2,595 research outputs found

    Research with Collaborative Unmanned Aircraft Systems

    Get PDF
    We provide an overview of ongoing research which targets development of a principled framework for mixed-initiative interaction with unmanned aircraft systems (UAS). UASs are now becoming technologically mature enough to be integrated into civil society. Principled interaction between UASs and human resources is an essential component in their future uses in complex emergency services or bluelight scenarios. In our current research, we have targeted a triad of fundamental, interdependent conceptual issues: delegation, mixed- initiative interaction and adjustable autonomy, that is being used as a basis for developing a principled and well-defined framework for interaction. This can be used to clarify, validate and verify different types of interaction between human operators and UAS systems both theoretically and practically in UAS experimentation with our deployed platforms

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Model-based System Health Management and Contingency Planning for Autonomous UAS

    Get PDF
    Safe autonomous operations of an Unmanned Aerial System (UAS) requires that the UAS can react to unforeseen circumstances, for example, after a failure has occurred. In this paper we describe a model-based run-time architecture for autonomous on-board diagnosis, system health management, and contingency management. This architecture is being instantiated on top of NASA's Core Flight System (cFS/cFE) as amajor component of the on-board AutonomousOperating System (AOS). We will describe our diagnosis and monitoring components, which continuously provide system health status. Automated reasoning with constraint satisfaction form the core of our decision-making component, which assesses the current situation, aids in failure disambiguation, and constructs a contingency plan to mitigate the failure(s) and allow for a safe end of the mission. We will illustrate our contingency management system with two case studies, one for a fixed-wing aircraft in simulation, and one for an autonomous DJI S1000+ octo-copter

    Handling Breakdowns in Unmanned Aircraft Systems

    No full text
    International audienceThis work is devoted to activity recognition in the setting of data analysis in aeronautics. Formal methods are applied to the cer-tification and safety analysis processes of Unmanned Aircraft Systems in breakdown situations. The behaviour of these systems in case of a failure is entirely modeled and implemented. A temporal language — the Chronicle language — describes arrangements of events which are employed to detail undesired circumstances that would lead to breaches in safety. A C++ chronicle recognition tool is used to recognise all the possible occurrences of these situations as soon as they occur

    A simple CSP-based model for unmanned air vehicle mission planning

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. C. Ramírez-Atencia, G. Bello-Orgaz, M. D. R.-Moreno, and D. Camacho, "A simple CSP-based model for Unmanned Air Vehicle Mission Planning", in 2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings, 2014, pp. 146 - 153The problem of Mission Planning for a large number of Unmanned Air Vehicles (UAV) can be formulated as a Temporal Constraint Satisfaction Problem (TCSP). It consists on a set of locations that should visit in different time windows, and the actions that the vehicle can perform based on its features such as the payload, speed or fuel capacity. In this paper, a temporal constraint model is implemented and tested by performing Backtracking search in several missions where its complexity has been incrementally modified. The experimental phase consists on two different phases. On the one hand, several mission simulations containing (n) UAVs using different sensors and characteristics located in different waypoints, and (m) requested tasks varying mission priorities have been carried out. On the other hand, the second experimental phase uses a backtracking algorithm to look through the whole solutions space to measure the scalability of the problem. This scalability has been measured as a relation between the number of tasks to be performed in the mission and the number of UAVs needed to perform it.This work is supported by the Spanish Ministry of Science and Education under Project Code TIN2010-19872 and Savier Project (Airbus Defence & Space, FUAM-076915). The authors would like to acknowledge the support obtained from Airbus Defence & Space, specially from Savier Open Innovation project members: Jose Insenser, C ´ esar Castro and ´ Gemma Blasco

    Strategy Synthesis for Autonomous Agents Using PRISM

    Get PDF
    We present probabilistic models for autonomous agent search and retrieve missions derived from Simulink models for an Unmanned Aerial Vehicle (UAV) and show how probabilistic model checking and the probabilistic model checker PRISM can be used for optimal controller generation. We introduce a sequence of scenarios relevant to UAVs and other autonomous agents such as underwater and ground vehicles. For each scenario we demonstrate how it can be modelled using the PRISM language, give model checking statistics and present the synthesised optimal controllers. We conclude with a discussion of the limitations when using probabilistic model checking and PRISM in this context and what steps can be taken to overcome them. In addition, we consider how the controllers can be returned to the UAV and adapted for use on larger search areas

    Unobtrusive Software and System Health Management with R2U2 on a Parallel MIMD Coprocessor

    Get PDF
    Dynamic monitoring of software and system health of a complex cyber-physical system requires observers that continuously monitor variables of the embedded software in order to detect anomalies and reason about root causes. There exists a variety of techniques for code instrumentation, but instrumentation might change runtime behavior and could require costly software re-certification. In this paper, we present R2U2E, a novel realization of our real-time, Realizable, Responsive, and Unobtrusive Unit (R2U2). The R2U2E observers are executed in parallel on a dedicated 16-core EPIPHANY co-processor, thereby avoiding additional computational overhead to the system under observation. A DMA-based shared memory access architecture allows R2U2E to operate without any code instrumentation or program interference

    Architectural Design of a Safe Mission Manager for Unmanned Aircraft Systems

    Full text link
    [EN] Civil Aviation Authorities are elaborating a new regulatory framework for the safe operation of Unmanned Aircraft Systems (UAS). Current proposals are based on the analysis of the specific risks of the operation as well as on the definition of some risk mitigation measures. In order to achieve the target level of safety, we propose increasing the level of automation by providing the on-board system with Automated Contingency Management functions. The aim of the resulting Safe Mission Manager System is to autonomously adapt to contingency events while still achieving mission objectives through the degradation of mission performance. In this paper, we discuss some of the architectural issues in designing this system. The resulting architecture makes a conceptual differentiation between event monitoring, decision-making on a policy for dealing with contingencies and the execution of the corresponding policy. We also discuss how to allocate the different Safe Mission Manager components to a partitioned, Integrated Modular Avionics architecture. Finally, determinism and predictability are key aspects in contingency management due to their overall impact on safety. For this reason, we model and verify the correctness of a contingency management policy using formal methods.This work was supported by the Spanish Regional Government "Generalitat Valenciana" under contract ACIF/2016/197.Usach Molina, H.; Vila CarbĂł, JA.; Torens, C.; Adolf, FM. (2018). Architectural Design of a Safe Mission Manager for Unmanned Aircraft Systems. Journal of Systems Architecture. 90:94-108. https://doi.org/10.1016/j.sysarc.2018.09.003S941089
    • …
    corecore