79, no. 1, pp. 157–181, 1993.

[70] I. Boussaı̈d, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,”

Information Sciences, vol. 237, pp. 82–117, 2013.

181

[71] S. Brooks and B. Morgan, “Optimization using simulated annealing,” The Statis-

tician, pp. 241–257, 1995.

[72] F. Glover, “Future paths for integer programming and links to artificial intelli-

gence,” Computers & Operations Research, vol. 13, no. 5, pp. 533–549, 1986.

[73] V. D. Pinto and W. M. Pottenger, “A survey of optimization techniques being used

in the field,” in The Proceedings of the Third International Meeting on Research

in Logistics (IMRL). Citeseer, 2000.

[74] R. Battiti and G. Tecchiolli, “Simulated annealing and tabu search in the long run:

a comparison on qap tasks,” Computers & Mathematics with Applications, vol. 28,

no. 6, pp. 1–8, 1994.

[75] J. Paulli, “Information utilization in simulated annealing and tabu search,” COAL

Bulletin, vol. 22, no. 28-34, 1993.

[76] J. H. Holland, Adaptation in natural and artificial systems: An introductory anal-

ysis with applications to biology, control, and artificial intelligence. U Michigan

Press, 1975.

[77] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces,” Journal of global optimization,

vol. 11, no. 4, pp. 341–359, 1997.

[78] V. Kachitvichyanukul, “Comparison of three evolutionary algorithms: Ga, pso,

and de,” Industrial Engineering and Management Systems, vol. 11, pp. 215–223,

2012.

182

[79] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren, “Differential

evolution algorithm with ensemble of parameters and mutation strategies,” Applied

Soft Computing, vol. 11, no. 2, pp. 1679–1696, 2011.

[80] J. Kennedy, R. Eberhart et al., “Particle swarm optimization,” in Proceedings of

IEEE international conference on neural networks, vol. 4, no. 2. Perth, Australia,

1995, pp. 1942–1948.

[81] M. Moradi and M. Abedini, “A combination of genetic algorithm and particle

swarm optimization for optimal dg location and sizing in distribution systems,”

International Journal of Electrical Power & Energy Systems, vol. 34, no. 1, pp.

66–74, 2012.

[82] F. Valdez, P. Melin, and O. Castillo, “An improved evolutionary method with fuzzy

logic for combining particle swarm optimization and genetic algorithms,” Applied

Soft Computing, vol. 11, no. 2, pp. 2625–2632, 2011.

[83] Q.-G. Wang, C. Lin, Z. Ye, G. Wen, Y. He, and C. C. Hang, “A quasi-lmi approach

to computing stabilizing parameter ranges of multi-loop pid controllers,” Journal

of Process Control, vol. 17, no. 1, pp. 59–72, 2007.

[84] S. C. Lee and Q.-G. Wang, “Stabilization conditions for a class of unstable delay

processes of higher order,” Journal of the Taiwan Institute of Chemical Engineers,

vol. 41, no. 4, pp. 440–445, 2010.

[85] S. C. Lee, Q.-G. Wang, and C. Xiang, “Stabilization of all-pole unstable delay

183

processes by simple controllers,” Journal of Process Control, vol. 20, no. 2, pp.

235–239, 2010.

[86] S. C. Lee, Q.-G. Wang, and B. N. Le, “Stabilizing control for a class of delay

unstable processes,” ISA transactions, vol. 49, no. 3, pp. 318–325, 2010.

[87] Z. Y. Nie, Q.-G. Wang, M. Wu, and Y. He, “Exact computation of loop gain mar-

gins of multivariable feedback systems,” Journal of Process Control, vol. 20, no. 6,

pp. 762–768, 2010.

[88] J. Liu, Y. Xue, and D. Li, “Calculation of pi controller stable region based on

d-partition method,” in International Conference on Control Automation and Sys-

tems (ICCAS). IEEE, 2010, pp. 2185–2189.

[89] Q.-G. Wang, B. N. Le, and T. H. Lee, “Graphical methods for computation of

stabilizing gain ranges for tito systems,” in 9th IEEE International Conference on

Control and Automation (ICCA). IEEE, 2011, pp. 82–87.

