
HAL Id: hal-03527888
https://hal.inria.fr/hal-03527888v4

Submitted on 3 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Benchmark Collection of Deterministic Automata for
XPath Queries

Antonio Al Serhali, Joachim Niehren

To cite this version:
Antonio Al Serhali, Joachim Niehren. A Benchmark Collection of Deterministic Automata for XPath
Queries. XML Prague 2022, Jun 2022, Prague, Czech Republic. �hal-03527888v4�

https://hal.inria.fr/hal-03527888v4
https://hal.archives-ouvertes.fr

A Benchmark Collection of
Deterministic Automata for XPath Queries

Antonio Al Serhali and Joachim Niehren

Inria Lille, Université de Lille, France

Abstract. We provide a benchmark collection of deterministic automata
for regular XPath queries. For this, we select the subcollection of for-
ward navigational XPath queries from a corpus that Lick and Schmitz
extracted from real-world XSLT and XQuery programs, compile them to
stepwise hedge automata (Shas), and determinize them. Large blowups
by automata determinization are avoided by using schema-based deter-
minization. The schema captures the XML data model and the fact that
any answer of a path query must return a single node. Our collection also
provides deterministic nested word automata that we obtain by compi-
lation from deterministic Shas.

Keywords: XML, regular path queries, automata, nested words, trees, hedges.
docbook/Latex

1 Introduction

XML is one of the most used standardized formats for representing exchanging
structured data between various tools and applications. XML documents form
unranked data trees. Processing XML documents in both in-memory and stream-
ing modes are widely studied for many years [15] [16] [14] [13] [11]. The most
frequent tasks are validating, querying and transforming XML documents. In
the XML technology, this is done with standardized languages based on XPath
queries, such as Xslt and XQuery.

Automata-based algorithms are not only relevant for validating XML docu-
ments with respect to a schema (as with RelaxNG) but also for querying XML
streams [23] [7] [22] [12]. The problem with syntax-oriented approaches for an-
swering XPath queries on XML streams yield only low coverage. Automata
approaches, in contrast, can deal with all of XPath 3.0 as shown by Sebastian,
Niehren, and Debarbieux [7]. When applying automata, however, it is natural
to abstract XML documents to nested words [2], which generalize on unranked
data trees and sequences thereof that are also called forests or hedges. Automata
for nested words are also relevant for enumerating query answers of document
spanners in in-memory mode [8] [28], and for enumerating query answers on data
trees [20] [3] [6].

Deterministic automata are relevant to keep the computational complexity
of various problems tractable. In particular it enables automata minimization in
polynomial time and universality testing in linear time. In contrast, universality
becoming EXP-complete for nondeterministic automata on trees or nested words

2 Al Serhali and Niehren

[5] [29]. Note that universality testing can be used as a stopping condition for
automata algorithms. More concretely, determinism is required for the streaming
algorithms of [23] and [12] but also for the inmemory algorithm of [28]. Therefore,
deterministic automata on nested words need to be produced for regular path
queries [17] [21] [9] for benchmarking these algorithms.

Compiling regular path queries to automata is less problematic, but their de-
terminization may blowup the automata sizes exponentially. This also happens in
practice. For the XPath query //a[following- sibling::b[.//c][./d]]/e

for instance, [7] construct a nested word automaton (Nwa) with 38 states of
overall size 7338. The determinization of this automaton has more than 5000
states and 20 million transition rules. It is so big that it cannot be computed
an a standard laptop. This shows that the usual determinization algorithm for
Nwas [4] [1] [26] quickly leads to a size explosion.

Niehren and Sakho [24] improved this situation by using the determinization
algorithm for stepwise hedge automata (Shas), which in turn can be compiled
to deterministic Nwas. In this way deterministic Shas and Nwas of decent
size could be obtained for the 10 forward navigational XPath queries for the
XPathMark benchmark [10]. But even the determinization of Shas may lead
to unreasonably large automata for pratically relevant XPath queries. For the
XPath query /a/b//(* | @* | comment() | text()), for instance, a deter-
ministic Sha with 145 states and size 348 got reported, whose determinization
has 10 005 states and overall size 1 634 123 [25].

Niehren, Sakho, and Al Serhali showed recently [25] that this determinization
problem for Shas can be solved by using schemas, i.e., deterministic automata
that model which nested words are valid inputs of the automaton. In the case of
XPath queries, the schema captures the XML data model, and that each query
answer must return a unique node of the XML document.

The first schema-based approach is to determinize the product of the query
automaton with the schema automaton. For the above XPath query, this yields
a deterministic Sha with 92 states and size 417, which after minimization goes
down to 27 states and size 98. Nevertheless, this approach may seem surprising at
first sight, since the schema-product is usually bigger than the query automaton
itself. But indeed it works quite nicely in practice. The intuition is that the
deterministic schema reduces the number of subsets of states that are to be
considered during determinization since all states in such subsets must be aligned
to the same schema state.

The second schema-based approach is to clean the determinized automaton
with respect to the schema. This means removing all states and transitions that
cannot be aligned to the schema. Schema-based cleaning has the advantage of al-
ways yielding smaller automata. Unfortunately, however, it is not always compu-
tationally feasible in practice, since the automaton produced by determinization
is often too large for being schema-cleaned.

The third schema-based approach is schema-based determinization, an al-
gorithm proposed in [25]. The idea is integrate schema-based cleaning directly
into the determinization algorithm, in order to avoid large blowups from the
beginning, while producing the same result as with the second approach. The
automata obtained by schema-based determinization are usually smaller than

Deterministic Automata for XPath Queries 3

by determinizing the schema-product, also after minimization, since they do not
recognize the same language.

We applied the implementations of all three approaches to show that small de-
terministic Shas and Nwas can be obtained for all the regular XPath queries in
the benchmark corpus that Lick and Schmitz [19] [18] harvested from Xslt and
XQuery programs available online (docbook, teixml, htmlbook, ...). The third
solution based on schema-based determinization followed by minimization yields
the best results. The largest Sha obtained in this way for the whole benchmark
collection has 58 states. In average there are 22 states and 71 transition rules
per automaton. All automata are published in the software heritage archive at
https://archive.softwareheritage.org/browse/origin/?origin_url=https:

//gitlab.inria.fr/aalserha/xpath-benchmark.
The fact that we can indeed determinize the automata of most if not all

practical XPath queries with a mild size increase, gives new hope to improve
the situation on XML streaming in the near future, building on approaches
requiring deterministic automata [23] [12] [27].

1.1 Outline

We present our selection of regular XPath benchmark queries from the corpus of
Lick and Schmitz [19] in in Section 2. Nested words and their relationship to XML
documents are recalled in in Section 3. A deterministic stepwise hedge automata
defining the schema of valid XML documents is given in in Section 3.2. A formal
definition of stepwise hedge automata follows for the sake of self-containedness
in in Section 4. In in Section 5 we discuss our compiler from XPath expres-
sions to deterministic automata, and illustrate it by example automata from our
benchmark collection. In in Section 6 we discuss how we tested our automata
for correctness on a sample of annotated XML documents produced from the
XPath query based on Saxon Xslt. The sizes of automata in our benchmark
collection of Shas are discussed in in Section 7. We conclude in in Section 8.
Some complementary information can be found in in Appendix A.

