
DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Non-Parametric Bayesian Methods For
Linear System Identification

Ph.D. candidate

Giulia Prando

Advisor

Prof. Alessandro Chiuso

Co-Advisor

Prof. Gianluigi Pillonetto

Director & Coordinator

Prof. Matteo Bertocco

Ph.D. School in

Information Engineering

.

Department of

Information Engineering

University of Padova

2016



ii



Abstract

Recent contributions have tackled the linear system identification problem by means of

non-parametric Bayesian methods, which are built on largely adopted machine learning

techniques, such as Gaussian Process regression and kernel-based regularized regression.

Following the Bayesian paradigm, these procedures treat the impulse response of the

system to be estimated as the realization of a Gaussian process. Typically, a Gaussian

prior accounting for stability and smoothness of the impulse response is postulated, as a

function of some parameters (called hyper-parameters in the Bayesian framework). These

are generally estimated by maximizing the so-called marginal likelihood, i.e. the likelihood

after the impulse response has been marginalized out. Once the hyper-parameters have

been fixed in this way, the final estimator is computed as the conditional expected value of

the impulse response w.r.t. the posterior distribution, which coincides with the minimum

variance estimator. Assuming that the identification data are corrupted by Gaussian

noise, the above-mentioned estimator coincides with the solution of a regularized estima-

tion problem, in which the regularization term is the `2 norm of the impulse response,

weighted by the inverse of the prior covariance function (a.k.a. kernel in the machine

learning literature).

Recent works have shown how such Bayesian approaches are able to jointly perform esti-

mation and model selection, thus overcoming one of the main issues affecting parametric

identification procedures, that is complexity selection.

While keeping the classical system identification methods (e.g. Prediction Error Methods

and subspace algorithms) as a benchmark for numerical comparison, this thesis extends

and analyzes some key aspects of the above-mentioned Bayesian procedure. In particular,

four main topics are considered.

Prior design. Adopting Maximum Entropy arguments, a new type of `2 regular-

ization is derived: the aim is to penalize the rank of the block Hankel matrix built with

Markov coefficients, thus controlling the complexity of the identified model, measured

by its McMillan degree. By accounting for the coupling between different input-output
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channels, this new prior results particularly suited when dealing for the identification of

MIMO systems.

To speed up the computational requirements of the estimation algorithm, a tailored

version of the Scaled Gradient Projection algorithm is designed to optimize the marginal

likelihood.

Characterization of uncertainty. The confidence sets returned by the non-

parametric Bayesian identification algorithm are analyzed and compared with those

returned by parametric Prediction Error Methods. The comparison is carried out in the

impulse response space, by deriving “particle” versions (i.e. Monte-Carlo approximations)

of the standard confidence sets.

Online estimation. The application of the non-parametric Bayesian system identi-

fication techniques is extended to an on-line setting, in which new data become available

as time goes. Specifically, two key modifications of the original “batch” procedure are

proposed in order to meet the real-time requirements. In addition, the identification

of time-varying systems is tackled by introducing a forgetting factor in the estimation

criterion and by treating it as a hyper-parameter.

Post processing: model reduction. Non-parametric Bayesian identification pro-

cedures estimate the unknown system in terms of its impulse response coefficients, thus

returning a model with high (possibly infinite) McMillan degree. A tailored procedure is

proposed to reduce such model to a lower degree one, which appears more suitable for

filtering and control applications. Different criteria for the selection of the order of the

reduced model are evaluated and compared.
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Introduction



2 Introduction

Control systems engineering aims at forcing a dynamical system to have a desired

behaviour. The success of the discipline is highly dependent on the availability of an

accurate mathematical model of the system to be controlled. In the continuous-time

domain, such model consists of differential equations, while in the discrete-time regime

it is described by a set of difference equations. A model may not only be used for the

design of a desired controller, but also for simulation purposes, fault detection, quality

control, etc. In addition, the presence of a model becomes essential when experiments

performed through the real system are too expensive or too dangerous.

Physics first principles may provide a tool to derive such models; however, while in most

cases the dynamical behaviour of interest could be too complex to be described through

physical laws, in other cases, the physical model could not be suitable for its intended

use. Indeed, the quality of a model should always be assessed in terms of its purpose:

while a model may be good for simulation, it may not be the best one for control. Model

complexity also plays a crucial role in control system engineering, where accuracy should

always be traded-off with complexity: a complex model will lead to a complex controller

and in turn to implementation and robustness issues. These considerations explain the

development of techniques allowing to infer the mathematical model of a dynamical

system from experimental data. System Identification is the discipline collecting all these

procedures. As such, system identification appears as a preliminary step of any control

system application, ranging from industrial plants to aeronautical vehicles, from home

automation to humanoid robots.

The standard set-up of a system identification problem involves a set of input data, which

are fed into the system under consideration, and a set of corresponding output data,

recording the response of the system to the chosen input signal. The measurements,

provided by suitable sensors, are typically affected by disturbances, whose presence has to

be accounted for in the subsequent estimation stage. Most research in system identification

has considered only noisy output data, while less attention has been devoted to the

presence of disturbances on both input and output measurements (errors-in-variables

models).

The described set-up can be fixed by the user (experiment design) according to the

intended application. For instance, the user may choose the signals to measure and

the excitation signal (input design) in order to maximize the information acquired from

the performed experiment. Once the data are recorded, a pre-processing stage may

be performed in order to remove undesired artefacts (e.g high-frequency disturbances,

missing data, outliers, etc.).

The acquisition and pre-processing of the data is followed by the so-called inference step,
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during which the data drive the search of the best model within the chosen model class.

At this stage, a crucial role is played by the selection of the model class: it may be

dictated by some a priori knowledge or, more frequently, by specific statistical procedures

or by the chosen inference approach. This step is of primary concern not only in the

context of system identification, but also in many statistical and learning applications,

giving rise to a wide literature on this topic. Due to its importance, the theme of model

selection will be widely discussed in the remainder of the manuscript.

The quality of the model returned by the inference procedure is then assessed (model

validation). If the model does not properly describe the observed data or if it does not

appear suitable for its intended use, the identification procedure has to be reviewed and

a new model should be estimated.

The distinguishing tract of the estimation performed in system identification is the tem-

poral relation present in the data: since the future output of a dynamical system depends

on past input values, the prediction performed by the estimated model will be based on

past measured input and outputs. System identification shares this characteristics with

econometrics, the discipline which analyses economic data, trying to extract information

from them. With the first works dated back at the end of the 19th century, econometrics

has a longer tradition than system identification, which instead arose at the end of the

1950s, when the term was coined by Zadeh. However, the roots of system identification

lie on the theory of stationary stochastic processes, which was mainly developed by the

econometrics and times series communities between 1920 and 1970.

Two seminal papers, both published in 1965, paved the way for the future development

of the two most common system identification techniques. The first work, due to Ho and

Kalman, gave birth to the deterministic realization theory, thus laying the foundation

of the subspace identification algorithms which blossomed in the Nineties. Åström and

Bohlin, authors of the second seminal paper, introduced into the control community

concepts and terminology coming from the econometrics field, specifically the Maximum

Likelihood estimation of the coefficients of difference equation models (known as ARMA,

ARMAX, etc.). The whole family of Prediction Error identification methods originated

from this work and dominated the system identification field until the Nineties, when

the lack of robust tools for the estimation of MIMO systems brought new interest on

the realization approach. This renewed appeal led to the the development of subspace

algorithms, which became the main focus of system identification research in the 1990s

and in the early 2000s.

In parallel with these two main approaches, the Nineties awoke the interest for frequency

domain identification with the aim of meeting the progresses reached by robust control



4 Introduction

community, whose tools applied in the frequency domain. Another important research

line arising in that period regarded the goal-oriented identification: the experiment design

and the estimation stages were optimally designed in order to directly take into account

the intended use of the model; thus, identification for control and optimal experiment

design for control became hot topics around 1990.

The 1990s and the 2000s were also characterized by the wide development of the statistical

learning and machine learning fields, with the introduction of new types of regularization,

of the Support Vector Machines and with the application of neural networks. Even if many

tools adopted by these communities could have been relevant for the system identification

problem, only around 2010 some of them were extended to the control community for

the estimation of dynamical systems. In particular, non-parametric Bayesian approaches

relying on Gaussian Process Regression and on RKHS (Reproducing Kernel Hilbert

Space) theory were introduced with the main goal of solving one of the crucial limitations

affecting the older system identification techniques, that is the search for the best model

structure. Indeed, while subspace methods overcame the issue of model parametrization

through the estimation of a state-space model, model order (equivalently, complexity)

selection still remained an open problem. Differently from the well-established system

identification procedures, which require an a-priori choice of model complexity, Gaussian

Process Regression provides an implicit way of dealing with the well-known bias-variance

trade-off, allowing to jointly perform estimation and complexity selection.

This manuscript intends to offer new insights on the recently developed non-parametric

Bayesian technique for system identification: analysis of some key properties as well as

extensions of the original procedure will be provided. In an attempt to give continuity to

the research in system identification, the investigation will consider the older approaches

(specifically, Prediction Error Methods and subspace algorithms) as a benchmark for

comparison.

In-line with the approach taken in the machine learning community, the innovative results

will be mainly presented in an experimental way, meaning that the effectiveness of the

proposed techniques will be mainly numerically validated.

1.1 Outline

The thesis aims at providing an overview of the three main system identification techniques,

which have so far populated the literature of the field (that is, Prediction Error Methods,

subspace algorithms and the recently developed non-parametric Bayesian approach).

Special attention will be given to the latter with the purpose of understanding its pros
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and cons, as well as of extending it in order to satisfy specific estimation requirements

(such as real-time constraints or model complexity constraints). In addition, several links

with the other two main families of identification algorithms will be highlighted.

A brief outline of the manuscript is provided in the following.

Chapter 2 is dedicated to the formal presentation of the linear system identification

problem and to the illustration of the three main approaches to deal with it, i.e. the above-

mentioned Prediction Error Methods, subspace techniques and non-parametric Bayesian

approaches. The description is enriched by details on the algorithmic implementation

and on the choices that have to be taken by the user. The chapter concludes with a brief

overview of classical model validation techniques.

Chapter 3 focuses on the role of regularization in system identification. After a

brief introduction on the use of regularization in statistics and learning applications, an

overview of the system identification approaches relying on `2- and `1-type regularization

is provided. While `2-type penalties are adopted in order to enforce both numerical

robustness and BIBO stability of the estimated system, `1-type regularization is mainly

exploited for structure detection.

Recalling that the regularizer choice translates into the prior design when a Bayesian

(probabilistic) framework is adopted, a maximum entropy argument is exploited to derive

a new type of prior distribution to be used in the non-parametric Bayesian approach.

Following the idea of elastic net in statistical learning, the proposed prior leads to a

combination of `1 and `2 regularization, thus enforcing stability and structure constraints.

This chapter is based on the results presented on the papers:

Prando G., Pillonetto G., and Chiuso A. The role of rank penalties in linear

system identification. In Proc. of 17th IFAC Symposium on System Identification, SYSID,

Beijing, 2015

Prando G., Chiuso A., and Pillonetto G. Bayesian and regularization approaches

to multivariable linear system identification: the role of rank penalties. In Proc. of IEEE

CDC, 2014

Prando G., Chiuso A., and Pillonetto G. Maximum entropy vector kernels for

mimo system identification. arXiv preprint arXiv:1508.02865, Automatica (accepted as

regular paper), 2017
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Chapter 4 is devoted to the analysis of the statistical properties of the estimate

returned by a system identification procedure. Here the main focus will be on Prediction

Error Methods and non-parametric Bayesian techniques: a comparison of the uncertainty

(measured in terms of confidence sets) characterizing the obtained estimators will be

drawn. The intrinsic difference between the two approaches (namely, the parametric/non-

parametric nature) makes the comparison a bit tricky. To overcome the issue, a sampling

approach is adopted, leading to the definition of “particle” confidence sets. The reported

comparison is based on the results presented on the paper:

Prando G., Romeres D., Pillonetto G., and Chiuso A. Classical vs. bayesian

methods for linear system identification: point estimators and confidence sets. In Proc.

of ECC, 2016a

Chapter 5 deals with the problem of real-time identification, which would allow

to update the system estimate as soon as new data arrive, as well as to track possible

changes of the system parameters. This problem has been largely considered in the

system identification literature, leading to the development of recursive algorithms both

for Prediction Error Methods and for subspace algorithms. The first part of the chapter

briefly reviews the real-time methods which have been proposed in the literature. The

second part introduces a real-time reformulation of the “off-line” algorithm used to

compute the non-parametric Bayesian estimator. By means of efficient updates of the

data-related entities and of numerical expedients, a fast and robust algorithm is developed.

The on-line reformulation of non-parametric Bayesian methods is based on the papers:

Romeres D., Prando G., Pillonetto G., and Chiuso A. On-line bayesian

system identification. In Proc. of ECC, 2016

Prando G., Romeres D., and Chiuso A. Online identification of time-varying

systems: a bayesian approach. In Proc. of IEEE CDC, 2016b

Chapter 6 considers the possibility of combining parametric and non-parametric

approaches in order to jointly take advantage of their benefits. The aim is achieved by

means of a two-steps procedure: first, a non-parametric Bayesian estimator is computed

and secondly, it is converted into a lower order model estimated through Prediction Error

Methods. Since the whole procedure can be regarded as a model reduction routine, the

beginning of the chapter briefly reviews the role played by model reduction in system

identification, with a particular focus on previously proposed two-steps procedures.

Part of the results of the chapter are based on the paper:
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Prando G. and Chiuso A. Model reduction for linear bayesian system identification.

In Proc. of IEEE CDC, 2015

Chapter 7 summarizes the main contributions of the thesis and outlines some

possible future research directions.
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This chapter intends to provide an overview of the three families of techniques which

have dominated the system identification literature in the last fifty years. Section 2.1

introduces the problem faced by system identification methods and briefly discusses the

different approaches taken by parametric and non-parametric techniques. Section 2.2

reviews the origins and main traits of Prediction Error Methods (PEM), introducing

also the so-called transfer function models (Section 2.2.1). Section 2.3 is devoted to

subspace algorithms and to the illustration of state-space models (Section 2.3.1). Non-

parametric Bayesian methods are illustrated in Section 2.4: while the presentation is

based on the Gaussian Process Regression (GPR) framework, connections with the theory

of Reproducing Kernel Hilbert Spaces (RKHS) and with common Regularized Least-

Squares (ReLS) practices are highlighted. Section 2.5 discusses several model validation

procedures which are commonly adopted for model class selection. Some bibliographical

notes are provided in Section 2.6.

2.1 System Identification Problem

This manuscript considers the identification of discrete-time causal linear systems: in

particular, Linear Time-Invariant (LTI) systems will constitute the main focus of the

thesis, while the Time-Varying framework will be shortly treated only in Chapter 5. In

order to simplify the explanation, this introductory section will be dealing only with LTI

systems.

The output signal y(t) ∈ R
p of an LTI system in response to an input u(t) ∈ R

m is

defined as

y(t) =
∞∑

k=1

g(k)u(t− k), t = 0, 1, 2, ..., g(k) ∈ R
p×m (2.1)

Equation (2.1) makes clear how an LTI system is completely characterized by its impulse

response {g(k)}∞k=1; specifically, the ij-th element of g(k) is the response detected at

time k at the i-th output to a unit impulse applied at time 0 to input j.

In the classical system identification problem the input u is known exactly, while the output

y may be corrupted by disturbance, due to e.g. measurement noise or to uncontrollable

inputs. Their effect is accounted for through an additive term:

y(t) =
∞∑

k=1

g(k)u(t− k) + v(t), t = 0, 1, 2, ... (2.2)

In addition v(t) ∈ R
p is assumed to be the output of another LTI system fed with white
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noise e(t) ∈ R
p, namely:

v(t) =
∞∑

k=0

h(k)e(t− k), t = 0, 1, 2, ..., h(k) ∈ R
p×p (2.3)

For normalization reasons, the assumption h(0) = Ip is done. {e(t)} is supposed to be a

white noise sequence with probability density function pe(·) such that

E[e(t)] = 0p (2.4)

E[e(t)e>(s)] = Σδt,s, Σ ∈ R
p×p (2.5)

with δt,s denoting the Kronecker delta.1 Throughout the manuscript, e(t) and u(s) are

assumed to be independent for all t, s ∈ Z, meaning that only open-loop operation

conditions will be considered.

According to the previous assumptions, a general model of an LTI system is defined as

y(t) = G(q)u(t) +H(q)e(t), pe(·), PDF of e (2.6)

where G(q) ∈ R
p×m and H(q) ∈ R

p×p are the transfer function matrices

G(q) =
∞∑

k=1

g(k)q−k, H(q) = Ip +
∞∑

k=1

h(k)q−k (2.7)

In the remainder of the manuscript G(q) and H(q) will be equivalently referred to as

transfer function matrices or, simply, transfer functions. The two processes {y(t)} and

{u(t)} are here assumed to be jointly stationary, thus implying the BIBO stability of the

transfer function G(q) (that is, it is analytic on and outside the unit disc of the complex

plane, |q| ≥ 1). Furthermore, both H(q) and 1/H(q) are assumed to be BIBO stable.

Given a set of N input-output measurements DN = {u(t), y(t)}Nt=1, system identification

procedures aim at estimating the transfer function matrices G(q) and H(q) (or, equiva-

lently, the impulse responses {g(k)}∞k=1 and {h(k)}∞k=1).

System identification appears as the art of learning the input-output behaviour of a

dynamical system starting from a set of input-output data collected from the system

itself. Any learning task is generally composed of three main stages: first, a model class

M has to be chosen, i.e. a collection of models M through which the relationship of

interest is described (a model may be e.g. a mathematical expression, a graph, etc.);

1When dealing with SISO systems, Σ will be denoted as σ.
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secondly, the available data are used to select a specific model M̂ within the set M and

lastly, a validation stage is performed in order to assess whether M̂ is able to correctly

describe the input-output relationship of unseen data (Vapnik, 1998; Bishop, 2006).

The first and the latter stages of the described procedure are strictly connected, since a

negative outcome of the latter may be an indicator of wrong decisions taken at the first

stage, thus suggesting to review them and to perform again the whole “learning routine”

(Ljung (1999) Ch.1, 16; Hastie, Tibshirani, and Friedman (2009)).

Obviously, the model class selection done at the first step also determines which estima-

tion procedure will be adopted in the second stage. In particular, the choice between

parametric and non-parametric models leads to two different families of system identifica-

tion techniques. Parametric approaches specify a set of models completely characterized

by a finite number of parameters, collected in the vector θ ∈ Dθ ⊂ R
dθ ; namely,

M =
{
M(θ)| θ ∈ Dθ ⊂ R

dθ

}
(2.8)

with

M(θ) : y(t) = G(q, θ)u(t) +H(q, θ)e(t), pe(·, θ), PDF of e (2.9)

and the system identification problem is thus reduced to the estimation of θ. Two

classical parametric system identification techniques will be illustrated in the remainder

of this chapter, specifically Prediction Error Methods (PEM) (Section 2.2) and subspace

approaches (Section 2.3).

On the other hand, non-parametric models could be described through a function, a

curve or even a table: for instance, the model class M may be the set of functions

of class Cn (i.e. functions whose first n derivatives are continuous). Well-established

non-parametric techniques working both in frequency and in time domain exist (see Ch. 6

in Ljung (1999) and Ch. 3 in Söderström and Stoica (1989)): some of them experimentally

estimate the impulse response or the step response of the system by stressing it with

a pulse or a step input, respectively (Rake (1980)); the Empirical Transfer Function

Estimate (EFTE) estimates the system transfer function as the ratio of the Discrete

Fourier Transforms of the given output and input signal measurements Kay (1988); Stoica

and Moses (1997). Further details on this type of techniques are provided in Ljung

(1999) (Ch. 6), Söderström and Stoica (1989) (Ch. 3) and in the survey Wellstead

(1981). Recently, non-parametric approaches relying on statistical learning methods such

as Gaussian Process Regression and kernel smoothing have been introduced into the

system identification community Pillonetto and De Nicolao (2010); Pillonetto, Dinuzzo,
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Chen, Nicolao, and Ljung (2014). They will be largely treated in Section 2.4 and in the

remainder of the thesis: extensions of the original estimation routine will be proposed

and several comparisons with classical parametric approaches will be carried out.

It should be pointed out that the previous discussion about parametric and non-parametric

approaches has been confined to the system identification field; however, these two families

of methods are widely applied both in statistical learning and econometric literature

(Sheskin, 2003; Zhao et al., 2008).

The choice between parametric and non-parametric models is just the first step for

a complete characterization of the selected model class. The model type has to be

selected: parametric approaches involve a choice between e.g. transfer function or state-

space models (see Sections 2.2.1 and 2.3.1), while function or table models could be

estimated when applying non-parametric methods. Another important choice regards

the complexity of the model class, here denoted as C(M), which measures the flexibility

of M . It could be the state-space size for state-space models, the polynomials degree

for transfer function models or the kernel width when kernel smoothing techniques are

exploited. Finally, the use of parametric methods also requires to specify an appropriate

parametrization, i.e. a differentiable mapping M(·) : Dθ → M from the parameter

space to the chosen model class (this mapping is referred to as model structure in Ljung

(1999)). As above-mentioned, while these choices have to be done at the first stage of

any identification procedure, their validity is assessed at a later stage through model

validation. The most common tools for model class selection and validation will be

discussed in Section 2.5.

2.2 Prediction Error Methods

Prediction Error Methods (PEM) represent the original approach to the system identifica-

tion problem; nowadays, they are a well-established parametric technique which has been

largely treated in both control and econometrics textbooks (Ljung (1999); Söderström

and Stoica (1989); Box and Jenkins (1970); Brockwell and Davis (2013); Hannan and

Deistler (1988)).

The introduction of these techniques into the system identification field is strictly con-

nected with the adoption of the so-called transfer function models: originally developed

in the context of time series, starting from the Sixties they were extended to the field of

dynamical systems by accounting also for the presence of an exogenous input (Aström,

1968; Mendel, 1973; Åström and Bohlin, 1966; Clarke, 1967; Kailath, 1980). A careful

description of this family of models will be provided in Section 2.2.1.
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Prediction Error Methods arise from the observation that the primary use of any identified

model is prediction: for instance, the synthesis of a controller relies on the possibility

of knowing at time t − 1 what the output of the plant will be at time t. However,

when the system is stochastic, an exact knowledge of this type is not achievable. These

considerations suggest that the quality of an identified model could be evaluated in terms

of its prediction ability, i.e. the capability of predicting the system output at time t

using input and output data collected until time t− 1. A suitable criterion for estimating

the parameter vector θ would therefore try to minimize the so-called prediction error

incurred at time t using the model M(θ), i.e.

ε(t, θ) = y(t)− ŷ(t|θ), ŷ(t|θ) := w(t,Dt−1; θ) (2.10)

where ŷ(t|θ) := w(t,Dt−1; θ) denotes the prediction of y(t) given the data up to t − 1,

i.e. {y(t − 1), u(t − 1), ..., y(1), u(1)}. The most commonly adopted predictor is the

so-called mean-square predictor, which minimizes the variance of the prediction error (see

Söderström and Stoica (1989), Sec. 7.3 and Ljung (1999), Sec. 3.2 for its derivation); for

the general model (2.9), this is defined as

ŷ(t|θ) = Fu(q, θ)u(t) + Fy(q, θ)y(t) (2.11)

Fu(q, θ) : = H−1(q, θ)G(q, θ)

Fy(q, θ) : =
{
Ip −H−1(q, θ)

}

Consequently, the prediction error (2.10) is given by

ε(t, θ) = H−1(q, θ) {y(t)−G(q, θ)u(t)} (2.12)

Once the one-step ahead predictor has been defined, the probabilistic description of an

LTI system given in (2.9) can be reformulated in terms of prediction as

M(θ) : ŷ(t|θ) = w(t,Dt−1; θ) (2.13)

ε(t, θ) = y(t)− ŷ(t|θ), ε(t, θ) independent and with PDF pe(·, t; θ)

Given a dataset DN , PEM return an estimate of θ by minimizing a scalar function

VN (θ,DN ) of the prediction errors {ε(t, θ)}Nt=1; specifically

θ̂N = arg min
θ∈Dθ

VN (θ,DN ) (2.14)
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To enforce a desired frequency weighting, Ljung (1999) suggests to apply the function

VN (θ,DN ) after having filtered the prediction errors with a stable linear filter.

The remainder of this section is organized as follows. Section 2.2.1 introduces the classical

transfer function models which are adopted in connection with PEM. The choices that the

user has to take when applying PEM are discussed in Section 2.2.2, while the connection

between PEM and ML estimation is illustrated in Section 2.2.3. Finally, algorithmic

details are provided in Section 2.2.4.

2.2.1 Transfer Function Models

Transfer function models (also known as black-box models) parametrize G(q, θ) and H(q, θ)

in (2.9) as rational functions, thus collecting in θ the numerator and the denominator

coefficients.

In its more general form, a transfer function model is given by

A(q, θ)y(t) = F−1(q, θ)B(q, θ)u(t) +D−1(q, θ)C(q, θ)e(t) (2.15)

The matrix polynomials in (2.15) are defined as

A(q, θ) = Ip +A1q
−1 + · · ·+Anaq

−na , Ai ∈ R
p×p, i = 1, ..., na (2.16)

B(q, θ) = B1q
−1 + · · ·+Bnb

q−nb , Bi ∈ R
p×m, i = 1, ..., nb (2.17)

C(q, θ) = Ip + C1q
−1 + · · ·+ Cncq

−nc , Ci ∈ R
p×p, i = 1, ..., nc (2.18)

D(q, θ) = Ip +D1q
−1 + · · ·+Dnd

q−nd , Di ∈ R
p×p, i = 1, ..., nd (2.19)

F (q, θ) = Ip + F1q
−1 + · · ·+ Fnf

q−nf , Fi ∈ R
p×p, i = 1, ..., nf (2.20)

Starting from the general model (2.15), 32 different model structures can be derived,

according to which polynomials are estimated. The most common ones are listed in the

following.

FIR: The FIR model structure contains only the matrix polynomial B(q, θ) (correspond-

ing to na = nc = nd = nf = 0),

y(t) = B(q, θ)u(t) + e(t) (2.21)

and θ ∈ R
mnbp consists of the coefficients of the Bi polynomials:

θ =
[
vec>(B1) vec>(B2) · · · vec>(Bnb

)
]>

(2.22)
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OE: When na = nc = nd = 0 the OE model structure arises:

y(t) = F−1(q, θ)B(q, θ)u(t) + e(t) (2.23)

with θ ∈ R
(nbm+nf p)p given by

θ =
[
vec>(B1) · · · vec>(Bnb

) vec>(F1) · · · vec>(Fnf
)
]>

(2.24)

ARX: The ARX model structure arises when nc = nd = nf = 0, leading to

A(q, θ)y(t) = B(q, θ)u(t) + e(t) (2.25)

In this case, the parameter vector θ ∈ R
(nap+nbm)p contains the coefficient matrices

θ =
[
vec>(A1) vec>(A2) · · · vec>(Ana) vec>(B1) · · · vec>(Bnb

)
]>

(2.26)

ARMAX: Setting nd = nf = 0 coincides with defining an ARMAX model structure

A(q, θ)y(t) = B(q, θ)u(t) + C(q, θ)e(t) (2.27)

In this case θ ∈ R
(nap+nbm+ncp)p is given by

θ =
[
vec>(A1) · · · vec>(Ana) vec>(B1) · · · vec>(Bnb

) vec>(C1) · · · vec>(Cnc)
]>

(2.28)

BJ: The Box-Jenkins structure is defined by choosing na = 0,

y(t) = F−1(q, θ)B(q, θ)u(t) +D−1(q, θ)C(q, θ)e(t) (2.29)

with θ ∈ R
(nbm+ncp+ndp+nf p)p accordingly defined.

The choice of a parametrization for transfer function models involves the selection of

one of the above-listed model structures, while the model complexity is determined by

the polynomials degrees. In an identification procedure, these properties are typically

selected by means of the tools illustrated in Section 2.5.

2.2.2 User’s Choices

The brief introduction to PEM provided in Section 2.2 highlights how their adoption

needs to be accompanied by some user’s choices which are outlined in the following.
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Model Class Selection. As discussed in Section 2.1, this choice can be split

into three decisions. For what regards the type of models, the previous discussion

already mentioned that Prediction Error approaches are commonly used to estimate

transfer function models. Concerning the choice of the model class complexity and of its

parametrization, the reader is referred to the discussion in Section 2.5.

Choice of the criterion. The scalar-valued function VN (θ,DN ) may be chosen in

multiple ways. When dealing with multi-input-multi-output (MIMO) systems, a typical

choice is

VN (θ,DN ) = fV (RN (θ,DN )), RN (θ,DN ) =
1
N

N∑

t=1

ε(t, θ)ε>(t, θ) (2.30)

with RN (θ,DN ) being the sample covariance matrix of ε(t, θ) and fV (·) a monotonically

increasing scalar-valued function defined on the set of positive definite matrices. The

choice fV (RN (θ,DN )) = det RN (θ,DN ) guarantees optimal accuracy of the parameter

estimate under weak conditions and is optimal for Gaussian distributed disturbances.

An alternative definition of fV (·) exploits a positive definite weighting matrix S, namely

fV (RN (θ,DN )) = Tr[SRN (θ,DN )]: despite providing computational advantages when

on-line identification is performed, this formulation of fV (·) gives optimal accuracy of the

parameter estimate only if S = Σ−1; however, since the true value of the noise variance

Σ is unknown, optimality is never guaranteed.

It has been shown (Caines (1978)) that for multivariable systems, in case the true system

does not belong to the chosen model class, the loss function fV (·) highly influences the

properties of the estimated model, even when in the asymptotic regime (i.e. for N →∞).

A more general formulation of VN (θ,DN ) is given by

VN (θ,DN ) =
1
N

N∑

t=1

`(t, θ, ε(t, θ)), ` : R×Dθ × R
p → R (2.31)

with `(t, θ, ·) being typically a norm function. The dependence of `(·, ·, ·) on t may be

exploited when dealing with time-varying systems, when old data are considered less

relevant w.r.t. more recent ones. In these cases, it is common practice to shape the

function `(·, ·, ·) in order to give more weight to more reliable data. Furthermore, by

a suitable choice of `(·, ·, ·) in (2.31), the estimation criterion can be made robust to

outliers.
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2.2.3 Connection with Maximum Likelihood Estimation

The success of Prediction Error Methods in the system identification field is partially

due to their strict relationship with Maximum Likelihood estimation approaches, which

estimate the parameter vector θ by maximizing the maximum likelihood, i.e. the

probability distribution function of the observations conditioned on θ. The connection

with PEM becomes clear when considering the prediction model (2.13), which generates

the measured output data as

y(t) = w(t,Dt−1; θ) + ε(t, θ), pe(·, t; θ), PDF of ε(t, θ) (2.32)

Given the dataset DN = {y(t), u(t)}Nt=1 with uN = {u(1), ..., u(N)} being a deterministic

sequence, the likelihood function for yN (given uN ) is defined as

py(yN ; θ) =
N∏

t=1

pe(y(t)− w(t,Dt−1; θ), t; θ) =
N∏

t=1

pe(ε(t, θ), t; θ) (2.33)

The maximum likelihood estimator (MLE) is computed as

θ̂ML(yN ) := arg max
θ∈Dθ

py(yN ; θ)

≡ arg min
θ∈Dθ

1
N

N∑

t=1

(− ln pe(ε(t, θ), t; θ))

= arg min
θ∈Dθ

1
N

N∑

t=1

`(t, θ, ε(t, θ)) (2.34)

where the second equation has been derived by taking the negative logarithm of py(yN ; θ)

and dividing by N , while the last one exploits the definition

`(t, θ, ε(t, θ)) = − ln pe(ε(t, θ), t; θ) (2.35)

The loss function appearing in (2.34) coincides with the general formulation of VN (θ,DN )

given in (2.31), thus showing the equivalence between the MLE and the PE estimate if

`(t, θ, ε(t, θ)) is chosen as in (2.35).

Further assuming that pe(·, t; θ) in (2.13) is normally distributed, namely

pe(·, θ) = N (0,Σ(θ)δt,s), Σ(θ) ∈ R
p×p (2.36)

and that Σ(θ) is independently parametrized w.r.t. the predictor’s parameters (i.e.

Σ(θ) = Σ), the Maximum Likelihood estimator of θ is obtained by minimizing the loss
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(2.30) with fV (RN (θ,DN )) = det RN (θ,DN ) (Söderström and Stoica (1989), Sec. 7.4).

2.2.4 Algorithmic Details

This section intends to provide an overview of the computational approaches which

are commonly adopted to solve the optimization problem (2.14) arising in PEM. Since

the literature on the topic is extensive, the interested reader is referred to the classical

textbooks (Ljung (1999), Ch. 10 and Söderström and Stoica (1989), Sec. 7.6) for a more

detailed summary.

The model class selection mentioned in Section 2.2 does not only influence the goodness of

the final estimated model but also determines the complexity of the algorithmic procedure

that has to be used to solve the problem (2.14). A first obvious observation is that the

choice of a complex system leads to a large number of parameters to be estimated, thus

enlarging the search space of problem (2.14). A second consideration regards the selected

parametrization: for some of the model structures listed in Section 2.2.1, the predictor

ŷ(t|θ) in (2.11) depends linearly on θ, thus giving rise to a linear regression model:

ŷ(t|θ) = ϕ>(t)θ (2.37)

In particular, equation (2.37) holds for FIR and ARX model structures with ϕ(t) respec-

tively depending on past input data and on past input and output data. In this case,

if the function `(t, θ, ·) in (2.31) is a quadratic norm, the Prediction Error estimate can

be computed using the Least-Squares (LS) method (Lawson and Hanson, 1995; Aström,

1968; Hsia, 1977).

Whenever problem (2.14) can’t be solved analytically, numerical iterative routines have

to be adopted. Starting from an initial estimate θ̂(0)
N , these routines iteratively update it

according to the general rule

θ̂
(i+1)
N = θ̂

(i)
N − α

(i)
N

[
H

(i)
N

]−1 [
V ′

N (θ̂(i)
N ,DN )

]>
(2.38)

where V ′
N (θ,DN ) denotes the gradient of the loss function VN (θ,DN ) in (2.31),

V ′
N (θ,DN ) = − 1

N

N∑

t=1

{
∂

∂ε
`(t, θ, ε(t, θ))ψ>(t, θ)− ∂

∂θ
`(t, θ, ε(t, θ))

}
(2.39)

ψ(t, θ) : = −
(
d

dθ
ε(t, θ)

)>

=
(
d

dθ
ŷ(t|θ)

)>

∈ R
dθ×p (2.40)
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while α(i)
N ∈ R is the step-size chosen so that

VN (θ̂(i+1)
N ,DN ) < VN (θ̂(i)

N ,DN ) (2.41)

The matrix H
(i)
N ∈ R

dθ×dθ is selected in order to modify the search direction; when a

quadratic loss is adopted, the optimal choice for R(i)
N would be

H
(i)
N = V ′′

N (θ̂(i)
N ,DN ) (2.42)

with V ′′
N (θ,DN ) ∈ R

dθ×dθ denoting the Hessian of VN (θ,DN ). Setting H(i)
N as in (2.42)

corresponds to the Netwon algorithm. However, since the computation of V ′′
N (θ̂(i)

N ,DN )

may be prohibitive, approximations of the Hessian are typically adopted, giving rise to

the so-called quasi-Newton methods. Among them, when a quadratic loss as (2.30) is

adopted, one of the most common approximations is

V ′′
N (θ,DN ) ≈ 2

N

N∑

t=1

ψ(t, θ)FV ψ
>(t, θ) =: ∆N (θ), FV =

∂fV (Q)
∂Q

∣∣∣
Q=Σ

(2.43)

The choice H(i)
N = ∆N (θ̂(i)

N ) in (2.38) leads to the so-called Gauss-Newton algorithm, which

is guaranteed to converge to a stationary point, thanks to the positive semidefiniteness

of ∆N (θ̂(i)
N ).

The family of quasi-Newton algorithms, as well as the one of iterative search routines,

is huge and a detailed treatment of these methods is certainly out of the scope of this

thesis. To gain further insights on these topics, the reader is referred to the textbooks

Nocedal and Wright (2006); Bertsekas (2014); Dennis Jr and Schnabel (1996).

Before proceeding, it should be observed that the computational effort of the above

illustrated search methods when applied to system identification problems strictly depends

on the chosen model class. In particular, this selection reflects on the amount of

computations required for computing the gradient V ′
N (θ,DN ) and, specifically, the

quantity ψ(t, θ). Ljung (1999) (Sec. 10.3) and Söderström and Stoica (1989) (Sec. 7.6)

provide some examples of gradient evaluations; see also Hill (1985) and Van Zee and

Bosgra (1982).

Another remark regards the solutions returned by iterative optimization methods: when

adopted to solve the general problem (2.14), they are only guaranteed to converge to a

local minimum. Even if the goodness of local minima may be assessed in the successive

validation phase, the initialization plays a crucial role for the success of these search

routines. In system identification applications, the a-priori physical knowledge may be

exploited to derive good initializations. When such information is not available, a model
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fitted through a LS procedure or through the subspace method of Section 2.3 (which

exploits more robust numerical routines) could be valid alternatives. The latter approach

is actually implemented in the MATLAB System Identification Toolbox.

Some results regarding the presence of local minima in the asymptotic loss function (for

N →∞) are provided in Ljung (1999) (Sec. 10.5) and in Söderström and Stoica (1989)

(Sec. 12.8).

The system identification community has also considered some alternatives to the iterative

optimization routines previously mentioned. Clarke (1967) and Goodwin and Payne

(1977) proposed the so-called generalized LS (GLS), which decomposes the non-linear

optimization problem (2.14) arising when an ARARX (Ljung (1999), Sec. 4.2) model

structure is chosen into a sequence of LS problems. The approach was later extended to

general model structures by Söderström, Stoica, and Friedlander (1991), who introduced

the so-called indirect PEM.

Solbrand, Ahlén, and Ljung (1985) and Ljung and Söderström (1983) (Sec. 7.2) proposed

to solve the PEM problem by using off-line recursive techniques, which are more suited

for on-line estimation (see Section 5.1 for more details on these methods). When applied

off-line, recursive algorithms have to be run over the data multiple times: in this case

they are guaranteed to have the same convergence properties of the iterative procedures

in (2.38).

2.3 Subspace Methods

Starting from the beginning of the Nineties, subspace algorithms have managed to

overcome some well-known shortcomings of Prediction Error Methods. Thanks to the

estimation of state-space models and to the use of robust numerical routines, subspace

procedures have constituted a sound alternative to PEM especially for the identification

of MIMO systems, where the use of numerical optimization algorithms had often proved

to be unreliable. Specifically, subspace methods estimate state-space models in a non-

iterative way by resorting to standard linear algebra tools, such as matrix decompositions

(SVD and QR) or the resolution of LS problems.

More details on the origins and the development of subspace approaches will be provided

in Section 2.6.3.

Before proceeding with the description of subspace methods, the class of state-space

models is briefly introduced in Section 2.3.1. Section 2.3.2 details the implementation of

subspace algorithms, while related user’s choices are discussed in Section 2.3.3. Finally,

algorithmic details are provided in Section 2.3.4.
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2.3.1 State-Space Models

Despite Section 2.2.1 has introduced multi-variable transfer function models, they are

more commonly adopted to describe SISO systems. Indeed, the models illustrated in

Section 2.2.1 contain an impulse response description for each input-output channel, thus

not allowing to account for joint effects between different input-output channels. For this

reason, state-space models are typically preferred to transfer function ones when MIMO

systems have to be characterized. Furthermore, recalling that most optimal controllers

are computed in terms of state-space models, this representation appears convenient also

for controller design.

The adoption of state-space models may also be dictated by the availability of some a-priori

physical knowledge about the system to be identified. Recalling that physical laws are

expressed in terms of differential equations, one can collect the variables involved in such

equations into a state vector x(t) ∈ R
n and discretize them, obtaining a representation

of the type (assuming a sampling period equal to 1):

x(t+ 1) = A(θ)x(t) +B(θ)u(t), A(θ) ∈ R
n×n, B(θ) ∈ R

n×m (2.44)

Here the parameter vector θ may contain some unknown physical coefficients or simply

the elements of the matrices A(θ) and B(θ). It is clear that the parametrization, i.e.

the way in which θ enters the matrices A(θ) and B(θ) is not trivial as for transfer

function models but may be dictated by specific properties of the system to be identified.

Canonical parametrizations are a usual choice: for a n-th order system with m inputs

and p outputs, they require n(2p+m) +mp free parameters. Another possibility is to

include parameters with an immediate physical interpretation, building so-called gray-box

models.

Assuming that the noise-free measurements obtained from the system are given by linear

combinations of the state and the input vectors, namely:

y(t) = C(θ)x(t) +D(θ)u(t) (2.45)

an input-output description is derived in terms of the transfer function G(q, θ) as

y(t) = G(q, θ)u(t) (2.46)

G(q, θ) = C(θ)[qIn −A(θ)]−1B(θ) +D(θ) (2.47)

In the case of state-space models, a widespread convention is to split the additive output

disturbance v(t) ∈ R
p into the measurement noise ν(t) ∈ R

p (acting on the outputs)
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and the process noise w(t) ∈ R
n (acting on the states), leading to the following general

state-space model:

x(t+ 1) = A(θ)x(t) +B(θ)u(t) + w(t)

y(t) = C(θ)x(t) +D(θ)u(t) + ν(t) (2.48)

Furthermore, {w(t)} and {ν(t)} are assumed to be white noise sequences with zero-mean

and covariances

E



[
w(t)

ν(t)

] [
w(s)

ν(s)

]>

 =

[
Rww(θ) Rwν(θ)

R>
wν(θ) Rνν(θ)

]
δt,s (2.49)

It is well-known from classical system theory that the description (2.48) is not unique,

but different realizations (leading to the same transfer function (2.48)) can be derived by

means of similarity transforms. Among the possible realizations, the one using the lowest

number n of states is called minimal. Correspondingly, the block Hankel matrix built

with the impulse response coefficients {g(k)}∞k=1

G =




g(1) g(2) · · · g(n)

g(2) g(3) · · · g(n+ 1)
...

...
. . .

...

g(n) g(n+ 1) · · · g(2n− 1)




(2.50)

has rank equal to the order n of the system (also referred to as the Mc Millan degree)

(Brockett, 1970; Kailath, 1980).

Equations (2.48) define the so-called process form of a stochastic linear system; an

equivalent representation is provided by the so-called innovation form

x(t+ 1) = A(θ)x(t) +B(θ)u(t) +K(θ)e(t)

y(t) = C(θ)x(t) +D(θ)u(t) + e(t) (2.51)

where K(θ) ∈ R
n×p is the steady state Kalman gain, while {e(t)} is the innovation

process, i.e. a white noise process independent of past input and output data, with

second order moment E[e(t)e>(s)] = Σδt,s. From (2.51), the general description (2.9) is

readily derived with

G(q, θ) = C(θ)[qIn −A(θ)]−1B(θ) +D(θ) (2.52)

H(q, θ) = C(θ)[qIn −A(θ)]−1K(θ) + Ip (2.53)
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2.3.2 Subspace Methods in Practice

Given a set of input-output data DN , subspace algorithms return an estimate of the system

matrices (A,B,C,D) up to within a similarity transform; additionally, also the covariance

matrices Rww, Rwν and Rνν are estimated. A key property of subspace approaches is that

no parametrization is required, meaning that all the elements of the system matrices are

directly estimated. Hence, for these techniques dθ = dim θ = n(2n+m+ 2p) + p(m+ p)

and

θ =
[
vec>(A) vec>(B) vec>(C) vec>(D) vec>(Rww) vec>(Rνν) vec>(Rwν)

]>

The adoption of this trivial parametrization is made possible by the use of numerically

reliable routines, which do not perform a nonlinear search on the space in which θ lies

Viberg (1995).

Subspace methods basically consist of two steps. First, the given input-output data are

exploited to retrieve a characteristic subspace, which coincides with the column space of

the extended observability matrix Oi (i > n)

Oi :=




C

CA

CA2

...

CAi−1




(2.54)

This range space has dimension n (the order of the system) and is often referred to as

the signal subspace, because of its strict connection with the space adopted in sensor

array signal processing (Schmidt, 1981; Viberg and Ottersten, 1991). Once the signal

subspace is reconstructed, the second stage of any subspace algorithm consists in the

estimation of the system matrices.

The most common procedures proposed in the literature to accomplish the first step

have been unified under a common framework in the classical work Van Overschee and

De Moor (1995b). The authors observe that the retrieval of the characteristic subspace

is performed through an oblique projection, followed by a weighted complexity reduction

step. A different choice of these weightings is basically what distinguishes the most

famous subspace algorithms. Viberg, Wahlberg, and Ottersten (1997) provides a new

interpretation of this first step, showing that the signal subspace can be retrieved by

means of so-called instrumental variables.

Multiple procedures have been proposed to compute the system matrices starting from
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the estimated extended observability matrix. Some algorithms (Verhaegen, 1993b, 1994)

determine A and C by exploiting the so-called shift-invariance structure of Oi and

estimate the remaining matrices from A and C; alternatively, a so-called state approach is

followed (Larimore, 1990; Van Overschee and De Moor, 1994), where two state sequences

are derived from the extended observability matrix and used to compute the system

matrices in a subsequent LS problem (involving also the original input-output data).

A third technique, the so-called subspace fitting relies on a parametric model of the

null-space of Oi to optimally estimate the matrix A; it was introduced by Swindlehust,

Roy, Ottersten, and Kailath (1995) and subsequently developed Ottersten, Sensorer,

Ottersten, Viberg, et al. (1994); Viberg et al. (1997).

The following description of subspace algorithms is split according to the two aforemen-

tioned steps.

2.3.2.1 Estimation of the Signal Subspace

Before proceeding, the vector Yr(t) ∈ R
pr of stacked output values is introduced

Yr(t) =
[
y>(t) y>(t+ 1) · · · y>(t+ r − 1)

]>
(2.55)

Analogously, the vectors Ur(t), Wr(t) and Nr(t) are defined by respectively stacking

inputs, process and measurement noises. The basic equation which is exploited by

subspace methods is easily derived from the state-space description (2.48):

Yr(t) = Orx(t) + SrUr(t) + Vr(t) (2.56)

where Or was defined in (2.54),

Vr(t) := ΩrWr(t) + Nr(t) (2.57)

and

Sr =




D 0p×m · · · 0p×m 0p×m

CB D · · · 0p×m 0p×m

...
...

. . .
...

...

CAr−2B CAr−3B · · · CB D




(2.58)
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Ωr =




0p×n 0p×n · · · 0p×n 0p×n

C 0p×n · · · 0p×n 0p×n

...
...

. . .
...

...

CAr−2 CAr−3 · · · C 0p×n




(2.59)

Assuming that the data DN = {u(t), y(t)}Nt=1 are available, equation (2.56) can be

rewritten in order to include the whole dataset DN :

Y = OrX + SrU + V (2.60)

where

X :=
[
x(1) x(2) · · · x(N)

]

Y :=
[
Yr(1) Yr(2) · · · Yr(N)

]

U :=
[
Ur(1) Ur(2) · · · Ur(N)

]

V :=
[
Vr(1) Vr(2) · · · Vr(N)

]
(2.61)

Subspace methods exploit algebraic properties to estimate the column space of Or from

equation (2.60). This procedure will be first outlined according to the unified framework

proposed in Van Overschee and De Moor (1995b, 2012). In a second stage, the description

will be based on the so-called instrumental variable interpretation provided in Viberg

et al. (1997) and recalled in Ljung (1999) (Sec. 10.6).

Unifying Framework. According to the approach introduced in Van Overschee

and De Moor (1995b), the first goal is to determine the optimal linear prediction of future

outputs Y based on all the information contained in the available data, namely using

past input and output data and future input values (contained in the matrix U). To this

purpose, the following matrices need to be defined

U−
s (t) :=

[
u>(t− s) · · · u>(t− 2) u>(t− 1)

]>
(2.62)

Y −
s (t) :=

[
y>(t− s) · · · y>(t− 2) y>(t− 1)

]>
(2.63)

with the corresponding block Hankel matrices

U− :=
[
U−

s (1) U−
s (2) · · · U−

s (N)
]

(2.64)

Y− :=
[
Y −

s (1) Y −
s (2) · · · Y −

s (N)
]

(2.65)
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By collecting the past information into the matrix

Φ :=


 U−

Y−


 (2.66)

the prediction problem can be formally stated as

(L̂p, L̂u) = arg min
Lp∈Rpr×(p+m)s, Lu∈Rpr×mr

∥∥∥∥∥Y−
[
Lp Lu

] [Φ

U

]∥∥∥∥∥

2

F

(2.67)

where ‖ · ‖F denotes the Frobenius norm. The following derivation is based on the

assumptions:

1. The process noise {w(t)} and the measurement noise {ν(t)} are not identically

zero.

2. The input {u(t)} is uncorrelated with the process noise {w(t)} and the measurement

noise {ν(t)}.

3. The input {u(t)} is persistently exciting of order r + s.

4. An infinite number of measurements are available, i.e. N →∞.

According to the previous assumptions, it turns out that the optimal prediction of future

outputs Ŷ is the orthogonal projection of Y onto the combined row spaces of Φ and U,

which is equal to (Van Overschee and De Moor (2012), Th. 11)

Ŷ := L̂pΦ + L̂uU = OrX̂ + SrU (2.68)

= Or(∆XX̂0 + ∆ΦΦ) + SrU (2.69)

with

X̂ :=
[
x̂(1) x̂(2) · · · x̂(N)

]
(2.70)

Each column x̂(i) of X̂ is the output of a non-steady-state Kalman filter built from

the system matrices, while X̂0 contains the sequence of initial states. ∆X and ∆Φ are

suitable matrices depending on the system matrices (their definition can be found in

Van Overschee and De Moor (2012) , A.7). Define the vector

X− =
[
x(1− s) x(2− s) · · · x(N − s)

]
(2.71)
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and set X̂0 in (2.69) equal to the orthogonal projection of X− onto the combined row

spaces of U− and U, then it follows from (2.68) that

L̂pΦ = OrX̃ (2.72)

Last equation shows that the optimal output prediction based only on past input and

output data is given by the product of the extended observability matrix with the vector

X̃, which contains the Kalman filter sequence initialized with the oblique projection of

X− onto U− along U. Since X̃ depends on the unknown system matrices, equation (2.72)

can’t be computed as stated. However, Van Overschee and De Moor (1995b) proved that

OrX̃ equals the oblique projection of the row space of Y along the row space of U on

the row space of Φ; namely

OrX̃ = YU
Φ (2.73)

The quantity YU
Φ can be computed from the given input-output data DN as

YU
Φ = YΠ⊥

U>Φ>(ΦΠ⊥
U>Φ>)−1Φ, YU

Φ ∈ R
pr×N (2.74)

where Π⊥
U> denotes the orthogonal projection matrix onto the null-space of U:

Π⊥
U> = IN −U>(UU>)−1U (2.75)

Equation (2.73) proves that the row space of X̃ equals the row space of YU
Φ ; analogously,

the column space of the extended observability matrix Or equals the column space of YU
Φ .