[90] Q.-G. Wang, Y. He, Z. Ye, C. Lin, and C. C. Hang, “On loop phase margins of

multivariable control systems,” Journal of Process Control, vol. 18, no. 2, pp.

202–211, 2008.

[91] M. Söylemez, N. Munro, and H. Baki, “Fast calculation of stabilizing pid con-

trollers,” Automatica, vol. 39, no. 1, pp. 121–126, 2003.

[92] N. Tan, I. Kaya, C. Yeroglu, and D. P. Atherton, “Computation of stabilizing pi

and pid controllers using the stability boundary locus,” Energy Conversion and

Management, vol. 47, no. 18, pp. 3045–3058, 2006.

184

[93] B. Fang, “Computation of stabilizing pid gain regions based on the inverse nyquist

plot,” Journal of Process Control, vol. 20, no. 10, pp. 1183–1187, 2010.

[94] E. N. Gryazina and B. T. Polyak, “Stability regions in the parameter space: D-

decomposition revisited,” Automatica, vol. 42, no. 1, pp. 13–26, 2006.

[95] K. Saadaoui, S. Testouri, and M. Benrejeb, “Robust stabilizing first-order con-

trollers for a class of time delay systems,” ISA transactions, vol. 49, no. 3, pp.

277–282, 2010.

[96] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for Analysis and

Control of Uncertain Systems. Springer, 2004.

[97] K. G. Wilson, “Renormalization Group and Critical Phenomena. I. Renormaliza-

tion Group and the Kadanoff Scaling Picture,” Physical Review B, vol. 4, no. 9, p.

3174, 1971.

[98] A. D. Arulsamy, “Renormalization Group Method Based on the Ionization Energy

Theory,” Annals of Physics, vol. 326, no. 3, pp. 541–565, 2011.

[99] P. Q. Hung and C. Xiong, “Renormalization Group Fixed Point with a Fourth

Generation: Higgs-Induced Bound States and Condensates,” Nuclear Physics B,

2011.

[100] B. Hu, “Introduction to Real-Space Renormalization-Group Methods in Critical

and Chaotic Phenomena,” Physics Reports, vol. 91, no. 5, pp. 233–295, 1982.

185

[101] W. D. McComb, Renormalization Methods: A Guide for Beginners. Oxford

University Press, USA, 2007.

[102] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. Newman, The Theory of Critical

Phenomena: An Introduction to the Renormalization Group. Oxford University

Press, Inc., 1992.

[103] A. Sarkar and J. Bhattacharjee, “Renormalization Group as a Probe for Dynamical

Systems,” in Journal of Physics: Conference Series, vol. 319. IOP Publishing,

2011, p. 012017.

[104] M. Carfora, “Renormalization Group and the Ricci Flow,” Arxiv preprint arX-

iv:1001.3595, 2010.

[105] D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial

Systems. Princeton Univ Pr, 2004.

[106] S. R. Gunn, “Support Vector Machines for Classification and Regression,” ISIS

Technical Report, vol. 14, 1998.

[107] H. R. Zhang, X. D. Wang, C. J. Zhang, and X. S. Cai, “Robust Identification of

Non-linear Dynamic Systems Using Support Vector Machine,” in Science, Mea-

surement and Technology, IEE Proceedings-, vol. 153, no. 3. IET, 2006, pp.

125–129.

[108] M. Davy, A. Gretton, A. Doucet, and P. J. W. Rayner, “Optimized Support Vec-

tor Machines for Nonstationary Signal Classification,” Signal Processing Letters,

IEEE, vol. 9, no. 12, pp. 442–445, 2002.

186

[109] A. Gretton and F. Desobry, “On-line One-class Support Vector Machines. An Ap-

plication to Signal Segmentation.” in IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), vol. 2. IEEE, 2003, pp. 709–712.

[110] C. W. Hsu, C. C. Chang, C. J. Lin, and Others, “A Practical Guide to Support

Vector Classification,” 2003.

