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Abstract 

 

Ebtesam Taktek 

PENTAGONAL SCHEME FOR DYNAMIC XML PREFIX LABELLING 

 
 
Keywords: XML Labelling, Prefix Scheme, Dewey labelling, 

Dynamic Scheme 

 

In XML databases, the indexing process is based on a labelling or 

numbering scheme and generally used to label an XML document to 

perform an XML query using the path node information. Moreover, a 

labelling scheme helps to capture the structural relationships during the 

processing of queries without the need to access the physical document. 

Two of the main problems for labelling XML schemes are duplicated 

labels and the cost efficiency of labelling time and size. This research 

presents a novel dynamic XML labelling scheme, called the Pentagonal 

labelling scheme, in which data are represented as ordered XML nodes 

with relationships between them. The update of these nodes from large-

scale XML documents has been widely investigated and represents a 

challenging research problem as it means relabelling a whole tree. Our 

algorithms provide an efficient dynamic XML labelling scheme that 

supports data updates without duplicating labels or relabelling old nodes. 

Our work evaluates the labelling process in terms of size and time, and 
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evaluates the labelling scheme’s ability to handle several insertions in 

XML documents. The findings indicate that the Pentagonal scheme 

shows a better initial labelling time performance than the compared 

schemes, particularly when using large XML datasets. Moreover, it 

efficiently supports random skewed updates, has fast calculations and 

uncomplicated implementations so efficiently handles updates. Also, it 

proved its capability in terms of the query performance and in determining 

the relationships. 
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 1 
1 INTRODUCTION 

 

 

 
 
 

The development of XML was originally expected to help website 

designers. Today scientists, publishers and database development 

managers, archive administrators and different analysts utilize XML to 

handle their data [1]. Through inductive systems and distributed 

databases systems, XML data management has been adapted for many 

applications which range from geographical, bioinformatics and 

engineering data to customer services and cash flow improvements [2]. 

This is because XML data afford a simple format that both humans and 

machines can understand [3-5]. XML facilitates the ability to define the 

content of an XML document separately from its format; this makes it 

simple to both share and reuse data in different applications [1]. 

The increasingly widespread use of eXtensible Markup Language (XML) 

for storage and exchange of data due to its self-describing and its ability 
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of organizing data has led to greater interest in the further development 

of systems that are able to store and query XML data [6].  

A labelling scheme assigns a unique code to each node in an XML tree 

to create the relationship that exists between the nodes in the tree and to 

facilitate query processing [7-12]. In order to enable the determining of 

the relationships among nodes; different labelling schemes were 

proposed to process queries efficiently. Figure 1.1 shows an example of 

a labelling XML tree using the interval labelling scheme [13].  

 

 

 

 

 

 

 

 

Figure 1.1 An example of a labelling XML tree using the interval labelling 

scheme. 

 

 

  

 

 

 
  

  

  
  

1,30,1 

4,5,2 
2,3,2 6,29,2 

7, 18,3 
19,28,3 

20,25,4 
10,15,4 

8,9,4 
26,27,4 

16,17,4 

11,12,5 13, 14, 5 21,22,5 23,24,5 



 

3 

 

In Figure 1.1 the interval labelling scheme stores a combination of values 

to each node. Each label is represented as a 3-tuple < pre-order, post-

order, depth >, which is used to identify the exact position of an element.   

The pre-order traverses across the ordered tree starting from the root and 

handing each level from left to right, while the post-order traverses by 

visiting the leaf nodes from left to right, and then processing their parent 

level from bottom to top. Also, the depth determines the level of the nodes 

[14]. 

This approach to labelling thoroughly manages XML data as the labels 

study the position of the node to sort the order of the document. This 

improves storage, updates and queries on XML data [15]. Labelling 

schemes have the ability to provide identification in order to maintain the 

structural relationships between elements as parent-child, ancestor-

descendent and sibling. The order of the nodes is based on a comparison 

to their labels.  

An XML query based on a labelling scheme is the same as relational 

database queries that depend on indexing. Consequently, an ordered 

XML Tree and structural information, such as parent/child or 

ancestor/descendant, are encoded into highly compressed labels by 

labelling schemes.  
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An XML labelling scheme requires less storage space and provides more 

flexibility compared with other XML query techniques [16-19], for 

example, the structural indexing techniques, where each node of an XML 

database is referenced within the index along with its path summary from 

its root to the designated node. This results in a larger storage space [16]. 

This thesis proposes a new labelling scheme and considers the 

restrictions of the existing XML labelling schemes to improve the 

efficiency of XML data management systems. It focuses on the size of 

XML labels and the time taken for the labelling process. It also evaluates 

the query performance and the labelling scheme’s ability to handle 

different types of update.  

 

The remaining sections of this chapter are organized as follows: Section 

1.1 presents the importance of XML labelling schemes, while section 1.2 

describes the research motivation and hypothesis. Moreover, the chapter 

explains the research aims and objectives in section 1.3, whilst section 

1.4 discusses the structure of the thesis. Section 1.5 concludes the 

chapter. 
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1.1 Overview and Importance of XML labelling 
schemes  
 

The challenge of indexing techniques lies in the query processing 

performance [7-11, 19]. A labelling scheme helps to capture the structural 

relationships during query processing without the need to access the 

physical document; this helps to reduce the query processing time [20, 

21]. In addition, the challenges associated with labelling-based methods 

for dynamic XML data involve the support for data updates without 

duplicating labels or relabelling old nodes [22]. Figure 1.2 illustrated an 

example of relabelling nodes (denoted by the dashed circle) when a new 

node is inserted (denoted by the black circle) [13].  

An efficient labelling scheme should have the following significant 

properties: labelling should be dynamic, which means avoiding the need 

to relabel XML tree nodes when the XML files are updated. Furthermore, 

the XML label size should be compact, which means optimizing the 

performance of the label size and producing more compact labels that 

lead to decreased storage costs in both the initial labelling and after the 

skewed node insertions [23-26]. Labelling should support all kinds of 

structural relationship queries, as it is important for query processing in 

XML database management systems [6, 27, 28]. A labelling scheme 
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generally is limited in one or more of the essential properties and this is 

our problem identification.  
The challenges include the reduction of time and size taken to generate 

the labels [29]. Large label sizes can lead to negative impacts on both 

update and query performances [30]. For example, the authors [13] used 

a fraction fragment to represent the last component of the label where the 

two following siblings are labelled as  A and B. 

A =  a1. a2 …am-1 . (am/ka) and B = b1. b2 …bm-1 . (bm/kb). 

If A and B are inserted labels, then the newly inserted label is  

a1 .a2…am_1 . (( am + bm)/( ka + kb)).  

In the example, the scheme generates floating-point numbers, which can 

lead to limited accuracy [31]. Moreover, the mantissa is denoted as a 

fixed number of bits. It can then be extended by two bits for each 

insertion, which can cause overflow problems [26, 32]. Also, The querying 

in this technique is slow as decoding process is based on ORDPATH 

which is time consuming [33].  

Previous research relied on the assumption that using XML parsers 

without node labels was sufficient to read and explore XML datasets [34, 

35]. Furthermore, most existing research was based on the retrieval and 

navigation of data [36, 37]. However, the need for labelling schemes has 
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become essential to efficiently support XML queries and update nodes 

[7, 13, 38, 39]. Moreover, it is useful to adopt dynamic XML labelling 

schemes to avoid relabelling existing XML nodes when conducting 

updates [13, 27, 28].  

 

 

 

 

 

 

 

 

Figure 1.2 An example of relabelling nodes.   

As shown in Figure 1.2, the relabelled nodes are denoted by the dashed 

circles and when a new node is inserted, it is denoted by a black circle. 

The relabelled nodes indicated that more than one node is required for 

the relabelling process as shown in Figure 1.2 [40, 41]. We need to 

relabel all the dashed circles nodes based on the interval labelling 

scheme that stores a combination of values to each node. Each label is 
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represented as pre-order, post-order and depth. The pre-order starting 

from the root and handing each level from left to right, while the post-

order visiting the leaf nodes from left to right, and then processing their 

parent level from bottom to top. In addition, the depth determines the level 

of the nodes [14]. 

In updating new XML nodes, two forms of insertion are mainly used. The 

first form is the random skewed insertion, which means frequently 

inserting between two random nodes selected. The second form is order 

skewed insertion which is a frequent insertion before or after a specific 

node [32, 42]. Some labelling scheme were tested over skewed insertions 

[13, 23, 33]. Labelling schemes consider four cases of insertion: inserting 

before the leftmost sibling, inserting after the rightmost sibling, inserting 

between two siblings, and inserting a child into a leaf node [21, 22, 26, 

32, 35, 43-45]. 

 

1.2 Research motivation and hypothesis 

Dynamic labelling schemes have been developed to support efficient 

XML updates; however, each of the existing schemes is limited in one or 

more aspects.  
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Firstly, an example of a noticeable limitation of an existing scheme is the 

work in [34] which is a Prefix labelling scheme and has proven to be 

unsuitable for dynamic XML documents as updating a new node using 

this scheme requires the relabelling of all its existing right sibling nodes 

along with their relatives in the entire XML tree [44]. This is time-

consuming and inefficient for dynamic XML data. Another example of this 

limitation is found in the Region based labelling scheme [46] as this also 

supports static XML documents [13, 47], meaning that these two 

schemes are limited in terms of only being appropriate for non-updatable 

XML documents.  

Dynamic prefix-based labelling schemes also have limitations. For 

example, the scheme that is used in [44] only allows limited updates [16, 

22], as just the even and negative integer values are reserved for 

updating the XML tree. Also, The decoding technique is time- consuming 

[33]. 

Moreover, the extended prefix Dewey [20] is approximate 10%–30% 

larger in size compared to the original Dewey. This is due to the large 

size generated by applying the extended Dewey technique, which 

produces a large label size at the cost of extra storage. This is considered 

as the limitation of this scheme [13, 21, 48].  

Furthermore, In regards to the Dynamic Dewey scheme (DDE) [22] which 

is an update of the Dewey scheme. The main weakness is that the 
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labelling scheme results in the production of a large label size [21, 49]. 

This is due to the scheme storing the level information as part of 

components in that label. Also, frequent insertions occur between two 

siblings by applying the midpoint technique, which results in increased 

storage costs as the depth increases [21, 49]. Moreover, The DFPD 

scheme [21] generates floating-point numbers, which can lead to limited 

accuracy [31]. In addition, The querying in this technique is slow due to 

the reason that its decoding process is based on ORDPATH which is 

time-consuming [33]. This scheme also causes overflow problems [26, 

32]. 

  
We have compared the Pentagonal scheme with DDE and DFPD as their 

internal model is based on dynamic XML and are both based on the prefix 

labelling approach as well as that they completely avoid relabelling in 

XML updates. In addition, they support the loading of different XML 

document Sizes and support XPath query language. However, in spite of 

their advantages, they suffer from multiple problems and so the 

Pentagonal Scheme was proposed to address these limitations and 

achieve better results in comparison to them. Specifically, our aim was to 

obtain a small label size, support dynamic updates without relabeling 

nodes, support frequent insertions without overflow problems, generate 

improved labelling time performance and evaluate query performances. 
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The main contribution of our labelling scheme is that it is efficiently 

supports updates in all the cases of insertion, it performs best when a 

vast number of random skewed nodes has been updated. Also, it proved 

its capability in terms of the query performance and in determining the 

relationships. Our scheme also supports frequent insertions without 

overflow problems. 

  
In terms of originality, the Pentagonal scheme has been applied for the 

first time to label XML data. The storage mechanism in our scheme is 

based on the Pentagonal numbering and prefix labelling scheme. Our 

labelling scheme considers the restrictions of the existing XML labelling 

schemes to improve the efficiency of XML data management systems. It 

focuses on the size of XML labels and the time taken for the labelling 

process. It also evaluates the query performance and the labelling 

scheme’s ability to handle different types of update. In terms of the 

implementation and the design of the proposed scheme, we applied the 

SAX parser due to its improved performance in relation to handling large 

XML documents.  

 

We tackled these limitations in our approach by providing a fully dynamic 

labelling scheme that supports frequent insertions by assigning integer 

pentagonal numbers to each node in order to obtain a small label size. In 
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addition, each label has a variable-length label to further avoid overflow 

problems.  

 

This thesis aims to dkesign a novel labelling scheme that supports 

dynamic XML documents,and is based on Pentagonal numbers in prefix 

labelling scheme to represent the new label. The scheme should support 

updates in XML tree without duplicating labels or needing to relabel old 

nodes.  

Our motivation for using the pentagonal scheme was to optimise the 

performance of the labelling time and to produce more compact labels 

that lead to decreased storage costs in both the initial labelling and after 

the insertions. By using the Pentagonal Scheme method, we can avoid 

using float-point numbers, this allows for fast labelling time and avoids 

overflow problems. Based on the research motivation, the research 

hypothesis is specified as follows: 

 
“Applying Pentagonal numbers for dynamic XML documents, based 

on prefix labelling approach to generate the new labels may improve 

the labelling time performance, providing labels without extreme 

growth or any overflow problems in the label size, and supporting 

insertions in dynamic XML databases as well as facilitating the 

query performance.” 
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1.3 The research aims, objectives and the     

research questions. 

Section 1.2 highlighted the research hypothesis and the limitations of 

current labelling schemes from which the aims and research objectives 

were developed. We aim to design a novel scheme to support updates in 

a dynamic XML tree without duplicating labels or needing to relabel old 

nodes. Our scheme aims to generate labels based on the prefix labelling 

scheme. It also evaluates the labelling process in terms of size and time 

and the ability to handle different types of update. Furthermore, the 

scheme aims to support frequent updates with fast calculations and 

uncomplicated implementation. It will also effectively extract from the 

labels’ structural information to accomplish a high-performance query.  

The research questions are as follows: 

RQ1: How to design a novel labelling scheme that in comparison to the 

state-of-the-art will support compact labelling size, low execution time, 

avoid relabeling while inserting new nodes, and offer efficient XML query 

processing?  

RQ2: How to achieve low execution time and compact labels with this 

novel labelling scheme even after frequent, large and random skewed 

insertions in different positions such as inserting between two siblings 

and into a leaf node? 
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1.4 Structure of the Thesis 
 

This section highlights the structure of the thesis, which is divided into 

three parts. The first part consists of three chapters which introduce the 

related background and literature reviews that influenced the creation of 

the hypothesis. The second part conducts a comparison between range-

based and prefix encoding, with a focus on reductions to labelling time 

and memory size; this is discussed in detail in chapter four. Based on 

both theoretical and practical points of view, the main concept of this 

research is discussed in detail in chapter five, which also covers the 

experimental results. The third part of the thesis consists of chapters six 

to eight which cover the queries’ experimental results, a comparison 

between native database systems and labelling schemes, the thesis 

conclusion and future work. The following section describes the thesis 

chapters: 

• Chapter 1 – Introduction. 

 This chapter has introduced the research work that influenced the 

creation of the hypothesis in general, the research motivation and 

hypothesis, and the research aims and objectives. It also outlined the 

structure of the thesis.  

• Chapter 2 - XML Data Background. 
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This chapter provides an overview of XML and its XML tree structure. It 

also provides a description of its syntax and illustrates the parsing 

techniques.  

• Chapter 3 - Literature Review on XML Labelling Scheme. 

This chapter presents an overview of labelling schemes and discusses 

the structure, strengths, weaknesses and restrictions of several existing 

XML labelling schemes.  

• Chapter 4 - Comparison between Range-based and Prefix-Dewey 

Encoding. 

This chapter compares two XML labelling schemes, namely range-based 

encoding and prefix encoding. The study aims to achieve the fastest 

labelling time and to ensure the generation of short labels in terms of 

memory size 

• Chapter 5 - Pentagonal Labelling Scheme for Dynamic XML Data. 

This chapter explains the underpinning theory of the proposed scheme 

by offering a definition that illustrates the rules of the algorithms and 

describes the structure of the scheme. Also, the chapter describes the 

practical design and implementation of the Pentagonal scheme, which is 

based on the definition and the algorithm rules. In addition, to evaluate 

the Pentagonal labelling scheme, several experiments are performed on 

different datasets. This chapter illustrates the experimental results in 
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order to evaluate the proposed scheme’s reliability, scalability and 

performance of the proposed scheme, while graphical diagrams are 

presented to evaluate it.  

• Chapter 6 - Query Experiments 

This chapter illustrates the experimental results in order to evaluate the 

query performance of the proposed scheme. The experiment compared 

the ability of the Pentagonal dynamic labelling scheme to handle query 

response times and the time spent determining different relationships.  

• Chapter 7 - A Comparison Between Native Database Systems and 

Pentagonal Labelling Schemes. 

This chapter explains the concept of Native XML database systems and 

compares the proposed scheme with two Native XML databases 

systems. Also, the experiment compared the ability of the Pentagonal 

dynamic labelling scheme, eXist database and BaseX database to 

handle different dataset sizes and the execution of different queries. 

• Chapter 8 - Conclusion and future work. 

This chapter summarises the whole thesis, the main findings and key 

contributions. Moreover, the recommendations for future work are 

emphasised. 