Therefore, the so-called signal subspace can be reconstructed by computing YU
Φ . Recalling

that this subspace has dimension n and that the rows of YU
Φ span a pr-dimensional space,

a reduction step could be performed in order to reduce this subspace dimension to n. In

turn, this will allow to reduce the amount of information of the “past” that has to be

considered in order to optimally predict the “future”. Formally, the complexity reduction

step can be formulated as

R̂ = arg min
R∈Rpr×N

‖W1(YU
Φ −R)W2‖2F (2.76)

s.t. rank(R) = n

where the weighting matrices W1 ∈ R
rp×rp and W2 ∈ R

N×α determine which part of the

information contained in YU
Φ has to be retained. Even if W1, W2 and the number of
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columns α of W2 are chosen by the user, they have to guarantee that

rank(W1YU
ΦW2) = rank(YU

Φ ) (2.77)

Specifically, W1 has to be of full rank, while W2 must guarantee that rank(Φ) =

rank(ΦW2). As will be detailed in Section 2.3.3, specific choices of these matrices

give rise to the different subspace algorithms proposed in the literature (Van Overschee

and De Moor, 1995b). The solution to problem (2.76) can be computed by properly

partitioning the SVD of W1YU
ΦW2:

W1YU
ΦW2 = QDP> =

[
Qs Qn

] [Ds 0

0 Dn

] [
P>

s

P>
n

]
(2.78)

Retaining in Ds the n largest singular values of W1YU
ΦW2 and in Qs the corresponding

singular vectors, it follows that

R̂ = W−1
1 QsDsP

>
s W

†
2 (2.79)

If assumption 4 above is satisfied, R̂ = YU
Φ , since YU

Φ is exactly of rank n and has only

n non-zero singular values (meaning that Dn = 0). However, when only a finite number

of data is available, the singular values of W1YU
ΦW2 are all different from zero and order

n has to be selected by the user according to one of the procedures discussed in Section

2.3.3 and 2.5.

Moreover, according to (2.73), the extended observability matrix Or and the Kalman

filter sequence X̃ can be estimated as

Ôr = W−1
1 QsΓ (2.80)

̂̃
X =

[
ˆ̃x(1) ˆ̃x(2) · · · ˆ̃x(N)

]
= Ô†

r YU
Φ (2.81)

where Γ ∈ R
n×n is an arbitrary invertible matrix which determines the coordinate basis

of the estimated state-space representation. Furthermore, the part of the Kalman state

sequence ̂̃
X which lies on the range of W2 can be recovered as

̂̃
XW2 = Γ−1P>

s (2.82)

“Instrumental Variables” Perspective. Recalling that the objective is to es-

timate the range space of Or, the idea is to adopt so-called instrumental variables to

eliminate the influence of the input and noise matrices in equation (2.60), thus retrieving
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the column space of Or from that of Y.

Remark 2.3.1. It should be mentioned that the use of instrumental variables is very

popular in system identification, especially in connection with Prediction Error Methods.

The reader is referred to e.g. Söderström and Stoica (1983) for an extensive treatment.

The term “ instrumental variables” was first associated to subspace approaches by Aoki

(1990); De Moor, Van Overschee, and Suykens (1991); Verhaegen (1991).

To eliminate the effect of the inputs, the original subspace methods (also called direct

subspace, De Moor, Vandewalle, Moonen, Van Mieghem, and Vandenberghe (1988);

Verhaegen (1991)) right-multiply equation (2.60) by Π⊥
U> , the orthogonal projection

matrix onto the null-space of U (defined in (2.75))

YΠ⊥
U> = OrXΠ⊥

U> + VΠ⊥
U> (2.83)

Neglecting the noise term (i.e. supposing V = 0pr×N ) and assuming that the product

XΠ⊥
U> has full rank n or, equivalently that,

rank

[
X

U

]
= n+ rank(U) (2.84)

the column space of Or is spanned by YΠ⊥
U> , i.e.

range(Or) = range(YΠ⊥
U>) (2.85)

In presence of noise (V 6= 0pr×N ), equation (2.85) holds only approximately and the

range space of the extended observability matrix can be reconstructed by choosing a large

value of r (the number of block rows in the matrix Y) and by performing the SVD of

YΠ⊥
U> and retaining only the first n singular vectors. However, this procedure has been

proved to be consistent only if the noise sequence contained in Vr(t) is white Verhaegen

(1993b); Viberg, Ottersten, Wahlberg, and Ljung (1991).

To account for coloured noise an additional instrument matrix has to be adopted in order

to decorrelate out the noise term V. Let Ψ ∈ R
j×N (j ≥ N) denote such matrix and

multiply equation (2.83) from the right by Ψ>:

1
N

YΠ⊥
U>Ψ> = Or

1
N
XΠ⊥

U>Ψ> +
1
N

VΠ⊥
U>Ψ> (2.86)

A normalization by N has also been introduced in (2.86). The matrix Ψ has to be chosen
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in order to satisfy the two following asymptotic conditions:

lim
N→∞

1
N

VΠ⊥
U>Ψ> = 0pr×j (2.87)

rank
(

lim
N→∞

1
N
XΠ⊥

U>Ψ>
)

= n (2.88)

The second equation guarantees that the so-called signal subspace is not destroyed, namely

that the range of YΠ⊥
U>Ψ> provides a consistent estimate of the column space of Or.

Assuming that the given input data uN are generated in an open loop situation and

that the input signal is persistently exciting of order r (see Ljung (1999), Sec. 13.2), it

has been shown that the conditions (2.87)-(2.88) are satisfied by setting Ψ equal to the

matrix Φ defined in (2.66) (Ottersten et al., 1994; Van Overschee and De Moor, 2012).

The number s of past input and output values contained in Φ has to be chosen by the

user (see Section 2.3.3 for a further discussion).

Following the approach in (2.78), a consistent estimate of the signal subspace can be

obtained by computing the following SVD:

1
N
W̃1YΠ⊥

U>Φ>W̃2 = QDP> =
[
Qs Qn

] [Ds 0

0 Dn

] [
P>

s

P>
n

]
(2.89)

where the weighting matrices W̃1 ∈ R
rp×rp and W̃2 ∈ R

s(p+m)×α play the same role of

W1 and W2 introduced in (2.76). Collecting in Ds the n largest singular values and in

Qs the corresponding singular vectors, an estimate of the extended observability matrix

is readily given by

Ôr = W̃−1
1 QsΓ (2.90)

where, as before, Γ ∈ R
n×n is an arbitrary invertible matrix fixing the basis of the

state-space representation.

If condition (2.88) is satisfied, the estimate (2.90) is guaranteed to converge to the true

observability matrix for some state-space realization which depends on the input sequence

uN provided in the data DN (Van Overschee and De Moor, 1995b, 2012). However, as

previously observed, in practice the true order n of the system is not a-priori known and

the user has to choose the number of singular vectors to be retained in Qs.

Remark 2.3.2. Comparing equations (2.78) and (2.89), it is clear that the SVD performed

in the unifying framework of Van Overschee and De Moor (1995b) coincides with the one

computed according to the “instrumental variables” perspective if W̃1 and W̃2 in (2.89)

are chosen as:

W̃1 = W1, W̃2 =
(

1
N

ΦΠ⊥
U>Φ>

)−1

ΦW2 (2.91)
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2.3.2.2 Estimation of the System Matrices

Once the extended observability matrix Or has been estimated, the corresponding system

matrices have to be computed. Three popular approaches can be found in the literature

and will be outlined in the following.

Shift Invariance. This is probably the most common procedure and is based on

the so-called shift invariance property of the extended observability matrix Or (Kung,

1978). If Or in (2.54) is partitioned into r block rows Or,i ∈ R
p×n, i = 1, ..., r, then it

readily follows that

C = Or,1, Or,i = Or,i−1A (2.92)

Define the analogous partition Ôr,i ∈ R
p×n̂, i = 1, ..., r for the estimated extended

observability matrix Ôr (see (2.80) and (2.90)), with n̂ denoting the estimated system

order. C and A can be estimated as

Ĉ = Ôr,1, Â = arg min
A∈Rn̂×n̂

r∑

i=2

‖Ôr,i − Ôr,i−1A‖2F (2.93)

Once Ĉ and Â have been computed, B and D can be determined using the equation

(compare with (2.47))

y(t) = Ĉ(qIn̂ − Â)−1Bu(t) +Du(t) + v(t) (2.94)

and hence the predictor

ŷ(t|B,D, x0) = Ĉ(qIn̂ − Â)−1x0δ(t) + Ĉ(qIn̂ − Â)−1Bu(t) +Du(t) (2.95)

= ĈÂtx0 + (u>(t)⊗ Ip)vec(D) +

(
t−1∑

k=0

u>(t)⊗ (ĈÂt−k−1)

)
vec(B)

= ϕ>(t)




x0

vec(B)

vec(D)


 (2.96)

In equation (2.95), x0 and δ(t) respectively denote the initial state and the unit pulse

at time 0, while the symbol ⊗ is the Kronecker product. Equation (2.96) suggests to

estimate x0 and the matrices B and D by solving the following weighted least squares
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problem (Van Overschee and De Moor, 2012)

(B̂, D̂) = arg min
B,D,x0

1
N

N∑

t=1

‖y(t)− ŷ(t|B,D, x0)‖2W (2.97)

= arg min
B,D,x0

1
N

N∑

t=1

∥∥∥∥∥∥∥
y(t)− ϕ>(t)




x0

vec(B)

vec(D)




∥∥∥∥∥∥∥

2

W

where ‖x‖2W = x>Wx with W denoting a suitable weighting matrix (optimal values for

W have been investigated by Chiuso and Picci (2004a)).

State Estimation. This approach is based on the reformulation of the state-space

model (2.48) as a linear regression. In fact, defining

Y (t) =

[
x(t+ 1)

y(t)

]
, Θ =

[
A B

C D

]
, ϕ(t) =

[
x(t)

u(t)

]
, E(t) =

[
w(t)

ν(t)

]
(2.98)

the model (2.48) can be rewritten as

Y (t) = Θϕ(t) + E(t) (2.99)

Hence, using the input-output data DN and the state sequence ̂̃
X computed in (2.81),

the system matrices can be estimated solving the LS problem

Θ̂ =

[
Â B̂

Ĉ D̂

]
= arg min

Θ

N∑

t=1

∥∥∥∥

[̂̃x(t+ 1)

y(t)

]
−Θ

[̂̃x(t)

u(t)

] ∥∥∥∥
2

F

(2.100)

The procedure here illustrated follows the approach in Larimore (1983), where x(t+ 1) is

replaced by the shifted version of ̂̃x(t) (in (2.81)), namely x(t+1) = ̂̃x(t+1). Van Overschee

and De Moor (2012) (Sec. 4.4) propose two different choices of x(t + 1), leading to

other two algorithms for the estimation of the system matrices. The reader is referred to

Ljung and McKelvey (1996); Chiuso and Picci (2004a, 2005) and to Van Overschee and

De Moor (2012) for further details on the proposed procedures based on a state estimate.

Subspace Fitting. This approach exploits the structure of the extended observ-

ability matrix to obtain a statistically optimal estimation of matrix Â. Compared to the

previous techniques which re-use the given input-output data DN , this method simply

uses the estimated Ôr (computed in (2.80) or equivalently in (2.90)). Specifically, denot-

ing with Or(θ) the parametrized observability matrix of some realization, the estimated
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Ôr can be rewritten as

Ôr = Or(θ)T + EOr (2.101)

where T represents an unknown transformation matrix and EOr is the error matrix. The

subspace-fitting approach aims at estimating the parameters θ and the elements of T by

minimizing the distance between the range spaces of Ôr and Or(θ), namely

(θ̂, T̂ ) = arg min
θ, T

‖vec(Ôr −Or(θ)T )‖2W (2.102)

for some positive definite weighting matrix W . An asymptotic best consistent (ABC)

estimate would be achieved by setting W equal to a consistent estimate of Cov(vec(EOr )).

However, while (2.102) can be easily solved w.r.t. T for fixed θ, the optimal θ has to be

found through a non-linear search. As shown in Ottersten et al. (1994); Viberg et al.

(1997), the problem can be circumvented by estimating θ as

θ̂ = arg min
θ
‖vec(Υ>(θ)W−1

1 Qs)‖2W (2.103)

W = Cov(vec(Υ>(θ)W−1
1 Qs)) (2.104)

where Υ denotes a parametrized basis for the null-space of O>
r (θ). Since this null-space can

be linearly parametrized w.r.t. θ, problem (2.103) can be solved through a non-iterative

(two-step) procedure (Viberg et al., 1997).

2.3.2.3 Estimation of the Noise Model

Once the system matrices have been estimated through one of the three techniques

detailed in Section2.3.2.2, a noise model can be retrieved by first estimating the process

and the measurement noises as

w(t) = ̂̃x(t+ 1)− Â̂̃x(t)− B̂u(t) (2.105)

ν(t) = y(t)− Ĉ ̂̃x(t)− D̂u(t) (2.106)

where ̂̃x(t) denotes the Kalman filter sequence computed in (2.81). The corresponding

covariance matrices can then be readily estimated as

R̂ww =
1

N − 1

N∑

t=1

w(t)w>(t), R̂νν =
1

N − 1

N∑

t=1

ν(t)ν>(t) (2.107)

R̂wν =
1

N − 1

N∑

t=1

w(t)ν>(t) (2.108)
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2.3.3 User’s choices

Compared to PEM, subspace methods have always been considered less demanding not

only from the computational point of view, but also w.r.t. to the choices that the user has

to make. In particular, many authors have contemplated the selection of the system order

n̂ as the only decision left to the user. While this constitutes for sure the most relevant

user’s choice, the previous discussion highlights how the use of a subspace algorithm

requires the user to take some other decisions. These will be pointed out in this section

together with the corresponding recommendations that can be found in the literature.

The following discussion will show how clear guidelines for most of these choices still

don’t exist, despite the interest that the system identification community has devoted to

this topic in the last decade.

Choice of the system order n̂. This decision represents the analogous of the

model class selection for Prediction Error Methods. The introductory discussion to

subspace algorithms in Section 2.3.2 has pointed out how the model type and the

parametrization are implicitly selected, once subspace approaches are used. Thus, the

model complexity selection appears as the only decision on the model class which is left

to the user. The discussion on this choice is postponed to Section 2.5, where an overview

of model class selection techniques will be presented. However, it is worth to mention

here that specific approaches for the estimation of the order n have been introduced in

the context of subspace methods (Bauer, 2005, 2001): most of them are based on the

singular values computed in (2.78) and (2.89) and will be further mentioned in Section

2.5.

Choice of the weighting matrices W1 and W2. Together with the selection of

the system order n̂, the choice of W1 and W2 represents the most important decision for

the application of a subspace algorithm. Indeed, they affect the variance and the possible

bias of the estimates due to under-modelling (Jansson and Wahlberg, 1995; Van Overschee

and De Moor, 1995b, 2012). In particular, it has been proved that the most common

choices (which lead to the classical algorithms unified by Van Overschee and De Moor

(1995b)) return the same system estimate (up to within a similarity transform) whenever

the exact order n is selected and the number of available data goes to infinity (since all

the algorithms are asymptotically unbiased). On the other hand, if the selected order n̂

is smaller than the true one, the corresponding bias error is affected by the weighting

matrices. Further details can be found in Van Overschee and De Moor (1995a) and in

Section 4.2 of this manuscript.
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As proved in Van Overschee and De Moor (1995b), the existing algorithms correspond to

the following choices of W1 and W2:

• N4SID (Van Overschee and De Moor, 1994): W1 = Irp, W2 = Is(p+m)

• MOESP (Verhaegen, 1994): W1 = Irp, W2 = Π⊥
U>

• CVA (Larimore, 1990): W1 =
(

1
N YΠ⊥

U>Y>
)−1/2

, W2 = Π⊥
U>

• IVM (Viberg, 1995): W1 =
(

1
N YΠ⊥

U>Y>
)−1/2

, W2 = Π⊥
U>Φ>

(
1
N ΦΦ>

)−1/2

Some results have been derived on the choices above. Larimore (1994) shows that the

weighting used in CVA is optimal for the estimation of the system order using a finite

amount of data. Van Overschee and De Moor (1995b) investigate the selection of W1

according to a frequency domain criterion and Van Overschee and De Moor (1995a)

provide an interpretation of the choice of W1 in line with the weighted model reduction

of Enns (1985).

Further results will be reported in Section 4.2, where the optimal selection of W1 and

W2 w.r.t. to the accuracy of the estimates is investigated.

Choice of the future horizon r. Since the value of r determines the number of

block rows in the estimated observability matrix Or, r > n is required. Many algorithms

set r = s, with s denoting the past horizon contained in the instrumental variables

matrix Φ in equation (2.66) (Van Overschee and De Moor, 1994; Verhaegen, 1993b, 1994).

Despite the effort that has been devoted to determine the influence of r on the accuracy

of the subspace estimate, no clear conclusion has been drawn, as will be highlighted also

in Section 4.2.

Choice of the past horizon s. A necessary condition for recovering the true

observability matrix Or is s > n
p+m (Viberg, 1995). Some algorithms also adopt two

different past horizons for the input and the output signals; the OE-MOESP of Verhaegen

(1994) uses only past inputs, thus leading to the estimation of an Output-Error model.

Analogously to the selection of r, no clear guideline for the value of s has been derived in

the literature.

Choice of the matrix Γ. As already mentioned in the previous discussion, the

value of Γ only determines the coordinate basis of the estimated state-space realization.

Typical choices are Γ = In, Γ = Ds or Γ = D
1/2
s .



2.4 Non-Parametric Bayesian Methods 37

Choice of the procedure to estimate the system matrices. The described

techniques lead to different estimates; consequently, the analysis of the asymptotic

properties of subspace estimators heavily depends on this choice, as will be clear from

the overview of Section 4.2.

The interested reader is referred also to Ljung (2003), where the impact of the mentioned

user’s choices is investigated through numerical simulations.

2.3.4 Algorithmic Details

One of the main advantages of subspace algorithms w.r.t. PEM regards the computational

complexity: thanks to the use of simple linear algebra tools (such as the computation of

projections and of SVD), subspace approaches avoid the use of iterative optimization

routines, thus being immune from convergence issues. In particular, the benefit w.r.t. to

PEM is relevant when MIMO systems have to be estimated.

However, compared to PEM, the lack of a cost function to be minimized complicates the

statistical analysis of subspace estimates, as will be clarified in Chapter 4.

From a computational point of view, the most demanding step of a subspace algorithm is

the SVD of equation (2.78) or (2.89). Efficient implementations compute the SVD of a

low dimensional matrix, arising after a preliminary QR decomposition of the data matrix

[U> Φ> Y>]> (Verhaegen (1994); Verhaegen and Verdult (2007), Sec. 9.6.1).

2.4 Non-Parametric Bayesian Methods

Non-parametric Bayesian methods have been introduced into the system identification

community at the beginning of the 2010s with the aim of overcoming a well-known

issue affecting both PEM and subspace approaches, i.e. the requirement of model class

selection. To this end, subspace algorithms only demand to choose the model complexity,

while the application of PEM also involves to fix a suitable parametrization. As will be

clear from the careful discussion of Section 2.5, these decisions may not only require a

significant computational effort (especially when multiple models have to be estimated),

but they also highly influence the quality of the returned estimators (Pillonetto and

De Nicolao, 2012; Ljung, 1999). Differently from the techniques presented in Sections

2.2 and 2.3, when applying the method here illustrated, a model class selection stage is

not needed, since the mathematical tool exploited for the description of the system does

not contain a set of parameters, as highlighted by the adjective “non-parametric” in the

name. Furthermore, model complexity is implicitly chosen during the estimation step.
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The non-parametric approach here presented directly estimates the impulse responses

appearing in the one-step ahead predictor defined in (2.11). Namely, recalling that it is

defined as

ŷ(t) = Fu(q)u(t) + Fy(q)y(t) (2.109)

with

Fu(q) = H−1(q)G(q) =
∞∑

k=1

fu(k)q−k (2.110)

Fy(q) = Ip −H−1(q) =
∞∑

k=1

fy(k)q−k (2.111)

the aim is to infer {fu(k)}∞k=1 and {fy(k)}∞k=1 as (vector-valued) functions over N. This

is accomplished by resorting to the theory of Gaussian Process Regression (GPR), i.e.

by treating {fu(k)} and {fy(k)} as Gaussian processes and inferring their distribution

according to the available input-output data DN . Many authors have pointed out the

relationship between the Gaussian Process (GP) framework and the function estimation

performed through regularized kernel methods (according to the theory of Reproducing

Kernel Hilbert Spaces (RKHS)) (Kimeldorf and Wahba, 1970; Wahba, 1990; Rasmussen

and Williams, 2006). Following this tradition, Section 2.4.1.1 introduces how Gaussian

Process Regression is applied in the context of system identification: it turns out that

the resulting approach relies on the so-called Bayesian inference, thus clarifying the

classification as “Bayesian” methods. In the subsequent Section 2.4.1.2, the equivalent

formulation as regularized estimation in RKHS is provided, while Section 2.4.1.3 describes

the practical implementation of such methods, as Regularized Least Squares (ReLS)

techniques. To favour the understanding of such approaches, the identification of SISO

systems is first considered (Section 2.4.1), while the estimation of MIMO systems is

treated in a second stage (Section 2.4.2).

As a further simplification, the following description only considers the identification of

Output-Error models, meaning that the noise model is neglected (H(q) ≡ Ip). For OE

models, the predictor (2.112) becomes

ŷ(t) = Fu(q)u(t) = G(q)u(t) (2.112)

and the impulse response {g(k)}∞k=1 is directly estimated. Such simplification has been

adopted in the seminal paper Pillonetto and De Nicolao (2010) and can be found in several

works on non-parametric Bayesian methods for system identification. The extension of

the approach here presented to the identification of complete predictor models (2.112) is
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straightforward. The interested reader is referred to Pillonetto, Chiuso, and De Nicolao

(2011a).

2.4.1 Non-Parametric Bayesian Methods for SISO systems

This section illustrates the use of non-parametric Bayesian methods for the identification

of SISO systems (namely p = m = 1). In this case the impulse response g(·) is a scalar

function over N.

Recalling the setting introduced in Section 2.1, the given input-output data DN =

{u(t), y(t)}Nt=1 are generated according to

y(t) = G(q)u(t) +H(q)e(t), e(t) ∼ p(e) (2.113)

As previously anticipated, the estimations of the noise model is not considered here,

thus postulating H(q) ≡ 1. Therefore, by introducing the functional Lt[g] over functions

g : N→ R

Lt[g] :=
∞∑

k=1

g(k)u(t− k) (2.114)

the data-generating model can be rewritten as

y(t) = Lt[g] + e(t), t = 1, ..., N (2.115)

For future use, let

ZN := [L1[g] L2[g] · · · LN [g]]> , ZN ∈ R
N (2.116)

2.4.1.1 Gaussian Process Regression Framework

In this setting the process {e(t)} is assumed to be zero-mean Gaussian white noise with

variance σ ∈ R, namely E[e(t)e(s)] = σδt,s. According to the GPR procedure Rasmussen

and Williams (2006), the system impulse response g is assumed to be a zero-mean

Gaussian process on N, independent of {e(t)} with covariance

Kη(t, s) := Cov(g(t), g(s)) = E[g(t)g(s)], Kη : N× N→ R (2.117)

Equivalently, adopting a Bayesian terminology, one could say that a zero-mean Gaussian

prior with covariance Kη is postulated for g.

The scalar function Kη is typically called kernel (for reasons which will become clear

in Section 2.4.1.2) and is here specified through some parameters η ∈ Dη ⊂ R
dη , called
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hyper-parameters in this context. These are unknown and have to be estimated using the

data DN through one of the procedures illustrated in Section 2.4.3. The parametrization

of function Kη through η allows the user to account for some desired properties of the

impulse response g that has to be estimated. In particular, in the context of dynamical

systems, features as smoothness and stability are sought. According to the Bayesian

formalism, the shaping of Kη is referred to as prior design and will be further discussed

in Chapter 3.

Thanks to the properties of Gaussian distributions, the vector ZN in (2.116) is a multi-

variate zero-mean normal vector, since it consists of linear transformation of the Gaussian

process g. Furthermore,

Cov([ZN ]t, [ZN ]s) = E [Lt[g],Ls[g]] = Λ(t, s) (2.118)

where Λ : N× N→ R is the so-called output kernel, defined as

Λ(t, s) : =
∞∑

k=1

u(t− k)
∞∑

j=1

u(s− j)Kη(k, j) (2.119)

=
∞∑

k=1

u(t− k)Ls[Kη(k, ·)] (2.120)

= Lt [Ls[Kη(·, ·)]] = Lt [Ls[Kη]] (2.121)

For future convenience, it is useful to define the corresponding output kernel matrix

Λ̄ ∈ R
N×N with the ij-th entry given by

Λ̄ij := Λ(i, j) = Li [Lj [Kη]] (2.122)

Due to the independence of the processes {g(k)} and {e(t)}, the vector

YN := [y(1) y(2) · · · y(N)]>, YN ∈ R
N (2.123)

and the impulse response g(t) are jointly Gaussian for any t ∈ N (Papoulis and Pillai,

2002). The joint distribution is defined as

[
g(t)

YN

]
∼ N

([
0

0N

]
,

[
Pgt Pgt,YN

PYN ,gt PYN

])
, t ∈ N (2.124)

where

Pgt : = Kη(t, t) (2.125)
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Pgt,YN
: = Cov(g(t), YN ) = Cov(g(t), ZN )

= [L1[Kη(t, ·)] L2[Kη(t, ·)] · · · LN [Kη(t, ·)]] (2.126)

PYN
: = Cov(YN , YN ) = Cov(ZN , ZN ) + σIN = Λ̄ + σIN (2.127)

If the hyper-parameters are known, the conditional distribution p(g(t)|YN , η) is Gaussian,

p(g(t)|YN , η) ∼ N (µpost
gt

, P post
gt

), and its mean µpost
gt

and covariance P post
gt

can be computed

through standard rules for conditional Gaussian variables:

ĝ(t) := µpost
gt

= Pgt,YN
P−1

YN
YN (2.128)

= [L1[Kη(t, ·)] L2[Kη(t, ·)] · · · LN [Kη(t, ·)]]
(
Λ̄ + σIN

)−1
YN

P post
gt

= Pgt − Pgt,YN
P−1

YN
PYN ,gt (2.129)

According to the Bayesian paradigm, p(g(t)|YN , η) is the so-called posterior, i.e. the

distribution of the unknown g conditioned on the observed data YN (and the hyper-

parameters η). Using the Bayes’ rule, this can be expressed as

pg(g(t)|YN , η) =
py(YN |g(t)) pg(g(t)|η)

py(YN |η)
, t ∈ N (2.130)

where the probability density function of YN given g(t) is the likelihood function

py(YN ; g(t)), while pg(g(t)|η) denotes the PDF of the prior distribution. The PDF

py(YN |η) is the so-called marginal likelihood function, such defined:

py(YN |η) =
∫

R

py(YN |g(t)) pg(g(t)|η)dg(t) (2.131)

As expression (2.131) clarifies, the name marginal likelihood is due to the marginalization

over the unknown g.

In the Bayesian setting, the posterior mean µpost
gt

is also known as the maximum a

posteriori (MAP) estimator of g(t) (DeGroot, 2005) and it also coincides with the

minimum variance estimator.

For future developments, it should be observed that µpost
gt

in (2.128) can be computed as

µpost
gt

=
N∑

i=1

ĉiLi[Kη(t, ·)] (2.132)

where ĉi is the i-th component of the vector

ĉ = (Λ̄ + σIN )−1YN , ĉ ∈ R
N (2.133)
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Remark 2.4.1. The Bayesian inference procedure illustrated in equations (2.128)-(2.131)

follows the so-called Empirical Bayes paradigm (Berger, 2013; Maritz and Lwin, 1989):

the hyper-parameters η are assumed to be fixed to a certain estimated value, thus allowing

to compute mean and covariance of the posterior distribution p(g(t)|YN , η).

Alternatively, a Full Bayes approach could be used, where also η is treated as a random

variable and the posterior PDF

pg(g(t)|YN ) =
∫

Dη

pg(g(t)|YN , η)pη(η|YN )dη (2.134)

is inferred. Due to the intractability of the above integral, a sampled approximation of

pg(g(t)|YN ) needs to be computed by means of stochastic simulation techniques, such as

the Markov Chain Monte Carlo (MCMC) algorithm (Gilks, 2005; Andrieu, Doucet, and

Holenstein, 2010; Ninness and Henriksen, 2010).

The thorough discussion of these two alternative approaches is postponed to Section

2.4.3, where several techniques for the estimation of η from the data will be illustrated.

Remark 2.4.2. Besides assuming the knowledge of the hyper-parameters η, the previous

derivation has also implicitly supposed that the noise variance σ is known. However,

such hypothesis is unrealistic, since σ has to be somehow estimated through the available

data DN . This can be done by following two possible routes, which will be detailed in

Section 2.4.4.

2.4.1.2 Connection with Regularization in RKHS

The theory of Reproducing Kernel Hilbert Spaces (RKHS) provides a powerful mathemat-

ical tool for regularized function estimation (Aronszajn, 1950), i.e. for the reconstruction

of a function starting from a finite set of input-output data pairs. In particular, regular-

ization in RKHS represents an alternative to parametric approaches, where the function

of interest is modelled through a set of parameters to be inferred from the given data. It

should be recalled that in the literature of statistical learning, and specifically of inverse

problems, regularization was introduced with the aim of solving the possible ill-posedness

affecting the parametric estimators (Hoerl and Kennard, 1970; Tikhonov and Arsenin,

1977). This was the cause of the high variance affecting such estimators, especially in the

case of complex models; as a consequence, the derived solutions resulted to be highly

sensitive to data perturbations.

Exploiting the theory of RKHS, the unknown function can be searched for within an

infinite dimensional space and ill-posedness (or, equivalently, overfitting) is avoided by

adding a regularization term, designed in order to penalize undesired solutions. Specifi-
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cally, given a set of data pairs {(xi, yi)}Ni=1, generated according to the unknown function

g : X 7→ R (i.e. yi = g(xi), xi ∈ X ∀i = 1, ..., N), g is estimated as

min
g∈H

N∑

i=1

(yi − g(xi))2 + λ‖g‖2H, γ ∈ R (2.135)

In equation (2.135) H denotes the RKHS of functions g : X 7→ R within which the search

is conducted and ‖ · ‖H =
√
〈·, ·〉H is the associated norm. The functional ‖g‖2H plays the

role of the regularization term and penalizes solutions having a large norm in the space

H. The scalar λ is the so-called regularization parameter, which controls the relative

influence of the loss and the penalty term. It has been proved that problem (2.135) is

well-posed, meaning that there exists a unique solution with scarce sensitivity to data

perturbations (Tikhonov and Arsenin, 1977).

The unfamiliar reader with the theory of RKHS is referred to Appendix A, where some

basic concepts are reviewed. It is worth to recall here that every RKHS H is associated

with a positive semidefinite kernel K : X ×X 7→ R, called reproducing kernel (Aronszajn,

1950). K completely characterizes the spaceH, meaning that both the functions belonging

to H and the associated inner product 〈·, ·〉H are specified through K (Cucker and Smale,

2002).

The connection between GPR and regularized function estimation in RKHS has its origins

in the work of Parzen (Parzen, 1961, 1970), who proved the duality between the Hilbert

space spanned by a Gaussian process and its associated RKHS. In the statistical learning

literature such relationship was first pointed out by Kimeldorf and Wahba (1970), and

it has been later resumed by Girosi, Jones, and Poggio (1995) and in the textbooks

Wahba (1990); Rasmussen and Williams (2006). In the following such relationship will

be clarified in the context of system identification.

Differently from the previous section, in the RKHS framework the measurement noise

{e(t)} is simply assumed to be zero-mean white noise with variance σ; hence, the

Gaussianity assumption is not required.

According to the measurement model (2.115), the unknown impulse response g is observed

through the convolution functional Lt[g] (2.114). As observed by Twomey (1977), the in-

version of such convolution results in an inverse problem which may lead to ill-conditioned

solutions, especially when the input {u(t)} is a low-pass signal or many measurements

are given. The previous observations about the use of regularization in inverse problems
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suggest that g should be estimated as

ĝ = arg min
g∈H

N∑

t=1

(y(t)− Lt[g])2 + λ‖g‖2H, λ ∈ R (2.136)

In this case the impulse response g is treated as an element of the RKHS H of functions

g : N 7→ R associated to the kernel Kη : N× N→ R. It has been shown that if the linear

functional Lt : H 7→ R is continuous on H, then the variational problem (2.136) admits a

solution which can be expressed as a linear combination of a finite number of terms. The

theory of RKHS tells that a linear functional Lt is continuous if and only if Lt[Kη(x, ·)]
is a function in H (Aronszajn, 1950). It follows that the solution ĝ can be computed as

ĝ(t) =
N∑

i=1

ĉi Li[Kη(t, ·)], ĉ = (Λ̄ + λIN )−1YN (2.137)

with Λ̄ as defined in (2.122). Equation (2.137) coincides with the solution (2.132) obtained

through GPR if λ = σ and the kernel Kη is chosen equal to the covariance function

defined in (2.117).

The result (2.137) is a consequence of the so-called representer theorem (Kimeldorf and

Wahba (1971); Wahba (1990), Theorem 1.3.1) and of its extension provided by Yuan,

Cai, et al. (2010), where the case of functional linear regression is treated. The interested

reader is referred to Appendix A, where the representer theorem for the case in which

direct observations of the unknown functions are available is stated.

Remark 2.4.3. Some authors have considered the estimation of the impulse response in an

enlarged space, defined as H+ span{φ1, φ2, ..., φr}, with {φj}rj=1 playing the role of basis

functions. According to this setting, the impulse response is assumed to be expressed

as g +
∑r

i=1 θiφi, where {θj}rj=1 are suitable parameters which can be jointly estimated

with g by solving

min
g∈H,θ∈Rr

N∑

t=1


y(t)− Lt


g +

r∑

j=1

θjφj






2

+ λ‖g‖2H, λ ∈ R (2.138)

Theorem 1.3.1 in Wahba (1990) proves that the corresponding impulse response estimate

is given by
N∑

i=1

ĉi Li[Kη(t, ·)] +
r∑

j=1

θ̂jφj (2.139)
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where

θ̂ = (Φ>
NA

−1ΦN )−1Φ>
NA

−1YN , ĉ = A−1(YN − ΦN θ̂) (2.140)

with ΦN ∈ R
N×r, [ΦN ]ij := Li[φj ], and A := Λ̄ + λIN (with Λ̄ as defined in (2.122)).

By means of this additional parametric component the flexibility of the obtained estimator

is enhanced: for instance, the fast dynamics due to high-frequency poles could be captured.

Such approach has been utilized e.g. by Pillonetto and De Nicolao (2010); Pillonetto

et al. (2011a); Chen, Ohlsson, and Ljung (2012); Pillonetto et al. (2014).

2.4.1.3 Connection with Regularized LS

When the estimation procedure illustrated in Sections 2.4.1.1 and 2.4.1.2 is numerically

implemented, only a finite number T of the estimated impulse response samples is actually

computed. Such simplification, dictated by computational reasons, does not negatively

affect the quality of the returned estimator. Indeed, if the system to be identified is

BIBO stable, its impulse response is exponentially decaying. Therefore, by choosing a

large enough value of T , the relevant system dynamics can be completely captured by

retaining the first T impulse response coefficients {g(k)}Tk=1. Such values are collected in

the vector g ∈ R
T :

g = [g(1) g(2) · · · g(T )]> (2.141)

The notation g will be used in the remainder of the manuscript to denote the vector

containing the first T impulse response coefficients, while gi will indicate the i-th

coefficient.

Assuming that g(k) = 0, k = T + 1, ...,∞, the data generating model (2.115) can be

rewritten as the following FIR model

y(t) =
T∑

k=1

g(k)u(t− k) + e(t) =
T∑

k=1

gku(t− k) + e(t), t = 1, ..., N (2.142)

Recalling the definition of YN in equations (2.123) and defining the matrix ΦN ∈ R
N×T

ΦN : =
[
ϕ(1) ϕ(2) · · · ϕ(N)

]>
(2.143)

ϕ(t) : =
[
u(t− 1) u(t− 2) · · · u(t− T )

]>
(2.144)

equation (2.142) can be reformulated as a linear regression model

YN = ΦN g + E (2.145)
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where E := [e(1) e(2) · · · e(N)]>.

Recalling the Bayesian framework adopted in Section 2.4.1.1, a Gaussian prior distribution

is postulated for the vector g:

g ∼ N
(
0T , K̄η

)
, K̄η ∈ R

T ×T (2.146)

with K̄η denoting the covariance matrix, K̄η = E[gg>]. Since g is assumed to be

independent from the Gaussian innovation {e(t)}, the random vectors g and YN are

jointly Gaussian, with joint distribution

[
g

YN

]
∼ N

([
0T

0N

]
,

[
K̄η K̄ηΦ>

N

ΦNK̄η ΦNK̄ηΦ>
N + σIN

])
(2.147)

Assuming the hyper-parameters η to be known, the conditional distribution p(g|YN , η) is

Gaussian with mean and covariance given by

ĝ := µpost
g = K̄ηΦ>

N (ΦNK̄ηΦ>
N + σIN )−1YN (2.148)

P post
g = K̄η − K̄ηΦ>

N (ΦNK̄ηΦ>
N + σIN )−1ΦNK̄η (2.149)

Simple algebraic manipulations show that the MAP estimator (2.148) coincides with the

solution of the following regularized LS problem:

arg min
g∈RT

‖YN − ΦN g‖22 + σg>K̄ηg (2.150)

With regard to the RKHS framework, it can be easily shown that there exists a suitable

RKHS H such that the t-th component of the solution to (2.150), ĝt, is equal to ĝ(t)

computed according to (2.137). Such RKHS consists of functions g : X → R, with

X = {1, 2, ..., T} and is associated to the reproducing kernel Kη : X × X → R, defined

by Kη(i, j) = [K̄η]ij . K̄η is the covariance matrix introduced in (2.146): its positive

semidefiniteness guarantees the positive semidefiniteness of kernel Kη, and in turn the

uniqueness of the RKHS associated to it (Theorem A.0.5 in Appendix A).

From the definition of X , it follows that Lt[g] = ϕ(t)g, where g is the impulse response

vector (2.141) while ϕ(t) is defined in (2.144); consequently, the sum of squared prediction

errors can be rewritten as
∑N

t=1(y(t)− Lt[g])2 = ‖YN − ΦN g‖22.

Furthermore, using the formula for function evaluation in H provided in (A.1), it is
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possible to write

g =




g(1)

g(2)
...

g(T )




=




∑T
i=1 aiKη(i, 1)

∑T
i=1 aiKη(i, 2)

...
∑T

i=1 aiKη(i, T )




= K̄ηa (2.151)

for some vector a = [a1 a2 · · · aT ]>; according to (A.2),

‖g‖2H = a>K̄ηa (2.152)

Combining equations (2.151) and (2.152), it results ‖g‖2H = g>K̄−1
η g, thus showing that

problems (2.136) and (2.150) coincide, once λ is set equal to σ.

Alternatively, the equivalence between the two frameworks could have been established

by directly inspecting the estimator formula (2.137).

2.4.2 Non-Parametric Bayesian Methods for MIMO systems

The algorithm illustrated in Section 2.4.1 is here extended to the identification of MIMO

systems (p > 1 and m > 1), meaning that g : N→ R
p×m. To simplify the treatment, a

vector-valued version g of the impulse response function is considered:

g : N→ R
pm (2.153)

k 7→ g(k) := vec(g(k))

Furthermore, in order to maintain a simple notation, the same symbols of Section 2.4.1

will be here adopted even if the definition of the corresponding operators differ from the

previous ones.

According to the definition of g, the functional Lt[·] is formulated over the space H of

functions g : N→ R
pm:

Lt : H → R
p (2.154)

g 7→
∞∑

k=1

φ>(t− k)g(k)

where

φ(t) :=
[
u1(t)Ip u2(t)Ip · · · um(t)Ip

]>
, φ(t) ∈ R

pm×p (2.155)

In the equation above ui(t) denotes the i-th component of the input signal at time t.
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Postulating H(q) ≡ 1, the data-generating model (2.6) can be rewritten as

y(t) = Lt[g] + e(t) (2.156)

with {e(t)} here assumed to be white noise with

E[e(t)e>(s)] = Σδt,s, Σ := diag([σ1, ..., σp]) (2.157)

As in the SISO case, define the vector z(t) = Lt[g], z(t) ∈ R
p, and let

ZN :=
[
z>(1) z>(2) · · · z>(N)

]>
, ZN ∈ R

Np (2.158)

For future use, let A : N → R
pm×α, α ∈ N, and define the following column-wise

decomposition of A(t):

A(t) =
[
A1(t) A2(t) · · · Aα(t)

]
, Ai : N→ R

pm (2.159)

Furthermore, the operator Lt[·] over the space Hα of functions N→ R
pm×α is defined as:

Lt :Hα → R
p×α (2.160)

A 7→ [Lt[A1] Lt[A2] · · · Lt[Aα]]

Accordingly, let

L>
t :Hα → R

α×p (2.161)

A 7→




L>
t [A1]

L>
t [A2]

...

L>
t [Aα]




where L>
t [Ai] =

∑∞
k=1A

>
i (k)φ(t− k).

2.4.2.1 Gaussian Process Regression Framework

In this section the noise {e(t)} is assumed to be Gaussian white noise with covariance Σ.

Following the Bayesian paradigm of Section 2.4.1.1, {g(k)} is considered as a realization

of a vector-valued zero-mean Gaussian processes, independent of {e(t)}, with covariance

Kη(t, s) := Cov(g(t), g(s)) = E[g(t)g>(s)], Kη : N× N→ R
pm×pm (2.162)
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Let introduce the following column-wise decomposition of the kernel function Kη:

Kη(t, s) =
[
Kη,1(t, s) Kη,2(t, s) · · · Kη,pm(t, s)

]
, Kη,i : N× N→ R

pm (2.163)

Denoting with g
i
(t) the i-th component of g(t), it follows that

Cov(y(t), g
i
(s)) = Cov(z(t), g

i
(s)) (2.164)

= E

[
∞∑

k=1

φ>(t− k)g(k)g
i
(s)

]

=
∞∑

k=1

φ>(t− k)Kη,i(k, s)

= Lt[Kη,i(·, s)]

and

Cov(y(t), g(s)) = Cov(z(t), g(s)) (2.165)

= E

[
∞∑

k=1

φ>(t− k)g(k)g>(s)

]

=
∞∑

k=1

φ>(t− k)Kη(k, s)

= [Lt[Kη,1(·, s)] Lt[Kη,2(·, s)] · · · Lt[Kη,pm(·, s)]]
= Lt[Kη(·, s)]

where the operator Lt[·] is here applied on the function Kη(·, s) belonging to Hpm.

Consequently,

Cov(YN , g(s)) =




L1[Kη(·, s)]
· · ·

LN [Kη(·, s)]


 (2.166)

Now define the output kernel function Λ : N× N→ R
p×p as

Λ(t, s) :=
∞∑

k=1

∞∑

l=1

φ>(t− k)Kη(k, l)φ(s− l)

=
∞∑

k=1

φ>(t− k)L>
s [Kη(k, ·)]

= Lt

[
L>

s [Kη]
]

(2.167)
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where L>
s is here applied on Hpm, while Lt is applied on Hp. Correspondingly, define

the output kernel matrix Λ̄ ∈ R
Np×Np as

Λ̄ :=




Λ(1, 1) · · · Λ(1, N)
...

. . .
...

Λ(N, 1) · · · Λ(N,N)


 (2.168)

It follows that

Cov(y(t), y(s)) = Cov(z(t), z(s)) + Σ (2.169)

= E

[
∞∑

k=1

∞∑

l=1

φ>(t− k)g(k)g>(l)φ(s− l)
]

+ Σ

=
∞∑

k=1

∞∑

l=1

φ>(t− k)Kη(k, l)φ(s− l) + Σ

= Λ(t, s) + Σ

and

Cov(YN , YN ) = Λ̄ + Σ̃N (2.170)

Σ̃N : = Σ⊗ IN , Σ̃N ∈ R
Np×Np (2.171)

Thanks to the independence of the processes {g(k)}, and {e(t)}, the vector YN ∈ R
Np

(defined as in (2.123)) and g(t) are jointly normally distributed for any t ∈ N. Assuming

the hyper-parameters η to be known and using the rules of conditioned Gaussian variables,

the minimum variance estimator of g(t) is given by:

µpost
g

t
= E

[
g(t)|YN , η

]
= Cov(g(t), YN ) {Cov(YN , YN )}−1 YN (2.172)

=
[
L>

1 [Kη(t, ·)] L>
2 [Kη(t, ·)] · · · L>

N [Kη(t, ·)]
]

(Λ̄ + Σ̃N )−1YN

=
N∑

i=1

L>
i [Kη(t, ·)]ĉ(i) (2.173)

where ĉ(i) denotes the i-th block of size p of the vector ĉ = (Λ̄ + Σ̃N )−1YN . Furthermore,

the posterior covariance is computed as

P post
g

t
= Cov(g(t), g(t))− Cov(g(t), YN ) {Cov(YN , YN )}−1 Cov(YN , g(t)) (2.174)
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2.4.2.2 Connection with Regularization in RKHS

The illustration of the Bayesian procedure for the identification of MIMO systems has

clarified how such problem involves the joint estimation of several functions, namely the

pm impulse responses connecting each input-output channel. In the literature of learning

through kernel methods, the joint estimation of multiple functions is known as multi-task

learning. This kind of problems has been treated e.g. by Caruana (1998); Evgeniou and

Pontil (2004); Micchelli and Pontil (2005b),Evgeniou, Micchelli, and Pontil (2005).

According to the framework introduced in Section 2.4.2, the aim is to estimate the

vector-valued function g : N→ R
pm using the available data DN . Hence, g is searched

for within a RKHS H consisting of functions f : X → Y , with X = N and Y = R
pm. The

reproducing kernel Kη : N × N → R
pm×pm is associated to H. Exploiting this setting,

the impulse response function is estimated by solving

ĝ := arg min
g∈H

N∑

t=1

‖y(t)− Lt[g]‖2 + λ‖g‖2H, λ ∈ R (2.175)

The generalized version of the representer theorem exploited in Section 2.4.1.2 applies also

when dealing with RKHS of vector-valued functions. Therefore, if the linear functional

Lt in (2.154) (and in turn Lt in (2.160)) is continuous on H the solution to problem

(2.175) is given by

ĝ =
N∑

i=1

L>
i [Kη(t, ·)]ĉ(i) (2.176)

with ĉ(i) ∈ R
p, i = 1, ..., N , being the unique solution to the set of linear equations

N∑

i=1

(Λ(t, i) + λδt,i)c(i) = y(t), t = 1, ..., N (2.177)

Equivalently, ĉ(i) is the i-th block of size p of the vector ĉ = (Λ̄ + λINp)−1YN (Micchelli

and Pontil, 2005a). It follows that the solution of problem (2.175) coincides with (2.172)

if the output noise variance is assumed to be equal throughout the channels (i.e. Σ = σIp

in equation (2.157)) and if λ is set equal to σ.

2.4.2.3 Connection with Regularized LS

In practice, the quality of the returned estimator remains (almost) unaltered if only the

first T impulse response coefficients are chosen, provided that T is chosen sufficiently
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large. Hence, by collecting such coefficients in the vector g ∈ R
pmT ,

g =
[
vec>(g(1)) vec>(g(2)) · · · vec>(g(T ))

]>
(2.178)

the model (2.156) can be approximated through the following linear regression model

YN = ΦN g + E (2.179)

where E = [e>(1) e>(2) · · · e>(N)]>, E ∈ R
Np and

ΦN =
[
ϕ(1) ϕ(2) · · · ϕ(N)

]>
, ΦN ∈ R

Np×pmT (2.180)

ϕ(t) =
[
φ>(t− 1) φ>(t− 2) · · · φ>(t− T )

]>
, ϕ(t) ∈ R

pmT ×p (2.181)

where φ(t) was defined in equation (2.155). When a Gaussian prior is postulated for g,

i.e. g ∼ N (0pmT , K̄η), K̄η ∈ R
pmT ×pmT , the Bayesian inference procedure for the MIMO

case follows straightforwardly from the one previously illustrated for SISO systems. In

particular, using the matrices above defined, the minimum variance estimator and the

posterior covariance can be computed through equations (2.148) and (2.149).

2.4.3 Hyperparameters Tuning

The computation of the non-parametric Bayesian estimate (2.150) relies on the knowledge

of the hyper-parameters η. However, these are a-priori unknown and they have to be

somehow estimated from the given data DN . As observed in Remark 2.4.1, several

techniques could be adopted for such estimation. These can be clustered into two main

families, according to the interpretation given to the impulse response to be estimated.

Namely, if it is interpreted as a random process, the Bayesian perspective used in Sections

2.4.1.1 and 2.4.2.1 provides two main approaches: the Empirical Bayes and the Full Bayes.

While the first approximates the posterior distribution pη(η|YN ) with a delta-function,

the latter exploits stochastic simulation algorithms to obtain a sampled approximation

of pη(η|YN ); in such a way, the Full Bayes approach also accounts for the uncertainty of

the hyper-parameters (Magni, Bellazzi, and De Nicolao, 1998).

Neglecting the probabilistic interpretation of the impulse response to be estimated and

thus considering it a deterministic function, the Bayesian inference procedure turns out

to be a regularization problem (as shown in Sections 2.4.1.2, 2.4.2.2 and 2.4.1.3, 2.4.2.3).

Therefore, procedures such as cross-validation or Cp-statistics can be exploited for the

estimation of η.

These two families of techniques are now detailed. In favour of a practical implementation,
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the illustration is based on the finite-dimensional notation introduced in Sections 2.4.1.3

and 2.4.2.3. In particular, the more general MIMO case will be treated.

2.4.3.1 Hyper-parameters Tuning in a Bayesian framework

Empirical Bayes. Such approach relies on the approximation of the hyper-parameters

posterior pη(η|YN ) in terms of a delta-function (Berger, 2013; Maritz and Lwin, 1989).

The tuning of the hyper-parameters thus reduces to the estimation of the delta location. A

widely used method assumes that such delta-function is located at the mode of pη(η|YN ).

To estimate it, it should first be observed that, when a non-informative prior is fixed for

η,

pη(η|YN ) =
py(YN |η)pη(η)

py(YN )
∝ py(YN |η) (2.182)

Hence, the hyper-parameters are tuned by maximizing the marginal likelihood function,

which was defined in (2.131):

η̂EB = arg max
η∈Dη

pη(η|YN ) ≡ arg max
η∈Dη

py(YN |η) (2.183)

py(YN |η) is also known to as type-II likelihood (Berger, 2013) or as evidence for the hyper-

parameters (MacKay, 1992), while the “marginal likelihood maximization” approach is

sometimes referred to as “evidence procedure”.

When the measurement noise {e(t)} is assumed to be Gaussian white noise, and the

impulse response g is assigned a zero-mean Gaussian prior with covariance K̄η, p(YN |η)

is Gaussian too; namely,

fML(η) := − ln py(YN |η) = Y >
N (ΦNK̄ηΦ>

N +Σ̃N )−1YN +ln det(ΦNK̄ηΦ>
N +Σ̃N ) (2.184)

where ΦN , YN and Σ̃N have been respectively defined in (2.143), (2.123) and (2.171),

while K̄η is the kernel matrix.

Some authors have investigated the goodness of such approach in the literature of

Bayesian learning. MacKay (1992) discusses about the tendency of marginal likelihood

maximization to automatically penalize unnecessarily complex models, thus embedding

the derived estimator with the so-called Occam’s razor principle.

In the field of system identification, a recent work has proved the robustness of such

method, even when undermodelling is present (Pillonetto and Chiuso, 2015). The

properties of such estimator have been also investigated by Aravkin, Burke, Chiuso, and

Pillonetto (2012).

Numerical routines to solve problem (2.183) include constrained gradient methods (No-
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cedal and Wright, 2006) and the Expectation-Maximization (EM) algorithm (Dempster,

Laird, and Rubin, 1977; McLachlan and Krishnan, 2007). The reader is referred to

Section 2.4.5.2 for a more detailed discussion of these techniques.

Full Bayes. As observed in Remark 2.4.1, the Full Bayes approach slightly differs

from the procedure illustrated in Sections 2.4.1 and 2.4.2, which assumes the availability

of a punctual estimate of η. On the contrary, the methodology here described computes

a Monte-Carlo approximation of the posterior PDF:

pg(g|YN ) =
∫

Dη

pg(g|YN , η)pη(η|YN )dη ≈ 1
Nsp

Nsp∑

i=1

pg(g|YN , η
(i)) (2.185)

where pg(g|YN , η
(i)) denotes the posterior density when the hyper-parameters are fixed

to η(i). p(g|YN , η
(i)) is a Gaussian distribution with mean and covariance respectively

given by (2.148) and (2.149). For approximation (2.185) to hold, the values η(i) have to

be drawn from p(η|YN ). This can be achieved by designing a suitable MCMC algorithm

(Gilks, 2005), whose implementation will be detailed in Section 2.4.5.2.

