13 research outputs found

    A Direct Translation from XPath to Nondeterministic Automata

    Get PDF
    Abstract. Since navigational aspects of XPath correspond to first-order definability, it has been proposed to use the analogy with the very successful technique of translating LTL into automata, and produce efficient translations of XPath queries into automata on unranked trees. These translations can then be used for a variety of reasoning tasks such as XPath consistency, or optimization, under XML schema constraints. In the verification scenarios, translations into both nondeterministic and alternating automata are used. But while a direct translation from XPath into alternating automata is known, only an indirect translation into nondeterministic automata- going via intermediate logics- exists. A direct translation is desirable as most XML specifications have particularly nice translations into nondeterministic automata and it is natural to use such automata to reason about XPath and schemas. The goal of the paper is to produce such a direct translation of XPath into nondeterministic automata.

    Reasoning about XML with temporal logics and automata

    Get PDF
    We show that problems arising in static analysis of XML specifications and transformations can be dealt with using techniques similar to those developed for static analysis of programs. Many properties of interest in the XML context are related to navigation, and can be formulated in temporal logics for trees. We choose a logic that admits a simple single-exponential translation into unranked tree automata, in the spirit of the classical LTL-to-Büchi automata translation. Automata arising from this translation have a number of additional properties; in particular, they are convenient for reasoning about unary node-selecting queries, which are important in the XML context. We give two applications of such reasoning: one deals with a classical XML problem of reasoning about navigation in the presence of schemas, and the other relates to verifying security properties of XML views

    Reasoning About Pattern-Based XML Queries

    Get PDF
    Abstract. We survey results about static analysis of pattern-based queries over XML documents. These queries are analogs of conjunctive queries, their unions and Boolean combinations, in which tree patterns play the role of atomic formulae. As in the relational case, they can be viewed as both queries and incomplete documents, and thus static analysis problems can also be viewed as finding certain answers of queries over such documents. We look at satisfiability of patterns under schemas, containment of queries for various features of XML used in queries, finding certain answers, and applications of pattern-based queries in reasoning about schema mappings for data exchange.

    A Benchmark Collection of Deterministic Automata for XPath Queries

    Get PDF
    International audienceWe provide a benchmark collection of deterministic automatafor regular XPath queries. For this, we select the subcollection offorward navigational XPath queries from a corpus that Lick and Schmitzextracted from real-world XSLT and XQuery programs, compile them tostepwise hedge automata (SHAs), and determinize them. Large blowups by automatadeterminization are avoided by using schema-based determinization. The schemacaptures the \XML data model and the fact thatany answer of a path query must return a single node.Our collection also provides deterministic nested word automatathat we obtain by compilation from deterministic SHAs

    Schema Query Containment

    Get PDF
    SPARQL is a schema query language allowing access to the TBox part of a knowledge base. Moreover its entailment regimes enable to take into account knowledge inferred from persistently stored knowledge bases in the query answering process. Thus, the emergence of SPARQL entailment regimes provide a new perspective for the containment problem. As one has to deal with axiomatic triples, datatype reasoning, and blank nodes that result in infinite answers. Of particular interest for us is the union of conjunctive queries that are a core fragment of SPARQL. In this paper, we study the containment of such queries based on the OWL-ALCH Direct and RDF-Based Semantics entailment regimes

    Efficient reasoning about data trees via integer linear programming

    Get PDF
    Data trees provide a standard abstraction of XML documents with data values: they are trees whose nodes, in addition to the usual labels, can carry labels from an infinite alphabet (data). Therefore, one is interested in decidable formalisms for reasoning about data trees. While some are known – such as the two-variable logic – they tend to be of very high complexity, and most decidability proofs are highly nontrivial. We are therefore interested in reasonable complexity formalisms as well as better techniques for proving decidability. Here we show that many decidable formalisms for data trees are subsumed – fully or partially – by the power of tree automata together with set constraints and linear constraints on cardinalities of various sets of data values. All these constraints can be translated into instances of integer linear programming, giving us an NP bound on the complexity of the reasoning tasks. We prove that this bound, as well as the key encoding technique, remain very robust, and allow the addition of features such as counting of paths and patterns, and even a concise encoding of constraints, without increasing the complexity. We also relate our results to several reasoning tasks over XML documents, such as satisfiability of schemas and data dependencies and satisfiability of the two-variable logic

    CSS Minification via Constraint Solving

    Get PDF
    Minification is a widely-accepted technique which aims at reducing the size of the code transmitted over the web. We study the problem of minifying Cascading Style Sheets (CSS) --- the de facto language for styling web documents. Traditionally, CSS minifiers focus on simple syntactic transformations (e.g. shortening colour names). In this paper, we propose a new minification method based on merging similar rules in a CSS file. We consider safe transformations of CSS files, which preserve the semantics of the CSS file. The semantics of CSS files are sensitive to the ordering of rules in the file. To automatically identify a rule merging opportunity that best minimises file size, we reduce the rule-merging problem to a problem on CSS-graphs, i.e., node-weighted bipartite graphs with a dependency ordering on the edges, where weights capture the number of characters (e.g. in a selector or in a property declaration). Roughly speaking, the corresponding CSS-graph problem concerns minimising the total weight of a sequence of bicliques (complete bipartite subgraphs) that covers the CSS-graph and respects the edge order. We provide the first full formalisation of CSS3 selectors and reduce dependency detection to satisfiability of quantifier-free integer linear arithmetic, for which highly-optimised SMT-solvers are available. To solve the above NP-hard graph optimisation problem, we show how Max-SAT solvers can be effectively employed. We have implemented our algorithms using Max-SAT and SMT-solvers as backends, and tested against approximately 70 real-world examples (including the top 20 most popular websites). In our benchmarks, our tool yields larger savings than six well-known minifiers (which do not perform rule-merging, but support many other optimisations). Our experiments also suggest that better savings can be achieved in combination with one of these six minifiers
    corecore