 



 

17 

 

1.5 Conclusion 

This chapter presented a brief introduction to the thesis and explained 

the importance of XML labelling schemes. The research motivation, 

hypothesis, research aims and objectives were introduced. Lastly, the 

structure of the thesis was underlined. 
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2 
2 XML DATA 

BACKGROUND 
 

 

 

 

This chapter provides an informative discussion based on XML data 

background covering all aspects of XML and its XML tree structure. Also 

provides a description of its syntax and illustrates the concepts of XML 

parsing techniques.  

 

Extensible Mark-up Language (XML) is developing as a de facto standard 

for data exchange among several applications on the World Wide Web 

due to its self-describing and the ability to organise data [16, 50-52].  

XML files are demonstrated as a tree, and labelling schemes encode the 

structural tree information to answer queries without having to access the 

original XML file [38, 53-57].  
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This chapter presents a brief overview of XML, starting with XML 

Overview then goes on to describe the Storage and the Structure of XML 

in Section 2.2 and Section 2.3 respectively. Next, in Section 2.4 XML 

parsing are explained. The chapter will be concluded in Section 2.5. 

 

2.1    XML Overview 

XML facilitates the ability to define the content of an XML document 

separately from its format; this makes it simple to both share and reuse 

data in different applications [1]. XML is beneficial for several reasons. 

First, it allows users to propose their own tags as a self-describing 

language, which construct it extremely flexible[58]. Furthermore, the XML 

language is uncomplicated and Text-based user interfaces, with a 

transportable data format that read by most of the platforms [59, 60].  

HTML (HyperText Mark-up Language) produce a standard to display, 

create and access web pages. However, HTML does not provide tag 

information to describe the content so systems cannot recognise the 

structure of the data [61, 62]. XML was developed in 1996 to address the 

limitation in HTML, which was sponsored by the World Wide Web 

Consortium, W3C [51].  

XML is especially relevant in the context of Big Data, as XML is a highly 

flexible structure. It describes the structure of the text meaning the user 
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can design their own tags and separate the content from its format [58]. 

Also, XML has the ability to cover different types of data. XML data can  

implant any possible type of data as either complex information, e.g. living 

organisms and biological systems, or as multimedia data, e.g. image, 

video, and sound [2].  

 

2.2 XML Storage 

XML has used for retrieval data over the Web in heterogeneous and 

homogeneous platforms, exchange data, transformation data and 

information representation and represent semi-structured data [10, 16, 

32, 39, 63]. The main approaches to store XML data are XML Enabled 

Database (XED) and a Native XML Database (NXD). XED is used to 

store data-centric documents that contain well-structured information. 

Therefore, the data can be transfer into a traditional relational database 

[64, 65]. NXD is used to store document-centric XML that contain semi-

structured XML document and stored in the hierarchical structure [66]. In 

addition, hybrid storage has been proposed; this technique simply 

mapped some parts of the structured XML into relational data and other 

parts can be kept in XML data type itself as NXD format [16, 67]. 

This thesis will emphasis facilitating native XML database to process XML 

queries and focusing on evaluation XML query that relies on document-
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centric XML. To start with clear comprehension, a description of the 

concept and the structure of XML is in the next section. 

 

2.3 The concept and the structure of XML  

The basic concept of an XML document can be defined as an element. 

Elements can contain other elements and can be nested at any depth. 

Each element of the document surrounded by two tags. Start tag will be 

at the beginning as <tag-name>, and end tag will be at the end as </tag-

name>. Also, the form <tag-name/> can be tag of an Empty element [68-

70].  

Figure 2.1 shown an example of XML document holding data on a store. 

This document provides information for customers such as first-name, 

last-name, full-address, mobile and the email of the customers of the 

technology store. For each customer, the document also records 

information on his/her salesman. The contact element is an example of 

an element with sub-elements in that it contains mobile, email element. 

The full-address is an example of an element containing text, whereas 

email is an example of an empty element. The attributes can be specified 

for the elements. The attribute is in the form of name = value, wherever 

the name is a label and the value will be a quoted string. The attributes 
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location in the document is in the start tag of the element, it has different 

types to specify an element identifier, IDRE type is containing to a single 

target, and IDREFS type is containing to multiple targets. In addition, 

CDATA type is referred to as textual information [68]. 

 

<store id="Technology"> 
     <customer id="C201"> 
         : : : 
     </customer> 
     <customer id="C223"  salesman="S201"> 
        <name> 
               <firstname> Muhammad </firstname> 
               <lastname> Ibrahim</lastname> 
        </name> 
        <full-address> 96, Hindley Street, Bolton </full-address> 
        <contact> 
              <mobile> 984 589 482 </mobile>  
              <mobile> 785 942 468</mobile> 
              <email reference="MuIbrahim123@yahoo.com"/> 
        </contact> 
        <preference> 
              <contact-way> email </contact-way> 
             <contact-time> morning </contact-time> 
             <branch> liverpool </branch > 
             <pay-method> cash </pay-method> 
        </preference> 
     </customer> 
     <customer id="C250" salesman="S223"> 
          : : :  
     </customer> 
</store> 

 
Figure 2.1. An example of XML document. 
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Figure 2.2. Graph representation of the document of Figure 2.1. 

 

In Figure 2.3, the relationship existing between a customer and the 

salesman  is demonstrated by an IDREF attribute named salesman in the 

customer element, where the value is the id of the customer salesman 

[68]. The graph in Figure 2.2 represented XML document that reported in 

Figure 2.1. The graph is representing the element-attribute and the 

element- subelement relationships, and the edges representing relations 

between elements. Edges are signified by lines. A document type 

First name lastname mobile email 

Pay-method 

96, Hindly 

Street 
Contact-way Contact-time branch Muhammad ibrahim 

984589482 

cash 

liverpool morning 

email 

MuIbrahim123@yahoo.com 
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C250 

name Full-address contact preference 

customer 

Store 
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declaration is known as DTD. The DTD can be attached to XML 

documents, identify the rules that XML documents need to follow [68]. 

 

<!DOCTYPE store[ 
<!ELEMENT store (customer)> 
<!ELEMENT customer(name,full-address,contact,preference> 
<!ELEMENT name (firstname,lastname)> 
<!ELEMENT contact (mobile,email)> 
<!ELEMENT preference(contact-way,contact-time, 
                                                             branch?,paymethod*)> 
<!ELEMENT full-address(#PCDATA)> 
<!ELEMENT firstname (#PCDATA)> 
<!ELEMENT lastname (#PCDATA)> 
<!ELEMENT mobile (#PCDATA)> 
<!ELEMENT email EMPTY> 
<!ELEMENT contact-way(#PCDATA)> 
<!ELEMENT contact-time (#PCDATA)> 
<!ELEMENT branch (#PCDATA)> 
<!ELEMENT paymethod (#PCDATA)> 
<!ATTLIST store id ID #REQUIRED> 
<!ATTLIST customer id ID #REQUIRED salesman  IDREF 
#IMPLIED> 
<!ATTLIST email reference CDATA #IMPLIED> ]> 

            Figure 2.3. An example of document type declaration (DTD). 

 

For example, Figure 2.3 illustrations the DTD for the document in Figure 

2.1. A DTD is collected of two parts: the element statements part and the 

attribute list statements part. The element statements part defines the 

structure of all elements included in the document. Each element 

specifies its subelements and their order. In addition, for each 

subelement it specifies either they are optional (“?”) or Not. Also, they 

https://thesaurus.yourdictionary.com/either
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might occur zero, one or more times (“+” or “*”), Also if the subelements 

are alternative or not to another subelement (“|”). Moreover, the type 

#PCDATA which allowed only data content; ANY is allowed all kind of 

content, EMPTY if no content is allowed. The attribute list statements part 

requires, for each element, the list of its attributes, in terms of names, 

types, optionality parts #IMPLIED is signified an optional attribute, 

#REQUIRED to signify a mandatory attribute and #possibly is denote to 

default values [68]. 

  

The current XML source has been classified into two main types: that is, 

valid and well-formed documents. A well-formed document is defined as 

a document that is written under the grammar rules of XML [World Wide 

Web Consortium 1998a] [68]. A valid document is known as a document 

which follows a given DTD. As a result, valid documents can be 

understood as illustrations of a matching DTD. For instance, Figure 2.2 

is an example of a valid document, as it follows the DTD in Figure 2.3 

[68].  

The XML schema language, unlike DTDs, affords different data typing 

correlated with type in the programming languages. The XML schema 

description defines numerous different types of data, such as integer, 

string, date, time, and, boolean. Despite the built-in data types, XML 

schema also offers the ability to introduce new types. Developers not just 
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using the element as plain text in an XML document, but they could define 

their data types. Therefore, they can effectively use and dealing with 

elements and attributes in an XML document [71].  

 

<?xml version=“1.0” encoding=”UTF-8”?> 
<xsd:schema  
xmlns:xsd=“http://www.w3.org/2016/10/XMLSchema”> 
<xsd:complexType name=“nameType”> 
  <xsd:sequence> 
     <xsd:element name=“firstname” type=“nameType”/> 
     <xsd:element name=“lastname” type=“nameType”/> 
  </xsd:sequence> 
</xsd:complexType> 
<xsd:simpleType name=“full-addressType”> 
  <xsd:restriction base=“xsd:string”> 
      <xsd:maxLength value=“100”/> 
  </xsd:restriction> 
</xsd:simpleType> 
<xsd:complexType name=“contactType”> 
 <xsd:sequence> 
    <xsd:element name=“mobile” type=“Type”/> 
          <xsd:restriction base=“xsd:string”> 
              <xsd:pattern value=“(d{3})-d{3}-d{4}”/> 
          </xsd:restriction> 
    <xsd:element name=“email” type=“emailType”/> 
 </xsd:sequence> 
</xsd:complexType> 
<xsd:element name=“customer” type=“customerType”/> 
</xsd:schema> 
 

Figure 2.4. Sample schema for the XML document shown in Figure 2.1. 

 

Figure 2.4 illustrations a sample schema, and Figure 2.3 illustrations a 

sample DTD for the XML document in Figure 2.1. In comparing Figures 

2.2 with Figures 2.3, the DTD defined the value of mobile as character 
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data. However, in the schema, the data type can be defined as 

mobileType, to represent mobile and make it under restriction to be a 

valid number that represents a standard US mobile number [71]. 

 

2.4 XML Parsers 

A parser is an interface between the application program and the XML 

document. XML parsers can identify if the XML document is valid and 

well-formed through interpreting its content by the Application 

Programming Interfaces (APIs) [71]. This process takes place with the 

use of the parser, which with the access to the documents’ internal 

structure and contents can read the XML documents and then provide 

the application programs [71].  

There are two types of XML parser: Document Object Model (DOM) and 

Simple API for XML (SAX). These are discussed in the following sections.  

 

2.4.1 Document Object Model (DOM) 

The DOM parser, which was issued as a W3C recommendation in 1998 

is ultimately a tree-structure-based API. The DOM parser is a language-

neutral interface. The DOM platform allows programs to access and 

update the structure and the content of XML documents. The DOM parser 

demonstrates the nodes of the XML document as a tree containing 
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elements, attribute and text [72-75]. An XML parser creates the DOM tree 

of XML document and then send it to an application program, it provides 

a set of APIs to manipulate these nodes in the tree. However, Using the 

DOM-based XML processor requires the entire structure of an XML 

document to be built within main memory [71, 76].  

 

2.4.2  Simple API for XML (SAX) 

The SAX parser does not generate a data structure. An XML processor 

with SAX scans an input XML document and then creates events, for 

example, an element start or element end [77, 78]. The application 

programs implement the handlers which receive these events in order to 

process them correctly. The SAX parser is most suited for dealing with 

large documents which not fit in the main memory [72, 77-79]. Moreover, 

the SAX parser is best suited for extracting the contents of specific 

elements [71]. 

 

2.5 Conclusion  
 

An overview of the fundamental aspects of XML data has been presented 

in this chapter. The aspects provided are sufficient to cover the essential 

background to this thesis. The focus of this thesis is XML labelling 
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technology; the next chapter outline the literature review of XML labelling 

schemes. 
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3 
3  Literature Review 
of labelling schemes 

 

 

 

 

This chapter provides an informative discussion based on extensive 

literature reviews covering the aspects of XML with regards to labelling 

schemes. It has been structured to provide a thorough scientific 

understanding of the study of labelling schemes.  

XML labelling scheme has been recommended for speedy query 

processing of massive XML documents [22, 80-82]. Nonetheless, even 

with the wide-ranging of labelling approaches, extensive problems have 

been faced in developing a suitable labelling scheme for effective 

management of XML data, since the Dewey Order labelling [34] and 

ReLab [46] does not support dynamic XML data and only supports static 
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XML documents. Also, the NLSXU scheme [83] does not support any 

node insertion and does not show any query performance testing. 

Moreover, DDE and CDDE [22] both support dynamic updates, but they 

produce a large label size [21, 49]. Furthermore, another problem faces 

is that in SCOOTER [23] the large labels’ quaternary strings slows down 

the query processing [27, 84]. 

 

In section 3.1 we cover an overview of labelling schemes, in Section 3.1.1 

we discussed different labelling schemes, the Prefix labelling scheme is 

detailed in section 3.1.2. The limitation of existing labelling schemes 

presented in Section 3.2. Lastly, Section 3.3 concludes the chapter. 

 

3.1    Overview of labelling schemes 

Labelling, or numbering, the scheme is generally used to label an XML 

document in order to perform an XML query using path node information 

[85]. This captures the structural relationships during the query 

processing with no need to access the physical document [20, 86]. 

Labelling schemes reduce the query processing time and hence make 

the retrieval and indexing of XML data more efficient [34, 86]. In simple 

terms, labels in such schemes present relationships between nodes in 

XML trees [12, 29, 46, 87, 88] and are used for retrieval purposes. They 
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achieve this by relying on XML labelling schemes, keyword searches and 

XML data queries [20, 89]. 

 

3.1.1 labelling schemes 

The current labelling schemes have been classified into four main types: 

Interval based schemes (also known as Range based labelling schemes; 

Region encoded labelling schemes; Subtree based labelling schemes or 

Containment labelling schemes) [7, 14, 32, 39, 46, 85, 90, 91]); Prefix 

based schemes [7, 9, 13, 16, 21, 22, 34, 92], Multiplicative based 

schemes [39, 43, 49, 93-99] and Hybrid based schemes [7, 16, 47, 48, 

100].   

 

XML Documents can be classified into two types: static  [14, 34, 85], 

which is sufficient for non-updatable XML documents, and dynamic, 

which is regularly updated [22, 26, 43, 46, 101, 102]. A dynamic labelling 

scheme has been proposed based on the mathematical principles of 

vector order [95, 103]. A vector order has been proposed to avoid 

relabelling, which is applied to both interval-based and prefix-based 

labelling schemes. In their algorithm, the midpoint has been calculated, 

which is applied to the interval-based labelling scheme (Region Labelling 
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Scheme). A vector, 𝑉, is an object with weight and a path that can be 

represented as a binary tuple, 𝑉= (𝑥), where 𝑥 and 𝑦 are positive integers. 

The Vector-based labelling method is adapted from vector-encoding [28, 

45]; it represents interval-based labels in a vector form. The nodes are 

labelled as <𝑠𝑡𝑎𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑒𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑎𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 𝑣𝑎𝑙𝑢𝑒>, whereas the 

vectors’ gradient values are used to preserve the order of the assigned 

vectors. By inserting node C between nodes 𝐴 and 𝐵, a vector value is 

allocated to 𝐶 according to vectors A and B. 𝐴=(𝑥𝑎,𝑦𝑎), 𝐵=(𝑥𝑏,𝑦𝑏), and 

𝐶=𝐴+𝐵=(𝑥𝑎+𝑥𝑏,𝑦𝑎+𝑦𝑏), then 𝐺(𝐴)>𝐺(𝐶)>𝐺(𝐵), where 𝐺(𝐴)>𝐺(𝐵) if, and 

only if, (𝑦𝑎∗𝑏)>(𝑥𝑎∗𝑦𝑏). However, their work did not perform any experiment 

to test the performance of their scheme or any query testing.  

 

An Improved Binary String Labelling (IBSL) scheme [55] been proposed.  

It is a binary, string-based encoding approach, and the IBSL label is a 

sequence of numbers 0 and 1. Their scheme avoids relabelling when 

updating XML documents and reuses the deleted label at the same 

position. However, it increases the cost of storage in the case of 

frequently skewed insertions [13, 47]. Moreover, the IBSL scheme tests 

the leaf node insertions only. 

     



 

34 

 

A Prime-based Middle Fraction Labelling Scheme PMFLS [48] has been 

designed in which a series of algorithms are proposed to obtain the 

structural relationships among nodes and to support updates. PMFLS is 

a hybrid labelling scheme; it combines the advantages of both prefix and 

region schemes. PMFLS also supports updates without recalculation. 

However, prefix labels naturally extend when XML data are updated 

during frequent insertions, causing overflow problems.  

     

In [46], ReLab is Region-based Labelling scheme; their experimental 

evaluation denotes the schemes in terms of the time taken to generate 

labels for each XML node. This is not only used for the unique 

identification of XML nodes, but also structural relationship purposes. 