Once the posterior approximation (2.185) is computed, the minimum variance impulse

response estimate could then be taken as

ĝF B =
1
Nsp

Nsp∑

i=1

g(i) (2.186)

with g(i) drawn from pg(g|YN , η
(i)). It should be pointed out that (2.186) is only a

possible way to compute the impulse response estimator; for instance a MAP estimator

could be defined as

ĝMAP = max
i=1,..,Nsp

E[pg(g|YN , η
(i))] (2.187)

2.4.3.2 Hyper-parameters Tuning in a deterministic framework

Hyper-parameters tuning in a deterministic setting is performed by minimizing an

estimate of the so-called generalization error, given by

E

[
1
N

N∑

t=1

‖ϕ>(t)ĝ− z(t)‖2
]
, z(t) :=

∞∑

k=1

g(k)u(t− k) (2.188)

The expectation above is taken w.r.t. the measurement noise affecting the given data

DN , while z(t) denotes the noiseless system output and ϕ(t) contains past input values,

as defined in (2.144). Commonly used approaches to estimate (2.188) are briefly detailed
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in the following.

Cp statistics. The Cp statistics provides an unbiased estimator of (2.188) if the

noise variance Σ is known (Mallows, 1973). Consequently, the hyper-parameters can be

tuned as

η̂ = arg min
η∈Dη

1
N
‖YN − ΦN ĝ‖2 +

2
N

Tr{Dfg(η)Σ̃N} (2.189)

where Σ̃N has been defined in (2.171), while

Dfg(η) := Γ(η)Σ̃−1
N Γ(η) := ΦNK̄ηΦ>

N (ΦNK̄ηΦ>
N + Σ̃N )−1YN (2.190)

are the so-called matricial degrees of freedom, which measure the flexibility of the estimator

ĝ as a function of η (Pillonetto and Chiuso, 2015; Tibshirani, 2014). Equation (2.190)

makes clear the role played by the hyper-parameters in the non-parametric estimation

here discussed: the tuning of η represents the counterpart of complexity selection in

parametric methods. However, differently from that setting, here complexity can be

continuously controlled by changing the value of η.

As a final remark, it should be observed that the Cp statistics in equation (2.189) coincides

with the Stein Unbiased Risk Estimation (SURE) criterion, when the measurement noise

is assumed to be normally distributed (Stein, 1981).

Cross-Validation. This is a widely used approach for estimating (2.188). It first

requires to split the data DN into two parts: DNtr = {(utr(t), ytr(t)}Ntr
t=1 and DNval =

{(uval(t), yval(t)}Nval
t=1 , Nval +Ntr := N . The hyper-parameters are then tuned by solving

η̂ = arg min
η∈Dη

1
N
‖YNval

− ΦNval ĝtr(η)‖2 (2.191)

ĝtr(η) : = K̄ηΦNtr
>(ΦNtrK̄ηΦ>

Ntr
+ Σ̃Ntr )−1YNtr (2.192)

where YNtr ∈ R
pNtr and YNval

∈ R
pNval contain output values belonging respectively to

the training and the validation dataset; analogously, ΦNtr ∈ R
pNtr×T pm and ΦNval

∈
R

pNval×T pm contain past input values from DNtr and DNval .

In practice, dataset DNtr is used to compute the estimate ĝtr(η), while the generalization

error is approximated by evaluating the prediction capabilities of ĝtr(η) on the data

contained in DNval .

Several variants of cross-validation exist in the literature of statistical learning, such as

k-fold cross-validation, where k disjoint datasets (folds) are extracted from the data and

k different estimations are performed. An extreme case of such procedure is the so-called
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leave-one-out, where N folds are used, meaning that each validation set consists of only

one sample. Special cases of leave-one-out are PRESS and Generalized Cross Validation

(GCV); see Allen (1974); Golub, Heath, and Wahba (1979); Wahba (1990).

2.4.4 User’s Choices

Analogously to the parametric techniques reviewed in Sections 2.2 and 2.3, the non-

parametric Bayesian methods here illustrated also involve some choices that have to be

taken by the user. These are briefly discussed in the following.

Choice of the impulse response length T . As mentioned in Section 2.4.1.3, such

choice is not critical for the quality of the returned estimate. T needs to be simply chosen

large enough in order to guarantee that the relevant system dynamics is captured. If the

value of T does not crucially affect the goodness of the identified model, it significantly

impacts the computational effort of the methods here considered. Section 2.4.5 will make

clear such dependence.

Choice of the kernel (Prior Design). Since prior design represents the main

topic of Chapter 3, the reader is referred to that chapter for a thorough discussion about

such choice. Here it should simply be recalled that the prior has to be designed in order

to account for the desired properties of the impulse response to be estimated. Currently,

the most commonly adopted kernels are adaptations of the classical spline-kernels used

in the statical learning literature (Wahba, 1990; Hastie et al., 2009). Specifically, the

modified versions of such kernels allow to describe the exponentially decaying profile of

BIBO stable impulse responses (Pillonetto and De Nicolao, 2010). This type of kernels is

commonly referred to as stable-spline kernel.

Choice of the procedure for the hyper-parameters tuning. Representing

the counterpart of complexity selection in parametric methods, hyper-parameters tuning

stands as an important step of any non-parametric Bayesian identification routine. This

task can be accomplished through several procedures, as illustrated in Section 2.4.3. The

recent literature on non-parametric methods for system identification mainly adopts the

Empirical Bayes approach through marginal likelihood maximization (Pillonetto and

De Nicolao, 2010; Pillonetto et al., 2011a; Chen et al., 2012). While such technique

has been often criticized in the classical literature on spline models (Wahba, 1990;

Evgeniou, Pontil, and Poggio, 2000), recent theoretical contributions have tried to explain

the effectiveness of the evidence maximization in the context of system identification
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(Aravkin et al., 2012; Pillonetto and Chiuso, 2015). In particular, the investigation

conducted by Pillonetto and Chiuso (2015) relies on the introduction of the concept

of excess degrees of freedom, which measure the additional complexity associated to an

estimator that has to determine the hyper-parameters from the data. Pillonetto and

Chiuso (2015) carry out a comparison between estimators derived through minimization

of the SURE criterion (2.189) and through maximization of the marginal likelihood: the

results show that the latter guarantee a better balance between fit and parsimony, thanks

to a better control of the so-called excess degrees of freedom.

Recently, Prando, Romeres, Pillonetto, and Chiuso (2016a) have numerically compared

Empirical Bayes (through marginal likelihood maximization) and Full Bayes approaches:

while the results do not highlight a significant performance gap, the computational effort

appears much more favourable to the Empirical Bayes approach. The outcomes of such

comparison are reported in Chapter 4.

Following the recent trend in the literature of non-parametric Bayesian methods, the

results presented in the following chapters of the thesis rely on marginal likelihood

maximization procedure for the hyper-parameters tuning.

Choice of the procedure for the noise variance Σ estimation. The noise

variance could be treated as a hyper-parameter and hence estimated with η, through

one of the procedures described in Section 2.4.3 (MacKay, 1992; Chen, Andersen, Ljung,

Chiuso, and Pillonetto, 2014). Alternatively, Σ could be estimated as the sample variance

of the prediction error achieved through a LS estimate (Goodwin, Gevers, and Ninness,

1992; Ljung, 1999), such as an ARX or a FIR model (Pillonetto and De Nicolao, 2010;

Chen et al., 2012).

Choice about the estimation of a parametric component. The user should

decide whether or not the non-parametric estimate should be equipped with a parametric

component, as illustrated in Remark 2.4.3. This feature was originally proposed in order

to let the estimator capture some system dynamics (e.g. high-frequency behaviour),

which were difficulty reproduced by the smooth kernels inherited from the machine

learning literature (Pillonetto and De Nicolao, 2010; Pillonetto et al., 2011a; Chen et al.,

2012). However, recent contributions have tried to address this limitation by directly

designing enriched kernels, thus enabling them to capture some desired dynamics (see

e.g. the multiple kernels introduced by Chiuso, Chen, Ljung, and Pillonetto (2014) and

the discussion in Section 3.3).
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2.4.5 Algorithmic Details

From an algorithmic point of view, the non-parametric Bayesian identification procedure

can be split into two main steps: the hyper-parameters tuning and the computation of

the impulse response estimate. The discussion which follows is therefore based on this

scheme.

2.4.5.1 Impulse Response Estimate

Treating the impulse response to be estimated as an infinite-dimensional object (i.e.

using the viewpoint of Sections 2.4.1.1 and 2.4.2.2), the computation of ĝ in equation

(2.132) (or, equivalently, (2.137)) requires to solve the system of Np linear equations

(2.133). The resulting computational complexity of O((Np)3) can be significant if N is

particularly large. Several contributions have dealt with this problem in the machine

learning literature: the proposed solutions mainly rely on approximations of the kernel

function. These range from the use of the Nyström method (Zhang and Kwok, 2010)

or of greedy algorithm (Smola and Schölkopf, 2000) to the truncation of the kernel

eigen-decomposition (Zhu, Williams, Rohwer, and Morciniec, 1997; Rahimi and Recht,

2007). The latter approach has been also successfully applied in a system identification

setting (Carli, Chiuso, and Pillonetto, 2012).

In the context of system identification, the practical approach of treating the impulse

response as a finite-dimensional object allows to compute ĝ at a cost of O
(
(Np)(Tmp)2

)

through the following rewriting of ĝ in equation (2.148)

ĝ = (Φ>
N Σ̃−1

N ΦN + K̄−1
η )−1Φ>

N Σ̃−1
N YN (2.193)

The plain analysis here conducted needs to be modified if so-called reweighted techniques

are exploited (Chartrand and Yin, 2008; Daubechies, DeVore, Fornasier, and Güntürk,

2010), as will be done in the identification algorithm proposed in Section 3.4. These

procedures require to iterate the hyper-parameters tuning and the impulse response

estimation until a certain stopping condition is met.

2.4.5.2 Hyper-parameters Tuning

From a computational perspective, the hyper-parameters tuning constitutes the most

involved step in the non-parametric Bayesian identification routine. Moreover, according

to the procedure adopted for the tuning, the computational effort may vary significantly.

The following discussion is mainly focused on the probabilistic approaches illustrated in
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Section 2.4.3, since they are more popular within the system identification community.

Empirical Bayes. The Empirical Bayes paradigm illustrated in Section 2.4.3

involves the resolution of the constrained optimization problem (2.183). Under Gaussian

assumptions on the noise and on the impulse response to be estimated, such problem

reduces to the constrained minimization of function (2.184). The following discussion

will specifically treat this case.

Resorting to numerical search routines (such as gradient or Netwton’s methods) represents

a natural way to minimize function (2.184). Compared to the optimization stage required

by a Prediction Error Method (2.14), the marginal likelihood maximization (2.183) turns

out to be a simpler problem, because of the smaller dimension of the search space:

indeed, the number of hyper-parameters is typically much smaller than the size of the

parameter vector θ, that is, dη < dθ. However, some criticality arise when optimizing

function (2.184). Firstly, the objective function is non-convex, thus leading to local

minima matters; secondly, the computation of the Hessian may be costly; thirdly, the

evaluation of the objective function and of its gradient may suffer of ill-conditioning and

finally, when the number of data N is large, the matrix inversions appearing in (2.184)

may be particularly inefficient. The latter two issues have been considered by Chen and

Ljung (2013), in the FIR case (i.e. when a finite-length impulse response is estimated).

They show that pointwise evaluation of (2.184) can be robustly and efficiently performed

using the equivalent reformulation

fML(η) : = − ln py(YN |η)

= Y >
N Σ̃−1

N YN − Y >
N Σ̃−1

N ΦN (K̄−1
η + Φ>

N Σ̃−1
N ΦN )−1Φ>

N Σ̃−1
N YN

+ ln det(Σ̃N ) + ln det(K̄η) + ln det(K̄−1
η + Φ>

N Σ̃−1
N ΦN ) (2.194)

= Y >
N Σ̃−1

N YN − Y >
N Σ̃−1

N ΦNL(IT mp + L>Φ>
N Σ̃−1

N ΦNL)−1L>Φ>
N Σ̃−1

N YN

+N(
p∑

i=1

ln σi) + ln det(IT mp + L>Φ>
N Σ̃−1

N ΦNL) (2.195)

Equation (2.194) exploits the matrix inversion lemma and the Sylvester’s determinant

identity (Harville, 1998), while in (2.195) the Cholesky decomposition K̄η := LL> is used.

By means of expression (2.194), pointwise evaluation of (2.184) takes O(Np(Tmp)2 +

(Tmp)3).

Concerning the second issue above mentioned, the computation of the Hessian can be

avoided by resorting to quasi-Netwon methods, which replace the Hessian by suitable

approximations (see also the discussion in Section 2.2.4). Such methods are iterative
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routines which update the hyper-parameters according to the rule

η(k+1) = η(k) − α(k)[H(k)
N ]−1[f ′

ML(η(k))]> (2.196)

where f ′
ML(·) denotes the gradient of fML(·), while H(k)

N denotes an approximation of

the Hessian of the objective function (Nocedal and Wright, 2006).

A recent contribution has proposed a version of the so-called Scaled Gradient Projection

(SGP) algorithm, which has been adapted to the minimization of function fML(η) in

(2.194) (Bonettini, Chiuso, and Prato, 2015). Despite the theoretical linear convergence

of such type of routines, this tailored version has proved to be superior to second order

state-of-the-art methods in terms of computational effort. Such outcomes will be further

confirmed by the results reported in Section 3.5.

Algorithm 1 reports the pseudo-code of the SGP version proposed by Bonettini et al.

(2015). Line 5 represents the crucial step of the routine: at each iteration the hyper-

parameters η(k) are updated through a gradient scaling involving a scalar α(k) and the

diagonal matrix D(k) ∈ R
dη×dη ; such candidate update is then projected onto the feasible

set Dη through the projection operator

ΠDη ,W = arg min
x∈Dη

(x− z)>W (x− z) (2.197)

Algorithm 1 Scaled Gradient Projection (SGP) Algorithm

1: Initialization: Choose the starting point η(0) ∈ Dη.
2: Set the parameters κ, ρ ∈ (0, 1), 0 < αmin < αmax, 0 < Lmin < Lmax.
3: for k = 0, 1, 2... do
4: Choose α(k) ∈ [αmin, αmax] and the diagonal scaling matrix D(k) such that Lmin <[

D(k)
]

ii
< Lmax, i = 1, .., dη.

5: Projection:
x(k) = Π

Dη ,D(k)−1

(
η(k) − α(k)D(k)[f ′

ML(η(k)]>
)

6: Descent direction: ∆η(k) = x(k) − η(k).
7: Set ε = 1.
8: if fML(η(k) + ε∆η(k)) ≤ fML(η(k)) + κεf ′

ML
(η(k))∆η(k) then

9: Go to step 13.
10: else
11: Set ε = ρε and go to step 8.
12: end if
13: Set η(k+1) = η(k) + ε∆η(k).
14: end for
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The stepsize α(k) is chosen by means of an alternation strategy based on the Barzilai-

Borwein rules (Barzilai and Borwein, 1988), which aims at finding α(k) such that α(k)D(k)

approximates the inverse Hessian of the objective function. Specifically, at each iteration

k, α(k) is set equal to one of the two values

α
(k)
1 =

r(k−1)>

D(k)−1
D(k)−1

r(k−1)

r(k−1)>D(k)−1w(k−1)
, α

(k)
2 =

r(k−1)>

D(k)w(k−1)

w(k−1)>D(k)D(k)w(k−1)
(2.198)

where

r(k−1) := η(k) − η(k−1), w(k−1) := [f ′
ML(η(k))− f ′

ML(η(k−1))]> (2.199)

The quantities (2.198) are respectively the solutions of the two problems

min
α∈R
‖(αD(k))−1r(k−1) − w(k−1)‖, min

α∈R
‖r(k−1) − αD(k)w(k−1)‖ (2.200)

Algorithm 2 provides a detailed description of the alternation procedure developed by

Bonettini et al. (2015) for the selection of the stepsize.

Algorithm 2 Barzilai-Borwein Alternation Strategy

1: Inputs: τ (k), r(k−1), w(k−1)

2: Set 0 < αmin < αmax

3: α1 ←
(
r(k−1)>

D(k)−1
r(k−1)

)
/
(
r(k−1)>

D(k)−1
D(k)−1

w(k−1)
)

4: α2 ←
(
r(k−1)>

D(k)w(k−1)
)
/
(
w(k−1)>

D(k)D(k)w(k−1)
)

5: α̃1 ← min {max {αmin, α1} , αmax}
6: α̃2 ← min {max {αmin, α2} , αmax}
7: if α̃2/α̃1 ≤ τ (k) then
8: α(k) ← α̃2

9: τ (k+1) ← 0.9τ (k)

10: else
11: α(k) ← α̃1

12: τ (k+1) ← 1.1τ (k)

13: end if
14: Return: α(k), τ (k+1)

The choice of the scaling matrix D(k) strictly depends on the objective function fML(η)

and on the structure of the constraint set Dη. The definition of D(k) proposed in Bonettini

et al. (2015) exploits the following decomposition of the gradient of f(η)

f ′
ML(η) = V (η)− U(η), V (η) > 0, U(η) ≥ 0 (2.201)
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The specific choice of D(k) is here reported only for non-negative constraints on η, namely

Dη = R
dη

+ . The interested reader is referred to Bonettini et al. (2015) for the dealing of

box constraints on η.

By means of the splitting (2.201), the first order optimality conditions for the i-th

component of η,

ηi[f ′
ML(η)]i = 0, η ≥ 0, [f ′

ML(η)]i ≥ 0 (2.202)

can be rewritten as the fixed point equation ηi = ηiUi(η)Vi(η)−1, thus suggesting the

following update for η(k)
i :

η
(k+1)
i = η

(k)
i

Ui(η(k))
Vi(η(k))

= η
(k)
i − η(k)

Vi(η(k))

[
f ′

ML(η(k))
]

i
(2.203)

It follows that the scaling matrix D(k) could be defined as

[D(k)]ii = min

(
max

(
Lmin,

η(k)

Vi(η(k))

)
Lmax

)
(2.204)

When Gaussianity does not hold or when an informative prior is postulated also for the

hyper-parameters, the maximization of the evidence function is more involved than what

has been described so far. In such cases, the Expectation-Maximization (EM) algorithm

represents a valid alternative to gradient methods (Bottegal, Aravkin, Hjalmarsson, and

Pillonetto, 2016). EM is a widely used algorithm for the optimization of likelihood

functions in presence of latent variables (Dempster et al., 1977; McLachlan and Krishnan,

2007). When maximizing the marginal likelihood, the impulse response g plays the role

of the latent variable in the complete likelihood function pyg(YN ,g|η). For simplicity, the

FIR implementation of Bayesian approaches is here considered.

The EM algorithm exploits the following decomposition of the evidence function (Bishop,

2006):

ln py(YN |η) = L(q(g), η) +KL(q(g)||pg(g|YN , η)) (2.205)

L(q(g), η) : =
∫

RT mp
q(g) ln

{
pyg(YN ,g|η)

q(g)

}
dg (2.206)

KL(q(g)||pg(g|YN , η)) = −
∫

RT mp
q(g) ln

{
pg(g|YN , η)

q(g)

}
dg (2.207)

where L(q, η) denotes a lower bound for ln py(YN |η) based on the distribution q(g), while

KL(·||·) denotes the Kullback-Leibler divergence between two probability distributions.



2.4 Non-Parametric Bayesian Methods 63

The EM algorithm finds the optimal value for η by keeping alternating between two

steps, namely the Expectation (E) and the Maximization (M) steps, until convergence is

reached. At the k-th iteration, the E-step computes the lower bound L(q(g), η) as

L

(
p(g|YN , η

(k)), η
)

= E

[
ln
py(YN |g, η)pg(g|η)
pg(g|YN , η(k))

]
(2.208)

where the expectation is taken w.r.t. p(g|YN , η
(k)). Notice that this step corresponds to

solve

L

(
p(g|YNη

(k)), η
)

= max
q(g)

L(q(g), η(k)) (2.209)

since KL(q(g)||p(g|YN , η)) = 0 when q(g) is the posterior distribution computed for η(k).

The M-step of the EM algorithm updates the hyper-parameters value according to:

η(k+1) = arg max
η∈Dη

L(p(g|YN , η
(k)), η) (2.210)

Algorithm 3 reports the pseudo-code of the EM algorithm adapted to solve problem

(2.183). Such routine is guaranteed to converge to a stationary point of the evidence

function which has to be maximized. Furthermore, except for very unlucky initializations,

it will converge to a local (or global) optimum of the likelihood function.

Algorithm 3 EM Algorithm to optimize py(YN |η)

1: Initialization: Choose the starting point η(0) ∈ Dη

2: for k = 0, 1, 2, ... do
3: E-step: Compute L

(
p(g|YN , η

(k)), η
)

as in (2.208)

4: M-step: η(k+1) ← arg maxη∈Dη L(p(g|YN , η
(k)), η)

5: end for
6: Return: η̂

Remark 2.4.4. Appendix B highlights a connection between the EM routine and gradient

algorithms, arising when K̄η = ηK̄, η ∈ R+, i.e. when only a scaling factor needs to

be estimated. K̄ is here assumed to be a fixed matrix. Under the same assumption, a

connection between the EM and reweighted algorithms discussed by Wipf and Nagarajan

(2010) is drawn.

Full Bayes. The Full Bayes approach illustrated in Section 2.4.3.1 relies on the

design of a stochastic simulation algorithm (such as an MCMC) to draw samples from

the hyper-parameters posterior p(η|YN ).

The MCMC routine exploits a proposal distribution, from which the samples are iteratively
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drawn; each sample is then kept or rejected by evaluating the PDF of p(η|YN ) at such

sample. By means of this procedure a Markov chain having p(η|YN ) as stationary

distribution is built; therefore, after a burn-in period consisting of Nbi iterations, the

accepted samples are guaranteed to be distributed as p(η|YN ) (Gilks, 2005).

From the above description, it is clear that the implementation of an MCMC for drawing

samples from p(η|YN ) requires to be able to evaluate pη(η|YN ): recalling (2.182), it turns

out that pη(η|YN ) can be evaluated through the marginal likelihood py(YN |η), apart from

the normalization constant py(YN ). Algorithm 4 illustrates an MCMC algorithm designed

to sample from p(η|YN ). Since it adopts a Gaussian (and thus symmetric) proposal,

Algorithm 4 is actually a Metropolis-Hastings routine (Gilks, 2005). Concerning the

initialization, η(0) can be set equal to the estimate η̂EB computed in (2.183), while a

typical choice for P̃ (0) is

P̃ (0) = −
[
d2 ln[py(YN |η̂EB)pη(η̂EB)]

dηdηT

]−1

(2.211)

Multiple methodologies exist to set the burn-in period Nbi at step 2; a good overview is

provided by Raftery and Lewis (1996).

In order to obtain a reliable approximation of the distribution p(η|YN ) (and in turn

of the posterior p(g|YN )), a large number of samples Nsp has to be drawn, meaning

that a high number of iterations of Algorithm 4 has to be performed. This makes the

Full Bayes approach for hyper-parameters tuning particularly inefficient in terms of

computational effort, thus explaining the scarce popularity of such approach within the

system identification community.

Algorithm 4 MCMC algorithm to draw samples from p(η|YN )

1: Initialization: Set maximum number of iterations Nmax

2: Initialization: Set burn-in period Nbi

3: Initialization: Choose the proposal distribution p̃(·): p(·) ∼ N (η(0), P̃ (0))
4: for i = 1, 2, ..., nmax do
5: Sample η from p̃(·|η(i−1)) ∼ N (η(i−1), P̃ (0))
6: Sample υ from a uniform distribution on [0, 1]
7: Set

η(i) =

{
η if υ ≤ py(YN |η)pη(η)

py(YN |η(i−1))pη(η(i−1))

η(i−1) otherwise

8: end for
9: Return: {η(i)}Nmax

i=Nbi+1
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2.5 Model Selection and Validation

The discussion of the previous sections has highlighted how the implementation of the

described system identification methods is necessarily accompanied by some user’s choices.

Some of them are strictly related to the specification of the model class within which

the estimated model lies. Regarding PEM, these decisions mainly involve the choice of

model complexity and of its parametrization, that is, the specification of the polynomials

that will be estimated in the general transfer function model (2.15) as well as of their

degrees. Subspace algorithms instead only require to fix the state-space size, since the

parametrization is implicitly specified by the method itself. Finally, complexity selection

in the non-parametric Bayesian paradigm is somehow performed through the hyper-

parameters tuning described in Section 2.4.3: consequently, no clear-cut decision about

the system order is left to the user, who simply needs to specify the kernel. However, such

choice is not as crucial as the model structure selection required by parametric methods,

since it has been proved that the space of functions associated with the standard kernels

adopted by the system identification community is rich enough to include the impulse

responses of any BIBO stable LTI system (Pillonetto and De Nicolao, 2010; Chen et al.,

2012).

The selection of a specific model class fixes a trade-off between flexibility and parsimony:

on the one hand, a complex model would allow a more accurate reproduction of the

given data but, on the other hand, a simple model would be more handleable in its

estimation stage and also in its eventual future use, guaranteeing better generalization

capabilities (i.e. a better description of unseen data). In particular, the choice of a simple

model structure would provide computational advantages during the estimation phase:

for instance, with regard to PEM, Section 2.2.4 has pointed out how some of the transfer

function models illustrated in Section 2.2.1 admit a linear representation of the predictor

w.r.t the parameter vector, thus allowing the use of simple computational procedures

(such as LS when a quadratic loss function is used). On the other hand, when a linear

predictor is not available, more involved algorithms (e.g. iterative routines) need to be

adopted.

In the statistical learning literature, the trade-off between flexibility and parsimony is

traditionally formulated in terms of bias and variance of the derived estimator (Hastie

et al., 2009; Burnham, Anderson, and Burnham, 2002). These two terms arise from a

decomposition of the so-called Mean Square Error (MSE). Specifically, let S and M̂
respectively denote the true system description and the model estimated trough a certain
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identification algorithm. The MSE for M̂ is defined as

MSE(M̂) = E[(S − M̂)2] =(S − E[M̂])2 + E[(M̂ − E[M̂])2] (2.212)

= : B2(M̂) + V(M̂)

where B(·) represents the bias, i.e. the gap between the true system and the average

of the estimates (the expectation is taken w.r.t. measurement noise in the data), while

V(·) is the variance of the estimated model. Both of them are functions of the model

complexity: while the bias decreases as it increases, a complex model leads to a large

variance. The bias term can also be further decomposed as

B
2(M̂) = (S −M∗)2 + (M∗ − E[M̂])2 (2.213)

The first term is the so-called squared model bias (or model error), i.e. the error between

the true system description and its closest approximation lying within the chosen model

class M . The second term denotes the estimation bias, i.e. the gap between such

optimal approximation M∗ and the average of the estimated models (see also Hastie

et al. (2009), Ch. 7). While model bias is a measure of the eventual inadequacy of

the chosen model class M , the estimation bias may be due to little informative data or

to the implementation of the identification routine (for instance, when iterative search

routines are used, convergence to local minima of the objective function could give rise

to estimation bias).

According to the previous considerations on non-parametric Bayesian methods, the stable-

spline kernels commonly adopted in system identification define a model class M which

guarantees a null model bias, thus making possible to recover the true system description

S if the hyper-parameters η are suitably tuned. Concerning parametric methods, the

quantification of the model error arising from the misspecification of the model class has

been investigated by several contributions in the system identification literature, through

the development of so-called model error models (Goodwin et al., 1992; Ljung, Goodwin,

and Agüero, 2014).

For parametric methods, model class selection also determines the identifiability properties

of the identification procedure. Such concept, which is also influenced by experimental

conditions, has been widely treated in the system identification literature, receiving

many different connotations. Since a thorough discussion of the topic is out of scope

for this manuscript, the interested reader is referred to Ljung (1999), Sec. 4.5 and 4.6,

Bellman and Åström (1970) and to the survey Nguyen and Wood (1982). Identifiability of

multivariable model structures has been discussed in Ljung and Rissanen (1976); Kailath
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(1980); Gevers and Wertz (1984).

The choices regarding the specification of a model class can be taken at different stages of

an identification procedure, namely: (1) a preliminary data analysis may give some hints

on the complexity of the system to be estimated; (2) a selection can be performed during

the inference stage, by directly comparing different models or by some specific procedure

connected with the chosen identification algorithm; (3) a post-processing analysis, known

as model validation, may highlight some deficiencies of the estimated model and thus

suggest to reconsider the choices done in the previous stages.

2.5.1 A Priori Model Class Selection

Pre-processing tools include the spectral analysis estimate (which may highlight the

number of resonance peaks, thus suggesting the order of the system at hand), tests on

the rank of the sample covariance matrices of past input and output data (Woodside

(1971); Wellstead and Rojas (1982); Tse and Weinert (1975)) and canonical correlation

analysis (Hotelling (1936)) to assess whether one more variable should be included or not

in a model structure (Draper (1998); Larimore (1990)). A more detailed discussion on

the mentioned tools can be found in Ljung (1999), Sec. 16.3.

2.5.2 Model Class Selection during the Estimation Stage

As observed throughout Section 2.4, the model class selection (specifically, the complexity

choice) for non-parametric Bayesian methods is implicitly performed during the estimation

stage through the hyper-parameters tuning. On the other hand, model class selection

can be accomplished during the estimation phase also when parametric techniques are

adopted. In particular, for PEM the choice is based on criteria which compare the

generalization capabilities of different model classes, while subspace approaches exploit

the information contained in the singular values computed in equations (2.78) and (2.89).

Prediction Error Methods. When adopting PEM, model class selection is per-

formed through standard techniques inherited from the statistical learning literature

Hastie et al. (2009). Specifically, the chosen model structure minimizes a certain approxi-

mation of the generalization error, i.e. the error observed on a new set of data (validation

data):

(θ̂, M̂) = arg min
θ∈Dθ,M

Êrr(θ,M,DN ) (2.214)
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The above equation highlights how such procedures allow to solve the joint problem of

model class selection and parameter estimation. In particular, M̂ denotes the choice of a

parametrization M̂(·) and of the model complexity d̂θ, that is M̂ = {d̂θ,M̂(·)}.
The approximations Êrr(θ,M,DN ) which are found in the literature can be grouped into

two main families (Efron, 2012): on the one hand, the so-called covariance penalties

and on the other hand, cross-validation and bootstrap methods. Covariance penalty

approaches arise when quadratic error measures are used: they resort to the following

approximation of the generalization error

Êrr(θ,M,DN ) =
1
N

N∑

t=1

‖y(t)− ŷ(t|θ)‖22 +
2
N

N∑

t=1

Tr
{

Ĉov(ŷ(t|θ), y(t))
}

(2.215)

=
1
N

N∑

t=1

‖y(t)− ŷ(t|θ)‖22 +
2
N

Tr
{

Σ̂ D̂fŷ(θ)
}

(2.216)

where equation (2.216) derives from the extension provided by Ye (1998), with Dfŷ(θ)

denoting the so-called matricial degrees of freedom of the predictor ŷ(t|θ) (see also

definition (2.190)):

Dfŷ(θ) =
N∑

t=1

Cov(ŷ(t|θ), y(t))Σ−1 (2.217)

Hence, to obtain an approximation of the generalization error, the empirical squared

prediction error on the estimation dataset is penalized with a term depending on the

covariance between the obtained estimator and the given data. For predictors which

are linear in the observations, i.e. ŷ(t|θ) = Γ(θ)YN , Tr{Cov(ŷ(t|θ), y(t))} = Tr{Γ(θ)} =

dθ and (2.216) coincides with the Cp-statistics. Under Gaussian assumptions on the

measurement noise, the Cp statistics coincides with the well-known Akaike Information

Criterion (AIC) (Akaike, 1998).

An alternative approximation of the generalization error arises by resorting to Bayesian

arguments, leading to the so-called Minimum Description Length (MDL) (or BIC)

criterion (Rissanen, 1978):

BIC(θ,M,DN ) =
1
N

N∑

t=1

‖y(t)− ŷ(t|θ)‖22 +
lnN
N
· dθ (2.218)

The second family of procedures, which include cross-validation and bootstrap methods

estimate Err(θ,M) by means of suitable resamplings of the given dataset.

So-called parametric bootstrap uses an available estimate θ̂ to build B new datasets
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according to

D̃N
(i) = {ỹ(i)(t), u(t)}Nt=1, i = 1, ..., B (2.219)

ỹ(i)(t) : = ŷ(t|θ̂) + ẽ(i)(t), ẽ(i)(t) ∼ N (0p, Σ̂)

where u(t) denotes the given input data, ŷ(t|θ̂) is the predictor computed on the data

DN using the estimate θ̂ and Σ̂ is an available noise variance estimate. The model class

is then selected according to criterion (2.215) with Ĉov(ŷ(t|θ), y(t)) computed as

Ĉov(ŷ(t|θ), y(t)) =
1

B − 1

B∑

i=1

ŷ(t|θ̂(i))(ỹ(i)(t)− ¯̃y(t))>, ¯̃y(t) :=
1
B

B∑

i=1

ỹ(i)(t) (2.220)

where ŷ(t|θ̂(i)) denotes the predictor computed using dataset D̃N
(i).

The cross-validation procedure require to split the data DN into two sets, DNtr and

DNval , respectively composed of Ntr and Nval samples. The approximated generalization

error in equation (2.188) is then given by

Êrr(θ,M,DN ) =
1

Nval

Nval∑

t=1

‖yval(t)− ŷ(t|θ̂tr)‖2 (2.221)

where θ̂tr denotes the parameters estimate computed using data DNtr . Once the model

class is chosen, the parameter vector can be re-estimated using all the available data DN .

Another class of selection criteria resorts to sequential statistical tests based on the

F-distribution (see Ljung (1999), Sec. 16.4 and Söderström and Stoica (1989), Ch. 11).

Subspace Methods. Differently from PEM which require to select also a suitable

parametrization M(·) of the model class M , subspace algorithms simply need to fix a

certain state-space size n. This is typically accomplished by inspecting the singular values

computed in equations (2.78) and (2.89). Let denote them as σ̂1 ≥ σ̂2 ≥ · · · . If n0 is the

true system order, then, under suitable assumptions on the data generating process and

on the weighting matrices W1, W2:

lim
N→∞

σ̂i = σi, i = 1, ..., n0

lim
N→∞

σ̂i = 0, i > n0
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Such observation has been exploited to derive the following general selection criteria,

respectively proposed by Peternell (1995) and Bauer (2001):

NIC(n) =
υ∑

i=n+1

σ̂2
i +

C(N)d(n)
N

(2.222)

SV C(n) = σ̂2
n+1 +

C(N)d(n)
N

(2.223)

In the above equations d(n) = n(m+ p) + np+ pm denotes the number of parameters

in the state-space model, while υ = min{rp, (p + m)s}, with r and s being the future

and past horizons, respectively. Furthermore, C(N) is a penalty term chosen so that

C(N)/N → 0 as N →∞.

The n4sid routine implemented in the MATLAB System Identification Toolbox (Ljung,

2007) selects the index of the singular value which in logarithm is closest to the logarithmic

mean of the maximum and minimum singular values.

From a computational point of view, it should be noticed that the criteria here illustrated

significantly differ from those described for PEM: while IV C(n) and SV C(n) simply

require to compute one SVD, the criteria adopted by PEM demand the estimation of

several models, thus resulting computationally expensive.

Alternative approaches exist which consist in sequential tests (Sorelius, 1999; Camba-

Mendez and Kapetanios, 2001) or on criteria resembling the AIC, which exploit an

estimate of the innovation covariance (Bauer, 2001, 2005).

2.5.3 Model Validation

The principal goal of model validation is to check whether the estimated model achieves

the desired performance in the applications it was designed for: for instance, if the

intended use of the model was controller design, the performance of the designed closed-

loop system are evaluated. Model validation also aims at assessing whether the estimated

model is too complex: to this purpose, the confidence intervals built around the estimate

may be evaluated (see also chapter 4); alternatively, the approximation of the inferred

model with a simpler one may reveal an unnecessary over-parametrization (the well-known

zero-pole cancellation technique proposed by Söderström (1975) may e.g. be applied).

Model reduction will be further discussed in chapter 6.

An important class of model validation methods is based on the analysis of the residuals,
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i.e. of the part of the data that is not caught by the estimated model:

ε(t,M̂) = y(t)− ŷ(t|M̂), t = 1, .., N (2.224)

Statistical tests are performed in order to assess their whiteness and their independence

from the given dataset DN . Indeed, if correlation among ε(t,M̂) and ε(t − τ,M̂) is

detected for τ > 0, it is reasonable to think that part of ε(t) could have been better

predicted from past data. Analogously, if independence from DN is verified, it is probable

that the model would be able to correctly reproduce also unseen data.

Residuals whiteness is assessed through a statistical test on the sample covariance

R̂N
εi

(τ,M̂) =
1
N

N∑

t=1

εi(t,M̂)εi(t− τ,M̂) (2.225)

where εi(t,M̂) denotes the residual on the i-th output component. If {εi(t,M̂)} is a

white noise zero-mean sequence with variance σi, then it can be proved that

N

σi

τ̄∑

τ=1

(
R̂N

εi
(τ,M̂)

)2
(2.226)

is asymptotically χ2(τ̄)-distributed. Therefore, let χ2
d(·) denote the quantile function of

the χ2-distribution with d degrees of freedom: χ2
d(p) is equal to the value x for which

Pr(χ2(d) ≤ x) = p. The null hypothesis stating residuals whiteness for model M̂ is

accepted if

ζN,τ̄
εi

(M̂) =
N

(
R̂N

εi
(0,M̂)

)2

τ̄∑

τ=1

(
R̂N

εi
(τ,M̂)

)2
< χ2

τ̄ (1− α), i = 1, ..., p (2.227)

where α is the so-called significance level of the test (also called type-I risk). A typical

value for α is 0.05. An independent test is performed on each output channel, because of

the diagonal structure assumed for the noise covariance matrix Σ. The interested reader

is referred to Ljung (1999) (Sec. 16.6) and to Söderström and Stoica (1989) (Sec. 11.2)

for a more detailed illustration of such test.

Following a similar reasoning, the independence from the given dataset can be verified

by studying the covariance between residuals and past input:

R̂N
εi,uj

(τ,M̂) =
1
N

N∑

t=1

εi(t,M̂)uj(t− τ) (2.228)
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where uj(t) denotes the value measured at time t at the j-th input channel. The test is

based on the following quantities

ζN,τ̄
εi,uj

(M̂) = Nr>
ij

[
R̂N

εi
(0,M̂)R̂N

uj

]−1
rij , i = 1, ..., p, j = 1, ...,m (2.229)

where

R̂uj
=

1
N

N∑

t=1




uj(t− 1)

uj(t− 2)
...

uj(t− τ̄)




[
uj(t− 1) uj(t− 2) · · · uj(t− τ̄)

]

rij : =
1
N

N∑

t=1




uj(t− ξ − 1)

uj(t− ξ − 2)
...

uj(t− ξ − τ̄)



εi(t,M̂)

Specifically, model M̂ passes the test on the independence between its residuals and past

input data in DN if

ζN,τ̄
εi,uj

(M̂) < χ2
τ̄ (1− α), i = 1, ..., p, j = 1, ...,m (2.230)

for a specified significance level α. More details on such tests are given in Ljung (1999)

(Ch. 16) and Söderström and Stoica (1989) (Ch. 11).

A sequential application of such tests represents a practical way of exploiting them:

specifically, models of increasing complexities should be tested until the null hypothesis

is accepted for one of them.

2.6 Bibliographical Notes

2.6.1 System Identification Problem

The term system identification was coined by Zadeh (1956), whereas the concepts of

model set, model structure and identification methods were first discussed by Zadeh

(1962) and Ljung (1976). A quite recent overview of the achievements reached by the

system identification community and of the existing open questions has been given by

Ljung (2010).

Section 2.1 has introduced the distinction between parametric and non-parametric

approaches to system identification. Concerning the latter, some references of early works
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in the field are listed in Söderström and Stoica (1989) (Ch. 3). Other overviews have

been provided by Rake (1980, 1987) and Ljung and Glover (1981).

2.6.2 Prediction Error Methods

The roots of Prediction Error Methods in the system identification field go back to the

seminal paper Åström and Bohlin (1966), which imported from the time series literature

the Maximum Likelihood approach for the estimation of parameters of difference equation

models. In the time series literature early references on such approaches include Cramér

(1945); Grenander (1950); Whittle (1953). The works by Box and Jenkins (1970) and by

Åström and Eykhoff (1971) provide a comprehensive survey of the identification methods

developed at that time. Until the beginning of the nineties, the interest of the system

identification community was mainly focused on Prediction Error Methods, thus making

them a well-established techniques even in practical applications. The large attention

devoted to such approaches in the classical textbooks Söderström and Stoica (1989) and

Ljung (1999) is a clear proof of their impact into the system identification community.

Other comprehensive treatments of PE methods can be found in Brockwell and Davis

(2013) and Hannan and Deistler (1988).

Frequency-domain Prediction Error Methods have been also largely investigated in the

literature: see e.g. Pintelon, Guillaume, Rolain, Schoukens, Van Hamme, et al. (1994);

Pintelon and Schoukens (2012). A comparison between frequency- and time- domain

approaches has been conducted by Ljung (2006).

2.6.3 Subspace Methods

Subspace methods originate from the state-space theory developed in the 1960s. In

particular, the work of Ho and Kalman (1966) is considered the main contribution for

the origin of such approaches. By extending the work of Akaike (1974), they provided a

solution for determining the minimal state-space representation from impulse response

data. Refinements of such theory were provided by Zeiger and McEwen (1974) and Kung

(1978). Until the end of the Nineties, such techniques did not receive a significant attention

from the system identification community, because of the difficulty in the treatment of

data containing also a measured input. Such obstacle was overcome at the beginning of

the Nineties, when several research teams proposed different solutions: the survey by

Viberg (1995) distinguishes between realization-based subspace methods , direct subspace

algorithms (De Moor et al., 1988; Verhaegen, 1991) and instrumental variable techniques

(Verhaegen, 1993b, 1994; Van Overschee and De Moor, 1994). Van Overschee (1995) and

McKelvey (1995) provide reviews of such early works on subspace identification, while
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Van Overschee and De Moor (2012) is based on the unifying framework briefly reviewed

in Section 2.3.2. A recent overview is also provided in Verhaegen and Verdult (2007).

The time series case has been dealt by Aoki (1990); Van Overschee and De Moor (1993);

Deistler, Peternell, and Scherrer (1995).

The identification of Linear Parameter Varying (LPV) systems is considered by Verdult

and Verhaegen (2002), while an overview of the application of subspace algorithms for

the estimation on non-linear systems is given in Verdult (2002).

Frequency-domain identification is treated e.g. by McKelvey (1995); McKelvey, Akçay,

and Ljung (1996); Van Overschee and De Moor (1996).

The extension of subspace algorithms to systems operating in closed-loop has been treated

by Verhaegen (1993a); Ljung and McKelvey (1996); Qin and Ljung (2003); Chiuso and

Picci (2005) and Chiuso (2010).

2.6.4 Non-Parametric Bayesian Methods

Non-parametric Bayesian methods (or equivalently, kernel-based approaches) have been

introduced into the system identification community by the seminal paper Pillonetto

and De Nicolao (2010) and further developed by the follow-up papers Pillonetto et al.

(2011a) and Chen et al. (2012). Most of the research in this area has focused on the

design of the kernel Kη (Dinuzzo, 2015; Chen and Ljung, 2014; Chen et al., 2014) and

on the understanding of the properties of the Empirical Bayes estimator (Aravkin et al.,

2012; Pillonetto and Chiuso, 2015). Stability issues have been considered by Pillonetto,

Chen, Chiuso, Ljung, and Nicolao (2016) and Romeres, Pillonetto, and Chiuso (2015).

Recent surveys on regularization methods for system identification have been published:

Pillonetto et al. (2014) focus on the connection with regularization in Reproducing Kernel

Hilbert Spaces, while Chiuso (2016) provides several connections with econometrics and

time-series literature.

Frequency-domain extensions of such techniques have been proposed by Bottegal and

Pillonetto (2013) and Lataire and Chen (2016), while Pillonetto, Quang, and Chiuso

(2011b) and Risuleo, Bottegal, and Hjalmarsson (2015) have applied such methods for

the identification of non-linear systems.

Extensions to the field of network identification have been considered by Chiuso and

Pillonetto (2012) and Zorzi and Chiuso (2015).

Several contributions relying on the Bayesian paradigm for time series estimation exist

in the econometrics literature: see e.g. Doan, Litterman, and Sims (1984); De Mol,

Giannone, and Reichlin (2008); Knox, Stock, and Watson (2001); Giannone, Lenza, and

Primiceri (2015).
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A classical reference for Gaussian Processes Regression is the book by Rasmussen and

Williams (2006), while the theory of RKHS is developed in Aronszajn (1950). Applications

of such theory in the machine learning field have been widely dealt by Cucker and Smale

(2002); Schölkopf and Smola (2002); Wahba (1990).
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Chapter 2 has highlighted how the non-parametric Bayesian methods admit an

equivalent interpretation in terms of regularization. According to such interpretation,

the prior designed by the user following the Bayesian paradigm acts as a penalty term

in the regularization framework. In the previous chapter no details have been given

about how the prior (or equivalently, the regularizer) should be designed in order to

properly account for desired properties of the impulse response to be estimated. The

current chapter intends to provide an overview of the priors commonly adopted when

the methods illustrated in Section 2.4 are applied in system identification. To draw

connections with the other identification approaches, the regularization perspective will

be taken in the first part of the chapter: indeed, the role played by regularization in PEM

and subspace techniques will be also discussed. Accordingly, the estimation problem here

considered takes the general form

x̂ = arg min
x∈X

JF (x,DN ) + JR(x, η) (3.1)

where x, lying in the inner product space X , represents an unknown quantity related to the

system description which needs to be estimated. x could e.g. denote the parameter vector

θ ∈ Dθ for PEM, the impulse response function g(·) for the kernel-based regularization

methods discussed in Section 2.4.1.2-2.4.2.2, or the impulse response vector g ∈ R
pmT

for the regularized LS techniques of Sections 2.4.1.3-2.4.2.3.

According to problem (3.1), x is estimated by trading-off the data fitting term JF (x,DN )

and the regularization term JR(x, η), which acts as a penalty discouraging certain

undesired solutions. JR(x, η) depends on some regularization parameters η (called hyper-

parameters in the Bayesian framework), which have to be tuned using the available data.

Consequently, regularization deals with the well-known bias/variance trade-off using a

continuous set of regularization parameters.

Historically, regularization was introduced to render the inverse problem of finding x

from the measured data well-posed: indeed, problem

x̂ = arg min
x∈X

JF (x,DN ) (3.2)

is ill-posed if x denotes e.g. a function belonging to a suitable Hilbert space; if x represents

a finite-dimensional object (e.g. a vector or a matrix), problem (3.2) may be ill-posed,

unless the number of data N is much larger than the size of x. To overcome this issue,

the so-called Tykhonov regularization was proposed by setting JR(x, η) = η‖x‖2X , with

‖ · ‖X denoting the norm associated to the inner product defined in X (Tikhonov and

Arsenin, 1977; Hoerl and Kennard, 1970).
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Extensions of this basic regularization have been proposed in the statistical learning

literature. To keep the general notation of problem (3.1), JR(x, η) will be specified as a

function of a bounded linear operator A : X → Y , that is JR(x, η) = fR (A(x), η). A large

attention has been devoted to the development of penalty functions which favour certain

structures on A(x̂), e.g. which force some elements of A(x̂) to be zero or equivalently,

which enforce sparsity in A(x̂). To this purpose, Tibshirani (1996) proposed to set fR(·)
equal to the L1-norm, i.e. JR(x, η) = η‖A(x)‖1, thus guaranteeing the convexity of the

optimization problem (3.1). The seminal work of Tibshirani (1996) gave rise to the broad

family of so-called LASSO estimators, i.e. of learning algorithms relying on L1-type

penalties.

Another formulation of JR(x, η) adopts the so-called nuclear norm (also known as Schatten

1-norm), defined as

‖A‖∗ :=
∞∑

i=1

σi(A) (3.3)

where σi(A) denotes the i-th singular value of A. Consequently, the penalty JR(x, η) =

η‖A(x̂)‖∗ will induce sparsity on the singular values of A(x). This type of regularizer

has been introduced by Fazel, Hindi, and Boyd (2001) as a convex surrogate to the rank

function in matrix rank minimization problems. Fazel et al. (2001) also prove that the

nuclear norm ‖A‖∗ is the convex envelope of the rank of A on the ball ‖A‖2 < 1. The

quality of the nuclear norm heuristic as a replacement of the rank function has been

analytically proved for certain applications (such as low-rank matrix completion) (Candès

and Recht, 2009; Recht, Fazel, and Parrilo, 2010); moreover, it has been empirically

observed that minimum nuclear norm solutions often have low rank.

The aforementioned types of regularization have found application also in the system

identification field. Specifically, Tykhonov regularization has been used to overcome the

issue of ill-posedeness, as well as to equip the estimator with smoothess and stability

properties. LASSO penalties have been considered mainly for the problem of structure

detection. For instance, in a MIMO system, a certain output may be affected by only a

subset of the corresponding inputs: hence, a sparsity inducing estimator would set to zero

unnecessary model components and simply estimate the relevant ones. The adoption of

nuclear norm regularization in system identification is instead connected to a well-known

property coming from realization theory, which appear relevant especially for MIMO

systems. Indeed, as mentioned in Section 2.2.1, the order n of a minimal state-space

realization
x(t+ 1) = Ax(t) +Bu(t), x(t) ∈ R

n

y(t) = Cx(t) +Du(t)
(3.4)
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equals the McMillan degree of the impulse response g. In turn it equals the rank of the

block-Hankel matrix G ∈ R
pn×mn built with the Markov coefficients g(k) = CAk−1B+D,

which are expressed through a relation coupling the impulse responses gij(k) (with i

and j denoting different input and output channels). Consequently, imposing a nuclear

norm penalty on G allows to account for this coupling, by controlling the complexity

(measured in terms of McMillan degree) of the estimated system.

The use of these regularizers in system identification will be clarified in the next sections.

Specifically, Section 3.1 will focus on PEM, while Section 3.2 is devoted to the role

played by regularization in connection with subspace algorithms. Finally, Section 3.3 will

describe the more common penalties adopted in the non-parametric estimation illustrated

in Section 2.4. According to the connections drawn in Section 2.4, the design of such

penalties could be equivalently interpreted as the design of the prior distribution in a

Bayesian framework; however, Section 3.3 will be based on a regularization perspective in

order to highlight the connections with the methods illustrated in the preceding sections.

The innovative contribution of this chapter is described in Section 3.4, where the Bayesian

framework of Section 2.4 is exploited to derive a prior inducing a joint L1 and L2

penalty, thus controlling at the same time complexity, stability and smoothness of the

estimated models. Exploiting such prior, an iterative identification algorithm is developed.

Section 3.5 contains an extensive numerical comparison between the newly introduced

identification algorithm and several classical methods, including those illustrated in

Sections 3.1-3.3.

3.1 Regularization in Prediction Error Methods

3.1.1 `2 Regularization

The use of classical ridge regression in PEM is suggested by Ljung (1999) to solve the

ill-conditioning which may arise when the number dθ of parameters to be estimated is

particularly high. In such cases, the Hessian of the loss function V ′′
N (θ,DN ) may be

ill-conditioned; thus, solving the regularized problem

θ̂N = arg min
θ∈Dθ

VN (θ,DN ) + η θ>θ (3.5)

will add a term ηIdθ
to the Hessian V ′′

N , thus making it better conditioned. In addition,

when dθ is large, an accurate reconstruction of the true parameters becomes difficult: in

such situations, the estimation benefits of the use of regularization, since it allows to

fixes a better bias/variance trade-off. Further details on this topic are also provided by
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Sjöberg, McKelvey, and Ljung (1993).