[111] D. Meyer, “Support Vector Machines,” Porting R to Darwin/X11 and Mac OS X,

p. 23, 2011.

[112] C. C. Chang and C. J. Lin, “LIBSVM: A Library for Support Vector Machines,”

ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3,

p. 27, 2011.

[113] J. Yeo and M. A. Moore, “Renormalization Group Analysis of the Mp-spin Glass

Model with p= 3 and M= 3,” Arxiv preprint arXiv:1111.3105, 2011.

[114] A. K. Jain, “Data Clustering: 50 years beyond K-means,” Pattern Recognition

Letters, vol. 31, no. 8, pp. 651–666, 2010.

[115] D. K. Roy and L. K. Sharma, “Genetic k-means Clustering Algorithm for Mixed

Numeric and Categorical Data Sets,” International Journal of Artificial Intelli-

gence & Applications, vol. 1, no. 2, pp. 23–28, 2010.

[116] H. Chen, P. Tino, and X. Yao, “Probabilistic Classification Vector Machines,”

IEEE Transactions on Neural Networks, vol. 20, no. 6, pp. 901–914, 2009.

187

[117] A. Uzilov, J. Keegan, and D. Mathews, “Detection of Non-coding RNAs on the

Basis of Predicted Secondary Structure Formation Free Energy Change,” BMC

Bioinformatics, vol. 7, no. 1, p. 173, 2006.

[118] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” The

Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[119] P. Eykhoff, System identification: Parameter and statte estimation. NY: John

Wiley & Sons, 1974.

[120] Regression Analysis Tutorial. University of California at Berkeley, 1967.

[121] A. Dumitru, J. Jalilian-Marian, T. Lappi, B. Schenke, and R. Venugopalan,

“Renormalization group evolution of multi-gluon correlators in high energy qcd,”

Physics Letters B, vol. 706, no. 2, pp. 219–224, 2011.

[122] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. New York, NY: Springer-Verlag New

York, 2009.

[123] S. Salas, E. Hille, and G. Etgen, Calculus: One and several variables. Wiley,

1990.

[124] T. Söderström, “Ergodicity results for sample covariances,” Problems of Control

and Information Theory, vol. 4, no. 2, pp. 131–138, 1975.

[125] T. Söderström and P. Stoica, System identification. Prentice-Hall, Inc., 1988.

188

[126] O. Reiersøl, “Confluence analysis by means of lag moments and other methods

of confluence analysis,” Econometrica: Journal of the Econometric Society, pp.

1–24, 1941.

[127] K. L. Chung, A course in probability theory. Harcourt, Brace & World (New

York), 1968.

[128] Q.-G. Wang, X. Guo, and Y. Zhang, “Direct identification of continuous time delay

systems from step responses,” Journal of Process Control, vol. 11, no. 5, pp. 531–

542, 2001.

[129] T. Söderström and P. Stoica, Instrumental variable methods for system identifica-

tion. Springer-Verlag Berlin, 1983, vol. 161.

[130] T. Söderström, “A generalized instrumental variable estimation method for errors-

in-variables identification problems,” Automatica, vol. 47, no. 8, pp. 1656–1666,

2011.

[131] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-sparsity

incoherence for matrix decomposition,” SIAM Journal on Optimization, vol. 21,

no. 2, pp. 572–596, 2011.

[132] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, “An interior-point

method for semidefinite programming,” SIAM Journal on Optimization, vol. 6,

no. 2, pp. 342–361, 1996.

189

[133] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving semidefinite-quadratic-linear

programs using sdpt3,” Mathematical programming, vol. 95, no. 2, pp. 189–217,

2003.

[134] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review, vol. 38,

no. 1, pp. 49–95, 1996.

[135] H. Wolkowicz, Semidefinite programming. Faculty of Mathematics, University

of Waterloo, 2002.

[136] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university

press, 2004.

[137] J. J. Dattorro, Convex optimization and Euclidean distance geometry. Meboo

Publishing USA, 2005.

[138] M. J. Todd, K. C. Toh, and R. H. Tütüncü, “On the nesterov–todd direction in

semidefinite programming,” SIAM Journal on Optimization, vol. 8, no. 3, pp. 769–

796, 1998.

