

PENTAGONAL SCHEME FOR DYNAMIC XML

PREFIX LABELLING

E.A.M. TAKTEK

PhD

2020

PENTAGONAL SCHEME FOR DYNAMIC XML
PREFIX LABELLING

Ebtesam TAKTEK

Submitted for the Degree of

Doctor of Philosophy

(PhD Thesis)

Faculty of Engineering and Informatics

Department of Computer Science

University of Bradford

2020

i

Abstract

Ebtesam Taktek

PENTAGONAL SCHEME FOR DYNAMIC XML PREFIX LABELLING

Keywords: XML Labelling, Prefix Scheme, Dewey labelling,

Dynamic Scheme

In XML databases, the indexing process is based on a labelling or

numbering scheme and generally used to label an XML document to

perform an XML query using the path node information. Moreover, a

labelling scheme helps to capture the structural relationships during the

processing of queries without the need to access the physical document.

Two of the main problems for labelling XML schemes are duplicated

labels and the cost efficiency of labelling time and size. This research

presents a novel dynamic XML labelling scheme, called the Pentagonal

labelling scheme, in which data are represented as ordered XML nodes

with relationships between them. The update of these nodes from large-

scale XML documents has been widely investigated and represents a

challenging research problem as it means relabelling a whole tree. Our

algorithms provide an efficient dynamic XML labelling scheme that

supports data updates without duplicating labels or relabelling old nodes.

Our work evaluates the labelling process in terms of size and time, and

ii

evaluates the labelling scheme’s ability to handle several insertions in

XML documents. The findings indicate that the Pentagonal scheme

shows a better initial labelling time performance than the compared

schemes, particularly when using large XML datasets. Moreover, it

efficiently supports random skewed updates, has fast calculations and

uncomplicated implementations so efficiently handles updates. Also, it

proved its capability in terms of the query performance and in determining

the relationships.

iii

Acknowledgements

Firstly, I praise God for providing me with the perseverance, courage and

strength to complete this research.

I wish to thank my principal supervisor, Dr Dhavalkumar Thakker, for his

advice, feedback, support, and encouragement. He is truly an excellent

supervisor. I am incredibly grateful.

Also, I wish to thank my associate supervisor Prof Daniel Neagu.

A special thanks go to my parents (Abdullatif and Bchira) who I am

beyond grateful to, for their endless support, encouragement and prayers

were what sustained me this far.

I am extremely grateful to my husband (Sulaiman) for his encouragement

and for giving me the motivation I needed to keep going throughout this

journey. I am incredibly appreciative of my lovely daughters (Malak, Mais

and Goud) for being considerate and helpful; I feel blessed because of

you all. Also, my baby son (Omar) for bringing more happiness to our

lives. Many thanks to my incredible siblings (Ahmed, Khiria, Eman and

Mahamed) and all my family members for their prayers and their

unwavering support. I am beyond thankful to all my colleagues and

friends for their encouragement and their help in any way they can.

I am also obliged to the Libyan government, which gave me the chance

and funding to complete my PhD degree.

iv

Publications and Presentations

Some of the contents of this thesis were published in a conference and

some others in a Journal paper by Knowledge-Based Systems Journal.

• Taktek, E., Thakker, D. and Neagu, D. “Comparison between Range-

based and Prefix Dewey Encoding”. DOI:

10.5220/0007229003640368 In Proceedings of the 14th International

Conference on Web Information Systems and Technologies (WEBIST

2018), ISBN: 978-989-758-324-7, pages 364-368. Science and

Technology Publications. Seville, Spain.

• E. Taktek and D. Thakker, Pentagonal scheme for dynamic XML

prefix labelling, Accepted for the Elsevier Knowledge-Based Systems

(2020) 106446, https://doi.org/10.1016/j.knosys.2020.106446.

(impact factor: 5.921).

• Oral Presentation at the 1st Annual Innovative Engineering Research

Conference (AIERC 2017), Labelling fuzzy spatiotemporal XML

documents using IFDewey postfix code. 17th July 2017, University of

Bradford, UK.

• Poster at the 1st Annual Innovative Engineering Research

Conference (AIERC 2017), University of Bradford 17th July 2017.

https://doi.org/10.1016/j.knosys.2020.106446

v

• Poster at the 2nd Annual Innovative Engineering Research

Conference (AIERC 2018), University of Bradford 17th October

2018.

vi

Table of Contents

Abstract .. i

Acknowledgements .. iii

Publications and Presentations ... iiii

Table of Contents ... vi

List of Figures .. ix

List of Tables... xii

1 Introduction .. 1

1.1 Overview and importance of XML labelling schemes 5

1.2 Research motivation and hypothesis .. 8

1.3 The research aims, objectives and the research questions 13

1.4 Structure of the Thesis .. 14

1.5 Conclusion .. 17

2 XML Data Background ... 18

2.1 XML Overview .. 19

2.2 XML Storage ... 20

2.3 The concept and the structure of XML 21

2.4 XML Parsers ... 27

2.4.1 Document Object Model (DOM) 27

2.4.2 Simple API for XML (SAX) ... 28

2.5 Conclusion .. 28

3 Literature review of labelling schemes .. 30

3.1 Overview on labelling schemes .. 31

3.1.1 Labelling Schemes ... 32

3.1.2 Prefix Labelling Schemes ... 37

3.2 The Limitation of Existing Labelling Schemes 48

3.3 Experimental Setting ... 50

vii

3.4 Conclusion .. 52

4 Comparison between range-based and prefix-Dewey Encoding .. 54

4.1 Overview ... 55

4.2 Related Work .. 56

4.3 Comparisons Between Dewey Encoding and The Range-

 Based Encoding . .. 59

4.4 Experimental Work and Results. ... 60

4.4.1 Experimental Evaluation ... 62

4.5 Conclusion. ... 65

5 Pentagonal Labelling Scheme for dynamic XML data 67

5.1 Overview ... 68

5.2 Assigning initial labelling for the Pentagonal scheme 71

5.3 Handling XML updates.. 77

5.3.1 Insertion Before the Left most .. 78

5.3.2 Insertion After the Right most Node 78

5.3.3 Insertion Between Two Nodes ... 77

5.3.4 insert a child into a leaf node .. 81

5.3.5 Illustrates of node insertions ... 81

5.4 Selection of dynamic labelling schemes 82

5.5 Experiments .. 84

5.6 Results Analysis ... 88

5.7 Conclusion .. 96

6 Queries Experiments ... 98

6.1 Overview of Datasets and Queries for evaluation 99

6.2 Quert Performance .. 102

6.2.1 Quert Performance and Results’ Analysis on the

 initial label. ... 103

viii

6.2.2 Query Performance and Results’ Analysis after insertion

 ………………………………………………………………..105

6.3 Conclusion .. 108

7 Comparison between Native XML Database systems and

 Pentagonal Labelling Scheme. 110

7.1 Selection of Native XML database systems 111

7.1.1 Introduction to eXist and BaseX database systems 113

7.1.2 Selection of datasets .. 117

7.1.3 Comparison methodology .. 117

7.2 Non-Functional comparison: features and attributes 119

7.3 Functional Comparison: Experiments based on the

 comparison of loading time and query response time. 121

7.4 Results’ Analysis ... 123

7.4.1 Load Time Performance ... 123

7.4.2 Query performance .. 127

7.5 Conclusion .. 129

8 Conclusion and Future work .. 131

8.1 Thesis Summary ... 132

8.2 The research Contributions of this Thesis 134

8.3 Future work ... 138

8.4 Conclusion .. 139

References... 141

ix

List of Figures

Figure 1.1. An example of a labelling XML tree 2

Figure 1.2. Illustrated an example of relabelling nodes 7

Figure 2.1. An example of XML document ... 22

Figure 2.2. Graph representation of the document of figure 2.1........... 23

Figure 2.3. An example of document type declaration (DTD) 24

Figure 2.4. Sample schema for the XML document shown in

 Figure 2.1 .. 26

Figure 3.1. Dynamic Dewey Encoding Scheme (DDE) initial labelling . 41

Figure 3.2. Processing insertions with DDE labels 42

Figure 3.3. Example of overflow problem ... 50

Figure 4.1. Initial labelling time for Dewey labelling scheme 63

Figure 4.2. Initial labelling time for Range-based scheme 63

Figure 4.3. Total label Size (KB) for Dewey labels 64

Figure 4.4. Total label Size (KB) for Range-based scheme 64

Figure 5.1. The initial labelling for Pentagonal scheme 72

Figure 5.2. Illustration of obtaining the initial labels for Pentagonal

 algorithm . .. 73

Figure 5.3. Illustration of the insertion of labels for Pentagonal

 algorithm and explained four types of insertion scenario. .. 75

Figure 5.4. Illustration of whether the last component of the tested

 node is pentagonal or not. ... 76

x

Figure 5.5. Processing labelling for different node insertions 81

Figure 5.6. The initial labelling time for Dewey, DPLS and

 Pentagonal Schemes. .. 87

Figure 5.7. The initial Label size for Dewey, DPLS and Pentagonal

 Schemes. ... 87

Figure 5.8(a). The labelling time of random skewed node insertions ... 90

Figure 5.8(b). The labelling time of random skewed node insertions ... 91

Figure 5.9(a). Label size of random skewed node insertions 91

Figure 5.9(b). Label size of random skewed node insertions 92

Figure 5.10. Evaluating the scheme’s facility for execution times to

 handle XML updates into leaf node.................................. 92

Figure 5.11. Evaluating the label size to handle XML updates into leaf

 node. .. 93

Figure 5.12. Evaluating the scheme’s facility for the execution times

 to handle XML updates after the rightmost sibling. 93

Figure 5.13. Evaluating the label size to handle XML updates after
 the rightmost sibling. ... 94

Figure 5.14. Evaluating the scheme’s facility for execution times to

 handle XML updates before the leftmost sibling. 94

Figure 5.15. Evaluating the label size to handle XML updates before

 the leftmost sibling. ... 95

Figure 6.1. Comparison of the Query performance over the initial

 labels. ... 103

Figure 6.2. Computation time of relationships 107

Figure 7.1. An example of XML document ... 114

 Figure 7.2. Unique identifiers allocated by the level-order labelling

 scheme. ... 114

Figure 7.3. Table Encoding in BaseX ... 115

Figure 7.4. Loading time for Hamlet - one of Shakespeare's plays –

xi

 dataset. .. 124

Figure 7.5. Loading time for XMark – dataset 124

Figure 7.6. Query performance in Shakespeare's Hamlet and XMark

 datasets. .. 127

xii

List of Tables

Table 3.1. Features of the existing real-life XMLdataset 46

Table 4.1. Features of the existing real-life XMLdataset 61

Table 5.1. Pentagonal sequences .. 70

Table 5.2. Features of the most common XML Benchmarks datasets . 86

Table 6.1. XPath Queries ... 101

Table 7.1. Features and attributes of eXist , BaseX database systems and

 Pentagonal labelling scheme. .. 120

Table 7.2. XPath Queries for Hamlet - one of Shakespeare's plays – dataset

 and XMark dataset. .. 122

1

 1
1 INTRODUCTION

The development of XML was originally expected to help website

designers. Today scientists, publishers and database development

managers, archive administrators and different analysts utilize XML to

handle their data [1]. Through inductive systems and distributed

databases systems, XML data management has been adapted for many

applications which range from geographical, bioinformatics and

engineering data to customer services and cash flow improvements [2].

This is because XML data afford a simple format that both humans and

machines can understand [3-5]. XML facilitates the ability to define the

content of an XML document separately from its format; this makes it

simple to both share and reuse data in different applications [1].

The increasingly widespread use of eXtensible Markup Language (XML)

for storage and exchange of data due to its self-describing and its ability

2

of organizing data has led to greater interest in the further development

of systems that are able to store and query XML data [6].

A labelling scheme assigns a unique code to each node in an XML tree

to create the relationship that exists between the nodes in the tree and to

facilitate query processing [7-12]. In order to enable the determining of

the relationships among nodes; different labelling schemes were

proposed to process queries efficiently. Figure 1.1 shows an example of

a labelling XML tree using the interval labelling scheme [13].

Figure 1.1 An example of a labelling XML tree using the interval labelling

scheme.

1,30,1

4,5,2
2,3,2 6,29,2

7, 18,3
19,28,3

20,25,4
10,15,4

8,9,4
26,27,4

16,17,4

11,12,5 13, 14, 5 21,22,5 23,24,5

3

In Figure 1.1 the interval labelling scheme stores a combination of values

to each node. Each label is represented as a 3-tuple < pre-order, post-

order, depth >, which is used to identify the exact position of an element.

The pre-order traverses across the ordered tree starting from the root and

handing each level from left to right, while the post-order traverses by

visiting the leaf nodes from left to right, and then processing their parent

level from bottom to top. Also, the depth determines the level of the nodes

[14].

This approach to labelling thoroughly manages XML data as the labels

study the position of the node to sort the order of the document. This

improves storage, updates and queries on XML data [15]. Labelling

schemes have the ability to provide identification in order to maintain the

structural relationships between elements as parent-child, ancestor-

descendent and sibling. The order of the nodes is based on a comparison

to their labels.

An XML query based on a labelling scheme is the same as relational

database queries that depend on indexing. Consequently, an ordered

XML Tree and structural information, such as parent/child or

ancestor/descendant, are encoded into highly compressed labels by

labelling schemes.

4

An XML labelling scheme requires less storage space and provides more

flexibility compared with other XML query techniques [16-19], for

example, the structural indexing techniques, where each node of an XML

database is referenced within the index along with its path summary from

its root to the designated node. This results in a larger storage space [16].

This thesis proposes a new labelling scheme and considers the

restrictions of the existing XML labelling schemes to improve the

efficiency of XML data management systems. It focuses on the size of

XML labels and the time taken for the labelling process. It also evaluates

the query performance and the labelling scheme’s ability to handle

different types of update.

The remaining sections of this chapter are organized as follows: Section

1.1 presents the importance of XML labelling schemes, while section 1.2

describes the research motivation and hypothesis. Moreover, the chapter

explains the research aims and objectives in section 1.3, whilst section

1.4 discusses the structure of the thesis. Section 1.5 concludes the

chapter.

5

1.1 Overview and Importance of XML labelling
schemes

The challenge of indexing techniques lies in the query processing

performance [7-11, 19]. A labelling scheme helps to capture the structural

relationships during query processing without the need to access the

physical document; this helps to reduce the query processing time [20,

21]. In addition, the challenges associated with labelling-based methods

for dynamic XML data involve the support for data updates without

duplicating labels or relabelling old nodes [22]. Figure 1.2 illustrated an

example of relabelling nodes (denoted by the dashed circle) when a new

node is inserted (denoted by the black circle) [13].

An efficient labelling scheme should have the following significant

properties: labelling should be dynamic, which means avoiding the need

to relabel XML tree nodes when the XML files are updated. Furthermore,

the XML label size should be compact, which means optimizing the

performance of the label size and producing more compact labels that

lead to decreased storage costs in both the initial labelling and after the

skewed node insertions [23-26]. Labelling should support all kinds of

structural relationship queries, as it is important for query processing in

XML database management systems [6, 27, 28]. A labelling scheme

6

generally is limited in one or more of the essential properties and this is

our problem identification.
The challenges include the reduction of time and size taken to generate

the labels [29]. Large label sizes can lead to negative impacts on both

update and query performances [30]. For example, the authors [13] used

a fraction fragment to represent the last component of the label where the

two following siblings are labelled as A and B.

A = a1. a2 …am-1 . (am/ka) and B = b1. b2 …bm-1 . (bm/kb).

If A and B are inserted labels, then the newly inserted label is

a1 .a2…am_1 . ((am + bm)/(ka + kb)).