2 XPath Benchmark Queries

We start with the collection of 21000 XPath queries that Lick and Schmitz [19]
extracted from real-world XQuery and Xslt programs available on the Web.
The purpose of this corpus is to reflect the form and distribution of XPath
queries in practical applications. The much smaller XPathMark benchmark [10],
in contrast, focuses on functionality testing.

We then filter the subclass of around 4500 forward navigational XPath
queries of Lick’s and Schmitz’s corpus. The other queries contain comparisons of
data values, arithmetics, and functions, including higher-order functions to iter-
ate over sequences, which may be nonregular. We also removed boolean queries
and kept only node selection queries. We then selected the 180 largest queries of
this subcorpus.

Finally, we removed duplicates of queries up to renaming of XML names-
pace prefixes and local names, and syntactical details, such as .//author or

https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark

4 Al Serhali and Niehren

descendant-or-self::author or descendant-or-self::corpauthor. This leads
us to the collection of 79 queries. The first 10 queries are shown in in Table 1.

Id XPath Query

18330 /descendant-or-self::node()/child::parts-of-speech

17914 /descendant-or-self::node()/child::tei:back/descendant-or-self::node()
/child::tei:interpGrp

10745 *//tei:imprint/tei:date[@type=’access’]

02091 * | .//refentry

00744 .//@id | .//@xml:id

12060 .//attDef

02762 .//authorgroup/author | .//author

06027 .//authorinitials | .//author

02909 .//bibliomisc[@role=’serie’]

06415 .//email | address/otheraddr/ulink

Table 1: The first 10 of the 79 queries of the benchmark collection (see Table 3).

We note that the XPath query 18339 is considered as large since it contains
the recursive axis descendant-or-self. Other queries are considered as large
since having a parse tree with more than 15 nodes, for instance 05684 and 05684.

3 Nested Words for XML Documents

We use nested words to abstract from XML documents since automata can be
defined more easily for nested words.

3.1 Nested Words

Nested words generalize on words by adding parenthesis that must be well-
nested. Nested words also generalize on unranked trees and over sequences
thereof that are often called hedges. We restrict ourselves to nested words with
a single pair of opening and closing parenthesis 〈 and 〉 since named parenthesis
can be encoded easily. Let Σ be a set that we call the alphabet. Nested words
in NΣ have the following abstract syntax.

w,w′ ∈ NΣ ::= ε | a | 〈w〉 | w · w′ where a ∈ Σ.

We assume that concatentation · is associative, and that the empty word ε
is a neutral element, that is w · (w′ · w′′) = (w · w′) · w′′ and ε · w = w = w · ε.
Nested words can be identified with hedges, i.e., sequences of unranked trees and
letters, that is NΣ = (Σ ∪ 〈NΣ〉)∗.

Deterministic Automata for XPath Queries 5

3.2 XML Documents

XML documents are labeled unranked trees that can be serialized into a text,
such as for instance:

<s:a name="uff"> <s:b> gaga <s:d/> <s:b/> <s:c/> <s:a>

We represent XML documents as nested words over the signature ΣXML that
contains 4 disjoint types of letters: the XML node-types {elem, attr, text, comment},
the XML namespaces of the document {s}, the XML names of the document
{a, . . . , d, name}, and the characters of the data values, say UTF8. For the above
example, we get the nested word:

〈elem·s·a·〈attr ·name·u·f ·f〉〈elem·s·b·〈text·g ·a·g ·a〉〈elem·s·d〉〉〈elem·s·c〉〉

4 Automata for Nested Words

Stepwise hedge automata (Shas) [24] extend on classical finite state automata
(Nfas) from words to nested words. They provide a graphical way to define
regular languages of nested words, and thus regular languages of XML docu-
ments. Shas are often easier to read that the better-known nested word automata
(Nwas) and help us to avoid large size blowups coming with Nwa determiniza-
tion. In this section we recall the definition of Shas based on the definition of
Nfas and discuss their relationship Nwas.

4.1 Finite State Automata (NFAs)

We consider finite state automata with else rules and possibly infinite alphabets.

Definition 1. An Nfa (with else rules) is a tuple A=(Σ,Q, ∆, I, F) such that
alphabet Σ is a possibly infinite set, ∆ = ∆′] ∆ contains a subset of transition
rules for letters ∆′ ⊆ (Q×Σ)×Q and a subset of else rules ∆ ⊆ Q×Q. We call
Nfa A deterministic or equivalently a Dfa if ∆′ and ∆ are partial function.

As usual when using automata, we draw Nfas as graphs whose nodes are
the states. A state q ∈ Q is drawn with a circle q , an initial state q ∈ I with

an incoming arrow → q , and a final state with a double circle q . A letter

transition rule (q1, a, q2) ∈ ∆′ is drawn as a black edge q1
a−→ q2 that is labeled

by a letter a ∈ Σ. An else rule (q, q′) ∈ ∆ is drawn as q −→ q′ . It permits

that the automaton in state q can go to state q′ when reading any letter a ∈ Σ
such that there exists no q′′ with q

a−→ q′′ ∈ ∆. Any else rule can be expanded to
a set of letter transitions rules as follows:

q −→ q′ ∈ ∆ a ∈ Σ ¬∃q′′ ∈ Q. q a−→ q′′ ∈ ∆
q
a−→ q′ ∈ ∆exp

q
a−→ q′ ∈ ∆

q
a−→ q′ ∈ ∆exp

6 Al Serhali and Niehren

4.2 Stepwise Hedge Automata (SHAs)

We extend Nfas to Shas by adding adding apply rules that read states of sub-
trees rather than letters from the alphabet.

Definition 2. An Sha (with else rules) is a tuple A = (Σ,Q,P, ∆, I, F) where
∆ = ∆′]∆′′ so that A′ = (Σ,Q, ∆′, I, F) is a Nfa. Furthermore, P is a finite

set of tree states and ∆′′ = (〈〉∆,@∆,−→∆) such that 〈〉∆ ⊆ Q is a subset of
tree initial states, @∆ ⊆ (Q×P)×Q a set of apply rules, and −→∆⊆ Q×P a
set of tree final rules.

We draw Shas as graphs extending on the graphs of Nfas. A tree state p ∈ P
is drawn in gray p . A tree initial state q ∈ 〈〉∆ is a hedge state is drawn as

〈〉−→ q with an incoming tree arrow. An apply rule (q1, p, q2) ∈ @∆ is drawn by

a blue edge q1
p−→q2 carrying a state p ∈ P rather than a letter a ∈ Σ. It states

that a nested word in state q1 ∈ Q can be extended by a tree in state p ∈ P and
go into state q2 ∈ Q. A tree final rule (q, p) ∈−→∆ is drawn as q −→ p . It

states that if w is a nested word in state q ∈ Q then 〈w〉 is a tree in state p ∈ P.