Note that in some cases also the Bayesian approaches detailed in Section 2.4 can reduce

to regularized LS. In particular, this happens when they are implemented through

regularized LS, i.e. by estimating a FIR model as the one in equation (2.142) (or an

ARX model, if also H(q) is determined). Nevertheless, the author’s choice is to treat

them in Section 3.3, since such methods have been introduced in the system identification

literature as non-parametric techniques. Consequently, some of the penalties which will

be later illustrated are adaptations of classical penalties adopted for non-parametric

estimation in the statistical learning literature (e.g. those arising from splines kernels,

Wahba (1990)). Other regularizers detailed in Section 3.3 have been instead developed

according to a regularized LS framework: however, they will be treated in Section 3.3,

because their roots lie in the non-parametric framework introduced by the seminal papers

Pillonetto and De Nicolao (2010) and Pillonetto et al. (2011a).

3.1.2 `1 Regularization

Ljung, Hjalmarsson, and Ohlsson (2011) list four encounters between system identification

and other research fields. One of them regards the exploitation of `1 regularization in

connection with PEM to perform the aforementioned structure detection, or to estimate

so-called segmented models (Ohlsson, Ljung, and Boyd, 2010).

Rojas and Hjalmarsson (2011) apply LASSO to LS PEM: the proposed algorithm first

computes an LS estimate θ̂LS
N , which is then made sparse by solving the following

constrained `1 minimization problem

θ̂SP
N := arg min

θ∈Dθ

‖θ‖1 (3.6)

s.t. VN (θ) ≤ VN (θ̂LS
N )

(
1 +

2n
N

)

where VN is the LS loss function. A new LS estimation is then performed by removing

the regressors corresponding to null entries in vector θ̂SP
N . Conditions for consistency and

and for sparsity are derived.

Tóth, Sanandaji, Poolla, and Vincent (2011) combine ideas from the compressive sensing

literature (Baraniuk, 2007) with PEM in system identification. They consider the

estimation of ARX models through a LASSO penalty and they show that the proposed

method returns a consistent estimation of sparse models in terms of the so-called oracle

property.
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Another example of `1 type regularization regards nuclear norm penalties. To the best

of the author’s knowledge, the combination of PEM with nuclear norm regularization

has been first proposed to deal with situations of missing output data. In such cases,

classical approaches first reconstruct the missing measurements through the interpolation

of the available data and then they estimate a model by minimizing the cost function

(2.30). The alternative paradigm proposed by Grossmann, Jones, and Morari (2009)

considers fitting the data only at the available measurements and adopts nuclear norm

minimization as an interpolating method for the missing data. The authors consider the

FIR model class (2.21) and estimate θ by solving

θ̂N = arg min
θ∈Dθ

∑

t∈To

‖y(t)− ŷ(t|θ)‖22 + η‖Θ‖∗, Θ ∈ R
p

nb
2

×p
nb
2 (3.7)

where To denotes the set of time instants at which the output data are available, while

Θ is the (square) block Hankel matrix built with θ = {B1, ..., Bnb
}.

Through the resolution of problem (3.7), interpolation of missing output data is done

by fitting a model in the class of low-order dynamic systems. Differently from standard

approaches, the one due to Grossmann et al. (2009) does not require any assumption on

the way in which the available measurements should be interpolated.

Grossmann et al. (2009) exploit the reformulation of nuclear norm minimization as an

SDP (Fazel et al. (2001), equation (4)) to solve problem (3.7).

Hjalmarsson, Welsh, and Rojas (2012) takle the estimation of high-order ARX models by

including a noise model in the convex optimization framework considered in the work of

Grossmann et al. (2009). A high-order ARX model (2.25) is estimated by solving

θ̂N = arg min
θ∈Dθ

N∑

t=1

‖y(t)− ŷ(t|θ)‖22 + ηA‖ΘA‖∗ + ηB‖ΘB‖∗ (3.8)

where ΘAR
p na

2
×p na

2 and ΘB ∈ R
p

nb
2

×p
nb
2 respectively denote the block Hankel matrices

built with the coefficients of the polynomials A(q, θ) and B(q, θ). This regularization

serves as a penalty on complexity and pushes the estimated long ARX model to be close

to a low-order model, thus reducing the variance error.

Hjalmarsson et al. (2012) also exploit the SDP reformulation of the nuclear norm

minimization problem to solve (3.8); the regularization parameters ηA and ηB are

determined through cross-validation. A reweighted algorithm to solve problem (3.8) has

been proposed by Ha, Welsh, Blomberg, Rojas, and Wahlberg (2015).

An alternative type of regularization which has been recently introduced for PEM is

based on the so-called atomic norm (Shah, Narayan Bhaskar, Tang, and Recht, 2012;
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Bekiroglu, Yilmaz, Lagoa, and Sznaier, 2014). The authors propose the penalty

‖G(z)‖A = inf




∑

w∈B

|cw| : G(z) =
∑

w∈B

cw(1− |w|)2

z − w



 (3.9)

where B denotes the open unit ball in the complex plane C, while z takes values on the

unit circle of C. In Shah et al. (2012) it is shown that the atomic norm is equivalent

to the nuclear norm of the Hankel operator associated with G(z). Hence, the penalty

defined through (3.9) will prefer models having low-rank Hankel operators, and in turn

low McMillan degrees. A convex optimization problem is formulated to approximatively

solve the atomic norm minimization (Shah et al., 2012).

The stability of the derived estimators has been recently analyzed by Pillonetto et al.

(2016).

3.2 Regularization in Subspace Methods

3.2.1 `2 Regularization

`2 regularization has not found large application in connection with subspace identification.

Van Gestel, Suykens, Van Dooren, and De Moor (2001) propose the addition of an `2

penalty in the LS objective (2.100) adopted to estimate the system matrices. Namely,

[
Â B̂

]
= arg min

A∈Rn×n,B∈Rn×m

N∑

t=1

∥∥∥∥ˆ̃x(t+ 1)−
[
A B

] [ˆ̃x(t)

u(t)

] ∥∥∥∥
2

F

+ ‖AW 1/2‖2F (3.10)

Such regularized estimation should enforce the stability of matrix Â. Indeed, it is well-

known that for a finite number of data, the estimated system matrix Â is not guaranteed

to be stable, even when the true linear system is known to be stable. The value of the

regularization parameters W is determined through a generalized eigenvalue problem.

Similarly, Lacy and Bernstein (2003) reformulate the LS problem (2.100) as a constrained

convex linear programming problem.

3.2.2 `1 Regularization

The introduction of nuclear norm regularization in the context of subspace algorithms is

quite recent and involves the SVD step performed in equations (2.78) (or (2.89)). Indeed,

the truncation of the SVD entails an “hard” decision on the order of the system, which

may often be difficult in the presence of noise and short data records. In fact this step

has always been regarded as a critical one in subspace methods, see e.g. Bauer (2001).
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As an alternative, Liu and Vandenberghe (2009) propose to adopt nuclear norm reg-

ularization as a complementary method for computing the above-mentioned low-rank

approximations. In particular it is suggested that “surrogate” output data ŷN are

estimated solving

ŷN = arg min
ỹN

N∑

t=1

‖y(t)− ỹ(t)‖22 + η ‖ỸΠ⊥
U>‖∗ (3.11)

where Ỹ denotes the block Hankel matrix (2.61) built with unknown data, while Π⊥
U> is

the orthogonal projector onto the null-space of U, defined in (2.75).

Once the optimal solution ŷN of (3.11) is determined, the SVD of ŶΠ⊥
U> can be computed,

where Ŷ is here built with the data estimated through (3.11). Thanks to the nuclear norm

minimization step (3.11), a clear gap between the relevant and the non-relevant singular

values of ŶΠ⊥
U> should be detected, thus making the order selection a straightforward

choice.

Liu and Vandenberghe (2009) adopt an interior-point method to solve problem (3.11),

while Mohan and Fazel (2010) propose a variation inspired by so-called “iterative-

reweighted” schemes, which has been named “reweighted nuclear norm heuristic” (RNH).

RNH is based on the so-called reweighted trace heuristic (RTH, equation (5) in Mohan

and Fazel (2010)), which derives from the reformulation of the rank minimization problem

as a positive semidefinite one (equation (4) in Fazel et al. (2001)). At each iteration

RNH solves the problem

(
ŷN
)(k+1)

= arg min
ỹN

N∑

t=1

‖y(t)− ỹ(t)‖22 + η‖W (k)
l ỸΠ⊥

U>W
(k)
r ‖∗ (3.12)

and updates the weights W (k)
l and W (k)

r according to the current
(
ŷN
)(k+1)

. Mohan and

Fazel (2010) prove through numerical experiments that RNH makes model order selection

easier and returns lower model orders w.r.t. standard nuclear norm minimization (3.11).

The nuclear norm minimization of matrices with linear structure (e.g. Hankel, Toeplitz)

is further discussed in Fazel, Kei, Sun, and Tseng (2013), where various first-order

optimization methods are compared: these include alternating direction method of

multipliers (ADMM), proximal-point algorithms and gradient projection methods.

The original idea introduced by Liu and Vandenberghe (2009) to combine nuclear norm

regularization and subspace methods has been further developed by many authors during

the last years. Hansson, Liu, and Vandenberghe (2012) reformulate the optimization
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problem (3.11) as

ŷN = arg min
ỹN

N∑

t=1

‖y(t)− ỹ(t)‖2 + η ‖GIV (ỹN )‖∗ (3.13)

GIV (ỹN ) = W̃1ỸΠ⊥
U>Φ(uN , ỹN )>W̃2 (3.14)

where Φ(uN , ỹN ) denotes the instrumental variables matrix define in (2.66) (here the

dependence on the input and output data has been made explicit), while W̃1 and W̃2 are

the weighting matrices appearing in the SVD (2.89). The authors formulate an ADMM

algorithm in order to solve problem (3.13). Experiments performed in Hansson et al.

(2012) show that replacing the optimization problem (3.11) with (3.13) improves the

accuracy of the estimated model and also reduces the dimension of the optimization

problem, thus speeding up the problem resolution.

Liu, Hansson, and Vandenberghe (2013) adapt the subspace method combined with a

nuclear norm optimization step to identification problems with partially missing input

and output data. In this case problem (3.13) needs to be reformulated in order to account

for the non-linear dependence of the matrix GIV (ỹN ) in (3.14) w.r.t. to the inputs:

(ŷN , ûN ) = min
ỹN ,ũN

‖Φ(ỹN , ũN )‖∗ + η1

∑

t∈To

‖y(t)− ỹ(t)‖22 + η2

∑

t∈Ti

‖u(t)− ũ(t)‖22 (3.15)

In (3.15) To and Ti contain the time instants at which output and input measurements

are available, while Φ(ỹN , ũN ) is the instrumental variables matrix built with unknown

input and output data. The optimization variables in (3.15) are defined as: ỹN =

{ỹ(−s), ..., ỹ(N)}, ũN = {ũ(−s), ..., ũ(N)}. The choice of minimizing the nuclear norm

of matrix Φ(ỹN , ũN ) is motivated by the fact that

rank

[
Ũ

Ỹ

]
= n+ rank Ũ (3.16)

provided ũN and ỹN are, respectively, the input and output of a (noise free) linear system

and the input is persistently exciting. Thus, the rank of Φ(ỹN , ũN ) equals the true system

order plus a constant term.

After solving the optimization (3.15), the range of the extendend observability matrix

can be estimated from Φ(ŷN , ûN ), e.g. through an LQ factorization. Again, the authors

adopt a version of the ADMM algorithm to solve problem (3.15).

A further variation to the criterion (3.13) has been proposed by Sadigh, Ohlsson, Sastry,

and Seshia (2013) in order to detect output outliers in the training data. The authors
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assume that the measured output data yN = {y(1), ..., y(N)} have a sparse number of

outliers; no further assumptions on the specific time at which the outliers occur are done.

By introducing an error term ẽ(t) ∈ R
p which should represent the outlier appearing at

time t, the optimization (3.13) is modified as follows:

(ŷN , êN ) = arg min
ỹN ,ẽN

N∑

t=1

‖ỹ(t)− y(t)ẽ(t)‖22 + η1‖GIV (ỹN )‖∗ + η2

N∑

t=1

‖ẽ(t)‖1 (3.17)

The idea is to estimate both ỹN and the error term ẽN such that the error vector is

sparse and accounts for the outliers that occur in the measured data.

A recent contribution (Verhaegen and Hansson, 2014) proposes a modification of the

standard subspace algorithm in order to take into account the highly structured nature

of equation (2.60). The structural properties on which the authors focus are the low-rank

nature of the product OrX, the block-Toeplitz structure of Sr and the block-Hankel

structure of V. The authors observe that these properties are not exploited in the

first step of standard subspace methods, which typically use instrumental variables or

projections to transform the original data. To avoid the loss of information which could

arise because of these pre-processing steps, Verhaegen and Hansson (2014) suggest to

consider the above-mentioned structural properties in order to constrain the estimation.

Therefore, the first step of the N2SID algorithm they introduce consists in solving the

following problem

(Ŷ, Ŝr) = arg min
Ỹ∈Hp, S̃r∈Tp,m

N∑

t=1

‖y(t)− ỹ(t)‖22 + η‖Ỹ− S̃rU‖∗ (3.18)

where Tp,m denotes the set of lower-triangular block-Toeplitz matrices having p × m
matrices as block entries, while Hp is the set of block-Hankel matrices with block entries

of p column vectors. The idea is to recover the low-rank approximation of the extended

observability matrix by imposing the desired structural constraints.

Once the optimization (3.18) has been solved, the system order is then estimated through

the SVD of the matrix Ŷ − ŜrU. The authors also design an appropriate ADMM

algorithm to solve problem (3.18).

Smith (2014) extends the nuclear norm minimization to the frequency domain subspace

identification. A further extension of the concepts illustrated in this section has been

provided by Sznaier and Camps (2011), where rank minimization is exploited in order

to establish whether two vector time sequences could have been generated by the same

unknown LTI system. The proposed approach finds applications in computer vision and

image processing problems.
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3.3 Regularization in Non-Parametric Bayesian Methods

When a Gaussian prior distribution is adopted in presence of Gaussian noise, Bayesian

regression coincides with `2 regularization (as widely discussed in Section 2.4). Therefore,

the following distinction between `2 and `1 regularization may be misleading. What

actually distinguishes the penalties illustrated in Sections 3.3.1 and 3.3.2 is the sparsity

inducing property which characterizes the latter: specifically, Section 3.3.2 illustrates

`1-type penalties, which are designed in order to induce sparsity in the returned estimator.

3.3.1 `2 Regularization

As observed in Section 2.4.1.2, regularization is a necessary tool for function regression,

i.e. for the non-parametric system identification that is here treated. The explanation

in Section 2.4 has highlighted how the desired properties of the impulse response to

be estimated should be somehow encoded in the reproducing kernel associated to the

RKHS within which g(·) is searched for. Recalling that such kernel admits an equivalent

interpretation in terms of a covariance function in the Bayesian setting, such properties

could be equivalently encoded into the design of a suitable Gaussian prior distribution

for the stochastic process {g(k)}. To be in line with previous sections, the following

discussion adopts the regularization point of view, even if some comments arising from

the probabilistic perspective will be given.

For ease of notation, this section considers the SISO case (p = m = 1), while the MIMO

case will be treated in Section 3.3.2. In addition, the discrete-time domain treated so far

will be temporarily abandoned in order to faithfully follow the derivation of so-called stable-

spline kernels provided by Pillonetto and De Nicolao (2010). Indeed, their presentation

is based on the classical setting considered by the machine learning community, where a

continuous function has to be estimated using the available observations.

The key idea of the seminal paper Pillonetto and De Nicolao (2010) is the adaptation of

the spline kernels typically adopted in the statistical learning literature (Wahba, 1990) to

the purposes of system identification. The use of such kernels ensures that the computed

estimate is sufficiently smooth, according to the degree of smoothness encoded in the

kernel. Specifically, considering the continuous domain X = [0, 1], a spline kernel of order

p is defined as

K(p)(s, t) =
∫ 1

0
Gp(s, u)Gp(t, u)du, Gp(r, u) =

(r − u)p−1
+

(p− 1)!
(3.19)

where (r − u)+ = max{r − u, 0}. When this kernel is used to define the space H in
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problem (2.135), the estimated function ĝ is a so-called smoothing spline, because its

derivatives upto order 2p− 2 are continuous.

However, when the impulse response of a BIBO stable LTI system has to be reconstructed,

smoothness does not represent the unique desired property. It is well known that a

sufficient and necessary condition for BIBO stability is that the system impulse response

be absolutely integrable. As a consequence, it turns out that for system identification

applications the chosen kernel should induce a space of functions H contained in the

space of absolutely integrable functions. Considering the input space X = R+, it can

been proved that a necessary and sufficient condition for this to happen is that the kernel

itself is absolutely summable, that is

∫

R+

∫

R+

K
(p)
+ (s, t) ds dt <∞ (3.20)

where K+(·, ·) denotes the positive part of the kernel function. It turns out that the

spline kernel (as well as the Gaussian kernel (Rasmussen and Williams, 2006)) is not

stable when they are defined over X = R+. Stability for this kernel could be easily

ensured by truncating them, i.e. by setting K(p)(s, t) = 0, s, t > T . However, this trick

does not make the variability of the functions belonging to the space associated with

K(p) exponentially decreasing, which is instead a distinctive feature of stable kernels.

Adopting a Bayesian perspective and interpreting the impulse response as a realization

of a stochastic process with covariance (3.19), the previous considerations imply that the

variance of g is not asymptotically decreasing (actually, it is asymptotically increasing,

as observed in Figure 3.1 (left plot)).

To render the spline kernel stable, Pillonetto and De Nicolao (2010) introduces an

exponential change of coordinates to map R+ into [0, 1] and then to apply the spline

kernel there. Specifically, the proposed change of variables is

K(p)
τ (s, t) = K(p)(e−τs, e−τt), (s, t) ∈ R+ × R+, τ ∈ R+ (3.21)

with τ , playing the role of a hyper-parameter. By means of transformation (3.21), the

so-called first-order stable-spline kernel is derived:

K(1)
τ (s, t) = e−τ max{s,t} (3.22)

Analogously, the second-order stable-spline kernel is defined as

K(2)
τ (s, t) =

e−τ(s+t+max{s,t})

2
− e−3τ max{s,t}

6
(3.23)
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Figure 3.1: Left: Realizations of a zero-mean Gaussian process with covariance (3.19) and
p = 2. Right: Realizations of a zero-mean Gaussian process with covariance (3.23).

Figure 3.1 (right plot) shows realizations of a zero-mean Gaussian process with covariance

(3.23): clearly, its variance is exponentially decreasing. Recently, Chen, Ardeshiri, Carli,

Chiuso, Ljung, and Pillonetto (2016) have provided a Maximum-Entropy interpretation

of kernel (3.22), arising from the observation that stable-spline kernels are actually

covariance functions of time-varying backward AR processes. For instance, kernel (3.22)

can be obtained as the covariance of an AR process of order 1. Chen et al. (2016) show

that, for any t̄ ∈ N, the first-order stable-spline kernel is the solution of a Maximum

Entropy problem (Cover and Thomas, 1991):

max
g(t)

H (g(t0), g(t1), · · · , g(tt̄)) (3.24)

s.t. Var (g(ti+1)− g(ti)) = c(e−τti − e−τti+1) (3.25)

E[g(ti)] = 0, i = 0, ..., t̄− 1

where H(·) denotes the entropy function.

The discrete domain can be straightforwardly recovered by setting β = e−τ :

K
(p)
β (s, t) = K(p)(βs, βt), (s, t) ∈ N× N, β ∈ [0, 1] (3.26)

Accordingly, the discrete version of the first-order stable-spline kernel is given by

KT C
β (s, t) = βmax{s,t}, β ∈ [0, 1] (3.27)

In the system identification literature (3.27) is known as the TC (tuned/correlated)

kernel: this is the name with which it was originally proposed by Chen et al. (2012) in a
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regularized LS setting. That work also introduced the so-called DC (diagonal/correlated)

kernel, defined as

KDC
η (s, t) = β(s+t)/2ρ|s−t|, (s, t) ∈ N× N, β ∈ [0, 1), ρ ∈ [−1, 1] (3.28)

with η = [β, ρ]. The Maximum Entropy interpretation of this kernel has been investigated

by Carli, Chen, and Ljung (2014).

More details on the derivation of the stable-spline kernels are provided by Pillonetto et al.

(2014) and Dinuzzo (2015).

Extensions of these basic kernels have been considered in the recent system identification

literature. Chiuso et al. (2014) suggest a superposition of stable-spline kernels, which

allows to combine structural properties (such as exponentials of exponentially modu-

lated sinusoids) with a random process built from the Brownian bridge. Such kind of

construction has proved to be particularly efficient when dealing with resonant systems.

Remark 3.3.1. Typically, the described kernels are all equipped with a scaling factor

λ ∈ R+, which is treated as an hyper-parameter. Consequently, the adopted kernels are

Kη(s, t) = λK
(p)
β (s, t), λ ∈ R+, η = [λ, β] (3.29)

with K
(p)
β (s, t) defined e.g. as in equation (3.26).

An alternative approach for kernel design is taken by Darwish, Tóth, and van den Hof

(2014) and Chen and Ljung (2014), who construct RKHS of impulse responses spanned

by orthonormal basis functions on the unit circle (e.g. Laguerre basis (Wahlberg, 1991)).

The associated reproducing kernel is a combination of such bases, whose poles are treated

as hyper-parameters and hence estimated from the given data. To satisfy the stability

constraint imposed by BIBO stable systems, a decaying prior on the basis coefficients

is postulated. The results reported in Chen and Ljung (2014) suggest that this kernel

design may provide some advantages w.r.t. the classical TC kernels above-mentioned.

3.3.2 `1 Regularization

The types of penalties described in Section 3.3.1 only account for certain properties

of the impulse response to be estimated (such as smoothness and stability). However,

the corresponding kernels are not able to reproduce certain structural features of the

system to be estimated, which are of extreme importance when MIMO systems have to

be identified. Indeed, the focus of this section will go back to the reconstruction of MIMO

systems, where not only the impulse responses connecting each input-output channel
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have to be estimated but also the interplay between different input and output channels

should be taken into account. A primary goal in this setting is structure detection (as

already observed in the introduction to this chapter), i.e. the capability of detecting

which inputs influence a certain output. This means that, if the impulse responses are

collected in a vector g ∈ R
pmT , with T denoting the impulse response length

g = [g>
11 g>

12 · · · g>
1m · · · g>

p1 · · · g>
pm]> (3.30)

gij = [gij(1) gij(2) · · · gij(T )]> , i = 1, .., p, j = 1, ..,m

the identification method should return an estimate ĝ with possibly null block entries

(i.e. ĝij = 0T for some i, j).

Another structural property which involves also SISO systems regards the possible time-

varying nature of the system to be identified: for instance, if the system poles undergo

certain abrupt changes, the identification procedure should be able to detect them. In

this case, collecting in θt ∈ R
pmT the impulse response coefficients at time t, a suitable

identification algorithm should estimate {θT +1, ..., θN} and return θt = θt+1 when no

modifications happen.

These examples highlight that such problems could be tackled by resorting to sparsity

inducing regularization techniques. The approach which has been mainly pursued in

the system identification literature is the so-called Sparse Bayesian Learning (SBL),

introduced by Tipping (2001). Such learning algorithm also shares several features with

the Automatic Relevance Determination (ARD) (MacKay and Neal, 1994; Wipf and

Nagarajan, 2008). The way in which SBL algorithms work can be easily understood

through the following trivial example, derived by Aravkin et al. (2012) and reported in

Chiuso (2016).

Example 3.3.2. Consider the data yN , generated according to

y(t) = θ + e(t), θ ∈ R, e(t) i.i.d.∼ N (0, σ) (3.31)

Assuming a zero-mean Gaussian prior for θ, θ ∼ N (0, η), the estimator η̂EB computed

by marginal likelihood maximization (as in equation (2.183)) is given by

η̂EB = max

{
0,

(
1
N

N∑

t=1

y2(t)

)
− σ

}
(3.32)

Hence, if the sample variance of the measured data is below the noise variance, the

hyper-parameter estimate is zero and in turn θ̂ = E[θ|YN , η̂EB] = 0. �
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Following the SBL approach, Chiuso and Pillonetto (2010, 2012) propose to treat the

impulse responses gij , i = 1, ..., p, j = 1, ...,m, as independent random vectors, thus

postulating a Gaussian prior with a block diagonal covariance matrix:

g ∼ N (0pmT , K̄η), K̄η = blockdiag(K̄η, ..., K̄η) (3.33)

with

K̄ηij
= λijK̄β , K̄β ∈ R

T (3.34)

In particular, K̄β is set equal to one of the kernels illustrated in Section 3.3.1. According

to Example 3.3.2, estimating λij , i = 1, ..., p, j = 1, ...,m, through marginal likelihood

maximization will enforce block-sparsity in the vector ĝ. It should be noticed that this

algorithm coincides with solving the following `2-type regularization problem

ĝ = arg min
g∈RpmT

N∑

t=1

‖y(t)− ϕ>(t)g‖2Σ−1 +
p∑

i=1

m∑

j=1

g>
ij

K̄−1
β

λ̂EB,ij

gij (3.35)

where ϕ(t) is the matrix containing past input data (defined in equation (2.181)), Σ

denotes the noise variance and the regularization parameters λij have been fixed through

evidence maximization. A more general version would estimate a separate kernel K̄βij

for each input-output channel.

A similar approach is taken by Chen et al. (2014) for the segmentation of SISO systems.

Specifically, considering the aforementioned setting, the problem is tackled by solving

(θ̂T +1, ..., θ̂N ) = arg min
θT +1,...,θN

N∑

t=1

‖y(t)− ϕ>(t)θt‖2Σ−1 + (θt − θt−1)>K̄(αt)−1(θt − θt−1)

K̄(αt) : =
r∑

i=1

λi,tK̄, αt := [λ1,t, · · · , λr,t]> (3.36)

where again λi,t, i = 1, ..., r, t = 1, ..., N are fixed through marginal likelihood maximiza-

tion. If αt = 0 for some t = T+1, ..., N , then θt = θt−1. The authors observe that problem

(3.36) is actually a difference of convex programming (DCP) problems, meaning that a lo-

cally optimal solution can be efficiently found (e.g. by using a majorization-minimization

algorithm or an interior-point technique).

SBL algortihms have been largely compared with LASSO (or Grouped-LASSO) estimators

in the machine learning literature (see e.g. Wipf, Rao, and Nagarajan (2011)). In

particular, Aravkin, Burke, Chiuso, and Pillonetto (2014) prove the superiority of SBL

in terms of achieving a better trade-off between shrinkage and sparsity. Indeed, besides
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recovering the sparsity pattern of the unknown variable, LASSO estimators also tend

to shrink the estimated non-zero coefficients, thus possibly compromising the recovery

of the true unknown quantity. On the other hand, the estimates returned by SBL have

proved to be more effective in the reconstruction of the sparsity pattern and in the correct

estimation of the non-zero coefficients.

Modelling the impulse responses of a MIMO system as independent Gaussian processes (as

in the above-detailed approach) has a major drawback: the coupling between the impulse

responses gij connecting different input-output channels is not captured; this is especially

true when the system has a low McMillan degree. To encode such property in a suitable

identification criterion, penalties inducing low McMillan degree should be adopted: as

observed in the introduction of this chapter, nuclear norm penalties on the system Hankel

matrix are appropriate candidates for this task. Despite the broad application that

nuclear norm regularization has recently found in the system identification literature (as

detailed in the previous sections), direct use of nuclear norm (or atomic) penalties may

lead to undesired behaviour, as suggested and studied in Pillonetto et al. (2016), due

to the fact that nuclear norm is not able alone to guarantee stability and smoothness

of the estimated impulse responses. To address this limitation, Chiuso, Chen, Ljung,

and Pillonetto (2013) suggest to estimate the system impulse response by combining the

stability/smoothness penalty with the nuclear norm one:

ĝ = arg min
g∈RpmT

N∑

t=1

‖y(t)− ϕ>(t)g‖2Σ−1 + λ1g>K̄−1
β g + λ2‖G‖∗ (3.37)

In equation (3.37) ϕ(t) denotes the matrix (2.181) containing past input data, G is the

Hankel matrix built with impulse response coefficients and K̄β is one of the stable-spline

kernels detailed in Section 3.3.1. In this case K̄β is not constrained to be block-diagonal.

However, it should be observed that formulation (3.37) does not admit a fully Bayesian

interpretation, since no Gaussian prior gives rise to a regularization function JR(g, η) =

η‖G‖∗: hence, evidence maximization can not be exploited for the estimation of η =

[λ1, λ2, β]. Indeed, Chiuso et al. (2013) assume that the hyper-parameters defining

the stable-spline kernel K̄β have been already fixed through a previous identification

procedure, while they estimate λ1 and λ2 in (3.37) through cross-validation.

Next section will extend this latter idea, by adopting a Bayesian perspective and devel-

oping a Gaussian prior accounting for both stability and complexity (measured in terms

of McMillan degree) of the identified system.
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3.4 Combining `2 and `1 regularization in Non-parametric

Bayesian system identification: a Maximum-Entropy

derivation

The section will develop, by means of Maximum Entropy arguments, a vector-valued ker-

nel accounting both for the stability of the system to be estimated and for its complexity,

as measured by its McMillan degree. The prior distribution here introduced leads, as a

special case, to an Hankel nuclear norm penalty.

By exploiting the newly developed prior distribution, inspired by the growing literature

on iterative reweighted algorithms, an iterative procedure is designed, which alterna-

tively updates the impulse response estimate and the hyper-parameters defining the

prior. Standard iterative reweighted algorithms solve regularized estimation problems

by alternatively updating the estimate and the regularization parameters (referred as

“weights” in this context). These methods have been first introduced in compressive

sensing applications, in order to improve the recovery of sparse solutions in presence of few

measurements Candes, Wakin, and Boyd (2008); Chartrand and Yin (2008); Daubechies

et al. (2010). Mohan and Fazel (2012) and Fornasier, Rauhut, and Ward (2011) have

extended these algorithms to the Affine Rank Minimization Problem (ARMP), while

Wipf and Nagarajan (2010) developed a reweighting scheme for the Sparse Bayesian

Learning (SBL) setting (Tipping, 2001), where the weights update corresponds to a

hyper-parameter update. The algorithm here designed differs from these cited above

in that the regularization matrix takes on a very special structure, described by a few

hyper-parameters. This special structure acts indeed as an hyper-regularizer which helps

avoiding overfitting, but has the drawback that no closed-form solution is available for the

weights (i.e. hyper-parameters) update. Indeed, this step is performed through marginal

likelihood maximization following the so-called Empirical Bayes approach.

As the title of this section may suggest, the prior which will be here derived leads to a

regularization term which could resemble the well-known elastic-net regularization (Zou

and Hastie, 2005). This technique combines `1- and `2-type regularization in order to

enforce shrinkage and sparsity in the returned estimate. The approach here developed

differs from the standard elastic net in the implementation of the sparsity inducing term,

which is here a weighted `2-type regularization (with a weighting suitably designed to

enforce sparsity). This property directly results from the derivation of the regularization

term by means of Bayesian arguments and, in particular, by the use of a Gaussian prior

distribution.
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Section 3.4.1 details how the mentioned prior is derived, while Section 3.4.2 illustrates

the iterative algorithm which computes the final impulse response estimate. Finally,

Section 3.4.3 describes an adaptation of the SGP routine (Algorithm 1), which has been

developed to solve the marginal likelihood maximization problem arising in this setup.

For simplicity, the impulse response to be estimated will be here treated as a finite-

dimensional vector g ∈ R
pmT (as defined in equation (2.178)).

3.4.1 Maximum-Entropy design of stable Hankel-type penalties

In Section 3.3.1, the Maximum Entropy derivation of the first-order stable spline kernel

(3.22) has been mentioned (Chen et al., 2016). Here, its discrete version, the TC kernel

(3.27) will be considered and denoted as K̄S,ν , with ν being its hyper-parameters. It is

easy to see that the Gaussian prior with covariance (3.27) can be derived as the solution

of a Maximum Entropy problem with constraints

E

[
g>K̄−1

S,νg
]

= k̄ (3.38)

E [g(k)] = 0, k = 1, ..., k̄ (3.39)

where the expectation is taken w.r.t. the probability distribution p(g). Note, in fact,

that the constraint set (3.38) contains (3.25).

When dealing with MIMO systems, a possible approach is to consider a block-diagonal

kernel (as suggested e.g. by Chiuso and Pillonetto (2012), here outlined in equation (3.33)).

However, this assumption is often unreasonable, since the possible coupling between

the different input-output channels is not accounted for. Recalling the introductory

discussion to the chapter, such coupling could be accounted for through a suitable penalty

on the block-Hankel matrix G, built with the impulse response coefficients.

In this setting, r and c will respectively denote the number of block rows and columns

appearing in G. Their values are chosen so that r + c− 1 = T and the matrix G is as

close as possible to a square matrix. Furthermore, for the purpose of normalization, a

weighted version G̃ of G is considered:

G̃ := W1GW2 (3.40)

Specifically, W1 and W2 are chosen so that the singular values of G̃ are conditional

canonical correlation coefficients between future outputs and near past inputs, given the

future inputs and remote past inputs. We refer to Chiuso et al. (2013) for more details
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on the derivation of W1 and W2. Notice that the notation adopted for these weighting

matrices is analogous to that used in equation (2.78) for subspace algorithms. Such

choice is done to highlight the connections between the two approaches.

Remark 3.4.1. For Gaussian processes, there is a one-to-one correspondence between

the Canonical Correlation Analysis (CCA) and mutual information. Indeed, the mutual

information between past (y−) and future (y+) of a Gaussian process {y(t)} is given by:

I(y+; y−) = −1
2

n∑

k=1

log(1− ρ2
k) (3.41)

where ρk is the k-th canonical correlation coefficient and n is the McMillan degree of a

minimal spectral factor of y.

This provides a clear interpretation of canonical correlations as well as of the impact of

shrinking them in terms of mutual information. A similar interpretation holds for systems

with inputs, which relates conditional mutual information and conditional canonical

correlations, i.e. the singular values of (3.40).

In the following, the design of a kernel allowing to reduce the complexity of the estimated

system, i.e. the rank of the corresponding block Hankel matrix, is illustrated. This kernel

will derive from the covariance matrix of a Maximum Entropy distribution built under

suitable constraints.

The aim now is to formulate a probability distribution p(g) for g, such that samples

drawn from p(g) have low rank (or close to low rank) Hankel matrices. To this purpose,

some of the singular values of G should be favoured to be zero: this can be achieved

imposing constraints on the eigenvalues of the weighted matrix G̃G̃>. Denoting with

ui(g) the i-th singular vector of G̃G̃>, the corresponding singular value (or, equivalently,

the eigenvalue) is given by

s2
i (g) = ui(g)>G̃G̃>ui(h), i = 1, ..., pr (3.42)

In the spirit of Sparse Bayesian Learning (SBL) ideas (Tipping, 2001), a constraint of

the following type can be imposed:

E

[
s2

i (g)
]

= E

[
ui(g)>G̃G̃>ui(g)

]
≤ ωi, i = 1, ..., pr (3.43)

where the expectation is taken w.r.t. p(g). The ωi’s play the role of hyper-parameters

that have to be estimated from the data1.
1In fact, one shall not estimate directly the ωi’s, but rather the corresponding dual variables appearing

in the Maximum Entropy distribution, i.e. the λi’s in (3.51).
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To the purpose of defining a distribution for g which encodes the desired prior knowl-

edge, an estimate ĝ of g is assumed to be available. Section 3.4.2 will detail how this

“preliminary” estimate of g arises as an intermediate step in an alternating minimization

algorithm.

Thus, the (weighted) estimated Hankel matrix ̂̃
G and its singular value decomposition

are considered:

Û ŜÛ> := ̂̃
G
̂̃
G

>

(3.44)

The constraints (3.43) can now be formulated as

E

[
û>

i G̃G̃>ûi

]
≤ ωi, i = 1, ..., pr (3.45)

where ûi denotes the i-th column of Û . In this way the vectors ûi are fixed, thus leaving

all the modelled uncertainty modelled to the prior on the weighted Hankel matrix G̃.

However, having fixed the ûi’s, which in general are not the (exact) singular vectors of

the “true” Hankel matrix, introduces a perturbation on the constraints (3.45), and in

turn on the resulting prior distribution. One way to make the constrains (3.45) robust

to such perturbations is to group the estimated singular vectors in the so-called “signal”

and “noise” subspaces. To this purpose, the first n singular vectors are grouped, while Û

and Ŝ are partitioned as follows:

Û =
[
Ûn Û⊥

n

]
, Ŝ = blockdiag(Ŝn, Ŝ

⊥
n ) (3.46)

where Ûn ∈ R
pr×n. Note that, while the ûi’s corresponding to small singular values

are likely to be very noisy, both the “signal” space spanned by the columns of Ûn, as

well as that spanned by ûi, i = n+ 1, .., pr, i.e. the column space of Û⊥
n are much less

prone to noise. This is easily derived from a perturbation analysis of the singular value

decomposition which shows that the error in Û⊥
n depends on the gap between the smallest

singular value of Ŝn and the largest of Ŝ⊥
n . In view of these considerations, the constraints

(3.45) can be relaxed by aggregating the “signal” components (i.e. the first n singular

vectors):

E

[
n∑

i=1

û>
i G̃G̃>ûi

]
≤

n∑

i=1

ωi (3.47)

i.e.

E

[
Tr
[
Û>

n G̃G̃>Ûn

]]
≤

n∑

i=1

ωi (3.48)

Similarly, the constraints on the “noise” component (i.e. the last pr − n singular vectors)
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are grouped:

E




pr∑

i=n+1

û>
i G̃G̃>ûi


 ≤

pr∑

i=n+1

ωi (3.49)

that is,

E

[
Tr
[(
Û⊥

n

)>
G̃G̃>Û⊥

n

]]
≤

pr∑

i=n+1

ωi (3.50)

Notice that these constraints are relaxed w.r.t. the ones in (3.45), since here only the

sum is involved.

Exploiting a well-known result (Cover and Thomas, 1991, p. 409), the Maximum Entropy

distribution subject to constraints (3.48)-(3.50) can be built as:

pζ(h) ∝ exp
(
−λ1Tr

{
Û>

n G̃G̃>Ûn

})
· exp

(
−λ2Tr

{(
Û⊥

n

)>
G̃G̃>Û⊥

n

})

∝ exp
(
−Tr

{
Û>G̃G̃>Û blockdiag(λ1In, λ2Ipr−n)

})

∝ exp
(
−Tr

{
G̃G̃>Q̂(ζ)

})

(3.51)

where ζ := [λ1, λ2, n], λ1 ≥ 0, λ2 ≥ 0, and the last equation uses

Q̂(ζ) :=Û blockdiag(λ1In, λ2Ipr−n) Û> = λ1ÛnÛ
>
n + λ2Û

⊥
n

(
Û⊥

n

)>
(3.52)

Remark 3.4.2. It should be stressed that the quality of the relaxation introduced in

constraints (3.48)-(3.50) depends on the relative magnitude of the Hankel singular values.

Using the “normalized” Hankel matrix (3.40) plays an important role here since its

singular values, being canonical correlations, are all in the interval (0, 1]. On the other

hand, the aggregation of the singular values along the “noise” subspace resembles the role

played by the regularization factor in Iterative Reweighted methods Chartrand and Yin

(2008); Wipf and Nagarajan (2010). The reader is referred to Section 3.4.2.3 for a further

discussion on the connection between these methods and the approach here proposed.

Remark 3.4.3. Notice that Q̂(ζ) in (3.52) is actually the weighted sum of two orthogonal

projections, respectively on the so-called “signal subspace” (that would coincide with

the column space of G̃ if n was the true system order) and on the “noise subspace”.

This observation provides new insights on the design of the prior in (3.51): namely, by

properly tuning the hyper-parameters ζ, the prior is intended to be stronger along certain

directions of the column space of G̃ (referred to as the “noisy” ones) and milder along

what we call the “signal” directions.
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Since G̃ is linear in g, Tr
[
G̃G̃>Q̂(ζ)

]
can be rewritten as a quadratic form in g. Indeed,

letting Q̂(ζ) = LL>,

Tr
[
G̃G̃>Q̂(ζ)

]
= Tr

[
L>G̃G̃>L

]
(3.53)

= ‖vec(G̃>L)‖22
= ‖(L>W1 ⊗W>

2 )vec(G>)‖22
= ‖(L>W1 ⊗W>

2 )Pg‖22
= g>P>(W>

1 Q̂(ζ)W1 ⊗W2W
>
2 )Pg (3.54)

where P ∈ R
rpcm×T mp is the matrix which vectorizes G>, i.e. vec

(
G>

)
= Pg. Equation

(3.51) can then be rewritten as

pζ(g) ∝ exp
(
−g>P>(W>

1 Q̂(ζ)W1 ⊗W2W
>
2 )Pg

)
(3.55)

so that pζ(g) is the probability density function of a zero-mean Gaussian vector, i.e.:

g ∼ N (0T mp, K̄H,ζ) (3.56)

K̄H,ζ =
[
P>(W>

1 Q̂(ζ)W1 ⊗W2W
>
2 )P

]−1
(3.57)

ζ = [λ1, λ2, n] (3.58)

By adopting (3.56) as a prior distribution for g, the problem of estimating g can be

recast under the framework outlined in Section 2.4.2.3. In particular, ζ play the role of

hyper-parameters; as λ2 →∞, realizations g from (3.56) are (close to) low order systems

with (weighted) Hankel matrices G̃ having the n-dimensional principal subspace close to

the column space of Ûn. Conversely, as λ1 → 0, the n-dimensional principal subspace

of G̃ is not penalized, thus leading to an improper prior, flat along some directions.

This feature allows to reduce the bias of the estimator along the “signal” subspace.

Thus complexity (in terms of McMillan degree) is controlled by properly choosing the

hyperparametrs λ1, λ2, n, which can be done by marginal likelihood maximization as

outlined in Section 3.4.2.

It is worth to observe that the quadratic nature of (3.55) w.r.t. g derives from the fact

that the constraints (3.45) are quadratic in g.

A prior distribution is now formulated, which enforces both stability (imposing constraint

(3.38)) and low complexity (imposing (3.48) and (3.50)) of the estimated system. Using

again (Cover and Thomas, 1991, p. 409), the Maximum Entropy distribution under
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(3.38), (3.48) and (3.50) takes then the form:

pη(g) ∝ exp
(
−λ0g>K̄−1

S,νg− g>K̄−1
H,ζg

)

∝ exp
(
−g>

(
λ0K̄

−1
S,ν + K̄−1

H,ζ

)
g
)

(3.59)

where η = [ν, λ0, ζ], λ0 ≥ 0, and K̄H,ζ is the kernel in (3.57). The use of a further

hyper-parameter, λ0, will become clear later on. From the distribution (3.59) the kernel

K̄SH,η =
(
λ0K̄

−1
S,ν + K̄−1

H,ζ

)−1
(3.60)

=
[
λ0K̄

−1
S,ν + P>(W>

1 Q̂(ζ)W1 ⊗W2W
>
2 )P

]−1

is derived, with hyper-parameters

η = [ν, λ0, ζ] (3.61)

and ζ as defined in (3.58). This kernel leads to both stable and low-complexity estimates,

as will be demonstrated in Section 3.5.

Remark 3.4.4. As thoroughly discussed in Pillonetto et al. (2016), the kernel arising

from the “Hankel” constraint alone would not necessarily lead to stable models. In fact,

given an unstable system and its finite Hankel matrix G, it is always possible to design a

stable system whose finite Hankel matrix (with the same size of G) has the same singular

values of G. In addition, the Hankel prior does not include information on the correlation

among the impulse response coefficients (see Pillonetto et al. (2016)).

3.4.1.1 Variational Derivation of the Hankel-type prior

Adopting a regularization point of view, i.e. casting the Bayesian estimation problem

under the framework of Section 2.4.1.3, the penalty induced by the kernel (3.57) can be

also derived through a variational bound (Prando, Chiuso, and Pillonetto, 2014; Wipf,

2012).

Indeed, in order to force sparsity on the vector s(g) of the singular values of G̃, one should

penalize its `0-norm, ‖s(g)‖0, which is equal to the number of non-zero components of

s(g). However, since this norm can not be expressed as a quadratic form of g, it can not

fit the `2-penalty appearing in (2.150). Observing that

∑

i

log |si(g)| ≡ lim
p→0

1
p

∑

i

(|si(g)|p − 1) ∝ ‖s(g)‖0 (3.62)
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the `0-norm of s(g) can be approximated by its Gaussian entropy measure
∑

i log |si(g)|.
These considerations suggest to adopt the penalty

∑
i log |s2

i (g)| = log |G̃G̃>| 2, which

can be upper bounded by a quadratic form of g. To this purpose, one should first observe

that the concave function log |G̃G̃>| can be expressed as the minimum over a set of

upper-bounding lines (Wipf, 2012):

log |G̃G̃>| = min
Ψ�0

Tr
[
G̃G̃>Ψ−1

]
+ log |Ψ| − rp (3.63)

with Ψ ∈ R
rp×rp being a positive definite matrix of so-called variational parameters. By

adopting log |G̃G̃>| as regularization function and by using its expression in (3.63), one

has

ĝ = arg min
g∈RpmT

(YN − ΦN g)>Σ̃−1
N (YN − ΦN g) + Tr

[
G̃G̃>Ψ−1

]
(3.64)

where YN and ΦN have respectively defined in (2.123) and (2.180), while Σ̃N is the noise

covariance matrix in equation (2.171). Exploiting the expression of the trace term found

in (3.54), problem (3.64) can be rewritten as

ĝ = arg min
g∈RpmT

(YN − ΦN g)>Σ̃−1
N (YN − ΦN g) + g>P>(W>

1 Ψ−1W1 ⊗W2W
>
2 )Pg

(3.65)

In view of (3.63), all the variational parameters contained in Ψ should be treated as

hyper-parameters, i.e.

K̄H,ζ =
[
P>(W>

1 Ψ−1W1 ⊗W2W
>
2 )P

]−1
, ζ = Ψ (3.66)

However, this choice generally leaves too many degrees of freedom in shaping of the kernel.

In turn this fact has two detrimental effects: first, it could lead to overfitting in the final

impulse response estimate and second it makes the solution of the marginal likelihood

maximization problem (2.183) rather involved. These problems do not arise adopting the

kernel (3.57) derived above by means of Maximum Entropy arguments, since the number

of hyper-parameters is significantly reduced thanks to the specific structure postulated

for the regularization matrix (3.52).

2The identity Trace[log(A)] = log(det(A)) has been used.
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3.4.1.2 Connection with Nuclear Norm minimization approaches

Notice that, when ζ∗ = [λ∗, λ∗, 0], the trace penalty (3.53) can be rewritten as

Tr
[
G̃G̃>Q̂(ζ∗)

]
= Tr

[
G̃G̃>λ∗Irp

]
= λ∗

∑

i

s2
i (g) (3.67)

where si(g) are the singular values of G̃. Thus, the nuclear norm penalty on the (squared)

Hankel matrix can be derived as a special case, i.e. for a special choice of the hyper-

parameters.

The approach here proposed differs from those discussed in Sections 3.1.2 and 3.2.2

mainly for three reasons. First, a special weighting scheme, depending upon three hyper-

parameters is proposed, which is robust against overfitting and reduces bias. Second,

casting the nuclear norm minimization step into a Bayesian framework allows to use

marginal likelihood approaches to estimate the hyper-parameters: while these techniques

have been shown to be robust against noise (Pillonetto and Chiuso, 2015), they also

allow to combine the weighted nuclear norm penalty with other penalties (as done in

(3.60)). Third, while the works mentioned in Sections 3.1.2 and 3.2.1 adopt a nuclear

norm penalty on the Hankel matrix, here the penalty is imposed on the squared Hankel

matrix, thus leading to an `2 penalty on the Hankel singular values. This is essential in

order to derive a Gaussian prior, implying that the marginal likelihood is available in

closed form. Finally, notice that in the approach here considered, sparsity in the Hankel

singular values is favoured by the weighting Q̂(ζ).

Remark 3.4.5. The algorithm here proposed, which uses the “squared” Hankel matrix,

can be seen as an extension to the matrix case of so-called reweighted-`2 algorithm (see

e.g. Wipf and Nagarajan (2010)) for sparse estimation; see also Section 3.4.2.3 for more

details).

3.4.2 Identification Algorithm

This section describes the iterative algorithm developed to estimate the impulse response

g when the prior (3.59) is chosen. The algorithm alternates between the estimation of

ĝ (according to equation (2.148)) for fixed hyper-parameters and marginal likelihood

optimization (2.183).

The procedure is summarized in Algorithm 5. For ease of notation the vector λ :=

[λ0, λ1, λ2] has been defined. Consequently, the hyper-parameters vector η in (3.61) can

be rewritten as

η = [ν, λ0, ζ] = [ν, λ0, λ1, λ2, n] = [ν, λ, n] (3.68)



3.4 Combining `2 and `1 regularization in Non-parametric Bayesian system
identification: a Maximum-Entropy derivation 103

Furthermore, ĝ(k), η̂(k), λ̂(k) and n̂(k) denote estimators at the k-th iteration of the

algorithm.

Remark 3.4.6. In Algorithm 5 the noise variance Σ is fixed to e.g. the sample variance of

an estimated ARX or FIR model. Of course Σ could also be treated as a hyper-parameter,

and estimated with the same procedure based on the marginal likelihood.

Algorithm 5 Identification Algorithm

1: Set the resolution ε > 0
2: Estimate Σ̂ as illustrated in Remark 3.4.6.
3: n̂(0) ← 0
4: Ûn̂(0) ≡ Û0 ← 0rp×rp

5: Û⊥
n̂(0) ← Irp

6: ν̂ ← arg maxν∈Ω py(YN |ν, [1, 0, 0] , n̂(0), Σ̂)
7: λ̂(0) ← arg maxλ∈R3

+
py(YN |ν̂, λ, n̂(0), Σ̂)

8: k ← 0
9: while n̂(k) < pr do

10: ĝ(k) ← E[g|YN , η̂
(k), Σ̂] (using (2.148))

11: Compute the SVD: ˜̂G
(k) ˜̂

G
(k)>

= Û ŜÛ>

12: n̂(k+1) ← n̂(k)

13: Determine Ûn̂(k+1) and Û⊥
n̂(k+1) from Û

14: λ̂(k+1) ← arg maxλ∈R3
+
py(YN |ν̂, λ, n̂(k+1), Σ̂)

15: if py(YN |ν̂, λ̂(k+1), n̂(k+1), Σ̂) > (1 + ε)py(YN |ν̂, λ̂(k), n̂(k+1), Σ̂) then
16: k ← k + 1
17: else
18: n̂(k+1) ← n̂(k) + 1
19: Perform steps 13 to 14.
20: if py(YN |ν̂, λ̂(k+1), n̂(k+1), Σ̂) > (1 + ε)py(YN |ν̂, λ̂(k), n̂(k+1), Σ̂) then
21: k ← k + 1
22: else
23: break
24: end if
25: end if
26: end while
27: Return ĝ← ĝ(k)

Notice that the marginal likelihood maximization performed in steps 7 and 14 of Algorithm

5 boils down to the following optimization problem:

λ̂(k) = arg min
λ∈R3

+

Y >
N Λ(ν̂, λ, n̂(k), σ̂)−1YN + log |Λ(ν̂, λ, n̂(k), Σ̂)| (3.69)
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where

Λ(η,Σ) := Σ̃N + ΦNK̄SH,ηΦ>
N (3.70)

and Σ̃N has been defined in equation (2.171). Section 3.4.3 will illustrate a Scaled

Gradient Projection (SGP) method appropriately designed to solve (3.69). Issues related

to initialisation and convergence of Algorithm 5 are now discussed.

3.4.2.1 Algorithm Initialization

The derivation of kernel K̄SH,η in Section 3.4.1 has assumed that a preliminary estimate

ĝ was available. Therefore the iterative algorithm outlined in this section has to be

provided with an initial estimate ĝ(0). Exploiting the structure of the kernel K̄SH,η in

(3.60), two straightforward choices are possible:

1. Initialize using only the stable-spline kernel (as the one in (3.27)), i.e.:

ĝ(0) =
(
Φ>

N Σ̃−1
N ΦN + K̄−1

S,ν̂(0)

)−1
Φ>

N Σ̃−1
N YN

η̂(0) =
[
ν̂(0), λ̂(0), 0

]
, λ̂(0) = [1, 0, 0] (3.71)

where only the hyper-parameters ν̂(0) are estimated through marginal-likelihood

maximization (2.183).

