10 research outputs found

    NBTI degradation effect on advanced-process 45 nm high-k PMOSFETs with geometric and process.

    Get PDF
    Negative bias temperature instability (NBTI) has become an important reliability concern for nano-scaled complementary metal oxide (CMOS) devices. This paper presents the effect of NBTI for a 45 nmadvanced process high-k dielectric with metal gate PMOS transistor. The device had incorporated advanced-process flow steps such as stress engineering and laser annealing in order to achieve high on-state drain current drive performance. To explore NBTI effects on an advanced-process sub-micron device, the 45 nm high-k PMOS transistor was simulated extensively with a wide range of geometric and process variations. The device was simulated at varying thicknesses in the dielectric layer, oxide interfacial layer, metal gate and polysilicon layer. In order to observe the NBTI effect on process variation, the NBTI degradation of the 45 nm advanced-process PMOS is compared with a 45 nm PMOS device which does not employ process-induced stress and incorporates the conventional rapid thermal annealing (RTA) as compared to the laser annealing process which is integrated in the advanced-process device flow. The simulation results show increasing degradation trend in terms of the drain current and threshold voltage shift when the thicknesses of the dielectric layer, oxide layer as well as the metal gate are increased

    Exploration of Gate Trench Module for Vertical GaN devices

    Full text link
    The aim of this work is to present the optimization of the gate trench module for use in vertical GaN devices in terms of cleaning process of the etched surface of the gate trench, thickness of gate dielectric and magnesium concentration of the p-GaN layer. The analysis was carried out by comparing the main DC parameters of devices that differ in surface cleaning process of the gate trench, gate dielectric thickness, and body layer doping. . On the basis of experimental results, we report that: (i) a good cleaning process of the etched GaN surface of the gate trench is a key factor to enhance the device performance, (ii) a gate dielectric >35-nm SiO2 results in a narrow distribution for DC characteristics, (iii) lowering the p-doping in the body layer improves the ON-resistance (RON). Gate capacitance measurements are performed to further confirm the results. Hypotheses on dielectric trapping/detrapping mechanisms under positive and negative gate bias are reported.Comment: 5 pages, 10 figures, submitted to Microelectronics Reliability (Special Issue: 31st European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, ESREF 2020

    Modeling of negative bias temperature instability, Journal of Telecommunications and Information Technology, 2007, nr 2

    Get PDF
    Negative bias temperature instability is regarded as one of the most important reliability concerns of highly scaled PMOS transistors. As a consequence of the continuous downscaling of semiconductor devices this issue has become even more important over the last couple of years due to the high electric fields in the oxide and the routine incorporation of nitrogen. During negative bias temperature stress a shift in important parameters of PMOS transistors, such as the threshold voltage, subthreshold slope, and mobility is observed. Modeling efforts date back to the reaction-diffusion model proposed by Jeppson and Svensson thirty years ago which has been continuously refined since then. Although the reaction-diffusion model is able to explain many experimentally observed characteristics, some microscopic details are still not well understood. Recently, various alternative explanations have been put forward, some of them extending, some of them contradicting the standard reaction-diffusion model. We review these explanations with a special focus on modeling issues

    Probing technique for energy distribution of positive charges in gate dielectrics and its application to lifetime prediction