In the example, the scheme generates floating-point numbers, which can

lead to limited accuracy [31]. Moreover, the mantissa is denoted as a

fixed number of bits. It can then be extended by two bits for each

insertion, which can cause overflow problems [26, 32]. Also, The querying

in this technique is slow as decoding process is based on ORDPATH

which is time consuming [33].

Previous research relied on the assumption that using XML parsers

without node labels was sufficient to read and explore XML datasets [34,

35]. Furthermore, most existing research was based on the retrieval and

navigation of data [36, 37]. However, the need for labelling schemes has

7

become essential to efficiently support XML queries and update nodes

[7, 13, 38, 39]. Moreover, it is useful to adopt dynamic XML labelling

schemes to avoid relabelling existing XML nodes when conducting

updates [13, 27, 28].

Figure 1.2 An example of relabelling nodes.

As shown in Figure 1.2, the relabelled nodes are denoted by the dashed

circles and when a new node is inserted, it is denoted by a black circle.

The relabelled nodes indicated that more than one node is required for

the relabelling process as shown in Figure 1.2 [40, 41]. We need to

relabel all the dashed circles nodes based on the interval labelling

scheme that stores a combination of values to each node. Each label is

1,32,1

4,5,2
2,3,2 6,31,2

7, 20,3
21,30,3

22,27,4
12,17,4

8,11,4
28,29,4

18,19,4

13,14,5 15, 16, 5 23,24,5 25,26,5

9,10,5

8

represented as pre-order, post-order and depth. The pre-order starting

from the root and handing each level from left to right, while the post-

order visiting the leaf nodes from left to right, and then processing their

parent level from bottom to top. In addition, the depth determines the level

of the nodes [14].

In updating new XML nodes, two forms of insertion are mainly used. The

first form is the random skewed insertion, which means frequently

inserting between two random nodes selected. The second form is order

skewed insertion which is a frequent insertion before or after a specific

node [32, 42]. Some labelling scheme were tested over skewed insertions

[13, 23, 33]. Labelling schemes consider four cases of insertion: inserting

before the leftmost sibling, inserting after the rightmost sibling, inserting

between two siblings, and inserting a child into a leaf node [21, 22, 26,

32, 35, 43-45].

1.2 Research motivation and hypothesis

Dynamic labelling schemes have been developed to support efficient

XML updates; however, each of the existing schemes is limited in one or

more aspects.

9

Firstly, an example of a noticeable limitation of an existing scheme is the

work in [34] which is a Prefix labelling scheme and has proven to be

unsuitable for dynamic XML documents as updating a new node using

this scheme requires the relabelling of all its existing right sibling nodes

along with their relatives in the entire XML tree [44]. This is time-

consuming and inefficient for dynamic XML data. Another example of this

limitation is found in the Region based labelling scheme [46] as this also

supports static XML documents [13, 47], meaning that these two

schemes are limited in terms of only being appropriate for non-updatable

XML documents.

Dynamic prefix-based labelling schemes also have limitations. For

example, the scheme that is used in [44] only allows limited updates [16,

22], as just the even and negative integer values are reserved for

updating the XML tree. Also, The decoding technique is time- consuming

[33].

Moreover, the extended prefix Dewey [20] is approximate 10%–30%

larger in size compared to the original Dewey. This is due to the large

size generated by applying the extended Dewey technique, which

produces a large label size at the cost of extra storage. This is considered

as the limitation of this scheme [13, 21, 48].

Furthermore, In regards to the Dynamic Dewey scheme (DDE) [22] which

is an update of the Dewey scheme. The main weakness is that the

10

labelling scheme results in the production of a large label size [21, 49].

This is due to the scheme storing the level information as part of

components in that label. Also, frequent insertions occur between two

siblings by applying the midpoint technique, which results in increased

storage costs as the depth increases [21, 49]. Moreover, The DFPD

scheme [21] generates floating-point numbers, which can lead to limited

accuracy [31]. In addition, The querying in this technique is slow due to

the reason that its decoding process is based on ORDPATH which is

time-consuming [33]. This scheme also causes overflow problems [26,

32].

We have compared the Pentagonal scheme with DDE and DFPD as their

internal model is based on dynamic XML and are both based on the prefix

labelling approach as well as that they completely avoid relabelling in

XML updates. In addition, they support the loading of different XML

document Sizes and support XPath query language. However, in spite of

their advantages, they suffer from multiple problems and so the

Pentagonal Scheme was proposed to address these limitations and

achieve better results in comparison to them. Specifically, our aim was to

obtain a small label size, support dynamic updates without relabeling

nodes, support frequent insertions without overflow problems, generate

improved labelling time performance and evaluate query performances.

11

The main contribution of our labelling scheme is that it is efficiently

supports updates in all the cases of insertion, it performs best when a

vast number of random skewed nodes has been updated. Also, it proved

its capability in terms of the query performance and in determining the

relationships. Our scheme also supports frequent insertions without

overflow problems.

In terms of originality, the Pentagonal scheme has been applied for the

first time to label XML data. The storage mechanism in our scheme is

based on the Pentagonal numbering and prefix labelling scheme. Our

labelling scheme considers the restrictions of the existing XML labelling

schemes to improve the efficiency of XML data management systems. It

focuses on the size of XML labels and the time taken for the labelling

process. It also evaluates the query performance and the labelling

scheme’s ability to handle different types of update. In terms of the

implementation and the design of the proposed scheme, we applied the

SAX parser due to its improved performance in relation to handling large

XML documents.

We tackled these limitations in our approach by providing a fully dynamic

labelling scheme that supports frequent insertions by assigning integer

pentagonal numbers to each node in order to obtain a small label size. In

12

addition, each label has a variable-length label to further avoid overflow

problems.

This thesis aims to dkesign a novel labelling scheme that supports

dynamic XML documents,and is based on Pentagonal numbers in prefix

labelling scheme to represent the new label. The scheme should support

updates in XML tree without duplicating labels or needing to relabel old

nodes.

Our motivation for using the pentagonal scheme was to optimise the

performance of the labelling time and to produce more compact labels

that lead to decreased storage costs in both the initial labelling and after

the insertions. By using the Pentagonal Scheme method, we can avoid

using float-point numbers, this allows for fast labelling time and avoids

overflow problems. Based on the research motivation, the research

hypothesis is specified as follows:

“Applying Pentagonal numbers for dynamic XML documents, based

on prefix labelling approach to generate the new labels may improve

the labelling time performance, providing labels without extreme

growth or any overflow problems in the label size, and supporting

insertions in dynamic XML databases as well as facilitating the

query performance.”

13

1.3 The research aims, objectives and the

research questions.

Section 1.2 highlighted the research hypothesis and the limitations of

current labelling schemes from which the aims and research objectives

were developed. We aim to design a novel scheme to support updates in

a dynamic XML tree without duplicating labels or needing to relabel old

nodes. Our scheme aims to generate labels based on the prefix labelling

scheme. It also evaluates the labelling process in terms of size and time

and the ability to handle different types of update. Furthermore, the

scheme aims to support frequent updates with fast calculations and

uncomplicated implementation. It will also effectively extract from the

labels’ structural information to accomplish a high-performance query.

The research questions are as follows:

RQ1: How to design a novel labelling scheme that in comparison to the

state-of-the-art will support compact labelling size, low execution time,

avoid relabeling while inserting new nodes, and offer efficient XML query

processing?

RQ2: How to achieve low execution time and compact labels with this

novel labelling scheme even after frequent, large and random skewed

insertions in different positions such as inserting between two siblings

and into a leaf node?

14

1.4 Structure of the Thesis

This section highlights the structure of the thesis, which is divided into

three parts. The first part consists of three chapters which introduce the

related background and literature reviews that influenced the creation of

the hypothesis. The second part conducts a comparison between range-

based and prefix encoding, with a focus on reductions to labelling time

and memory size; this is discussed in detail in chapter four. Based on

both theoretical and practical points of view, the main concept of this

research is discussed in detail in chapter five, which also covers the

experimental results. The third part of the thesis consists of chapters six

to eight which cover the queries’ experimental results, a comparison

between native database systems and labelling schemes, the thesis

conclusion and future work. The following section describes the thesis

chapters:

• Chapter 1 – Introduction.

 This chapter has introduced the research work that influenced the

creation of the hypothesis in general, the research motivation and

hypothesis, and the research aims and objectives. It also outlined the

structure of the thesis.

• Chapter 2 - XML Data Background.

15

This chapter provides an overview of XML and its XML tree structure. It

also provides a description of its syntax and illustrates the parsing

techniques.

• Chapter 3 - Literature Review on XML Labelling Scheme.

This chapter presents an overview of labelling schemes and discusses

the structure, strengths, weaknesses and restrictions of several existing

XML labelling schemes.

• Chapter 4 - Comparison between Range-based and Prefix-Dewey

Encoding.

This chapter compares two XML labelling schemes, namely range-based

encoding and prefix encoding. The study aims to achieve the fastest

labelling time and to ensure the generation of short labels in terms of

memory size

• Chapter 5 - Pentagonal Labelling Scheme for Dynamic XML Data.

This chapter explains the underpinning theory of the proposed scheme

by offering a definition that illustrates the rules of the algorithms and

describes the structure of the scheme. Also, the chapter describes the

practical design and implementation of the Pentagonal scheme, which is

based on the definition and the algorithm rules. In addition, to evaluate

the Pentagonal labelling scheme, several experiments are performed on

different datasets. This chapter illustrates the experimental results in

16

order to evaluate the proposed scheme’s reliability, scalability and

performance of the proposed scheme, while graphical diagrams are

presented to evaluate it.

• Chapter 6 - Query Experiments

This chapter illustrates the experimental results in order to evaluate the

query performance of the proposed scheme. The experiment compared

the ability of the Pentagonal dynamic labelling scheme to handle query

response times and the time spent determining different relationships.

• Chapter 7 - A Comparison Between Native Database Systems and

Pentagonal Labelling Schemes.

This chapter explains the concept of Native XML database systems and

compares the proposed scheme with two Native XML databases

systems. Also, the experiment compared the ability of the Pentagonal

dynamic labelling scheme, eXist database and BaseX database to

handle different dataset sizes and the execution of different queries.

• Chapter 8 - Conclusion and future work.

This chapter summarises the whole thesis, the main findings and key

contributions. Moreover, the recommendations for future work are

emphasised.

17

1.5 Conclusion

This chapter presented a brief introduction to the thesis and explained

the importance of XML labelling schemes. The research motivation,

hypothesis, research aims and objectives were introduced. Lastly, the

structure of the thesis was underlined.

18

2
2 XML DATA

BACKGROUND

This chapter provides an informative discussion based on XML data

background covering all aspects of XML and its XML tree structure. Also

provides a description of its syntax and illustrates the concepts of XML

parsing techniques.

Extensible Mark-up Language (XML) is developing as a de facto standard

for data exchange among several applications on the World Wide Web

due to its self-describing and the ability to organise data [16, 50-52].

XML files are demonstrated as a tree, and labelling schemes encode the

structural tree information to answer queries without having to access the

original XML file [38, 53-57].

19

This chapter presents a brief overview of XML, starting with XML

Overview then goes on to describe the Storage and the Structure of XML

in Section 2.2 and Section 2.3 respectively. Next, in Section 2.4 XML

parsing are explained. The chapter will be concluded in Section 2.5.

2.1 XML Overview

XML facilitates the ability to define the content of an XML document

separately from its format; this makes it simple to both share and reuse

data in different applications [1]. XML is beneficial for several reasons.

First, it allows users to propose their own tags as a self-describing

language, which construct it extremely flexible[58]. Furthermore, the XML

language is uncomplicated and Text-based user interfaces, with a

transportable data format that read by most of the platforms [59, 60].

HTML (HyperText Mark-up Language) produce a standard to display,

create and access web pages. However, HTML does not provide tag

information to describe the content so systems cannot recognise the

structure of the data [61, 62]. XML was developed in 1996 to address the

limitation in HTML, which was sponsored by the World Wide Web

Consortium, W3C [51].

XML is especially relevant in the context of Big Data, as XML is a highly

flexible structure. It describes the structure of the text meaning the user

20

can design their own tags and separate the content from its format [58].

Also, XML has the ability to cover different types of data. XML data can

implant any possible type of data as either complex information, e.g. living

organisms and biological systems, or as multimedia data, e.g. image,

video, and sound [2].

2.2 XML Storage

XML has used for retrieval data over the Web in heterogeneous and

homogeneous platforms, exchange data, transformation data and

information representation and represent semi-structured data [10, 16,

32, 39, 63]. The main approaches to store XML data are XML Enabled

Database (XED) and a Native XML Database (NXD). XED is used to

store data-centric documents that contain well-structured information.

Therefore, the data can be transfer into a traditional relational database

[64, 65]. NXD is used to store document-centric XML that contain semi-

structured XML document and stored in the hierarchical structure [66]. In

addition, hybrid storage has been proposed; this technique simply

mapped some parts of the structured XML into relational data and other

parts can be kept in XML data type itself as NXD format [16, 67].

This thesis will emphasis facilitating native XML database to process XML

queries and focusing on evaluation XML query that relies on document-

21

centric XML. To start with clear comprehension, a description of the

concept and the structure of XML is in the next section.

2.3 The concept and the structure of XML

The basic concept of an XML document can be defined as an element.

Elements can contain other elements and can be nested at any depth.

Each element of the document surrounded by two tags. Start tag will be

at the beginning as <tag-name>, and end tag will be at the end as </tag-

name>. Also, the form <tag-name/> can be tag of an Empty element [68-

70].

Figure 2.1 shown an example of XML document holding data on a store.

This document provides information for customers such as first-name,

last-name, full-address, mobile and the email of the customers of the

technology store. For each customer, the document also records

information on his/her salesman. The contact element is an example of

an element with sub-elements in that it contains mobile, email element.

The full-address is an example of an element containing text, whereas

email is an example of an empty element. The attributes can be specified

for the elements. The attribute is in the form of name = value, wherever

the name is a label and the value will be a quoted string. The attributes

22

location in the document is in the start tag of the element, it has different

types to specify an element identifier, IDRE type is containing to a single

target, and IDREFS type is containing to multiple targets. In addition,

CDATA type is referred to as textual information [68].

<store id="Technology">
 <customer id="C201">
 : : :
 </customer>
 <customer id="C223" salesman="S201">
 <name>
 <firstname> Muhammad </firstname>
 <lastname> Ibrahim</lastname>
 </name>
 <full-address> 96, Hindley Street, Bolton </full-address>
 <contact>
 <mobile> 984 589 482 </mobile>
 <mobile> 785 942 468</mobile>
 <email reference="MuIbrahim123@yahoo.com"/>
 </contact>
 <preference>
 <contact-way> email </contact-way>
 <contact-time> morning </contact-time>
 <branch> liverpool </branch >
 <pay-method> cash </pay-method>
 </preference>
 </customer>
 <customer id="C250" salesman="S223">
 : : :
 </customer>
</store>

Figure 2.1. An example of XML document.

23

Figure 2.2. Graph representation of the document of Figure 2.1.

In Figure 2.3, the relationship existing between a customer and the

salesman is demonstrated by an IDREF attribute named salesman in the

customer element, where the value is the id of the customer salesman

[68]. The graph in Figure 2.2 represented XML document that reported in

Figure 2.1. The graph is representing the element-attribute and the

element- subelement relationships, and the edges representing relations

between elements. Edges are signified by lines. A document type

First name lastname mobile email

Pay-method

96, Hindly

Street
Contact-way Contact-time branch Muhammad ibrahim

984589482

cash

liverpool morning

email

MuIbrahim123@yahoo.com

C223

C201
C250

name Full-address contact preference

customer

Store

24

declaration is known as DTD. The DTD can be attached to XML

documents, identify the rules that XML documents need to follow [68].

