6,159 research outputs found

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments

    Maiter: An Asynchronous Graph Processing Framework for Delta-based Accumulative Iterative Computation

    Full text link
    Myriad of graph-based algorithms in machine learning and data mining require parsing relational data iteratively. These algorithms are implemented in a large-scale distributed environment in order to scale to massive data sets. To accelerate these large-scale graph-based iterative computations, we propose delta-based accumulative iterative computation (DAIC). Different from traditional iterative computations, which iteratively update the result based on the result from the previous iteration, DAIC updates the result by accumulating the "changes" between iterations. By DAIC, we can process only the "changes" to avoid the negligible updates. Furthermore, we can perform DAIC asynchronously to bypass the high-cost synchronous barriers in heterogeneous distributed environments. Based on the DAIC model, we design and implement an asynchronous graph processing framework, Maiter. We evaluate Maiter on local cluster as well as on Amazon EC2 Cloud. The results show that Maiter achieves as much as 60x speedup over Hadoop and outperforms other state-of-the-art frameworks.Comment: ScienceCloud 2012, TKDE 201

    Defining and Measuring The Creation of Quality Jobs

    Get PDF
    Our research is intended to support our peers in the Community Development Financial Institution (CDFI) industry who, through their financing, have served low-income and other disadvantaged communities for two decades.  While the CDFI industry has been instrumental in supporting job creation across the U.S., we believe that now is the time to focus greater attention on the quality of the jobs created in order to combat rising income and wealth inequality.Through a better understanding of what defines a quality job and a set of practical methods for measuring the quality of jobs created, we believe CDFIs and others in the impact investing community will be better positioned to make more effective investments that support good jobs for workers, businesses, and communities

    An economic market for the brokering of time and budget guarantees

    Get PDF
    Grids offer best effort services to users. Service level agreements offer the opportunity to provide guarantees upon services offered, in such a way that it captures the users’ requirements, while also considering concerns of the service providers. This is achieved via a process of converging requirements and service cost values from both sides towards an agreement. This paper presents the intelligent scheduling for quality of service market-oriented mechanism for brokering guarantees upon completion time and cost for jobs submitted to a batch-oriented compute service. Web Services agreement (negotiation) is used along with the planning of schedules in determining pricing, ensuring that jobs become prioritised depending on their budget constraints. An evaluation is performed to demonstrate how market mechanisms can be used to achieve this, whilst also showing the effects that scheduling algorithms can have upon the market in terms of rescheduling. The evaluation is completed with a comparison of the broker’s capabilities in relation to the literature

    Reliable Provisioning of Spot Instances for Compute-intensive Applications

    Full text link
    Cloud computing providers are now offering their unused resources for leasing in the spot market, which has been considered the first step towards a full-fledged market economy for computational resources. Spot instances are virtual machines (VMs) available at lower prices than their standard on-demand counterparts. These VMs will run for as long as the current price is lower than the maximum bid price users are willing to pay per hour. Spot instances have been increasingly used for executing compute-intensive applications. In spite of an apparent economical advantage, due to an intermittent nature of biddable resources, application execution times may be prolonged or they may not finish at all. This paper proposes a resource allocation strategy that addresses the problem of running compute-intensive jobs on a pool of intermittent virtual machines, while also aiming to run applications in a fast and economical way. To mitigate potential unavailability periods, a multifaceted fault-aware resource provisioning policy is proposed. Our solution employs price and runtime estimation mechanisms, as well as three fault tolerance techniques, namely checkpointing, task duplication and migration. We evaluate our strategies using trace-driven simulations, which take as input real price variation traces, as well as an application trace from the Parallel Workload Archive. Our results demonstrate the effectiveness of executing applications on spot instances, respecting QoS constraints, despite occasional failures.Comment: 8 pages, 4 figure

    An input centric paradigm for program dynamic optimizations and lifetime evolvement

    Get PDF
    Accurately predicting program behaviors (e.g., memory locality, method calling frequency) is fundamental for program optimizations and runtime adaptations. Despite decades of remarkable progress, prior studies have not systematically exploited the use of program inputs, a deciding factor of program behaviors, to help in program dynamic optimizations. Triggered by the strong and predictive correlations between program inputs and program behaviors that recent studies have uncovered, the dissertation work aims to bring program inputs into the focus of program behavior analysis and program dynamic optimization, cultivating a new paradigm named input-centric program behavior analysis and dynamic optimization.;The new optimization paradigm consists of three components, forming a three-layer pyramid. at the base is program input characterization, a component for resolving the complexity in program raw inputs and extracting important features. In the middle is input-behavior modeling, a component for recognizing and modeling the correlations between characterized input features and program behaviors. These two components constitute input-centric program behavior analysis, which (ideally) is able to predict the large-scope behaviors of a program\u27s execution as soon as the execution starts. The top layer is input-centric adaptation, which capitalizes on the novel opportunities created by the first two components to facilitate proactive adaptation for program optimizations.;This dissertation aims to develop this paradigm in two stages. In the first stage, we concentrate on exploring the implications of program inputs for program behaviors and dynamic optimization. We construct the basic input-centric optimization framework based on of line training to realize the basic functionalities of the three major components of the paradigm. For the second stage, we focus on making the paradigm practical by addressing multi-facet issues in handling input complexities, transparent training data collection, predictive model evolvement across production runs. The techniques proposed in this stage together cultivate a lifelong continuous optimization scheme with cross-input adaptivity.;Fundamentally the new optimization paradigm provides a brand new solution for program dynamic optimization. The techniques proposed in the dissertation together resolve the adaptivity-proactivity dilemma that has been limiting the effectiveness of existing optimization techniques. its benefits are demonstrated through proactive dynamic optimizations in Jikes RVM and version selection using IBM XL C Compiler, yielding significant performance improvement on a set of Java and C/C++ programs. It may open new opportunities for a broad range of runtime optimizations and adaptations. The evaluation results on both Java and C/C++ applications demonstrate the new paradigm is promising in advancing the current state of program optimizations

    Evaluating Content-centric vs User-centric Ad Affect Recognition

    Get PDF
    Despite the fact that advertisements (ads) often include strongly emotional content, very little work has been devoted to affect recognition (AR) from ads. This work explicitly compares content-centric and user-centric ad AR methodologies, and evaluates the impact of enhanced AR on computational advertising via a user study. Specifically, we (1) compile an affective ad dataset capable of evoking coherent emotions across users; (2) explore the efficacy of content-centric convolutional neural network (CNN) features for encoding emotions, and show that CNN features outperform low-level emotion descriptors; (3) examine user-centered ad AR by analyzing Electroencephalogram (EEG) responses acquired from eleven viewers, and find that EEG signals encode emotional information better than content descriptors; (4) investigate the relationship between objective AR and subjective viewer experience while watching an ad-embedded online video stream based on a study involving 12 users. To our knowledge, this is the first work to (a) expressly compare user vs content-centered AR for ads, and (b) study the relationship between modeling of ad emotions and its impact on a real-life advertising application.Comment: Accepted at the ACM International Conference on Multimodal Interation (ICMI) 201
    • …
    corecore