2. Initialize using the stable-Hankel kernel with n̂ = 0, so that no preliminary estimate

is needed to initialize Ûn (which is empty) and thus Q̂(ζ̂(0)) = λ̂
(0)
2 I:

ĝ(0) =
(
Φ>

N Σ̃−1
N ΦN + K̄−1

SH,η̂(0)

)−1
Φ>

N Σ̃−1
N YN

η̂(0) =
[
ν̂(0), λ̂(0), 0

]
, λ̂(0) =

[
1, λ̂(0)

2 , λ̂
(0)
2

]
(3.72)

where ν̂(0) and λ̂(0)
2 are estimated through marginal likelihood maximization (2.183).

The procedure that is actually followed in Algorithm 5 combines the two strategies

above. Namely, the first approach is adopted to fix the hyper-parameters ν̂ defining

the stable-spline kernel (line 6). These are then kept fixed for the whole procedure.

We then follow the second strategy to estimate λ̂(0) (line 7). Note that in line 7 the

hyper-parameters ν are fixed to ν̂ and not estimated as in (3.72). Analogously, λ̂(0)
0 is

estimated by marginal-likelihood maximization and not set a-priori to 1 as in (3.72).

Therefore, the estimate ĝ(0) computed at line 10 is derived by adopting the kernel K̄SH,η̂(0)

with η̂(0) = [ν̂, λ̂(0), 0].

This sort of “hybrid” strategy has been chosen for two main reasons. First, it allows to
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fix the hyper-parameters ν by solving a simplified optimization problem (w.r.t. solving a

problem involving all the hyper-parameters η). Notice that this also provides the user

with a certain freedom on the choice of the kernel K̄S,ν : using other kernel structures

(see e.g. Chiuso et al. (2014)) additional properties (e.g. resonances, high-frequency

components, etc.) of the impulse response can be accounted for. Second, it also allows

to properly initialize the iterative procedure used to update the hyper-parameters λ0

and ζ in (3.61), until a stopping condition is met (see next section for a discussion about

convergence of Algorithm 5).

3.4.2.2 Convergence Analysis

Algorithm 5 is guaranteed to stop in a finite number of steps, returning a final estimate

ĝ. Indeed, at any iteration k four possible scenarios may arise:

1. Condition at line 15 is met and k is increased by one and the algorithm iterates.

2. Condition at line 15 is not met3, so that n̂ is increased by one, and condition 20 is

not met, then the algorithm terminates returning ĝ := ĝ(k).

3. Condition at line 15 is not met 4, so that n̂ is increased by one, while condition 20

is met, then k is increased by one and the algorithm iterates.

4. n̂(k) = pr, then the algorithm terminates returning ĝ := ĝ(k).

Conditions (1) and (3) may only be satisfied a finite number of times, thus the algorithm

terminates in a finite number of steps.

It should also be stressed that Algorithm 5 is only an ascent algorithm w.r.t. the marginal

likelihood function without any guarantee of convergence to a local extrema. If Ûn̂(k) was

treated as a hyper-parameter and the marginal likelihood optimised over the Grassmann

manifold, then convergence to a local maxima could be proven.4 Notice indeed that

a tailored Scaled Gradient Projection algorithm will be adopted to solve the marginal

likelihood optimization problem at line 14 (see Algorithm 1 and Section 3.4.3): every

accumulation point of the iterates generated by this algorithm is guaranteed to be a

stationary point (Bonettini et al. (2015), Theorem 1); furthermore, for the specific

problem here solved, the sequence of the iterates admits at least one limit point.

3This certainly happens after a finite number of iterations for any positive resolution ε and fixed n̂.
4This variant has been tested, despite it is considerably more computationally expensive than Algorithm

1. Since no significant improvements have been observed, the simpler version is here presented.
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Once the algorithm has converged, n̂ is the optimal dimension of the “signal” subspace of

G̃, respectively spanned by the columns of Ûn̂ and Û⊥
n̂ . Furthermore, the corresponding

multipliers λ1 and λ2 in ζ are expected to tend, respectively, to 0 (meaning that no

penalty is given on the signal component) and to ∞ (that is, a very large penalty is

assigned to the noise subspace); if λ̂2 =∞, n̂ would actually be the McMillan degree of

the estimated system.

In practice the estimated hyper-parameter λ̂2 is finite and, similarly, λ̂1 is strictly positive.

As a result the McMillan degree of the estimated system is generically larger than, but

possibly close to, n̂. Therefore, estimation of the integer parameter n should not be

interpreted as a hard decision on the complexity as instead happens for parametric model

classes whose structure is estimated with AIC/BIC/Cross Validation. It could be said

that Algorithm 5 performs a “soft” complexity selection, confirming that this Bayesian

framework allows to describe model structures in a continuous manner: in fact, for any

choice of n̂, systems of different McMillan degrees are assigned non zero probability by

the prior.

3.4.2.3 Connection with Iterative Reweighted Algorithms

Algorithm 5 shares key properties with the so-called iterative reweighted algorithms,

proposed by Mohan and Fazel (2012) and Wipf and Nagarajan (2010). Considering a

rank minimization problem, the algorithm introduced in Mohan and Fazel (2012) adopts

a weighted trace heuristic as a surrogate to the rank function and iteratively updates the

weighting matrix by means of a closed form expression depending on the current optimal

point. The trace heuristic considered in Mohan and Fazel (2012) has a clear analogy to

the penalty term (3.53), in which Q̂(ζ) plays the role of a weighting matrix. Also the

structure of the matrix Q̂(ζ) in (3.52) resembles that of the weighting matrix in Mohan

and Fazel (2012). Specifically, following the approach in Mohan and Fazel (2012), the

weighting Q̂(k) at iteration k would be

Q̂(k) =


 ̂̃G

(k−1)
(
̂̃
G

(k−1)
)>

+ εIpr




−1

=
(
Û ŜÛ> + εIpr

)−1
(3.73)

where Ŝ denotes the singular values matrix and ε is the regularization factor introduced

in order to avoid numerical issues in the matrix inversion operation. Instead, Algorithm

5 adopts

Q̂(k)(ζ̂) =

(
1

λ̂1

Ûn̄Û
>
n̄ +

1

λ̂2

Û⊥
n̄

(
Û⊥

n̄

)>
)−1

=

((
1

λ̂1

− 1

λ̂2

)
Ûn̄Û

>
n̄ +

1

λ̂2

Ipr

)−1
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n̄ := n̂(k−1) (3.74)

The similarity between (3.73) and (3.74) is apparent with 1/λ̂2 playing the role of the

regularization parameter ε and5
(

1
λ̂1
− 1

λ̂2

)
Ûn̄Û

>
n̄ being a rescaled and truncated version

of Û ŜÛ>.

This peculiar structure of the weighting matrix, which arises from the Maximum Entropy

derivation of the prior, acts as an hyper-regularizer which helps preventing overfitting; the

hierarchical Bayesian model provides a natural framework based on which regularization

can be tuned through the choice of λ̂1 and λ̂2 (see line 14 of Algorithm 5).

The Bayesian framework here adopted also connects Algorithm 5 to the non-separable

reweighting scheme proposed in Wipf and Nagarajan (2010) for solving a Sparse Bayesian

Learning (SBL) problem: the algorithm iteratively alternates the computation of the

optimal estimate and the closed-form update of the hyper-parameters matrix, as the

algorithm we propose. The main difference between the cited procedures and Algorithm

5 lies in the special structure of the weighting Q̂(ζ), which makes the weighting K̄SH,η

dependent on the hyper-parameter vector λ = [λ0, λ1, λ2] and n in a way such that closed

form expressions for its update are not available.

3.4.3 SGP for Marginal Likelihood Optimization

A crucial step in Algorithm 5 is the marginal likelihood maximization (step 14) which is

computationally expensive, especially when the number of inputs and outputs is large. To

deal with this issue the Scaled Gradient Projection method (SGP), proposed in Bonettini

et al. (2015) and illustrated in Algorithm 1 has been adapted to solve

min
λ∈R3

+

fML(λ) (3.75)

fML(λ) = Y >
N Λ(ν̂, λ, n̂, Σ̂)−1YN + log |Λ(ν̂, λ, n̂, Σ̂)| (3.76)

As observed in Section 2.4.5.2, the choice of the scaling matrix D(k) appearing in step 5

of Algorithm 1, is crucial. Indeed, its structure depends on both the objective function

and the constraints of the optimization problem. The proposed implementation follows

the choices made in Bonettini et al. (2015): D(k) is set to be diagonal and its update is

based on the split gradient idea, shown in equation (2.201). Define

f0(λ) := Y >
N Λ(λ)−1YN , f1(λ) := log |Λ(λ)| (3.77)

5Note that, even though no such constrained has been introduced, λ̂1 ≤ λ̂2, so that
(

1

λ̂1

− 1

λ̂2

)
> 0.
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where the simplified notation Λ(λ) ≡ Λ(ν̂, λ, n̂, σ̂) has been used. Moreover, let

K̄SH,λ := [λ0Γ0 + λ1Γ1 + λ2Γ2]−1 (3.78)

where ν̂ and n̂ are fixed and

Γ0 = K̄−1
S,ν̂ (3.79)

Γ1 = P>
(
W>

1 Ûn̂Û
>
n̂ W1 ⊗W2W

>
2

)
P (3.80)

Γ2 = P>
(
W>

1 Û
⊥
n̂

(
Û⊥

n̂

)>
W1 ⊗W2W

>
2

)
P (3.81)

Now, indicating with [f ′
ML(λ)]i the gradient of fML w.r.t. to λi, i = 0, 1, 2, it follows:

[f ′
0(λ)]i = Y >

N Λ(λ)−1Υ(λ)Λ(λ)−1YN (3.82)

[f ′
1(λ)]i = −Tr

{
Λ(λ)−1Υ(λ)

}
(3.83)

Υ(λ) : = ΦNK̄SH,λΓiK̄SH,λΦ>
N (3.84)

From the positive definiteness of Λ(λ) and the positive semidefiniteness of Υ(λ), it results

that [f ′
0(λ)]i ≥ 0, ∀λ ∈ R

3. Furthermore, from Lemma II.1 in Lasserre (1995), it follows

that [f ′
1(λ)]i < 0, ∀λ ∈ R

3. This shows how the gradient of the objective function (3.76)

admits the following decomposition:

f ′
ML(λ) = f ′

0(λ) + f ′
1(λ) = U(λ)− V (λ) (3.85)

with U(λ) = f ′
0(λ) ≥ 0 and V (λ) = −f ′

1(λ) > 0 (here the inequalities have to be

understood component wise). Following the derivation illustrated in Section 2.4.5.2, the

scaling matrix D(k) is the defined as:

[
D(k)

]
ii

= min

(
max

(
Lmin,

λ
(k)
i

Vi(λ(k))

)
, Lmax

)
(3.86)

Further details on the setting of the parameters involved in Algorithm 1 and on the

adopted stopping criterion will be given in Section 3.5.6.

3.5 Numerical Results

The identification procedure outlined in Algorithm 5 is here compared with off-the-shelf

identification routines, as well as with recently proposed methods (see Section 3.1, 3.2
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and 3.3).

3.5.1 Data

The numerical comparison is performed through some Monte-Carlo studies on three

appropriately designed scenarios. The innovation process e(t) appearing in all of them

is a zero-mean Gaussian white noise with standard deviation randomly chosen in order

to guarantee that the SNR on each output channel is a uniform random variable in

the interval [1, 4]. For each scenario the identification procedures are tested on three

different data lengths, which can be roughly classified as “few/average/many” data. Each

Monte-Carlo study includes NMC = 200 runs. A brief illustration of the three scenarios

follows.

S1: A fixed fourth order system with transfer functionG(q) = C(qI−A)−1B is considered,

with

A = blockdiag

([
0.8 0.5

−0.5 0.8

]
,

[
0.2 0.9

−0.9 0.2

])

B = [1 0 2 0]> C =




1 1 1 1

0 0.1 0 0.1

20 0 2.5 0




(3.87)

The input is generated, for each Monte Carlo run, as a low pass filtered white

Gaussian noise with normalized band [0, %] where % is a uniform random variable

in the interval [0.8, 1]. The identification of system (6.39) using data generated

by a band-limited input appears particularly challenging because the system is

characterized by two high-frequency resonances.

The three different data lengths that have been considered are: N1,1 = 200, N1,2 =

500, N1,3 = 1000.

S2: For each Monte Carlo run G(q) is randomly generated using the MATLAB function

drmodel with 5 outputs and 5 inputs while guaranteeing that all the poles of G(q)

are inside the disc of radius .85 of the complex plane. The system orders are

randomly chosen from 1 to 10. The input u(t) is zero-mean unit variance white

Gaussian noise. The three different numbers of input-output data pairs that have

been tested are: N2,1 = 350, N2,2 = 500, N2,3 = 1000.

S3: The systems have been randomly generated similarly to scenario S2, but with 10

inputs and 5 outputs. Moreover, the input u(t) is a low-pass filtered Gaussian
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white noise with normalized band defined as in S1. The considered data lengths

are: N3,1 = 600, N3,2 = 800, N3,3 = 1000.

Remark 3.5.1. The MATLAB routine drmodel produces a random stable model of the

specified order and returns either its transfer function coefficients or its state-space

matrices.

3.5.2 Identification Algorithms

The following algorithms have been tested:6

N4SID+Or: The subspace method, as implemented by the MATLAB routine n4sid.

Different model complexities are tested; an Oracle chooses the order which maximises

the impulse response fit (3.91).

N4SID(OE)+Or: As N4SID+Or but forcing the routine to return an Output-Error

model.

N4SID: The MATLAB routine n4sid, equipped with default model order selection.

N4SID(OE): Same as N4SID but forcing an OE structure.

PEM+Or: PEM as implemented by the MATLAB routine pem. Different model com-

plexities are tested: an Oracle chooses the order which maximises the impulse

response fit (3.91).

PEM(OE)+Or: Same as PEM+Or but using the routine oe. For each of the tested

complexities, the routine oe has been initialized with the model returned by pem.

PEM: The MATLAB routine pem, equipped with the default model order selection.

PEM(OE): The MATLAB routine oe, initialized with the model returned by pem (order

as selected by the default choice in pem).

N2SID: The identification routine detailed in (3.18) and implemented through the code

available from http://users.isy.liu.se/en/rt/hansson/. This routine returns

a state-space model in innovation form. The estimation of Output-Error models

through N2SID has not been tested, since the routine does not straightforwardly

allow to force an OE model structure.
6Some methods appeal to an Oracle (Or) who knows the true system. Clearly these are not feasible in

practice and are only reported for the sake of comparison.
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SS: The estimator (2.148) where K̄η is chosen to be the TC kernel (3.27) and the

hyper-parameters η are estimated through marginal likelihood maximization. The

estimator is computed through the MATLAB routine arxRegul (imposing a FIR

model structure).

NN+CV: A FIR model of order T estimated solving

ĝ = arg min
g∈RpmT

‖YN − ΦN g‖2 + λ∗‖G‖∗ (3.88)

The optimization problem is solved through a tailored ADMM algorithm (as in Liu

et al. (2013)), while λ∗ is determined through Cross-Validation. This procedure

has also been tested by replacing G in (6.40) with G̃ (see (3.40)).

RNN+CV: A FIR model of order T estimated by iteratively solving

ĝ = arg min
g∈RpmT

‖YN − ΦN g‖2 + λ∗‖WlGWr‖∗ (3.89)

The weight matrices Wl and Wr are updated at each iteration according to the

procedure suggested in Mohan and Fazel (2010). λ∗ is selected through Cross-

Validation. The case in which G in (6.41) is replaced with G̃ has also been

tested.

SH: The estimator returned by Algorithm 5 with K̄S,ν specified through the TC kernel.

Some implementation details follow. For SS, SH, NN+CV and RNN+CV, the length T

of the estimated impulse response ĝ is set to 80 for scenario S1, to 50 for S2 and S3.

The regularization parameter λ in N2SID (Verhaegen and Hansson, 2014) is chosen

within a set of 20 elements logarithmically spaced between 10−3 and 10−1 for S1 and 40

elements logarithmically spaced between 10−3 and 105 for S2 and S3. The endpoints of

these grids are selected so that the estimated value of λ is inside the interval.

The techniques directly based on the nuclear norm, i.e. NN+CV and RNN+CV, are only

applied on the “average/large” data lengths scenarios, that is for Ni,2 and Ni,3, i = 1, 2, 3.

In fact, since the regularization parameter in this case is estimated using cross-validation

(which requires splitting the data in validation and identification subsets), the results are

unreliable for the “few” data set scenarios Ni,1. In order to optimize the performance,

in scenarios S2 and S3 two-thirds of the available data are used as training set and the

remaining one third for the validation stage. Instead, in scenario S1, the available data

are equally split into the training and the validation set. The regularization parameter

λ∗ is selected from the vector ṽ = v
Ntr

, where Ntr is the length of the training dataset,
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while v is a vector of 25 elements logarithmically spaced between 102 and 107 for S1,

between 103 and 107 for S2 and S3.

3.5.3 Impulse Response Estimate

To evaluate the estimators described above, the so-called coefficient of determination

(COD) between time series a and b is introduced:

cod(aNc , bNc) = 100


1−

√√√√
∑Nc

k=1(a(k)− b(k))2

∑Nc

k=1(a(k)− ā)2


 (3.90)

where ā = 1
Nc

∑Nc

k=1a(k). The impulse response fit is measured using the average COD:

FNc(ĝ) :=
1
pm

p∑

i=1

m∑

j=1

cod
([
gNc

0

]
ij
, ĝNc

ij

)
(3.91)

where
[
gNc

0

]
ij

and ĝNc
ij denote the true and the estimated impulse responses from input j

to output i, with ĝij(k) = 0, k = T + 1, ..., Nc. Nc is set to 1000.

Figures 3.2, 3.3 and 3.4 report the boxplots of (3.91) in the three scenarios detailed in

Section 3.5.1 for some of the identification techniques listed in Section 3.5.2. In particular,

among the methods equipped with the oracle for model complexity selection, only the

results of PEM+Or are shown, since it gives the best performance. As far as the subspace

techniques are concerned, only N4SID(OE) is reported, because it generally performs

slightly better than N4SID; analogously, only the results achieved by the routine PEM

are illustrated, since the performance of PEM(OE) is worse.

SH and RNN+CV achieve, among the procedures which can be practically implemented,

the best performance in scenarios S2 and S3; instead, in scenario S1, RNN+CV has

severe difficulties. It is also interesting to observe that the reweighted procedure in (6.41)

(RNN+CV) improves the performance achieved by simple nuclear norm regularization

(NN+CV) in all the scenarios except for S1. The results achieved imposing the nuclear

norm penalty on the weighted Hankel matrix G̃ are not reported since they are in general

slightly worse than those achieved by NN+CV and RNN+CV.

3.5.4 Predictive Performance

The predictive performance of the methods listed in Section 3.5.2 are here compared over

a specifically designed scenario. Namely, system (6.39) is simulated with a unit variance

white Gaussian noise input, while its output is corrupted by additive white Gaussian noise
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Figure 3.2: Scenario S1 - Impulse response fit (3.91) achieved by the identification algorithms
listed in Section 3.5.2. Different data lengths are evaluated: N1,1 = 200 (a), N1,2 = 500 (b)

and N1,3 = 1000 (c).
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Figure 3.3: Scenario S2 - Impulse response fit (3.91) achieved by the identification algorithms
listed in Section 3.5.2. Different data lengths are evaluated: N2,1 = 350 (a), N2,2 = 500 (b)

and N2,3 = 1000 (c).
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Figure 3.4: Scenario S3 - Impulse response fit (3.91) achieved by the identification algorithms
listed in Section 3.5.2. Different data lengths are evaluated: N3,1 = 600 (a), N3,2 = 800 (b)

and N3,3 = 1000 (c).
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Table 3.1: Modified Scenario S1 - Median, 5th and 95th percentiles over 200 Monte-Carlo
runs of cod(ỹ

Nval

i , ŷ
Nval

i ), Nval = 500 (see (3.90)). Estimators are computed using 500 data
(the best values among the realistic methods are highlighted in bold).

cod(ỹ
Nval

1 , ŷ
Nval

1 ) cod(ỹ
Nval

2 , ŷ
Nval

2 ) cod(ỹ
Nval

3 , ŷ
Nval

3 )
md 5th pctl 95th pctl md 5th pctl 95th pctl md 5th pctl 95th pctl

PEM+Or 92.54 87.69 95.94 92.76 88.77 96.14 92.74 88.06 95.86
SH 91.48 86.85 95.03 91.55 86.60 95.31 91.46 86.80 94.83

RNN+CV 71.27 65.35 76.38 69.94 64.48 74.83 72.35 65.44 81.98
NN+CV 72.18 66.44 76.81 69.38 63.94 74.29 84.17 78.80 89.76
PEM 85.75 59.86 92.46 86.12 65.15 92.84 83.65 52.76 90.63
N4SID(OE) 82.42 70.05 89.71 81.85 66.69 90.22 88.36 80.80 92.39
SS 80.14 76.19 84.02 80.06 75.77 83.16 82.04 76.43 85.96
N2SID 34.78 11.85 51.04 26.59 7.57 43.34 58.95 49.26 65.79

with a variance chosen in order to have SNR= 2. 200 estimation datasets consisting of

N = 500 data are generated in this way. A set of validation data D̃Nval = {ũNval , ỹNval}
is used to evaluate the COD for each system output, i.e. cod(ỹNval

i , ŷNval
i ), i = 1, ..., p,

(see definition in (3.90)) with ŷi(t) denoting the one-step ahead predictor for the i-th

output channel. Table 3.1 compares the median, the 5th and the 95th percentiles of

cod(ỹNv
i , ŷNv

i ) achieved by the considered identification methods.

3.5.5 Estimated Hankel Singular Values

Figures 3.5, 3.6 and 3.7 are concerned with the ability in estimating the Hankel singular

values, which are grouped in the so called “signal singular values” (corresponding to the

nonzero singular values of the true system) and “noise singular values” (corresponding to

the zero singular vaues of the the true system). Indeed, the top plot in each figure shows

the boxplots of the error on the “signal singular values”:

∆signal(ĝ) :=
n̄∑

i=1

|s̃i(g0)− s̃i(ĝ)| (3.92)

where g0 is the true impulse response vector, ĝ is the estimated one, s̃i(g) is the i-th

normalized Hankel singular value and n̄ here denotes the true system order. Similarly,

the bottom plot contains the boxplots of the error on the “noise singular values”:

∆noise(ĝ) :=
pr∑

i=n̄+1

|s̃i(g)− s̃i(ĝ)| =
pr∑

i=n̄+1

s̃i(ĝ) (3.93)

Figure 3.5 shows that the poor performance observed in Figure 3.2 for NN+CV and

RNN+CV is determined by the failure in detecting the “true” system complexity (as

proven by the large error in the estimation of the “noise” singular values which can be
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Figure 3.5: Scenario S1 - Top: Sum of absolute errors on the “signal” normalized Hankel
singular values (see (3.92)). Bottom: Sum of absolute errors on the “noise” normalized Hankel

singular values (see (3.93)). Considered data length: N1,2 = 500.

interpreted as overestimation of the system order). On the other hand, the unsatisfying

performance of N2SID in Figure 3.2 is due to the under-estimation of the system

complexity, which leads to a large bias in the estimation of the true Hankel singular

values (top of Figure 3.5) and to the correct detection of the “noise” subspace. Among

the feasible methods, SH seems to correctly estimate the system complexity in most

cases.

With regards to scenarios S2 and S3, the joint analysis of Figures 3.3, 3.6 and 3.4,

3.7 reveals how the good performance in terms of impulse response fit achieved by

PEM+Or and RNN+CV are mainly due to the correct reconstruction of the “noise”

subspace; indeed, the performance of SH in terms of fit are slightly worse even if it better

recovers the “signal” subspace. A deeper inspection reveals that the system complexity is

underestimated by PEM+Or, RNN+CV and N2SID, thus explaining the almost perfect

reconstruction of the “noise” subspace and the bias which affects the estimates of the

“signal” subspace. This observation suggests that the good performance observed for

RNN+CV in Figures 3.3 and 3.4 are favored by the nature of the systems in scenarios S2

and S3: indeed, underestimation of the system order does not have a detrimental effect

in these scenarios where there are many “small” Hankel singular values.

Comparing the performance of NN+CV and RNN+CV in Figures 3.6 and 3.7, it is

clear that the reweighted procedure significantly increases the degree of sparsity in the

estimated Hankel singular values.
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Figure 3.6: Scenario S2 - Top: Sum of absolute errors on the “signal” normalized Hankel
singular values (see (3.92)). Bottom: Sum of absolute errors on the “noise” normalized Hankel

singular values (see (3.93)). Considered data length: N2,2 = 500.
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Figure 3.7: Scenario S3 - Top: Sum of absolute errors on the “signal” normalized Hankel
singular values (see (3.92)). Bottom: Sum of absolute errors on the “noise” normalized Hankel

singular values (see (3.93)). Considered data length: N3,2 = 800.
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Table 3.2: Computational time (in sec) required to estimate a system: median, 5th and 95th
percentiles over 200 Monte-Carlo runs. Estimators are computed using N·,3 = 1000 data (best

values among the realistic methods are highlighted in bold).

S1 S2 S3
md 5th pctl 95th pctl md 5th pctl 95th pctl md 5th pctl 95th pctl

SH 84.89 43.70 175.24 67.22 37.49 548.89 276.62 129.07 775.38
RNN+CV 418.93 206.28 1287.55 95.87 68.84 584.58 285.70 196.60 615.72
NN+CV 63.72 58.29 69.50 49.51 39.46 206.27 132.90 110.32 193.97
PEM 3.12 2.44 4.72 1.60 0.70 12.89 11.47 1.01 31.95

N4SID(OE) 1.54 1.48 1.67 1.46 0.96 8.61 7.99 1.82 36.34
SS 1.64 1.47 1.84 10.51 8.86 13.23 31.33 25.58 44.09
N2SID 666.74 508.86 851.72 576.04 462.73 732.81 504.84 402.18 764.83

3.5.6 Computational Time

A comparison of the methods listed in Section 3.5.2 is now done in terms of computational

time. All algorithms were run on a server with two quad core Intel Xeon E5450 processor

at 3.00 GHz, 12 MB cache and 16 GB of RAM under MATLAB2014b.

Table 5.1 reports the median, the 5th and 95th percentiles of the computational time

over the 200 systems of scenarios S1, S2 and S3, showing a clear gap in the performance

of off-the-shelf methods (PEM, N4SID and SS) and non-off-the-shelf ones (SH, NN, RNN

and N2SID); among the latter, the algorithm here proposed (SH) appears to be the least

demanding one.

In Section 3.4.3 a tailored Scaled Gradient Projection (SGP) method has been illustrated

to solve the Marginal Likelihood maximization problem at step 14 of Algorithm 5 (see

also (3.69)). To assess the benefits of SGP, two implementations of Algorithm 5 are

compared: both solve the optimization problem (3.69) using, respectively, the MATLAB

routine fmincon and the SGP Algorithm 1. In Table 3.3 execution times are reported

for the three scenarios described in Section 3.5.1.

The routine fmincon uses the interior-point algorithm and the default parameters setting

(similar performance have been obtained through other algorithms, such as SQP or

trust-region-reflective). The parameters involved in the SGP routine (Algorithm 1) are

set as follows: κ = 10−4, ρ = 0.4, αmin = 10−7, αmax = 102, Lmin = 10−5, Lmax = 1010.

The following stopping criterion is adopted:

fML(λ(k))− fML(λ(k+1)) < 10−9|fML(λ(k+1))|

For both the algorithms the maximum number of iterations has been fixed to 5000.
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Table 3.3: Computational time (in sec) required to estimate a system: median, 5th and 95th
percentiles over 200 Monte-Carlo runs. Estimators are computed using N·,3 = 1000 data.

S1 S2 S3
md 5th pctl 95th pctl md 5th pctl 95th pctl md 5th pctl 95th pctl

fmincon 1358.30 853.80 1893.10 2545.10 1322.80 4816.80 6651.60 2951.60 12732.00
SGP 84.89 43.70 175.24 67.22 37.49 548.89 276.62 129.07 775.38
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This chapter is devoted to the statistical characterization of the estimators illustrated

in Chapter 2. In particular, Sections 4.1 and 4.2 provide an overview of the asymptotic

properties of PEM and subspace algorithms: consistency, statistical efficiency and the

asymptotic distribution of the estimated parameters will be investigated. Section 4.3

exploits the Bayesian perspective to derive the statistical properties of the estimators

outlined in Section 2.4.

Characterizing the distribution of the estimates allows to define the so-called confidence

intervals, i.e. random sets built around the estimate which should contain the true system

with high probability. As such, confidence sets provide a measure of the reliability of

the returned estimates. The contribution of this chapter is an experimental comparison

between the confidence intervals returned by PEM and by non-parametric Bayesian meth-

ods. Due to the different nature of these two identification approaches, the comparison

appears quite delicate: a significant difficulty is represented by the fact that the returned

estimates live in different spaces which are related by a non-linear map. The comparative

study outlined in Section 4.4 exploits sampling methods to define so-called “particle”

confidence sets for both PEM and Bayesian estimates.

4.1 Statistical Properties of Prediction Error Estimates

The large diffusion of Prediction Error Methods into the system identification community

is due to a large extent to its relationship with Maximum Likelihood estimation (pointed

out in Section 2.2.3). In fact, this connection allows the direct extension of MLE properties

to the PE estimates. The theory on MLE is mainly based on asymptotic arguments,

which hold when the number of available data N tends to infinity (N →∞). Starting

from the late Nineties, new interest arose in the study of finite sample properties (N <∞)

of system identification estimates. Some of the existing results will be briefly discussed

in Section 4.1.2, while the following section will be focused on the classical asymptotic

theory for PEM estimates.

Before proceeding, recall that the PE estimate is defined as (2.14)

θ̂N = arg min
θ∈Dθ

VN (θ,DN )

with the criterion function VN (θ,DN ) chosen according to the quadratic loss of equation

(2.30) or to the general loss (2.31).

In the remainder of the section, it is assumed that the given data DN are generated



4.1 Statistical Properties of Prediction Error Estimates 123

according to

S : y(t) = G0(q)u(t) +H0(q)e0(t), E[e0(t)] = 0p, E[e0(t)e>
0 (s)] = Σ0δt,s (4.1)

4.1.1 Asymptotic Properties of PEM Estimates

The following (weak) assumptions are here considered.

A1: The data {u(t)} and {y(t)} are stationary processes.

A2: The input signal is persistently exciting.

A3: The Hessian V ′′
N (θ) is non-singular at least locally around the minimum points of

VN (θ).

A4: The filters G(q, θ) and H(q, θ) are differentiable functions of the parameter vector θ.

When mentioned, the following additional assumption is required:

A5: The set

DT (S,M) = {θ ∈ Dθ| G0(q) ≡ G(q, θ), H0(q) ≡ H(q, θ), Σ0 = Σ(θ)} (4.2)

consists only of the point θ0.

4.1.1.1 Consistency

The estimate θ̂N is consistent if

lim
N→∞

θ̂N = θ0 w.p. 1 (4.3)

Before proving the consistency of θ̂N , its limiting value is derived under assumptions

A1-A4. The true system is not required to belong to the chosen model class M , meaning

that the set DT (S,M) may be empty. On the other hand, the proof for consistency

requires DT (S,M) to be nonempty.

Quadratic Loss. The quadratic criterion function of equation (2.30) is first con-

sidered:

VN (θ,DN ) = fV (RN (θ,DN )), RN (θ,DN ) =
1
N

N∑

t=1

ε(t, θ)ε>(t, θ)
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The ergodicity theory for stationary signals guarantees that (Hannan, 2009):

lim
N→∞

RN (θ,DN ) = E[ε(t, θ)ε>(t, θ)] =: R∞(θ) (4.4)

where the notation adopted by Ljung (1999) has been used:

E[x(t)] = lim
N→∞

1
N

N∑

t=1

E[x(t)] (4.5)

Since f(·) is assumed to be continuous, it follows

lim
N→∞

VN (θ,DN ) = lim
N→∞

fV (RN (θ,DN )) = fV (R∞(θ)) =: V∞(θ) w.p. 1 (4.6)

Thanks to the uniform convergence in equation (4.6) (Ljung, 1978), the following conver-

gence holds true:

lim
N→∞

θ̂N = arg min
θ∈Dθ

V∞(θ) =: Dc w.p. 1 (4.7)

Assuming that the set DT (S,M) in (4.2) is non empty and that the system operates in

open loop, it can be proved that Dc = DT (S,M), thus obtaining the consistency of the

PE estimator. The proof can be found in Ljung (1999) (Theorem 8.3) or Söderström and

Stoica (1989) (sec. 7.5).

General Loss. The general loss (2.31)

VN (θ,DN ) =
1
N

N∑

t=1

`(θ, ε(t, θ)), ` : Dθ × R
p → R

is here considered. The uniform convergence

lim
N→∞

VN (θ,DN ) = E [`(θ, ε(t, θ))] =: V∞(θ) w.p. 1 (4.8)

holds true also in this case (Ljung, 1978), leading to

lim
N→∞

θ̂N = arg min
θ∈Dθ

V∞(θ) =: Dc w.p. 1 (4.9)

Hence, the PE estimate converges to the best possible approximation of the system which

is available within the chosen model set M .

Consider now the case in which ` is independent of θ, i.e. `(θ, ε(t, θ)) = `(ε(t, θ)). Assume

that DT (S,M) is nonempty and that the system operates in open loop. If `′′(ε) ∈ R
p×p
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is positive definite and the condition

E[`′(e0(t))] = 0 (4.10)

is satisfied, then Dc = DT (S,M). The interested reader is referred to Ljung (1999)

(Theorem 8.5) for the proof.

Adopting the terminology of Söderström and Stoica (1989) (Sec. 6.4), it follows for both

losses that the system is system identifiable under the assumptions A1-A4; if also A5

holds, then the system is parameter identifiable.

4.1.1.2 Asymptotic Distribution of the Parameter Estimates

Assumption A5 will be used in this section. The derivation of the asymptotic distribution

of the estimates is based on the Taylor series expansion of V ′
N (θ̂N )> around θ0:

0 = V ′
N (θ̂N ,DN )> ≈ V ′

N (θ0,DN )> + V ′′
N (θ0,DN )(θ̂N − θ0) (4.11)

≈ V ′
N (θ0,DN )> + V ′′

∞(θ0)(θ̂N − θ0) (4.12)

where V ′
N and V ′′

N respectively denote the gradient and the Hessian of VN w.r.t. θ

(analogously for V∞). The approximation (4.12) arises from the convergence

lim
N→∞

V ′′
N (θ0,DN ) = V ′′

∞(θ0) w.p. 1

Provided that the matrix V ′′
∞(θ0) is invertible (as is the case if A5 holds), for large N it

is possible to write

√
N(θ̂N − θ0) ≈ −[V ′′

∞(θ0)]−1[
√
NV ′

N (θ0,DN )>] (4.13)

While matrix V ′′
∞(θ0) is deterministic, the second term is a sum of dependent random

variables with zero mean values; exploiting the fact that the dependence between distant

terms in the sum decreases, the central limit theorem can be applied to obtain

√
N(θ̂N − θ0) dist−→ N (0d, Pθ) (4.14)

Pθ =
{
V ′′

∞(θ0)
}−1

P0
{
V ′′

∞(θ0)
}−1 (4.15)

P0 = lim
N→∞

N E

[
V ′

N (θ0,DN )>V ′
N (θ0,DN )

]
(4.16)
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A rigorous proof of the previous statement can be found in Ljung (1999) (Theorem 9.1).

The explicit expressions of the matrix Pθ for the quadratic loss defined in (2.30) and for

the general loss (2.31) will be reported in the following.

Quadratic Loss. If the data are generated from a single-output system (i.e. p = 1),

the asymptotic covariance matrix is given by

Pθ = σ0 E[ψ(t, θ0)ψ>(t, θ0)]−1 (4.17)

where ψ(t, θ) ∈ R
dθ is defined as

ψ(t, θ) = −
(
∂

∂θ
ε(t, θ)

)>

=
(
∂

∂θ
ŷ(t|θ))

)>

(4.18)

A complete derivation of expression (4.17) is provided in Ljung (1999) (Sec. 9.3) and

Söderström and Stoica (1989) (Sec. 7.5). The presence of the gradient ψ(t, θ) of ŷ(t|θ) in

formula (4.17) highlights how the asymptotic accuracy of a certain parameter depends

on the sensitivity of the prediction ŷ(t|θ) w.r.t. that parameter.

In presence of a finite data sample DN , formula (4.17) can be approximated as

P̂N = σ̂N

(
1
N

N∑

t=1

ψ(t, θ̂N )ψ>(t, θ̂N )

)−1

(4.19)

σ̂N =
1

N − 1

N∑

t=1

ε2(t, θ̂N ) (4.20)

The expression for the asymptotic variance Pθ when a multi-output system is considered

(p > 1) is given by

Pθ = E[ψ(t, θ0)FV ψ
>(t, θ0)]−1

E[ψ(t, θ0)FV Σ0FV ψ
>(t, θ0)]E[ψ(t, θ0)FV ψ

>(t, θ0)]−1

(4.21)

where ψ(t, θ0) ∈ R
dθ×p and FV ∈ R

p×p, with its ij-th element defined as

[FV ] ij =
∂fV (Q)
∂Qij

∣∣∣∣
Q=Σ0

(4.22)

The complete computations which lead to formula (4.21) can be found in Söderström

and Stoica (1989) (Appendix A7.1), where a lower bound for Pθ is also derived:

Pθ ≥ E[ψ(t, θ0)Σ−1
0 ψ>(t, θ0)]−1 (4.23)
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If FV = Σ−1
0 , the equality is achieved, meaning that optimal accuracy is obtained. In

particular, the equality condition holds when fV (Q) = detQ, i.e. when the PE estimate

is equivalent to the MLE (if Gaussian innovations are present).

General Loss. The general criterion (2.31) is now considered in the single output

case (p = 1). The explicit dependence on θ and t is here neglected, i.e. `(t, θ, ε) = `(ε).

Assuming that

E
[
`′(ε(t, θ0))

]
= 0, e0(t) = ε(t, θ0) (4.24)

it follows that

Pθ = κ(`)E
[
ψ(t, θ0)ψ>(t, θ0)

]−1
(4.25)

κ(`) =
E[`′(e0(t))2]
E[`′′(e0(t))]2

(4.26)

where `′ and `′′ denote the first and the second derivatives of ` w.r.t. its argument, while

ψ(t, θ0) was defined in (4.18).

In the multi-variable case (p > 1) and under assumption (4.24), the expression for the

asymptotic covariance becomes (Ljung, 1999)

Pθ = E[ψ(t, θ0) Ξ ψ>(t, θ0)]−1
E[ψ(t, θ0) Ω ψ>(t, θ0)]E[ψ(t, θ0) Ξ ψ>(t, θ0)]−1 (4.27)

where Ξ ∈ R
p×p and Ω ∈ R

p×p are defined as

Ξ = E[`′′(e0(t))] (4.28)

Ω = E

[(
`′(e0(t))

)>
`′(e0(t))

]
(4.29)

4.1.1.3 Statistical Efficiency

An estimator is statistically efficient if its covariance matrix equals the so-called Cramer-

Rao lower bound, which in turn is equal to the inverse of the Fisher information matrix

for unbiased estimators. Specifically, consider the framework of Section 2.2.3 and let

py(yN ; θ) denote the likelihood function for the data yN (given uN ). Considering a single

output system (p = 1), the Fisher information matrix is defined as

IN : = E



(
∂py(yN ; θ)

∂θ

)>
∂py(yN ; θ)

∂θ


 (4.30)
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=
1
κ0

N∑

t=1

E

[
ψ(t, θ0)ψ>(t, θ0)

]
(4.31)

where

κ0 := κ(− log pe) (4.32)

with κ(`) as defined in (4.26). The complete computation of IN can be found in Ljung

(1999) (Sec. 7.4).

Thanks to the consistency of the PE estimate, the Cramer-Rao lower bound formula for

unbiased estimators asymptotically holds for PE estimate; hence, it is possible to write

Cov
(√

N(θ̂N − θ0)
)
≥ κ(− log pe)

(
N∑

t=1

E

[
ψ(t, θ0)ψ>(t, θ0)

])−1

(4.33)

It follows that the asymptotic covariance matrix Pθ in (4.25) equals the limit (as N →∞)

of the Cramer-Rao bound if `(·) = log pe(·). Therefore, through this choice of `(·) the

PE estimate becomes asymptotically statistically efficient and equivalent to the MLE (as

shown in Section (2.2.3)).

In particular, in presence of normally distributed disturbances with p = 1, the quadratic

loss (2.30) satisfies the stated condition on `; in the multi-variable case (p > 1), the PE

estimate θ̂N is asymptotically statistically efficient if the function fV (·) in the criterion

(2.30) is selected so that FV = Σ−1
0 .

4.1.1.4 Misspecification

Most of the previous results are derived assuming that the set DT (S,M) is nonempty,

i.e. that the true system S could be exactly described by at least a model within the

chosen model class M . If this condition is not satisfied, e.g. if the true system is more

complex than the models contained in M , then

lim
N→∞

θ̂N = θ∗ := arg min
θ∈Dθ

V∞(θ) (4.34)

that is, the PE estimate converge to a minimum point of the asymptotic loss function

V∞(θ). Furthermore,
√
N(θ̂N − θ∗) dist−→ N (0p, Pθ) (4.35)

with

Pθ =
{
V ′′

∞(θ0)
}−1

{
lim

N→∞
N E

[
V ′

N (θ∗,DN )>V ′
N (θ∗,DN )

]} {
V ′′

∞(θ0)
}−1 (4.36)
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The estimation of Pθ in case of undermodelling has been considered in Hjalmarsson and

Ljung (1992).

4.1.1.5 Confidence Intervals

The derivation of the asymptotic distributions of the parameters estimate allows to define

confidence intervals, which provide a measure of the estimate’s uncertainty. Indeed, under

the frequentist perspective, confidence sets are intervals (built using the given data),

which include the true system with high probability if the estimation is repeated with

new data. The probability of this event is determined by the so-called confidence level α.

In Section 4.1.1.2 it has been shown that

√
N(θ̂N − θ0) dist−→ N (0p, Pθ) (4.37)

Therefore, it follows that

ζN = N (θ̂N − θ0)>P−1
θ (θ̂N − θ0) dist−→ χ2(d) (4.38)

where χ2(d) denotes the χ2-distribution with d degrees of freedom. Indeed, if a random

vector ζ ∈ R
d is normally distributed, ζ ∼ N (0, P ), then ζ>P−1ζ ∼ χ2(d).

Let χ2
d(·) denote the quantile function of the χ2-distribution with d degrees of freedom:

χ2
d(p) is equal to the value x for which Pr(χ2(d) ≤ x) = p.

If a confidence level α is fixed, the set

EP EM
α =

{
θ ∈ R

dθ

∣∣∣N(θ̂N − θ)>P−1
θ (θ̂N − θ) ≤ χ2

dθ
(α)
}

(4.39)

asymptotically (as N →∞) constitutes an ellipsoidal region in R
dθ and centred in θ̂N .

As such, EP EM
α is the asymptotic α-level confidence set for the PE estimator θ̂N .

In practice, since only a finite number N of data points is given, the above-illustrated

properties are only approximatively valid. It should also be recalled that the asymptotic

theory assumes that the chosen model class M is rich enough to contain the true system

S; in practical applications, the situation is very different, since the model class has to

be selected using the finite data sample DN (as widely discussed in Sections 2.2 and

2.5). Because of this requirement, PEM belongs to the class of Post Model Selection

Estimators (PMSE), which have been analysed by a number of authors. In particular, it

has been shown that the finite-sample distribution of such estimators significantly differs

from the results postulated by the asymptotic theory (Leeb and Potscher, 2005; Leeb and

Pötscher, 2006). Nevertheless, the confidence set (4.39) is commonly adopted to assess
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the reliability of the PE estimator by replacing the asymptotic covariance Pθ with its

finite-sample counterpart P̂N (see e.g. (4.19)). The quality of such approximation has

been studied e.g. by Garatti, Campi, and Bittanti (2004), who prove that the asymptotic

theory is reliable even in presence of a high level of uncertainty in the estimated model

(due e.g. to poor informative data), if an extra condition holds true for the chosen model

class. They also provide a classification of model classes satisfying such condition.

A more detailed discussion on the so-called finite-sample properties of PEM estimates is

postponed to the next section.

4.1.2 Finite-Sample Properties of PEM Estimates

The study of finite-sample properties of PEM estimates aims at assessing how many data

points are needed to guarantee with probability 1− ε that

sup
θ
|VN (θ,DN )− V (θ)| ≤ C (4.40)

for some value C > 0. As usual, VN (θ) is the empirical quadratic criterion minimized by

PEM (see equation (2.30) with fV (·) = Tr[·]), while V (θ) denotes its expected value,

V (θ) := E

[
Tr[ε(t, θ)ε>(t, θ)]

]
(4.41)

This problem has been studied by Weyer, Williamson, and Mareels (1999), who exploit

risk minimization theory to derive uniform probabilistic bounds as (4.40) for FIR and

ARX model classes. Their derivation does not assume that the true system belongs to

the chosen model class and that the noise sequence is uniformly bounded. They also

show that the number of samples N required to satisfy the derived bound is quadratic

in the model order of FIR and ARX models. A similar study is due to Weyer (2000),

whose derivation assume that the observed data are M -dependent and β-mixing. An

extension of these results to general linear model structures has been provided by Campi

and Weyer (2002), who resort to exponential inequalities for stochastic processes. They

derive a bound for the difference

V (θ̂N )− 1
N

N∑

t=1

V (θ̄N ) (4.42)

with V (θ) as defined in (4.41) and θ̄N given by

θ̄N = arg min
θ∈Dθ

1
N

N∑

t=1

V (θ) (4.43)



4.1 Statistical Properties of Prediction Error Estimates 131

The bound depends on the model and the system order, on pole locations and on the

noise variance.

Along this research line, the contribution of Vidyasagar and Karandikar (2006) should

also be mentioned, where concepts of statistical learning theory (devoted to finite-sample

estimates) are imported into the system identification field.

The bounds derived by the afore-mentioned contributions depend on the number of

available data but not on the actually observed data. To overcome the conservatism

that could arise from this property, the application of data-based methods has been

investigated to assess the quality of the estimated models. These approaches essentially

rely on bootstrap and subsampling techniques. Relevant contributions on this topic are

due e.g. to Tjarnstrom and Ljung (2002) and Dunstan and Bitmead (2003). A criticism

w.r.t. these data-based methods is the lack of rigorous finite-sample results.

The previous section has described how the asymptotic distribution of the PEM estimates

is exploited to derive their uncertainty regions; however, it has been observed that the

asymptotic theory may lead to a misleading quantification of the uncertainty, especially

in presence of small datasets. During the first decade of the 2000s some authors have

developed non-asymptotic confidence regions for PEM estimates. In particular, Campi

and Weyer (2005) propose the approach called Leave-One-Out Sign-Dominant Correlation

Regions (LSCR). Under minimal assumptions on the noise sequence affecting the given

data, LSCR returns data-based confidence sets which contain the true parameter values

θ0 with an exact probability. Once empirical correlation functions are computed, LSCR

requires to identify the regions in the parameter space where these functions assume

positive or negative values too many times. These zones are not included in the confidence

regions returned by LSCR. The intuition behind this procedure is the following: when

evaluated for the true parameter value θ0, the correlation functions are sums of zero mean

random variables; hence, it is likely that they assume both negative and positive values

an “equal” amount of times. The zones in which this event is verified (according to the

empirical correlation functions) belong to the confidence region returned by LSCR. As

expected, the shape and the size of this region are influenced by the noise level affecting

the given data.

An overview of LSCR is given by Campi and Weyer (2006a), where its extension to the

handling of non-linear systems is also presented. Later works from the same authors

extend the application of LSCR to the case in which the true system S does not belong to

the fixed model set M (Campi and Weyer, 2006b; Campi, Ko, and Weyer, 2009). Campi

and Weyer (2010) relax the assumptions on the noise sequence: while the original LSCR

requires it to be zero-mean and symmetrically distributed, the procedure proposed by
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Campi and Weyer (2010) works with any noise sequence.

The confidence zones returned by LSCR hold with exact probability only for scalar

parameters, while only probability bound can be guaranteed for the multidimensional

case. In addition, the MLE is not guaranteed to belong to the returned regions. A

more recent work (Csáji, Campi, and Weyer, 2015) introduces a new method, called

Sign-Perturbed Sums (SPS), which overcomes these drawbacks in the case of Least-

Squares estimates. Like LSCR, SPS assumes that the noise sequence affecting the

given observations has zero-mean and symmetric distribution; further knowledge on

its distribution is not needed. The confidence regions built by SPS contain the true

parameter with exact (user-defined) probability; furthermore, they are star-convex with

the LS estimate as a star center. The authors also describe an efficient computation of

an ellipsoidal outer approximation of the confidence sets returned by SPS.

Den Dekker, Bombois, and Van den Hof (2008) focus on OE models and they use a test

statistic based on a Fisher score to derive exact finite-sample confidence regions.

4.2 Statistical Properties of Subspace Estimates

Compared to Section 4.1, the discussion about the statistical properties of subspace

estimates will skip several technical details, since only an overview of the main results will

be here provided. The reason for it lies in the comparative study conducted in Section

4.4, which will take into account only PE and Bayesian estimates.

The statistical analysis of subspace methods appears more complicated than the one

conducted for PEM, because no cost function is explicitly minimized. Basically, subspace

algorithms consist of two Least-Squares stages, intermediated by the computation of an

SVD. A complete understanding of the statistical properties of subspace estimates is

still missing, even if some asymptotic characterization has been derived and has been

summarized in the survey Bauer (2005). What complicates the asymptotic analysis of

subspace estimates is the SVD stage, since the decomposition may not be unique. The

results reported in Bauer (2005) highly rely on the asymptotic behaviour of compact

self-adjoint operators (see Chatelin (1983), Prop 3.26 and Bauer (2005), Theorem 1).

From a statistical point of view, the subspace estimators are distinguished according to

the way in which the system matrices are computed in the second stage of the algorithm

described in Section 2.3.2. Specifically, subspace estimates computed through the so-

called shift-invariance approach and those returned by the state approach enjoy different

statistical properties. The algorithms proposed by Verhaegen (1993b, 1994) belong to
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the first class of above-mentioned methods, while the routine of Larimore (1983) falls

into the second category. The two algorithms introduced by Van Overschee and De Moor

(1994) for the estimations of system matrices can be considered as variants of the state

approach. In the discussion which follows, such estimators will be referred to as N4SID.

An overview of the results regarding consistency and asymptotic distribution of the

estimated system matrices is now provided; since technical details are omitted, several

references to the original results are inserted.

4.2.1 Consistency

Assuming that the true system is described by the matrices (A0, B0, C0, D0), an estimator

(ÂN , B̂N , ĈN , D̂N ) is consistent if there exists a deterministic matrix T (not depending

on the number of data N) such that ÂN − TA0T
−1, B̂N − TB0, ĈN −C0T

−1, D̂N −D0

converge to zero in probability (as N →∞).

As for PE estimators, consistency is analysed assuming that the chosen system order is

the true one.

All the variants of subspace algorithms have been proved to be consistent. Preliminary

results on the consistency of the algorithms based on the shift-invariance approach are

given in Verhaegen (1994) and Jansson and Wahlberg (1998); consistency for finite values

of r and s (respectively, the future and past horizons) is proved by Bauer and Jansson

(2000).

When no inputs are observed or if the measured inputs are white noise, Peternell, Scherrer,

and Deistler (1996) derive the consistency of the state approach, letting the past horizon

s tend to infinity (s→∞). Consistency of N4SID algorithms for a finite value of s arises

from the results in Chiuso and Picci (2004b).