<!DOCTYPE store[
<!ELEMENT store (customer)>
<!ELEMENT customer(name,full-address,contact,preference>
<!ELEMENT name (firstname,lastname)>
<!ELEMENT contact (mobile,email)>
<!ELEMENT preference(contact-way,contact-time,
 branch?,paymethod*)>
<!ELEMENT full-address(#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT email EMPTY>
<!ELEMENT contact-way(#PCDATA)>
<!ELEMENT contact-time (#PCDATA)>
<!ELEMENT branch (#PCDATA)>
<!ELEMENT paymethod (#PCDATA)>
<!ATTLIST store id ID #REQUIRED>
<!ATTLIST customer id ID #REQUIRED salesman IDREF
#IMPLIED>
<!ATTLIST email reference CDATA #IMPLIED>]>

 Figure 2.3. An example of document type declaration (DTD).

For example, Figure 2.3 illustrations the DTD for the document in Figure

2.1. A DTD is collected of two parts: the element statements part and the

attribute list statements part. The element statements part defines the

structure of all elements included in the document. Each element

specifies its subelements and their order. In addition, for each

subelement it specifies either they are optional (“?”) or Not. Also, they

https://thesaurus.yourdictionary.com/either

25

might occur zero, one or more times (“+” or “*”), Also if the subelements

are alternative or not to another subelement (“|”). Moreover, the type

#PCDATA which allowed only data content; ANY is allowed all kind of

content, EMPTY if no content is allowed. The attribute list statements part

requires, for each element, the list of its attributes, in terms of names,

types, optionality parts #IMPLIED is signified an optional attribute,

#REQUIRED to signify a mandatory attribute and #possibly is denote to

default values [68].

The current XML source has been classified into two main types: that is,

valid and well-formed documents. A well-formed document is defined as

a document that is written under the grammar rules of XML [World Wide

Web Consortium 1998a] [68]. A valid document is known as a document

which follows a given DTD. As a result, valid documents can be

understood as illustrations of a matching DTD. For instance, Figure 2.2

is an example of a valid document, as it follows the DTD in Figure 2.3

[68].

The XML schema language, unlike DTDs, affords different data typing

correlated with type in the programming languages. The XML schema

description defines numerous different types of data, such as integer,

string, date, time, and, boolean. Despite the built-in data types, XML

schema also offers the ability to introduce new types. Developers not just

26

using the element as plain text in an XML document, but they could define

their data types. Therefore, they can effectively use and dealing with

elements and attributes in an XML document [71].

<?xml version=“1.0” encoding=”UTF-8”?>
<xsd:schema
xmlns:xsd=“http://www.w3.org/2016/10/XMLSchema”>
<xsd:complexType name=“nameType”>
 <xsd:sequence>
 <xsd:element name=“firstname” type=“nameType”/>
 <xsd:element name=“lastname” type=“nameType”/>
 </xsd:sequence>
</xsd:complexType>
<xsd:simpleType name=“full-addressType”>
 <xsd:restriction base=“xsd:string”>
 <xsd:maxLength value=“100”/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:complexType name=“contactType”>
 <xsd:sequence>
 <xsd:element name=“mobile” type=“Type”/>
 <xsd:restriction base=“xsd:string”>
 <xsd:pattern value=“(d{3})-d{3}-d{4}”/>
 </xsd:restriction>
 <xsd:element name=“email” type=“emailType”/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name=“customer” type=“customerType”/>
</xsd:schema>

Figure 2.4. Sample schema for the XML document shown in Figure 2.1.

Figure 2.4 illustrations a sample schema, and Figure 2.3 illustrations a

sample DTD for the XML document in Figure 2.1. In comparing Figures

2.2 with Figures 2.3, the DTD defined the value of mobile as character

27

data. However, in the schema, the data type can be defined as

mobileType, to represent mobile and make it under restriction to be a

valid number that represents a standard US mobile number [71].

2.4 XML Parsers

A parser is an interface between the application program and the XML

document. XML parsers can identify if the XML document is valid and

well-formed through interpreting its content by the Application

Programming Interfaces (APIs) [71]. This process takes place with the

use of the parser, which with the access to the documents’ internal

structure and contents can read the XML documents and then provide

the application programs [71].

There are two types of XML parser: Document Object Model (DOM) and

Simple API for XML (SAX). These are discussed in the following sections.

2.4.1 Document Object Model (DOM)

The DOM parser, which was issued as a W3C recommendation in 1998

is ultimately a tree-structure-based API. The DOM parser is a language-

neutral interface. The DOM platform allows programs to access and

update the structure and the content of XML documents. The DOM parser

demonstrates the nodes of the XML document as a tree containing

28

elements, attribute and text [72-75]. An XML parser creates the DOM tree

of XML document and then send it to an application program, it provides

a set of APIs to manipulate these nodes in the tree. However, Using the

DOM-based XML processor requires the entire structure of an XML

document to be built within main memory [71, 76].

2.4.2 Simple API for XML (SAX)

The SAX parser does not generate a data structure. An XML processor

with SAX scans an input XML document and then creates events, for

example, an element start or element end [77, 78]. The application

programs implement the handlers which receive these events in order to

process them correctly. The SAX parser is most suited for dealing with

large documents which not fit in the main memory [72, 77-79]. Moreover,

the SAX parser is best suited for extracting the contents of specific

elements [71].

2.5 Conclusion

An overview of the fundamental aspects of XML data has been presented

in this chapter. The aspects provided are sufficient to cover the essential

background to this thesis. The focus of this thesis is XML labelling

29

technology; the next chapter outline the literature review of XML labelling

schemes.

30

3
3 Literature Review
of labelling schemes

This chapter provides an informative discussion based on extensive

literature reviews covering the aspects of XML with regards to labelling

schemes. It has been structured to provide a thorough scientific

understanding of the study of labelling schemes.

XML labelling scheme has been recommended for speedy query

processing of massive XML documents [22, 80-82]. Nonetheless, even

with the wide-ranging of labelling approaches, extensive problems have

been faced in developing a suitable labelling scheme for effective

management of XML data, since the Dewey Order labelling [34] and

ReLab [46] does not support dynamic XML data and only supports static

31

XML documents. Also, the NLSXU scheme [83] does not support any

node insertion and does not show any query performance testing.

Moreover, DDE and CDDE [22] both support dynamic updates, but they

produce a large label size [21, 49]. Furthermore, another problem faces

is that in SCOOTER [23] the large labels’ quaternary strings slows down

the query processing [27, 84].

In section 3.1 we cover an overview of labelling schemes, in Section 3.1.1

we discussed different labelling schemes, the Prefix labelling scheme is

detailed in section 3.1.2. The limitation of existing labelling schemes

presented in Section 3.2. Lastly, Section 3.3 concludes the chapter.

3.1 Overview of labelling schemes

Labelling, or numbering, the scheme is generally used to label an XML

document in order to perform an XML query using path node information

[85]. This captures the structural relationships during the query

processing with no need to access the physical document [20, 86].

Labelling schemes reduce the query processing time and hence make

the retrieval and indexing of XML data more efficient [34, 86]. In simple

terms, labels in such schemes present relationships between nodes in

XML trees [12, 29, 46, 87, 88] and are used for retrieval purposes. They

32

achieve this by relying on XML labelling schemes, keyword searches and

XML data queries [20, 89].

3.1.1 labelling schemes

The current labelling schemes have been classified into four main types:

Interval based schemes (also known as Range based labelling schemes;

Region encoded labelling schemes; Subtree based labelling schemes or

Containment labelling schemes) [7, 14, 32, 39, 46, 85, 90, 91]); Prefix

based schemes [7, 9, 13, 16, 21, 22, 34, 92], Multiplicative based

schemes [39, 43, 49, 93-99] and Hybrid based schemes [7, 16, 47, 48,

100].

XML Documents can be classified into two types: static [14, 34, 85],

which is sufficient for non-updatable XML documents, and dynamic,

which is regularly updated [22, 26, 43, 46, 101, 102]. A dynamic labelling

scheme has been proposed based on the mathematical principles of

vector order [95, 103]. A vector order has been proposed to avoid

relabelling, which is applied to both interval-based and prefix-based

labelling schemes. In their algorithm, the midpoint has been calculated,

which is applied to the interval-based labelling scheme (Region Labelling

33

Scheme). A vector, 𝑉, is an object with weight and a path that can be

represented as a binary tuple, 𝑉= (𝑥), where 𝑥 and 𝑦 are positive integers.

The Vector-based labelling method is adapted from vector-encoding [28,

45]; it represents interval-based labels in a vector form. The nodes are

labelled as <𝑠𝑡𝑎𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑒𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑎𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 𝑣𝑎𝑙𝑢𝑒>, whereas the

vectors’ gradient values are used to preserve the order of the assigned

vectors. By inserting node C between nodes 𝐴 and 𝐵, a vector value is

allocated to 𝐶 according to vectors A and B. 𝐴=(𝑥𝑎,𝑦𝑎), 𝐵=(𝑥𝑏,𝑦𝑏), and

𝐶=𝐴+𝐵=(𝑥𝑎+𝑥𝑏,𝑦𝑎+𝑦𝑏), then 𝐺(𝐴)>𝐺(𝐶)>𝐺(𝐵), where 𝐺(𝐴)>𝐺(𝐵) if, and

only if, (𝑦𝑎∗𝑏)>(𝑥𝑎∗𝑦𝑏). However, their work did not perform any experiment

to test the performance of their scheme or any query testing.

An Improved Binary String Labelling (IBSL) scheme [55] been proposed.

It is a binary, string-based encoding approach, and the IBSL label is a

sequence of numbers 0 and 1. Their scheme avoids relabelling when

updating XML documents and reuses the deleted label at the same

position. However, it increases the cost of storage in the case of

frequently skewed insertions [13, 47]. Moreover, the IBSL scheme tests

the leaf node insertions only.

34

A Prime-based Middle Fraction Labelling Scheme PMFLS [48] has been

designed in which a series of algorithms are proposed to obtain the

structural relationships among nodes and to support updates. PMFLS is

a hybrid labelling scheme; it combines the advantages of both prefix and

region schemes. PMFLS also supports updates without recalculation.

However, prefix labels naturally extend when XML data are updated

during frequent insertions, causing overflow problems.

In [46], ReLab is Region-based Labelling scheme; their experimental

evaluation denotes the schemes in terms of the time taken to generate

labels for each XML node. This is not only used for the unique

identification of XML nodes, but also structural relationship purposes.

In [39], ME labelling provided a roust hybrid scheme for dynamic updates

in XML databases. They proposed an XML labelling scheme that helps a

quick determination of the structural relationships among XML nodes and

supports dynamic updates without relabelling nodes in the case of update

occurrences. Due to the simplicity of the ReLab [46] scheme, it has

generated labels faster than other Region-based schemes [47]. However,

ReLab [46] does not support dynamic XML data but only static XML

documents [13, 47].

35

The NLSXU scheme [83] has generated labels using digits (0-9),

uppercase and lowercase letters and a few characters in the Unicode

character set. It provided a greater varied range of characters. The

Unicode value of the characters is considered to preserve the order of

the siblings in the XML document. NLSXU reduced the space for

synthetic data and reduced the index size compared to the NLSX scheme

[83]. In addition, the NLSXU scheme reduced the time taken to generate

labels compared with LSDX and NLSX. However, the NLSXU scheme

did not support any node insertion and did not show any query

performance testing.

The Clustering labelling scheme [104] is a hybrid approach that has been

proposed based on the interval and prefix labelling schemes. This

scheme is based on the clustering technique and the levels of the nodes

in XML trees. The approach is to divide the whole data tree into small

groups where two labels are used for every node and the cluster (group)

is linked to the entire tree using the label of that cluster.

The RLP-Scheme [105], is a hybrid approach of multiplicative and prefix

labelling schemes. This is similar to the Dewey scheme [20]. However,

each node label in the RLP-Scheme contains more information compared

to the node labels in the Dewey Scheme. The RLP scheme is divided into

36

several groups, each node is allocated an ID of the formula [G,P,S] where

G represents the group number of the node, P represents the self-label

of all its ancestors, and S denotes its self-label.

The Branch map labelling scheme [106] records the correspondence

between a parent and child nodes, unlike other schemes discussed in

this thesis, where the schemes assign a label to each node. This scheme

is suitable for structural summary indexing. It uses the SAX parser to

parse XML documents. Moreover, a hash key is used to represent the

path index, where the information regarding the path and structure with

the tag name is stored. Each node is assigned (label, branch, count,

children), where the label represents the location of the node following

the Dewey label scheme. The Branch represents the branch map and

each "1" signifies a node in the XML tree. Count denotes the number of

appearances of the tag, and children represents the tag names of the

children of the node.

In [107], the labelling scheme holds the containment information and

represents it as a 4-tuple: (Did, start, end, level). Did represents the XML

encoding of the XML document. Start represents the occurrence position

and is created by the pre-order traversal. end records the beginning

37

maximum number of the current node in the sub-tree. The Level is used

to determine the structural relationship between the nodes.

[108] They applied a structure named partial tree structure. This was

appropriate for large XML documents where multiple computers can be

used for processing. They have used the BaseX database for their

comparison of loading and execution times. In [108] two index sets were

used to execute XPath queries in large XML documents, in order to

achieve a faster evaluation time of the structural relationships between

nodes.

3.1.2 Prefix labelling scheme

The prefix-based labelling scheme is considered a suitable approach for

dynamic XML data [92]. Several prefix labelling schemes have been

proposed. In prefix labelling schemes each node label contains a unique

label, which is the parent’s label and concatenated with the node self-

label. Notable research in developing a prefix labelling scheme to

improve the storage, retrieval and query into XML data is the Dewey

Order labelling scheme. This is based on the Dewey decimal

classification system for libraries [34]. Even though the Dewey Order is

popular; In [44] authors argue that the model of [34] is unsuitable for

38

dynamic XML documents since updating a new node requires the

relabelling of all its right sibling nodes with their relatives in the whole

XML tree. The labels studied the position of the node and needed to sort

the order of the document during an update.

In [34], the authors proposed a prefix encoding using Dewey coding to

label XML trees. In this method, a vector presents each node. The root in

an XML tree is labelled by an empty string ε and the non-root element u

is labelled as a combination of its parent label and a postfix integer

number (xi). If u is the xth child of s in an XML tree then the label u, label(u),

is q, a concatenation of label s and x, which is presented as a label(s).x.,

where s is the parent of u. For example, if the label for node u is 2.5.3

then its 4th child label will be 2.5.3.4. The advantage of this, for any

element labels, we can easily extract the node labels of its ancestors. For

example, if an element label is 5.1.3.1, then its parent label is 5.1.3, and

its first ancestor label is 5.1.

Due to the simplicity of the Dewey Order labelling scheme [34], it has

become common amongst indexing schemes [57, 109, 110]. However,

this mechanism is not appropriate for dynamic XML data. For example,

to insert a new sibling node into an XML tree, the Dewey Order labelling

scheme requires the relabelling of all its right sibling nodes along with

their descendants.