 

In [39], ME labelling provided a roust hybrid scheme for dynamic updates 

in XML databases. They proposed an XML labelling scheme that helps a 

quick determination of the structural relationships among XML nodes and 

supports dynamic updates without relabelling nodes in the case of update 

occurrences. Due to the simplicity of the ReLab [46] scheme, it has 

generated labels faster than other Region-based schemes [47]. However, 

ReLab [46] does not support dynamic XML data but only static XML 

documents [13, 47]. 
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The NLSXU scheme [83] has generated labels using digits (0-9), 

uppercase and lowercase letters and a few characters in the Unicode 

character set. It provided a greater varied range of characters. The 

Unicode value of the characters is considered to preserve the order of 

the siblings in the XML document. NLSXU reduced the space for 

synthetic data and reduced the index size compared to the NLSX scheme 

[83]. In addition, the NLSXU scheme reduced the time taken to generate 

labels compared with LSDX and NLSX. However, the NLSXU scheme 

did not support any node insertion and did not show any query 

performance testing.  

 

The Clustering labelling scheme [104] is a hybrid approach that has been 

proposed based on the interval and prefix labelling schemes. This 

scheme is based on the clustering technique and the levels of the nodes 

in XML trees. The approach is to divide the whole data tree into small 

groups where two labels are used for every node and the cluster (group) 

is linked to the entire tree using the label of that cluster. 

 

The RLP-Scheme [105], is a hybrid approach of multiplicative and prefix 

labelling schemes. This is similar to the Dewey scheme [20]. However, 

each node label in the RLP-Scheme contains more information compared 

to the node labels in the Dewey Scheme. The RLP scheme is divided into 
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several groups, each node is allocated an ID of the formula [G,P,S] where 

G represents the group number of the node, P represents the self-label 

of all its ancestors, and S denotes its self-label.  

 

The Branch map labelling scheme [106] records the correspondence 

between a parent and child nodes, unlike other schemes discussed in 

this thesis, where the schemes assign a label to each node. This scheme 

is suitable for structural summary indexing. It uses the SAX parser to 

parse XML documents. Moreover, a hash key is used to represent the 

path index, where the information regarding the path and structure with 

the tag name is stored. Each node is assigned (label, branch, count, 

children), where the label represents the location of the node following 

the Dewey label scheme. The Branch represents the branch map and 

each "1" signifies a node in the XML tree. Count denotes the number of 

appearances of the tag, and children represents the tag names of the 

children of the node.  

 

In [107], the labelling scheme holds the containment information and 

represents it as a 4-tuple: (Did, start, end, level). Did represents the XML 

encoding of the XML document. Start represents the occurrence position 

and is created by the pre-order traversal. end records the beginning 
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maximum number of the current node in the sub-tree. The Level is used 

to determine the structural relationship between the nodes. 

[108] They applied a structure named partial tree structure. This was 

appropriate for large XML documents where multiple computers can be 

used for processing. They have used the BaseX database for their 

comparison of loading and execution times. In [108] two index sets were 

used to execute XPath queries in large XML documents, in order to 

achieve a faster evaluation time of the structural relationships between 

nodes.  

 

3.1.2   Prefix labelling scheme 

The prefix-based labelling scheme is considered a suitable approach for 

dynamic XML data [92]. Several prefix labelling schemes have been 

proposed. In prefix labelling schemes each node label contains a unique 

label, which is the parent’s label and concatenated with the node self-

label. Notable research in developing a prefix labelling scheme to 

improve the storage, retrieval and query into XML data is the Dewey 

Order labelling scheme. This is based on the Dewey decimal 

classification system for libraries [34]. Even though the Dewey Order is 

popular; In [44] authors argue that the model of [34] is unsuitable for 



 

38 

 

dynamic XML documents since updating a new node requires the 

relabelling of all its right sibling nodes with their relatives in the whole 

XML tree. The labels studied the position of the node and needed to sort 

the order of the document during an update.   

In [34], the authors proposed a prefix encoding using Dewey coding to 

label XML trees. In this method, a vector presents each node. The root in 

an XML tree is labelled by an empty string ε and the non-root element u 

is labelled as a combination of its parent label and a postfix integer 

number (xi). If u is the xth child of s in an XML tree then the label u, label(u), 

is q, a concatenation of label s and x, which is presented as a label(s).x., 

where s is the parent of u. For example, if the label for node u is 2.5.3 

then its 4th child label will be 2.5.3.4. The advantage of this, for any 

element labels, we can easily extract the node labels of its ancestors. For 

example, if an element label is 5.1.3.1, then its parent label is 5.1.3, and 

its first ancestor label is 5.1. 

Due to the simplicity of the Dewey Order labelling scheme [34], it has 

become common amongst indexing schemes [57, 109, 110]. However, 

this mechanism is not appropriate for dynamic XML data. For example, 

to insert a new sibling node into an XML tree, the Dewey Order labelling 

scheme requires the relabelling of all its right sibling nodes along with 

their descendants.  
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In [20], the Extended Dewey code has been proposed to address this 

limitation of Dewey Order labelling scheme. Each element is a grouping 

of its parent label and a postfix integer number (xi). For any element ei 

with name ti, the extended Dewey assigns an integer number, xi, to ei 

such that xi mod ni =i. Extended Dewey Encoding needs some scheme 

information for labelling. Moreover, the element tag names are added as 

part of their Dewey labels. Scheme information can be extracted from 

DTD. Otherwise, before assigning XML tree nodes labels, the whole XML 

document must be scanned at least once to know the document’s 

scheme information [111]. They suppose that the element name of u is 

kth tag in CT(ts) (k=0,1,...,n-1). CT(ts) = tn-1, to express all child nodes of t 

from the DTD structure information of an XML document. Where CT(ts) is 

the child names of tag t, and ts denotes the tag of element s. Here, label(u) 

= label (s).x is used to express the code of node u and s is the parent node 

of u. If u is a text value, then x = -1; Otherwise, we assume that the 

element name of u is the kth tag in CT(ts) (k=0,1,...,n-1), where ts denotes 

the tag of element s. If u is the first, then x = k, otherwise, if we assume 

that y is the last component of the left sibling label u, then X ={⌊𝑦𝑛⌋.𝑛+𝑘 

𝑖𝑓(𝑦 𝑚𝑜𝑑 𝑛)<𝑘; ⌈𝑦𝑛⌉.𝑛+𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  
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The extended Dewey labelling scheme also does not support dynamic 

updates in XML trees; this requires the reconstruction of the child name 

clue data after insertion [13, 111]. Furthermore, adding XML tree element 

names within their labels increases the label size and makes the 

computation process methods very expensive [16, 112]. However, it 

performs well in evaluating query processing by accessing only the leaf 

nodes that contain the labels. This speeds up the process and satisfies 

queries [7, 13, 23, 38, 39].  

Also, [22] have proposed a Dynamic Dewey scheme (DDE), which is an 

update of the Dewey scheme. This transforms it into a fully dynamic 

labelling scheme based on the mathematical operations of a Dewey label. 

In DDE, the label has different lengths, starting with a byte for the first 

level and increasing in depth relative to the level value. This can be 

appropriate for avoiding overflow problems. In addition, it has the ability 

to avoid a complete relabelling and supports a high query performance. 

Figure 3.1 shows the initial label for DDE. The advantage of the DDE 

compared to previous works is that the scheme has shown an improved 

performance when new XML nodes are inserted. The main weakness is 

that the labelling schemes are making a large label size [21, 49]. It 

implicitly stores the level information as the number of components in that 

label, and frequent insertions occur between two siblings by applying the 

midpoint technique, which needs extra storage costs when the depth 



 

41 

 

increases [21, 49]. This property remains true after random insertions. 

Given two labels X: x1.x2. ….xn and Y: y1.y2. ……ym, the following properties 

can be extracted from the labels: X is the parent of Y only if X is an 

ancestor of Y and n=m-1. X is an ancestor of Y only if n<m and (X1/Y1) = 

(X2/Y2) = ……… = (Xn/Ym). X is a sibling of Y only if n=m. Figure 3.2 shows 

how a DDE labelling scheme manages multiple insertions within an XML 

document. As X is the first child of a node when a new node is inserted 

before node X: where the label of the new node will be x1.x2. ….x(n-1). As X 

is the last child of a node when a new node is inserted after the node X: 

x1.x2. ……xn the label of the new node will be X: x1.x2. ……x(n+1). Below a leaf 

node X: x1.x2. ……xn the label of the new node will be X: x1.x2. ……xn.1 when a 

new node is inserted. However, between two continuous siblings, X and 

Y, a new node is inserted, and the label of the new node becomes A+B. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.1. Dynamic Dewey scheme (DDE) initial labels 
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Figure 3.2. Processing insertions with DDE labels. 

 

Dynamic Dewey Labelling considers four cases of insertion, as illustrated 

in Figure 3.2 Firstly, inserting before the leftmost sibling, the new label is 

created by reducing the local order value of the leftmost sibling by 1; in 

this case, negative values are acceptable. Secondly, inserting after the 

rightmost sibling, the new label is created by incrementing the local order 

value of the rightmost sibling by 1. Thirdly, inserting between two siblings 

(giving 𝑋 and 𝑌), the new label, e.g., node v, is assigned as the midpoint 

vector, 𝑋+𝑌, which is equal to 𝑥1+𝑦1.𝑥2+𝑦2.….𝑥𝑚+𝑦𝑚. Finally, inserting a 

child into a leaf node where the new label is created by concatenating the 

parent label and the digit “1”. CDDE is an improved version of DDE [22]; 

it has been presented to recover the performance of DDE when updating 
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XML documents by allowing initial labels to be negative values. The 

improvement in CDDE is insignificant in terms of updating time and label 

sizes, as clarified in their work [22]. 

 

DDE and CDDE support dynamic updates, although they produce a large 

label size at the cost of extra storage [21, 49]. This mainly occurs when 

frequent insertions occur between two siblings due to the large size 

generated by applying the midpoint technique. DDE is not appropriate for 

defining the structural relationships in multiple XML documents and 

requires an additional document to differentiate the labels in several XML 

documents [13, 21, 113]. 

 

Many dynamic schemes have been proposed based on the Dewey, 

Dynamic Float-Point Dewey [21]. The authors proposed a DFPD labelling 

scheme, and the initial labels were based on Dewey labels and handle 

updates to XML documents by considering the same three cases in DDE 

techniques: Inserting before the leftmost sibling, inserting after the 

rightmost sibling, and inserting a child into a leaf node. However, when 

inserting between two following siblings, the new label is calculated, and 

the result is a float-point number. The decimal part is 0; in this situation, 

the last component of the new label is a float-point number.  
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Assume that the two following siblings are labelled as (a1. a2 …am-1  .am and 

b1. b2 …bm-1 .bm) individually, then the new node can be calculated using 

the Equation: a1 .a2…am_1.((ka x am + kb x bm)/(ka + kb)). Hypothetically, the 

values of ka and kb can be considered a set of positive integer numbers. 

Recently, the authors have introduced the DPLS labelling scheme [13] to 

improve the DFPD performance [21]. DPLS is a dynamic prefix-based 

labelling scheme and supports updates in XML trees. The newly inserted 

label between two siblings, A and B, can be calculated using this equation: 

a1 . a2 …a m−1 .(( am + bm )/( ka + kb )). The authors used a fraction fragment 

to represent the last component of the label, and both numerator and 

denominator are integers. Both DFPD and DPLS schemes are generated 

floating-point numbers, and this can lead to limited accuracy [31]; 

moreover, the mantissa is denoted as a fixed number of bits. Then, it can 

be extended by two bits for each insertion, which can cause overflow 

problems [26, 32]. To sort this problem, they implemented a successive, 

variable-length storage format by adopting the ORDPATH technique [44], 

even though complicity in the ORDPATH has a negative effect on XML 

query processing [22, 55]. 

 

In [43], a GroupBased Approach is based on the prefix GroupID labelling 

scheme. The labelling mechanism is based on dynamic Dewey labelling 
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and can be divided into two phases: Each label has a local and global 

fragment. The local label can be duplicated, although not within the same 

group. The global label uniquely identifies a group of local labels. The 

XML nodes, except the root within the tree, are first clustered in a way 

that each group of nodes is a sub-tree that has its root, and child nodes, 

and is given a global label. Each node in a group has a local label, starting 

from the parent node to the child nodes. It has flowed the GroupID prefix 

label and sizes rise rapidly as the XML tree goes deeper [48].  

 

The SCOOTER labelling scheme [23] has been proposed based on 

quaternary strings and represents the node order lexicographically. In 

addition, the scheme supporting node insertion suffers from overflow 

problems in certain situations [22, 56]. Also, decoding large labels’ 

quaternary strings slows down the query processing [27, 84]. 

 

Furthermore, [44] introduced a prefix labelling scheme, called 

ORDPATH. The main goals of ORDPATH are to gratefully handle the 

insertion of XML nodes in the database and to avoid relabelling. The main 

idea is to use only positive, odd integers to label elements in an initial 

load, and even and negative integer component values are reserved for 

later insertions into an existing tree. However, the ORDPATH technique 
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allows just a limited number of insertions [16, 22], although, the 

complexity of the decoding mechanism has a negative effect on XML 

query processing [22, 55]. 

 

[114] illustrates a new prefix labelling scheme. The labelling mechanism 

is based on a mapping function that converts the integers allocated to the 

parameters Start, End, and Parent_Start to the binary bit string. The 

method takes advantage of the Fibonacci sequence to implement a 

variable-length storage format. In updating new XML nodes, a new 

section appears in the label in order to avoid relabelling the old nodes; 

this also keeps the order of the nodes and captures the structural 

relationships. However, the scheme has tested the different cases of 

insertion except for leaf node insertions. 

A comparison of the existing labelling schemes is provided in table 3.1.   

XML Labelling 
Scheme 

XML 
Document 
Type 

Labelling 
Scheme Type 

Data Type 

Improved Binary 
String Labelling 
(IBSL) scheme 
[55] 

Dynamic  Prefix labelling 
scheme 

binary, string 

Prime-based 
Middle Fraction 
Labelling 
Scheme PMFLS 
[48] 

Dynamic Hybrid 
labelling 
scheme 
(prefix and 
region 
schemes) 

Prime numbers 
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ReLab [46] Static labelling 
scheme 

Interval-based 
labelling 
scheme 

Integers  

ME labelling 
[39] 

Dynamic 
updates 

Hybrid scheme Odd numbers 

NLSXU scheme 
[83] 

Static (did not 
support any 
node insertion) 

Prefix labelling 
scheme 

Digits (0-9), 
uppercase and 
lowercase 
letters and 
Unicode 
characters 

[34] Dewey 
coding 

Static Prefix 
encoding 

Integer numbers 

[20] the 
Extended 
Dewey code 

Static Prefix labelling 
schemes 

Integers, letters 

Dynamic Dewey 
scheme (DDE) 
[22] 

fully dynamic 
labelling 
scheme 

Prefix labelling 
scheme 

Integer numbers 

Dynamic Float-
Point Dewey 
DFPD [21]. 

Dynamic 
labelling 
scheme 

Prefix labelling 
scheme 

Float-point 
number 

dynamic prefix-
based labelling 
scheme DPLS 
[13] 

Dynamic 
labelling 
scheme 

Prefix labelling 
scheme 

Floating-point 
numbers 

GroupBased 
Approach [43] 

Dynamic 
Dewey labelling 

Prefix GroupID 
labelling 
scheme 

Integers 

SCOOTER 
labelling 
scheme [23] 

Dynamic 
Skewed 
insertions 

Prefix labelling 
scheme 

Quaternary 
strings, order 
lexicographically 

ORDPATH [44] limited number 
of insertions 

Prefix labelling 
scheme 

Integers 

new prefix 
labelling 
scheme [114] 

Dynamic 
labelling 
scheme 

Prefix labelling 
scheme 

Integers 

Clustering 
Labelling 
Scheme[104] 

Dynamic 
labelling 
scheme 

Hybrid 
labelling 
scheme 

Numerical data 

Table 3.1: A comparison of the existing labelling schemes.  
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3.2 The Limitation of Existing Labelling Schemes 

Dynamic labelling schemes have been developed to support efficient 

XML updates. Each of the existing labelling schemes is limited in one or 

more aspects. The standard limitation we have found is that some of the 

mechanisms do not support dynamic updates. [17] is work on Prefix type 

of labelling scheme, and only supports static updates since it requires 

regeneration of the child name data after each insertion, as the element 

tag names are added as part of their Dewey labels [13, 111]. And this 

increases the label size [16, 112]. On the contrary, it performs well in 

evaluating query processing by accessing only the leaf nodes that contain 

the labels. This speed up the process and satisfies the queries [7, 13, 23, 

38, 39].  

Similarly, the work in [34] is also based on the Prefix labelling scheme 

and supports static updates, which is unsuitable for dynamic XML 

documents as updating a new node requires the relabelling of all its 

existing right sibling nodes with their relatives in the entire XML tree [44].  