[139] L. Vandenberghe, V. R. Balakrishnan, R. Wallin, A. Hansson, and T. Roh,

“Interior-point algorithms for semidefinite programming problems derived from

the kyp lemma,” in Positive polynomials in control. Springer, 2005, pp. 195–238.

[140] Z. Liu, “Structured semidefinite programs in system identification and control,”

Ph.D. dissertation, University of California Los Angeles, 2009.

190

[141] Y. Zhang, “On extending some primal–dual interior-point algorithms from lin-

ear programming to semidefinite programming,” SIAM Journal on Optimization,

vol. 8, no. 2, pp. 365–386, 1998.

[142] M. Holmes, A. Gray, and C. Isbell, “Fast svd for large-scale matrices,” in Work-

shop on Efficient Machine Learning at NIPS, 2007.

[143] S. Mallat, A wavelet tour of signal processing. Access Online via Elsevier, 1999.

[144] S. D. Ruikar and D. D. Doye, “Wavelet based image denoising technique,” Inter-

national Journal of Advanced Computer Science and Applications, vol. 2, no. 3,

pp. 49–53, 2011.

[145] G. Cristobal, M. Chagoyen, B. Escalante-Ramirez, and J. R. Lopez, “Wavelet-

based denoising methods: a comparative study with applications in microscopy,”

in SPIE International Symposium on Optical Science, Engineering, and Instru-

mentation. International Society for Optics and Photonics, 1996, pp. 660–671.

[146] A. C. To, J. R. Moore, and S. D. Glaser, “Wavelet denoising techniques with ap-

plications to experimental geophysical data,” Signal Processing, vol. 89, no. 2, pp.

144–160, 2009.

[147] M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, Wavelets and their Applica-

tions. Wiley Online Library, 2007.

[148] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via wavelet

shrinkage,” Journal of the american statistical association, vol. 90, no. 432, pp.

1200–1224, 1995.

191

[149] C. M. Stein, “Estimation of the mean of a multivariate normal distribution,” The

annals of Statistics, pp. 1135–1151, 1981.

[150] J. Dahl and L. Vandenberghe, “Cvxopt: A python package for convex optimiza-

tion,” in Proc. eur. conf. op. res, 2006.

[151] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in IEEE

International Symposium on Computer Aided Control Systems Design. IEEE,

2004, pp. 284–289.

[152] “Test program for matlab and python,” 2013, available on line:

http://stackoverflow.com/questions/17559140/matlab-twice-as-fast-as-numpy.

[153] M. U. Guide, “The mathworks,” Inc., Natick, MA, vol. 5, 1998.

[154] R. Tempo, E.-W. Bai, and F. Dabbene, “Probabilistic robustness analysis: Explicit

bounds for the minimum number of samples,” in Proceedings of the 35th IEEE

Conference on Decision and Control, vol. 3. IEEE, 1996, pp. 3424–3428.

[155] R. Tempo and H. Ishii, “Monte carlo and las vegas randomized algorithms for

systems and control: An introduction,” European journal of control, vol. 13, no. 2,

pp. 189–203, 2007.

[156] G. Calafiore, F. Dabbene, and R. Tempo, “A survey of randomized algorithms for

control synthesis and performance verification,” Journal of Complexity, vol. 23,

no. 3, pp. 301–316, 2007.

192

[157] E.-W. Bai, R. Tempo, and M. Fu, “Worst-case properties of the uniform distribu-

tion and randomized algorithms for robustness analysis,” Mathematics of Control,

Signals and Systems, vol. 11, no. 3, pp. 183–196, 1998.

[158] W. Feller, An introduction to probability theory and its applications. John Wiley

& Sons, 2008, vol. 2.

[159] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for glob-

al optimisation problems,” International Journal of Mathematical Modelling and

Numerical Optimisation, vol. 4, no. 2, pp. 150–194, 2013.

[160] A.-R. Hedar, “Test problems for constrained global opti-

mization,” available on line: http://www-optima.amp.i.kyoto-

u.ac.jp/member/student/hedar/Hedar files/TestGO files/Page422.htm.