    Get PDF
    The continuous reduction of the dimensions of CMOS devices has increased the negative bias temperature instability (NBTI) of pMOSFETs to such a level that it is limiting their lifetime. This increase of NBTI is caused mainly by three factors: an increase of nitrogen concentration in gate dielectric, a higher operation electrical field, and a higher temperature. Despite of many years’ research work, there are questions on the correctness of the NBTI lifetime predicted through voltage acceleration and extrapolation. The conventional lifetime prediction technique measures the degradation slowly and it typically takes 10 ms or longer to record one threshold voltage shift. It has been reported that NBTI can recover substantially in this time and the degradation is underestimated. To minimize the recovery, ultra-fast technique has been developed and the measurement time has been reduced to the order of microseconds. Once the recovery is suppressed, however, the degradation no longer follows a power law and there is no industry-wide accepted method for lifetime prediction. The objective of this project is to overcome this challenge and to develop a reliable NBTI lifetime prediction technique after freezing the recovery. To achieve this objective, it is essential to have an in-depth knowledge on the defects responsible for the recovery. It has been generally accepted that the NBTI recovery is dominated by the discharge of trapped holes. For the thin dielectric (e.g. < 3 nm) used by current industry, all hole traps are within direct tunnelling distance from the substrate and their discharging is mainly controlled by their energy levels against the Fermi level at the substrate interface. As a result, it is crucial to have the energy distribution of positive charges (PC) in the gate dielectric, but there is no technique available for probing this energy profile. A major achievement of this project is to develop a new technique that can probe the energy distribution of PCs both within and beyond the silicon energy gap. After charging up the hole traps, they are allowed to discharge progressively by changing the gate bias, Vg, in the positive direction in steps. This allows the Fermi level at the interface to be swept from a level below the valence band edge to a level above the conduction band edge, giving the required energy profile. Results show that PCs can vary by one order of magnitude with energy level. The PCs in different energy regions clearly originate from different defects. The PCs below the valence band edge are as-grown hole traps which are insensitive to stress time and temperature, and substantially higher in thermal SiON. The PCs above the valence band edge are from the created defects. The PCs within bandgap saturate for either longer stress time or higher stress temperature. In contrast, the PCs above conduction band edge, namely the anti-neutralization positive charges, do not saturate and their generation is clearly thermally accelerated. This energy profile technique is applicable to both SiON and high-k/SiON stack. It is found that both of them have a high level of as-grown hole traps below the valence band edge and their main difference is that there is a clear peak in the energy density near to the conduction band edge for the High-k/SiON stack, but not for the SiON. Based on this newly developed energy profile technique and the improved understanding, a new lifetime prediction technique has been proposed. The principle used is that a defect must be chargeable at an operation voltage, if it is to be included in the lifetime prediction. At the stress voltage, some as-grown hole traps further below Ev are charged, but they are neutral under an operation bias and must be excluded in the lifetime prediction. The new technique allows quantitative determination of the correct level of as-grown hole trapping to be included in the lifetime prediction. A main advantage of the proposed technique is that the contribution of as-grown hole traps is experimentally measured, avoiding the use of trap-filling models and the associated fitting parameters. The successful separation of as-grown hole trapping from the total degradation allows the extraction of generated defects and restores the power-law kinetics. Based on this new lifetime prediction technique, it is concluded that the maximum operation voltage for a 10 years lifetime is substantially overestimated by the conventional prediction technique. This new lifetime prediction technique has been accepted for presentation at the 2013 International Electron Devices Meeting (IEDM)

    Advanced Silicon and Germanium Transistors for Future P-channel MOSFET Applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Bias Temperature Instability Modelling and Lifetime Prediction on Nano-scale MOSFETs

    Get PDF
    Bias Temperature Instability (BTI) is one of the most important reliability concerns for Metal Oxide Semiconductor Field Effect Transistors (MOSFET), the basic unit in integrated circuits. As the development MOSFET manufacturing technology, circuit designers need to consider device reliability during design optimization. An accurate BTI lifetime prediction methodology becomes a prerequisite. Typical BTI lifetime standard is ten years, accelerated BTI tests under high stress voltages are mandatory. BTI modelling is needed to project BTI lifetime from high voltages (accelerated condition) to operating voltage. The existing two mainstream BTI models: 1). The Reaction-Diffusion (R-D) framework and 2). The Two-Stage model cannot provide accurate lifetime prediction. Quite a few fitting parameters and unjustifiable empirical equations are needed in the R-D framework to predict the lifetime, questioning its predicting capability. The Two-stage model cannot project device lifetime from high voltages to operating voltage. Moreover, the scaling down of MOSFET feature size brings new challenges to nano-scale device lifetime prediction: 1). Nano-scale devices’ current is fluctuating due to the impact of a single charge is increasing as MOSFET scaling down, repetitive tests need to be done to achieve meaningful averaged results; 2). Nano-scale devices have significant Device-to-Device variability, making the lifetime a distribution instead of a single value. In this work a comprehensive As-grown Generation (A-G) framework based on the A-G model and defect centric theory is proposed and successfully predicts the Time Dependent Variability and lifetime on nano-scale devices. The predicting capability is validated by the good agreement between the test data and predicted values. It is speculated that the good predicting capability is due to the correct understanding of different types of defects. In the A-G framework, Time Dependent Variability is experimentally separated into Within-Device Fluctuation and the averaged degradation. Within-Device Fluctuation can be directly measured and the averaged degradation can be modelled using the A-G model. The averaged degradation in the A-G model contains: Generated Defects, As-grown Traps and Energy Alternating Defects. These defects have different kinetics against stress time thus need separate modelling. Various patterns such as Stress-Discharge-Recharge, multi-Discharging-based Multiple Pulses are designed to experimentally separate these defects based on their different charging/discharging properties. Fast-Voltage Step Stress technique is developed to reduce the testing time by 90% for the A-G framework parameter extraction, making the framework practical for potential use in industry