[46] is a Region-based Labelling scheme and only supports static XML 

documents [13, 47], on the positive side, it is capable of generating labels 

faster than other Region-based schemes [47].  
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In [44] the dynamic prefix-based labelling scheme only allows limited 

updates [16, 22], as just the even and negative integer values are 

reserved for updating XML tree. 

In addition, some schemes produce a large label size at the cost of extra 

storage. For example, [20] the size of extended Dewey is approximate 

10%–30% more than that of original Dewey. This is due to the large size 

generated by applying their technique, which causes overflow problems 

[13, 21, 48].  

Some labelling schemes suffer from overflow problems, where the node 

labels are stored as fixed-length binary numbers. The cause of the 

overflow is the fixed-length labels where the frequent insertions can lead 

to overflow problems [35, 84]. When an overflow occurs, a fragment of 

the new label can be lost, which can lead to the creation of duplicate 

labels. Figure 3.3 is an example of overflow problems. 

studies such as [10, 19] did not evaluate the query performance 

experimentally but only presented it theoretically. On the other hand, 

others evaluated the XML query process only through determining the 

relationships over a large number of randomly selected label pairs. This 

has been done by [13, 21, 22]. 
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 Binary illustration in memory  

Label Byte 1 Byte 2 

2132 1 0 0 1 1 1 1 0         

21322 1 0 0 1 1 1 1 0 1 0       

213223 1 0 0 1 1 1 1 0 1 0 1 1     

2132232 1 0 0 1 1 1 1 0 1 0 1 1 1 0   

21322322 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0  

213223221 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1     

21322322132 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 

 

 

Figure 3.3 Example of overflow problem [35] 

 

3.3 Experimental Setting.  

All experiments in chapter 4,5,6,7 and 8 were performed on a processor 

of an Intel Core i7 with 8GB of main memory and 64-bit Operating 

System, running Windows 10 system. We run different algorithms in Java 

IDE 8.2. The experiments evaluated the scheme’s performance in terms 

of the label time and size. The experiments were conducted on the initial 

label and the handling insertions. We carried out the experimental 

process on different datasets [115]. The selection of XML datasets 

represents various features of XML trees, such as the number of nodes, 

file sizes, maximum depth and the degree of fan-out. It was vital to 

Duplicate labels 

 

Overflow memory 
storage 
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consider the variety of different datasets in order to reflect the scalability 

of the dataset in our results and evaluation. The real datasets we have 

used are DBLP, TreeBank, NASA, Reed, UWM, eBay, Sigmod and 

XMark. TreeBank datasets are designed by the University of 

Pennsylvania’s Department of Computer and Information Science, and 

the size of a TreeBank XML file is 82 MB with maximum breadth 144,493 

[115]. The Digital Bibliography Library Project (DBLP) database is a large 

XML file related to computer science publications, conferences, series 

and books. The DBLP dataset is used by a wide variety of XML database 

applications, and it was used due to the ability to provide a wider range 

of sibling nodes with its maximum breadth being 328,858 [116]. The 

NASA database contains reliable astronomical data and has been 

developed from a flat-file format by a NASA XML Project. The size of the 

XML file is 23 MB with maximum breadth 80,396. The breadth describes 

the number of nodes on the same level whereas the depth is the number 

of levels from any node to its root and the maximum depth describes the 

maximum number of levels in an XML tree [115].  

A Sigmod record is generally used to present and evaluate small XML 

databases [115]. eBay is an auction data converted to XML from web 

sources, Reed and UWM datasets store university courses’ data derived 

from university websites [115].  



 

52 

 

The XMark dataset is a well-known dataset and the most common 

benchmark for XML data management [117, 118]. It contains a scalable 

document database and is a large file with 111MB with a deep recursive 

ancestor structure. Moreover, the decedent nodes have a depth of 12 and 

a wide range of fan-out nodes which have different breadths at each level 

with the maximum being 25,500 nodes.  

We adapted XPathMark queries that include the main aspects of the 

XPath language [119] and different relationships [117, 118]. XPath 

queries are widely used in other research, such as [120-123]. XPathMark 

was designed for the XMark Benchmark, which is a well-known and the 

most common benchmark for XML data management [117, 118].  

 

3.4 Conclusion 

In this chapter, we have reviewed the state of the art in terms of labelling 

schemes to design a novel algorithm that addresses some of the 

limitations of existing techniques as highlighted in section 3.2, namely: 1) 

to obtain a small label size, 2) supports dynamic updates without 

relabelling nodes, 3) support frequent insertions without overflow 

problems and 4) evaluate the query performance.  
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In order to investigate these aspects, two typical XML labelling schemes 

were applied [91, 124]. In chapter 4 we employed Range-based and 

Prefix Dewey Encoding in order to label different XML datasets that 

represent different features of XML trees. Various experiments were 

carried out to investigate the time and storage space required for each 

scheme.  
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4 
COMPARISON 

BETWEEN RANGE-
BASED and PREFIX 
DEWEY ENCODING 

 
 

 

 

XML has become an increasingly important area in data storage and 

communication over the web. XML data labelling plays a significant role 

in the management of XML data since it allows the unique allocation of 

XML content in order to improve the query performance. This chapter 

focuses on two typical XML schemes for labelling native XML databases 

where the data is represented as ordered XML trees and contains 

relationships between nodes.  

 



 

55 

 

The remaining sections of this chapter are organized as follows: In 

section 4.1 we cover an overview on labelling schemes, in Section 4.2 

we presented the existing related work in this area while Section 4.3 

describes the Prefix Dewey encoding and the Range-based encoding 

methods. In section 4.4 the experimental results and evaluation are 

discussed while Section 4.5 concludes the chapter. 

 

4.1 Overview 

XML data has become one of the most important issues in the field of 

databases. Existing research has been conducted to improve the storing, 

retrieving and querying of XML data [34]. The main approaches for 

facilitating query processing based on native XML databases are 

structural indexing and labelling scheme. Labelling schemes focus on 

assigning a unique code to each node in XML trees as encoding for the 

documents to reduces the query processing time [12, 46, 88]. However, 

one of the criticisms of most of the encoding techniques is that they 

contain a large label size [38, 39]. 

This chapter compares Range-based encoding and Prefix Dewey 

encoding in order to achieve the fastest labelling time and to ensure the 

generation of short labels in term of memory. We used utf-8, utf-16, utf-

23 to control the bits subsequent of the label value. The experiments 



 

56 

 

evaluated the scheme’s performance in terms of the label size and initial 

label time. 

 

4.2 Related Work  

There are different labelling schemes which have been proposed for 

efficiently processing native XML databases. This section reviews and 

address issues related to the most common XML labelling schemes.  

[34] have proposed a method called Local Order Encoding scheme, each 

node is assigned an integer number, which represents its relation position 

among its siblings. It is appropriate to reconstruct document order. The 

advantage is that it does not result in large label sizes and therefore each 

label has a fixed length, which is one byte for each node and uses UTF-

8-character encoding scheme. However, fixed-length in labelling is 

leading to overflow problems. Also, the local encoding does not support 

all kinds of structural relationship queries, such as to determine the 

relationship between the following and preceding nodes.  

In addition, [34] have proposed Dewey encoding scheme for labelling 

XML trees based on Dewey decimal classification system, it is one of the 

prefix labelling schemes. In this method, each label is presented as an 

integer number and delimiter “.” [8]. Each node (𝑢) is labelled as a 
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combination of its parent label and postfix integer number (𝑥𝑖). If 𝑢 is the 

𝑥𝑡ℎ child of 𝑠 in XML tree then the label of 𝑢, label (𝑢) is the concatenation 

of label of 𝑠 and 𝑥 which is presented as the label(𝑠). 𝑥, where 𝑠 is the 

parent of 𝑢. For example, if an element label for 𝑢 is 3.6.4, then its 5𝑡ℎ 

child label will be 3.6.4.5. If an element label is 6.2.4.1, then its parent 

label is 6.2.4, its first ancestor label is 6.2. An advantage of this method 

is that for any element label, we can easily extract node labels of its 

ancestors and determine the relationship between nodes. However, the 

drawback of the Dewey scheme is not appropriate for dynamic XML data; 

inserting a new sibling node requires relabelling all the right sibling nodes 

along with their descendants. 

[22] have proposed a Dynamic Dewey encoding scheme (DDE), which is 

an update of the Dewey encoding scheme to transform the original 

Dewey into a fully dynamic labelling scheme. The advantage of the DDE 

is that the label has different length; starting with a byte for the first level 

and increases in depth concerning the level value. So that can be 

appropriate for avoiding overflow problems. In addition, it has the ability 

to avoid relabelling completely and support high query performance. The 

main drawback is that a large label size, especially when the depth 

increases and frequent insertions occur between two siblings by applying 

the midpoint technique. 
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[125] have proposed VLEI encoding scheme. VLEI scheme is applied to 

XML labelling, and the data type is binary string. The VLEI encoding has 

used number 9 for the identifier. For example, when a child node is 

inserted, the label for the node becomes the label of its parent node + 9 

+ VLEI code. However, VLEI encoding used eight bytes for the VLEI 

code. The VLEI main drawback is that lead to overflow problem, 

especially with skewed insertion. 𝑡 is the new VLEI sequence code. 

𝑡 = 1 . {0|1}∗ ,      If   𝑡.0.{0|1}∗ < 𝑡 < 𝑡.1. {0|1}∗ 

For example, 10 < 1 < 11 𝑎𝑛𝑑 100 < 10 < 101 < 1 <110 < 11 < 111. 

The authors in [126] used Range based labelling scheme which aims to 

determine the structural relationships between nodes by using the related 

containment information. Each label is represented as a 3-tuple and has 

fixed-length. 10 scheme leads to overflow problems. Start, end and depth 

are used to identify exactly the position of an element. Start is generated 

by a pre-order traversal of the document trees exactly finds the 

occurrence position. While end is the maximal start of elements in the 

sub-tree of the current element and depth gives additional information to 

determine the parent-child relationship.  

 

Following from the related work in this Section, the main drawback we 

have identified in the existing labelling schemes is the growth of the label 

sizes in response to that, in Section 4.3 we presented a comparison 



 

59 

 

between two schemes with a focus on achieving labelling time and 

memory size.  

 

4.3 Comparisons Between Prefix Dewey Encoding 
and The Range-Based Encoding.  

 

In the Dynamic Dewey encoding scheme, each label has a different 

length; starting with a byte for the first level and it increases in relation to 

the level value. The length of labels can vary widely depending on the 

position of the nodes within the XML tree. However, prefix labels naturally 

extend when XML data is updated during frequent insertions, causing 

overflow problems. However, in the Local Order Encoding scheme, each 

node is assigned an integer number ,and each label has a fixed-length 

label; which is one byte for each node and used UTF-8-character 

encoding [127]. Furthermore, in Dewey encoding, each label is presented 

as a combination of its parent label and postfix integer number by 

delimiter “.” [8]. In contrast, in Rang then its parent label is 6.2.4, its first 

ancestor label is 6.2. The based labelling scheme, each label presented 

as a combination of the start, end, depth values using “,” as a delimiter. 

Furthermore, in Quaternary encoding QED [35] and SCOOTER encoding 

[23] proposed different delimiter storage scheme; they used number “0” 

as delimiters and consequently, these schemes increase the decoding 
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time because of the extra comparison operation to identify the 0 whether 

a bit or a delimiter.  

In the following experiment, we controlled the bits subsequent of the label 

value [127] for both Range based scheme and Prefix Dewey labelling 

scheme. We have done this to aid the generation of short label size and 

achieve the fastest labelling time.  

 

4.4 Experimental Work and Results.  

All experiments were performed on processor of an intel Core i7 with 8GB 

of main memory and 64-bit Operating System, running Windows 10 

system. We run Range-based algorithm and Prefix Dewey labelling 

algorithm in Java IDE 8.2. We used utf-8, utf-16, utf-23 to control the bits 

subsequent of the label value. The experiments evaluated the scheme’s 

performance in terms of the label size. 

We carried out the experimental process on different datasets [115]. The 

XML datasets represent various features of XML trees such as the 

number of nodes, file sizes, maximum depth, the degree of fan-out. It was 

vital to consider the variety of different datasets in order to reflect the 

scalability of the dataset in our results and evaluation. The real datasets 

we have used are DBLP, TreeBank and NASA. TreeBank dataset is 

designed by the University of Pennsylvania’s Department of Computer 
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and Information Science, and it has a maximum breadth 144,493 with its 

size being 82 MB [115]. The Digital Bibliography Library Project (DBLP) 

database is related to computer science publications, books, series and 

conferences. The DBLP dataset is a large XML file with its maximum 

breadth being 328,858. It is used by a variety of XML database 

applications as it provides a wider range of sibling nodes [115]. The 

NASA database has been developed from a flat-file format by a NASA 

XML Project and contains reliable astronomical data This dataset has a 

size of 23 MB with a maximum breadth of 80,396. The breadth describes 

the number of nodes on the same level whereas the depth is the number 

of levels from any node to its root and the maximum depth describes the 

maximum number of levels in an XML tree [115].  

 

XML dataset File 
Size 

Max 
Depth 

Max 
breadth 

Number of 
nodes 

TreeBank 82 MB 36 144493 2437666 

DBLP 127 MB 6 328858 3332130 

NASA 23 MB 8 80396 476646 

Table 4.1: Features of the existing real-life XML dataset. 

Table 4.1 gives the properties of these datasets and summarises their 

characteristics. We described and specified the chosen datasets and the 

platform used. 
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4.4.1 Experimental Evaluation. 

The label initialisation experiment for both Prefix Dewey labelling and 

Range-based were implemented successfully. The focus of this 

evaluation is the comparative of fastest labelling initial time and 

generation of short labels in term of memory. The outcome of this 

experiment was also aimed to compare the labelling size based on utf-8, 

utf-16 and utf-23. This experiment was intended to evaluate the Prefix 

Dewey labelling against Range-based schemes; the results showed that 

the experiment met its objective. 

 

In this section, we illustrated the experiments that were used to gauge 

the Prefix Dewey Labelling Scheme compared to the Range-based 

scheme. This experiment examined two parameters: the initial labelling 

time and the total label size.  

In our work, each of the schemes was individually executed, and the 

number of runs had to total at least 10 [128, 129]. In our work, the first 

three runs were omitted to validate the accuracy and the reliability of the 

results as well as to avoid cache memory. 
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Prefix Dewey labels 

 

Figure 4.1 Initial labelling time for Prefix Dewey labelling scheme. 

Range-based labels  

 

Figure 4.2 Initial labelling time for Range-based scheme 
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Prefix Dewey labels (Total label Size) 

 

Figure 4.3 Total label Size (MB) for Prefix Dewey labels. 

 

Range-based labels (Total label Size) 

 

Figure 4.4 Total label Size (MB) for Range-based scheme. 
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From Figure 4.1 and 4.2 the Dewey Labelling scheme performs better in 

Treebank, DBLP and NASA Datasets. The results have shown that for 

the Prefix Dewey Labelling scheme, when applied in DBLP Datasets, its 

initial labelling time was 8 seconds in comparison to the Range-based 

scheme in which their execution time was longer by 50%. Therefore, 

leading to the conclusion that the time required to label the document in 

Prefix Dewey Labelling scheme is more efficient compared to Range-

based scheme. 

All schemes were executed 10 times to progress the accuracy of the 

initial label times in different datasets. It was necessary to identify the 

number of runs in order to gain considerable results. 

From Figure 4.3 and 4.4 the Prefix Dewey Labelling scheme has a 

smaller label size in comparison to the Range based coding methods, 

except in the utf-32 test, it has shown that Range-based scheme 

performed better than Prefix Dewey scheme in NASA and TreeBank 

datasets. 

 

4.5 Conclusion.  

This chapter compares two XML labelling schemes, namely Range-

based encoding and prefix Dewey encoding. The work was aimed to 



 

66 

 

compare these schemes concerning the fastest labelling time and to 

ensure the generation of short labels in term of memory size and also to 

control the bits subsequent of the label value using utf-8, utf-16 and utf-

23. Our experimentation has shown that the overall label size for Prefix 

Dewey has a smaller label value in comparison to the Range based 

encoding scheme, except in the utf-32 test, where Range-based scheme 

performed better in NASA and TreeBank datasets. In addition, when the 

schemes were applied to DBLP, TreeBank and NASA, their initial 

labelling time was 4,6 and 6 seconds respectively in comparison to the 

Range-based scheme in which its execution time was longer by more 

than 50 %.  

Leading to the conclusion that the time required to label the document in 

Prefix Dewey Labelling scheme is more efficient compared to Range-

based scheme. Also, the overall label size for Prefix Dewey has a smaller 

label value in comparison to the Range based encoding scheme.  

In the next chapter, we present a novel labelling scheme by combining 

the advantages of the Prefix Dewey Labelling scheme. In order to build 

our scheme which aims to achieve the fastest labelling initial time and to 

ensure the generation of short labels in term of memory size. 
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5 
PENTAGONAL 

LABELLING 
SCHEME FOR 

PREFIX DYNAMIC 
XML DATA  

 
 
 
 
 

 

In this chapter we propose a novel Pentagonal scheme using Pentagonal 

theorem for assigning initial labelling and Handling XML updates. Various 

XML labelling schemes have been proposed to improve the storage, 

insertion and retrieval in dynamic XML data. Unlike other labelling 

schemes, our scheme preserves pentagonal numbers theorem [130] for 

insertions when updates occur.  
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The numbers n(3n - 1)/2 are called pentagonal numbers [115]. The first 

five pentagonal numbers are 1, 5, 12, 22 and 35. These numbers 

represent points that can be arranged to form regular pentagons [131]. 