39

In [20], the Extended Dewey code has been proposed to address this

limitation of Dewey Order labelling scheme. Each element is a grouping

of its parent label and a postfix integer number (xi). For any element ei

with name ti, the extended Dewey assigns an integer number, xi, to ei

such that xi mod ni =i. Extended Dewey Encoding needs some scheme

information for labelling. Moreover, the element tag names are added as

part of their Dewey labels. Scheme information can be extracted from

DTD. Otherwise, before assigning XML tree nodes labels, the whole XML

document must be scanned at least once to know the document’s

scheme information [111]. They suppose that the element name of u is

kth tag in CT(ts) (k=0,1,...,n-1). CT(ts) = tn-1, to express all child nodes of t

from the DTD structure information of an XML document. Where CT(ts) is

the child names of tag t, and ts denotes the tag of element s. Here, label(u)

= label (s).x is used to express the code of node u and s is the parent node

of u. If u is a text value, then x = -1; Otherwise, we assume that the

element name of u is the kth tag in CT(ts) (k=0,1,...,n-1), where ts denotes

the tag of element s. If u is the first, then x = k, otherwise, if we assume

that y is the last component of the left sibling label u, then X ={⌊𝑦𝑛⌋.𝑛+𝑘

𝑖𝑓(𝑦 𝑚𝑜𝑑 𝑛)<𝑘; ⌈𝑦𝑛⌉.𝑛+𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

40

The extended Dewey labelling scheme also does not support dynamic

updates in XML trees; this requires the reconstruction of the child name

clue data after insertion [13, 111]. Furthermore, adding XML tree element

names within their labels increases the label size and makes the

computation process methods very expensive [16, 112]. However, it

performs well in evaluating query processing by accessing only the leaf

nodes that contain the labels. This speeds up the process and satisfies

queries [7, 13, 23, 38, 39].

Also, [22] have proposed a Dynamic Dewey scheme (DDE), which is an

update of the Dewey scheme. This transforms it into a fully dynamic

labelling scheme based on the mathematical operations of a Dewey label.

In DDE, the label has different lengths, starting with a byte for the first

level and increasing in depth relative to the level value. This can be

appropriate for avoiding overflow problems. In addition, it has the ability

to avoid a complete relabelling and supports a high query performance.

Figure 3.1 shows the initial label for DDE. The advantage of the DDE

compared to previous works is that the scheme has shown an improved

performance when new XML nodes are inserted. The main weakness is

that the labelling schemes are making a large label size [21, 49]. It

implicitly stores the level information as the number of components in that

label, and frequent insertions occur between two siblings by applying the

midpoint technique, which needs extra storage costs when the depth

41

increases [21, 49]. This property remains true after random insertions.

Given two labels X: x1.x2. ….xn and Y: y1.y2. ……ym, the following properties

can be extracted from the labels: X is the parent of Y only if X is an

ancestor of Y and n=m-1. X is an ancestor of Y only if n<m and (X1/Y1) =

(X2/Y2) = ……… = (Xn/Ym). X is a sibling of Y only if n=m. Figure 3.2 shows

how a DDE labelling scheme manages multiple insertions within an XML

document. As X is the first child of a node when a new node is inserted

before node X: where the label of the new node will be x1.x2. ….x(n-1). As X

is the last child of a node when a new node is inserted after the node X:

x1.x2. ……xn the label of the new node will be X: x1.x2. ……x(n+1). Below a leaf

node X: x1.x2. ……xn the label of the new node will be X: x1.x2. ……xn.1 when a

new node is inserted. However, between two continuous siblings, X and

Y, a new node is inserted, and the label of the new node becomes A+B.

Figure 3.1. Dynamic Dewey scheme (DDE) initial labels

1

1.1

1.3

1.2

1.4
1.5

1.2.1

1.2.2 1.2.3

1.4.1

42

Figure 3.2. Processing insertions with DDE labels.

Dynamic Dewey Labelling considers four cases of insertion, as illustrated

in Figure 3.2 Firstly, inserting before the leftmost sibling, the new label is

created by reducing the local order value of the leftmost sibling by 1; in

this case, negative values are acceptable. Secondly, inserting after the

rightmost sibling, the new label is created by incrementing the local order

value of the rightmost sibling by 1. Thirdly, inserting between two siblings

(giving 𝑋 and 𝑌), the new label, e.g., node v, is assigned as the midpoint

vector, 𝑋+𝑌, which is equal to 𝑥1+𝑦1.𝑥2+𝑦2.….𝑥𝑚+𝑦𝑚. Finally, inserting a

child into a leaf node where the new label is created by concatenating the

parent label and the digit “1”. CDDE is an improved version of DDE [22];

it has been presented to recover the performance of DDE when updating

1

1.2

1.1

1.3 1.4
1.5

1.2.1

1.2.2

1.4.1 1.2.3

1.0

1.4.2

1.4.3
1.2.3.1

43

XML documents by allowing initial labels to be negative values. The

improvement in CDDE is insignificant in terms of updating time and label

sizes, as clarified in their work [22].

DDE and CDDE support dynamic updates, although they produce a large

label size at the cost of extra storage [21, 49]. This mainly occurs when

frequent insertions occur between two siblings due to the large size

generated by applying the midpoint technique. DDE is not appropriate for

defining the structural relationships in multiple XML documents and

requires an additional document to differentiate the labels in several XML

documents [13, 21, 113].

Many dynamic schemes have been proposed based on the Dewey,

Dynamic Float-Point Dewey [21]. The authors proposed a DFPD labelling

scheme, and the initial labels were based on Dewey labels and handle

updates to XML documents by considering the same three cases in DDE

techniques: Inserting before the leftmost sibling, inserting after the

rightmost sibling, and inserting a child into a leaf node. However, when

inserting between two following siblings, the new label is calculated, and

the result is a float-point number. The decimal part is 0; in this situation,

the last component of the new label is a float-point number.

44

Assume that the two following siblings are labelled as (a1. a2 …am-1 .am and

b1. b2 …bm-1 .bm) individually, then the new node can be calculated using

the Equation: a1 .a2…am_1.((ka x am + kb x bm)/(ka + kb)). Hypothetically, the

values of ka and kb can be considered a set of positive integer numbers.

Recently, the authors have introduced the DPLS labelling scheme [13] to

improve the DFPD performance [21]. DPLS is a dynamic prefix-based

labelling scheme and supports updates in XML trees. The newly inserted

label between two siblings, A and B, can be calculated using this equation:

a1 . a2 …a m−1 .((am + bm)/(ka + kb)). The authors used a fraction fragment

to represent the last component of the label, and both numerator and

denominator are integers. Both DFPD and DPLS schemes are generated

floating-point numbers, and this can lead to limited accuracy [31];

moreover, the mantissa is denoted as a fixed number of bits. Then, it can

be extended by two bits for each insertion, which can cause overflow

problems [26, 32]. To sort this problem, they implemented a successive,

variable-length storage format by adopting the ORDPATH technique [44],

even though complicity in the ORDPATH has a negative effect on XML

query processing [22, 55].

In [43], a GroupBased Approach is based on the prefix GroupID labelling

scheme. The labelling mechanism is based on dynamic Dewey labelling

45

and can be divided into two phases: Each label has a local and global

fragment. The local label can be duplicated, although not within the same

group. The global label uniquely identifies a group of local labels. The

XML nodes, except the root within the tree, are first clustered in a way

that each group of nodes is a sub-tree that has its root, and child nodes,

and is given a global label. Each node in a group has a local label, starting

from the parent node to the child nodes. It has flowed the GroupID prefix

label and sizes rise rapidly as the XML tree goes deeper [48].

The SCOOTER labelling scheme [23] has been proposed based on

quaternary strings and represents the node order lexicographically. In

addition, the scheme supporting node insertion suffers from overflow

problems in certain situations [22, 56]. Also, decoding large labels’

quaternary strings slows down the query processing [27, 84].

Furthermore, [44] introduced a prefix labelling scheme, called

ORDPATH. The main goals of ORDPATH are to gratefully handle the

insertion of XML nodes in the database and to avoid relabelling. The main

idea is to use only positive, odd integers to label elements in an initial

load, and even and negative integer component values are reserved for

later insertions into an existing tree. However, the ORDPATH technique

46

allows just a limited number of insertions [16, 22], although, the

complexity of the decoding mechanism has a negative effect on XML

query processing [22, 55].

[114] illustrates a new prefix labelling scheme. The labelling mechanism

is based on a mapping function that converts the integers allocated to the

parameters Start, End, and Parent_Start to the binary bit string. The

method takes advantage of the Fibonacci sequence to implement a

variable-length storage format. In updating new XML nodes, a new

section appears in the label in order to avoid relabelling the old nodes;

this also keeps the order of the nodes and captures the structural

relationships. However, the scheme has tested the different cases of

insertion except for leaf node insertions.

A comparison of the existing labelling schemes is provided in table 3.1.

XML Labelling
Scheme

XML
Document
Type

Labelling
Scheme Type

Data Type

Improved Binary
String Labelling
(IBSL) scheme
[55]

Dynamic Prefix labelling
scheme

binary, string

Prime-based
Middle Fraction
Labelling
Scheme PMFLS
[48]

Dynamic Hybrid
labelling
scheme
(prefix and
region
schemes)

Prime numbers

47

ReLab [46] Static labelling
scheme

Interval-based
labelling
scheme

Integers

ME labelling
[39]

Dynamic
updates

Hybrid scheme Odd numbers

NLSXU scheme
[83]

Static (did not
support any
node insertion)

Prefix labelling
scheme

Digits (0-9),
uppercase and
lowercase
letters and
Unicode
characters

[34] Dewey
coding

Static Prefix
encoding

Integer numbers

[20] the
Extended
Dewey code

Static Prefix labelling
schemes

Integers, letters

Dynamic Dewey
scheme (DDE)
[22]

fully dynamic
labelling
scheme

Prefix labelling
scheme

Integer numbers

Dynamic Float-
Point Dewey
DFPD [21].

Dynamic
labelling
scheme

Prefix labelling
scheme

Float-point
number

dynamic prefix-
based labelling
scheme DPLS
[13]

Dynamic
labelling
scheme

Prefix labelling
scheme

Floating-point
numbers

GroupBased
Approach [43]

Dynamic
Dewey labelling

Prefix GroupID
labelling
scheme

Integers

SCOOTER
labelling
scheme [23]

Dynamic
Skewed
insertions

Prefix labelling
scheme

Quaternary
strings, order
lexicographically

ORDPATH [44] limited number
of insertions

Prefix labelling
scheme

Integers

new prefix
labelling
scheme [114]

Dynamic
labelling
scheme

Prefix labelling
scheme

Integers

Clustering
Labelling
Scheme[104]

Dynamic
labelling
scheme

Hybrid
labelling
scheme

Numerical data

Table 3.1: A comparison of the existing labelling schemes.

48

3.2 The Limitation of Existing Labelling Schemes

Dynamic labelling schemes have been developed to support efficient

XML updates. Each of the existing labelling schemes is limited in one or

more aspects. The standard limitation we have found is that some of the

mechanisms do not support dynamic updates. [17] is work on Prefix type

of labelling scheme, and only supports static updates since it requires

regeneration of the child name data after each insertion, as the element

tag names are added as part of their Dewey labels [13, 111]. And this

increases the label size [16, 112]. On the contrary, it performs well in

evaluating query processing by accessing only the leaf nodes that contain

the labels. This speed up the process and satisfies the queries [7, 13, 23,

38, 39].

Similarly, the work in [34] is also based on the Prefix labelling scheme

and supports static updates, which is unsuitable for dynamic XML

documents as updating a new node requires the relabelling of all its

existing right sibling nodes with their relatives in the entire XML tree [44].

[46] is a Region-based Labelling scheme and only supports static XML

documents [13, 47], on the positive side, it is capable of generating labels

faster than other Region-based schemes [47].

49

In [44] the dynamic prefix-based labelling scheme only allows limited

updates [16, 22], as just the even and negative integer values are

reserved for updating XML tree.

In addition, some schemes produce a large label size at the cost of extra

storage. For example, [20] the size of extended Dewey is approximate

10%–30% more than that of original Dewey. This is due to the large size

generated by applying their technique, which causes overflow problems

[13, 21, 48].

Some labelling schemes suffer from overflow problems, where the node

labels are stored as fixed-length binary numbers. The cause of the

overflow is the fixed-length labels where the frequent insertions can lead

to overflow problems [35, 84]. When an overflow occurs, a fragment of

the new label can be lost, which can lead to the creation of duplicate

labels. Figure 3.3 is an example of overflow problems.

studies such as [10, 19] did not evaluate the query performance

experimentally but only presented it theoretically. On the other hand,

others evaluated the XML query process only through determining the

relationships over a large number of randomly selected label pairs. This

has been done by [13, 21, 22].

50

 Binary illustration in memory

Label Byte 1 Byte 2

2132 1 0 0 1 1 1 1 0

21322 1 0 0 1 1 1 1 0 1 0

213223 1 0 0 1 1 1 1 0 1 0 1 1

2132232 1 0 0 1 1 1 1 0 1 0 1 1 1 0

21322322 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0

213223221 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1

21322322132 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0

Figure 3.3 Example of overflow problem [35]

3.3 Experimental Setting.

All experiments in chapter 4,5,6,7 and 8 were performed on a processor

of an Intel Core i7 with 8GB of main memory and 64-bit Operating

System, running Windows 10 system. We run different algorithms in Java

IDE 8.2. The experiments evaluated the scheme’s performance in terms

of the label time and size. The experiments were conducted on the initial

label and the handling insertions. We carried out the experimental

process on different datasets [115]. The selection of XML datasets

represents various features of XML trees, such as the number of nodes,

file sizes, maximum depth and the degree of fan-out. It was vital to

Duplicate labels

Overflow memory
storage

51

consider the variety of different datasets in order to reflect the scalability

of the dataset in our results and evaluation. The real datasets we have

used are DBLP, TreeBank, NASA, Reed, UWM, eBay, Sigmod and

XMark. TreeBank datasets are designed by the University of

Pennsylvania’s Department of Computer and Information Science, and

the size of a TreeBank XML file is 82 MB with maximum breadth 144,493

[115]. The Digital Bibliography Library Project (DBLP) database is a large

XML file related to computer science publications, conferences, series

and books. The DBLP dataset is used by a wide variety of XML database

applications, and it was used due to the ability to provide a wider range

of sibling nodes with its maximum breadth being 328,858 [116]. The

NASA database contains reliable astronomical data and has been

developed from a flat-file format by a NASA XML Project. The size of the

XML file is 23 MB with maximum breadth 80,396. The breadth describes

the number of nodes on the same level whereas the depth is the number

of levels from any node to its root and the maximum depth describes the

maximum number of levels in an XML tree [115].

A Sigmod record is generally used to present and evaluate small XML

databases [115]. eBay is an auction data converted to XML from web

sources, Reed and UWM datasets store university courses’ data derived

from university websites [115].

52

The XMark dataset is a well-known dataset and the most common

benchmark for XML data management [117, 118]. It contains a scalable

document database and is a large file with 111MB with a deep recursive

ancestor structure. Moreover, the decedent nodes have a depth of 12 and

a wide range of fan-out nodes which have different breadths at each level

with the maximum being 25,500 nodes.

We adapted XPathMark queries that include the main aspects of the

XPath language [119] and different relationships [117, 118]. XPath

queries are widely used in other research, such as [120-123]. XPathMark

was designed for the XMark Benchmark, which is a well-known and the

most common benchmark for XML data management [117, 118].

3.4 Conclusion

In this chapter, we have reviewed the state of the art in terms of labelling

schemes to design a novel algorithm that addresses some of the

limitations of existing techniques as highlighted in section 3.2, namely: 1)

to obtain a small label size, 2) supports dynamic updates without

relabelling nodes, 3) support frequent insertions without overflow

problems and 4) evaluate the query performance.

53

In order to investigate these aspects, two typical XML labelling schemes

were applied [91, 124]. In chapter 4 we employed Range-based and

Prefix Dewey Encoding in order to label different XML datasets that

represent different features of XML trees. Various experiments were

carried out to investigate the time and storage space required for each

scheme.