Transitions of Shas have the form q
w−→ q′ wrt ∆ where w ∈ NΣ and q, q′ ∈

Q. They are defined by the inference rules:

q ∈ Q
q
ε−→ q wrt ∆

q
a−→ q′ ∈ ∆exp

q
a−→ q′ wrt ∆

q0
w1−−→ q1 wrt ∆ q1

w2−−→ q2 wrt ∆

q0
w1·w2−−−−→ q2 wrt ∆

q′ ∈ 〈〉∆ q′
w−→ q wrt ∆ q −→ p ∈ ∆ q1

p−→ q2 ∈ ∆

q1
〈w〉−−→ q2 wrt ∆

The last inference rule says that when reading a tree 〈w〉 the automaton can
transit from a state q1 to a state q2 if with w it can transit from some tree initial
state q′ to q, so that there is some tree final rule q −→ p ∈ ∆ and some apply

rule q1
p−→ q2 ∈ ∆. The language L(A) of a Sha is defined as usual for Nfas

except that nested words may be recognized too:

L(A) = {w ∈ NΣ | q
w−→ q′ wrt ∆, q ∈ I, q′ ∈ F}

The notion of determinism for Shas extends on the notion of left-to-right
determinism of Nfas and on the notion of bottom-up determinism of tree au-
tomata.

Definition 3. We call an Sha A deterministic or equivalently a dSha, if the
contained finite automaton A′ is a Dfa, there is at most one tree initial state in
〈〉∆, and @∆ and −→∆ are partial functions.

Deterministic Automata for XPath Queries 7

4.3 Adding Typed Else Rules

Suppose that the alphabet Σ is typed, in that any letter a ∈ Σ can be given some
types in some type set T . We can then add typed else rules (q, τ, q′) ∈ ∆×T ×∆
that we draw as q

−τ−−→ q′ . In contrast to untyped else rules, a typed else rule

cannot be expanded with all letters from Σ, but only with those that can be
given the type τ .

4.4 A Schema for XML Documents

The most frequent type of XPath queries select nodes of XML documents.
For referring to selected nodes, we fix a single selection variable x. We call an
XML document or subdocument, in which a single node is annotated by x, an
x-annotated example. An x-annotated example is called positive for a query if
the query selects the x-annotated node in the XML document, and negative
otherwise.

The dSha xml&onex: a schema for x-annotated XML documents in Fig. 1
recognizes the set of all x-annotated examples. These must satisfy the XML data
model and contain exactly one occurence of x.

Fig. 1: The dSha xml&onex: a schema for x-annotated XML documents.

The automaton starts in hedge state 0 where it expects to read a nested word
〈w〉, that can be evaluated to tree state 28, in order to go to the final state 29,
where it accepts. The sequence of children w of the tree must be evaluated form

8 Al Serhali and Niehren

the tree initial state, which is equally the hedge state 0. If w starts with letter
doc indicating an XML document node at the root, the automaton moves from
state 0 to state 5. There it may either read the variable x and go to state 5,
where it expects a subtree in state 21, i.e. an XML element of which no node
is annotated by x. Or it may read the symbol ¬x and move to state 6, where it
expects a subtree in state 19, i.e. an XML element of which exactely one node
is annotated by x. In both cases it can go to the hedge state 26 and from there
to the tree state 28. The automaton also states the relationships of elements,
attributes, text and comment nodes according to the XML data model.

The alphabets of names and namespaces of XML documents are infinite. In
order to represent infinite sets of transition rule symbolically in a finite manner,
the automaton use type else rules. The typed else rule in state 3, for instance,
is labeled by -namespace, permitting to read any namespace and to go to state
9. State 9 in turn has an else rule labeled by -name which permits to read any
(local) name and move to state 13.

4.5 Nested Word Automata (NWAs)

Nested word automata (Nwas) [26][1] are well known pushdown machines for
defining regular languages of nested words. They can process nested words in
a streaming manner: top-down, left-to-right, and bottom-up manner. Shas in
contrast operate bottom-up and left-to right only. They avoid any top-down
processing, since it quickly leads to huge size increases during Nwa determiniza-
tion.

Any Sha can be compiled in linear time to an Nwa such that determin-
ism is preserved. There also exists an inverse translation in quadratic time (but
not preserving determinisim), so both automata classes have the same expres-
siveness, also when restricted by determinism. We omit the details, but provide
deterministic Nwas in our collection. See for instance: The dNwa nwa(det(A2))
obtained from the dSha det(A2) in Fig. 4.

5 Compiler to Automata

We extended on the compilation chain for regular XPath queries to automata
from [24]. As a running example, we consider the following query:

Q2 : h:body[@lang != ’’]

Query Q2 selects a node if it has a child named body in namespace h, that
has the attribute node named lang containing a nonempty text.

5.1 Parser

Our parser for XPath expressions computes a parse tree following the grammar
of XPath 3.1 from the W3C. In addition, it returns for any forward regular
XPath expression a logical formula in the language FXP [7]. For the XPath
example Q2, we obtain the following FXP formula:

Deterministic Automata for XPath Queries 9

child(labelem:type ∧ labh:namespace ∧ labbody:name ∧ labx:var∧
child(labatt:type ∧ canddefault:namespace ∧ lablang:name ∧ string 6=′′))

Our previous parser needed considerable improvement in order to be able to
cover the large variety of queries from the corpus of Lick and Schmitz [19].

5.2 Nested Regular Expressions

We next compile Fxp formulas to nested regular expressions, which extend on
standard regular expressions from words to nested words. Again, considerable
work was needed to enable a sufficiently large coverage. For the query Q2 our
compiler yields the nested regular expression:

〈(elem:type.) + doc:type). .>.
〈elem:type.h:namespace.body:name.x:var.
〈att.type.default:namespace.lang:name. .(char.(char)∗〉.>〉.>〉.>

Note that the test for a nonempty string got translated by the regular expres-
sion char.(char)∗. It should also be noticed that this expression matches some
x-annotated nested words, that are not x-annotated examples, i.e. not belonging
to the language L(xml&onex) of the schema. This is since the nested subwords
matching universal expression > are completely unconstrained.

Fig. 2: The nondeterministic Sha A2 = sha(Q2). .

10 Al Serhali and Niehren

5.3 Compiler to SHAs

The compiler then converts nested regular expressions into Shas. This is done by
extending a usual compiler from regular expressions to Nfas. The interaction of
recursion and nesting leads to some nasty issues, that are discussed and resolved
in [24]. For developping the present benchmark, we needed to add a treatment
of typed wildcards such as -char. This is done by introducing typed else rules.
For the query Q2 we obtain: Sha in The nondeterministic Sha A2 = sha(Q2).
in Fig. 2. Similarly to the nested regular expression, this Sha may recognize
some annotated nested words, that are not x-annotated examples, i.e., that do
not belong to the language of the schema L(xml&onex).

5.4 Determinization

The usual determinization algorithms for Nfas and tree automata can be lifted
to a determinization algorithm for Shas. When applied to query Q2 however,
we obtain a Sha with 25 states and 183 transition rules, which is much larger
than one might expect. It is given in The determinization det(A2) of the Sha
A2 in Fig. 5 of the appendix. Even worse, in some cases, the determinization
algorithm does not finish after some hours.