In section 5.1 we cover an overview on the proposed Pentagonal labelling 

schemes, in Section 5.2 we discussed assigning the initial labelling for 

the Pentagonal Scheme, Section 5.3 presents handling XML updates that 

describe the Insertion Before the Leftmost sibling (Section 5.3.1), 

Insertion After the Rightmost Node (Section 5.3.2), Insertion Between 

Two Nodes (Section 5.3.3), Insert a child into a leaf node (Section 4.4.4) 

and Illustrates of node insertions (Section 5.3.5). The experiments of 

proposed labelling schemes presented in Section 3.4. the Results 

Analysis detailed in section 5.5. Lastly, Section 5.6 concludes the 

chapter. 

 

5.1 Overview 

At the development stage of our scheme, many other schemes were 

considered as a start point and offered inspiration for the Pentagonal 

labelling scheme whose strengths and weaknesses we evaluated. The 

following are some of the schemes that formed the basis to develop and 

improve our scheme.   



 

69 

 

DDE [22] is based on mathematical equations where the new label is 

allocated the midpoint and assigned its position between two siblings. 

The ORDPATHs [44] labelling scheme was designed to avoid relabelling 

by reserving negative-even integers for the insertion of new nodes. DFPD 

[21] is also based on mathematical equations where float-point numbers 

represent the new label. For more detail about these and other schemes, 

see chapter (3).   

Based on our review of labelling schemes, we proposed the Pentagonal 

labelling scheme as a novel algorithm, since the use of pentagonal 

numbers to add new labels has not previously been attempted. Other 

aims, were to address some of the limitations of existing techniques 

which are to obtain a small label size, support dynamic updates without 

relabelling nodes, support frequent insertions without overflow problems, 

and evaluate query performances. More information on the limitations of 

existing techniques is provided in section 3.2. 

The initial label mechanisms of nodes are generated based on the 

Pentagonal approach. The Pentagonal scheme can be denoted by (d, f ), 

where d is synchronized with the Prefix labelling scheme and f is the 

Pentagonal test function for reserving the pentagonal number.      
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We used the prefix-based labelling scheme and preserved the 

pentagonal exponents for dealing with the insertion schemes. In the prefix 

XML labelling scheme, each node is associated with a node-id path from 

the root to the last component [20]. The last component is named as a 

self-label, and the other components are named as parents. The numbers 

n(3n - 1)/2 are called pentagonal numbers [130].  

The following formula is for pentagonal numbers for dealing with the 

insertion schemes (see Equation 1). 

∏(1 − 𝑥𝑛)

∞

𝑛=1

=  ∑(−1)𝑛𝑥𝑛(3𝑛−1)/2

+∞

−∞

                                           (1) 

(1 − 𝑥)(1 − 𝑥2)(1 − 𝑥3) … = 1 − 𝑥 − 𝑥2 + 𝑥5 + 𝑥7 − 𝑥12 − 𝑥15  

 

Table 5.1 gives the first twenty of Pentagonal numbers. 

N f (n) n  f (n) 

1 1 11 176 

2 5 12 210 

3 12 13 247 

4 22 14 287 

5 35 15 330 

6 51 16 376 

7 70 17 425 

8 92 18 477 

9 117 19 532 

10 145 20 590 

Table 5.1. Pentagonal sequences. 
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5.2 Assigning initial labelling for the Pentagonal      

       Scheme 

  
As presented in Figure 5.1, the initial labelling of our Pentagonal scheme 

is based on the DDE labelling scheme and uses the prefix-based labelling 

scheme. In the Pentagonal scheme, the root node “Universities” is 

assigned a label value “1” and called the parent label. The child node 

labels form a sequence of components separated by ’.’. It assumes that 

node X in the XML tree has the label x1.x2….xm; thereby, the labels of its 

children are x1.x2….xm.i. Moreover, i in the initial label is not a pentagonal 

number so we cannot start with i = 1. The first child “Department” is 

assigned a label value “1.2”. The second and third children, “Employee” 

and ” Student” are assigned the label values “1.3” and “1.4” respectively. 

The fourth child “Id” is assigned a label value “1.6”, and the last 

component is 6 instead of 4. This aims to preserve the pentagonal 

numbers and retains them to support the XML updates. We illustrated the 

proof of updates in Figure 5.5. The labels of the remaining child nodes 

are generated by incrementing the label and avoiding the use of 

pentagonal numbers.    

 

 

1 
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Figure 5.1. The initial labelling for Pentagonal scheme. 
 
 

Definition 1. Given two labels X and Y, a node X is the root of a subtree 

containing the node Y. If there is a linked path of nodes from the root X to 

node Y such that Z1,…,Zm is a linked path of nodes and node X=Zn, and 

Y=Zm, where n<m then node X is an ancestor of the node Y and node Y is 

a descendent of X. 

 

Definition 2. Given two labels, X and Y, a node X is a parent of node Y; if 

X and Y are directly linked in an XML tree, and X appears exactly one level 

above Y, then X is a parent of a node Y and Y is a child of X. 

 

Definition 3. Nodes X and Y are siblings if both nodes are at the same 

level and share the same parent in an XML tree. If X appears to the left 
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of Y in an ordered XML tree, then X is called a pre-order sibling to node Y, 

whereas Y is a post-order sibling to node X. 

 

Algorithm 1 Assigning the initial labelling for Pentagonal algorithm 

Input: XML document 

Output: Prefix Labels  

Comment1: ⊕ denotes concatenation 

01      if (n is the root) 

02            rootlabel ⟵ 1 

03      else 

04            prefixLable(n)= label(parent(n)) 

05            for (n=1; n<=Cound(n); n++) 

06                   selflable = n; 

07                   get-original function(selfLable);   

08                       // if the result is integer means the selflable is a pentagonal 

09                            if (selflable is a pentagonal number)     

10                                    selflable ++; 

11                            endif 

12                     NewLabel ⟵ prefixLabel(n) ⊕ selflable(n) 

13            end for  

14      endif  

 

     Figure 5.2: Illustration of obtaining the initial labels for Pentagonal 

algorithm.  

According to the first two lines, the root label is assigned the digit ‘1’. The 

first child label is assigned the digit ‘1.2’ and preceded by a sequence of 
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prefixLabel(n) ⊕ selflable(n). The selflable(n) cannot start with 1 as 1 is 

a pentagonal number. The labels of the remaining child nodes are 

generated by incrementing the label. In this stage, the scheme avoids 

using the pentagonal numbers. 

 

Algorithm 2 Insert Labels in Pentagonal Scheme 

Input: Previous node labels 

Output: Insert new nodes using Prefix Pentagonal numbers. 

Comment1: ⊕ denotes concatenation 

01 if (leftSideNode is empty and rightSideNode is notempty)  

02         selflabel⟵lastComponentRightSide – 1 

03         get-original function(selflable);              

04          if (selflable(n) is a pentagonal number) 

05                 selflable(n) ⟵ selflable(n)-1 

06          endif 

07           NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n) 

08 endif 

09 if (leftSideNode is notEmpty and rightSideNode is empty)  

10          selflabel⟵lastComponentLifttSide +1 

11          if (selflable(n) is a pentagonal number) 

12                selflable(n) ⟵ selflable(n)+1 

13          endif 

14          NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n) 

15 endif 

16 if (leftSideNode and rightSideNode is notEmpty) then 

17     if (leftSideNode and rightSideNode are non-pentanal numbers) then 
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18         selflable(n) ⟵ get-pentagonal (leftSideNode + rightSideNode) 

19         NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n) 

20     endif 

21     if (leftSideNode and rightSideNode are pentanal numbers) then 

22            selflable1(n) ⟵ get-original (leftSideNode) 

23            selflable2(n) ⟵ get-original (rightSideNode) 

24            selflable(n) ⟵ get-pentagonal (selflable1 + selflable2) 

25            NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n) 

26     endif 

27     if (leftSideNode is pentanal and rightSideNode is non-pentanal) then 

28            selflable1(n) ⟵ get-original (rightSideNode) 

29            selflable(n) ⟵ get-pentagonal (leftSideNode + selflable1) 

30             NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n) 

31     endif 

32     if (leftSideNode is non-pentanal and rightSideNode is pentanal) then 

33             selflable1(n) ⟵ get-original (leftSideNode) 

34             selflable(n) ⟵ get-pentagonal (selflable1 + rightSideNode) 

35             NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n) 

36     endif 

37 endif 

38 if (leftSideNode and rightSideNode are Empty) then   

39         prefixLable(n)= label(parent(n)) 

40         NewLabel(n) ⟵ prefixLabel(parent) ⊕ 2 

41 endif 

41 return NewLabel 

Figure 5.3. Illustration of the insertion of labels for Pentagonal algorithm 

and explained four types of insertion scenario.  
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Algorithm 3 Pentagonal-test algorithm 

Input: XML node 

Output: True or false. 

01     x ⟵ last component of the node tested 

02     𝑦 ⟵  (1 + √1 + (24 ∗ 𝑥) )/ 6 

03     if (y is an integer value) then 

04            return true  // the number is pentagonal  

05     else  

06            return false // the number is non-pentagonal 

07      endif  

Figure 5.4. Illustration of whether the last component of the tested node 
is pentagonal or not.  

 

 

Equation (2) is used for a get-pentagonal function:  

𝑓1 =  𝑛(3𝑛 − 1)/2, where n is a non-pentagonal value…..……….(2). 

Equation (3) is used for a get-original function:  

𝑓2 =  (1 + √1 + (24 ∗ 𝑥) )/ 6, where p is a pentagonal value …..(3). 

If the result of equation (3) is an integer value, then the last component of 

the node is a pentagonal value. In comparison, if the result is not an 

integer, then the last component of the node is a non-pentagonal value. 

We tested the last component of each node in order to reduce the label 
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size. For example, if the last component is 70, which is a pentagonal 

value, then equation (3) is applied, and the number will reduce to 7. 

Moreover, if the other last component is 176 this is a pentagonal value 

and equation (3) is applied. Then, the number will reduce to 11, as shown 

in Table 5.1. We add the new two values together; then, we apply the get-

pentagonal function in equation (3) to obtain a new self-label, which 

should be a pentagonal number. The new label is generated as the prefix 

label for the parent and concatenated with the new self-label. 

 

5.3 Handling XML updates 

 In this section, we emphasise the issue of handling XML updates, 

particularly in a dynamic labelling scheme that handles insertions without 

relabelling existing nodes. Our proposed scheme completely avoids 

relabelling in XML updates. Labelling schemes consider four cases of 

insertion [21, 22]. The case of an insert node before the leftmost sibling 

and after the rightmost sibling. Also, inserting between the two siblings 

and into the leaf node, the pentagonal labelling scheme provides all four 

cases when inserting nodes. This section illustrates the implementation 

of the four scenarios in insertion nodes, and using Algorithm 2 and 

Algorithm 3 (Figures 5.2 and 5.3) generates the values of the newly 
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inserted labels. Thus, let X and Y be two nodes, whereby node X is 

labelled as (x1.x2….xm), and node Y is labelled as (y1.y2….yn).   

 

5.3.1 Insertion Before the Leftmost sibling 

The first scenario: insert a new node before the leftmost sibling. 

Reducing the last component of the leftmost sibling by 1 and then by 

applying the Pentagonal-test in algorithm 3 (Figure 5.4) to creates the 

self-label. If the self-label is a Pentagonal number, then reduce another 1 

from the self-label. The new label generated as the prefix label is 

concatenated with the new self-label. For example, the leftmost sibling is 

labelled as x1.x2….xm; the generated new label is x1.x2….(xm-1). However, if 

(xm-1) is a Pentagonal number, then the generated new label is x1.x2….(xm-

2).  

 

5.3.2 Insertion After the Rightmost Node 

The second scenario: insert a new node after the rightmost sibling. The 

self-label is created by incrementing the last component of the rightmost 

sibling by 1 and then applying the Pentagonal-test algorithm. If the self-

label is a Pentagonal number, then increase the self-label by 1. The new 
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label is generated as the prefix label and concatenated with the new self-

label. For example, the rightmost sibling is labelled as x1.x2….xm; the 

generated new label is x1.x2….(xm+1). However, if (xm+1) is a Pentagonal 

number, then the generated new label is x1.x2….(xm+2).      

 

5.3.3 Insertion Between Two Nodes 

The third scenario: insert between two siblings. First of all, if the last 

component of the left-side node and the last component of the right-side 

node are both non-pentagonal numbers, the self-label is created by 

adding the last component of the left-side node to the last component of 

the right-side node and then apply a get-pentagonal function using 

equation (2) to obtain the self-label. The new label is generated as the 

prefix label and concatenated with the new self-label. For example, given 

two siblings, the left sibling is labelled as (X: x1.x2….xm), and the right sibling 

is labelled as (Y:y1.y2….yn) where m=n and xm, yn are non-pentagonal 

numbers, our algorithm is applied to get a pentagonal function for (xm+ yn) 

in order to get the self-label, and the new label is generated as the prefix 

label for the parent and concatenated with the new self-label.   

Secondly, if the last component of the left-side node and the last 

component of the right-side node are pentagonal numbers, our algorithm 

applies get-original function using equation (3) for the last component of 
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the left-side node and for the right-side node and adds the two values 

together. The get-pentagonal equation (2) is then applied to obtain a new 

self-label. The new label is generated as the prefix label for the parent 

and concatenated with the new self-label. Equation (3) used for get-

original function 

 𝑓2 = (1 + √1 + (24 ∗ 𝑥) )/ 6,  where p is a pentagonal value …..(3). 

For example, given two siblings, the left sibling is labelled as (X: x1.x2….xm), 

and the right sibling is labelled as (Y:y1.y2….yn) where m=n and xm, yn are 

pentagonal numbers. Our algorithm applies the get-original function for 

xm and yn and then applies the get-pentagonal function for the original 

values xm’+ yn’ in order to get the new self-label. Then, the new label is 

generated by concatenating the prefix label for the parent with the new 

self-label.  

 

Thirdly, if one node is pentagonal and the other is not a pentagonal 

number, our algorithm applies a get-original function for the pentagonal 

node and adds the two values together. Then the get-pentagonal function 

is applied to obtain a new self-label. The new label is generated as the 

prefix label for the parent and concatenated with the new self-label. For 

example, given two siblings, the left sibling is labelled as (X: x1.x2….xm), 

and the right sibling is labelled as (Y:y1.y2….yn) where m=n and xm is a 
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pentagonal number, yn as a non-pentanal number; our algorithm applied 

the get-original function for xm and then applied the get-pentagonal 

function for the original values xm’+ yn in order to get the new self-label. 

Then, the new label is generated by concatenating the prefix label for the 

parent with the new self-label.  

 

5.3.4 Insert a child into a leaf node 

Fourth scenario: insert a child into a leaf node, where the new label is 

created by concatenating the prefix label with the digit “2”. For example, 

the parent is labelled as (X:x1.x2….xz). The generated new label is 

(x1.x2….xz.2)  

 

5.3.5 Illustrates of node insertions 

 

 

 

 

 

Figure 5.5 Processing labelling for different node insertion. 
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Figure 5.5 illustrates an example of node insertions, as clarified in the 

above scenario. The new nodes are inserted into XML trees represented 

by grey circles, and the numbers inside the circles represent the order of 

inserted nodes. Node number 1 is inserted between two non-pentagonal 

numbers, label node 1.3 and label node 1.4 and its 1.pentagonal (3 + 4), 

which equals 1.70. Node number 2 is inserted between pentagonal and 

non-pentagonal numbers, which is 1.70 and 1.4 so we returned to the 

original pentagonal number, which is 7 and its 1.pentagonal (7 + 4) is 

equal to 1.176. Node number 3 is inserted between two pentagonal 

numbers, which is 1.70 and 1.176 so we returned to the original 

pentagonal numbers, which are 7 and 11 its 1.pentagonal (7 + 11) is 

equal to 1.477. Node 4 is inserted after the rightmost sibling and labelled 

as 1.4; the generated new label is 1.6. If 1.(4+1) is a pentagonal number, 

then the generated new label is 1.(4+2), which is equal to 1.6. However, 

node number 5 is inserted before the first leftmost child; the leftmost 

sibling is labelled as 1.2, and the generated new label is 1.0. 

The following section describes the experiments with their objectives. 

 

5.4 Selection of dynamic labelling schemes. 

Labelling schemes are mainly created to store XML documents. They are 

similar to other storing techniques since they support features such as 
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perform an XML query using the path node information. Moreover, a 

labelling scheme helps to capture the structural relationships during the 

processing of queries. Despite all these similarities, Dynamic Labelling 

schemes differ from other Labelling schemes in that their internal model 

is based on dynamic XML documents and not based on the static model. 