    A thorough investigation of MOSFETs NBTI degradation

    No full text
    International audienceAn overview of evolution of transistor parameters under negative bias temperature instability stress conditions commonly observed in p-MOSFETs in recent technologies is presented. The physical mechanisms of the degradation as well as the different defects involved have been discussed according to a systematic set of experiments with different stress conditions. According to our findings, a physical model is proposed which could be used to more accurately predict the transistor degradation. Finally, the influence of different process splits as the gate oxide nitridation, the nitrogen content, the source/drain implant and poly doping level on the NBTI degradation is investigated and discussed with our present understanding

    Journal of Telecommunications and Information Technology, 2007, nr 2

    Get PDF
    kwartalni

    Numerical and Compact Modeling of Embedded Flash Memory Devices Targeted for IC Design

    Get PDF
    In a semiconductor market dominated by portable consumer applications, embedded flash memory technology has experienced a rapid diffusion. It is now considered the preferred solid-state memory solution for its non-volatile characteristics, high read and write speeds and scalability properties. As technology scales down in the nanometer range, new accurate physical tools should be made available to circuit designers, to support the development and optimization of high-voltage circuit blocks. A surface potential-based model for the flash memory cell has been developed with the purpose of providing a comprehensive physical understanding of the device operation, suitable for performance optimization in memory circuit design. An accurate validation methodology also takes into account charge balance effects on the isolated floating gate node and parasitic couplings inside and between the memory cells. The compact model supports DC, AC and transient analyses, including program/erase bias scalability, temperature effects, process corners and statistical variations. The results have been compared to Technology Computer-Aided Design (TCAD) simulations demonstrating that short channel effects, overlap capacitances and velocity saturation dominate over the intrinsic behaviour of the cell in ultrascaled devices. The approach includes drain disturb and memory endurance degradation models due to oxide aging. These effects are becoming dominant in ultrascaled devices. The model has been implemented using the Verilog-A language for portability into common circuit simulators. Validation has been performed on measurement results of test structures integrated in a 65nm derivative NOR CMOS technology. The compact model development has been based on a rigorous modeling approach combining conventional TCAD simulation tools with physically-based analyses. A new TCAD tool has been proposed for the investigation of advanced quantum effects, band structure models, quantum tunneling and multiphonon-assisted charge trapping effects in dielectrics. The effects of charge trapping in oxide layers and Si/SiO2 interfaces have been studied, specifically focusing on flash technology, where high voltage biases represent a major issue for dielectric degradation. A multiphonon-assisted model has been coupled with a Poisson-Schrödinger quantum solver. A novel impedance calculation method has been applied to the analysis of DC and AC MOS characteristics. This approach permits the physical modeling of trap filling, frequency response and device electrostatics. Transient effects of trap filling and trap-assisted tunneling through the gate have also been investigated. The adoption of such a multilevel approach permits to apply the methodology to flash memory cells. This enabled the investigation of the role of defects on electrostatics and program/erase efficiency reduction. The flash compact model has been applied in a process development and IC memory design perspective. Technology development requires a profound understanding of trade-offs in flash devices, which affect DC, transient and long-term performances. The design, integration and characterization of a 40 KB memory sector for smart card applications has been performed to demonstrate the capabilities of the compact model
    corecore