[161] J. Liang, B. Qu, P. Suganthan, and A. G. Hernández-Dı́az, “Problem definitions

and evaluation criteria for the cec 2013 special session on real-parameter optimiza-

tion,” Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou,

China and Nanyang Technological University, Singapore, Technical Report, 2013.

[162] H. L. Royden, P. Fitzpatrick, and P. Hall, Real analysis. Prentice Hall New York,

1988, vol. 4.

[163] I. Loshchilov, T. Stuetzle, and T. Liao, Ranking Results of CEC’13 Special Session

& Competition on Real-Parameter Single Objective Optimization, 2013.

193

[164] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “A genetic algorithm for solv-

ing the cec’2013 competition problems on real-parameter optimization,” in IEEE

Congress on Evolutionary Computation (CEC). IEEE, 2013, pp. 356–360.

[165] A. Qin and X. Li, “Differential evolution on the cec-2013 single-objective con-

tinuous optimization testbed,” in IEEE Congress on Evolutionary Computation

(CEC). IEEE, 2013, pp. 1099–1106.

[166] F. Zheng, Q.-G. Wang, and T. H. Lee, “On the design of multivariable PID con-

trollers via LMI approach,” Automatica, vol. 38, no. 3, pp. 517–526, 2002.

[167] G. F. Franklin, J. D. Powell, A. Emami-Naeini, and J. D. Powell, Feedback control

of dynamic systems. Addison-Wesley Reading, MA, 1994, vol. 3.

[168] K. Gu, V. Kharitonov, and J. Chen, Stability of time-delay systems. Birkhauser,

2003.

[169] V. N. Vapnik, “The nature of statistical learning theory,” 1995.

[170] P. H. Chen, C. J. Lin, and B. Schölkopf, “A tutorial on ν-support vector machines,”

Applied Stochastic Models in Business and Industry, vol. 21, no. 2, pp. 111–136,

2005.

194

Author’s Publications

The author has contributed to the following publications:

Journal Papers:

[1] C. Yu, Q.-G. Wang, L. Wang and W. Feng, “Global Optimization by Randomized

Group Search in Contracting Regions,” manuscript is submitted to IEEE Transac-

tions on Evolutionary Computation.

[2] C. Yu, Q.-G. Wang and D. Zhang, “System Identification in Presence of Outliers,”

manuscript is submitted to Industrial & Engineering Chemistry Research.

[3] Q.-G. Wang, C. Yu and Y. Zhang, “Model Assessment Through Renormalization

Group In Statistical Learning,” Control and Intelligent Systems, vol. 42, no. 2, pp.

126-135, 2014.

[4] Q. Qin, Q.-G. Wang, S. S. Ge and C. Yu, “Neural Networks Trained by Random-

ized Algorithms,” Transactions on Machine Learning and Artificial Intelligence,

vol. 2, no. 1, pp. 01-17, 2014.

[5] Q.-G. Wang, C. Yu and Y. Zhang, “Improved System Identification with Renor-

malization Group,” ISA Transactions, Available online 17 Jan 2014.

195

[6] C. Yu, B.-N. Le, X. Li and Q.-G. Wang, “Randomized Algorithm for Determin-

ing Stabilizing Parameter Regions for General Delay Control Systems,” Journal of

Intelligent Learning Systems and Applications, vol. 5, no. 2, pp. 99-107, 2013.

Conference Papers:

[1] C. Yu, Q.-G. Wang and D. Zhang, “System Identification in Presence of Outliers,”

manuscript is accepted by Euro Mini Conference on Stochastic Programming and

Energy Applications (ECSP), 2014.

[2] Q.-G. Wang, C. Yu and Y. Zhang, “Model Assessment with Renormalization Group

in Statistical Learning,” 10th IEEE International Conference on Control and Au-

tomation (ICCA), pp. 884-889, 2013.

[3] Q.-G. Wang, C. Yu and Y. Zhang, “Improved System Identification with Renormal-

ization Group,” 10th IEEE International Conference on Control and Automation

(ICCA), pp. 878-883, 2013.

196