54

4
COMPARISON

BETWEEN RANGE-
BASED and PREFIX
DEWEY ENCODING

XML has become an increasingly important area in data storage and

communication over the web. XML data labelling plays a significant role

in the management of XML data since it allows the unique allocation of

XML content in order to improve the query performance. This chapter

focuses on two typical XML schemes for labelling native XML databases

where the data is represented as ordered XML trees and contains

relationships between nodes.

55

The remaining sections of this chapter are organized as follows: In

section 4.1 we cover an overview on labelling schemes, in Section 4.2

we presented the existing related work in this area while Section 4.3

describes the Prefix Dewey encoding and the Range-based encoding

methods. In section 4.4 the experimental results and evaluation are

discussed while Section 4.5 concludes the chapter.

4.1 Overview

XML data has become one of the most important issues in the field of

databases. Existing research has been conducted to improve the storing,

retrieving and querying of XML data [34]. The main approaches for

facilitating query processing based on native XML databases are

structural indexing and labelling scheme. Labelling schemes focus on

assigning a unique code to each node in XML trees as encoding for the

documents to reduces the query processing time [12, 46, 88]. However,

one of the criticisms of most of the encoding techniques is that they

contain a large label size [38, 39].

This chapter compares Range-based encoding and Prefix Dewey

encoding in order to achieve the fastest labelling time and to ensure the

generation of short labels in term of memory. We used utf-8, utf-16, utf-

23 to control the bits subsequent of the label value. The experiments

56

evaluated the scheme’s performance in terms of the label size and initial

label time.

4.2 Related Work

There are different labelling schemes which have been proposed for

efficiently processing native XML databases. This section reviews and

address issues related to the most common XML labelling schemes.

[34] have proposed a method called Local Order Encoding scheme, each

node is assigned an integer number, which represents its relation position

among its siblings. It is appropriate to reconstruct document order. The

advantage is that it does not result in large label sizes and therefore each

label has a fixed length, which is one byte for each node and uses UTF-

8-character encoding scheme. However, fixed-length in labelling is

leading to overflow problems. Also, the local encoding does not support

all kinds of structural relationship queries, such as to determine the

relationship between the following and preceding nodes.

In addition, [34] have proposed Dewey encoding scheme for labelling

XML trees based on Dewey decimal classification system, it is one of the

prefix labelling schemes. In this method, each label is presented as an

integer number and delimiter “.” [8]. Each node (𝑢) is labelled as a

57

combination of its parent label and postfix integer number (𝑥𝑖). If 𝑢 is the

𝑥𝑡ℎ child of 𝑠 in XML tree then the label of 𝑢, label (𝑢) is the concatenation

of label of 𝑠 and 𝑥 which is presented as the label(𝑠). 𝑥, where 𝑠 is the

parent of 𝑢. For example, if an element label for 𝑢 is 3.6.4, then its 5𝑡ℎ

child label will be 3.6.4.5. If an element label is 6.2.4.1, then its parent

label is 6.2.4, its first ancestor label is 6.2. An advantage of this method

is that for any element label, we can easily extract node labels of its

ancestors and determine the relationship between nodes. However, the

drawback of the Dewey scheme is not appropriate for dynamic XML data;

inserting a new sibling node requires relabelling all the right sibling nodes

along with their descendants.

[22] have proposed a Dynamic Dewey encoding scheme (DDE), which is

an update of the Dewey encoding scheme to transform the original

Dewey into a fully dynamic labelling scheme. The advantage of the DDE

is that the label has different length; starting with a byte for the first level

and increases in depth concerning the level value. So that can be

appropriate for avoiding overflow problems. In addition, it has the ability

to avoid relabelling completely and support high query performance. The

main drawback is that a large label size, especially when the depth

increases and frequent insertions occur between two siblings by applying

the midpoint technique.

58

[125] have proposed VLEI encoding scheme. VLEI scheme is applied to

XML labelling, and the data type is binary string. The VLEI encoding has

used number 9 for the identifier. For example, when a child node is

inserted, the label for the node becomes the label of its parent node + 9

+ VLEI code. However, VLEI encoding used eight bytes for the VLEI

code. The VLEI main drawback is that lead to overflow problem,

especially with skewed insertion. 𝑡 is the new VLEI sequence code.

𝑡 = 1 . {0|1}∗ , If 𝑡.0.{0|1}∗ < 𝑡 < 𝑡.1. {0|1}∗

For example, 10 < 1 < 11 𝑎𝑛𝑑 100 < 10 < 101 < 1 <110 < 11 < 111.

The authors in [126] used Range based labelling scheme which aims to

determine the structural relationships between nodes by using the related

containment information. Each label is represented as a 3-tuple and has

fixed-length. 10 scheme leads to overflow problems. Start, end and depth

are used to identify exactly the position of an element. Start is generated

by a pre-order traversal of the document trees exactly finds the

occurrence position. While end is the maximal start of elements in the

sub-tree of the current element and depth gives additional information to

determine the parent-child relationship.

Following from the related work in this Section, the main drawback we

have identified in the existing labelling schemes is the growth of the label

sizes in response to that, in Section 4.3 we presented a comparison

59

between two schemes with a focus on achieving labelling time and

memory size.

4.3 Comparisons Between Prefix Dewey Encoding
and The Range-Based Encoding.

In the Dynamic Dewey encoding scheme, each label has a different

length; starting with a byte for the first level and it increases in relation to

the level value. The length of labels can vary widely depending on the

position of the nodes within the XML tree. However, prefix labels naturally

extend when XML data is updated during frequent insertions, causing

overflow problems. However, in the Local Order Encoding scheme, each

node is assigned an integer number ,and each label has a fixed-length

label; which is one byte for each node and used UTF-8-character

encoding [127]. Furthermore, in Dewey encoding, each label is presented

as a combination of its parent label and postfix integer number by

delimiter “.” [8]. In contrast, in Rang then its parent label is 6.2.4, its first

ancestor label is 6.2. The based labelling scheme, each label presented

as a combination of the start, end, depth values using “,” as a delimiter.

Furthermore, in Quaternary encoding QED [35] and SCOOTER encoding

[23] proposed different delimiter storage scheme; they used number “0”

as delimiters and consequently, these schemes increase the decoding

60

time because of the extra comparison operation to identify the 0 whether

a bit or a delimiter.

In the following experiment, we controlled the bits subsequent of the label

value [127] for both Range based scheme and Prefix Dewey labelling

scheme. We have done this to aid the generation of short label size and

achieve the fastest labelling time.

4.4 Experimental Work and Results.

All experiments were performed on processor of an intel Core i7 with 8GB

of main memory and 64-bit Operating System, running Windows 10

system. We run Range-based algorithm and Prefix Dewey labelling

algorithm in Java IDE 8.2. We used utf-8, utf-16, utf-23 to control the bits

subsequent of the label value. The experiments evaluated the scheme’s

performance in terms of the label size.

We carried out the experimental process on different datasets [115]. The

XML datasets represent various features of XML trees such as the

number of nodes, file sizes, maximum depth, the degree of fan-out. It was

vital to consider the variety of different datasets in order to reflect the

scalability of the dataset in our results and evaluation. The real datasets

we have used are DBLP, TreeBank and NASA. TreeBank dataset is

designed by the University of Pennsylvania’s Department of Computer

61

and Information Science, and it has a maximum breadth 144,493 with its

size being 82 MB [115]. The Digital Bibliography Library Project (DBLP)

database is related to computer science publications, books, series and

conferences. The DBLP dataset is a large XML file with its maximum

breadth being 328,858. It is used by a variety of XML database

applications as it provides a wider range of sibling nodes [115]. The

NASA database has been developed from a flat-file format by a NASA

XML Project and contains reliable astronomical data This dataset has a

size of 23 MB with a maximum breadth of 80,396. The breadth describes

the number of nodes on the same level whereas the depth is the number

of levels from any node to its root and the maximum depth describes the

maximum number of levels in an XML tree [115].

XML dataset File
Size

Max
Depth

Max
breadth

Number of
nodes

TreeBank 82 MB 36 144493 2437666

DBLP 127 MB 6 328858 3332130

NASA 23 MB 8 80396 476646

Table 4.1: Features of the existing real-life XML dataset.

Table 4.1 gives the properties of these datasets and summarises their

characteristics. We described and specified the chosen datasets and the

platform used.

62

4.4.1 Experimental Evaluation.

The label initialisation experiment for both Prefix Dewey labelling and

Range-based were implemented successfully. The focus of this

evaluation is the comparative of fastest labelling initial time and

generation of short labels in term of memory. The outcome of this

experiment was also aimed to compare the labelling size based on utf-8,

utf-16 and utf-23. This experiment was intended to evaluate the Prefix

Dewey labelling against Range-based schemes; the results showed that

the experiment met its objective.

In this section, we illustrated the experiments that were used to gauge

the Prefix Dewey Labelling Scheme compared to the Range-based

scheme. This experiment examined two parameters: the initial labelling

time and the total label size.

In our work, each of the schemes was individually executed, and the

number of runs had to total at least 10 [128, 129]. In our work, the first

three runs were omitted to validate the accuracy and the reliability of the

results as well as to avoid cache memory.

63

Prefix Dewey labels

Figure 4.1 Initial labelling time for Prefix Dewey labelling scheme.

Range-based labels

Figure 4.2 Initial labelling time for Range-based scheme

8
9

8

1
2

1

4

6 6

0

2

4

6

8

10

UTF-8 UTF-16 UTF32

In
it

ia
l

Ti
m

e
in

 s
ec

o
n

d
s

DBLP Nasa TB

16
18 19

2 2
3

11 11
12

0

5

10

15

20

UTF-8 UTF-16 UTF-32

In
it

ia
l

Ti
m

e
in

 s
ec

o
n

d
s

DBLP Nasa TBNASA

NASA

64

Prefix Dewey labels (Total label Size)

Figure 4.3 Total label Size (MB) for Prefix Dewey labels.

Range-based labels (Total label Size)

Figure 4.4 Total label Size (MB) for Range-based scheme.

0

50000

100000

150000

200000

250000

300000

UTF-8 UTF-16 UTF-32

To
ta

l l
ab

el
 s

iz
e(

M
B

)

DBLP NASA TB

0

50000

100000

150000

200000

250000

300000

350000

400000

UTF-8 UTF-16 UTF-32

To
ta

l l
ab

el
 s

iz
e(

M
B

)

DBLP NASA TB

65

From Figure 4.1 and 4.2 the Dewey Labelling scheme performs better in

Treebank, DBLP and NASA Datasets. The results have shown that for

the Prefix Dewey Labelling scheme, when applied in DBLP Datasets, its

initial labelling time was 8 seconds in comparison to the Range-based

scheme in which their execution time was longer by 50%. Therefore,

leading to the conclusion that the time required to label the document in

Prefix Dewey Labelling scheme is more efficient compared to Range-

based scheme.

All schemes were executed 10 times to progress the accuracy of the

initial label times in different datasets. It was necessary to identify the

number of runs in order to gain considerable results.

From Figure 4.3 and 4.4 the Prefix Dewey Labelling scheme has a

smaller label size in comparison to the Range based coding methods,

except in the utf-32 test, it has shown that Range-based scheme

performed better than Prefix Dewey scheme in NASA and TreeBank

datasets.

4.5 Conclusion.

This chapter compares two XML labelling schemes, namely Range-

based encoding and prefix Dewey encoding. The work was aimed to

66

compare these schemes concerning the fastest labelling time and to

ensure the generation of short labels in term of memory size and also to

control the bits subsequent of the label value using utf-8, utf-16 and utf-

23. Our experimentation has shown that the overall label size for Prefix

Dewey has a smaller label value in comparison to the Range based

encoding scheme, except in the utf-32 test, where Range-based scheme

performed better in NASA and TreeBank datasets. In addition, when the

schemes were applied to DBLP, TreeBank and NASA, their initial

labelling time was 4,6 and 6 seconds respectively in comparison to the

Range-based scheme in which its execution time was longer by more

than 50 %.

Leading to the conclusion that the time required to label the document in

Prefix Dewey Labelling scheme is more efficient compared to Range-

based scheme. Also, the overall label size for Prefix Dewey has a smaller

label value in comparison to the Range based encoding scheme.

In the next chapter, we present a novel labelling scheme by combining

the advantages of the Prefix Dewey Labelling scheme. In order to build

our scheme which aims to achieve the fastest labelling initial time and to

ensure the generation of short labels in term of memory size.

67

5
PENTAGONAL

LABELLING
SCHEME FOR

PREFIX DYNAMIC
XML DATA

In this chapter we propose a novel Pentagonal scheme using Pentagonal

theorem for assigning initial labelling and Handling XML updates. Various

XML labelling schemes have been proposed to improve the storage,

insertion and retrieval in dynamic XML data. Unlike other labelling

schemes, our scheme preserves pentagonal numbers theorem [130] for

insertions when updates occur.

68

The numbers n(3n - 1)/2 are called pentagonal numbers [115]. The first

five pentagonal numbers are 1, 5, 12, 22 and 35. These numbers

represent points that can be arranged to form regular pentagons [131].

In section 5.1 we cover an overview on the proposed Pentagonal labelling

schemes, in Section 5.2 we discussed assigning the initial labelling for

the Pentagonal Scheme, Section 5.3 presents handling XML updates that

describe the Insertion Before the Leftmost sibling (Section 5.3.1),

Insertion After the Rightmost Node (Section 5.3.2), Insertion Between

Two Nodes (Section 5.3.3), Insert a child into a leaf node (Section 4.4.4)

and Illustrates of node insertions (Section 5.3.5). The experiments of

proposed labelling schemes presented in Section 3.4. the Results

Analysis detailed in section 5.5. Lastly, Section 5.6 concludes the

chapter.

5.1 Overview

At the development stage of our scheme, many other schemes were

considered as a start point and offered inspiration for the Pentagonal

labelling scheme whose strengths and weaknesses we evaluated. The

following are some of the schemes that formed the basis to develop and

improve our scheme.

69

DDE [22] is based on mathematical equations where the new label is

allocated the midpoint and assigned its position between two siblings.

The ORDPATHs [44] labelling scheme was designed to avoid relabelling

by reserving negative-even integers for the insertion of new nodes. DFPD

[21] is also based on mathematical equations where float-point numbers

represent the new label. For more detail about these and other schemes,

see chapter (3).

Based on our review of labelling schemes, we proposed the Pentagonal

labelling scheme as a novel algorithm, since the use of pentagonal

numbers to add new labels has not previously been attempted. Other

aims, were to address some of the limitations of existing techniques

which are to obtain a small label size, support dynamic updates without

relabelling nodes, support frequent insertions without overflow problems,

and evaluate query performances. More information on the limitations of

existing techniques is provided in section 3.2.

The initial label mechanisms of nodes are generated based on the

Pentagonal approach. The Pentagonal scheme can be denoted by (d, f),

where d is synchronized with the Prefix labelling scheme and f is the

Pentagonal test function for reserving the pentagonal number.

70

We used the prefix-based labelling scheme and preserved the

pentagonal exponents for dealing with the insertion schemes. In the prefix

XML labelling scheme, each node is associated with a node-id path from

the root to the last component [20]. The last component is named as a

self-label, and the other components are named as parents. The numbers

n(3n - 1)/2 are called pentagonal numbers [130].

The following formula is for pentagonal numbers for dealing with the

insertion schemes (see Equation 1).