Storing data in dynamic XML documents is appropriate for the reason 

that it is supports data updates without duplicating labels or relabelling 

old nodes. 

It is imperative for the developer of any new labelling scheme to compare 

against existing labelling schemes and are widely used. This comparison 

allows us to compare our work with provides confidence in the viability of 

our solution.  

We have selected different labelling schemes for this comparison based 

on the following selection criteria. 

1. The main approach to store XML data is dynamic labelling schemes 

which is regularly updated [22, 26, 43, 46, 101, 102] and support data 

updates without duplicating labels or relabelling old nodes.  Unlike other 

approaches to store XML data such as the static labelling schemes [14, 

34, 85] which is used to store non-updatable XML documents. 

2. Supports the Prefix labelling schemes. 

3. Supports Loading of different XML document Sizes. 
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4. Supports XPath query language. 

These criteria ruled out the selection of ReLab [46], NLSXU scheme [83] 

and Dewey coding [34] as these labelling schemes focus on static XML 

labelling schemes. In addition, ReLab [46] is an Interval Labelling 

scheme. 

The labelling schemes that satisfy the aforementioned criteria were 

selected for the comparison, and they are: DPLS scheme [13] and the 

DDE scheme [22]. 

The following section describes the experiments with their objectives. 

 

5.5 Experiments 

To compare the proposed pentagonal labelling scheme to the DPLS and 

DDE schemes, several experiments were performed.  

These experiments were conducted on the initial label and the handling 

insertions. The comparison has tested different aspects, time and size. 

These aspects had been facilitated using statistical analysis for 

pentagonal, DDE and DPLS schemes. All experiments were run on intel 

Core i7 processor with 8GB of main memory and a 64-bit Operating 

System, running a Windows 10 system. We run DDE, DPLS and 

pentagonal algorithms in Java IDE 8.2. The experiments evaluated the 
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scheme’s performance in terms of the initial time by seconds and the 

label size by Kbytes. We carried out the experimental process on different 

datasets [115].  

The selection of XML datasets represents various features of XML trees, 

such as the number of nodes, file sizes and depth. It is crucial to consider 

the variety of different datasets in order to reflect the scalability of the 

dataset in our results and evaluation. The real-life XML datasets that we 

used are DBLP, NASA, Reed, UWM, eBay, Sigmod and XMark. The 

Digital Bibliography Library Project (DBLP) database is a large XML file 

related to computer science publications, conferences, series and books. 

The DBLP dataset is used by a wide variety of XML database 

applications, and it was used due to the ability to provide a wider range 

of sibling nodes with its maximum breadth being 328,858 [116].  

The XMark dataset is a well-known dataset and the most common 

benchmark for XML data management [117, 118]. It contains a scalable 

document database and is a large file with 111MB with a deep recursive 

ancestor structure. Moreover, the decedent nodes have a depth of 12 and 

a wide range of fan-out nodes which have different breadths at each level 

with the maximum being 25,500 nodes.  

TreeBank datasets are designed by the University of Pennsylvania’s 

Department of Computer and Information Science, and the size of a 
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TreeBank XML file is 82 MB with maximum breadth 144,493 [115]. The 

NASA database contains reliable astronomical data and has been 

developed from a flat-file format by a NASA XML Project. The size of the 

XML file is 23 MB with maximum breadth 80,396. A Sigmod record is 

generally used to present and evaluate small XML databases [115]. eBay 

is an auction data converted to XML from web sources, Reed and UWM 

datasets store university courses’ data derived from university websites 

[115].  

Table 5.2 gives the properties of these datasets and summarises their 

characteristics. We specified and described the chosen datasets and the 

platform used.  

 

XML 
datasets  

Size of 
files 

Max depth  Total of 
nodes 

DBLP 172 MB 6 3332130  
TreeBank 82 MB 36 2437666 
NASA 23 MB 8 476646 
UWM 2 MB 5 66729 
Segmod 467 KB 6 11526 
Ebay 34 KB 5 156 
XMark 111MB 12 1666315 

 

Table 5.2. Features of the most common XML Benchmarks datasets. 
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Figure 5.6. The initial labelling time for Dewey, DPLS and Pentagonal 
Schemes 

 

 

Figure 5.7. The initial Label size for Dewey, DPLS and Pentagonal 
Schemes 
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5.6 Results Analysis 

In this section, we described the experiments that were used to evaluate 

the proposed Pentagonal Dynamic Labelling scheme compared to the 

Dynamic Dewey encoding scheme (DDE) and the Dynamic prefix 

labelling scheme (DPLS). The first experiment measured the initial label 

process in terms of time and size. Each of the schemes was individually 

executed a number of times, and the number of runs had to total at least 

10 [128, 129]. However, others suggested using at least 30 runs to 

progress the accuracy [132]. In our work, the first three runs were omitted 

to validate the reliability, the accuracy of the results, and to avoid cache 

memory. From Figure 5.6, the Pentagonal Dynamic Labelling scheme 

performs best in DBLP, XMark and Treebank Datasets as the results 

have shown that for the Pentagonal Dynamic Labelling scheme, when 

applied in Treebank Datasets, its execution time was seven seconds in 

comparison to the Dewey and DPLS in which their execution time was 

longer, therefore leading to the conclusion that the Pentagonal scheme 

shows a better initial labelling time performance than the compared 

schemes, particularly when using large XML datasets. It is vital to identify 

the number of runs to gain considerable results; all schemes are 

executed 12 times to progress the accuracy of the initial label times in 

different datasets. 
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The statistical analysis of the results in Figure 5.7 indicated that there 

was an insignificant difference between the schemes in the initial labelling 

size; this is reasonable as DPLS and DDE are using the same scheme in 

the initial labels, and the proposed scheme at this stage avoids using 

pentagonal numbers. In addition, it would be reasonable to expect the 

growth of the label’s size as the document size increases. From Figure 

5.7, we can clearly identify that the size of loading the initial labels for 

Pentagonal, DPLS and DDE schemes are almost the same as DBLP, 

XMark, Treebank, NASA, UWM, eBay and sigmod datasets. 

 

The second experiments were to evaluate the scheme’s facility to handle 

XML updates. Four groups of experiments were executed using 

Pentagonal, DDE and DPLS schemes. The tests have covered the 

insertion of small and large numbers of nodes into the databases based 

on different insertion scenarios. The tree update was addressed by [32] 

through looking at two insertion process: random skewed insertions 

repeatedly handle new nodes between two consecutive siblings’ nodes 

and ordered skewed insertions repeatedly insert new nodes before or 

after a particular node. 

 

The first scenario measured the labelling time required using random 

skewed node insertions. The second was used to evaluate the storage 
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space needed to store their labels. We compare the pentagonal scheme 

with DDE and DPLS schemes as they show powerful labelling dynamic 

in XML data. Figure 5.8. shows that the Pentagonal scheme achieved the 

fastest labelling time when handling random skewed node insertions. Our 

scheme can effectively support frequent insertions between two siblings’, 

and the reliability of the pentagonal scheme is reasonable. As illustrated 

in Figure. 5.9(a) the Pentagonal scheme has smaller label sizes than the 

DPLS scheme. In particular, the Pentagonal performs best when a huge 

number of random skewed nodes has been updated (see Figure. 5.9(b)).  

 

 

Figure 5.8(a). The labelling time of random skewed node insertions. 
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Figure 5.8(b). The labelling time of random skewed node insertions. 
 

 

 

Figure 5.9(a). Label size of random skewed node insertions 
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Figure 5.9(b). Labelling size of random skewed node insertions 
 

 

 

Figure 5.10. Evaluating the scheme’s facility for execution times 
to handle XML updates into leaf node. 
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Figure 5.11. Evaluating the label size to handle XML updates into leaf node 

 

 

Figure 5.12. Evaluating the scheme’s facility for the execution times 
to handle XML updates after the rightmost sibling. 
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Figure 5.13. Evaluating the label size to handle XML updates after the 
rightmost sibling. 

 

 

Figure 5.14. Evaluate the scheme’s facility for the execution times 
to handle XML updates before the leftmost sibling. 
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Figure 5.15. Evaluating the label size to handle XML updates before the 
leftmost sibling. 
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DPLS and DDE use the same scheme in the update. In the execution 
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scheme and its objectives. All experiments were run on the proposed, 

DDE and DPLS schemes.  

 

5.7 Conclusion 

We presented a novel Pentagonal dynamic labelling scheme to support 

updates over XML data. The experiment compared the ability of the 

Pentagonal Dynamic Labelling Scheme to handle insertions. In the 

experimental datasets, the tests covered the initial labelling in terms of 

the time and label sizes. Based on the experiments, the Pentagonal 

Dynamic Labelling scheme is more efficient with large XML documents; 

it performed best in DBLS, XMark and Treebank Datasets. A conclusion 

based on these results is that when labelling documents, our scheme has 

proven to be more efficient, particularly when using large size XML 

datasets. Also, the statistical analysis of the results indicated that the size 

of the initial labels for Pentagonal, DPLS and DDE are almost the same. 

This is reasonable as DPLS and DDE use the same scheme in the initial 

labels, and the proposed scheme in the initial labels just avoids using 

pentagonal numbers.  

 

In addition, four types of insertion scenarios were tested. Firstly, the 

random skewed node insertions; the pentagonal scheme efficiently 



 

97 

 

supports frequent insertions between two siblings. The outcome showed 

that our scheme achieved the fastest labelling times in term of random 

skewed node insertions. Moreover, in terms of label size, it has been 

verified that when handling XML skewed updates between two siblings, 

our scheme generates more compact labels every time than the DPLS 

scheme, which leads to decreased storage costs and performs the best 

when a big number of random skewed nodes is updated. From this, we 

evaluated the scheme’s facility for the execution times and label size to 

handle XML updates into the leaf node, after the rightmost sibling and 

before the leftmost sibling.  

 

The aim of the next chapter is to analyses the query performance of 

labelling schemes over dynamic XML documents. The experiment 

compared the ability of the Pentagonal Dynamic Labelling Scheme to 

handle response time queries and the time spent to determine different 

relationships. 
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6 
4 QUERY 

EXPERIMENTS 
 

 

 

 

In chapter 3, we discussed that extant research such as DPLS and DDE 

schemes evaluated the XML query process only through determining the 

relationships over a large number of randomly selected label pairs [13, 

21, 22]. In addition, other researchers did not evaluate the query 

performance experimentally but only presented it theoretically [10, 19].   

 

This chapter measured performance for our novel scheme based on 

query response time and determined structural relationships based on a 

prefix comparison. 

 

In section 6.1 we cover an overview of datasets and queries for 

evaluation; Section 6.2 describes the Query performance where section 
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6.2.1 analysis the results of the query performance on the initial label and 

Section 6.2.2 analysis the results of the query performance after 

insertion. Lastly, Section 6.3 concludes the chapter. 

 

6.1 Overview of Datasets and Queries for 

evaluation 

XPath Query retrieves and navigates an XML document based on regular 

path expressions by appropriate structural relationships [43]. We adapted 

XPathMark queries that include the main aspects of the XPath language 

[119] and different relationships [117, 118]. XPath queries are widely 

used in other research, such as [120-123]. XPathMark was designed for 

the XMark Benchmark, which is a well-known and the most common 

benchmark for XML data management [117, 118], and it also presented 

in more detail in section 5.4. Different queries are specifically designed 

to validate the scalability of the XMark dataset, and it provides a variety 

of structural relationships, such as child-parent, ancestor-descendent 

and following-preceding sibling [117, 118].  

We applied the structural joins stack-tree algorithm [133] to perform 

XPath queries in both the proposed and compared schemes. The 

structural joins algorithm leads to optimal join performance, and this is 

key to the efficient implementation of XML queries [134]. Moreover, the 
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XPath queries works more efficiently under the structural joins algorithm 

[135]. Therefore, the developers of the XML labelling schemes, such as 

[33, 136-138], have used structural joins for querying the XML dataset. In 

their experiments, each query was individually executed several times, 

with the minimum being 10 times [128, 129]. However, from the statistical 

test perspective, others prefer at least 30 runs in order to enhance the 

accuracy of the test [132].   

In our work, the first 10 runs were omitted to avoid cache memory and to 

validate the reliability and accuracy of the results. Queries were executed 

in 1,666,315 initial labels for each scheme in the XMark dataset as this is 

the total number of nodes in the Xmark dataset in order to determine the 

relationships amongst 6,000 pairs of labels that were newly inserted to 

test the query performance when XML is updated. All tests were 

performed on the Pentagonal, DDE and DPLS schemes. Tree-structured 

relationships are parent-child (PC), ancestor-descendent (AD), sibling 

(S), lower common ancestor (LCA), and document order (DO).   

The XPath queries used in our experiments are defined in Table 6.1 [117, 

118], where the first column determines the relationship between the 

nodes; the second column indicates and describes the queries. 

   

https://www.sciencedirect.com/science/article/pii/S016412120800201X?casa_token=01JDPBA5W1cAAAAA:soKqMguW1i8f4mUdER57lThbhGvdPajv8NRPq9SWEmpNb9lPZDBKh07gFw7wcGMZ6Y5dK6lAkQ#tbl2
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Axis name   Example & description 
 

Child Axes. Query 1:  /site/regions/*/item  

- Selects all children of the current node, and all 

the items. 

Parent Axes. 

 

Query2: /site/regions/*/item[parent::namerica  

or parent::samerica] 

- The (North or South) American items. Element 

named items are the children of the world region 

they belong to. Retrieve all items belonging to 

either North or South America. 

Ancestor Axes.  

 

Query 3: //keyword/ancestor::listitem  

- Ancestor: Selects all ancestors (parent, 

grandparent, etc.) of the current node. 

Descendent Axes. 

 

Query4: /descendent-or-self::listitem 

- Descendant-or-self: Selects all descendants 

(children, grandchildren, etc.) of the current 

node and the current node itself. 

Sibling Axes. Query5:  

/site/open_auctions/open_auction/bidder 

- Children named the bidder of a given open 

auction are siblings. Following-sibling: Contains 

the following siblings of the current node.  

Table 6.1. XPath Queries 

 
 

 Queries1 and 2 represent parent-child relationships; query1 selects all 

children of the current node and query2 retrieves all the items belonging 

to either North or South America, while the elements named item are 

children of the world region to which they belong. Queries3 and 4 

represent the ancestor-descendent relationship; Query3 selects all 

ancestors (parent, grandparent, etc.) of the current node. Query4 selects 

all descendants (children, grandchildren, etc.) of the current node and the 
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current node itself. In addition, query5 refers to the following siblings (i.e. 

post-order siblings) of the current node. 

In our work, we evaluate our scheme for query performance by using the 

most common structural relationships. 

 

6.2 Query performance  

In this chapter, we evaluated our scheme for the query performance by 

using XPathMark queries and the time spent on determining different 

relationships. In this section, we compared the query performance of 

different labelling schemes. Also, we performed our experiments by 

computing the following relationships: parent-child (PC), ancestor-

descendent (AD), sibling (S), lower common ancestor (LCA), and 

document order (DO). In the first experiments (see Section 6.2.1) as we 

evaluated the response time by using different types in the XPath 

queries, which are child-parent, ancestor-descendent and following-

sibling. The second experiment supports query processing by 

determining the structural relationship between nodes (see Section 

6.2.2).  

 

https://www.sciencedirect.com/topics/computer-science/query-performance


 

103 

 

6.2.1 Query performance and Results’ Analysis 

on the initial label. 

In this section, we evaluated the response time for the queries by using 

different types in the XPath queries, which are child-parent, ancestor-

descendent and following-sibling relationship. The queries were 

executed in 1,666,315 initial labels for each scheme in the XMark dataset 

as this is the total number of nodes in the Xmark dataset.  

 

Figure 6.1: Comparison of the query performance over the initial labels  

 

Figure 6.1 reports the results of the query performance execution time 

when applying different labelling schemes. We applied XPathMark 

queries in the initial label of the DDE, DPLS and Pentagonal schemes. 

The queries run over the labels of the XMark dataset; they represent a 

0

5

10

15

20

Q1-PC Q2-PC Q3-AD Q4-AD Q5-Sibling

R
es

p
o

n
se

 t
im

e 
(s

)

Querying time

DDE DPLS Pentagonal

https://www.sciencedirect.com/topics/computer-science/query-performance


 

104 

 

parent-child relationship for Queries1 and 2, and an ancestor-descendent 

relationship for Queries3 and 4. In addition, Query5 represents the sibling 

relationship.  

The results in Figure 6.1 indicate that there was no difference between 

the DDE and DPLS schemes as these schemes used the same Prefix 

Dewey scheme to generate the initial labels. However, there was a 

difference in the query performance in the initial labelling between our 

scheme and the compared schemes. The Pentagonal Labelling scheme 

performs better in Queries 1, 2 and 5 for parent-child and sibling queries 

than DPLS and DDE, while Queries 3 and 4 take the same length of time 

for the ancestor-descendent queries.   

This reflexion was investigated statistically in order to obtain the statistical 

results of the comparison between the algorithms, the Mann Whitney U-

test was used [139]. It calculated the U statistic that corresponded to each 

algorithm by applying the time of each query individually using equations  

4 and 5. 