5.5 Determinizing the Schema Product

Determinization applied to the product of the queries’ automaton and the schema
xml&onex permits to compute deterministic automata for all queries of our
benchmark within a timeout of 100 seconds. The result for Q2 is a dSha with
53 states and 110 transition rules, see automaton The determinization of the
schema product det(A2× xml&onex) in Fig. 6 of the appendix. The overall size
is smaller, and the automaton is much easier to understand, but the number of
states increased.

Fig. 3: The schema-based determinization detS(A2) where S = xml&onex.

Deterministic Automata for XPath Queries 11

5.6 Schema-Based Determinization

Schema-based determinization as proposed in [25] improves the situation further.
For queryQ2 it yields: Sha in The schema-based determinization detS(A2) where
S = xml&onex in Fig. 3 which has only 22 states and 45 transitions. The size is
roughly devided by 2 compared to: The determinization of the schema product
det(A2 × xml&onex) in Fig. 6.

5.7 Minimization

We then minimize the dSha from The schema-based determinization detS(A2)
where S = xml&onex in Fig. 3. This often reduces the size and the number of
states in an important manner and often makes it easy to see how the automaton
is functioning. Exceptionally in the case of Q2, no states are fusioned when
minimizing the dSha obtained by schema-based determinization.

It should be noticed that minimizing the determinization of the schema
product usually yields a different result then minimizing the schema-based de-
terminization. This is since both automata may recognize different languages.
Some nested words outside the schema may be accepted after schema-based
determinization, but not by the schema product.

5.8 Compiler to NWAs

The compiler finally maps Shas to Nwas in linear time, while preserving de-
terminism. For instance the minimal dSha in The schema-based determiniza-
tion detS(A2) where S = xml&onex in Fig. 3 is converted to: The dNwa
nwa(det(A2)) obtained from the dSha det(A2) in Fig. 4.

6 Testing Automata on Samples

For testing the stepwise hedge automata, we created a sample with positive and
negative x-annotated examples for each of the queries. Please contact the authors
if you are interested in the test samples. They can be provided without problem.

For this we produced an XML document for each of the Xslt programs from
which the XPath queries of Lick and Schmitz were extracted. We did this in such
a way that each of the queries has at least one answer on one of the subdocuments
of the document of its collection. Subdocuments are important here, since the
XPath queries of an Xslt program will be applied to subdocumens naturally.

By using Saxon Xslt, we computed the answer set of all the queries on all
the subdocument of the produced XML documents. For this, we exported query
answers in Dewey notation, similarly to the way that nodes are returned by
Schematron: The Dewey noation of a node is its relative address from the root,
i.e., by the list of child steps leading to the node. Such lists can be easily encoded
in XML format.

Each query query answer yields a positive x-annotated examples for the
query, that is obtained by annotating the XML document by x at the selected
position. Negative x-annotated examples are obtained from the answers of the

12 Al Serhali and Niehren

Fig. 4: The dNwa nwa(det(A2)) obtained from the dSha det(A2) .

other queries on the same document. The annotation of the XML document is
done by yet another Xslt stylesheet that we wrote for this purpose. Here we
use the fact that query answers are also represented in XML format.

By testing the automaton on these samples, we could fix various problems
that arised on the way to our final collection. Currently, no test failures are
remaining, except for the query 13896 below that we removed from the corpus
for the current version. The problem here is raised by the blank symbol in the
attribute value ’evans citation’:

//HEADER//IDNO[@TYPE=’evans citation’]

7 Statistics of the Benchmark Automata

We compiled all of our 79 XPath queries to deterministic automata using the
compilation chain described in in Section 5. Here we present the statistics of the
benchmark automata that we obtained. The summary is given in in Table 2. We
show for each automaton two numbers size(#states) where size is the overall
size of the automaton and #states the number of its states.

The nondetermnistic Shas compiled from the nested regular expressions was
cleaned using the schema xml&onex: The dSha xml&onex: a schema for x-
annotated XML documents in Fig. 1. The result is called A = sha(Q) leading
to the statistics in the second column of in Table 2.

We note that 37% of the Shas original stepwise hedge automata for the
queriesA = sha(Q) have more than 100 states, so they are sometimes bigger than
one might expect. The biggest is for query 06176 with 630 states and an overall
size of 1391. The reason is that this query is selecting a union of 20 subqueries,
all with descendant-or-self axis. Foe each subquery, we have 4 construsts of

Deterministic Automata for XPath Queries 13

respective state sizes: 2, 6, 10 and 13, making a subtotal of 31 ∗ 20 = 620.
With an additional 8 states for one subquery that select all descendants with an
attribute named id and another 2 for reading any tree, we end up with our total
630 states.

Table 2: Experiment results on the XPath subcorpus from Lick and Schmitz in
Table 3. For each automaton we present: size(number-of-states).

query B = C = B′ = C ′ =
Q of id A det(A) det(A× S) detS(A) mini(B) mini(C) nwa(C ′)

18330 99 (41) 465 (43) 145 (44) 74 (22) 128 (39) 61 (18) 73 (18)

17914 179 (75) 2740 (141) 265 (69) 150 (44) 152 (43) 82 (24) 98 (24)

10745 187 (76) 939 (68) 275 (72) 141 (38) 218 (57) 130 (34) 150 (34)

02091 100 (42) 555 (45) 182 (57) 81 (24) 146 (44) 61 (17) 75 (17)

00744 109 (46) 335 (37) 169 (54) 80 (24) 128 (41) 54 (15) 64 (15)

12060 64 (25) 162 (22) 139 (44) 56 (16) 121 (39) 44 (12) 54 (12)

02762 121 (50) 564 (53) 222 (63) 97 (28) 123 (39) 46 (12) 56 (12)

06027 115 (48) 1101 (79) 184 (57) 82 (24) 123 (39) 46 (12) 56 (12)

02909 96 (38) 311 (36) 213 (62) 100 (27) 167 (49) 91 (24) 105 (24)

06415 139 (58) 1793 (93) 300 (74) 135 (36) 229 (55) 101 (25) 123 (25)

03257 130 (53) 1310 (92) 445 (85) 224 (46) 210 (49) 87 (20) 105 (20)

05122 83 (33) 292 (33) 221 (55) 92 (23) 161 (44) 63 (16) 77 (16)

09138 269 (117) 323 (97) 164 (49) 133 (40) 56 (13) 66 (13)

05460 232 (98) 3468 (174) 509 (127) 269 (77) 156 (44) 62 (16) 76 (16)

12404 84 (33) 258 (31) 170 (52) 77 (22) 143 (44) 68 (19) 82 (19)

10337 92 (36) 291 (34) 197 (58) 92 (25) 159 (47) 83 (22) 97 (22)

06639 123 (50) 516 (49) 237 (65) 106 (30) 154 (44) 60 (16) 74 (16)

14340 79 (33) 231 (29) 126 (40) 58 (18) 110 (36) 45 (14) 55 (14)

13804 70 (29) 155 (21) 128 (41) 63 (20) 124 (40) 60 (19) 70 (19)

02194 81 (33) 253 (31) 135 (42) 66 (20) 119 (38) 53 (16) 63 (16)

06726 149 (64) 2806 (149) 176 (53) 97 (30) 121 (38) 55 (16) 65 (16)