∏(1 − 𝑥𝑛)

∞

𝑛=1

= ∑(−1)𝑛𝑥𝑛(3𝑛−1)/2

+∞

−∞

 (1)

(1 − 𝑥)(1 − 𝑥2)(1 − 𝑥3) … = 1 − 𝑥 − 𝑥2 + 𝑥5 + 𝑥7 − 𝑥12 − 𝑥15

Table 5.1 gives the first twenty of Pentagonal numbers.

N f (n) n f (n)

1 1 11 176

2 5 12 210

3 12 13 247

4 22 14 287

5 35 15 330

6 51 16 376

7 70 17 425

8 92 18 477

9 117 19 532

10 145 20 590

Table 5.1. Pentagonal sequences.

71

5.2 Assigning initial labelling for the Pentagonal

 Scheme

As presented in Figure 5.1, the initial labelling of our Pentagonal scheme

is based on the DDE labelling scheme and uses the prefix-based labelling

scheme. In the Pentagonal scheme, the root node “Universities” is

assigned a label value “1” and called the parent label. The child node

labels form a sequence of components separated by ’.’. It assumes that

node X in the XML tree has the label x1.x2….xm; thereby, the labels of its

children are x1.x2….xm.i. Moreover, i in the initial label is not a pentagonal

number so we cannot start with i = 1. The first child “Department” is

assigned a label value “1.2”. The second and third children, “Employee”

and ” Student” are assigned the label values “1.3” and “1.4” respectively.

The fourth child “Id” is assigned a label value “1.6”, and the last

component is 6 instead of 4. This aims to preserve the pentagonal

numbers and retains them to support the XML updates. We illustrated the

proof of updates in Figure 5.5. The labels of the remaining child nodes

are generated by incrementing the label and avoiding the use of

pentagonal numbers.

1

72

Figure 5.1. The initial labelling for Pentagonal scheme.

Definition 1. Given two labels X and Y, a node X is the root of a subtree

containing the node Y. If there is a linked path of nodes from the root X to

node Y such that Z1,…,Zm is a linked path of nodes and node X=Zn, and

Y=Zm, where n<m then node X is an ancestor of the node Y and node Y is

a descendent of X.

Definition 2. Given two labels, X and Y, a node X is a parent of node Y; if

X and Y are directly linked in an XML tree, and X appears exactly one level

above Y, then X is a parent of a node Y and Y is a child of X.

Definition 3. Nodes X and Y are siblings if both nodes are at the same

level and share the same parent in an XML tree. If X appears to the left

1.3
1.4

1.6

ID 1.3.3
ID 1.3.2

Universities
root

Department

1.2
Employee

Student

Id

1.3 1.3.2.2

1.3.2.3

1.3.2.4 1.3.2.6 1.3.3.2 1.3.3.3
1.3.3.4

1.3.3.6

73

of Y in an ordered XML tree, then X is called a pre-order sibling to node Y,

whereas Y is a post-order sibling to node X.

Algorithm 1 Assigning the initial labelling for Pentagonal algorithm

Input: XML document

Output: Prefix Labels

Comment1: ⊕ denotes concatenation

01 if (n is the root)

02 rootlabel ⟵ 1

03 else

04 prefixLable(n)= label(parent(n))

05 for (n=1; n<=Cound(n); n++)

06 selflable = n;

07 get-original function(selfLable);

08 // if the result is integer means the selflable is a pentagonal

09 if (selflable is a pentagonal number)

10 selflable ++;

11 endif

12 NewLabel ⟵ prefixLabel(n) ⊕ selflable(n)

13 end for

14 endif

 Figure 5.2: Illustration of obtaining the initial labels for Pentagonal

algorithm.

According to the first two lines, the root label is assigned the digit ‘1’. The

first child label is assigned the digit ‘1.2’ and preceded by a sequence of

74

prefixLabel(n) ⊕ selflable(n). The selflable(n) cannot start with 1 as 1 is

a pentagonal number. The labels of the remaining child nodes are

generated by incrementing the label. In this stage, the scheme avoids

using the pentagonal numbers.

Algorithm 2 Insert Labels in Pentagonal Scheme

Input: Previous node labels

Output: Insert new nodes using Prefix Pentagonal numbers.

Comment1: ⊕ denotes concatenation

01 if (leftSideNode is empty and rightSideNode is notempty)

02 selflabel⟵lastComponentRightSide – 1

03 get-original function(selflable);

04 if (selflable(n) is a pentagonal number)

05 selflable(n) ⟵ selflable(n)-1

06 endif

07 NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n)

08 endif

09 if (leftSideNode is notEmpty and rightSideNode is empty)

10 selflabel⟵lastComponentLifttSide +1

11 if (selflable(n) is a pentagonal number)

12 selflable(n) ⟵ selflable(n)+1

13 endif

14 NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n)

15 endif

16 if (leftSideNode and rightSideNode is notEmpty) then

17 if (leftSideNode and rightSideNode are non-pentanal numbers) then

75

18 selflable(n) ⟵ get-pentagonal (leftSideNode + rightSideNode)

19 NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n)

20 endif

21 if (leftSideNode and rightSideNode are pentanal numbers) then

22 selflable1(n) ⟵ get-original (leftSideNode)

23 selflable2(n) ⟵ get-original (rightSideNode)

24 selflable(n) ⟵ get-pentagonal (selflable1 + selflable2)

25 NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n)

26 endif

27 if (leftSideNode is pentanal and rightSideNode is non-pentanal) then

28 selflable1(n) ⟵ get-original (rightSideNode)

29 selflable(n) ⟵ get-pentagonal (leftSideNode + selflable1)

30 NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n)

31 endif

32 if (leftSideNode is non-pentanal and rightSideNode is pentanal) then

33 selflable1(n) ⟵ get-original (leftSideNode)

34 selflable(n) ⟵ get-pentagonal (selflable1 + rightSideNode)

35 NewLabel(n) ⟵ prefixLabel(n) ⊕ selflable(n)

36 endif

37 endif

38 if (leftSideNode and rightSideNode are Empty) then

39 prefixLable(n)= label(parent(n))

40 NewLabel(n) ⟵ prefixLabel(parent) ⊕ 2

41 endif

41 return NewLabel

Figure 5.3. Illustration of the insertion of labels for Pentagonal algorithm

and explained four types of insertion scenario.

76

Algorithm 3 Pentagonal-test algorithm

Input: XML node

Output: True or false.

01 x ⟵ last component of the node tested

02 𝑦 ⟵ (1 + √1 + (24 ∗ 𝑥))/ 6

03 if (y is an integer value) then

04 return true // the number is pentagonal

05 else

06 return false // the number is non-pentagonal

07 endif

Figure 5.4. Illustration of whether the last component of the tested node
is pentagonal or not.

Equation (2) is used for a get-pentagonal function:

𝑓1 = 𝑛(3𝑛 − 1)/2, where n is a non-pentagonal value…..……….(2).

Equation (3) is used for a get-original function:

𝑓2 = (1 + √1 + (24 ∗ 𝑥))/ 6, where p is a pentagonal value …..(3).

If the result of equation (3) is an integer value, then the last component of

the node is a pentagonal value. In comparison, if the result is not an

integer, then the last component of the node is a non-pentagonal value.

We tested the last component of each node in order to reduce the label

77

size. For example, if the last component is 70, which is a pentagonal

value, then equation (3) is applied, and the number will reduce to 7.

Moreover, if the other last component is 176 this is a pentagonal value

and equation (3) is applied. Then, the number will reduce to 11, as shown

in Table 5.1. We add the new two values together; then, we apply the get-

pentagonal function in equation (3) to obtain a new self-label, which

should be a pentagonal number. The new label is generated as the prefix

label for the parent and concatenated with the new self-label.

5.3 Handling XML updates

 In this section, we emphasise the issue of handling XML updates,

particularly in a dynamic labelling scheme that handles insertions without

relabelling existing nodes. Our proposed scheme completely avoids

relabelling in XML updates. Labelling schemes consider four cases of

insertion [21, 22]. The case of an insert node before the leftmost sibling

and after the rightmost sibling. Also, inserting between the two siblings

and into the leaf node, the pentagonal labelling scheme provides all four

cases when inserting nodes. This section illustrates the implementation

of the four scenarios in insertion nodes, and using Algorithm 2 and

Algorithm 3 (Figures 5.2 and 5.3) generates the values of the newly

78

inserted labels. Thus, let X and Y be two nodes, whereby node X is

labelled as (x1.x2….xm), and node Y is labelled as (y1.y2….yn).

5.3.1 Insertion Before the Leftmost sibling

The first scenario: insert a new node before the leftmost sibling.

Reducing the last component of the leftmost sibling by 1 and then by

applying the Pentagonal-test in algorithm 3 (Figure 5.4) to creates the

self-label. If the self-label is a Pentagonal number, then reduce another 1

from the self-label. The new label generated as the prefix label is

concatenated with the new self-label. For example, the leftmost sibling is

labelled as x1.x2….xm; the generated new label is x1.x2….(xm-1). However, if

(xm-1) is a Pentagonal number, then the generated new label is x1.x2….(xm-

2).

5.3.2 Insertion After the Rightmost Node

The second scenario: insert a new node after the rightmost sibling. The

self-label is created by incrementing the last component of the rightmost

sibling by 1 and then applying the Pentagonal-test algorithm. If the self-

label is a Pentagonal number, then increase the self-label by 1. The new

79

label is generated as the prefix label and concatenated with the new self-

label. For example, the rightmost sibling is labelled as x1.x2….xm; the

generated new label is x1.x2….(xm+1). However, if (xm+1) is a Pentagonal

number, then the generated new label is x1.x2….(xm+2).

5.3.3 Insertion Between Two Nodes

The third scenario: insert between two siblings. First of all, if the last

component of the left-side node and the last component of the right-side

node are both non-pentagonal numbers, the self-label is created by

adding the last component of the left-side node to the last component of

the right-side node and then apply a get-pentagonal function using

equation (2) to obtain the self-label. The new label is generated as the

prefix label and concatenated with the new self-label. For example, given

two siblings, the left sibling is labelled as (X: x1.x2….xm), and the right sibling

is labelled as (Y:y1.y2….yn) where m=n and xm, yn are non-pentagonal

numbers, our algorithm is applied to get a pentagonal function for (xm+ yn)

in order to get the self-label, and the new label is generated as the prefix

label for the parent and concatenated with the new self-label.

Secondly, if the last component of the left-side node and the last

component of the right-side node are pentagonal numbers, our algorithm

applies get-original function using equation (3) for the last component of

80

the left-side node and for the right-side node and adds the two values

together. The get-pentagonal equation (2) is then applied to obtain a new

self-label. The new label is generated as the prefix label for the parent

and concatenated with the new self-label. Equation (3) used for get-

original function

 𝑓2 = (1 + √1 + (24 ∗ 𝑥))/ 6, where p is a pentagonal value …..(3).

For example, given two siblings, the left sibling is labelled as (X: x1.x2….xm),

and the right sibling is labelled as (Y:y1.y2….yn) where m=n and xm, yn are

pentagonal numbers. Our algorithm applies the get-original function for

xm and yn and then applies the get-pentagonal function for the original

values xm’+ yn’ in order to get the new self-label. Then, the new label is

generated by concatenating the prefix label for the parent with the new

self-label.

Thirdly, if one node is pentagonal and the other is not a pentagonal

number, our algorithm applies a get-original function for the pentagonal

node and adds the two values together. Then the get-pentagonal function

is applied to obtain a new self-label. The new label is generated as the

prefix label for the parent and concatenated with the new self-label. For

example, given two siblings, the left sibling is labelled as (X: x1.x2….xm),

and the right sibling is labelled as (Y:y1.y2….yn) where m=n and xm is a

81

pentagonal number, yn as a non-pentanal number; our algorithm applied

the get-original function for xm and then applied the get-pentagonal

function for the original values xm’+ yn in order to get the new self-label.

Then, the new label is generated by concatenating the prefix label for the

parent with the new self-label.

5.3.4 Insert a child into a leaf node

Fourth scenario: insert a child into a leaf node, where the new label is

created by concatenating the prefix label with the digit “2”. For example,

the parent is labelled as (X:x1.x2….xz). The generated new label is

(x1.x2….xz.2)

5.3.5 Illustrates of node insertions

Figure 5.5 Processing labelling for different node insertion.

1.4

2

1

1.2

1

1.3 1.70 1.176

3

1.477

4
5

1.0

1.6

82

Figure 5.5 illustrates an example of node insertions, as clarified in the

above scenario. The new nodes are inserted into XML trees represented

by grey circles, and the numbers inside the circles represent the order of

inserted nodes. Node number 1 is inserted between two non-pentagonal

numbers, label node 1.3 and label node 1.4 and its 1.pentagonal (3 + 4),

which equals 1.70. Node number 2 is inserted between pentagonal and

non-pentagonal numbers, which is 1.70 and 1.4 so we returned to the

original pentagonal number, which is 7 and its 1.pentagonal (7 + 4) is

equal to 1.176. Node number 3 is inserted between two pentagonal

numbers, which is 1.70 and 1.176 so we returned to the original

pentagonal numbers, which are 7 and 11 its 1.pentagonal (7 + 11) is

equal to 1.477. Node 4 is inserted after the rightmost sibling and labelled

as 1.4; the generated new label is 1.6. If 1.(4+1) is a pentagonal number,

then the generated new label is 1.(4+2), which is equal to 1.6. However,

node number 5 is inserted before the first leftmost child; the leftmost

sibling is labelled as 1.2, and the generated new label is 1.0.

The following section describes the experiments with their objectives.

5.4 Selection of dynamic labelling schemes.

Labelling schemes are mainly created to store XML documents. They are

similar to other storing techniques since they support features such as

83

perform an XML query using the path node information. Moreover, a

labelling scheme helps to capture the structural relationships during the

processing of queries. Despite all these similarities, Dynamic Labelling

schemes differ from other Labelling schemes in that their internal model

is based on dynamic XML documents and not based on the static model.

Storing data in dynamic XML documents is appropriate for the reason

that it is supports data updates without duplicating labels or relabelling

old nodes.

It is imperative for the developer of any new labelling scheme to compare

against existing labelling schemes and are widely used. This comparison

allows us to compare our work with provides confidence in the viability of

our solution.

We have selected different labelling schemes for this comparison based

on the following selection criteria.

1. The main approach to store XML data is dynamic labelling schemes

which is regularly updated [22, 26, 43, 46, 101, 102] and support data

updates without duplicating labels or relabelling old nodes. Unlike other

approaches to store XML data such as the static labelling schemes [14,

34, 85] which is used to store non-updatable XML documents.

2. Supports the Prefix labelling schemes.

3. Supports Loading of different XML document Sizes.

84

4. Supports XPath query language.

These criteria ruled out the selection of ReLab [46], NLSXU scheme [83]

and Dewey coding [34] as these labelling schemes focus on static XML

labelling schemes. In addition, ReLab [46] is an Interval Labelling

scheme.

The labelling schemes that satisfy the aforementioned criteria were

selected for the comparison, and they are: DPLS scheme [13] and the

DDE scheme [22].

The following section describes the experiments with their objectives.

5.5 Experiments

To compare the proposed pentagonal labelling scheme to the DPLS and

DDE schemes, several experiments were performed.

These experiments were conducted on the initial label and the handling

insertions. The comparison has tested different aspects, time and size.

These aspects had been facilitated using statistical analysis for

pentagonal, DDE and DPLS schemes. All experiments were run on intel

Core i7 processor with 8GB of main memory and a 64-bit Operating

System, running a Windows 10 system. We run DDE, DPLS and

pentagonal algorithms in Java IDE 8.2. The experiments evaluated the

85

scheme’s performance in terms of the initial time by seconds and the

label size by Kbytes. We carried out the experimental process on different

datasets [115].