4.2.2 Misspecification

Misspecification arises when the selected system order differs from the true one. Two

different situations may emerge: on the one hand, if the chosen complexity is larger than

the true one, consistency is guaranteed for both shift-invariance and state approaches;

one the other hand, if the chosen system order is smaller than the true one, both the

estimators will be affected by some bias. When no inputs are observed, expressions for

the asymptotic bias (due to under-modelling) exist for the state approach (Bauer (1998),

Ch. 2 and Bauer, Deistler, and Scherrer (1998)). Despite some of them include results

on the dependence of the bias distribution over frequency on the choice of the weighting

matrices (see Section 2.3.3), their practical usefulness is limited. Analogously, the derived
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formulas for the asymptotic bias in the case of observed inputs do not appear so useful

in practice.

On the other hand, the under-modelling bias affecting the estimates computed through

the shift-invariance approach has not been suitably investigated in the literature.

4.2.3 Asymptotic Distribution of the Parameters Estimate

All the estimators returned by the different subspace algorithms are known to be asymp-

totically normally distributed. Despite several expressions for the asymptotic covariances

have been derived, few results exist on the impact of the user’s choices discussed in Section

2.3.3 on such covariances. As a consequence, guidelines on how to fix the user-defined

parameters in order to achieve optimal asymptotic accuracy are mostly missing.

Asymptotic normality for the shift-invariance approach is stated by Bauer and Jansson

(2000) and Jansson (2000). Jansson (1997) proves that the asymptotic distribution of

the estimated system poles does not depend on W1. Jansson (2000) derives explicit

expressions for the asymptotic covariance of the estimated system matrices, proving their

dependence on the horizons r and s and on the weighting matrix W2. In particular, the

formulas introduced by Jansson (2000) also show that the asymptotic variance of the

estimates ÂN and ĈN does not depend on W1. As above-mentioned, a clear understanding

of the impact of the user’s choices for s, r and W2 is still missing. When r and s are

fixed, the commonly used values for W1 and W2 seem to be suboptimal, since they do

not lead to estimators achieving the Cramer-Rao bound.

The analysis for the state approach is almost complete for the case of no observed inputs

or white noise inputs, while the understanding in the general case of coloured inputs is

only partial, thus resembling the situation for the shift-invariance approach.

The asymptotic normality in the general case of coloured inputs is established by Bauer

(1998), who also derives expressions for the corresponding covariance. However, such

formulas do not provide significant insights on possible optimal choices of the user’s

parameters. Regarding N4SID (specifically Algorithm 1 in Van Overschee and De Moor

(1994)), a later work of Chiuso and Picci (2004b) shows that under the assumptions of

consistency, the N4SID estimators with finite r and s are asymptotically normal and

provides the covariance of ÂN and ĈN . Such results are obtained without assuming

infinite persistence of the inputs. However, the use of such expressions for the comparison

of different weighting matrices and different values of r appears difficult, due to the

complexity of the derived formulas.

Passing to the case of no observed inputs (or white noise inputs), the analysis is almost

complete. Asymptotic normality of the estimators is established by Bauer, Deistler, and
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Scherrer (1999), while the independence of the asymptotic covariance on W2 is stated

by Bauer and Jansson (2000). Furthermore, Bauer and Ljung (2002) derive variance

expressions which explicitly depend on the weighting W1 and on the future horizon r.

These have been exploited to infer optimal choices for the weighting matrices, as will be

illustrated in Section 4.2.4.

4.2.4 Statistical Efficiency

Statistical efficiency has been proved only for the estimates returned by the state approach

in the case of no observed inputs or white noise inputs. In such situation, by means of the

simplified covariance expressions derived by Bauer and Ljung (2002) it has been shown

that the CVA weightings of Larimore (1990) (see Section 2.3.3) are optimal for each fixed

horizon r. Furthermore, the asymptotic accuracy of the corresponding estimates increases

monotonically with r. Therefore, in presence of Gaussian innovations, if the system order

is correctly selected and if r →∞ (at a rate which can be estimated from the given data),

the Cramer-Rao lower bound is attained. The CVA subspace algorithm thus achieves

optimal accuracy within the class of (asymptotically) unbiased estimators. In presence

of non-Gaussian innovations, it can be proved that PEM and the CVA algorithm are

asymptotically equivalent.

The statistical analysis of subspace algorithms reported in this section appears complete

for the estimates returned by the so-called state approach in the case of no observed

inputs (or white inputs): as above-stated, asymptotic optimality is guaranteed by the

CVA weightings of Larimore (1990). On the other hand, the results regarding the shift-

invariance approach and the state approach in presence of coloured inputs are partial:

optimal choices of the weighting matrices and of the horizons r and s w.r.t. asymptotic

accuracy have not been derived yet.

4.3 Statistical Properties of Non-Parametric Bayesian

Estimates

Section 2.4 has shown how the non-parametric Bayesian methods can be equivalently

treated as regularized techniques in Reproducing Kernel Hilbert Spaces (RKHS). This

connection makes possible to study the properties of the returned estimators using different

perspectives. On the one hand, the Bayesian interpretation allows to straightforwardly

derive the finite-sample distribution of the obtained estimates, which can be exploited
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for the definition of confidence intervals; on the other hand, the asymptotic behaviour of

non-parametric regularized regression has been investigated by several contributions in

the statistical learning literature.

Section 4.3.1 provides a brief overview of the results concerning consistency in the

context of GPR and regularized LS algorithms in RKHS. The discussion will be rather

general, since the system identification literature has provided few results concerning

the statistical properties of non-parametric regression approaches. A brief comment

regarding misspecification is given in Section 4.3.2. Finally, finite-sample confidence sets

for the impulse response estimate obtained through non-parametric Bayesian methods

are derived in Section 4.3.3 under a Bayesian perspective.

4.3.1 Consistency

When dealing with non-parametric regression, the notion of consistency relies on the

so-called expected risk, whose definition is now provided.

Definition 4.3.1 (Expected Risk). Let X and Y respectively denote the input and

output spaces X and Y on which the probability distribution µ(x, y) acts. If Y is a

Hilbert space, given a function f : X → Y , the ability of f to describe the distribution µ

is measured by its expected risk

R(f) =
∫

X ×Y
‖y − f(x)‖22 dµ(x, y) (4.44)

The minimizer of the risk over the space of measurable functions on X taking value on Y
is the so-called regression function, f∗

µ(x) = E[y|x].

The definition of consistent learning algorithm can now be stated.

Definition 4.3.2 (Consistent Learning Algorithm). A procedure which takes the training

data DN = {(xi, yi)}Ni=1 drawn i.i.d. from µ(x, y) and returns a function f̂DN is consistent

for the measure µ(x, y) if

lim
N→∞

R(f̂DN ) = R(f∗
µ) w.p. 1 (4.45)

If f̂DN is consistent for all Borel probability measures µ(x, y), then it is said to be

universally consistent.

It follows that the asymptotic performance of a certain learning algorithm are typically

evaluated in terms of the rate of convergence of its estimate to the regression function.
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It should be observed that the general setting here presented differs from the standard

setup considered in system identification, where the given data are not assumed to be

i.i.d. from an unobserved distribution.

Assuming that the regression function is contained in the hypothesis space H within

which the function f̂DN lies, universal consistency for regularized LS algorithms has been

proved. For such type of learning algorithms, several contributions in the literature of

statistical learning theory have provided convergence rates to the regression function

(Engl, Kunisch, and Neubauer, 1989; Smale and Zhou, 2007; Wu, Ying, and Zhou, 2006).

Such rates are shown to depend on the capacity of the hypothesis space H, measured

in terms of metric entropy (or, equivalently, covering numbers) or Gaussian complexity.

Optimal rates for the regression of vector-valued functions have been given by Caponnetto

and De Vito (2007): the derived properties are then exploited to define a criterion for

the choice of the regularization parameter as a function of the number of samples. Yuan

et al. (2010) provide results on optimal convergence rates for functional linear regression

using RKHS: such contribution fits into the framework illustrated in Sections 2.4.1.2 and

2.4.2.2, where the unknown function is observed through a linear functional.

Passing to the framework of Gaussian Process Regression, Choi and Schervish (2004)

prove its consistency in the case of a one-dimensional input space X and under certain

assumptions including smoothness of the mean and covariance function of the Gaussian

Process. Furthermore, the measurement noise is required to have a normal or Laplacian

distribution. Rates of convergence (or contraction) to the true posterior distribution

have been more recently investigated by van der Vaart and van Zanten (2008).

Finally, in the context of system identification, consistency of the regularized LS estimator

obtained through marginal likelihood maximization has been proved by Aravkin et al.

(2014), assuming a kernel equal to a scaling of the identity, K̄η = ηImpT . Under such

assumption, desirable asymptotic properties in terms of the MSE are derived. Specifically,

it is shown that the marginal likelihood estimate of η converges to the minimizer of the

MSE in the case of white noise inputs; in the general case of coloured input convergence

to a minimizer of a weighted MSE (with weights depending on N) is proved.

4.3.2 Misspecification

Considering the general framework introduced in Section 4.3.1, misspecification arises

when the regression function f∗
µ does not belong to the chosen hypothesis space H.

In this case, besides the estimation error, an approximation error arises (see also the

discussion in Section 2.5, where such error was referred to as model bias). The asymptotic

behaviour of the approximation error is typically analyzed by means of the so-called
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oracle inequalities (Cavalier, Golubev, Picard, Tsybakov, et al., 2002). However, such

situation appears less understood w.r.t. the case in which f∗
µ is assumed to belong to H;

relevant contributions have been provided by Steinwart, Hush, Scovel, et al. (2009) and

Mendelson, Neeman, et al. (2010).

Moving the analysis to the system identification field, it should be recalled that Pillonetto

and De Nicolao (2010) have proved that realizations from a zero-mean Gaussian process

with stable-spline covariance (illustrated in Section 3.3.1) are almost surely the impulse

response of a BIBO system. This in turn guarantees that the hypothesis space H
induced by the so-called stable-spline kernels is rich enough to contain the impulse

response of any BIBO stable LTI system. Consequently, under a suitable kernel choice,

misspecification does not arise when regularized regression approaches are used in linear

system identification. Furthermore, Pillonetto and Chiuso (2015) prove that the estimator

computed through evidence maximization is robust even when undermodelling is present.

Similar conclusions are drawn by Aravkin et al. (2014) in the context of Penalized

Automatic Relevance Determination (PARD).

4.3.3 Confidence Intervals

The Bayesian interpretation of the system identification methods illustrated in Section 2.4

provides the user with finite-sample distributions of the computed estimators, expressed

in terms of the derived posterior. Specifically, when the Empirical Bayes paradigm

is followed, the posterior is a Gaussian distribution with mean and covariance given

in equations (2.128) and (2.129), when the impulse response is treated as an infinite-

dimensional object, or in (2.148) and (2.149), when a FIR model is estimated. On the

other hand, when the Full Bayes approach is adopted, a sampled approximation of the

posterior is derived: its mean and covariance could be inferred e.g. recurring to percentiles.

In both cases, the estimated posterior can be used to define confidence intervals around

the estimator, as will be detailed in the following discussion. In the Bayesian framework,

such sets are typically called credible intervals (Jaynes and Kempthorne, 1976; Efron,

2005).

Empirical Bayes and Full Bayes will be separately treated in the following.

4.3.3.1 Empirical Bayes

When the impulse response is treated as an infinite-dimensional object, the α-level

confidence interval for ĝ(t) is readily derived from equations (2.128) and (2.129) as

Cα(t) =
[
ĝ(t)− zα

√
P post

gt , ĝ(t) + zα

√
P post

gt

]
(4.46)
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where P post
gt

is the posterior covariance defined in equation (2.129), while zp denotes the

quantile function of the standard normal distribution. Exploiting the equivalence between

the Bayesian estimations and regularized regression within RKHS, Wahba (1983, 1990)

propose to build the confidence interval (4.46) around the function estimates computed

using the latter technique. The properties of these confidence intervals are investigated

by Nychka (1988), who introduces the so-called Average Coverage Property (ACP) for

the α-level confidence intervals {Cα(t)}Nt=1, built around the input locations:

ACP =
1
N

N∑

t=1

Pr[g0(t) ∈ Cα(t)] (4.47)

where g0(·) denotes the true system impulse response. Nychka (1988) proves that the

Bayesian confidence intervals (4.46) enjoy the ACP property, i.e. the ACP computed for

them is close to the nominal level α. As an alternative to Bayesian confidence intervals,

other authors (Härdle and Bowman, 1988; Hardle and Marron, 1991; Wahba, 1990)

consider uncertainty sets derived from bootstrap procedures. Wang and Wahba (1995)

compared these two approaches when Gaussian data are given, showing that they both

enjoy the ACP property.

Considering the regularized LS framework treated in Sections 2.4.1.3 and 2.4.2.3, an

α-level ellipsoidal confidence set lying in R
pmT is readily derived as

EEB
α =

{
g ∈ R

pmT |(g− ĝ)>
(
P post

g

)−1
(g− ĝ) ≤ χ2

pmT (α)
}

(4.48)

where P post
g is the posterior covariance matrix defined in equation (2.149) and χ2

d(·)
denotes the quantile function of the χ2-distribution with d degrees of freedom.

4.3.3.2 Full Bayes

For simplicity, only the case in which the impulse response is treated as a finite dimen-

sional vector is here considered, i.e. g ∈ R
pmT (see Sections 2.4.1.3 and 2.4.2.3).

Recall the sampled approximated posterior in equation (2.185), here reported for conve-

nience:

pg(g|YN ) =
∫

Dη

pg(g|YN , η)pη(η|YN )dη ≈ 1
Nsp

Nsp∑

i=1

pg(g|YN , η
(i)) (4.49)
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An α-level confidence set around the estimated impulse response (e.g. the one reported

in (2.186)) can be defined as

SF B
α =



g(i) ∈ R

pmT :
1
Nsp

Nsp∑

j=1

p(g(i)|YN , η
(j)) ≥ pF B

α



 , (4.50)

where pF B
α is the (1− α)-percentile of the set





1
Nsp

N∑

j=1

p(g(i)|YN , η
(j)), i = 1, ..., Nsp





That is, SF B
α contains the impulse response samples g(i) associated with the α-fraction

of the highest values of the approximated posterior (2.185).

Differently from the confidence sets previously defined for the estimators derived from the

Empirical Bayes approach or from PEM, SF B
α is not a dense set, but rather a “particle”

set, since it consists of sampled points.

4.4 PEM and Non-Parametric Bayesian Methods: a

Comparison of the Estimators’ Uncertainty

Previous sections have shown how the system identification algorithms described in

Chapter 2 lead to the definition of different confidence sets around the returned estimator.

The difference not only lies in the space in which such sets are defined, but also in

their nature: while PEM, subspace methods and Bayesian procedures equipped with

the Empirical Bayes paradigm give rise to dense confidence sets, Full Bayes approaches

relies on sampling algorithms, thus building so-called “particle” sets. The contribution of

this section is the introduction of a framework in which the listed confidence sets can be

compared.

The comparative study will regard PEM estimators and Bayesian techniques (estimating a

finite length impulse response), while subspace algorithms will not be taken into account;

furthermore, the focus will be on SISO systems (i.e. p = m = 1).

To attempt a fair comparison, the confidence sets returned by the considered estimators

are all translated into the impulse response space and converted into “particle” sets. The

following discussion will detail how this is accomplished.

Remark 4.4.1. The reader could argue that the decision of performing the comparison

in the impulse response space would favour the Bayesian approaches, whose estimators

already lies in this space. However, the author considers this a fair choice, since the
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impulse response explicitly describes the input-output relation of the system to be

identified. Furthermore, if the comparison had be done in the parameter space, this

would have required a model reduction step on the Bayesian estimates: according to the

author’s opinion, this step is more delicate than the non-linear transformation that has

to be applied on the parametric estimates in order to pass from the parameter space to

the impulse response one.

4.4.1 PEM

The analysis here conducted regards the PE estimate θ̂N computed using the quadratic

loss (2.30) with fV (x) = x, that is

VN (θ,DN ) =
1
N

N∑

t=1

ε2(t, θ) (4.51)

The asymptotic confidence set defined in Section 4.1.1.5 is here considered with the

asymptotic covariance Pθ replaced by its finite-sample counterpart P̂N (4.19), namely

ÊP EM
α =

{
θ ∈ R

dθ

∣∣∣N(θ̂N − θ)>P̂−1
N (θ̂N − θ) ≤ χ2

dθ
(α)
}

(4.52)

Such set is converted into a “particle” set in the impulse response space by first drawing

Nsp samples from the asymptotic distribution N (θ̂N , P̂N/N) and retaining only the ones

which fall into the set ÊP EM
α ; the “particle” set is then defined by converting these

parameter samples into the corresponding impulse responses through a suitable mapping

M : Rdθ → R
T . Formally, the derived “particle” set is defined as

SP EM+ASY MP
α =

{
gθ(i) = M(θ(i)), gθ(i) ∈ R

T |θ(i) ∈ ÊP EM
α ; i = 1, ..., Nsp

}
(4.53)

Section 4.1.1.5 has pointed out how the confidence sets derived from the asymptotic

parameter distribution may provide misleading information in presence of few or poorly

informative data. The subsequent Section 4.1.2 has discussed alternative definitions

of confidence sets for PEM estimates, which hold exactly for datasets with finite size.

It should be recalled that the comparative study described in this chapter considers

confidence sets which are built by means of suitable sampling techniques. In line with this

approach, a “non-asymptotic” confidence set for PEM estimates is here defined through

an appropriate sampling of the likelihood function py(yN |Σ̂; θ), with Σ̂ being a noise

variance estimate (obtained e.g. through a Least-Squares model). In fact, assuming a
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flat prior distribution p(θ) for the parameters, the likelihood function is proportional to

the posterior PDF:

pθ(θ|yN , Σ̂) ∝ py(yN |Σ̂; θ) = (2πΣ̂)−N/2 exp
{
− N

2Σ̂
VN (θ,DN )

}
(4.54)

An MCMC algorithm is designed to obtain Nsp samples θ(i) from (4.54). From these the

corresponding impulse responses gθ(i) = M(θ(i)) are computed and the set

SP EM+LIK
α =

{
gθ(i) : pθ(θ(i)|yN , Σ̂) ≥ pP EM+LIK

α , θ(i) ∈ Dθ; i = 1, ..., Nsp

}
(4.55)

is defined, where pP EM+LIK
α is the (1 − α)-percentile of the set {pθ(θ(i)|yN , Σ̂); i =

1, ..., Nsp}.
The set is denoted with PEM +LIK in order to emphasize its strict connection with the

likelihood function. Some readers could recognize in the definition of SP EM+LIK
α some

analogies with the construction of confidence sets through bootstrap procedures. What

mainly distinguishes SP EM+LIK
α from bootstrap confidence sets is its implementation.

Specifically, parametric bootstrap methods build several datasets starting from a low-bias

system estimate; from each of these datasets a new estimate is computed, which is later

used to define a “particle” confidence set. Hence, roughly speaking, while bootstrap

approaches sample datasets and then adopt search routines to compute an estimate,

the procedure here proposed adopts an MCMC algorithm to directly sample parameter

estimates. Furthermore, the construction of SP EM+LIK
α is based on an approximation

of the parameters posterior distribution, thus resembling the derivation of the Bayesian

confidence sets discussed in the following.

Remark 4.4.2. As observed in Section 4.1.2, sampling techniques allow to avoid approxi-

mations of asymptotic expressions. However, they are still approximations of the true

uncertainty associated to the estimated parameter θ̂N . Indeed, the definition of these

confidence sets still relies on the assumption that the model class M and the model

complexity are fixed, even if in practice model selection is performed using the available

data. That is, θ̂P EM is a so-called post-model-selection estimator (PMSE): in order to

define a more accurate confidence set, the uncertainty related to the model selection

step should be taken into account. However, as reported in Section 4.1.1.5, Leeb and

Potscher (2005) observe that the finite-sample distribution of a PMSE has generally a

quite intricate shape.

Remark 4.4.3. The comparative study here conducted does not consider the finite-sample

confidence regions returned by the LSCR method mentioned in Section 4.1.2 (Campi

and Weyer, 2006a). The reason for this choice lies in the difficulty of assessing the shape



4.5 Numerical Results 143

and the size of the corresponding confidence sets when multidimensional parameters are

estimated.

4.4.2 Empirical Bayes

Section 4.3.3 has shown how the confidence sets derived when resorting to the Empirical

Bayes paradigm are ellipsoids centred in the minimum variance estimate ĝ and with

shape defined by the posterior covariance P post
g . To adapt such sets to the proposed

comparative setting, EEB
α is approximated by a point distribution obtained by drawing

Nsp samples from the posterior p(g|YN , η̂EB) and retaining only those belonging to (4.48),

that is:

SEB
α =

{
g(i) ∈ R

T : g(i) ∈ EEB
α ; i = 1, ..., Nsp

}
(4.56)

Here η̂EB denotes the hyper-parameters estimate obtained in equation (2.183) through

evidence maximization.

4.4.3 Full Bayes

The confidence set SF B
α defined in equation (4.50) for Bayesian estimators arising from

the Full Bayes approach already belongs to the proposed comparative setting. Therefore,

its quality will be numerically compared with that of the previously defined “particle”

sets.

4.5 Numerical Results

The quality of the “particle” confidence sets derived in Section 4.4 is here evaluated

through a Monte-Carlo study, composed of 200 experiments.

4.5.1 Data

The Monte-Carlo study here conducted exploits the datasets D2 and D4, which have

been introduced and used in the paper Chen et al. (2014)). Both of them consist of

200 30th order random SISO dicrete-time systems having all the poles inside a circle of

radius 0.95. The output data are affected by white Gaussian noise whose variance is

equal to that of the noise-free output (i.e. the SNR on the output signal is equal to 1).

What distinguishes the two data-banks is the input signal with which the systems are

fed; namely:

D2: the input is unit variance white Gaussian noise;
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D4: the input is a band-limited random Gaussian signal generated with the MATLAB

routine idinput; its normalized band is set to [0, 0.8].

The reader is referred to Chen et al. (2014) for further details on these datasets. Three

different data lengths are here considered: N1 = 250, N2 = 500, N3 = 2500.

In addition, the data bank S1D2 introduced in Chen et al. (2012) has been experimented.

The obtained results are similar to the ones achieved on datasets D2 and D4 and outlined

in the following; therefore, these will not be reported here.

4.5.2 Identification Algorithms

PEM: In the performed simulations, PEM is implemented through the MATLAB routine

oe. Model selection is performed through the BIC criterion (2.218), since it generally

outperforms AIC. This estimator will be denoted as PEM+BIC.

Moreover, as a reference an oracle estimator is also considered and denoted by

PEM+OR. This has the (unrealistic) knowledge of the impulse response of the true

system, {g(k)}∞k=1: among the OE models with complexity ranging from 2 to 30, it

selects the one giving the best fit to {g(k)}∞k=1, according to the criterion (4.57).

EB, FB: The Bayesian methods here evaluated are implemented adopting a zero-mean

Gaussian prior with a covariance matrix given by the DC kernel in equation (3.28)

(Chen et al., 2012). The length T of the estimated impulse responses is set to 100,

that is ĝ ∈ R
100.

The estimator computed using the Empirical Bayes approach will be referred to as

EB; analogously, FB will denote the Bayesian estimate computed according to the

Full Bayes paradigm. Such estimator is determined using an Adaptive Metropolis

Hastings (AM) algorithm (Haario, Saksman, and Tamminen, 2001), i.e. an MCMC

algorithm, whose proposal distribution is changed at each iteration according to

the samples drawn at the previous steps.

For ease of notation, the apex (or the subscript) X will be used to denote a generic

estimator among the ones previously illustrated, that is, PEM+BIC, PEM+OR, EB and

FB.

4.5.3 Impulse Response Estimates

As a first comparison, the ability of the considered identification techniques on the

reconstruction of the true impulse response is evaluated. For each estimated system and



4.5 Numerical Results 145

Figure 4.1: Dataset D2 - Impulse response fit (4.57) achieved by the identification algorithms
listed in Section 4.5.2. Different data lengths are evaluated: N1 = 250 (Top), N2 = 500

(Center) and N3 = 2500 (Bottom).

PEM+OR PEM+BIC EB FB

Average Fit (N1 = 250) 71.97 67.52 71.39 70.49
Average Fit (N2 = 500) 80.58 77.25 79.08 78.43
Average Fit (N3 = 2500) 90.43 88.88 89.41 89.24

Table 4.1: Dataset D2 - Average impulse response fit (4.57) achieved by the identification
algorithms listed in Section 4.5.2. Different data lengths are evaluated.

for each estimator X the so-called impulse response fit is computed:

FT (ĝX) = 100 ·
(

1− ‖g0 − ĝX‖2
‖g0 − ḡ0‖2

)
, ḡ0 =

1
T

T∑

k=1

[g0]k (4.57)

where g0, ĝ ∈ R
T collect the first T true and estimated impulse response coefficients.

Figure 4.1 and Table 4.1 display the boxplots and the average value of index (4.57)

achieved by the four estimators on dataset D2. Figure 4.2 and Table report the results

obtained on D4. The different data lengths are considered.

The four identification algorithms perform very similarly on the two datasets; the only

exception is the behaviour of PEM+BIC, which leads to poor performance on D4. This is

most likely due to the low pass characteristics of the input signal, which makes the order

estimation step particularly delicate. Indeed, in D2 (and in S1D2), where the inputs are
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Figure 4.2: Dataset D4 - Impulse response fit (4.57) achieved by the identification algorithms
listed in Section 4.5.2. Different data lengths are evaluated: N1 = 250 (Top), N2 = 500

(Center) and N3 = 2500 (Bottom).

PEM+OR PEM+BIC EB FB

Average Fit (N1 = 250) 71.43 56.30 69.93 68.26
Average Fit (N2 = 500) 78.33 67.11 77.56 76.79
Average Fit (N3 = 2500) 88.84 74.84 87.06 85.94

Table 4.2: Dataset D4 - Average impulse response fit (4.57) achieved by the identification
algorithms listed in Section 4.5.2. Different data lengths are evaluated.
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Gaussian white noises, PEM+BIC performs similarly to the Bayesian estimators.

The oracle estimator PEM+OR sets an upper bound on the achievable performance

by parametric methods; compared to PEM+OR, EB performs remarkably well, with

only a slightly inferior fit. The FB estimator performs similarly to EB, but it requires

the implementation of an MCMC, which is highly computationally expensive. These

results suggest that the marginal posterior pη(η|YN ) is sufficiently well peaked to be

approximated by a delta function (meaning that pg(g|YN ) ' pg(g|YN , η̂EB)).

4.5.4 Returned Confidence Sets

Section 4.4 has introduced two types of “particle” confidence sets for PEM estimators:

SP EM+ASY MP
α in equation (4.53) and SP EM+LIK

α in (4.55). In the following, the first will

be referred to as asymptotic confidence sets, while the denomination likelihood sampling

will be used for the latter. For Bayesian estimators, SEB
α in (4.56) and SF B

α in (4.50)

have been defined. As before, SX
α will generically denote one of them.

In the performed simulations, α = 0.95, while the number Nsp of samples that are used

to construct the aforementioned confidence sets takes different values for each of the

considered Monte-Carlo runs. Specifically, it is set as the maximum chain length of the

three implemented MCMC algorithms (i.e. those used for likelihood sampling for the

two PEM estimators and the AM used to compute the Full Bayes estimator). For each

of these routines, the chain length and the burn-in Nbi are set by applying twice the

method proposed in Raftery and Lewis (1992).

Since the considered confidence sets are only approximations of a “true” α-level confidence

set, the aim is to study how well they perform both in term of “coverage” (how often

does the α-level confidence set contain the “true” value?) as well as of size (how big is an

α-level confidence set?). Unfortunately, since the treated confidence sets simply consist

of a set of points, it is not possible to define a notion of inclusion (does the true system

belong to the set?). Hence, as a proxy to this, an index measuring the relative distance

from the true system and the closest point within the confidence set is considered.

The evaluated indexes are listed below.

1. Coverage Index: For a fixed probability level α, it is given by

IX
1 (α) := min

x∈SX
α

‖x− g0‖2
‖g0‖2

(4.58)

where g0 ∈ R
T denotes the true impulse response. For future analysis the concept

of “coverage” will be meant as in definition (4.58).
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Figure 4.3: Illustration of the Confidence set size IX
2 (α) index for a single system. The blue

line denotes the estimated impulse response ĝX ; gray lines represent the impulse responses
sampled from the confidence set SX

α ; dashed red line denotes g
X

, while dashed-dotted line

represents ḡX . IX
2 (α) is equal to the area between the two red lines.

2. Confidence Set Size: It evaluates the area of the interval which includes the whole

slot of impulse responses contained in SX
α . Specifically, define the vectors ḡX ∈ R

T

and g
X
∈ R

T whose j-entries are [ḡX ]j := maxi[g(i)]j and [g
X

]j := mini[g(i)]j ,

respectively, with g(i) ∈ SX
α . The evaluated index is defined as:

IX
2 (α) =

T∑

j=1

[ḡX ]j − [g
X

]j (4.59)

Referring to Figure 4.3, a large confidence set is more likely to contain the true impulse

response, giving a low value of IX
1 (α), but it will also denote a high uncertainty in the

returned estimate, thus leading to a large value of IX
2 (α).

Figures 4.4 and 4.5 illustrate the boxplots of index (4.58) when the compared identification

algorithms are applied on data D2 and D4, respectively. As before, three sample sizes

are considered. Again, the results observed in the two datasets are very similar. The

Bayesian confidence sets have higher coverage performances then the parametric ones

equipped with BIC. The unique exception is the asymptotic PEM+BIC confidence set

when the data length is N3 = 2500, that is, when the asymptotic theory is more reliable.

Their accuracy is comparable with that achieved by the likelihood sampling PEM+OR

confidence set, which is favoured by the knowledge of the true system. No substantial

differences are detected between the two Bayesian approaches here compared.
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Figure 4.4: Dataset D2 - Coverage Index IX
1 (α) (4.58) returned by the identification

algorithms listed in Section 4.5.2. Different data lengths are evaluated: N1 = 250 (Top),
N2 = 500 (Center) and N3 = 2500 (Bottom).

Figure 4.5: Dataset D4 - Coverage Index IX
1 (α) (4.58) returned by the identification

algorithms listed in Section 4.5.2. Different data lengths are evaluated: N1 = 250 (Top),
N2 = 500 (Center) and N3 = 2500 (Bottom).
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Figure 4.6: Dataset D2 - Confidence Set Size IX
2 (α) (4.58) returned by the identification

algorithms listed in Section 4.5.2. Different data lengths are evaluated: N1 = 250 (Top),
N2 = 500 (Center) and N3 = 2500 (Bottom).

Among the parametric confidence sets, as expected, PEM+OR outperforms PEM+BIC,

whereas surprisingly, the asymptotic confidence sets outperform those built through

likelihood sampling, which are constructed precisely for finite data lengths. This result can

be explained analysing also index (4.59) displayed in Figures 4.6 and 4.7; the discussion

is therefore postponed. Note that the asymptotic confidence sets show, correctly, a

significant improvement for larger data lengths.

Figures 4.6 and 4.7 illustrate the boxplots of index (4.59) when the considered identifica-

tion algorithms are respectively applied on datasets D2 and D4. No significant differences

can be detected between the results achieved in the two datasets.

The EB confidence sets have a slightly smaller size than the FB ones: this follows from

the fact that FB also accounts for the uncertainty related to the hyper-parameters

estimation. The parametric approaches equipped with likelihood sampling return the

smallest confidence sets, even smaller than the Bayesian ones. However, the coverage

index in Figures 4.4 and 4.5 shows that they are less accurate than the Bayesian one.

Furthermore, notice that the two PEM+OR confidence sets are larger than those returned

by the PEM+BIC estimator: this can be explained by the fact that PEM+OR tends to

select higher-order models, thus bringing more uncertainty into the estimated systems.

Comparing the asymptotic and the likelihood sampling confidence sets it is clear that

the latter is more precise than the former. Indeed, the asymptotic confidence set is an
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Figure 4.7: Confidence Set Size IX
2 (α) (4.58) returned by the identification algorithms listed

in Section 4.5.2. Different data lengths are evaluated: N1 = 250 (Top), N2 = 500 (Center)
and N3 = 2500 (Bottom).

approximation which holds for large datasets, while the likelihood sampling is correct for

any finite sample size; however, this improvement comes at a rather high computational

price needed to run the MCMC sampler. This explain why the asymptotic confidence sets

outperform the likelihood ones in the metric (4.58): being much larger they have higher

coverage performances. Analysing the size and coverage properties of the likelihood

confidence sets they seems to be too much self confident, giving a small uncertainty to

their estimate but with unsatisfactory performances in terms of coverage.

It is important to note that the asymptotic theory does not take into account stability

issues: namely, the confidence set derived from the Gaussian asymptotic distribution

(4.14) could contain unstable impulse responses. Therefore the sampling procedure

described in Section 4.4.1 could yield to diverging confidence set size. In order to avoid

this problem the asymptotic Gaussian distribution has been truncated within the stability

region. Clearly, this fact shows an intrinsic problem of the asymptotic theory.

By comparing the results in Figures 4.4-4.6 and 4.5-4.7 the following conclusions could be

drawn: among the feasible identification methods, EB and FB are preferable taking into

account performances both in terms of coverage and size; in addition, according to the

performed numerical tests, there seems to be no gain in using the more computationally

expensive FB.

Remark 4.5.1. The reader could argue that the sets SX
α are only “sample” approximations

of a confidence set, while one may be interested in having a bounded region as a confidence
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set. In the case of the EB estimator this region is directly defined since the posterior

distribution is Gaussian, thus naturally leading to the ellipsoidal confidence set (4.48).

For all the other estimators, it is in principle possible to build outer approximations of

the confidence sets e.g. by building a minimum size set which includes all the points in

SX
α ; examples are the convex hull or an ellipsoid. The convex hull can be computed with

off-the-shelf algorithms (such as the MATLAB routine convhulln.m), while the smallest

ellipsoid (in terms of sum of squared semi-axes length) can be found solving the following

problem:

P opt
α , copt

α := arg min
P,c

Tr P (4.60)

s.t.

[
P (g(i) − c)

(g(i) − c)> 1

]
� 0,

g(i) ∈ SX
α

See Calafiore (2002) for further details. The corresponding ellipsoid is given by

Eopt
α =

{
x ∈ R

T : (x− copt
α )>(P opt

α )−1(x− copt
α ) ≤ 1

}
(4.61)

However, the computation of the convex hull as well as the resolution of the optimization

problem (4.60) become computationally intractable for moderate ambient space and

sample sizes. For instance, when the impulse response lives in R
T , T = 100 and the set

SX
α contains thousands of points (as in the situation we are facing), these computations

are prohibitive with off-the-shelf methods. To overcome this issue, the optimal ellipsoid

Eopt
α has been tentatively approximated by the sample mean ḡX

α and the sample covariance

P̂X
α of the elements in SX

α ; namely:

ÊX
α =

{
x ∈ R

T : (x− ḡX
α )>

(
P̂X

α

)−1
(x− ḡX

α ) ≤ kX
α

}
(4.62)

where kX
α is a constant appropriately chosen so that all the elements of SX

α fall within

ÊX
α . However, it can be observed that these ellipsoids are rather rough approximations

of the sets SX
α . Inspecting 2D sections of the T -dimensional ellipsoids, it can be seen

that often the axis orientation is not correct, thus leading to sets which are much larger

than needed. This fact has been mainly observed for the confidence sets related to PEM

estimates.

These observations suggest that the quality of the confidence sets obtained through the

ellipsoidal approximation (4.62) would have been highly dependent on the quality of the

fitted ellipsoid. Therefore, a comparison among the different estimators, based on this
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kind of confidence set, would have led to unreliable results. Consequently, such results

are not reported.
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The identification routines which have been described so far can be classified as

off-line or batch methods, since all the given data are used simultaneously to find the

system estimate. They are opposed to so-called on-line or real-time algorithms, which

update a previous estimate as soon as new data become available. Distinctive traits of

these methods are the limited requirements for both memory and computational time.

Indeed, most of them do not need to store all the data that have been used until the

present instant; furthermore, the computations performed to update the current estimate

are modest, since the result should be returned before new data arrive.

On-line algorithms play a central role in adaptive control systems, where the controller

is continuously re-designed according to the most recent system estimate. This type of

routines also constitute the first step in a fault detection algorithm, where they are used

to detect if some system properties have changed. Indeed, they are typically designed to

track so-called time-varying systems, i.e. systems whose characteristics may vary with

time.

Specifically, this chapter considers the following setup. At time k a certain estimate

x̂(i) is available and has been computed using the data coming from a collection of i

previous datasets Di =
⋃i

l=1DN
l = {u(t), y(t)}iNt=1; at time k+N new data DN

i+1 become

available and a new estimate x̂(i+1) should be determined by exploiting them. Here, x

could denote e.g., the system impulse response, the polynomials coefficients of a transfer

function model, etc.

Real-time identification methods are typically based on recursive routines, which com-

pute the estimate x̂(i+1) by simple modifications of x̂(i). Since most of the recursive

identification algorithms are developed as approximations of off-line routines, there is

always a trade-off between accuracy and computational parsimony to be paid.

Section 5.1 will briefly outline the so-called Recursive Prediction Error Methods, which

represent a variation of classical PEM in order to satisfy the on-line requirements

aforementioned. Section 5.2 will outline the recursive methods proposed in the context of

subspace identification, while Section 5.3 will propose a way to adapt the non-parametric

Bayesian methods described in Section 2.4 to the real-time setting here treated. The

effectiveness of the approaches introduced in Section 5.3 will be evaluated through

numerical experiments, whose results are reported in Section 5.4.

5.1 On-Line Identification with Prediction Error Methods

Recursive Prediction Error Methods (RPEM) represent a generalization of so-called

Recursive Least-Squares (RLS) algorithms (see Söderström and Stoica (1989), Sec. 9.2
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and Ljung and Söderström (1983)). Indeed, if the one-step ahead predictor of the selected

model structure is linear w.r.t. the parameters vector, RPEM reduces to RLS (as happens

for the off-line counterparts).

For simplicity, the following illustration of RPEM assumes N = 1, meaning that at

each time instant i a new input-output data pair arrives. In addition, the following loss

function is considered

Vi(θ,Di) =
1
2

i∑

t=1

ε>(t, θ)Qε(t, θ) (5.1)

with Q being a positive definite weighting matrix (notice that the loss (5.1) coincides

with that in equation (2.30) if fV (·) = Tr[·]).
Let θ̂(i−1) be the minimizer of Vi−1(θ,Di−1). Assuming that the minimum point of

Vi(θ,Di) is close to θ̂(i−1), it is possible to write the following second-order Taylor series

expansion around θ̂(i−1):

Vi(θ,Di) ≈ Vi(θ̂(i−1),Di) + V ′
i (θ̂(i−1),Di)(θ − θ̂(i−1)) (5.2)

+
1
2

(θ − θ̂(i−1))>V ′′
i (θ̂(i−1),Di)(θ − θ̂(i−1))

The new estimate θ̂(i) can now be found by minimizing (5.2) w.r.t. θ:

θ̂(i) = θ̂(i−1) −
[
V ′′

i (θ̂(i−1),Di)
]−1

V
′>

i (θ̂(i−1),Di) (5.3)

To make the procedure recursive, even the matrices involved in (5.3) should be recursively

updated:

Vi(θ,Di) = Vi−1(θ,Di−1) +
1
2
ε>(i, θ)Qε(i, θ) (5.4)

V ′
i (θ,Di) = V ′

i−1(θ,Di−1) + ε>(i, θ)Qε′(i, θ) (5.5)

V ′′
i (θ,Di) = V ′′

i−1(θ,Di−1) + [ε′(i, θ)]>Qε′(i, θ) + ε>(i, θ)Qε′′(i, θ) (5.6)

where ε>(i, θ)Qε′′(i, θ) is approximatively written, since ε′′(i, θ) is a tensor for MIMO

systems. Equations (5.5) and (5.6) can be further simplified by assuming

V ′
i−1(θ̂(i−1),Di−1) = 0 (5.7)

V ′′
i−1(θ̂(i−1),Di−1) = V ′′

i−2(θ̂(i−2),Di−1) (5.8)

ε>(i, θ)Qε′′(i, θ) ≈ 0 (5.9)

Approximation (5.7) arises from treating θ̂(i−1) as the minimizer of Vi−1(θ,Di−1), while
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(5.8) assumes that V ′′
i−1(θ,Di−1) varies slowly with θ. Finally, ε>(i, θ)Qε′′(i, θ) could be

neglected in V ′′
i (θ,Di) observing that ε(i, θ)|θ=θ0 will be a white process and hence

E[ε>(i, θ)Qε′′(i, θ)] = 0

It should be noticed that approximations (5.7)-(5.9) hold exactly for the LS case.

By means of (5.7)-(5.9), the parameters update (5.3) can be rewritten as

θ̂(i) = θ̂(i−1) −
[
V ′′

i (θ̂(i−1),Di)
]−1

[ε′(i, θ̂i−1)]>Qε(i, θ̂i−1) (5.10)

V ′′
i (θ̂(i−1),Di) = V ′′

i−1(θ̂(i−2),Di−1) + [ε′(i, θ̂(i−1))]>Qε′(i, θ̂(i−1)) (5.11)

To further improve the recursive nature of the algorithm, the inverse of V ′′
i (θ̂(i−1),Di) can

be computed through the matrix inversion lemma; in addition ε′(i, θ̂(i−1)) and ε(i, θ̂(i−1))

should be approximated by quantities that can be computed on-line. Denote them as

ε(i) ≈ ε(i, θ̂(i−1)), ψ(i) ≈ −[ε′(i, θ̂(i−1))]> (5.12)

The precise form of such approximations depend on the chosen model class. Introducing

the notation P (i) :=
[
V ′′

i (θ̂(i−1),Di)
]−1

, RPEM can finally be stated in its general form:

θ̂(i) = θ̂(i−1) +K(i)ε(i) (5.13)

K(i) = P (i)ψ(i)Q (5.14)

P (i) = P (i−1) − P (i−1)ψ(i)[Q−1 +
(
ψ(i)

)>
P (i−1)ψ(i)]−1

(
ψ(i)

)>
P (i−1) (5.15)

Many algorithms update K(i) through the following more efficient recursion

K(i) = P (i−1)ψ(i)[Q−1 +
(
ψ(i)

)>
P (i−1)ψ(i)]−1 (5.16)

A faster implementation of the recursive algorithm in equations (5.13)-(5.15) is possible,

admitting a change into the search direction in equation (5.15). This modification

significantly reduces the computational effort of the algorithm, but at the expense of

slowing down the estimates’ convergence.

A convergence analysis of these recursive routines can be done by assuming that the

true system belongs to the chosen model class. Specifically, it can be shown that RPEM

converges globally to the set consisting of the stationary points of

V∞(θ) = E[ε>(i, θ)Qε(i, θ)] (5.17)
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If the true parameter θ0 is a unique stationary point, then RPEM returns consistent

parameters estimates under weak assumptions. Furthermore, the RPEM estimates are

asymptotically Gaussian distributed with the same distribution detailed in Section 4.1.1.2

for off-line procedures.

5.1.1 Dealing with Time-Varying Systems

On-line algorithms are typically designed to track the possible time-varying nature of the

system to be identified. Two extreme modes of variation are typically conceived: in the

first mode the system parameters are subject to sudden changes at isolated time instants,

while the latter mode is characterized by slowly-varying parameters at a constant rate

in time. In the following, these two variation modes will be respectively referred to as

jumping parameters and drifting parameters.

To equip RPEM with the ability to track the afore-mentioned parameters variations,

some modifications to algorithm (5.13)-(5.15) have to be done. Three approaches are

commonly adopted and will be here briefly illustrated.

A classical technique applies a rectangular sliding window on the given data. If Nw is

the length of the chosen window, only the last Nw data are used to compute the current

estimate. To account for abrupt changes in the true parameters values, Nw should be

varied with time: however, this solution is rarely applied, since its computational effort

is significant.

A second approach modifies the loss function (5.1) in order to exponentially weight the

input-output data

Vi(θ,Di) =
1
2

i∑

t=1

γi−tε>(t, θ)Qε(t, θ) (5.18)

where γ, 0 < γ ≤ 1, is the so-called forgetting factor, typically set very close to 1.

Consequently, recent measurements count more than older ones in the estimation criterion.

The smaller the value of γ, the faster the information contained in the data is forgotten.

To account for the presence of γ, the RPEM algorithm in equations (5.13)-(5.15) is

modified as

θ̂(i) = θ̂(i−1) +K(i)ε(i) (5.19)

K(i) = P (i−1)ψ(i)[γQ−1 +
(
ψ(i)

)>
P (i−1)ψ(i)]−1 (5.20)

P (i) =
1
γ
P (i−1) − 1

γ
P (i−1)ψ(i)[γQ−1 +

(
ψ(i)

)>
P (i−1)ψ(i)]−1

(
ψ(i)

)>
P (i−1) (5.21)

In several applications, the forgetting factor is varied with time. For the case of jumping
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parameters, γ should be equal to 1, when no changes are detected, while γ should

temporarily decrease below 1 at the jumping instants. Some authors have considered

this way of setting γ as a soft-prewindowing, with the usual prewindowing arising when

γ is varied according to a step function. On the other hand, when the parameters slowly

vary, there exists an optimum value for γ, which is constant or very slowly varying.

A possible choice lets γ(i) tend exponentially to one, according to

γ(i) = 1− γi
0(1− γ(0)) (5.22)

Typically, γ0 is set to 0.99, while γ(0) is set to 0.95 (Ljung, 1999).

Several schemes for the on-line update of γ(i) have been proposed in the literature of

Recursive Least Squares (RLS). Essentially, at the i-th step, the tuning of γ(i) is based

on the current prediction error:

ε(i, θ̂(i−1)) = y(i)− ŷ(i|θ̂(i−1)) (5.23)

The method introduced by Slock and Kailath (1989) obtains the variable forgetting factor

by minimizing the Excess Mean Squared Error (EMSE) which varies proportionally with

the inverse of the autocorrelation of the error signal {ε(i, θ̂(i−1))}. Similarly, in Toplis

and Pasupathy (1988), γ(i) varies in proportion to the inverse of the squared error; the

risk of getting a negative forgetting factor is prevented by using a pre-specified threshold.

Other methods which tune γ(i) according to the squared error are due to Fortescue,

Kershenbaum, and Ydstie (1981); Park, Jun, and Kim (1991); Song, Lim, Baek, and Sung

(2000). However, it has been shown that such approaches are particularly sensitive to the

measurement noise. An average of M previous values of the squared error is exploited by

Cho, Kim, and Powers (1991), whose solution updates γ(i) according to

γ(i) = 1− Q(i)
σ̂Nmax

, Q(i) =
1
M

M−1∑

t=0

ε2(i− t, θ̂(i−t)) (5.24)

with Nmax being the maximum memory length and σ̂ a noise variance estimate. To

simplify the exposition, a scalar output signal is here considered (i.e. p = 1).

The approach proposed by Jiang and Cook (1992) directly perturbs the covariance matrix

P (i) whenever a change is detected.

A gradient-like update is proposed by Song et al. (2000):

γ(i) = γ(i− 1) + α∇λJ(i), J(i) =
1
2
E[ε2(i, θ̂(i−1))] (5.25)
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with α being an appropriate step-size. However, this algorithm works well only in the

slowly time-varying case. To increase the speed of tracking, the second derivatives of

the cost function J(i) could be incorporated, as in the Gauss-Newton algorithm. Leung

and So (2005) propose a similar approach, where the above step-size α is replaced by
α

1−γ(i−1) . As a result, the evolution of the forgetting factor is constrained to be bounded

by two levels.

The solution introduced by Paleologu, Benesty, and Ciochina (2008) is based on the

prediction error {ε(i, θ̂(i−1))} and on the signal q(i) = ϕ>(i)P (i−1)ϕ(i), with ϕ(i) being

the regressors vector at time i. Specifically, γ(i) is updated as

γ(i) = min





√
σ̂q(i)σ̂(i)

ξ + |
√
σ̂e(i)−

√
σ̂(i)| , γmax



 (5.26)

where σ̂e and σ̂q are the estimated variances of ε(t, θ̂(i−1)) and of q(i), while σ̂(i) is the

current noise variance estimate. These quantities are recursively computed as

σ̂e(i) = ασ̂e(i− 1) + (1− α)e2(i) (5.27)

σ̂q(i) = ασ̂q(i− 1) + (1− α)q2(i) (5.28)

σ̂(i) = βσ̂(i− 1) + (1− β)e2(i) (5.29)

with α and β being suitable step-sizes. It turns out that before an abrupt change of the

system, σ̂e(i) is large compared to σ̂(i); thus, γ(i) takes low values, guaranteeing fast

tracking. When a steady-state situation is detected, σ̂e(i) ≈ σ̂(i) and γ(i) tends to γmax,

thus slowing down the rate at which data are forgotten.

A more recent and involved approach for the update of γ(i) is due to Bhotto and Antoniou

(2013).

A third alternative postulates that the system parameters vary according to a stationary

first-order Markov process, namely

θ(i+1) = θ(i) + w(i), E[w(i)w>(i)] = R1(i) (5.30)

This model is generally adopted to describe the case of drifting parameters. For further

details on this methodology, the interest reader is referred to Ljung (1999) (Sec. 11.2) ot

Söderström and Stoica (1989) (Sec. 9.3).

It should be recalled that parametric methods require to a-priori specify a model class

within which the model is searched for. If the properties of the underlying system

vary significantly, it may happen that the selected model class is no more suitable to
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capture the whole system dynamics. In turn, a new choice should be made. As widely

discussed in Section 2.5, such decision is typically taken by estimating models with

different complexities and by applying tools such as cross-validation or information

criteria to select the most appropriate one. Since the estimation of multiple models

may be computationally expensive, such procedure could not be suited for the real-time

identification of time-varying systems. On the other hand, the non-parametric Bayesian

methods detailed in Section 2.4 overpass the aforementioned issue by jointly performing

estimation and order selection, thus representing a sound alternative to parametric

techniques. Section 5.3 will illustrate how the batch procedure detailed in Section 2.4

can be tailored to the real-time setup.

5.2 On-Line Identification with Subspace Methods

This section will briefly overview how subspace algorithms have been adapted to the

on-line scenario illustrated in the chapter introduction. Technical details will be omitted,

since subspace methods will not be taken into account in the experimental analysis

performed in Section 5.4.

Before proceeding, it should be recalled that the core of any subspace algorithm is the

SVD of data-depending matrices from which the extended observability matrix is derived.

Such step also constitutes the major bottleneck in a possible real-time implementation of

a subspace algorithm, because of its significant computational complexity. Hence, the

attention of researchers has mainly focused on the development of routines which either

recursively perform this stage or avoid it.

The literature on real-time implementations of subspace algorithms is not so vast, even if

this topic has been treated since the beginning of the 1990s, when subspace algorithms

became one the main research subjects for the system identification community. Indeed

the first contributions date back to 1991 and 1994, with the works of Verhaegen and

Deprettere (1991) and Cho, Xu, and Kailath (1994). The authors mainly focus on both

the recursive update of the data matrices and on efficient ways of updating the SVD step.

For instance, concerning the latter problem, Verhaegen and Deprettere (1991) propose

to split the SVD stage into a partial update of an LQ factorization and a subsequent

rank-one update of a previous SVD. A major drawback associated with these algorithms

is the requirement for the output measurement noise to be spatially and temporally

white.

A possible alternative to aforementioned approaches, which is not considered by these first

works, is the possibility to directly update the estimate of the extended observability ma-
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trix. This way has been first explored by Gustafsson (1997) and Gustafsson, Lovera, and

Verhaegen (1998). Specifically, they have extended the PAST (Projection Approximation

Subspace Tracking) algorithm developed by Yang (1995) to the setting of subspace system

identification. Such routine was introduced few years before into the signal processing

community. As the name reflects, the algorithm is designed to recursively track a signal

subspace from measurements affected by temporally and spatially white noise. With

regard to subspace identification, the signal subspace is the column space of the extended

observability matrix. PAST exploits RLS to solve a projection problem through which the

signal subspace is retrieved. The computational complexity of the method proposed by

Yang (1995) is O(mn), where m is the size of the input vector, while n is the number of

desired eigen-components, i.e. the desired dimension of the signal subspace. Yang (1995)

proves that his algorithm represents a robust alternative to classical SVD approaches.