13640 100 (41) 364 (40) 165 (50) 86 (26) 140 (43) 76 (23) 90 (23)

05735 111 (45) 412 (44) 201 (58) 106 (30) 161 (47) 96 (27) 110 (27)

15766 144 (58) 669 (60) 300 (77) 155 (41) 219 (57) 135 (35) 151 (35)

15539 217 (88) 1709 (121) 402 (98) 213 (58) 228 (57) 144 (38) 164 (38)

15809 197 (84) 3795 (188) 230 (67) 129 (39) 145 (43) 82 (24) 96 (24)

15524 125 (50) 471 (49) 245 (68) 130 (35) 185 (52) 120 (32) 134 (32)

06512 135 (56) 583 (58) 218 (60) 117 (35) 152 (43) 77 (23) 91 (23)

06176 1391 (630) 1661 (448) 1203 (386) 176 (43) 113 (23) 127 (23)

12539 179 (76) 3479 (174) 243 (69) 138 (40) 166 (48) 101 (28) 115 (28)

14 Al Serhali and Niehren

11780 205 (88) 3832 (190) 254 (71) 143 (41) 164 (47) 99 (27) 113 (27)

11478 101 (41) 365 (40) 166 (50) 87 (26) 141 (43) 77 (23) 91 (23)

11227 153 (62) 583 (53) 334 (81) 163 (42) 244 (59) 144 (37) 166 (37)

05684 1348 (616) 1068 (284) 719 (226) 193 (39) 124 (16) 134 (16)

06947 744 (342) 828 (232) 444 (129) 151 (41) 71 (14) 83 (14)

06794 270 (121) 354 (102) 178 (51) 144 (42) 64 (15) 76 (15)

06169 346 (155) 427 (121) 219 (62) 147 (41) 67 (14) 79 (14)

06924 598 (274) 682 (192) 362 (105) 147 (41) 67 (14) 79 (14)

11958 109 (44) 348 (35) 213 (57) 90 (24) 178 (48) 76 (20) 94 (20)

01705 772 (350) 1308 (279) 746 (172) 221 (48) 113 (19) 129 (19)

02086 809 (367) 1366 (291) 781 (180) 223 (48) 115 (19) 131 (19)

02000 642 (291) 723 (201) 387 (110) 163 (41) 83 (14) 95 (14)

02697 383 (172) 464 (131) 240 (68) 149 (41) 69 (14) 81 (14)

14183 110 (44) 362 (36) 217 (58) 94 (25) 182 (49) 80 (21) 98 (21)

07106 457 (206) 538 (151) 282 (80) 153 (41) 73 (14) 85 (14)

05824 62 (25) 150 (21) 130 (42) 50 (15) 112 (37) 38 (11) 48 (11)

11368 102 (41) 458 (44) 247 (62) 104 (28) 191 (49) 78 (20) 96 (20)

15848 124 (49) 303 (35) 221 (63) 103 (27) 179 (51) 100 (26) 114 (26)

15462 127 (50) 325 (37) 237 (67) 112 (29) 191 (54) 109 (28) 123 (28)

04267 87 (34) 146 (20) 137 (43) 54 (15) 131 (41) 51 (14) 63 (14)

07113 695 (296) 2409 (456) 1527 (302) 311 (73) 229 (48) 241 (48)

03864 272 (121) 353 (101) 177 (50) 143 (41) 63 (14) 75 (14)

15484 181 (71) 657 (62) 394 (96) 189 (47) 277 (68) 174 (42) 194 (42)

15461 146 (58) 628 (54) 651 (109) 283 (51) 241 (59) 140 (33) 160 (33)

11160 309 (138) 390 (111) 198 (56) 145 (41) 65 (14) 77 (14)

06856 306 (138) 390 (112) 198 (57) 139 (41) 59 (14) 71 (14)

06458 827 (376) 908 (251) 492 (140) 173 (41) 93 (14) 105 (14)

13710 420 (189) 501 (141) 261 (74) 151 (41) 71 (14) 83 (14)

06808 525 (240) 609 (172) 321 (93) 145 (41) 65 (14) 77 (14)

04338 470 (206) 1066 (207) 563 (135) 213 (51) 95 (22) 115 (22)

04358 1006 (444) 3580 (559) 2021 (433) 757 (99) 345 (58) 401 (58)

13632 132 (58) 339 (33) 248 (66) 113 (33) 128 (36) 47 (9) 55 (9)

01847 559 (252) 1013 (223) 543 (137) 194 (48) 92 (19) 108 (19)

05219 698 (315) 1192 (260) 651 (164) 196 (48) 94 (19) 110 (19)

05226 920 (417) 1558 (338) 867 (218) 208 (48) 106 (19) 122 (19)

03325 753 (342) 834 (231) 450 (128) 169 (41) 89 (14) 101 (14)

03410 938 (427) 1019 (281) 555 (158) 179 (41) 99 (14) 111 (14)

03407 716 (325) 797 (221) 429 (122) 167 (41) 87 (14) 99 (14)

Deterministic Automata for XPath Queries 15

04245 901 (410) 982 (271) 534 (152) 177 (41) 97 (14) 109 (14)

04953 938 (427) 1019 (281) 555 (158) 179 (41) 99 (14) 111 (14)

05463 204 (86) 1180 (70) 332 (77) 152 (38) 180 (48) 78 (20) 96 (20)

12960 167 (68) 1340 (81) 421 (88) 190 (46) 317 (64) 146 (33) 176 (33)

12961 166 (68) 1318 (80) 417 (87) 186 (45) 313 (63) 142 (32) 172 (32)

09123 164 (64) 705 (59) 358 (90) 175 (43) 265 (66) 164 (40) 186 (40)

12514 182 (77) 2734 (112) 320 (77) 146 (38) 247 (57) 114 (28) 140 (28)

12964 128 (52) 560 (48) 277 (67) 120 (31) 219 (53) 96 (24) 118 (24)

08632 128 (52) 629 (51) 277 (67) 120 (31) 219 (53) 96 (24) 118 (24)

12962 129 (52) 576 (49) 281 (68) 124 (32) 223 (54) 100 (25) 122 (25)

The column for det(A) contains the statistics for the determinization of A.
No schema is used there. We use a timeout of 100 seconds. Whenever this is not
enough, the cell in the table is left blank. Indeed, the determinization fails with
this timeout for 37% of the queries of our corpus. Roughly, the determinization
fails for all Shas with more than 100 states. For instance, for query 11780 the
Sha A has has size 205 (88), while the dSha det(A) has size 3832 (190).

The column for B = det(A×S) contains the determinization of the product
of A and the schema S = xml&onex. Even though A× S is always larger than
A, we were able to always determinize A× S within the timeout, in contrast to
A. The largest dSha B obtained is for for query 04358: it has size 3580 (559).
This show that B may still be quite big, but often a big improvement in size
over det(A).

The next column reports on C = detS(A) obtained by schema-based deter-
minization with schema S = xml&onex. Again, the computation succeeds in all
cases within the timeout of 100 seconds. The size of C for query 04358 is 2021
(433), which improves in size over B.