UA = nAnB + ((nA(nA+1))/2)-RA …………………    (4) 

UB = nAnB + ((nB(nB+1))/2)-RB  ………………….  (5) 

We calculated the RA, RB by run each schemes several times and then 

we sum the the time allocated to the Pentagonal and the DPLS schemes 

respectively [139]. Therefore: nA, nB is the number of observations in the 

Pentagonal scheme and the DPLS scheme respectively, In this 
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expermint, the number of observations was five. The Mann Whitney U-

test provided a 𝑝-value less than the significance level as the p-value that 

obtained was 0.004 when the significance level was 0.05 [139]. This 

means that the test supports the pentagonal scheme; it had a direct 

impact on the response time for the parent-child and sibling queries. The 

Mann Whitney U-test showed that the ancestor-descendent queries did 

not quantify a significant difference as the p-value was 0.579 when the 

significance level was 0.05.  

 

 

6.2.2 Query performance and Results’ Analysis 

after insertion.  

This experiment measured the time needed to determine the different 

relationships between two nodes using their labels. Figure 6.2 presents 

the time required to determine the relationship after 6,000 pairs of new 

labels were inserted. The performance was tested on DDE, DPLS and 

Pentagonal schemes. The results gained from this experiment shows that 

the Pentagonal Labelling Scheme performed best in the parent-child 

(PC), sibling (S), lower common ancestor (LCA), and document order 

(DO). However, the same results were obtained in the ancestor-

descendent (AD) relationship.   
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The results showed that when applying the sibling (S) relationship to the 

Pentagonal scheme, the execution time was 68 millisecond, which was 

faster by 35.3% than the DDE and faster by 44.1% than the DPLS. In 

addition, when applying the parent-child (PC), lower common ancestor 

(LCA), and document order (DO) relationships, the execution time was 

12, 28, 16 milliseconds less respectively in the Pentagonal scheme 

compared to the DDE and DPLS. This could suggest that the time 

required to determine the relationship in our scheme is more efficient 

amongst sibling, parent-child (PC), lower common ancestor (LCA), and 

document order relationships. Our scheme can effectively support 

queries after skewed insertions, and the reliability of the pentagonal 

scheme is reasonable as it has a fast response time, which thus means 

it handles queries efficiently. As Figure 6.2 shows, the Mann Whitney U-

test was used to test for significance to calculate the time spent on 

determining different relationships. The p-values were 0.001 for the 

parent-child, sibling, LCA and DO relationships. The tests provided a 𝑝-

value less than the significance level of 0.05; this means that these 

queries were faster. For the query ancestor-descendant, the Mann 

Whitney U-test did not quantify a significant difference as the p-value was 

0.531. 
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Figure 6.2: Computation time of relationships 
 

 

 

According to the test results, there is a difference in the querying time 

between the compared schemes for the initial label for both parent-child 

and sibling (p = 0.004). In addition, there are a difference in the 

determination time for relationships after insertion for parent-child, 

sibling, Lowest Common Ancestor (LCA), and Document Order 

relationships as (p = 0.001). The tests provided a 𝑝-value less than the 

significance level of 0.05; this means that these queries were faster and 

confirmed a better performance.                                  

The findings indicate that the time for parent-child and sibling queries, 

also determines the time for the parent-child, sibling, Lowest Common 

Ancestor (LCA), and Document Order relationships. The p-values, which 
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ranged from 0.001 to 0.004, were obtained, which are extremely low 

values. This means that the test supports the pentagonal scheme; it had 

a direct impact on the response time and was faster than the compared 

schemes. 

 

6.3 Conclusion 

The aim of this chapter is to analyses the query performance of labelling 

schemes over dynamic XML documents. The experiment compared the 

ability of the Pentagonal Dynamic Labelling Scheme to handle response 

time queries and the time spent to determine different relationships. The 

results showed that the Pentagonal Dynamic Labelling Scheme has a 

faster response time than the DPLS and DDE for parent-child, siblings, 

lower common ancestor, and document order. However, all schemes 

performed equally in the ancestor-descendent relationship queries. 

 

According to the experimental results, Pentagonal is more efficient than 

the DPLS and DDE schemes except for the ancestor-descendent 

relationships where all schemes had similar response time.  

However, it proved its capability in terms of the query performance on the 

initial label and in determining the relationships after insertion.  
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The next chapter compared the ability of the Pentagonal Dynamic 

Labelling Scheme with two well-known Native XML databases systems, 

the eXist database and BaseX database to handle different dataset sizes 

and executed for different queries. 
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7 
 COMPARISON BETWEEN 
NATIVE XML DATABASE 

STSTEMS and 
PENTAGONAL LABELLING 

SCHEME 
 

 

 

 

The previous chapter described the experiments that were used to 

measure the performance on the basis of query response time. This 

chapter presents the results obtained from these experiments and 

compares the results from our proposed scheme with two well-known 

Native XML databases systems. In this work, we consider eXist database 

version 5.2 [66] and BaseX database version 9.4 [140].  

 

The next section identifies the concept of Native XML database systems 

and Introduction to database systems, followed by non-functional 



 

111 

 

comparison features and attributes in section 7.2. Section 7.3 presents a 

functional comparison, the experiments based on the comparison of 

loading time and query response time. Section 7.4 presents the result 

analysis, Load Time Performance (Section 7.4.1) and Query 

performance (Section 7.4.2). Finally, Section 7.5 concludes this chapter. 

 

7.1 Selection of Native XML database systems 

Native XML databases are mainly created to store XML documents. They 

are similar to other databases since they support features such as 

security, transactions, multi-user access, query languages, programmatic 

APIs and many other vital features. Despite all these similarities, Native 

XML databases differ from other databases in that their internal model is 

based on XML and not based on the relational model which what other 

databases are commonly based on [141].  

 

Storing data in XML documents in a native XML database is appropriate 

for the reason that it is space-efficient when data is semi-structured. This 

is where there is a variety in its structure in which mapping it to a relational 

database causes a large number of tables or a large number of columns 

with null values [141]. 

It is imperative for the developer of any new labelling scheme to compare 

against existing real-world databases that use their labelling schemes 
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and are widely used. This comparison allows us to compare our work with 

industry-standard systems and provides confidence in the viability of our 

solution, and its applicability in real-world settings.  

We have selected different databases for this comparison based on the 

following selection criteria. 

1. The main approach to store XML data is the Native XML Database 

(NXD) that is used to store document-centric XML which contains semi-

structured XML document and is stored in the hierarchical structure [66]. 

Unlike other approaches to store XML data such as the XML Enabled 

Database (XED) which is used to store data-centric documents that 

contain well-structured information and can be transferred into a 

traditional relational database [64, 65]. 

2. Supports XPath query language. 

3. Supports Loading of different XML document Sizes. 

4. Utilises XML Parser to generate the XML labels that represent the XML 

tree structure of the XML files.  

These criteria ruled out the selection of DB2 and Oracle XML DB as these 

databases focus on XML-enabled database as data-centric documents. 

The databases that satisfy the aforementioned criteria were selected for 

the comparison, and they are: eXist database system version 5.2 [142] 

and the BaseX database system version 9.4 [140, 143] 
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7.1.1 Introduction to eXist and BaseX database 

systems 

eXist: XML documents are stored and managed in hierarchical 

collections. The eXist database uses a numerical indexing scheme in 

order to speed up query processing [66]. This scheme supports the rapid 

determination of structural relationships between nodes. For example, 

ancestor-descendant, parent-child, and following–preceding siblings. In 

addition, all nodes in the document are indexed. Consequently, the eXist 

creates full indexing over all nodes [66].  

The indexing or the numbering scheme implemented in eXist provides an 

extension to Lee et al. [97] which presents the document tree as k-ary 

tree, where k is matching to the maximum number of children nodes of 

the element in the XML document. A unique number is allocated to each 

node by traversing the tree in level-order. For two nodes n and m of a 

tree, size(n) = size(m) if level(n) = level(m), where size(x) is the number 

of children of node x and where level(y) is the path’s length of the from 

the root node of the tree to y. In addition, at each level, additional 

information on the number of children needs to be stored in an array. 

Figure 7.1 illustrates an example of the XML document, and Figure 7.2 

shows the labelling generated by eXist [61]. 
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<contact> 
<name>John Cage</name> 
<phone> 

<office>19</office> 
<home>1010</home> 

</phone> 
</contact> 

Figure 7.1. An example of XML document. 

 

  

 

 

 

 

 

 

 

Figure 7.2. Unique identifiers allocated by the level-order labelling 

scheme [66]. 

 

In order to avoid the relabelling node on the case of updating documents, 

it is possible to leave spare labels between nodes. However, eXist does 

not afford an advanced update scheme as illustrated in Figure 7.2, the 

eXist is more suitable for static documents that rarely updates rather than 
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dynamic as it is updates document as a whole rather than to manipulate 

a single node [66].  

BaseX database modification the encoding scheme to speed up the 

query execution time and optimize the memory consumption [143]. 

Figure 7.3 shows the encoding scheme generated by BaseX. 

 

Figure 7.3: Table Encoding in BaseX 

 

The basic of BaseX scheme is the pre-order and post-order plane. All 

nodes in the document are allocated a pre and post value, based on the 

locations they take during a pre and post tree traversal. Each document 

node persuades a partition of this plane into four separate sections, in 

order to represent the main XPath axes parent-child, ancestor-

descendent and preceding-following [40, 143, 144]. However, using an 

ordering approach helps with gathering a compact storage. In addition, it 

helps to hold the fixed-length label to each node [40]. However, as the 

pre-order and post-order values signify the hierarchy and the order of the 
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document, performing the update of nodes are expensive [40, 41], 

particularly when facing the worst-case scenario of updating, that can 

lead to relabelling of all nodes in the document [40, 41]. In BaseX the pre-

value serves as node id. In addition, to keep track of the node 

relationship, BaseX also uses distance and size values which is for two 

reasons. Firstly, in comparison to the parent value, the distance value is 

the number of nodes that exist between the parent node and the child 

node. Whenever the pre-value of the parent changes, then all child nodes 

must be updated. In BaseX, the parent is always equal to “pre-value - 

distance value”. Secondly, the information on the number of descendent 

nodes is provided by the size value. However, the BaseX scheme has 

drawbacks relating to updating operations. This weakness can be 

highlighted when adding a subtree u as an only child to an element f 

considering that t is the number of nodes in u. As a result, three values 

must be updated as follows:  

1. Based on the following axis of f, the pre-values of all nodes are 

increased by t.   

2. All the ancestors of f and its size values are increased by t. 

3. Based on the following sibling axis of f, all the distance values of 

the nodes are increased by t  
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This proves that the node identifiers are not useful when the pre-value is 

changed after an update [40]  

 

7.1.2 selection of datasets 

We discuss our results, which were executed by applying XMark dataset 

[117, 118] and Shakespeare's plays dataset [145] in both the eXist 

database system, BaseX database system and the Pentagonal labelling 

scheme. We applied queries in Hamlet, one of Shakespeare's plays, 

which was stored as an XML ordered dataset with a document size 

273KB [145] and in XMark with a document size 111MB, XMark dataset 

is the most common benchmark for XML data management [117, 118], it 

is well-known dataset and contains a scalable document database with a 

deep recursive ancestor structure. In addition, the decedent nodes have 

a wide range of fan-out nodes and a depth of 12 which have different 

breadths at each level with the maximum being 25,500 nodes.   

 

7.1.3 comparison methodology 

We classify the comparison methodology into non-functional and 

functional parameters. This section gives more information on these 

parameters.  
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The non-functional parameters, such as XML parsers helps in dealing 

with XML data documents, while the functional parameters such as the 

query performance aid in evaluating the response time by using different 

types of XPath queries. 

The parser techniques convert the Native XML document into logical 

representations either as tree-based approach or as events [72, 76, 77, 

146]. The most common XML parsers are Document Object Model 

(DOM) and Simple API for XML (SAX) [72, 73, 77, 147].   

The Document Object Model parser is based on the XML tree approach, 

which requires the entire structure of the document to be built within the 

main memory, in order for it to represent XML document as a tree 

structure [71, 76]. The DOM parser demands memory space. This is 

necessary as the entire XML tree is loaded in memory where the DOM 

parser could be larger than the original XML document by up to 10 times 

[73, 148]. Loading the whole XML document into the main memory 

provides improved performance in terms of XPath Query retrieval, data 

access, modification and navigation of XML documents [76].  

The SAX parser technique scans an XML document and then creates 

events by treating the XML document as a stream, such as start elements 

and end elements [77, 78]. It is suited for dealing with large documents 

which do not fit in the main memory [72, 77-79]. In addition, the SAX 

https://www.sciencedirect.com/topics/computer-science/query-performance
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parser is best suited for extracting the content of specific elements [71]. 

The Non-Functional comparison is further highlighted in Section 7.2. 

An example of a Functional parameter is the loading time which is a 

measure of the performance in terms of the time required to load the 

datasets. A further explanation of the functional comparison of this study 

is presented in section 7.3. 

 

7.2 Non-Functional comparison: features and 

attributes 

A non-functional comparison is provided in table 7.1.   

Feature Pentagonal EXist BaseX 

The approach to 
store XML data 

Native XML 
database  
Document-
centric XML 

Native XML 
database  
Document-centric 
XML 

Native XML 
database  
Document-
centric XML 

Technology Java Java Java 

Query processing XPath XPath/XQuery XQuery 

Supported 
standard 

Path expressions Path expressions Path 
expressions 

Implementation of 
xpath query 
language 
(structural node 
relationships) 

Parent-child, 
ancestor-
descendent or 
previous-/next-
sibling.  

Parent-child, 
ancestor-
descendent or 
previous-/next-
sibling. 

Parent-child, 
ancestor-
descendent 
and previous-
/next-sibling. 

Document Size small to large 
collections of 
XML documents 

 Small to large 
collections of 
XML documents 

Small to large 
collections of 
XML 
documents 

Xml parsers Simple API for 
XML (SAX) 

Document object 
model (DOM) 
To speed up 
query processing, 

built-in, SAX 
parser and a 
DOM parser 

Associated 
scheme or DTD 

Not required Not required Not required 
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Update 
mechanism 

Dynamic 
documents 

Static documents Static 
documents 

 

Table 7.1. Features and attributes of eXist, BaseX database systems 
and Pentagonal labelling scheme. [66, 148-150]. 
 
 

EXist, BaseX and Pentagonal comparison: eXist, BaseX and Pentagonal 

are Document-centric XML which contain much-mixed content and larger 

sections of text.  

The eXist database did not provide an advanced update mechanism as 

it means updating a whole tree. This is a limitation for the eXist application 

as these documents need a frequent update [66]. In BaseX, performing 

the update of nodes is expensive [40, 41], particularly when facing the 

worst-case scenario of updating, that can lead to relabelling of all nodes 

in the document [40, 41]. In our scheme, it is possible to manipulate single 

nodes and support for dynamic document updates. eXist and BaseX have 

a user-friendly GUI for both database management and query 

processing. We applied the SAX parser in our scheme; this is due to the 

improved performance of the SAX parser in terms of handle large-scale 

XML documents [26]. The eXist database applied the DOM parser, which 

demands memory space. This is due to loading the entire XML tree in 

memory. Since the DOM parse could be larger than the original XML 

document up to 10 times [73, 148]. BaseX uses different XML parsers, 
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SAX parser, which is covered by the SAX-WRapper class, and a DOM 

parser covered by DOM-Wrapper class [148]. 

Documents in eXist, BaseX and Pentagonal scheme are not required to 

have an associated data type definition (DTD) or scheme [150]. The 

eXist, BaseX and Pentagonal Scheme automatically build indexes on the 

loading of XML documents [41, 150]. The supported standard in eXist 

and BaseX is XPath queries which allow users to query part of the 

document or even all the documents in the database [40, 149]. Similar to 

eXist and BaseX, Pentagonal scheme also uses XPath as its database 

query language. 

 

7.3 Functional Comparison: Experiments based on 

the comparison of loading time and query 

response time. 

 

The experiment measured the performance on the basis of query 

response time. This experiment used Shakespeare's plays dataset [8, 55, 

111, 151] and the XMark dataset [117, 118]. We applied queries in 

Hamlet, one of Shakespeare's plays, which was stored as an XML 

ordered dataset with a document size 273KB and in XMark with a 

document size 111MB. See (Chapter 5) for detailed characteristics of the 

dataset.  
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Query   Axis name   Dataset Example & description 
 

Query1:   Child Axes. XMark dataset /site/regions/*/item  
- Selects all children of the current 

node, and all the items. 

 

Query2: Parent 
Axes. 
 

XMark dataset /site/regions/*/item[parent::namerica  
or parent::samerica] 
- The (North or South) American 

items. Element named items are the 

children of the world region they 

belong to. Retrieve all items 

belonging to either North or South 

America. 

 

Query3: Ancestor 
Axes.  
 

XMark dataset //keyword/ancestor::listitem  
- Ancestor: Selects all ancestors 

(parent, grandparent, etc.) of the 

current node. 

 

Query4: Child Axes. Shakespeare's 

Hamlet 

dataset 

/PLAY/*/TITLE 

- Selects all children of the current 
node, all the title. 
 