However, because of the used approximations, the estimate returned by PAST converges

to a slightly different subspace from the one obtained through the eigen-decomposition.

Gustafsson et al. (1998) have developed the so-called IV-PAST (Instrumental Variables

Projection Approximation Subspace Tracking), which extends PAST by introducing the

instrumental variables in order to deal with the case in which the noise is not spatially

white. It should be stressed that the proposed procedure assumes that the order of the

system is a-priori known. This approach is extended by Oku and Kimura (2002), who

adopt gradient type subspace tracking to search for the global minimizer of the projection

problem above-mentioned. They also prove the convergence of the proposed algorithm

under the assumption that the stepsize for the gradient update is within [0, 1]. Lovera,

Gustafsson, and Verhaegen (2000) provides an overview of these approaches.

The work of Utschick (2002) lies at the basis of the algorithms proposed by Mercere,

Lecoeuche, and Lovera (2004) and Mercère, Bako, and Lecœuche (2008). Compared

to PAST, these methods do not introduce an approximation in the formulation of the

tracking problem. The convergence properties of these propagator-based subspace identi-

fication methods are studied by Mercère and Lovera (2007), who show that under suitable

conditions on the input signal and the system, these techniques return a consistent

estimate of the state-space system matrices.

5.3 On-Line Identification with Non-Parametric Bayesian

Methods

The batch technique described in Section 2.4 is here adapted to the on-line setup illustrated

in the introduction to the chapter. To highlight the practical nature of this section, the
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estimation of a finite-length impulse response will be considered; hence, the perspective

taken in Sections 2.4.1.3 and 2.4.2.3 will be adopted.

The Bayesian procedures of Section 2.4 mainly consist of two steps: hyper-parameters

tuning and computation of the impulse response estimate. From a computational point of

view, the first step is the most committing one: indeed, if the Empirical Bayes approach

is adopted, once the hyper-parameters are fixed, the impulse response estimate can be

efficiently computed through equation (2.193):

ĝ = (Φ>
N Σ̃−1

N ΦN + K̄−1
η )−1Φ>

N Σ̃−1
N YN (5.31)

However, this formulation is not suited for a real-time implementation, since a recursive

update of the matrices appearing in the latter formula should be first derived. Specifically,

at time k + N , when data DN
i+1 = {u(t), y(t)}(i+1)N

t=iN+1 arrive, the products of the data

matrices appearing in equation (5.31) are updated through the following recursions

R(i+1) := Φ>
(i+1)N Σ̃−1

(i+1)N Φ(i+1)N = R(i) +
(
Φ(i+1)N

iN+1

)>
Σ̃−1

N Φ(i+1)N
iN+1 (5.32)

Ỹ (i+1) := Φ>
(i+1)N Σ̃−1

(i+1)NY(i+1)N = Ỹ (i) +
(
Φ(i+1)N

iN+1

)>
Σ̃−1

N Y
(i+1)N

iN+1 (5.33)

Ȳ (i+1) := Ȳ >
(i+1)N Σ̃−1

(i+1)N Ȳ(i+1)N = Ȳ (i) +
(
Ȳ

(i+1)N
iN+1

)>
Σ̃−1

N Ȳ
(i+1)N

iN+1 (5.34)

where

Φ(i+1)N
iN+1 : =

[
ϕ(iN + 1) · · · ϕ(iN +N)

]>
, Φ(i+1)N

iN+1 ∈ R
Np×pmT

Y
(i+1)N

iN+1 : =
[
y>(iN + 1) · · · y>(iN +N)

]
, Y

(i+1)N
iN+1 ∈ R

pN

with ϕ(t) as stated in equation (2.181). The definition of Φ(i+1)N and Y(i+1)N is respec-

tively given in equations (2.180) and (2.123) (with (i+ 1)N replaced by N). Analogously,

Σ̃(i+1)N is specified in equation (2.171) with N in place of (i+ 1)N .

Recalling that T denotes the length of the estimated impulse response, the computa-

tional cost of the updates (5.32)-(5.34) is O((pmT )2(Np)), O((pmT )(Np)) and O((Np)2),

respectively.

The hyper-parameters tuning is here accomplished through Marginal Likelihood maxi-

mization (2.183). Denoting with fN
ML(η) the evidence function (2.184) computed with N

data under Gaussian assumptions, it follows that the new hyper-parameters η̂(i+1) have to

be computed by minimizing f (i+1)N
ML (η) ≡ fk+N

ML (η). The recursive updates (5.32)-(5.34)
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also allow to efficiently evaluate f (i+1)N
ML (η); namely, recalling equation (2.195):

f
(i+1)N
ML (η) = Ȳ (i+1) −

(
Ỹ (i+1)

)>
L(IT mp + L>R(i+1)L)−1L>Ỹ (i+1) (5.35)

+ (i+ 1)N(
p∑

j=1

ln σj) + ln det(IT mp + L>R(i+1)L) (5.36)

where LL> := K̄η. As illustrated in Section 2.4.5.2, the Marginal Likelihood maximization

could be performed through iterative routines, such as 1st or 2nd order optimization

algorithms (Bonettini et al., 2015), or through the EM algorithm (Dempster et al., 1977;

Bottegal et al., 2016). Since these methods may require a large number of iterations before

reaching convergence, they may be unsuited for on-line applications. To overcome this

issue and hence to tackle the real-time constraints, the procedure detailed in Algorithm

6 is here proposed. Its main feature is the computation of η̂(i+1) by means of only one

iteration of the aforementioned iterative algorithms. In particular, whenever new data

arrive, such routines are initialized with the previous estimate η̂(i), obtained using the

data Di
⋃i

l=1DN
l , which is likely to be close to a local optimum of the old objective

function f iN
ML(η). If the number of new data N is small, it is reasonable to suppose

that arg minη∈Dη f
iN
ML(η) ≈ arg minη∈Dη f

(i+1)N
ML (η). Therefore, by just performing one

iteration of the EM algorithm or of a gradient method, η̂(i+1) will be sufficiently close to

a local optimum of f (i+1)N
ML (η).

In the following such approach will be referred to as the 1-step Marginal Likelihood (ML)

method.

Algorithm 6 On-Line Bayesian System Identification

Inputs: previous estimates {η̂(i), η̂(i−1)}, previous data matrices {R(i), Ỹ (i), Ȳ (i)},
new data DN

i+1 = {u(t), y(t)}(i+1)N
t=iN+1

1: Use Recursive Least Squares to compute ĝ(i+1)
LS

2: Estimate Σ̂ using ĝ(i+1)
LS

3: Compute R(i+1) as in equation (5.32)
4: Compute Ỹ (i+1) as in equation (5.33)
5: Compute Ȳ (i+1) as in equation (5.34)
6: Compute η̂(i+1) through 1-step Marginal Likelihood maximization initialized with
η̂(i) and η̂(i−1)

7: ĝ(i+1) ←
(
R(i+1) + K̄−1

η̂(i+1)

)−1
Ỹ (i+1)

Output: ĝ(i+1), η̂(i+1)
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5.3.1 Dealing with Time-Varying Systems

As said in the introduction to the section, on-line algorithms find a natural application

in the context of time-varying systems, where the data that progressively arrive are

generated by changing systems. In order to tackle this kind of application, the estimators

have to be equipped with tools through which past data are disregarded or become

less relevant for the current estimation, since old information may be outdated. In the

following, two routines which combine the “on-line Bayesian estimation” above sketched

with the ability to “forget” past data are proposed.

5.3.1.1 Fixed Forgetting Factor

Following a classical practice in parametric system identification (see Section 5.1), a

forgetting factor γ ∈ (0, 1] is introduced into the regularized estimation criterion (2.150).

Specifically, at time k the estimate is determined as:

ĝ := arg min
g∈RpmT

k∑

t=1

γk−t(y(t)− ϕ>(t)g)>Σ−1(y(t)− ϕ>(t)g) + g>K̄−1
η̂ g (5.37)

= arg min
g∈RpmT

(Yk − Φkg)> ΨkΣ̃−1
k Ψk (Yk − Φkg) + g>K̄−1

η̂ g

=
(
Φ>

k ΨkΣ̃−1
k ΨkΦk + K̄−1

η̂γ

)−1
Φ>

k ΨkΣ̃−1
k ΨkYk (5.38)

where

ΨkΨk := Γk := diag
(
γk−1, γk−2, ..., γ0

)
⊗ Ip (5.39)

and ϕ(t) has been defined in (2.181). Notice that, for simplicity, the same forgetting

factor is applied on all the output channels.

It should be noticed that the introduction of the forgetting factor in the loss function

(5.37) coincides with postulating a model of the type

ΨkYk = ΨkΦkg + E, E ∼ N (0kp, Σ̃k) (5.40)

which, in turn, is equivalent to

Yk = Φkg + Eγ , Eγ =
[
e>

γ (1), ..., e>
γ (k)

]>
, Eγ ∼ N (0pk,Ψ

−1
k Σ̃kΨ−1

k ) (5.41)

Therefore, the use of the forgetting factor as a hyper-parameter is equivalent to modelling

the noise with a non-constant variance and to give to the diagonal entries of the covariance

matrix an exponential decaying structure.
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Correspondingly, the hyper-parameters should be estimated solving:

η̂ = arg min
η∈Dη

Y >
k (ΦkK̄ηΦ>

k + Ψ−1
k Σ̃kΨ−1

k )−1Yk + ln det(ΦkK̄ηΦ>
k + Ψ−1

k Σ̃kΨ−1
k )

= arg min
η∈Dη

{
Y >

k Ψk (ΨkΦkK̄ηΦ>
k Ψk + Σ̃k)−1ΨkYk + ln det(ΨkΦkK̄ηΦ>

k Ψk + Σ̃k)

− ln det(Γk)
}

(5.42)

Algorithm 7 illustrates the on-line implementation of the identification procedure based

on equations (5.38) and (5.42). In particular, it assumes that at time k the estimates ĝ(i)

and η̂(i) are available and they have been computed by solving, respectively, (5.37) and

(5.42); these estimates are then “on-line” updated once the new data DN
i+1 are provided.

Notice that the forgetting factor γ explicitly appears in the updated of the data matrices

(see steps 3-5 of Algorithm 7 ).

Algorithm 7 On-Line Bayesian System Identification - Fixed Forgetting Factor

Inputs: forgetting factor γ, previous estimates
{
η̂(i), η̂(i−1)

}
, previous data matrices{

R
(i)
γ , Ỹ

(i)
γ , Ȳ

(i)
γ

}
, new data DN

i+1 = {u(t), y(t)}(i+1)N
t=iN+1

1: Use Recursive Least Squares to compute ĝ(i+1)
LS

2: Estimate Σ̂ using ĝ(i+1)
LS

3: R
(i+1)
γ ← γNR

(i)
γ +

(
Φ(i+1)N

iN+1

)>
ΨN Σ̃−1

N ΨN Φ(i+1)N
iN+1

4: Ỹ
(i+1)

γ ← γN Ỹ
(i)

γ +
(
Φ(i+1)N

iN+1

)>
ΨN Σ̃−1

N ΨN Y
(i+1)N

iN+1

5: Ȳ
(i+1)

γ ← γN Ȳ
(i)

γ +
(
Y

(i+1)N
iN+1

)>
ΨN Σ̃−1

N ΨN Y
(i+1)N

iN+1

6: η̂(i+1) ← arg minη∈Dη
f

(i+1)N
ML (η)

(performing 1-step Marginal Likelihood maximization initialized with η̂(i), η̂(i−1))

7: ĝ(i+1) ←
(
R

(i+1)
γ + K̄−1

η̂(i+1)

)−1
Ỹ

(i+1)
γ

Output: ĝ(i+1), η̂(i+1)

5.3.1.2 Treating the Forgetting Factor as a Hyper-parameter

The Bayesian framework provides the user with the possibility to treat the forgetting factor

as a hyper-parameter and to estimate it through evidence maximization. Specifically, at

time k (that is, at the i-th iteration of an online identification algorithm), the forgetting

factor is estimated together with the usual hyper-parameters η by solving

(
η̂(i), γ̂(i)

)
= arg min

η∈Dη ,γ∈(0,1]
fk

ML(η, γ) (5.43)
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with

fk
ML(η, γ) = Y >

k (ΦkK̄ηΦ>
k + Ψ−1

k (γ)Σ̃kΨ−1
k (γ))−1Yk

+ ln det(ΦkK̄ηΦ>
k + Ψ−1

k (γ)Σ̃kΨ−1
k (γ)) (5.44)

Notice that the dependence of Ψk(γ) on the unknown γ has been made explicit. To allow

a recursive implementation of the corresponding identification algorithm, Ψk(γ) has to

be defined as:

Ψk(γ)Ψk(γ) := Γk(γ) := blockdiag(γN Γ̂(i−1), γγγN (γ)) (5.45)

where

γγγN (γ) = diag
([
γN−1 · · · γ 1

])
⊗ Ip, γγγN (γ) ∈ R

Np×Np (5.46)

Γ̂(i−1) = blockdiag

(
i−2∏

l=1

γγγN (γ̂(i−l)), · · · , γγγN (γ̂(i−1))

)
, Γ̂(i−1) ∈ R

Np(i−1)×Np(i−1)

(5.47)

For future use, define also ψψψN (γ)ψψψN (γ) := γγγN (γ).

Correspondingly, the products of the data matrices are updated as

R(i+1)(γ) =γN Φ>
iN Γ̂(i)Φ>

iN +
(
Φ(i+1)N

iN+1

)>
ψψψN (γ)Σ̃−1

N ψψψN (γ) Φ(i+1)N
iN+1

= : γN R̂(i) +
(
Φ(i+1)N

iN+1

)>
ψψψN (γ)Σ̃−1

N ψψψN (γ) Φ(i+1)N
iN+1 (5.48)

Analogous recursions hold true for Ỹ (i+1)(γ) and Ȳ (i+1)(γ).

The on-line implementation of this approach is detailed in Algorithm 8. Differently from

the previous algorithms, the marginal likelihood maximization at step (6) of Algorithm

8 also requires to compute the derivative ∂fk
ML

(η,γ)
∂γ . An efficient computation of this

quantity exploits the recursive updates performed at steps 3-5 of Algorithm 8.
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Algorithm 8 Online Bayesian SysId: Forgetting Factor as a hyper-parameter

Inputs: previous estimates {η̂(i), η̂(i−1), γ̂(i), γ̂(i−1)}, previous data matrices

{R̂(i),
̂̃
Y

(i)

, ̂̄Y
(i)
}, new data Di+1 = {u(t), y(t)}(i+1)N

t=iN+1

1: Use Recursive Least Squares to compute ĝ(i+1)
LS

2: Estimate Σ̂ using ĝ(i+1)
LS

3: R(i+1)(γ)← γN R̂(i) +
(
Φ(i+1)N

iN+1

)>
ψψψN (γ)Σ̃−1

N ψψψN (γ) Φ(i+1)N
iN+1

4: Ỹ (i+1)(γ)← γN ̂̃Y
(i)

+
(
Φ(i+1)N

iN+1

)>
ψψψN (γ)Σ̃−1

N ψψψN (γ) Y (i+1)N
iN+1

5: Ȳ (i+1)(γ)← γN ̂̄Y
(i)

+
(
Y

(i+1)N
iN+1

)>
ψψψN (γ)Σ̃−1

N ψψψN (γ) Y (i+1)N
iN+1

6: η̂(i+1), γ̂(i+1) ← arg minη∈Dη ,γ∈(0,1] f
(i+1)N
ML (η, γ)

(performing 1-step Marginal Likelihood maximization initialized with
η̂(i), η̂(i−1), γ̂(i), γ̂(i−1))

7: R̂(i+1) ←
(
γ̂(i+1)

)N
R̂(i) +

(
Φ(i+1)N

iN+1

)>
ψψψN (γ̂(i+1))Σ̃−1

N ψψψN (γ̂(i+1)) Φ(i+1)N
iN+1

8:
̂̃
Y

(i+1)

←
(
γ̂(i+1)

)N ̂̃
Y

(i)

+
(
Φ(i+1)N

iN+1

)>
ψψψN (γ̂(i+1))Σ̃−1

N ψψψN (γ̂(i+1)) Y (i+1)N
iN+1

9:
̂̄Y

(i+1)
←
(
γ̂(i+1)

)N ̂̄Y
(i)

+
(
Y

(i+1)N
iN+1

)>
ψψψN (γ̂(i+1))Σ̃−1

N ψψψN (γ̂(i+1)) Y (i+1)N
iN+1

10: ĝ(i+1) ←
(
R̂(i+1) + K̄−1

η̂(i+1)

)−1 ̂̃
Y

(i+1)

Output: ĝ(i+1), η̂(i+1), γ̂(i+1)
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5.4 Numerical Results

The proposed adaptation of non-parametric Bayesian methods to the real-time setup

is here evaluated through two Monte-Carlo studies. Section 5.4.1 will compare several

iterative algorithms for the optimization of the marginal likelihood: in particular, the

aim is to evaluate whether the proposed 1-step Marginal Likelihood approach is effective

in terms of quality of the returned estimates and of computational savings. 5.4.2 will

compare RPEM with the algorithm introduced in Section 5.3 on a Monte-Carlo scenario

composed of time-varying systems.

5.4.1 Time-Invariant Systems

5.4.1.1 Data

200 Monte-Carlo runs are here considered: for each of them a random SISO discrete-time

system is generated through the MATLAB routine drmodel.m (see Remark 3.5.1 for a

detailed description of the function). The system orders have been randomly chosen in

the range [5, 10], while the systems poles are all inside a circle of radius 0.95. The input

signal is a unit variance band-limited Gaussian signal with normalized band [0, 0.8]. A

zero mean white Gaussian noise, with variance adjusted so that the Signal to Noise Ratio

(SNR) is always equal to 5, isw added to the output data. For each Monte-Carlo run

5000 input-output data pairs have been generated, while the length N of the on-line

upcoming datasets DN
i is set to 10.

5.4.1.2 Identification Algorithms

The on-line version of the Bayesian approaches illustrated in Section 2.4 is here evaluated.

Specifically, the procedure which estimates the hyper-parameters by means of an iterative

algorithm which run until convergence (such as a gradient methods or the EM) is

compared with that which performs only one iteration of the aforementioned methods

(as illustrated in Algorithm 6). In the following the first procedure will be referred to as

OPT, while the notation 1-STEP ML will be adopted for the latter one. While OPT

exploits the SGP routine (Algorithm 1) to solve the Marginal Likelihood maximization

problem, multiple algorithms are compared when applied to accomplish such step in the

1-STEP ML procedure. Specifically, the following routines are evaluated:

SGP: Algorithm 1.

BB: Algorithm 1 with scaling matrix set equal to the identity: D(i) = Idη
; the name BB

refers to the Barzilai-Borwein rules adopted to fix the stepsize α(i).
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BFGS: Algorithm 1 where the product α(i)D(i) at step 5 is replaced by the BFGS

inverse Hessian approximation (Nocedal and Wright, 2006):

B(i) := (I − ρr(i−1)w(i−1)>

)B(i−1)(I − ρw(i−1)r(i−1)>

) + ρr(i−1)r(i−1)>

(5.49)

where

ρ : = 1/(w(i−1)>

r(i−1)) (5.50)

r(i−1) : = η(i) − η(i−1) (5.51)

w(i−1) : = [f ′
ML(η(i))− f ′

ML(η(i−1))]> (5.52)

EM: Algorithm 3.

Finally, it should be stressed that the on-line Algorithm 6 is initialized by computing the

batch procedure on the first 100 data.

In the following experiments, the length T of the estimated impulse responses is set to

80, while the adopted kernel is the TC one (3.27):

[
K̄T C

η

]
kj

= λmin(βk, βj), η = [λ, β], λ ≥ 0, 0 ≤ β ≤ 1 (5.53)

Notice that such kernel is defined by means of two hyper-parameters: the scaling factor

λ and the decay rate β. In the interest of reducing the computational time of the on-line

updates two versions of BFGS, SGP, BB, EM are proposed: the first one updates both

the hyper-parameters in η whenever a new dataset DN
i becomes available, while the

second one updates only the scaling factor λ, retaining β fixed to its initial value. It is

clear that the latter case allows a faster computation, at the expense of a less precise

impulse response estimate. In addition, two cases of the EM version which only updates

λ are considered:

EM2: The correct formula for the update of λ is adopted, that is

λ̂(i+1) =
1

pmT

(
ĝ(i)>

K̄−1

β̂
ĝ(i) + Tr

{
K̄−1

β̂
(R(i+1) + K̄−1

β̂
)−1
})

(5.54)

EM1: the following approximated update is used:

λ̂(i+1) =
1

pmT
ĝ(i)>

K̄−1

β̂
ĝ(i) (5.55)

Equation (5.55) represents the current approximation of the asymptotically optimal

value for λ. The aim is to show a comparison between the asymptotic theory and
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the EM update (Aravkin et al., 2014).

5.4.1.3 Impulse Response Estimates

The adherence of the impulse response estimate to the true one is here evaluated. For each

estimated system and for each procedure the following impulse response fit is computed:

FT (ĝ) = 100 ·
(

1− ‖g0 − ĝ‖2
‖g0 − ḡ0‖2

)
, ḡ0 =

1
T

T∑

j=1

[g0]j (5.56)

where g0, ĝ ∈ R
T respectively contain the true and the estimated truncated impulse

coefficients of the considered system.

Figure 5.1 shows the impulse response fits (5.56) achieved in the Monte-Carlo simulations

along with the increase of the number of observed data. Specifically, k on the top of each

plot denotes the number of data that have been so far processed by a certain algorithm.

OPT procedure is compared with 1-STEP ML when implemented with the algorithms

SGP, BB, BFGS and EM (that is, the single step of marginal likelihood optimization is

performed by computing single iteration of one of these routines). On the left hand side

the obtained results optimizing both hyper-parameters of kernel TC (5.53) are reported,

while the results on the right hand side are obtained by updating only λ.

All the 1-STEP ML procedures which update both hyper-parameters perform remarkably

well, with the fit index being almost equivalent to the one obtained with the OPT

procedure. This suggests that the complete optimization of the Marginal Likelihood does

not bring any particular advantage in terms of fit in the on-line setting. Notice that a

sort of worst case approximation is taken, since the optimization algorithm is stopped

after only one step: some more advanced techniques could be considered (e.g. an early

stopping criterion (Yao, Rosasco, and Caponnetto, 2007)). The 1-STEP ML updates

optimizing only λ , after a transient period, perform comparably (but slightly worse) to

the other techniques; the only exception is represented by EM1 which achieves inferior

fits.

5.4.1.4 Computational Time

The cumulative computational time of the algorithms detailed in Section 5.4.1.2 is here

evaluated. The term “cumulative time” here denotes the time spent by a certain algorithm

to process k data. Figure 5.2 contains the relative boxplots, while Table 5.1 reports the

average values of the computed cumulative time, together with their standard deviation.

The OPT procedure, as expected, is much slower than the 1-STEP ML procedures.
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Figure 5.1: Monte Carlo results over 200 runs - Boxplots of the impulse response fit (5.56)
achieved by the identification algorithms listed in Section 5.4.1.2. Left: Both the hyper-
parameters of kernel K̄T C

η (5.53) are updated. Right: Only hyper-parameter λ of kernel K̄T C
η

(5.53) is updated.

Update λ and β Update only λ
OPT SGP BB BFGS EM SGP BB BFGS EM2 EM1

mean 163.1 0.56 0.93 1.19 0.57 0.31 0.60 0.45 0.18 0.30
std 18.45 0.13 0.16 0.36 0.11 0.06 0.13 0.25 0.06 0.92

Table 5.1: Monte-Carlo results over 200 runs - Mean and standard deviation (std) of the
cumulative computational time required by the algorithms listed in Section 5.4.1.2 to process
5000 data. Left columns: Both the hyper-parameters of kernel K̄T C

η (5.53) are updated. Right

columns: Only hyper-parameter λ of kernel K̄T C
η (5.53) is updated.
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Figure 5.2: Monte Carlo results over 200 runs - Boxplots of the cumulative computational
time required by the identification algorithms listed in Section 5.4.1.2. Each row of plots
reports the time required to process k data. Left: OPT procedure (which updates both the
hyper-parameters of kernel K̄T C

η (5.53)). Mid: Both the hyper-parameters of kernel K̄T C
η

(5.53) are updated through 1-STEP ML optimization. Right: Only hyper-parameter λ of
kernel K̄T C

η (5.53) is updated through 1-STEP ML optimization.

This could suggest that the 1-STEP ML routines appear to be excellent candidates for

real-time applications. Indeed, these techniques perform comparably in terms of fit w.r.t.

the OPT procedure, but demanding a computational time which is two or three order of

magnitude faster. Furthermore, the difference in terms of computational time diverges in

favour of the 1-STEP ML procedure with the increase of the number of processed data.
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Among the 1-STEP ML procedures SGP and EM provide the fastest updates: this is

surprisingly positive for the EM update since only λ has a closed form update, while β

is the solution of a maximization problem; indeed, in the right hand side of Figure 5.2,

where only λ is updated, EM1 and EM2 outperform SGP. The update BB is a particular

case of SGP, where D(i) = Idη
, but it is significantly slower: this is probably due to the

backtracking loop at steps 8-12 in Algorithm 1.

As a final remark, the right hand side of Figure 5.2 shows the advantage of updating

only λ: the cumulative computational time is significantly lower than that appearing in

the mid-column of the figure.

5.4.2 Time-Varying Systems

In this section RPEM and the on-line version of the Bayesian methods of Section 2.4 are

experimentally evaluated on a Monte-Carlo study composed of 200 time-varying systems.

5.4.2.1 Data

200 datasets consisting of 4000 input-output measurement pairs are generated. Each of

them is created as follows: the first 1000 data are produced by a system contained in the

data-bank D4 (used in Chen et al. (2014)), while the remaining 3000 data are generated

by perturbing the D4-system with two additional poles and zeros. These are chosen such

that the order of the D4-system changes, thus creating a switch on the data generating

system at time k = 1001.

The data-bank D4 consists of 30th order random SISO dicrete-time systems having all

the poles inside a circle of radius 0.95. These systems are simulated with a unit variance

band-limited Gaussian signal with normalized band [0, 0.8]. A zero mean white Gaussian

noise, with variance adjusted so that the Signal to Noise Ratio (SNR) is always equal to

1, is then added to the output data.

5.4.2.2 Identification Algorithms

RPEM: The parametric estimators are computed with the roe MATLAB routine, using

the BIC criterion for model class selection (see (2.218)). In the following this

estimator will be denoted as RPEM+BIC. Furthermore, the parametric oracle

estimator is introduced as a benchmark (and called RPEM+OR): it selects the

model complexity by choosing the model that gives the best fit to the impulse

response of the true system. The order selection is performed every time a new

dataset becomes available: multiple models with orders ranging from 1 to 20 are
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estimated and the order selection is performed according to the two above-described

criteria.

Both methods adopts a forgetting factor γ equal to 0.998.

Non-Parametric Bayesian Methods: The TC kernel (3.27) is adopted also in this

case, while the length T of the estimated impulse responses is set to 100. In

the following, the acronym TC will denote non-parametric methods. As before,

the notation OPT will refer to the standard Bayesian procedure, in which the

SGP algorithm adopted to optimize the marginal likelihood fk
ML(η) is run until

convergence, i.e until the relative change in fk
ML(η) is less than 10−9. The acronyms

TC FF and TCestFF refer to the 1-STEP ML procedure: TC FF denotes the use of

a fixed forgetting factor (Algorithm 7), while TCestFF is related to the treatment

of the forgetting factor as a hyper-parameter (Algorithm 8).

The forgetting factor in TC FF is set to 0.998, while its estimation in TCestFF is

initialized with 0.995.

For each Monte-Carlo run, the identification algorithms are initialized using the first 300

data. After this initial step, the estimators are updated every N = 10 time steps, when

new data DN
i+1 = {u(t), y(t)}(i+1)N

t=iN are provided.

5.4.2.3 Impulse Response Estimates

The adherence of the estimated impulse response ĝ to the true one g0 is first evaluated

through criterion (5.56).

Figure 5.4 shows the average fit (over the 200 Monte-Carlo runs) achieved at each time

instant by the identification algorithms listed in Section 5.4.2.2. The results observed

with time-invariant systems are here confirmed, since the methods TC OPT FF and TC

FF performs identically (indeed, the line corresponding to the method TC OPT FF is

not visible, because it coincides with that of TC FF).

It is interesting to note that immediately before the change in the data generating

system (k = 1000) the TC methods slightly outperform the ideal parametric estimator

RPEM+OR. After the switch (occurring at k = 1001), among the regularization/Bayesian

routines TCestFF recovers the fit performance a bit faster than TC FF; moreover, even

at regime it outperforms the latter because it can choose forgetting factor values that

retain a larger amount of data.

The unrealistic RPEM+OR represents the reference on the achievable performance

of the RPEM estimators; it outperforms TC methods in the transient after the switch,
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while it has comparable performance at regime. On the other hand, RPEM+BIC

estimator performs very poorly.

300 800 1300 1800 2300 2800 3300 3800

Time

0

20

40

60

80

100

TC OPT FF

TC FF

TC est FF

RPEM+OR

RPEM+BIC

Figure 5.3: Monte-Carlo Results over 200 runs - Average impulse response fit (5.56) achieved
at each time instant by the identification algorithms listed in Section 5.4.2.2.

Figure 5.3 reports the boxplots of the average fit (5.56) achieved by the tested identification

algorithms over the 4000 available data. The observed results confirm the effectiveness of

the on-line implementation of Bayesian methods, which perform almost comparably with

the RPEM unrealistically equipped with an oracle.
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Figure 5.4: Monte-Carlo results over 200 runs - Boxplots of the average over time of the
impulse response fit (5.56) achieved by the identification algorithms listed in Section 5.4.2.2.
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TC RPEM
TC OPT FF TC FF TCestFF RPEM+OR RPEM+BIC

mean 6.70 0.44 0.90 18.44 18.44
std 1.28 0.03 0.37 0.69 0.69

Table 5.2: Monte-Carlo results over 200 runs - Computational cumulative time after data
4000 have been processed: mean and standard deviation (std) over 200 datasets.

5.4.2.4 Computational Time

Table 5.2 analyses the cumulative computational time of the evaluated identification

algorithms: specifically,the reported values are its mean and standard deviation computed

after the estimators are fed with all the 4000 data contained in the designed datasets.

The 1-STEP ML methods are one order of magnitude faster than the corresponding

OPT ones. The TCestFF estimator appears a bit slower slower than TC FF, since

three hyper-parameters have to be estimated at each iteration. On the other hand the

RPEM estimators are three times slower than OPT ones, thus appearing not particularly

appealing for on-line applications. The large computational effort detected for RPEM is

due to the necessity of selecting a new model complexity, whenever new data arrive.
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The estimators ĝ produced by the Bayesian methods described in Section 2.4 are

FIR models of length T . As previously remarked, the value of T is not related to the

complexity of the estimated model, but it only depends on the dominant time constant

of the system. It should be recalled that within the regularization framework model

selection is implicitly performed through the choice of the regularization parameters (or

hyper-parameters in a Bayesian setting) appearing in the penalty terms; model complexity

can be measured in terms of degrees of freedom (Hastie et al., 2009; Pillonetto and Chiuso,

2015). However this quantity does not directly relate to the McMillan degree of the

system, which instead measures the complexity of a minimal state space realization.

Once the high-order FIR estimate (2.148) has been obtained, it would be desirable

to approximate it with a lower order state-space model, more suited for filtering and

control purposes. Indeed, high-order models lead to complex controllers and prediction

filters, whose implementation may be critical. The approximation can be achieved either

by computing a high-order state-space realization of the FIR model and subsequently

reducing it to the desired low order, or by directly building a state-space realization

from the impulse response data contained in the FIR model, according to one of the

algorithms proposed e.g. by Ho and Kalman (1966) and Kung (1978) (see Section

6.1). The former approach involves the adoption of a model reduction procedure, which

computes a reduced-order approximation of the original system, while preserving its main

dynamical properties. The model reduction problem has been intensively studied by the

control systems community, as proved by the surveys Antoulas, Sorensen, and Gugercin

(2001); Gugercin and Antoulas (2004) and the books Antoulas (2005a); Obinata and

Anderson (2012). Most of the existing techniques approximate the original large-scale

system by means of a projection onto a lower dimensional space. A brief overview of

these methodologies will be provided in Section 6.1.

The role played by model reduction in system identification will be briefly discussed

in Section 6.2. While model reduction is implicitly performed by subspace algorithms,

some contributions (Wahlberg, 1989b; Söderström et al., 1991; Galrinho, Rojas, and

Hjalmarsson, 2014) have connected it to PEM by developing two-stage procedures, where

an initial high-order model is estimated through PEM and then reduced according to

some “optimal” criteria. On the other hand, little attention has been devoted by the

literature of Bayesian system identification on a possible post-processing stage, where

the high-order estimated FIR model is converted into a more manageable low-order one.

The work presented in this chapter aims at investigating some procedures (detailed in

Section 6.3) which could robustly perform such reduction stage. The transition to the

parametric framework requires to choose the complexity of the reduced model, which
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turns out to be a crucial ingredient. For this reason, the numerical analysis in Section

6.4 is largely focused on the comparison of several order selection techniques.

As a final remark, it should be mentioned that goal-oriented model reduction is also

typically applied in the control system field: the intended use of the low order model is

explicitly taken into account in the reduction criterion (Hovland, Willcox, and Gravdahl,

2006; Bui-Thanh, Willcox, Ghattas, and van Bloemen Waanders, 2007; Carlberg and

Farhat, 2011). However, the approach taken in the work here illustrated does not consider

a specific goal, but simply intends to transform a high-order estimated FIR model into a

low-order system, suitable for general use. Extensions to goal-oriented reduction could

be developed, but are out of the scope of the present contribution.

6.1 Model Reduction in Control System Theory

The theory of model reduction for LTI systems is generally formulated in terms of state-

space models. For ease of notation, in the remainder of the chapter, a state-space system

described by the matrices A, B, C and D will be compactly denoted as G = (A,B,C,D).

Moreover, the terms “order” and “McMillan degree” of a system will be interchangeably

used in the rest of the chapter.

The classical model reduction problem solved in the linear system theory can be stated

as follows.

Given the state-space system of order n, G = (A,B,C,D), find a system Ĝ = (Â, B̂, Ĉ, D̂)

of order (equivalently, McMillan degree) ρ < n such that:

1. Basic properties, like stability and passivity, are preserved.

2. G and Ĝ are close in terms of the H∞ or the H2 norms. It should be recalled that

‖G− Ĝ‖H2 : =

√
1

2π

∫ π

−π
Tr
[(
G(ejω)− Ĝ(ejω)

)> (
G(ejω)− Ĝ(ejω)

)]
dω (6.1)

‖G− Ĝ‖H∞
: = sup

ω∈[0,π]
smax

(
G(ejω)− Ĝ(ejω)

)
(6.2)

with G(ejω) denoting the frequency response of system G and smax(A) denoting the

largest singular value of matrix A.

Additionally, the computational and storage requirements of the reduction procedure

should be restrained.

Basically, model reduction procedures derive the low order system Ĝ by means of an
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appropriate projection. Specifically, the projection is defined as Π = VW>, where

V,W ∈ R
n×ρ are such that W>V = Iρ. The approximating state x̂ is then computed

as Πx = V x̂. The corresponding reduced system is described by the matrices Ĝ =

(W>AV,W>B,CV,D) (Antoulas, 2005b; Benner, Gugercin, and Willcox, 2015).

The book Antoulas (2005a) divides the various model reduction algorithms into three

main categories:

1. SVD-based methods

2. Krylov-based methods

3. SVD- and Krylov-based methods

These families are briefly discussed in the next sections.

6.1.1 SVD-based Methods

For linear systems, SVD-based methods include the balanced truncation and the Hankel

approximation. While the former technique will be briefly outlined in the remainder of

the section, the latter will not be treated in this manuscript. It is worth mentioning that

the Hankel approximation is optimal w.r.t. the 2-induced norm of the Hankel operator;

explicit formulas for optimal and suboptimal approximations exist and an error bound in

the H∞-norm has been derived. For further details on this method, the interested reader

is referred to Glover (1984), Latham and Anderson (1985) and Antoulas (2005a) (Ch. 8).

Balanced model reduction is a sound and widely adopted procedure, which was introduced

by Moore (1981). The basic technique is the so-called Lyapunov balancing method, which

first requires to transform the large-scale system G into its balanced realization. To

determine the so-called “balanced” basis, the two Lyapunov equations

APA> − P = −BB>, P > 0 (6.3)

A>QA−Q = −C>C, Q > 0 (6.4)

need to be solved, thus obtaining the reachability and the observability gramians:

P :=
∞∑

i=1

AiBB>(Ai)>, Q :=
∞∑

i=1

(Ai)>C>CAi (6.5)

In the balanced realization, the two gramians are simultaneously diagonalized, namely:

P = Q = diag(s1, · · · , sn) (6.6)
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where si, i = 1, ..., n are the Hankel singular values of the system G , which equal the

square roots of the eigenvalues of the product PQ, si =
√
λi(PQ). As a consequence of

condition 6.6, in a balanced realization every state is as controllable as it is observable.

Hence, the states can be ordered in terms of their contribution to the input-output

properties of the system and the states providing the least contribution can be removed

in order to obtain a reduced model.

Once the system G is transformed into its balanced realization, G = (Ab, Bb, Cb, D), the

system matrices are partitioned as

Ab =


 A11 A12

A21 A22


 , Bb =


 B1

B2


 , Cb =

[
C1 C2

]
(6.7)

where A11 ∈ R
ρ×ρ, B1 ∈ R

ρ×m, C1 ∈ R
p×ρ. The corresponding reduced order model is

Ĝ = (A11, B1, C1, D) and the associated projector is Π = VW> with V = W = [Iρ 0n−ρ]>.

Among the advantages of this reduction procedure, there are the preservation of the

system stability (i.e. Ĝ is stable if G is stable) and the existence of a global error bound,

namely

sρ+1 ≤ ‖G− Ĝ‖H∞
≤ 2(sρ+1 + · · ·+ sn) (6.8)

However, the algorithm requires matrix factorizations and inversions, making its com-

putational effort of order O(n3); in addition, since no iterative way of computing the

reduced order exists, the whole original system has to be stored, making the storage

requirement of order O(n2). As a consequence, approximate and efficient versions of

the above-detailed Lyapunov balanced truncation have been developed; see the survey

Gugercin and Antoulas (2004) and the book Antoulas (2005a), where also other types of

balancing are reviewed, such as stochastic balancing, bounded real balancing, positive

real balancing and frequency weighted balancing.

A balanced state-space realization of a desired order can also be computed starting from

impulse response data by means of the algorithm initially proposed by Ho and Kalman

(Ho and Kalman, 1966). This routine was developed to solve the so-called “minimal

state-space realization problem for LTI systems”, which can be stated as follows:

Given some data about an LTI system, find a state-space description of minimal size that

explains the given data.

The data could be e.g. the impulse response of the system, its step response, some

input-output measurements or frequency response data.
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The minimal state-space realization problem has been studied since the early 1960s, when

was first faced by Gilbert (Gilbert, 1963) and Kalman (Kalman, 1965). In 1966, Ho and

Kalman formulated the procedure reported in Algorithm 9 which returns the minimal

state-space realization starting from the entire sequence of Markov parameters of the

system (Ho and Kalman, 1966). Kalman (1971) and Tether (1970) extended the original

version to handle partial sequences of Markov parameters, while the routine proposed by

Kung (Algorithm 10) can be applied when a finite number of noisy Markov parameters of

an LTI system is available (Kung, 1978). An overview of the several algorithms proposed

in the literature to solve the minimal state-space realization problem can be found in the

survey by De Schutter (2000).

Some comments on the pseudo-code in Algorithm 9 and 10 are needed. At step 4 of the

two algorithms, the shifted Hankel matrix Ḡ is built; for generic numbers r and c of

block rows and columns, it is defined as:

Ḡ =




g(2) g(3) · · · g(c+ 1)

g(3) g(4)
. . . g(c+ 2)

...
...

. . .
...

g(r + 1) g(r + 2) · · · g(r + c)




(6.9)

At step 5 of Algorithm 9, the full rank decomposition of G can be reliably determined

computing its SVD, G = USV >, U ∈ R
pr×pr, V ∈ R

mr×mr and S ∈ R
pr×mr. Accordingly,

Go = US1/2 and Gc = S1/2V >. As a final comment, following the Matlab convention,

the notation A(1 : m, 1 : n) denotes the block of the first m rows and n columns extracted

from matrix A.

Algorithm 9 Ho and Kalman Algorithm

Inputs: Entire sequence of impulse response coefficients {g(k)}∞k=0

1: D̂ ← g(0)
2: Choose r (large enough), the number of Hankel block rows and columns
3: Build the Hankel matrix G ∈ R

pr×mr

4: Build the shifted Hankel matrix Ḡ ∈ R
pr×mr

5: Compute the full-rank factorization: G← GoGc, Go ∈ R
pr×ρ, Gc ∈ R

ρ×rm

6: Â← G†
oḠG†

c

7: B̂ ← Gc(:, 1 : m)
8: Ĉ ← Go(1 : p, :)

Output: Ĝ = (Â, B̂, Ĉ, D̂), balanced state-space realization of order ρ

Algorithms 9 and 10 return state-space realizations whose system matrices have all

non-zero entries, meaning that in general ρ(ρ+ p+m) + pm entries have to be computed.
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Algorithm 10 Kung’s Algorithm

Inputs: Partial sequence of impulse response coefficients {g(k)}Nk=0

1: D̂ ← g(0)
2: Choose the number of Hankel block rows r and columns c such that r + c = N
3: Build the Hankel matrix G ∈ R

pr×mc

4: Build the shifted Hankel matrix Ḡ ∈ R
pr×mc

5: Compute the SVD of G: G← USV >

6: Choose the number ρ of singular values Sii to be retained
7: Uρ ← U(:, 1 : ρ)
8: Vρ ← V (:, 1 : ρ)
9: Sρ ← S(1 : ρ, 1 : ρ)

10: Go ← UρS
1/2
ρ

11: Gc ← S
1/2
ρ V >

ρ

12: Â← G†
oḠG†

c

13: B̂ ← Gc(:, 1 : m)
14: Ĉ ← Go(1 : p, :)

Output: Ĝ = (Â, B̂, Ĉ, D̂), balanced state-space realization of order ρ

Several authors have developed extensions of these procedures, which allow to derive

state-space models with specific canonical structures.

6.1.2 Krylov-based Methods

Krylov-based methods rely on moment matching. The moment of a system G at q0 ∈ C

are the coefficients of the Laurent series expansion of the transfer function G(q) around

q0:

G(q) = G(q0) +G(1)(q)
(q − q0)

1!
+G(2)(q)

(q − q0)2

2!
+ · · ·+G(k)(q)

(q − q0)k

k!
+ · · ·

(6.10)

= η0(q0) + η1(q0)
(q − q0)

1!
+ η2(q0)

(q − q0)2

2!
+ · · ·+ ηk(q0)

(q − q0)k

k!
+ · · · (6.11)

It should be observed that the moments are the Markov coefficients of G if the expansion

is computed around infinity, i.e. η0(∞) = D, ηk(∞) = CAk−1B, k > 0.

Moment matching approximates the original system G by finding Ĝ = (Â, B̂, Ĉ, D̂), such

that its transfer function can be expanded as

Ĝ(q) = η̂0(q0) + η̂1(q0)
(q − q0)

1!
+ η̂2(q0)

(q − q0)2

2!
+ η̂k(q0)

(q − q0)3

3!
+ · · · (6.12)
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and

ηj(q0) = η̂j(q0), j = 1, 2, ..., k (6.13)

for an appropriate k. The problem of finding Ĝ through moment matching is also known

as rational interpolation. This problem can be solved by means of iterative procedures,

which avoid the direct computation of the moments. Hence, w.r.t. SVD-based methods,

Krylov-based approaches admit numerically efficient implementations, such as the well-

known Lanczos and Arnoldi algorithms. The number of numerical operations they

require is O(ρn2) or O(ρ2n), which needs to be compared to the complexity of O(n3)

characterizing SVD-based methods.

At the ρ-th iteration, the Arnoldi algorithm builds an orthogonal matrix Vρ and the appli-

cation of the projection Π = VρV
>

ρ leads to the reduced-order model Ĝ = (Â, B̂, Ĉ, D̂) =

(V >
ρ AVρ, V

>
ρ B,CVρ, D). The Arnoldi procedure guarantees that the first ρ Markov

parameters are matched, namely

ĝ(j) = ĈÂj−1B̂ = CAj−1B = g(j), j = 1, ..., ρ (6.14)

The two-sided Lanczos algorithm is an alternative routine, which iteratively constructs

two biorthogonal matrices Vρ and Wρ (i.e., such that W>
ρ Vρ = Iρ), starting from the

matrix A and the vectors B and C>. The reduced-order system is obtained by means of

the projection Π = VρW
>
ρ , leading to Ĝ = (Â, B̂, Ĉ, D̂) = (W>

ρ AVρ,W
>
ρ B,CVρ, D). In

this case the first 2ρ moments are matched:

ĝ(j) = ĈÂj−1B̂ = CAj−1B = g(j), j = 1, ..., 2ρ (6.15)

In practice, at the ρ-th iteration of both the Arnoldi and the Lanczos method, a certain

canonical form of G = (A,B,C,D) is derived and the reduced-order system is obtained

by truncating the state. However, thanks to the iterative implementation, the reduced

matrices Â, B̂ and Ĉ are directly computed, thus avoiding the explicit computation of

the canonical forms as well as the state truncation.

6.1.3 SVD and Krylov-based methods

The discussion in Sections 6.1.1 and 6.1.2 highlighted how SVD-based and Krylov-based

methods are characterized by some advantages but also by some drawbacks.

SVD-based approaches preserve the stability of the original system and enjoy a global error

bound between the large-scale and the reduced-order system; however, the computational

and storage requirements are significant, since matrix inversions and factorization have
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to be performed and no iterative routine can be applied.

On the other hand, Krylov-based methods admit iterative implementations, which simply

require matrix-vector multiplications, thus making these approaches particularly efficient

from the numerical point of view. However, no a-priori error bound can be derived

for the reduced-order system and the preservation of stability is not guaranteed. In

addition, Krylov methods tend to approximate better the high frequency components

of the original system, leading sometimes to relevant steady-state errors. To overcome

this issue, rational Krylov methods can be adopted, where the matching is done on the

coefficients of the Laurent series expansion around frequencies different from infinity.

Recent research on the field has tried to combine the benefits of the two families of

methods in order to overcome the aforementioned drawbacks characterizing them. For

instance, iterative methods have been developed to approximatively solve the Lyapunov

equations (6.3) and (6.4), which represent the computational bottleneck of balanced

truncation (Sorensen and Antoulas, 2002; Gugercin, Sorensen, and Antoulas, 2003;

Penzl, 2006). Along this research line, Gugercin (2008) proposes an iterative method

returning a reduced-order system, which is stable, matches certain moments and solves

an H2 minimization problem. Similar guarantees are also achieved by the least-squares

approximation proposed in Gugercin and Antoulas (2006).

Gugercin, Antoulas, and Beattie (2008) develop a new set of local optimality conditions

for the H2 model reduction problem, proving that the existing SVD- and Krylov-based

optimality conditions are equivalent to each other.

More details on these combined approaches can be found in the book Antoulas (2005a)

(Ch. 12).

6.2 Model Reduction in System Identification

From a certain perspective, system identification can be viewed as a model reduction

problem. Indeed, the given dataset DN of N input-output data can be interpreted as a

non-parametric model of the unknown system. Consequently, system identification turns

out to be a model reduction procedure which converts such N -th order model into a lower

order one within a specified model set (Ljung, 1985). Differently from the approaches

discussed in Section 6.1, system identification operates on noisy data, meaning that the

high-order system is just an approximation of the underlying unknown system. This

introduces new considerations when it comes to choose the order of the reduced model.

While the reduction procedures discussed in Section 6.1.1 admit precise error bounds

between the high- and low-order models, such results should be carefully exploited in
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system identification. Indeed, a small error between the high- and low-dimensional models

does not directly imply a good fit with the underlying unknown system. Stated in other

words, the risk of overfitting should always be considered. These observations simply

restate how the model class selection is a crucial stage in any identification procedure, as

already remarked throughout this manuscript.

The next sections intend to provide a brief overview of the interplay between model

reduction procedures and the three types of system identification methods which have

been illustrated in Chapter 2.

6.2.1 Model Reduction and Prediction Error Methods

PEM offer two main routes to estimate low-order models. The first and standard

procedure is to directly apply PEM on the given data DN to search for an approximation

of the unknown system within a pre-specified model set. Indeed, PEM return estimates

which are L2 approximations of the true system in a frequency-weighted norm defined

by the input spectrum Su(ω): denoting with θ̂N the PE estimate and with θ∗ the best

model within the chosen model class, it holds

θ̂N
N→∞−→ θ∗ = arg min

θ∈Dθ

∫ π

−π
Tr
[(
G0(ejω)−G(ejω, θ)

)>
Su(ω)

(
G0(ejω)−G(ejω, θ)

)]
dω

(6.16)

A second route prescribes to adopt PEM to first estimate a high-order model and in a

second stage to reduce it to the desired order by minimizing a specific criterion or by

applying one of the techniques illustrated in Section 6.1.

The remainder of this section will focus on this second procedure and will provide a short

overview of some contributions which have considered such estimation approach.

The first works treating the reduction of high-order models returned by an estimation

algorithm appeared in the time-series literature. Durbin (1960) proposed the idea of first

estimating a high-order AR model and subsequently using it to form a low-order ARMA

estimate. Other contributions in the time series literature are due to Mayne and Firoozan

(1982) and to Wahlberg (1989a), who followed Durbin’s approach but transformed it into

the frequency domain, thus fortmulating the reduction step as an L2-norm approximation

problem. In the control field, the early work of Genesio and Pomé (1975) was followed

by the algorithms proposed by Wahlberg (1989b), Söderström et al. (1991) and Zhu and

Backx (2012).

Wahlberg (1989b) proposes a two-steps procedure, where a high-order model is first

estimated and then reduced according to Maximum Likelihood criterion, based on the

asymptotic distribution of the high-order estimate. Such criterion turns out to be a
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frequency weighted L2-norm model reduction, with the weighting function given by the

inverse variance of the high-order estimate. The author also mentions the possibility

of modifying such weighting function in order to account for the intended use of the

low-order model.

To briefly illustrate the method, the estimation of a FIR model of order n in the first

stage is here considered (even if other model structures are admitted, as outlined in

Wahlberg (1989b)):

θ̂N = R−1
N (n)

N∑

t=1

ϕ(t)y(t) (6.17)

with

RN (n) : =
N∑

t=1

ϕ(t)ϕ>(t), ϕ(t) := [u(t− 1) · · · u(t− n)]> (6.18)

The model is then reduced according to the criterion

ν̂N = arg min
ν∈Dν

(F1(ν)− θ̂N )>RN (n)(F1(ν)− θ̂N ) (6.19)

F1(ν) = RN (n)−1
N∑

t=1

G(q, ν)u(t)ϕ(t) (6.20)

Replacing RN (n) by its limit R(n),

lim
N→∞

1
N
RN (n) =




Ru(0) Ru(1) · · · Ru(n− 1)

Ru(1) Ru(0) · · · Ru(n− 2)
...

...
. . .

...

Ru(n− 1) Ru(n− 2) · · · Ru(0)




=: R(n) (6.21)

with

Ru(τ) =
1

2π

∫ π

−π
Su(ejω)ejτωdω (6.22)

criterion (6.19) can be expressed in the frequency domain as

ν̂N = arg min
ν∈Dν

{∫ π

−π
Tr
[(
Ĝ(ejω, θ̂N )−G(ejω, ν)

)>
Su(ejω)

(
Ĝ(ejω, θ̂N )−G(ejω, ν)

)]
dω

+ ∆ν(n,N)
}

(6.23)

with limN→∞ ‖∆ν(n,N)‖2 going exponentially to zero as n→∞.