In the next two columns, we respectively minimize the determinized Shas B
and C, using a näıve minimization algorithm. All automata can be minimized
within the timeout of 100 seconds. We note that C ′ = mini(C) is always smaller
than B′ = mini(B), showing that schema-based determinization yields smaller
minimal automata than determinizing the schema-product. The maximal num-
ber of states of the minimal dShas C ′ = mini(C) is 58 for query 04358. In
average the number of states decreases by 55%.

In the last column, we compiled the minimized dShas of C ′ to the dNwa
nwa(C ′). It has the same number of states than C ′ for all queries and a minor
increase is the number of transitions. All these results, including the automata of
the intermediate steps, generated during the whole compilation chain are avail-
able at in the software heritage archive at the following url: https://archive.
softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.

fr/aalserha/xpath-benchmark.

https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark

16 Al Serhali and Niehren

8 Conclusion

We provide a benchmark of deterministic automata for regular XPath queries
obtained with an algorithm for schema-based determinization of symbolic Shas
that we presented. Our benchmark is compiled from forward navigational XPath
queries: the 79 largest queries modulo renaming of the 4500 forward navigational
XPath queries of the corpus of Lick and Schmitz [19]. From the Shas of these
79 queries, 37% cannot be determinized in less then 100 seconds by schema-less
determinization. Schema-based determinization, in contrast, succeeds for 100%
of them. Furthermore, all dShas obtained by schema-based determinization are
sufficiently small so that they can be minimized with the näıve quadratic algo-
rithm. This leads us to a collection of minimal dShas with an average number
of states of 22, and 71 as the average number of transition rules.

We hope that the automata of our collection will be used for experimenting
with algorithms for XPath queries in the near future and for developing and
comparing the performance of algorithms for answering XPath queries on XML
streams in particular.

References

1. Alur, R.: Marrying words and trees. In: 26th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. pp. 233–242. ACM-Press (2007),
http://dx.doi.org/10.1145/1265530.1265564

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journal of the ACM
56(3), 1–43 (2009), http://doi.acm.org/10.1145/1516512.1516518

3. Bagan, G.: MSO queries on tree decomposable structures are computable with
linear delay. In: Computer Science Logic. Lecture Notes in Computer Science,
vol. 4646, pp. 208–222. Springer Verlag (2006), gaga

4. von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in log
n space. In: Karplnski, M., van Leeuwen, J. (eds.) Topics in the Theory of
Computation, North-Holland Mathematics Studies, vol. 102, pp. 1 – 19. North-
Holland (1985). https://doi.org/https://doi.org/10.1016/S0304-0208(08)73072-X,
http://www.sciencedirect.com/science/article/pii/S030402080873072X

5. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. Available
online since 1997: http://tata.gforge.inria.fr (Oct 2007)

6. Courcelle, B.: Linear delay enumeration and monadic second-order
logic. Discrete Applied Mathematics 157(12), 2675–2700 (2009).
https://doi.org/10.1016/j.dam.2008.08.021, http://dx.doi.org/10.1016/j.

dam.2008.08.021

7. Debarbieux, D., Gauwin, O., Niehren, J., Sebastian, T., Zergaoui, M.: Early nested
word automata for xpath query answering on XML streams. Theor. Comput. Sci.
578, 100–125 (2015). https://doi.org/10.1016/j.tcs.2015.01.017, http://dx.doi.

org/10.1016/j.tcs.2015.01.017

8. Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: Document spanners: A
formal approach to information extraction. J. ACM 62(2), 12:1–12:51 (2015).
https://doi.org/10.1145/2699442, https://doi.org/10.1145/2699442

9. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci. 18(2), 194–211 (1979). https://doi.org/10.1016/0022-
0000(79)90046-1, https://doi.org/10.1016/0022-0000(79)90046-1

http://dx.doi.org/10.1145/1265530.1265564
http://doi.acm.org/10.1145/1516512.1516518
gaga
https://doi.org/https://doi.org/10.1016/S0304-0208(08)73072-X
http://www.sciencedirect.com/science/article/pii/S030402080873072X
http://tata.gforge.inria.fr
https://doi.org/10.1016/j.dam.2008.08.021
http://dx.doi.org/10.1016/j.dam.2008.08.021
http://dx.doi.org/10.1016/j.dam.2008.08.021
https://doi.org/10.1016/j.tcs.2015.01.017
http://dx.doi.org/10.1016/j.tcs.2015.01.017
http://dx.doi.org/10.1016/j.tcs.2015.01.017
https://doi.org/10.1145/2699442
https://doi.org/10.1145/2699442
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1

Deterministic Automata for XPath Queries 17

10. Franceschet, M.: Xpathmark performance test. https://users.dimi.uniud.it/

~massimo.franceschet/xpathmark/PTbench.html, accessed: 2020-10-25
11. Gauwin, O.: Streaming Tree Automata and XPath. Ph.D. thesis, Université Lille

1 (2009)
12. Gauwin, O., Niehren, J., Tison, S.: Earliest query answering for deterministic

nested word automata. In: 17th International Symposium on Fundamentals of
Computer Theory. Lecture Notes in Computer Science, vol. 5699, pp. 121–132.
Springer Verlag (2009), http://hal.inria.fr/inria-00390236/en

13. Genevès, P., Layäıda, N.: A system for the static analysis of xpath. ACM Trans.
Inf. Syst. 24(4), 475–502 (Oct 2006). https://doi.org/10.1145/1185877.1185882,
https://doi.org/10.1145/1185877.1185882

14. Gottlob, G., Koch, C., Pichler, R.: The complexity of XPath query evaluation.
In: 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems. pp. 179–190 (2003)

15. Kay, M.: The saxon xslt and xquery processor (2004), https://www.saxonica.com
16. Labath, P., Niehren, J.: A uniform programming language for implementing XML

standards. In: SOFSEM 2015: Theory and Practice of Computer Science - 41st
International Conference on Current Trends in Theory and Practice of Com-
puter Science, Pec pod Sněžkou, Czech Republic, January 24-29, 2015. Proceed-
ings. pp. 543–554 (2015). https://doi.org/10.1007/978-3-662-46078-8 45, http:

//dx.doi.org/10.1007/978-3-662-46078-8_45

17. Libkin, L., Martens, W., Vrgoč, D.: Querying graph databases with xpath.
In: Proceedings of the 16th International Conference on Database Theory.
p. 129–140. ICDT ’13, Association for Computing Machinery, New York,
NY, USA (2013). https://doi.org/10.1145/2448496.2448513, https://doi.org/

10.1145/2448496.2448513

18. Lick, A.: Logique de requêtes à la XPath : systèmes de preuve et per-
tinence pratique. Theses, Université Paris-Saclay (Jul 2019), https://tel.

archives-ouvertes.fr/tel-02276423

19. Lick, A., Sylvain, S.: XPath Benchmark (Last visited April 13th
2022), https://archive.softwareheritage.org/browse/directory/

1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5

20. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and com-
plexity of XML Schema. ACM Transactions on Database Systems 31(3), 770–
813 (Sep 2006). https://doi.org/10.1145/1166074.1166076, http://dx.doi.org/

