1,709 research outputs found

    A Three Tier Architecture Applied to LiDAR Processing and Monitoring

    Get PDF

    Efficient Data Streaming Analytic Designs for Parallel and Distributed Processing

    Get PDF
    Today, ubiquitously sensing technologies enable inter-connection of physical\ua0objects, as part of Internet of Things (IoT), and provide massive amounts of\ua0data streams. In such scenarios, the demand for timely analysis has resulted in\ua0a shift of data processing paradigms towards continuous, parallel, and multitier\ua0computing. However, these paradigms are followed by several challenges\ua0especially regarding analysis speed, precision, costs, and deterministic execution.\ua0This thesis studies a number of such challenges to enable efficient continuous\ua0processing of streams of data in a decentralized and timely manner.In the first part of the thesis, we investigate techniques aiming at speeding\ua0up the processing without a loss in precision. The focus is on continuous\ua0machine learning/data mining types of problems, appearing commonly in IoT\ua0applications, and in particular continuous clustering and monitoring, for which\ua0we present novel algorithms; (i) Lisco, a sequential algorithm to cluster data\ua0points collected by LiDAR (a distance sensor that creates a 3D mapping of the\ua0environment), (ii) p-Lisco, the parallel version of Lisco to enhance pipeline- and\ua0data-parallelism of the latter, (iii) pi-Lisco, the parallel and incremental version\ua0to reuse the information and prevent redundant computations, (iv) g-Lisco, a\ua0generalized version of Lisco to cluster any data with spatio-temporal locality\ua0by leveraging the implicit ordering of the data, and (v) Amble, a continuous\ua0monitoring solution in an industrial process.In the second part, we investigate techniques to reduce the analysis costs\ua0in addition to speeding up the processing while also supporting deterministic\ua0execution. The focus is on problems associated with availability and utilization\ua0of computing resources, namely reducing the volumes of data, involving\ua0concurrent computing elements, and adjusting the level of concurrency. For\ua0that, we propose three frameworks; (i) DRIVEN, a framework to continuously\ua0compress the data and enable efficient transmission of the compact data in the\ua0processing pipeline, (ii) STRATUM, a framework to continuously pre-process\ua0the data before transferring the later to upper tiers for further processing, and\ua0(iii) STRETCH, a framework to enable instantaneous elastic reconfigurations\ua0to adjust intra-node resources at runtime while ensuring determinism.The algorithms and frameworks presented in this thesis contribute to an\ua0efficient processing of data streams in an online manner while utilizing available\ua0resources. Using extensive evaluations, we show the efficiency and achievements\ua0of the proposed techniques for IoT representative applications that involve a\ua0wide spectrum of platforms, and illustrate that the performance of our work\ua0exceeds that of state-of-the-art techniques

    Geographic Information Systems for Real-Time Environmental Sensing at Multiple Scales

    Get PDF
    The purpose of this investigation was to design, implement, and apply a real-time geographic information system for data intensive water resource research and management. The research presented is part of an ongoing, interdisciplinary research program supporting the development of the Intelligent River® observation instrument. The objectives of this research were to 1) design and describe software architecture for a streaming environmental sensing information system, 2) implement and evaluate the proposed information system, and 3) apply the information system for monitoring, analysis, and visualization of an urban stormwater improvement project located in the City of Aiken, South Carolina, USA. This research contributes to the fields of software architecture and urban ecohydrology. The first contribution is a formal architectural description of a streaming environmental sensing information system. This research demonstrates the operation of the information system and provides a reference point for future software implementations. Contributions to urban ecohydrology are in three areas. First, a characterization of soil properties for the study region of the City of Aiken, SC is provided. The analysis includes an evaluation of spatial structure for soil hydrologic properties. Findings indicate no detectable structure at the scales explored during the study. The second contribution to ecohydrology comes from a long-term, continuous monitoring program for bioinfiltration basin structures located in the study area. Results include an analysis of soil moisture dynamics based on data collected at multiple depths with high spatial and temporal resolution. A novel metric is introduced to evaluate the long-term performance of bioinfiltration basin structures based on soil moisture observation data. Findings indicate a decrease in basin performance over time for the monitored sites. The third contribution to the field of ecohydrology is the development and application of a spatially and temporally explicit rainfall infiltration and excess model. The model enables the simulation and visualization of bioinfiltration basin hydrologic response at within-catchment scales. The model is validated against observed soil moisture data. Results include visualizations and stormwater volume calculations based on measured versus predicted bioinfiltration basin performance over time

    Toward Autonomous Multi-Rotor Indoor Aerial Vehicles

    Get PDF
    In this project, we worked to create an indoor autonomous micro aerial vehicle (MAV) using a multi-layer architecture with modular hardware and software components. We required that all computing was done onboard the vehicle during time of flight so that no remote connection of any kind was necessary for successful control of the vehicle, even when flying autonomously. We utilized environmental sensors including ultrasonic sensors, light detection and ranging modules, and inertial measurement units to acquire necessary environment information for autonomous flight. We used a three-layered system that combined a modular control architecture with distributed on-board computing to allow for fully abstracted layers of control, allowing the individual development and testing of layers. We implemented two layers fully, resulting in increasing autonomous functionality for the MAV, and produced a research platform for development of the third layer. Experimental results demonstrated implementation capabilities including autonomous hovering, obstacle avoidance, and flight data recording
    • …
    corecore