Query5: 

 

Parent 
Axes. 
 

Shakespeare's 

Hamlet 

dataset 

/PLAY/*/TITLE[parent::PERSONAE] 
The PERSONAE Title. 
Element named Title are the 

children of the world Play they 

belong to. Retrieve all Title 

belonging to Personae. 

 

Query6: 

 

 

Ancestor-
Descendent 
Axes 

Shakespeare's 

Hamlet 

dataset 

/descendant-or-self::SPEECH 

- Descendant-or-self: Selects all 
descendants (children, 
grandchildren, etc.) of the current 
node and the current node itself.  

Table 7.2. XPath Queries for Hamlet - one of Shakespeare's plays – dataset 
and XMark dataset. 

 



 

123 

 

The XPath queries used in our experiments are defined in Table 7.2. for 

Shakespeare's plays dataset and XMark dataset [117, 118, 152]. 

 
7.4 Results’ Analysis  

In this experiment, we evaluate the eXist, BaseX databases and our 

scheme for the query performance by using XPath queries [152] on the 

dataset for Shakespeare's Hamlet and XPathMark queries [118] on the 

XMark dataset. In this section, we compared the query performance to 

an indexing scheme and labelling scheme. Each query was individually 

executed several times, for a minimum of 10 times [128, 129] in order to 

enhance the accuracy of the test. Our work was based on a personal 

computer with an Intel Core i7 processor, 8GB of main memory, a 64-bit 

Operating System, and running a Windows 10 system.   

 

7.4.1 Load Time Performance 

 In this section, we described the experiments that were used to evaluate 

the proposed Pentagonal Dynamic Labelling scheme compared to the 

eXist database and the BaseX Database. The first experiment measured 

loading time performance. Each of the databases was separately 

executed several runs in order to gain considerable results and enhance 

https://www.sciencedirect.com/science/article/pii/S016412120800201X?casa_token=01JDPBA5W1cAAAAA:soKqMguW1i8f4mUdER57lThbhGvdPajv8NRPq9SWEmpNb9lPZDBKh07gFw7wcGMZ6Y5dK6lAkQ#tbl2
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the accuracy of the loading times [123]. In this work, the first three runs 

were omitted to validate the accuracy, the reliability of the results. 

 

Figure 7.4 Loading time for Hamlet - one of Shakespeare's plays – dataset 

 

 

Figure 7.5 Loading time for XMark – dataset 
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From Figure 7.4, the BaseX database performs best in hamlet dataset; 

its loading time was 2 milliseconds. The Pentagonal scheme performs 

better than eXist in Hamlet dataset as the results have shown that for the 

Pentagonal scheme and eXist database when applied in Hamlet Dataset, 

the loading time for the Pentagonal scheme was 272 milliseconds. In 

comparison to eXist database in which its loading time was longer and 

reached 1 second and 3 milliseconds. From Figure 7.5, the BaseX and 

the Pentagonal scheme both perform better than eXist database in XMark 

Dataset as the results have shown that for the BaseX and Pentagonal 

scheme, when applied in XMark Datasets, their loading time was 7 and 

11 seconds respectively in comparison to eXist database in which its 

loading time was longer and reached 2 minute and 38 seconds, 

consequently leading to the conclusion that the time required to load XML 

document in Pentagonal scheme is efficient with larger and small 

document sizes. In addition, it would be reasonable to expect the growth 

of the loading time as the document size increases. From Figure 7.5, we 

can identify that the time of loading the document for XMark dataset, 

BaseX are almost the same as the pentagonal scheme. The eXist 

database had the worst loading time; This is due to loading the entire 

XML tree in memory which can delay the loading time. eXist database 

applied the DOM parser, which demands large memory space as the 

parser can be larger than the original XML document by up to 10 times 
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[73, 148]. In the Pentagonal scheme, the SAX parser was applied, this is 

due to the improved performance of the SAX parser in terms of handling 

large XML documents. In addition, BaseX is applying the advantage of 

both the DOM and SAX parser. This can be seen as the reason for BaseX 

have faster execution time than the Pentagonal Scheme. 

 

7.4.2 Query performance 

In this section, we evaluate the Pentagonal scheme for the query 

performance compared to the eXist database and the BaseX Database, 

using Shakespeare’s Hamlet dataset and XMark dataset. In this 

experiment, we compared the query execution time of eXist database, 

BaseX database and Pentagonal scheme. Moreover, we executed our 

experiments by evaluating different XPath queries (see Table 7.2).  

The queries run over XMark dataset, they represent a parent-child 

relationship for Q1 and Q2 and an ancestor-descendent relationship for 

Q3. In addition, Q4, Q5 and Q6 run over Hamlet Shakespeare's dataset, 

they represent a parent-child relationship for Q4 and Q5, and Q6 

represents the ancestor-descendent relationship.  
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Figure 7.6. Query performance in Shakespeare's Hamlet and XMark datasets 

 

According to the query performance in the datasets for XMark and 

Shakespeare's Hamlet, the eXist dataset presented a better performance 

in all queries. This is because determining the structural relationships 

using DOM is less complicated than in comparison to SAX [26]. In 

contrast, Pentagonal scheme showed better performance in Q1, Q2 and 

Q3 compared to BaseX.  

Pentagonal is more efficient than the BaseX database with the parent-

child and ancestor-descendent relationships which had a faster response 
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in with XMark database. This is because the queries benefit considerably 

from fast access to the parent-child and ancestor-decedent nodes. This 

is due to the labelling storage mechanism being based on Pentagonal 

numbering and prefix labelling scheme, where each node is associated 

with one value for the node-id path from the root to the last component. 

In contrast, the BaseX mechanism stores a combination of values to each 

node based on interval labelling schemes, each node is labelled as a 3-

tuple <pre,dist,size>, leading to long labels. Interval labelling scheme 

suffers from very long labels [26]. As a result of this restriction, the interval 

labelling scheme is typically not appropriate for applying with dynamic 

XML data [9, 13, 47, 86, 100].  

Our labelling mechanism of nodes is generated based on the prefix 

labelling approach, which could be seen as the reason for our scheme 

being more efficient in determining the parent-child and the ancestor-

descendent relationships. The query response time in Pentagonal 

scheme compared with BaseX can perform better in large size XML 

dataset such as XMark.  

Our experiment showed that the Pentagonal scheme and BasX database 

are powerful in loading time. However, the loading time in the eXist 

database was very long compared to other schemes. In addition, 

Pentagonal scheme, eXist and BaseX databases are fully supported the 

XPath [153] specification. However, the eXist database efficiently 
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performed in all queries. In contrast, Pentagonal scheme showed better 

performance in parent-child and ancestor-descendent relationships 

compared to BaseX in large size XML dataset such as XMark.  

 

7.5 Conclusion 

The experiment compared the ability of the Pentagonal Dynamic 

Labelling Scheme, the eXist database and BaseX database to handle 

different dataset sizes and executed for different queries. In the 

experiments, the tests covered 111MB and 273KB database sizes, in 

order to illustrate how the labelling schemes and different native XML 

databases deal with different XML document sizes. According to our 

experimental results, BaseX and the Pentagonal scheme both perform 

better than eXist database as the results have shown that for the BaseX 

and Pentagonal scheme when applied in XMark Dataset and Hamlet 

Shakespeare's dataset, their loading time was less in comparison to eXist 

database in which its loading time was longer and reached 2 minute and 

38 seconds. 

According to the query response time in the datasets for XMark and 

Shakespeare's Hamlet, Pentagonal scheme showed better behaviour in 

XMark dataset compared to BaseX. In contrast, the eXist dataset 

presented better behaviour in all queries. Our experiment showed that 
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the Pentagonal scheme is powerful in loading and queries large 

document sizes. XPath queries were run over eXist, BaseX and the 

Pentagonal scheme; moreover, all the databases loaded the document 

and fully supported the XPath [153] specification.  
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8 
5  CONCLUSION and 

FUTURE WORK 
 

 

 

In this thesis, we reviewed state of the art labelling schemes in order to 

design a novel algorithm that addresses some of the limitations of existing 

techniques. The study aimed to achieve the target of supporting dynamic 

updates without relabelling nodes. This was designed to obtain a small 

label size and support frequent insertions without overflow problems, and 

to experimentally evaluate the labelling time and query performances. 

We have illustrated the limitations related to labelling scheme to XML 

documents. Therefore, the Pentagonal labelling scheme was proposed 

to resolve these restrictions and limitations. The experimental results and 

the evaluation of the proposed scheme were discussed in the previous 

chapters as well as the objectives and implementations.  
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The remainder of this chapter are organized as follows: Section 8.1 

summarises the work, while section 8.2 reflects on the research 

questions and describes the main contributions of this research. Section 

8.3 suggests future work relating to our thesis topic, while section 8.4 

concludes the thesis. 

 

8.1 Thesis Summary 

This study designed a novel prefix dynamic labelling scheme, named the 

Pentagonal scheme. The scheme is designed to support updates in a 

dynamic XML tree without the need to relabel old nodes or duplicate any 

labels. The Pentagonal scheme generates labels based on the prefix 

labelling scheme.  

The thesis was divided into eight chapters which are organized as 

follows: the first chapter introduced the research work that influenced the 

construction of the hypothesis, the research motivation, objectives and 

research aims. The second chapter provided a brief overview of XM and, 

the structure of XML documents, and described the storage. In addition, 

it described its syntax and illustrated the concepts of XML parsing 

techniques. The third chapter represented different labelling schemes in 

the literature review and discussed the structure, restriction, strengths 

and weaknesses of several XML labelling schemes. The fourth chapter 
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compared the most common XML labelling schemes, namely Prefix 

Dewey encoding and Range-based encoding; furthermore, this chapter 

has already been published (Taktek, Thakker and Neagu, 2018). In the 

fourth chapter, different XML datasets were used that represent various 

features of XML trees, and several experiments were performed to 

investigate the storage space and labelling time requirement for each 

scheme. This also enabled a comparison of the relevance of the two 

schemes to the dataset structures. The aim was to ensure that the 

generation of short labels in terms of memory size and to achieve the 

fastest labelling time. Chapter 5 explained the proposed scheme by 

describing the structure of the scheme and defining the rules of the 

algorithms. Furthermore, from a practical perspective, this chapter 

illustrated the design and implementation of the proposed scheme. 

Several experiments were performed to evaluate the Pentagonal 

labelling scheme on different datasets. Also, this chapter included the 

experimental results in order to evaluate the reliability, scalability and 

performance of the proposed scheme. Chapter 6 evaluated the query 

performance of the Pentagonal scheme. The experiment compared the 

ability of the proposed scheme to investigate the queries’ response times 

and determined the relationship between the nodes; the work in chapters 

5 and 6 has been published for Elsevier Journal of Knowledge-Based 

Systems (Taktek, E. and Thakker, D 2020). Chapter 7 identified the 
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concept of Native XML database systems and compared two such 

systems with the proposed scheme. Furthermore, the experiment 

compared the ability of the BaseX database, eXist database and 

Pentagonal dynamic labelling scheme to execute different queries and 

handle different datasets sizes. The next section discusses the research 

contributions of this thesis. 

 

8.2 The Research Contributions of this Thesis 

This section reflects on the research questions and highlights the main 

contributions of this thesis.  

 

1. The Pentagonal scheme has been applied for the first time to label 

XML data. The storage mechanism in our scheme is based on 

Pentagonal numbering and prefix labelling scheme, where each 

node is associated with one value for the node-id path. The 

experiments have covered insertions of small and large numbers 

of nodes for a range of  two to sixty thousands nodes in order to 

investigate the label size and the execution time. In terms of the 

implementation and the design of the proposed scheme, we 

applied the SAX parser due to its improved performance in relation 
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to handling large XML documents. The outcome showed that our 

scheme achieved the fastest labelling times in term of random 

skewed node insertions. In addition, our scheme leads to 

reduction in the storage costs by applying the get-original function 

using equation (3). It is also shown that The Pentagonal Scheme 

performs the best when a significant number of random skewed 

nodes is updated (for more detail, see chapter 5). 

 

2. The Pentagonal labelling scheme handles insertions without 

relabelling existing nodes by providing four scenarios of inserting  

nodes: inserting before the leftmost node, inserting after the 

rightmost node, inserting between two siblings, and inserting a 

child into a leaf node. Our scheme was designed effectively for 

dynamic XML documents and completely avoids relabelling in 

thses four scenarios based on the mathematical equations for 

assigning initial labelling and handling XML updates. Unlike other 

labelling schemes, our scheme preserves the pentagonal 

numbers theorem [130] for insertions when updates occur. In 

inserting between two siblings, the new label is generated as the 

prefix label and concatenated with the new self-label. Our 

algorithm applies the get-original function using equation (3) for 
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the last component of the siblings in order to reduce the size of the 

label. 

 Equation (3) used for get-original function : 

 𝑓2 = (1 + √1 + (24 ∗ 𝑝) )/ 6,  where p is a pentagonal value 

…..(3).  

Several experimental works were carried out to ensure that the 

scheme efficiently deals with insertions when updates occur 

without duplicating labels or relabelling old nodes. As well as 

obtaining reduced labels. 

 

3. We have evaluated the Pentagonal scheme’s query performance 

and illustrated the efficiency of determining the relationships 

between nodes over dynamic XML documents. We applied the 

SAX parser due to its improved performance in relation to handling 

large XML documents and using different XPath Queries.  

 

The main strength of our labelling scheme is that it is efficiently supports 

updates in all the cases of insertion, it performs best when a vast number 

of random skewed nodes has been updated. Also, it proved its capability 

in terms of the query performance and in determining the relationships. 

Our scheme also supports frequent insertions without overflow problems. 
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Following the work in this thesis, the main contributions are highlighted 

as follows: 

 

1) The novel Pentagonal labelling scheme supports dynamic updates by 

avoiding relabelling. 

2) The Pentagonal labelling scheme obtains a small label size and 

performs best when a vast number of random skewed nodes has been 

updated.  

3) The Pentagonal labelling scheme reduces the time taken to generate 

labels. It has achieved the fastest labelling time when handling random 

skewed node insertions. 

4) The Pentagonal labelling scheme supports frequent insertions without 

overflow problems. 

5) The Pentagonal labelling scheme helps to reduce the query processing 

time in some cases. 

6) Pentagonal labelling scheme was applied for the first time to label XML 

data. 

7) The loading time was quicker for the Pentagonal labelling scheme than 

for the eXist database. 

8) The Pentagonal labelling scheme showed better behaviour in the large 

dataset compared to the BaseX database. 
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All the contributions above are supported by evidence obtained 

experimentally, as demonstrated in the earlier chapters. 

 

8.3 Future Work  
 
The thesis presented a novel dynamic labelling scheme to support 

updates over XML data. The proposed algorithm of this thesis was based 

on Pentagonal theory, which labels XML data, handles insertions and 

query XML data.   

 
Combination of Parsers for Optimum performance trade-off: 
 

In terms of the implementation and the design of the proposed scheme, 

we applied the SAX parser due to its improved performance in relation to 

handling large XML documents. In contrast, other labelling schemes, 

such as the eXist database, applied the DOM parser, which demands 

large memory space and as shown in the experimental results, had 

longer loading time. However, the DOM parser had the advantage of 

better performance in all queries because determining the structural 

relationships using DOM is less complicated than in comparison to SAX 

[26]. Therefore, in order to enhance this aspect, it is possible to apply the 

advantage of both the DOM and SAX parser in the future. In addition, it 
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would be a good improvement for this scheme to investigate and execute 

more complex queries in order to gain more inclusive results.  

 

Application of compression method with Pentagonal scheme: 

Additional investigations could be carried out experimentally to discover 

the effects of applying compression methods such as the Fibonacci 

method to our scheme [114], to see if applying them can improve our 

scheme , in order to get more compact representations of the labels in 

term of memory size.  

 

Applying different labelling schemes: 

Another future work suggestion is to redesign the proposed scheme with 

other labelling schemes instead of Prefix based labelling such as Interval 

based schemes [7, 14, 32, 39, 46, 85, 90, 91]), Multiplicative based 

schemes [39, 43, 49, 93-99] or Hybrid based schemes [7, 16, 47, 48, 

100]. This could lead to a new scheme and may improve the efficiency of 

our scheme. 

 
 
8.4 Conclusion  
 
The main aim of this research was to improve the efficiency of XML data 

management, mainly in dynamic XML databases. This thesis proposed a 
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novel prefix dynamic labelling scheme, called the Pentagonal scheme, 

and considered the restrictions of existing XML labelling schemes to 

overcome the challenges associated with labelling-based methods for 

dynamic XML data. This involved our scheme’s ability to support data 

updates without duplicating labels or relabelling old nodes as it is 

important to use dynamic XML labelling schemes to avoid relabelling 

existing XML nodes during updates. It also includes the reduction of time 

and the size taken to generate the labels.  

The results concluded that the Pentagonal labelling scheme achieved an 

efficient performance in many sectors, including the label size, label time, 

query processing, and structural relationship determination. Moreover, it 

supported dynamic updates without relabelling nodes. Finally, this 

chapter summarised the thesis, outlined the research contributions and 

explained and potential future work. 
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