Under mild conditions (exponentially stable system and persistence of excitation),
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Wahlberg (1989b) proves that ν̂N is an asymptotically efficient estimate, meaning that

the Cramér-Rao bound is met as the order n of the large FIR model and the number of

data N tend to infinity.

The Indirect Prediction Error Method (IPEM) proposed by Söderström et al. (1991) uses

PEM (specifically, Least-Squares) to estimate a high-order model θ̂N within a model

structure M2 and subsequently reduces it to a simpler model belonging to M1, such

that M1 ⊂M2. Since M1 and M2 are nested, there exists a non-linear map F2(θ) such

that ν = F−1
2 (θ). The proposed reduction criterion is

ν̄ = arg min
ν∈Dν

(F2(ν)− θ̂N )>P̂−1
N (F2(ν)− θ̂N ) (6.24)

where P̂N is a consistent estimate of

Pθ =



E



(
∂ε(t, θ)
∂θ

∣∣∣∣
θ=θ0

)>(
∂ε(t, θ)
∂θ

∣∣∣∣
θ=θ0

)





−1

(6.25)

and ε(t, θ) in equation (6.25) denotes the prediction error achieved using the parameter

θ, while θ0 is the true parameter vector. Notice that equation (6.25) is the asymptotic

covariance of the normalized estimation errors; hence, recalling the discussion of Section

4.1.1.2, a natural estimate is

P̂N =





1
N

N∑

t=1

(
∂ε(t, θ)
∂θ

∣∣∣∣
θ=θ̂N

)>(
∂ε(t, θ)
∂θ

∣∣∣∣
θ=θ̂N

)


−1

(6.26)

The authors prove that the estimate ν̄ in (6.24) has the same asymptotic distribution

of ν̂N , the ML estimate (that is, the one returned by standard PEM). However, IPEM

results to be more computationally efficient than classical PEM, thanks to the LS problem

solved at the first stage and to the tailored Gauss-Newton algorithm developed by the

authors to solve the reduction problem (6.24).

An alternative approach is the one proposed by Zhu and Backx (2012), whose starting

point is the estimation of a ARX model of (large) order n through LS, thus obtaining

the polynomials A(q, θ̂N ) and B(q, θ̂N ). These are used in an intermediate step to filter

the original input-output data:

uf (t) = A(q, θ̂N )u(t), yf (t) =
B(q, θ̂N )

A(q, θ̂N )
uf (t) (6.27)

As a final stage, a low order OE model is estimated from the data {yf (t), uf (t)}Nt=1. The
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authors prove that this approach is asymptotically efficient in the model order n and in

the number of data N .

A statistical analysis of these two-steps procedures is provided by Tjärnström and

Ljung (2002) and Tjärnström (2003). Tjärnström and Ljung (2002) prove that directly

estimating a low-order FIR model from the data results into a larger variance w.r.t. first

estimating a high-order FIR and then reducing it to the desired low order. In the case of

OE models, the two procedures are equivalent in terms of the variance of the estimates, if

the reduced model class contains the true system. If this is not the case (i.e. in presence

of undermodelling), Tjärnström (2003) proves that the low-order OE model obtained

through L2 reduction of a higher-order estimate has a smaller variance than a low-order

OE model directly inferred from the given data.

Finally, a more recent contribution (Galrinho et al., 2014) introduces an iterative procedure

consisting of three LS problems:

1. A high-order FIR model θ̂N is estimated trough LS from the given data DN .

2. θ̂N is reduced to a structured model, ν̄ ∈ Dν , by solving a second LS problem, that

is, by projecting θ̂N onto the low dimensional space Dν .

3. The final estimate ν̂N is fitted through weighted LS to θ̂N , using the weights

obtained from ν̄.

The authors claim that their method is asymptotically efficient under mild assumptions.

6.2.2 Model Reduction and Subspace Methods

Among the identification techniques illustrated in Chapter 2, subspace methods probably

show the strongest interplay with the concept of model reduction. Indeed, the procedure

detailed in Section 2.3 could be viewed as a model reduction algorithm, where the N -

dimensional subspace directly derived from the given data DN is reduced to the so-called

signal subspace of size n ≤ N . In practice, this reduction is performed by resorting to an

SVD-based approach, as clarified by equations (2.78) and (2.89).

6.2.3 Model Reduction and Non-parametric Bayesian Methods

As mentioned in introduction of this chapter, the high-order FIR model returned by a

non-parametric Bayesian identification procedure may not be suited for the intended

use of the model. For instance, if the estimation stage is just the preliminary step for

the subsequent controller design, the order of the resulting controller will be large, thus

complicating its analysis and its implementation.
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The possibility of transforming the non-parametric estimate into a model belonging to a

desired model set M is investigated in the seminal paper of Pillonetto and De Nicolao

(2010), where a mean-square optimal approximation is suggested. Specifically, if ĝ denotes

the Bayesian estimate defined in equation (2.128), the approximation ĝM ∈M returned

by the proposed criterion

ĝM = arg min
g∈M

∞∑

t=0

Tr
[
(ĝ(t)− g(t))>W (t)(ĝ(t)− g(t))

]
(6.28)

also minimizes the weighted MSE, that is

ĝM = arg min
g∈M

∞∑

t=0

E

[
Tr[(g0(t)− g(t|yN ))>W (t)(g0(t)− g(t|yN ))]

∣∣∣ yN
]

(6.29)

where g(t|yN ) denotes the impulse response computed starting from the observations yN

and W (·) a suitably designed weighting function. It should be clarified that the notation

g ∈M in equations (6.28) and (6.29) indicates that g is the impulse response of a model

included in the class M .

In practice, criterion (6.28) suggests a two-stage procedure, where a non-parametric

Bayesian estimate is first computed and then approximated through a projection onto

the set M . Furthermore, by Parseval’s theorem, criterion (6.28) is easily translated into

the frequency domain, thus becoming a classical L2 approximation problem, i.e.

ĜM = arg min
G∈M

1
2π

∫ π

−π
Tr
[
(Ĝ(ejω)−G(ejω))>W (ω)(Ĝ(ejω)−G(ejω))

]
dω (6.30)

As before, the notation G ∈M means that G(ejω) is the frequency response of a model

belonging to the set M .

No mention is given by the authors about possible ways of selecting the model class M

in order to achieve the best fit with the true unknown system. This step turns out to be

crucial in determining the goodness of the reduced model: if M is not properly chosen,

the gap between the true system and the reduced model could be significantly larger than

the original error produced by the Bayesian estimate. For this reason, the investigation

conducted in the next two sections is particularly focused on the problem of model class

selection: besides proposing two reduction procedures, several techniques for complexity

selection are compared. The experimental results reported in Section 6.4 will show how

the problem is not trivial, suggesting the need for further investigations.
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6.3 From Non-parametric to Parametric Models: Model

Reduction Meets Order Selection

This section introduces two routines which transform the FIR model estimated through

a non-parametric Bayesian algorithm into a low-order OE model. Several methods for

the choice of its complexity are experimentally compared (these are listed in Section

6.3.1). The final goal of this investigation is the development of a completely automatic

procedure, which takes as input a high-order unstructured estimate (returned by a

Bayesian identification algorithm) and reduces it to a structured model with low McMillan

degree.

Algorithm 11 Reduction of non-parametric Bayesian estimates

Input: M̂, a realization of order T of the FIR impulse response estimate ĝ (2.148)
1: for ρ = 1 to T − 1 do
2: Use one of the techniques illustrated in Section 6.1 to approximate M̂ with the

model M̂ρ of order ρ.

3: Using the original model M̂, compute the prediction ŷN on the estimation data
DN .

4: Estimate an OE model M̂P EM
ρ (by means of the MATLAB routines pem or oe)

using the data D̂N = {ŷ(t), u(t)}Nt=1 and the model M̂ρ as initialization for the
routine.

5: Using the model M̂P EM
ρ , compute the prediction ŷN

ρ on the estimation data DN .
6: end for
7: Use one of the criteria listed in Section 6.3.1 to select the final model M̂P EM

∗ within
the set

{
M̂P EM

ρ∗ ; ρ = 1, ..., T − 1
}

.

Output: M̂P EM
ρ∗ , OE model of order ρ∗ << T .

Algorithm 11 summarizes the proposed procedure for the reduction of the high-order

FIR model ĝ (2.148) into a low-order OE model.

The numerical experiments in Section 6.4 will compare Algorithm 11 with an alternative

approach, where the reduced non-parametric estimate is used to initialize a classical

PEM routine applied on the original data DN . For the sake of clarity, this procedure is

outlined in Algorithm 12. A similar approach has already be considered in the frequency

domain by Geerardyn, Lumori, and Lataire (2015).

It should be noticed that Algorithms 11 and 12 consist of two model reduction stages:

one computed at step 2 by means of an SVD- or a Krylov-based method (see Section 6.1)

and an L2-norm approximation performed at step 4 of Algorithm 11 and at step 3 of

Algorithm 12.
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Algorithm 12 Reduction of non-parametric Bayesian estimates

Input: M̂, a realization of order T of the FIR impulse response estimate ĝ (2.148)
1: for ρ = 1 to T − 1 do
2: Use one of the techniques illustrated in Section 6.1 to approximate M̂ with the

model M̂ρ of order ρ.

3: Estimate an OE model M̂P EM
ρ (by means of the MATLAB routines pem or oe)

using the estimation data DN and the model M̂ρ as initialization for the routine.

4: Using the model M̂P EM
ρ , compute the prediction ŷN

ρ on the estimation data DN .
5: end for
6: Use one of the criteria listed in Section 6.3.1 to select the final model M̂P EM

ρ∗ within

the set
{
M̂P EM

ρ ; ρ = 1, ..., T − 1
}

.

Output: M̂P EM
ρ∗ , OE model of order ρ∗ << T .

The procedure detailed in Algorithm 11 deserves some additional comments.

If the FIR model M̂ was estimated by classical LS, steps 3 and 4 would coincide with

the asymptotically efficient procedure proposed by Wahlberg (1989b). To clarify the

connection, the one-step ahead predictor corresponding to the initial FIR estimate ĝ is

rewritten as

ŷ(t) =
T∑

k=1

ĝ(k)u(t− k) = [ĝ(1) · · · ĝ(T )]




u(t− 1)
...

u(t− T )


 =: ĝ>ϕ(t) (6.31)

In addition, the corresponding frequency response is expressed as

Ĝ(ejω) = ĝ>




e−jωIm

...

e−jT ωIm


 =: ĝ>WT (ω) (6.32)

Analogously, the one-step ahead predictor for the OE model parametrized by ν ∈ Dν is

given by

ŷ(t|ν) = G(q, ν)u(t) =
∞∑

k=1

gν(k)u(t− k) =
T∑

k=1

gν(k)u(t− k) +
∞∑

k=T +1

gν(k)u(t− k)

=
(
g

ν,T

)>
ϕ(t) + ∆1(T,N) (6.33)

Assuming a bounded input signal, that is |u(t)| < C for some C > 0, then lim
N→∞

‖∆1(T,N)‖2
goes exponentially to zero as T tends to infinity. Correspondingly, the frequency response
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can be written as

G(ejω, ν) =
(
g

ν,T

)>




e−jωIm

...

e−jT ωIm


+ ∆2(T,N) =:

(
g

ν,T

)>
WT (ω) + ∆2(T,N) (6.34)

where limN→∞ ‖∆2(T,N)‖2 decreases exponentially to zero in T .

Having defined the above quantities, the optimization problem solved by the PEM routine

applied at step 4 of Algorithm 11 can be stated as follows

ν̂N = arg min
ν∈Dν

N∑

t=1

Tr
[
(ŷ(t)− ŷ(t|ν)) (ŷ(t)− ŷ(t|ν))>

]

= arg min
ν∈Dν

N∑

t=1

Tr
[(

(ĝ − g
ν,T

)> ϕ(t)−∆1(T,N)
)
·
(
(ĝ − g

ν,T
)> ϕ(t)−∆1(T,N)

)>
]

= arg min
ν∈Dν

N∑

t=1

Tr
[
(ĝ − g

ν,T
)> ϕ(t)ϕ(t)>(ĝ − g

ν,T
) + ∆3(T,N)

]

= arg min
ν∈Dν

Tr
[
(ĝ − g

ν,T
)> RN (T )(ĝ − g

ν,T
)
]

+
N∑

t=1

Tr [∆3(T,N)]

N,T →∞≈ arg min
ν∈Dν

∫ π

−π
Tr
[(
Ĝ(ejω)−G(ejω, ν)

)>
Su(ejω)

(
Ĝ(ejω)−G(ejω, ν)

)]
dω

(6.35)

where the last expression exploits the asymptotic value of RN (T ) (see equations (6.21)

and (6.22)) and derives from the fact that limN→∞ ‖∆3(T,N)‖2 goes exponentially to

zero as T →∞. Comparing equations (6.23) and (6.35), the analogy between the two

criteria is clear.

A possible extension of the routine reported in Algorithm 11 exploits the model M̂P EM
ρ

computed at step 4 as initialization of a further application of PEM on the original data

DN . The final low-order model is chosen among the ones returned by this additional stage.

This option has been numerically evaluated but its performances are comparable to the

ones achieved through Algorithms 11 and 12. Because of the additional computational

effort required by this option, the other two approaches are preferred and analysed in

details in Section 6.4.

It is important to observe that the quality of the final low-order system will not only

depend on the chosen reduction procedure but also on the initial non-parametric estimate.
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For instance, it is worth recalling that the Hankel kernel (3.57) has been designed in order

to encourage a small number of Hankel singular values. It is thus to be expected that it

will be easier to provide a low McMillan degree approximation of ĝ, when this has been

estimated using the kernel (3.57). Analogous considerations should hold when estimation

is performed using nuclear-norm type penalties on the Hankel singular values (e.g. by

using the penalty ‖G‖∗). On the other hand, when using only the Stable-Spline kernel

illustrated in Section 3.3.1, the Hankel singular values of the estimated systems show

a much slower decaying profile. Hence, performing model reduction on these systems

possibly leads to neglect some components of the system dynamics.

6.3.1 Choice of the Reduced Order

The preceding sections have remarked several times the criticality represented by the

selection of the reduced order, when the knowledge of the high-order system is uncertain

(e.g. when it has been estimated from noisy data). This section lists several criteria

which could be used to accomplish this task. These techniques will be experimentally

compared and analysed in the simulations of Section 6.4.

Statistical Test on Residuals Size. This method evaluates the prediction abilities

of the models
{
M̂P EM

ρ ; ρ = 1, ..., T − 1
}

. Starting from ρ = 1, the following steps are

repeated:

1. For each output channel i ∈ [1, p], compute

xi,ρ =
1
σ̂i

(
N∑

t=1

(yi(t)− ŷρi
(t))2

)
(6.36)

where σ̂i is the estimate of the noise variance on the i-th output channel (obtained

through the original model M̂), while yi denotes the data related to the i-th output

channel (analogously for ŷρi
).

2. Fix the significance level α and let F (µ, ς) denote the χ2 cumulative distribution

for a given probability µ and degrees of freedom ς. If

xi,ρ ≤ F−1(1− α,N − 1), ∀i ∈ [1, p] (6.37)

then choose ρ∗ = ρ as the optimal reduced order, otherwise continue to iterate.

If the condition (6.37) is not satisfied by any reduced order ρ ∈ [1, T − 1], ρ∗ is set to T .

Notice that the χ2 test (6.37) is based on the assumption that, if e(t) is white Gaussian
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noise, the quantities yi(t)− ŷρi
(t) are i.i.d. zero-mean Gaussian random variables with

variance σ̂i, so that xi,ρ ∼ σ̂iχ
2(N − 1). In addition, the significance level α has to be

fixed. The result of the previous procedure actually depends on its value, since small

values of α tend to favour the selection of lower model orders. However, experimental

evidence has shown that the sensitivity of the test to the value of α is low for a quite

large range of its values. Further comments on this topic will be given in Section 6.4.

As a final remark, the test in equation (6.37) relying on the statistic xi,ρ corresponds to

accepting the smallest model M̂P EM
ρ which is not falsified by the observed data under

the assumption that noise is Gaussian.

This test will be referred to as χ2
ε in the plots of Section 6.4.

Statistical Test on Residuals Whiteness. The test (2.227) is applied on M̂P EM
ρ ,

ρ = 1, ..., T − 1 using the original data DN .

This approach will be referred to as χ2
εε in Section 6.4.

Statistical Test on Independence Between Residuals and Past Inputs.

The test (2.230) is applied on M̂P EM
ρ , ρ = 1, ..., T − 1 using the original data DN .

Such approach will be denoted as χ2
εu in Section 6.4.

Combination of the Statistical Tests. The above-detailed statistical tests are

simultaneously applied. The selected model is either the simplest one which passes all

the tests or the simplest one which passes at least one of the tests. In the simulations of

Section 6.4, these two criteria will be respectively denoted with the symbols “∧” and “∨”

in between the symbols representing the statistical tests.

AIC. The models M̂P EM
ρ , ρ = 1, ..., T − 1 are compared through the AIC criterion

(2.216).

BIC. The models M̂P EM
ρ , ρ = 1, ..., T − 1 are compared through the BIC criterion

(2.218).

Bootstrap. A FIR model of length T is estimated through the original data DN .

This is used to generate B = 20 bootstrap datasets, as detailed in equations (2.219). The

procedure detailed in Algorithm 11 is repeated for each of these datasets, obtaining the

models M̂P EM
ρ,b , ρ = 1, ..., T − 1, b = 1, ..., B. For each order ρ, these models are used

to compute the covariance penalty criterion as detailed in equation (2.220). The model

order giving the lowest value of this criterion is finally chosen. It should be stressed
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that this procedure is particularly involved from a computational point of view, since it

requires the estimation of several models.

In the plots of Section 6.4 such method will be denoted as BT.

Bayesian Posterior. The posterior distribution returned by the Bayesian identifica-

tion procedure is evaluated on the impulse response of the models
{
M̂P EM

ρ ; ρ = 1, ..., T − 1
}

.

The one giving the largest posterior value is selected. It should be observed that this

criterion strongly depends on the kernel adopted in the Bayesian identification, as will be

confirmed by the numerical results of Section 6.4, where this technique will be referred

to as POS.

Hankel Marginal Likelihood. The Marginal Likelihood corresponding to kernel

K̄H,ζ in equation (3.57) is computed for each model in the set
{
M̂P EM

ρ ; ρ = 1, ..., T − 1
}

.

Specifically, for each ρ, the matrix Q̂(ζ) appearing in the kernel is given by

Q̂(ζ) := Û blockdiag(λ̂1Iρ, λ̂2Ipr−ρ) Û> (6.38)

where Û contains the Hankel singular values of M̂P EM
ρ and the scaling factors λ̂1 and λ̂2

are estimated by solving the optimization problem (3.69). The model M̂P EM
ρ∗ returning

the largest marginal likelihood value is finally chosen.

This model selection technique (referred to as HANK ML in the following experimental

section) has also been tested by replacing the kernel K̄H,ζ with K̄SH,η, defined in equation

(3.60); since the observed performance are slightly worse than those obtained with K̄H,ζ ,

they are omitted in Section 6.4.

6.4 Numerical Results

The two model reduction routines detailed in Algorithms 11 and 12 equipped with

the order selection criteria listed in Section 6.3.1 are here evaluated by means of some

Monte-Carlo studies.

6.4.1 Data

The Monte-Carlo simulations here reported are conducted on four scenarios, each of them

consisting of NMC = 200 runs. The data belonging to the four scenarios are affected

by a zero-mean white Gaussian noise e(t) with a standard deviation chosen in order to

obtain different values for the SNR, according to the specific scenario. These choices will

be clarified in the brief illustration which follows.
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S0: For each Monte-Carlo run the transfer function G(q) is generated as

G(q) :=
q + 0.99

q

Nr∑

i=1

Ki
(q + 0.9)

(q − pi)(q − p∗
i )

+GNr+1(q)

where GNr+1(q) is a random 4-th order transfer function generated by the MATLAB

routine drmodel (see remark 3.5.1 for further details on this routine), with the

constraint that its poles are inside the disk of radius 0.95. The parameters Nr, pi,

Ki for each independent Monte-Carlo run are generated as follows: Nr ∼ U [3, 5],

Ki ∼ U [2, 10], pi = ςie
j[φ0+

π−φ0
Nr

(i−1)], ςi ∼ U [0.9, 0.99], φ0 ∼ U [0, π/2]. The

Gaussian input u(t) is generated (independently for each run) by the MATLAB

function idinput with normalized band 0.9.

The SNR on the output channel is a uniform random variable in the interval [1, 4]

and N = 500 input-output data pairs are available for each system.

S1: This scenario was already considered in Section 3.5. To help the reader, its description

is also reported here. A fixed fourth order system with transfer function G(q) =

C(qI −A)−1B is considered, where

A = blockdiag

([
0.8 0.5

−0.5 0.8

]
,

[
0.2 0.9

−0.9 0.2

])

B = [1 0 2 0]> C =




1 1 1 1

0 0.1 0 0.1

20 0 2.5 0




(6.39)

The input is generated, for each Monte Carlo run, as a low-pass filtered white

Gaussian noise with normalized band [0, %] where % is a uniform random variable in

the interval [0.8, 1]. The SNR on the output signal is a uniform random variable in

the interval [1, 4]. For each system N = 500 input-output data pairs are available.

D2: This data-bank is exploited in the paper Chen et al. (2014) and it consists of

30-th order random SISO discrete-time systems having all poles inside a circle

of radius 0.95. The systems are simulated with a unit variance white Gaussian

noise. The SNR on the output signal is equal to 1, while the number N of available

input-output data pairs is 210.

D4: This data-bank is also used in the paper Chen et al. (2014) and was previously

exploited for the numerical experiments conducted in Chapter 4. This scenario

contains the same systems appearing in D2 but they are simulated with unit
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variance band-limited Gaussian signal with normalized band [0, 0.8]. Furthermore,

each dataset contains N = 500 data.

6.4.2 Identification Algorithms

The model reduction procedures outlined in Algorithms 11 and 12 are applied on the

estimates returned by the following identification algorithms:

SS: The estimator (2.148) where K̄η is chosen to be the TC kernel (3.27) and the

hyper-parameters η are estimated through marginal likelihood maximization. The

estimator is computed through the MATLAB routine arxRegul (imposing a FIR

model structure).

SH: The estimator returned by Algorithm 5 in Chapter 3 with K̄S,ν specified through

the TC kernel.

NN: A FIR model of order T estimated solving

ĝ = arg min
g∈RpmT

‖YN − ΦN g‖2 + λ∗‖G‖∗ (6.40)

The optimization problem is solved through a tailored ADMM algorithm (as in Liu

et al. (2013)), while λ∗ is determined through Cross-Validation. This procedure has

also been tested by replacing G in (6.40) with its weighted version G̃ (see (3.40)).

RNN: A FIR model of order T estimated by iteratively solving

ĝ = arg min
g∈RpmT

‖YN − ΦN g‖2 + λ∗‖WlGWr‖∗ (6.41)

The weight matrices Wl and Wr are updated at each iteration according to the

procedure suggested by Mohan and Fazel (2010). λ∗ is selected through Cross-

Validation. The case in which G in (6.41) is replaced with G̃ has also been

tested.

The two identification techniques relying on nuclear norm regularization could also

benefit from the model reduction procedures detailed in Section 6.2.3. Indeed, the

nuclear norm penalty is used to enforce a low McMillan degree on the unstructured

estimate ĝ, thus facilitating the recovery of a low-order structured model in an eventual

post-processing stage. The practical validity of these considerations is therefore evaluated

in the simulations which follow.
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The above-listed algorithms are implemented setting the length T of the estimated

impulse response ĝ equal to 80 for scenarios S1 and D2, to 200 for S2 and to 100 for D4.

As a comparison with parametric techniques, which return a model with a well-defined

order, PEM equipped with an oracle is considered (denoted as PEM+OR in the following).

Specifically, PEM+OR represents PEM as implemented by the MATLAB routine pem

with an oracle which selects the order giving the highest fit to the true impulse response.

The fit is measured according to formula (3.91) defined in Chapter 3, that is

FNc(ĝ) :=
1
pm

p∑

i=1

m∑

j=1

cod
([
gNc

0

]
ij
, ĝNc

ij

)
(6.42)

with Nc = 1000.

The results achieved by PEM equipped with BIC criterion for the complexity selection

will be also reported; this method will be referred to as PEM+BIC.

6.4.2.1 Details on the implementation of Algorithms 11 and 12

The model reduction required by step 2 of Algorithms 11 and 12 is performed either by

the balanced truncation detailed in Section 6.1.1 or by Algorithm 10. Since the latter

methodology leads to slightly better performances, the results achieved by means of the

balanced approximation are omitted.

The re-estimation at step 4 of Algorithm 11 (and step 3 of Algorithm 12) is performed

using the MATLAB routine pem.

Several combinations of the statistical tests listed in Section 6.3.1 have been tested,

observing more robust results w.r.t. the application of a single test. According to the

performed simulations, the best results are achieved combining the test on residuals size

and on that the independence between residuals and past inputs. Consequently, only

their performance will be reported in the following plots.

The application of the statistical tests requires to the user to fix a certain significance level.

According to the performed numerical tests, this choice does not appear straightforward

and it should depend on the unknown system: if this is known to be particularly

complex a high significance level is suggested (e.g. α = 0.4), in order to avoid possible

undermodelling issues; on the other hand, in presence of simple systems, a low value for

α is more suited (e.g. α = 0.05), thus preventing the risk of overfitting.

Finally, the lag τ̄ used in the tests on the whiteness of the residuals and on their

independence from past inputs is set to 25.
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6.4.3 Impulse Response Estimates and Selected Low-Orders

The quality of the impulse response estimates is measured according to the criterion

(6.42). The corresponding boxplots obtained in the Monte-Carlo scenarios of Section

6.4.1 are reported in the following pages.

The first two columns in each plot contain the performance of PEM, respectively equipped

with an oracle for the order selection (this is an unrealistic estimator which represents the

upper bound achievable by PEM) and with the BIC criterion. The third column of the

plots reports the results obtained by one of the estimators listed in Section 6.4.2, while

the fourth column shows the largest fit achievable after the reduction of the unstructured

estimate to a low-order model (again, such estimator is not realizable in practice, but

it serves as an upper bound for the considered performance). Finally, the right-most

columns of the plots show the fit obtained after performing the model reduction procedure

with the reduced order chosen according to one of the criteria in Section 6.3.1.

The second row of the following figures reports the histograms of the ratios between

the reduced order selected by the Oracle routines (i.e. SS+OR, SH+OR, NN+OR and

RNN+OR) and the one chosen by the realistic model selection criteria.

Figures 6.1 and 6.2 show the results achieved by the non-parametric Bayesian estimator

respectively equipped with the TC kernel (reported in equation (3.27)) and with the

so-called “stable-Hankel” kernel defined in equation (3.60). It can be noticed that the

performance of the non-parametric estimates are improved by means of both the reduction

procedures detailed in Algorithms 11 and 12. While the latter could ideally achieve better

performance (according to oracle’s results), the order selection procedure appears more

robust when the first reduction procedure is adopted. The comparison of the different

criteria listed in Section 6.3.1 shows that the BIC criterion performs better when jointly

applied with Algorithm 12, that is, when the PEM estimation is performed on the original

data DN . Inspecting Figure 6.2(b) and in particular the columns PEM+BIC and BIC, it

should be noticed how the initialization of PEM with the Bayesian estimator improves

the results achieved by the standard MATLAB routine pem (which is initialized by means

of a subspace estimate).

W.r.t. BIC, opposite performance is observed for the AIC criterion, which tends to select

more complex models w.r.t. BIC, thus being penalized when the noisy data DN are

used for estimation. Bootstrap achieves very robust results but its use is penalized by

the significant computational effort it requires. As it could be expected, the criterion

relying on the posterior distribution returned by the Bayesian estimator appears strongly

influenced by its performance. Differently, the criterion based on the marginal likelihood

of kernel (3.57) leads to good performance when jointly applied with Algorithm 11, while
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Figure 6.1: Scenario S0 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator SS (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator SS, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by SS+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.



204 Model Reduction

(a) (b)

0 5 10

0

20

40

60

0 5 10

0

20

40

60

0 2 4

0

20

40

0 1 2

0

10

20

30

0 2 4

0

20

40

0 5 10

0

20

40

60

0 5

0

20

40

(c)

0 2 4

0

20

40

60

0 2 4

0

20

40

60

0 5 10

0

20

40

60

0 1 2

0

20

40

0 5 10

0

20

40

60

0 5 10

0

20

40

60

(d)

Figure 6.2: Scenario S0 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator SH (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator SH, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by SH+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.
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Figure 6.3: Scenario S0 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator NN (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator NN, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by NN+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.
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Figure 6.4: Scenario S0 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator RNN (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator RNN, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms of
the ratio between the reduced orders selected by RNN+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.
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is less effective when Algorithm 12 is used for model reduction. The reasons of this

behaviour are analogous to the ones above-mentioned in relation to AIC: such criterion

tends to select complex models, which are suited when the estimation data are non-noisy

(as is the case of Algorithm 11) but they are not advised in presence of noisy data. Finally,

the statistical tests on the residuals seem a robust complexity selection method but, as

observed in Section 6.4.2.1, their effectiveness is highly influenced by the value of the

significance level α.

Figures 6.3 and 6.4 report the results observed when Algorithms 11 (left plot) and 12 (right

plot) are applied on the two identification methods exploiting nuclear norm regularization.

What observed for Bayesian methods is here confirmed: Algorithm 11 seems to make the

order selection stage easier, since the compared criteria lead to comparable performance.

Nonetheless, a gap between their fit and the optimal one achieved by the oracle estimators

after reduction (fourth column in each plot) is still noticeable.

In this case, the performance of the reduced models is little influenced by those of the

original unstructured model. The reader could pose the attention e.g. on Figure 6.4: the

fits achieved after model reduction appear comparable to those observed in Figure 6.3,

despite the very poor performance of the estimates returned by RNN. This behaviour

contrasts with that previously observed with the Bayesian estimators: the unsatisfying

performance of SS also impact the effectiveness of the subsequent reduction procedure.

The reason for this phenomenon probably lies in the profile of the estimated system Hankel

singular values: while those obtained through the use of the stable-spline kernel (SS) show

a slowly decaying profile, the singular values returned by nuclear norm regularization

methods typically present a clear gap between those associated with the system dynamics

and those related to the noise realization in the data. This type of profile makes easier

the subsequent detection of a low-order approximation to the estimated high-order FIR

model.

Figures 6.5 and 6.6 refer to scenario S1 and report the results achieved after the application

of model reduction on the Bayesian estimates denoted with SS and SH. Since the four

Hankel singular values give equal contribution to the system dynamics, the detection

of the right system complexity appears easier. This observation is confirmed by the

results observed in Figures 6.5, 6.6, where the true order is detected by almost all the

tested criteria. The only exceptions are AIC and HANK ML when applied together

with Algorithm 12. This behaviour confirms what already observed in scenario S0. The

strong dependence on the original Bayes estimator of the criterion based on its posterior

distribution is detrimental when the performance of the Bayesian estimator are not

satisfying, as clearly noticeable in Figure 6.5.
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Figure 6.5: Scenario S1 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator SS (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator SS, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by SS+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.
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Figure 6.6: Scenario S1 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator SH (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator SH, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by SH+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.
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Figure 6.7: Scenario S1 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator NN (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator NN, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by NN+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.
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Figure 6.8: Scenario S1 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator RNN (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator RNN, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms of
the ratio between the reduced orders selected by RNN+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.
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Figure 6.9: Scenario D2 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator SS (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator SS, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by SS+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.

Figures 6.7 and 6.8 refer to the application of Algorithms 11 and 12 on the high-order

FIR models estimated by means of PEM equipped with nuclear norm regularization (see

Section 6.4.2). Despite the unsatisfying performance of these estimators in scenario S1,

the application of a model reduction procedure allows to recover a good adherence to the

true unknown impulse response. With regard to the various complexity selection criteria,

the comments written in relation to the previous plots still hold.

Figures 6.9 and 6.10 show the performance obtained in scenario D2, starting from the

Bayesian estimates SS and SH, respectively. Differently from the previous two scenarios,

here the application of a reduction procedure on the non-parametric estimate does not

improve its performance and could sometimes worsen them. In particular, this event

happens more often when Algorithm 12 is applied (see Figures 6.9(b) and 6.10(b)). The
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Figure 6.10: Scenario D2 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator SH (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator SH, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by SH+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.
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Figure 6.11: Scenario D4 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator SS (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator SS, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by SS+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.

crucial step seems to be the order selection, since the performance achieved by the

“oracle” (fourth column of the boxplots) are satisfying, but they are not approached by

the realistic criteria here evaluated for complexity selection. Inspecting the results in

Figures 6.9(a) and 6.10(a), the AIC criterion, the bootstrap technique and the criterion

relying on the marginal likelihood arising from kernel K̄H,η appear to be the most robust

ones.

Similar considerations hold for the results observed in Scenario D4 (reported in Figures

6.11 and 6.12).

The numerical experiments previously reported have highlighted how the problem inves-

tigated in this chapter is not trivial. In particular, the classical model selection criteria

adopted in the context of parametric methods do not seem to be robust enough to
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Figure 6.12: Scenario D4 - Top: Impulse response fit (6.42) achieved by reducing the FIR
model returned by estimator SH (see Section 6.4.2). In each boxplot, the third column reports
the fit achieved by estimator SH, the fourth column contains the optimal fit achieved after
reduction (i.e. using the optimal choice of the reduced order) and the right-most columns show
the fit obtained using the order selection criteria listed in Section 6.3.1. Bottom: Histograms
of the ratio between the reduced orders selected by SH+OR and by the other realistic criteria.
(a),(c): Reduction is performed by means of Algorithm 11; (b),(d): Reduction is performed

using Algorithm 12.
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guarantee (or to improve) the performance of the original Bayesian estimate. The author

believes that further investigations on this topic should be conducted; a future research

direction could also include so-called goal-oriented model reduction techniques.



7
Conclusions and Future Work
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The thesis has presented some extensions of a non-parametric Bayesian method

which has been recently introduced to tackle the system identification problem. Such

techniques have had the merit of importing classical machine learning tools into the

system identification community. Specifically, these new identification procedures mainly

resort on ideas coming from Gaussian Processes Regression and from the theory of

Reproducing Kernel Hilbert Spaces, which provides a regularization framework where

non-parametric regression is possible. Compared to the standard machine learning setup,

where the given data are assumed to i.i.d. according to unknown distribution, the data

used by system identification routines are temporally correlated. Consequently, the

importation of standard machine learning tools into the system identification framework

has required to account for such correlation. This has been done mainly through the

development of suitable prior distributions or, equivalently, regularization function.

While providing an overview of these new approaches, the thesis has attempted to draw

an extensive picture of the system identification field. Classical techniques, such as

Prediction Error Methods and subspace algorithms have been extensively reviewed, while

highlighting several connections between them and the recently introduced non-parametric

approaches. Chapter 2 has described these three main families of routines appearing in

the system identification literature. Theoretical properties, as well as implementation

details have been described: particular attention has been devoted to the choices that

the user has to take when applying them and to specific computational aspects. Model

selection and model validation have also been discussed, trying to provide an overview

on the way in which the different identification procedures deal with them.

The remaining chapters of the manuscript have presented the innovative results achieved

during the author’s research activity on non-parametric Bayesian methods for system

identification. The illustration has intended to connect these new contributions to already

existing results regarding parametric Prediction Error Methods and subspace algorithms.

To this purpose, the initial part of each chapter has been devoted to a summary of already

derived theoretical properties or methodologies.

Chapter 3 has dealt with the problem of prior design or equivalently, of the shaping

of a suitable regularization function. Exploiting the well-known connection between

regularization and Bayesian inference under Gaussian assumptions, the role played by

regularization in system identification has been investigated. The main examples of the

application of `2- and `1-type penalties in identification procedures have been illustrated.

Specifically, the attention has been devoted to regularization inducing stability and

low-complexity of the estimated system. Drawing inspiration from recently proposed

regularization techniques, a new prior for non-parametric Bayesian system identification
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has been derived using Maximum Entropy arguments under stability and complexity

constraints. The new prior combines the classical stable-spline kernel with a term

controlling the rank of the block Hankel matrix built with the Markov coefficients. This

specific structure allows to enforce both stability and low complexity (measured in terms

of McMillan degree) of the estimated system. A specific algorithm has been designed to

solve the identification problem. It iteratively refines the impulse response estimate by

updating the hyper-parameters defining the prior and in turn by refining the estimated

signal subspace, i.e. the subspace spanned by the non-zero Hankel singular values. A

tailored Scaled Gradient Projection algorithm has been designed in order to reduce

the computational effort required by the algorithm: numerical simulations have proved

the significant computational time savings brought by the proposed gradient method

w.r.t. off-the-shelf algorithms. The newly proposed identification procedure has been

compared with already existing ones through an extensive numerical study. The reported

results clearly prove the effectiveness of the new approach. In particular, when MIMO

systems have to be identified, the Hankel-based method appears more effective than the

original regularization/Bayesian technique relying only on the sole stable-spline kernel.

When compared with other methods which include a Hankel-type penalty, it provides

comparable performance on randomly generated “large” MIMO systems, while it appears

preferable on a fourth order “mildly-resonant” system. Finally, compared to traditional

methods, such as PEM an subspace algorithms, the new routine provides more accurate

estimates, especially in presence of a small identification dataset.

Future work will include the design of a more efficient numerical implementation, as well

the extension to the identification of ARMAX models. Furthermore, a deeper statistical

analysis of this approach deserves to be conducted.

Chapter 4 has been focused on the statistical properties of the estimators returned

by the three main algorithms considered in the thesis. In particular, the consistency,

as well as the (asymptotic) distribution of the returned estimates have been analysed.

Specific attention has been reserved to the so-called confidence intervals, i.e. to the

uncertainty sets that are built around the estimates. The novel contribution presented in

the chapter is the development of a framework through which the confidence sets returned

by parametric PEM and by non-parametric Bayesian techniques are compared. The

different nature of these two sets has been highlighted: first, the confidence sets returned

by PEM are finite-sample approximations of their asymptotic counterpart, while Bayesian

“credible” sets are precise even in finite-sample cases; second, PEM’s uncertainty sets

lie in the parameter space, while non-parametric ones lie in the impulse response space;

third, when adopting the Full Bayes approach and hence resorting to sampling-based
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techniques, the confidence sets returned by Bayesian methods consist of sampled points,

which need to be somehow compared with the dense sets provided by PEM. The proposed

comparative framework converts the parametric confidence sets into “particle” sets lying

in the impulse response space; analogously, the ellipsoidal set returned by non-parametric

Bayesian methods relying on the Empirical Bayes approach is converted into a “particle”

set. The numerical comparative study has shown that the Bayesian estimators and their

confidence sets are competitive even with the parametric methods equipped with an

oracle which has the unrealistic knowledge of the true impulse response.

A further contribution reported in Chapter 4 is the numerical comparison between

Empirical Bayes and Full Bayes approaches, which provide two different approximations

to the analytical intractability of the stated Bayesian inference problem. The preliminary

results here reported do not show a significant performance gap between the estimators

returned by the two techniques; however, Empirical Bayes approaches have a clear

advantage in terms of computational complexity. A deeper comparison of these two

methodologies will be subject of further research.

Chapter 5 has considered the problem of real-time identification, where a current estimate

needs to be updated as soon as new data become available. As observed in the chapter,

these techniques play an important role in practical contexts, since they constitute the

basis for the design of adaptive controllers or for fault detection. In addition, these

methods allow to track (slowly) time-varying systems. A brief overview of the existing

real-time parametric identification procedures has been given: they all rely on recursive

formulations of the original batch algorithm. Specifically, key ingredients for these

methods are the modest amount of computations and of memory storage that they

require. The innovative contribution of the chapter is the reformulation of the non-

parametric Bayesian routines as real-time algorithms. The key ingredients in this case are

the recursive updates of the data-dependent matrices and the approximative resolution

of the marginal likelihood optimization problem which arise when the Empirical Bayes

approach is followed. Specifically, only one iteration of a chosen iterative routine is

performed. Both gradient methods and the Expectation Maximization (EM) algorithm

have been compared. The numerical study has shown the effectiveness of this real-time

implementation, when applied for the identification of both time-invariant and time-

varying systems. In addition, the computational advantages of this procedure w.r.t.

the batch counterpart have been proved. The author believes that the preliminary

investigation here performed may pave the way for further research in this topic. For

instance, a future research direction could consider the recursive update of the Bayesian

estimate, resembling the one which is available for parametric techniques.
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Chapter 6 has considered a post-processing model reduction stage, which is required

when the estimate returned by a non-parametric Bayesian method has to be adopted for

practical purposes, such as filtering or controller design. As thorough discussed in the

thesis, non-parametric Bayesian techniques return a high-order FIR model, which is not

suitable for practical uses. This issue has not been properly investigated in the recent

system identification literature. Consequently, a model reduction procedure has been here

proposed, which is fed with a high-order FIR model estimated through a non-parametric

algorithm and returns a lower-order model. A crucial step of this procedure is the choice

of the order of this reduced model: classical and tailored complexity selection techniques

have been experimentally compared. The achieved results are dependent on the quality

of the estimated non-parametric model. Overall, from the conducted numerical study, it

seems difficult to extrapolate a sound procedure which guarantees robust results in a wide

range of scenarios. However, it is fair to say that when the proposed model reduction

routine is equipped with a suitable model selection criterion, it returns performances

which are comparable with (or even better than) those of the original non-parametric

Bayesian estimators. According to the author’s opinion, this topic should deserve further

research in the future, starting e.g. from the investigation of goal-oriented reduction

procedures.



222 Conclusions and Future Work



A
Reproducing Kernel Hilbert Spaces



224 Reproducing Kernel Hilbert Spaces

This Appendix intends to provide the reader with the basic concepts concerning the

theory of Reproducing Kernel Hilbert Spaces (RKHS).

Some definitions are first provided.

Definition A.0.1 (Hilbert Space). A Hilbert space H is a space endowed with an inner

product 〈·, ·〉H, which is complete w.r.t. the induced norm ‖f‖H =
√
〈f, f〉H (i.e. all

Cauchy sequences converge).

Definition A.0.2 (RKHS). A Reproducing Kernel Hilbert Space over a non-empty set

X is a Hilbert space H of functions g : X → R such that point-wise evaluations are

continuous linear functionals on H, i.e.

∀x ∈ X , ∃Cx <∞ : |f(x)| ≤ Cx‖g‖H, ∀f ∈ H

Definition A.0.3 (Positive Semidefinite Kernel). Let X be a nonempty set. A symmetric

function K : X × X → R is a positive semidefinite kernel if, for any finite p ∈ N, it holds

p∑

i=1

p∑

j=1

aiajK(xi, xj) ≥ 0, ∀(xk, ak) ∈ (X ,R), k = 1, ..., p

Definition A.0.4 (Kernel Section). Given a kernel K, the kernel section Kx ∈ H centred

at x is defined as

Kx(a) = K(x, a), ∀a ∈ X

The following theorem, due to Aronszajn (1950), establishes a one-to-one correspondence

between RKHS and positive semidefinite kernels.

Theorem A.0.5. [Moore-Aronszajn]Given a RKHS H, there exists a unique positive

semidefinite kernel, called the reproducing kernel, such that the reproducing property holds

f(x) = 〈g,Kx〉H, ∀(x, f) ∈ (X ,H)

Conversely, given a positive semidefinite kernel, there exists a unique RKHS of real valued

functions defined over X with reproducing kernel K.

The proof of the theorem shows how each RKHS is completely characterized by its

associated kernel. Namely, each function f ∈ H can be represented as

f(·) =
p∑

i=1

aiKxi
(·) (A.1)
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for any choice of p, ai, xi. It turns out that every function belonging to the RKHS

enjoys the properties which are encoded into the kernel.

Moreover, given the functions f(·) =
∑p

i=1 aiKxi
(·) and g(·) =

∑m
i=1 biKsi

(·), the inner

product 〈·, ·〉H is defined as

〈f, g〉H =
p∑

i=1

m∑

j=1

aibjK(xi, sj) (A.2)

The key result for the theory of inverse problems is due to Kimeldorf and Wahba (1971),

who showed that the solution of the variational problem

arg min
f∈H

N∑

i=1

(yi − f(xi))2 + λ‖f‖2H (A.3)

can be expressed as the linear combination of a finite number of basis functions. In

particular, such number equals the number of given data points N .

Theorem A.0.6. [Representer Theorem]If H is a RKHS, the solution of (A.3) is

f̂(x) =
N∑

i=1

ĉiKxi
(x) (A.4)

where

ĉ = [ĉ1 ĉ2 · · · ĉN ]> = (K̄ + γIN )−1YN

K̄ij : = K(i, j), K̄ ∈ R
N×N

In the literature the estimators (A.4) is also known as regularization network (Poggio and

Girosi, 1990) or least squares support vector machine (Suykens and Vandewalle, 1999).

A generalization of the previous theorem has been derived by Schölkopf, Herbrich, and

Smola (2001)s: the theorem still holds if the quadratic loss is replaced by other convex

losses, such as the Huber (Huber, 2011) or the Vapnik loss (Vapnik, 1998).

An extensive treatment of the theory of RKHS and of inverse problems is provided in

Cucker and Smale (2002).
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This appendix derives connections between the EM routine (Algorithm 3) and the

gradient methods, such as the SGP (Algorithm 1), when they are adopted for Marginal

Likelihood maximization. Such relations arise when the kernel K̄η is assumed to have a

simplified structure, i.e. it can be expressed as K̄η = ηK̄, where only η ∈ R+ has to be

optimized. Under this assumption it is shown that the EM update rule coincides with

a gradient-based update if a specific step-size α(k) is chosen (see equation (2.196)). In

addition, a connection between the EM algorithm and the iterative reweighted methods

is highlighted: these approaches have been recently introduced in the compressive sensing

literature and they have found wide application during the last years (Candes et al., 2008;

Chartrand and Yin, 2008).

B.1 Connection between EM and Gradient Methods

In Section 2.4.5.2, the EM algorithm has been presented as an iterative method, where

each iteration consists of two steps. At a generic iteration k, the first step requires to

compute the lower bound L(pg(g|YN , η
(k)), η), while the second one determines the value

of η which optimizes it.

Assuming K̄η = ηK̄, it follows that

L

(
pg(g|YN , η

(k)), η
)

= −1
2

ln det(ηK̄)− 1
2

Tr


K̄

−1

η

(
Φ>

N Σ̃−1
N ΦN +

K̄−1

η̂(k)

)−1



− 1
2η

ĝ(k)>

K̄−1ĝ(k) + cost (B.1)

where terms not depending on η have been omitted, while ĝ(k) denotes the impulse

response estimate computed with the hyper-parameter η fixed to η̂(k). The M-step is

then performed by computing the derivative of the previous equation w.r.t. η and setting

it to zero, leading to:

η̂
(k+1)
EM =

1
pmT



ĝ(k)>

K̄−1ĝ(k) + Tr


K̄−1

(
Φ>

N Σ̃−1
N ΦN +

K̄−1

η̂(k)

)−1




 (B.2)

Hence, η̂(k+1)
EM is the hyper-parameter update computed by the EM algorithm.

Consider now the gradient update rule (2.196) for η̂(k+1) (based on the minimization of

the function fML(η) defined in (2.184)):

η̂
(k+1)
GR = η̂(k) − α(k)f ′

ML(η(k)) (B.3)
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where it has been set H(k)
N = 1. The following result is derived.

Lemma B.1.1. If α(k) = (η̂(k))2

pmT in (B.3), then η̂
(k+1)
GR = η̂

(k+1)
EM .

Proof: From (2.184), it follows:

f ′
ML(η(k)) =

pmT

η̂(k)
− 1

(η̂(k))2
Tr


K̄−1

(
Φ>

N Σ̃−1
N ΦN +

K̄−1

η̂(k)

)−1

− 1

(η̂(k))2
ĝ(k)>

K̄−1ĝ(k)

Now, introducing this value into (B.3) gives the result.

B.2 Connection between EM and Iterative Reweighted

Methods

Iterative reweighted methods have been quite recently introduced in the compressive

sensing field in order to improve the recovery of sparse solutions. Here the focus is on the

`2-reweighted scheme that has been proposed by Wipf and Nagarajan (2010) for Sparse

Bayesian Learning (SBL) (Tipping, 2001).

Recall the optimization problem (2.183) which has to be solved to determine η̂. Under

Gaussian assumptions, the following function has to be minimized:

min
η≥0
− ln py(YN |η) = min

η≥0
Y >

N Λ(η)−1YN + ln det Λ(η) (B.4)

where Λ(η) := ηΦNK̄Φ>
N + Σ̃N . Notice that (Tipping (2001), Appendix A)

Y >
N Λ(η)−1YN = min

g∈RpmT
‖YN − ΦN g‖2

Σ̃−1
N

+ g>(ηK̄)−1g

Hence

min
η≥0
− ln py(YN |η) = min

η≥0,g∈RpmT
‖YN − ΦN g‖2

Σ̃−1
N

+ g>(ηK̄)−1g + ln det Λ(η)

= min
g∈RpmT

‖YN − ΦN g‖2
Σ̃−1

N

+ b(g)

where b(g) = minη≥0 g>(ηK̄)−1g + ln det Λ(η), is a non-separable penalty function, since

it can not be expressed as a summation over functions of the individual entries in g. Fur-

thermore, it is a non-decreasing concave function of g2 := [vec>(g(1)2) · · · vec>(g(T )2)]>,

thus allowing to employ iterative reweighted `2 schemes to minimize the function above.
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Namely,

b(g) ≤ g>(ηK̄)−1g + ln det Λ(η)

= g>(ηK̄)−1g + ln det(ηK̄) + ln det
(
Φ>

N Σ̃−1
N ΦN + (ηK̄)−1

)
+ cost (B.5)

≤ g>(ηK̄)−1g + ln det(ηK̄) + zη−1 − v∗(z) + cost (B.6)

where v∗(z) denotes the concave conjugate of v(a) := ln det
(
Φ>

N Σ̃−1
N ΦN + aK̄−1

)
, a =

η−1, given by:

v∗(z) = min
a
za− ln det

(
Φ>

N Σ̃−1
N ΦN + aK̄−1

)
, a = η−1

Notice that in (B.5) the Silvester’s determinant identity is used and the bound (B.6)

holds for all z, η ≥ 0. Hence, we have

min
η≥0
− ln py(YN |η) = min

η≥0,z≥0,g∈RpmT
‖YN − ΦN g‖2

Σ̃−1
N

+ g>(ηK̄)−1g

+ ln det(ηK̄) + zη−1 − v∗(z) (B.7)

where the terms that are not relevant to the optimization problem have been omitted.

The analogies with the two steps of the EM algorithm can now be stated. Specifically,

recall that the E-step in the EM is equivalent to solving problem (2.209), here reported

for convenience:

L

(
pg(g|YN , η

(k)), η
)

= max
q(g)

L(q(g), η(k)) (B.8)

The solution is given by the posterior distribution of g given η̂(k), i.e. pg(g|YN , η̂
(k)).

Analogously, solving (B.7) w.r.t. g for fixed η̂(k) leads to an a-posteriori estimate, namely

the Empirical Bayes estimator ĝ(k+1) = E[g|YN , η̂
(k)], which coincides with the Maximum

a Posteriori estimator of g.

On the other hand, solving (B.7) for fixed ĝ(k) leads to

η̂(k+1) =
1

pmT

(
ĝ(k)>

K̄−1ĝ(k) + z∗
)

(B.9)

where (Wipf and Nagarajan, 2010)

z∗ =
∂

∂a
ln det

(
Φ>

N Σ̃−1
N ΦN + aK̄−1

)
= Tr


K̄−1

(
Φ>

N Σ̃−1
N ΦN +

K̄−1

η̂(k)

)−1



Thus, the update (B.9) coincides with the M-step in (2.210).
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