10.1145/1166074.1166076

21. Martens, W., Trautner, T.: Evaluation and Enumeration Problems for Reg-
ular Path Queries. In: Kimelfeld, B., Amsterdamer, Y. (eds.) 21st Inter-
national Conference on Database Theory (ICDT 2018). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 98, pp. 19:1–19:21. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018).
https://doi.org/10.4230/LIPIcs.ICDT.2018.19, http://drops.dagstuhl.de/

opus/volltexte/2018/8594

22. Mozafari, B., Zeng, K., Zaniolo, C.: High-performance complex event process-
ing over XML streams. In: Candan, K.S., Chen, Y., Snodgrass, R.T., Gravano,
L., Fuxman, A. (eds.) Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-
24, 2012. pp. 253–264. ACM (2012). https://doi.org/10.1145/2213836.2213866,
https://doi.org/10.1145/2213836.2213866

23. Muñoz, M., Riveros, C.: Streaming enumeration on nested documents. In: Olteanu,
D., Vortmeier, N. (eds.) 25th International Conference on Database Theory,
ICDT 2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual Conference).

https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
http://hal.inria.fr/inria-00390236/en
https://doi.org/10.1145/1185877.1185882
https://doi.org/10.1145/1185877.1185882
https://www.saxonica.com
https://doi.org/10.1007/978-3-662-46078-8_45
http://dx.doi.org/10.1007/978-3-662-46078-8_45
http://dx.doi.org/10.1007/978-3-662-46078-8_45
https://doi.org/10.1145/2448496.2448513
https://doi.org/10.1145/2448496.2448513
https://doi.org/10.1145/2448496.2448513
https://tel.archives-ouvertes.fr/tel-02276423
https://tel.archives-ouvertes.fr/tel-02276423
https://archive.softwareheritage.org/browse/directory/1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5
https://archive.softwareheritage.org/browse/directory/1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5
https://doi.org/10.1145/1166074.1166076
http://dx.doi.org/10.1145/1166074.1166076
http://dx.doi.org/10.1145/1166074.1166076
https://doi.org/10.4230/LIPIcs.ICDT.2018.19
http://drops.dagstuhl.de/opus/volltexte/2018/8594
http://drops.dagstuhl.de/opus/volltexte/2018/8594
https://doi.org/10.1145/2213836.2213866
https://doi.org/10.1145/2213836.2213866

18 Al Serhali and Niehren

LIPIcs, vol. 220, pp. 19:1–19:18. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2022). https://doi.org/10.4230/LIPIcs.ICDT.2022.19, https://doi.org/

10.4230/LIPIcs.ICDT.2022.19

24. Niehren, J., Sakho, M.: Determinization and Minimization of Automata for Nested
Words Revisited. Algorithms (Feb 2021), https://hal.inria.fr/hal-03134596

25. Niehren, J., Sakho, M., Al Serhali, A.: Schema-Based Automata Determinization
(Jan 2022), https://hal.inria.fr/hal-03536045, working paper or preprint

26. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45(2), 47–67 (2014). https://doi.org/10.1145/2636805.2636821,
https://doi.org/10.1145/2636805.2636821

27. Sakho, M.: Certain Query Answering on Hyperstreams. Theses, Université de Lille
; Inria (Jul 2020), https://tel.archives-ouvertes.fr/tel-03028074

28. Schmid, M.L., Schweikardt, N.: A Purely Regular Approach to Non-Regular
Core Spanners. In: Yi, K., Wei, Z. (eds.) 24th International Conference on
Database Theory (ICDT 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 186, pp. 4:1–4:19. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ICDT.2021.4,
https://drops.dagstuhl.de/opus/volltexte/2021/13712

29. Seidl, H.: Deciding equivalence of finite tree automata. In: Annual Symposium
on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science,
vol. 349, pp. 480–492. Springer Verlag (1989)

https://doi.org/10.4230/LIPIcs.ICDT.2022.19
https://doi.org/10.4230/LIPIcs.ICDT.2022.19
https://doi.org/10.4230/LIPIcs.ICDT.2022.19
https://hal.inria.fr/hal-03134596
https://hal.inria.fr/hal-03536045
https://doi.org/10.1145/2636805.2636821
https://doi.org/10.1145/2636805.2636821
https://tel.archives-ouvertes.fr/tel-03028074
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://drops.dagstuhl.de/opus/volltexte/2021/13712

Deterministic Automata for XPath Queries 19

A Complementary Information

Table 3: The 79 largest forward navigational queries of the XPath corpus of
Lick and Schmitz without dublicates up to renaming.

Id XPath Query

18330 / descendant-or-self::node()/child::parts-of-speech

17914 / descendant-or-self::node()/child::tei:back/descendant-or-
self::node()/child::tei:interpGrp

10745 *//tei:imprint/tei:date[@type=’access’]

02091 * | .//refentry

00744 .//@id | .//@xml:id

12060 .//attDef

02762 .//authorgroup/author | .//author

06027 .//authorinitials | .//author

02909 .//bibliomisc[@role=’serie’]

06415 .//email | address/otheraddr/ulink

03257 .//equation[title or info/title]

05122 .//procedure[title]

09138 .//rng:ref | .//tei:elementRef | .//tei:classRef | .//tei:macroRef |
.//tei:dataRef

05460 .//table//footnote | .//informaltable//footnote

12404 .//tei:dataRef[@name]

10337 .//tei:note[@place=’end’]

06639 .//tgroup//footnote

14340 //*

13804 //GAP/@DISP

13896 //HEADER//IDNO[@TYPE=’evans citation’]

02194 //annotation

06726 //doc:table | //doc:informaltable

13640 //equiv[@filter]

05735 //glossary[@role=’auto’]

15766 //h:body/h:section[@data-type=’titlepage’]

15524 //h:section[@data-type=’titlepage’]

06512 //refentry//text()

06176 //set | //book | //part | //reference | //preface | //chapter | //appendix |
//article | //colophon | //refentry | //section | //sect1 | //sect2 | //sect3
| //sect4 | //sect5 | //indexterm | //glossary | //bibliography | //*[@id]

12539 //tei:elementSpec | //tei:classSpec[@type=’atts’]

11780 //tei:ref[@type=’cite’] | //tei:ptr[@type=’cite’]

20 Al Serhali and Niehren

11478 //xhtml:p[@class]

11227 /tei:TEI/tei:text//tei:note[@type=’action’]

05684 @abbr | @align | @axis | @bgcolor | @border | @cellpadding | @cellspac-
ing | @char | @charoff | @class | @dir | @frame | @headers | @height |
@id | @lang | @nowrap | @onclick | @ondblclick | @onkeydown | @on-
keypress | @onkeyup | @onmousedown | @onmousemove | @onmouseout
| @onmouseover | @onmouseup | @rules | @scope | @style | @summary |
@title | @valign | @valign | @width | @xml:id | @xml:lang

06947 anchor | areaset | audiodata | audioobject | beginpage | constraint |
indexterm | itermset | keywordset | msg | doc:anchor | doc:areaset
| doc:audiodata | doc:audioobject | doc:beginpage | doc:constraint |
doc:indexterm | doc:itermset | doc:keywordset | doc:msg

06794 articleinfo | chapterinfo | bookinfo | doc:info | doc:articleinfo |
doc:chapterinfo | doc:bookinfo