The selection of XML datasets represents various features of XML trees,

such as the number of nodes, file sizes and depth. It is crucial to consider

the variety of different datasets in order to reflect the scalability of the

dataset in our results and evaluation. The real-life XML datasets that we

used are DBLP, NASA, Reed, UWM, eBay, Sigmod and XMark. The

Digital Bibliography Library Project (DBLP) database is a large XML file

related to computer science publications, conferences, series and books.

The DBLP dataset is used by a wide variety of XML database

applications, and it was used due to the ability to provide a wider range

of sibling nodes with its maximum breadth being 328,858 [116].

The XMark dataset is a well-known dataset and the most common

benchmark for XML data management [117, 118]. It contains a scalable

document database and is a large file with 111MB with a deep recursive

ancestor structure. Moreover, the decedent nodes have a depth of 12 and

a wide range of fan-out nodes which have different breadths at each level

with the maximum being 25,500 nodes.

TreeBank datasets are designed by the University of Pennsylvania’s

Department of Computer and Information Science, and the size of a

86

TreeBank XML file is 82 MB with maximum breadth 144,493 [115]. The

NASA database contains reliable astronomical data and has been

developed from a flat-file format by a NASA XML Project. The size of the

XML file is 23 MB with maximum breadth 80,396. A Sigmod record is

generally used to present and evaluate small XML databases [115]. eBay

is an auction data converted to XML from web sources, Reed and UWM

datasets store university courses’ data derived from university websites

[115].

Table 5.2 gives the properties of these datasets and summarises their

characteristics. We specified and described the chosen datasets and the

platform used.

XML
datasets

Size of
files

Max depth Total of
nodes

DBLP 172 MB 6 3332130
TreeBank 82 MB 36 2437666
NASA 23 MB 8 476646
UWM 2 MB 5 66729
Segmod 467 KB 6 11526
Ebay 34 KB 5 156
XMark 111MB 12 1666315

Table 5.2. Features of the most common XML Benchmarks datasets.

87

Figure 5.6. The initial labelling time for Dewey, DPLS and Pentagonal
Schemes

Figure 5.7. The initial Label size for Dewey, DPLS and Pentagonal
Schemes

0

2

4

6

8

10

12

14

16

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Dewey DPLS Pentagonal

0

5

10

15

20

25

30

35

40

45

50

In
it

ia
l l

ab
el

 s
iz

e
(M

B
)

Dewey DPLS Pentagonal

88

5.6 Results Analysis

In this section, we described the experiments that were used to evaluate

the proposed Pentagonal Dynamic Labelling scheme compared to the

Dynamic Dewey encoding scheme (DDE) and the Dynamic prefix

labelling scheme (DPLS). The first experiment measured the initial label

process in terms of time and size. Each of the schemes was individually

executed a number of times, and the number of runs had to total at least

10 [128, 129]. However, others suggested using at least 30 runs to

progress the accuracy [132]. In our work, the first three runs were omitted

to validate the reliability, the accuracy of the results, and to avoid cache

memory. From Figure 5.6, the Pentagonal Dynamic Labelling scheme

performs best in DBLP, XMark and Treebank Datasets as the results

have shown that for the Pentagonal Dynamic Labelling scheme, when

applied in Treebank Datasets, its execution time was seven seconds in

comparison to the Dewey and DPLS in which their execution time was

longer, therefore leading to the conclusion that the Pentagonal scheme

shows a better initial labelling time performance than the compared

schemes, particularly when using large XML datasets. It is vital to identify

the number of runs to gain considerable results; all schemes are

executed 12 times to progress the accuracy of the initial label times in

different datasets.

89

The statistical analysis of the results in Figure 5.7 indicated that there

was an insignificant difference between the schemes in the initial labelling

size; this is reasonable as DPLS and DDE are using the same scheme in

the initial labels, and the proposed scheme at this stage avoids using

pentagonal numbers. In addition, it would be reasonable to expect the

growth of the label’s size as the document size increases. From Figure

5.7, we can clearly identify that the size of loading the initial labels for

Pentagonal, DPLS and DDE schemes are almost the same as DBLP,

XMark, Treebank, NASA, UWM, eBay and sigmod datasets.

The second experiments were to evaluate the scheme’s facility to handle

XML updates. Four groups of experiments were executed using

Pentagonal, DDE and DPLS schemes. The tests have covered the

insertion of small and large numbers of nodes into the databases based

on different insertion scenarios. The tree update was addressed by [32]

through looking at two insertion process: random skewed insertions

repeatedly handle new nodes between two consecutive siblings’ nodes

and ordered skewed insertions repeatedly insert new nodes before or

after a particular node.

The first scenario measured the labelling time required using random

skewed node insertions. The second was used to evaluate the storage

90

space needed to store their labels. We compare the pentagonal scheme

with DDE and DPLS schemes as they show powerful labelling dynamic

in XML data. Figure 5.8. shows that the Pentagonal scheme achieved the

fastest labelling time when handling random skewed node insertions. Our

scheme can effectively support frequent insertions between two siblings’,

and the reliability of the pentagonal scheme is reasonable. As illustrated

in Figure. 5.9(a) the Pentagonal scheme has smaller label sizes than the

DPLS scheme. In particular, the Pentagonal performs best when a huge

number of random skewed nodes has been updated (see Figure. 5.9(b)).

Figure 5.8(a). The labelling time of random skewed node insertions.

0

5

10

15

2 4 6 8 1 0

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

NUMBER OF INSERTIONS (THOUSANDS)

Dewey DPLS Pentagonal

91

Figure 5.8(b). The labelling time of random skewed node insertions.

Figure 5.9(a). Label size of random skewed node insertions

0

10

20

30

40

50

60

70

80

3 0 4 0 6 0 8 0

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

NUMBER OF INSERTIONS (THOUSANDS)

Dewey DPLS Pentagonal

0

20

40

60

80

100

120

140

160

2 4 6 8 1 0

IN
SE

R
TI

O
N

 L
A

B
EL

'S
 S

IZ
E

(K
B

)

NUMBER OF INSERTIONS (THOUSANDS)

Dewey DPLS Pentagonal

92

Figure 5.9(b). Labelling size of random skewed node insertions

Figure 5.10. Evaluating the scheme’s facility for execution times
to handle XML updates into leaf node.

0

200

400

600

800

1000

1200

1400

3 0 4 0 6 0 8 0

IN
SE

R
TI

O
N

 L
A

B
EL

'S
 S

IZ
E

(K
B

)

NUMBER OF INSERTIONS (THOUSANDS)

Dewey DPLS Pentagonal

0

20

40

60

80

100

120

2 4 6 8 10 30 40 60

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

NUMBER OF INSERTIONS (THOUSANDS)

DDE DPLS Pentagonal

93

Figure 5.11. Evaluating the label size to handle XML updates into leaf node

Figure 5.12. Evaluating the scheme’s facility for the execution times
to handle XML updates after the rightmost sibling.

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 1 0 3 0 4 0 6 0

IN
SE

R
TI

O
N

 L
A

B
EL

'S
 S

IZ
E

(M
B

)

NUMBER OF INSERTIONS (THOUSANDS)

DDE DPLS Pentagonal

0

0.5

1

1.5

2

2.5

2 4 6 8

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

NUMBER OF INSERTIONS (THOUSANDS)

DDE DPLS Pentagonal

94

Figure 5.13. Evaluating the label size to handle XML updates after the
rightmost sibling.

Figure 5.14. Evaluate the scheme’s facility for the execution times
to handle XML updates before the leftmost sibling.

0

5

10

15

20

25

30

35

40

45

2 4 6 8

IN
SE

R
TI

O
N

 L
A

B
EL

'S
 S

IZ
E

(K
B

)

NUMBER OF INSERTIONS (THOUSANDS)

DDE DPLS Pentagonal

0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 30 80

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

NUMBER OF INSERTIONS (THOUSANDS)

DDE

DPLS

Pentagonal

95

Figure 5.15. Evaluating the label size to handle XML updates before the
leftmost sibling.

The results in Figures 5.11, 5.13, 5.15 presented the insignificant

difference between the schemes when evaluating the scheme’s facility

for the label size in handling XML updates into leaf nodes, after the

rightmost sibling and before the leftmost sibling. This is reasonable as

DPLS and DDE use the same scheme in the update. In the execution

times, the results from Figures 5.10 and 5.14 indicated that the

Pentagonal scheme was better than DDE and DPLS. The experiments

have been discussed, and the data obtained have been reflected on and

evaluated. The experiments were carried out to evaluate the proposed

0

100

200

300

400

500

600

700

800

2 4 6 8 3 0 8 0

IN
SE

R
TI

O
N

 L
A

B
EL

'S
 S

IZ
E

(K
B

)

NUMBER OF INSERTIONS (THOUSANDS)

DDE DPLS Pentagonal

96

scheme and its objectives. All experiments were run on the proposed,

DDE and DPLS schemes.

5.7 Conclusion

We presented a novel Pentagonal dynamic labelling scheme to support

updates over XML data. The experiment compared the ability of the

Pentagonal Dynamic Labelling Scheme to handle insertions. In the

experimental datasets, the tests covered the initial labelling in terms of

the time and label sizes. Based on the experiments, the Pentagonal

Dynamic Labelling scheme is more efficient with large XML documents;

it performed best in DBLS, XMark and Treebank Datasets. A conclusion

based on these results is that when labelling documents, our scheme has

proven to be more efficient, particularly when using large size XML

datasets. Also, the statistical analysis of the results indicated that the size

of the initial labels for Pentagonal, DPLS and DDE are almost the same.

This is reasonable as DPLS and DDE use the same scheme in the initial

labels, and the proposed scheme in the initial labels just avoids using

pentagonal numbers.

In addition, four types of insertion scenarios were tested. Firstly, the

random skewed node insertions; the pentagonal scheme efficiently

97

supports frequent insertions between two siblings. The outcome showed

that our scheme achieved the fastest labelling times in term of random

skewed node insertions. Moreover, in terms of label size, it has been

verified that when handling XML skewed updates between two siblings,

our scheme generates more compact labels every time than the DPLS

scheme, which leads to decreased storage costs and performs the best

when a big number of random skewed nodes is updated. From this, we

evaluated the scheme’s facility for the execution times and label size to

handle XML updates into the leaf node, after the rightmost sibling and

before the leftmost sibling.

The aim of the next chapter is to analyses the query performance of

labelling schemes over dynamic XML documents. The experiment

compared the ability of the Pentagonal Dynamic Labelling Scheme to

handle response time queries and the time spent to determine different

relationships.

98

6
4 QUERY

EXPERIMENTS

In chapter 3, we discussed that extant research such as DPLS and DDE

schemes evaluated the XML query process only through determining the

relationships over a large number of randomly selected label pairs [13,

21, 22]. In addition, other researchers did not evaluate the query

performance experimentally but only presented it theoretically [10, 19].

This chapter measured performance for our novel scheme based on

query response time and determined structural relationships based on a

prefix comparison.

In section 6.1 we cover an overview of datasets and queries for

evaluation; Section 6.2 describes the Query performance where section

99

6.2.1 analysis the results of the query performance on the initial label and

Section 6.2.2 analysis the results of the query performance after

insertion. Lastly, Section 6.3 concludes the chapter.

6.1 Overview of Datasets and Queries for

evaluation

XPath Query retrieves and navigates an XML document based on regular

path expressions by appropriate structural relationships [43]. We adapted

XPathMark queries that include the main aspects of the XPath language

[119] and different relationships [117, 118]. XPath queries are widely

used in other research, such as [120-123]. XPathMark was designed for

the XMark Benchmark, which is a well-known and the most common

benchmark for XML data management [117, 118], and it also presented

in more detail in section 5.4. Different queries are specifically designed

to validate the scalability of the XMark dataset, and it provides a variety

of structural relationships, such as child-parent, ancestor-descendent

and following-preceding sibling [117, 118].

We applied the structural joins stack-tree algorithm [133] to perform

XPath queries in both the proposed and compared schemes. The

structural joins algorithm leads to optimal join performance, and this is

key to the efficient implementation of XML queries [134]. Moreover, the

100

XPath queries works more efficiently under the structural joins algorithm

[135]. Therefore, the developers of the XML labelling schemes, such as

[33, 136-138], have used structural joins for querying the XML dataset. In

their experiments, each query was individually executed several times,

with the minimum being 10 times [128, 129]. However, from the statistical

test perspective, others prefer at least 30 runs in order to enhance the

accuracy of the test [132].

In our work, the first 10 runs were omitted to avoid cache memory and to

validate the reliability and accuracy of the results. Queries were executed

in 1,666,315 initial labels for each scheme in the XMark dataset as this is

the total number of nodes in the Xmark dataset in order to determine the

relationships amongst 6,000 pairs of labels that were newly inserted to

test the query performance when XML is updated. All tests were

performed on the Pentagonal, DDE and DPLS schemes. Tree-structured

relationships are parent-child (PC), ancestor-descendent (AD), sibling

(S), lower common ancestor (LCA), and document order (DO).

The XPath queries used in our experiments are defined in Table 6.1 [117,

118], where the first column determines the relationship between the

nodes; the second column indicates and describes the queries.

https://www.sciencedirect.com/science/article/pii/S016412120800201X?casa_token=01JDPBA5W1cAAAAA:soKqMguW1i8f4mUdER57lThbhGvdPajv8NRPq9SWEmpNb9lPZDBKh07gFw7wcGMZ6Y5dK6lAkQ#tbl2

101

Axis name Example & description

Child Axes. Query 1: /site/regions/*/item

- Selects all children of the current node, and all

the items.

Parent Axes.

Query2: /site/regions/*/item[parent::namerica

or parent::samerica]

- The (North or South) American items. Element

named items are the children of the world region

they belong to. Retrieve all items belonging to

either North or South America.

Ancestor Axes.

Query 3: //keyword/ancestor::listitem

- Ancestor: Selects all ancestors (parent,

grandparent, etc.) of the current node.

Descendent Axes.

Query4: /descendent-or-self::listitem

- Descendant-or-self: Selects all descendants

(children, grandchildren, etc.) of the current

node and the current node itself.

Sibling Axes. Query5:

/site/open_auctions/open_auction/bidder

- Children named the bidder of a given open

auction are siblings. Following-sibling: Contains

the following siblings of the current node.

Table 6.1. XPath Queries

 Queries1 and 2 represent parent-child relationships; query1 selects all

children of the current node and query2 retrieves all the items belonging

to either North or South America, while the elements named item are

children of the world region to which they belong. Queries3 and 4

represent the ancestor-descendent relationship; Query3 selects all

ancestors (parent, grandparent, etc.) of the current node. Query4 selects

all descendants (children, grandchildren, etc.) of the current node and the

102

current node itself. In addition, query5 refers to the following siblings (i.e.

post-order siblings) of the current node.

In our work, we evaluate our scheme for query performance by using the

most common structural relationships.

6.2 Query performance

In this chapter, we evaluated our scheme for the query performance by

using XPathMark queries and the time spent on determining different

relationships. In this section, we compared the query performance of

different labelling schemes. Also, we performed our experiments by

computing the following relationships: parent-child (PC), ancestor-

descendent (AD), sibling (S), lower common ancestor (LCA), and

document order (DO). In the first experiments (see Section 6.2.1) as we

evaluated the response time by using different types in the XPath

queries, which are child-parent, ancestor-descendent and following-

sibling. The second experiment supports query processing by

determining the structural relationship between nodes (see Section

6.2.2).

https://www.sciencedirect.com/topics/computer-science/query-performance

103

6.2.1 Query performance and Results’ Analysis

on the initial label.