06169 article | preface | chapter | appendix | refentry | section | sect1 | glossary
| bibliography

06924 authorblurb | formalpara | legalnotice | note | caution | warning | impor-
tant | tip | doc:authorblurb | doc:formalpara | doc:legalnotice | doc:note
| doc:caution | doc:warning | doc:important | doc:tip

11958 biblStruct//note

01705 book | article | part | reference | preface | chapter | bibliography | ap-
pendix | glossary | section | sect1 | sect2 | sect3 | sect4 | sect5 | refentry
| colophon | bibliodiv[title] | setindex | index

02086 book | article | topic | part | reference | preface | chapter | bibliography |
appendix | glossary | section | sect1 | sect2 | sect3 | sect4 | sect5 | refentry
| colophon | bibliodiv[title] | setindex | index

02000 chapter | appendix | epigraph | warning | preface | index | colophon |
glossary | biblioentry | bibliography | dedication | sidebar | footnote |
glossterm | glossdef | bridgehead | part

02697 chapter | appendix | preface | reference | refentry | article | topic | index
| glossary | bibliography

14183 content//rng:ref

07106 dbk:appendix | dbk:article | dbk:book | dbk:chapter | dbk:part |
dbk:preface | dbk:section | dbk:sect1 | dbk:sect2 | dbk:sect3 | dbk:sect4
| dbk:sect5

05824 descendant-or-self::*

11368 descendant-or-self::tei:TEI/tei:text/tei:back

15848 descendant::*[@class=’refname’]

15462 descendant::h:span[@data-type=’footnote’]

04267 descendant::label

Deterministic Automata for XPath Queries 21

07113 following-sibling::*[self::dbk:appendix | self::dbk:article | self::dbk:book
| self::dbk:chapter | self::dbk:part | self::dbk:preface | self::dbk:section
| self::dbk:sect1 | self::dbk:sect2 | self::dbk:sect3 | self::dbk:sect4 |
self::dbk:sect5] | following-sibling::dbk:para[@rnd:style = ’bibliography’
or @rnd:style = ’bibliography-title’ or @rnd:style = ’glossary’ or
@rnd:style = ’glossary-title’ or @rnd:style = ’qandaset’ or @rnd:style
= ’qandaset-title’]

03864 guibutton | guiicon | guilabel | guimenu | guimenuitem | guisubmenu |
interface

15484 h:pre[@data-type=’programlisting’]//text()

15461 h:table[descendant::h:span[@data-type=’footnote’]]

11160 html:table | html:tr | html:thead | html:tbody | html:td | html:th |
html:caption | html:li

06856 imageobject | imageobjectco | audioobject | videoobject |
doc:imageobject | doc:imageobjectco | doc:audioobject | doc:videoobject

06458 info | refentryinfo | referenceinfo | refsynopsisdivinfo | refsectioninfo |
refsect1info | refsect2info | refsect3info | setinfo | bookinfo | articleinfo
| chapterinfo | sectioninfo | sect1info | sect2info | sect3info | sect4info |
sect5info | partinfo | prefaceinfo | appendixinfo | docinfo

13710 persName | orgName | addName | nameLink | roleName | forename |
surname | genName | country | placeName | geogName

06808 personname | surname | firstname | honorific | lineage | othername |
contrib | doc:personname | doc:surname | doc:firstname | doc:honorific |
doc:lineage | doc:othername | doc:contrib

04338 refsynopsisdiv/title | refsection/title | refsect1/title | refsect2/title |
refsect3/title | refsynopsisdiv/info/title | refsection/info/title | ref-
sect1/info/title | refsect2/info/title | refsect3/info/title

04358 section/title | simplesect/title | sect1/title | sect2/title | sect3/title
| sect4/title | sect5/title | section/info/title | simplesect/info/title |
sect1/info/title | sect2/info/title | sect3/info/title | sect4/info/title
| sect5/info/title | section/sectioninfo/title | sect1/sect1info/title |
sect2/sect2info/title | sect3/sect3info/title | sect4/sect4info/title |
sect5/sect5info/title

13632 self::placeName | self::persName | self::district | self::settlement |
self::region | self::country | self::bloc

01847 set | book | part | preface | chapter | appendix | article | reference |
refentry | book/glossary | article/glossary | part/glossary | bibliography
| colophon

05219 set | book | part | preface | chapter | appendix | article | topic | reference
| refentry | book/glossary | article/glossary | part/glossary | book/bibli-
ography | article/bibliography | part/bibliography | colophon

22 Al Serhali and Niehren

05226 set | book | part | preface | chapter | appendix | article | topic | reference |
refentry | sect1 | sect2 | sect3 | sect4 | sect5 | section | book/glossary | ar-
ticle/glossary | part/glossary | book/bibliography | article/bibliography
| part/bibliography | colophon

03325 set | book | part | reference | preface | chapter | appendix | article | topic
| glossary | bibliography | index | setindex | refentry | sect1 | sect2 | sect3
| sect4 | sect5 | section

03410 set | book | part | reference | preface | chapter | appendix | article | topic
| glossary | bibliography | index | setindex | refentry | refsynopsisdiv |
refsect1 | refsect2 | refsect3 | refsection | sect1 | sect2 | sect3 | sect4 |
sect5 | section

03407 set | book | part | reference | preface | chapter | appendix | article |
glossary | bibliography | index | setindex | refentry | sect1 | sect2 | sect3
| sect4 | sect5 | section

04245 set | book | part | reference | preface | chapter | appendix | article |
glossary | bibliography | index | setindex | refentry | refsynopsisdiv |
refsect1 | refsect2 | refsect3 | refsection | sect1 | sect2 | sect3 | sect4 |
sect5 | section

04953 set | book | part | reference | preface | chapter | appendix | article |
glossary | bibliography | index | setindex | topic | refentry | refsynopsisdiv
| refsect1 | refsect2 | refsect3 | refsection | sect1 | sect2 | sect3 | sect4 |
sect5 | section

07095 sf:stylesheet | sf:stylesheet-ref | sf:container-hint | sf:page-start | sf:br
| sf:selection-start | sf:selection-end | sf:insertion-point | sf:ghost-text |
sf:attachments

05463 table//footnote | informaltable//footnote

12960 tei:classSpec/tei:attList//tei:attDef/tei:datatype/rng:ref

12961 tei:classSpec/tei:attList//tei:attDef/tei:datatype/tei:dataRef

09123 tei:content//rng:ref[@name = ’macro.anyXML’]

12514 tei:content/tei:classRef | tei:content//tei:sequence/tei:classRef

12964 tei:dataSpec/tei:content//tei:dataRef

08632 tei:front//tei:titlePart/tei:title

10595 tei:label | tei:figure | tei:table | tei:item | tei:p | tei:title | tei:bibl |
tei:anchor | tei:cell | tei:lg | tei:list | tei:sp

12962 tei:macroSpec/tei:content//rng:ref

Deterministic Automata for XPath Queries 23

Fig. 5: The determinization det(A2) of the Sha A2.

24 Al Serhali and Niehren

Fig. 6: The determinization of the schema product det(A2 × xml&onex).

	 A Benchmark Collection of Deterministic Automata for XPath Queries