In this section, we evaluated the response time for the queries by using

different types in the XPath queries, which are child-parent, ancestor-

descendent and following-sibling relationship. The queries were

executed in 1,666,315 initial labels for each scheme in the XMark dataset

as this is the total number of nodes in the Xmark dataset.

Figure 6.1: Comparison of the query performance over the initial labels

Figure 6.1 reports the results of the query performance execution time

when applying different labelling schemes. We applied XPathMark

queries in the initial label of the DDE, DPLS and Pentagonal schemes.

The queries run over the labels of the XMark dataset; they represent a

0

5

10

15

20

Q1-PC Q2-PC Q3-AD Q4-AD Q5-Sibling

R
es

p
o

n
se

 t
im

e
(s

)

Querying time

DDE DPLS Pentagonal

https://www.sciencedirect.com/topics/computer-science/query-performance

104

parent-child relationship for Queries1 and 2, and an ancestor-descendent

relationship for Queries3 and 4. In addition, Query5 represents the sibling

relationship.

The results in Figure 6.1 indicate that there was no difference between

the DDE and DPLS schemes as these schemes used the same Prefix

Dewey scheme to generate the initial labels. However, there was a

difference in the query performance in the initial labelling between our

scheme and the compared schemes. The Pentagonal Labelling scheme

performs better in Queries 1, 2 and 5 for parent-child and sibling queries

than DPLS and DDE, while Queries 3 and 4 take the same length of time

for the ancestor-descendent queries.

This reflexion was investigated statistically in order to obtain the statistical

results of the comparison between the algorithms, the Mann Whitney U-

test was used [139]. It calculated the U statistic that corresponded to each

algorithm by applying the time of each query individually using equations

4 and 5.

UA = nAnB + ((nA(nA+1))/2)-RA ………………… (4)

UB = nAnB + ((nB(nB+1))/2)-RB …………………. (5)

We calculated the RA, RB by run each schemes several times and then

we sum the the time allocated to the Pentagonal and the DPLS schemes

respectively [139]. Therefore: nA, nB is the number of observations in the

Pentagonal scheme and the DPLS scheme respectively, In this

105

expermint, the number of observations was five. The Mann Whitney U-

test provided a 𝑝-value less than the significance level as the p-value that

obtained was 0.004 when the significance level was 0.05 [139]. This

means that the test supports the pentagonal scheme; it had a direct

impact on the response time for the parent-child and sibling queries. The

Mann Whitney U-test showed that the ancestor-descendent queries did

not quantify a significant difference as the p-value was 0.579 when the

significance level was 0.05.

6.2.2 Query performance and Results’ Analysis

after insertion.

This experiment measured the time needed to determine the different

relationships between two nodes using their labels. Figure 6.2 presents

the time required to determine the relationship after 6,000 pairs of new

labels were inserted. The performance was tested on DDE, DPLS and

Pentagonal schemes. The results gained from this experiment shows that

the Pentagonal Labelling Scheme performed best in the parent-child

(PC), sibling (S), lower common ancestor (LCA), and document order

(DO). However, the same results were obtained in the ancestor-

descendent (AD) relationship.

106

The results showed that when applying the sibling (S) relationship to the

Pentagonal scheme, the execution time was 68 millisecond, which was

faster by 35.3% than the DDE and faster by 44.1% than the DPLS. In

addition, when applying the parent-child (PC), lower common ancestor

(LCA), and document order (DO) relationships, the execution time was

12, 28, 16 milliseconds less respectively in the Pentagonal scheme

compared to the DDE and DPLS. This could suggest that the time

required to determine the relationship in our scheme is more efficient

amongst sibling, parent-child (PC), lower common ancestor (LCA), and

document order relationships. Our scheme can effectively support

queries after skewed insertions, and the reliability of the pentagonal

scheme is reasonable as it has a fast response time, which thus means

it handles queries efficiently. As Figure 6.2 shows, the Mann Whitney U-

test was used to test for significance to calculate the time spent on

determining different relationships. The p-values were 0.001 for the

parent-child, sibling, LCA and DO relationships. The tests provided a 𝑝-

value less than the significance level of 0.05; this means that these

queries were faster. For the query ancestor-descendant, the Mann

Whitney U-test did not quantify a significant difference as the p-value was

0.531.

107

Figure 6.2: Computation time of relationships

According to the test results, there is a difference in the querying time

between the compared schemes for the initial label for both parent-child

and sibling (p = 0.004). In addition, there are a difference in the

determination time for relationships after insertion for parent-child,

sibling, Lowest Common Ancestor (LCA), and Document Order

relationships as (p = 0.001). The tests provided a 𝑝-value less than the

significance level of 0.05; this means that these queries were faster and

confirmed a better performance.

The findings indicate that the time for parent-child and sibling queries,

also determines the time for the parent-child, sibling, Lowest Common

Ancestor (LCA), and Document Order relationships. The p-values, which

0

10

20

30

40

50

60

70

80

90

100

PC sibling AD LCA DO

Ti
m

e(
m

s)

Determination Time

DDE DPLS Pentagonal

108

ranged from 0.001 to 0.004, were obtained, which are extremely low

values. This means that the test supports the pentagonal scheme; it had

a direct impact on the response time and was faster than the compared

schemes.

6.3 Conclusion

The aim of this chapter is to analyses the query performance of labelling

schemes over dynamic XML documents. The experiment compared the

ability of the Pentagonal Dynamic Labelling Scheme to handle response

time queries and the time spent to determine different relationships. The

results showed that the Pentagonal Dynamic Labelling Scheme has a

faster response time than the DPLS and DDE for parent-child, siblings,

lower common ancestor, and document order. However, all schemes

performed equally in the ancestor-descendent relationship queries.

According to the experimental results, Pentagonal is more efficient than

the DPLS and DDE schemes except for the ancestor-descendent

relationships where all schemes had similar response time.

However, it proved its capability in terms of the query performance on the

initial label and in determining the relationships after insertion.

109

The next chapter compared the ability of the Pentagonal Dynamic

Labelling Scheme with two well-known Native XML databases systems,

the eXist database and BaseX database to handle different dataset sizes

and executed for different queries.

110

7
 COMPARISON BETWEEN
NATIVE XML DATABASE

STSTEMS and
PENTAGONAL LABELLING

SCHEME

The previous chapter described the experiments that were used to

measure the performance on the basis of query response time. This

chapter presents the results obtained from these experiments and

compares the results from our proposed scheme with two well-known

Native XML databases systems. In this work, we consider eXist database

version 5.2 [66] and BaseX database version 9.4 [140].

The next section identifies the concept of Native XML database systems

and Introduction to database systems, followed by non-functional

111

comparison features and attributes in section 7.2. Section 7.3 presents a

functional comparison, the experiments based on the comparison of

loading time and query response time. Section 7.4 presents the result

analysis, Load Time Performance (Section 7.4.1) and Query

performance (Section 7.4.2). Finally, Section 7.5 concludes this chapter.

7.1 Selection of Native XML database systems

Native XML databases are mainly created to store XML documents. They

are similar to other databases since they support features such as

security, transactions, multi-user access, query languages, programmatic

APIs and many other vital features. Despite all these similarities, Native

XML databases differ from other databases in that their internal model is

based on XML and not based on the relational model which what other

databases are commonly based on [141].

Storing data in XML documents in a native XML database is appropriate

for the reason that it is space-efficient when data is semi-structured. This

is where there is a variety in its structure in which mapping it to a relational

database causes a large number of tables or a large number of columns

with null values [141].

It is imperative for the developer of any new labelling scheme to compare

against existing real-world databases that use their labelling schemes

112

and are widely used. This comparison allows us to compare our work with

industry-standard systems and provides confidence in the viability of our

solution, and its applicability in real-world settings.

We have selected different databases for this comparison based on the

following selection criteria.

1. The main approach to store XML data is the Native XML Database

(NXD) that is used to store document-centric XML which contains semi-

structured XML document and is stored in the hierarchical structure [66].

Unlike other approaches to store XML data such as the XML Enabled

Database (XED) which is used to store data-centric documents that

contain well-structured information and can be transferred into a

traditional relational database [64, 65].

2. Supports XPath query language.

3. Supports Loading of different XML document Sizes.

4. Utilises XML Parser to generate the XML labels that represent the XML

tree structure of the XML files.

These criteria ruled out the selection of DB2 and Oracle XML DB as these

databases focus on XML-enabled database as data-centric documents.

The databases that satisfy the aforementioned criteria were selected for

the comparison, and they are: eXist database system version 5.2 [142]

and the BaseX database system version 9.4 [140, 143]

113

7.1.1 Introduction to eXist and BaseX database

systems

eXist: XML documents are stored and managed in hierarchical

collections. The eXist database uses a numerical indexing scheme in

order to speed up query processing [66]. This scheme supports the rapid

determination of structural relationships between nodes. For example,

ancestor-descendant, parent-child, and following–preceding siblings. In

addition, all nodes in the document are indexed. Consequently, the eXist

creates full indexing over all nodes [66].

The indexing or the numbering scheme implemented in eXist provides an

extension to Lee et al. [97] which presents the document tree as k-ary

tree, where k is matching to the maximum number of children nodes of

the element in the XML document. A unique number is allocated to each

node by traversing the tree in level-order. For two nodes n and m of a

tree, size(n) = size(m) if level(n) = level(m), where size(x) is the number

of children of node x and where level(y) is the path’s length of the from

the root node of the tree to y. In addition, at each level, additional

information on the number of children needs to be stored in an array.

Figure 7.1 illustrates an example of the XML document, and Figure 7.2

shows the labelling generated by eXist [61].

114

<contact>
<name>John Cage</name>
<phone>

<office>19</office>
<home>1010</home>

</phone>
</contact>

Figure 7.1. An example of XML document.

Figure 7.2. Unique identifiers allocated by the level-order labelling

scheme [66].

In order to avoid the relabelling node on the case of updating documents,

it is possible to leave spare labels between nodes. However, eXist does

not afford an advanced update scheme as illustrated in Figure 7.2, the

eXist is more suitable for static documents that rarely updates rather than

1

contact

2

name
3

phone

4

“John Cage”
6

office

7

home

9

“19”

10

“1010”

5

8

115

dynamic as it is updates document as a whole rather than to manipulate

a single node [66].

BaseX database modification the encoding scheme to speed up the

query execution time and optimize the memory consumption [143].

Figure 7.3 shows the encoding scheme generated by BaseX.

Figure 7.3: Table Encoding in BaseX

The basic of BaseX scheme is the pre-order and post-order plane. All

nodes in the document are allocated a pre and post value, based on the

locations they take during a pre and post tree traversal. Each document

node persuades a partition of this plane into four separate sections, in

order to represent the main XPath axes parent-child, ancestor-

descendent and preceding-following [40, 143, 144]. However, using an

ordering approach helps with gathering a compact storage. In addition, it

helps to hold the fixed-length label to each node [40]. However, as the

pre-order and post-order values signify the hierarchy and the order of the

116

document, performing the update of nodes are expensive [40, 41],

particularly when facing the worst-case scenario of updating, that can

lead to relabelling of all nodes in the document [40, 41]. In BaseX the pre-

value serves as node id. In addition, to keep track of the node

relationship, BaseX also uses distance and size values which is for two

reasons. Firstly, in comparison to the parent value, the distance value is

the number of nodes that exist between the parent node and the child

node. Whenever the pre-value of the parent changes, then all child nodes

must be updated. In BaseX, the parent is always equal to “pre-value -

distance value”. Secondly, the information on the number of descendent

nodes is provided by the size value. However, the BaseX scheme has

drawbacks relating to updating operations. This weakness can be

highlighted when adding a subtree u as an only child to an element f

considering that t is the number of nodes in u. As a result, three values

must be updated as follows:

1. Based on the following axis of f, the pre-values of all nodes are

increased by t.

2. All the ancestors of f and its size values are increased by t.

3. Based on the following sibling axis of f, all the distance values of

the nodes are increased by t

117

This proves that the node identifiers are not useful when the pre-value is

changed after an update [40]

7.1.2 selection of datasets

We discuss our results, which were executed by applying XMark dataset

[117, 118] and Shakespeare's plays dataset [145] in both the eXist

database system, BaseX database system and the Pentagonal labelling

scheme. We applied queries in Hamlet, one of Shakespeare's plays,

which was stored as an XML ordered dataset with a document size

273KB [145] and in XMark with a document size 111MB, XMark dataset

is the most common benchmark for XML data management [117, 118], it

is well-known dataset and contains a scalable document database with a

deep recursive ancestor structure. In addition, the decedent nodes have

a wide range of fan-out nodes and a depth of 12 which have different

breadths at each level with the maximum being 25,500 nodes.

7.1.3 comparison methodology

We classify the comparison methodology into non-functional and

functional parameters. This section gives more information on these

parameters.

118

The non-functional parameters, such as XML parsers helps in dealing

with XML data documents, while the functional parameters such as the

query performance aid in evaluating the response time by using different

types of XPath queries.

The parser techniques convert the Native XML document into logical

representations either as tree-based approach or as events [72, 76, 77,

146]. The most common XML parsers are Document Object Model

(DOM) and Simple API for XML (SAX) [72, 73, 77, 147].

The Document Object Model parser is based on the XML tree approach,

which requires the entire structure of the document to be built within the

main memory, in order for it to represent XML document as a tree

structure [71, 76]. The DOM parser demands memory space. This is

necessary as the entire XML tree is loaded in memory where the DOM

parser could be larger than the original XML document by up to 10 times

[73, 148]. Loading the whole XML document into the main memory

provides improved performance in terms of XPath Query retrieval, data

access, modification and navigation of XML documents [76].

The SAX parser technique scans an XML document and then creates

events by treating the XML document as a stream, such as start elements

and end elements [77, 78]. It is suited for dealing with large documents

which do not fit in the main memory [72, 77-79]. In addition, the SAX

https://www.sciencedirect.com/topics/computer-science/query-performance

119

parser is best suited for extracting the content of specific elements [71].

The Non-Functional comparison is further highlighted in Section 7.2.

An example of a Functional parameter is the loading time which is a

measure of the performance in terms of the time required to load the

datasets. A further explanation of the functional comparison of this study

is presented in section 7.3.

7.2 Non-Functional comparison: features and

attributes

A non-functional comparison is provided in table 7.1.

Feature Pentagonal EXist BaseX

The approach to
store XML data

Native XML
database
Document-
centric XML

Native XML
database
Document-centric
XML

Native XML
database
Document-
centric XML

Technology Java Java Java

Query processing XPath XPath/XQuery XQuery

Supported
standard

Path expressions Path expressions Path
expressions

Implementation of
xpath query
language
(structural node
relationships)

Parent-child,
ancestor-
descendent or
previous-/next-
sibling.

Parent-child,
ancestor-
descendent or
previous-/next-
sibling.

Parent-child,
ancestor-
descendent
and previous-
/next-sibling.

Document Size small to large
collections of
XML documents

 Small to large
collections of
XML documents

Small to large
collections of
XML
documents

Xml parsers Simple API for
XML (SAX)

Document object
model (DOM)
To speed up
query processing,

built-in, SAX
parser and a
DOM parser

Associated
scheme or DTD

Not required Not required Not required

120

Update
mechanism

Dynamic
documents

Static documents Static
documents

Table 7.1. Features and attributes of eXist, BaseX database systems
and Pentagonal labelling scheme. [66, 148-150].

EXist, BaseX and Pentagonal comparison: eXist, BaseX and Pentagonal

are Document-centric XML which contain much-mixed content and larger

sections of text.

The eXist database did not provide an advanced update mechanism as

it means updating a whole tree. This is a limitation for the eXist application

as these documents need a frequent update [66]. In BaseX, performing

the update of nodes is expensive [40, 41], particularly when facing the

worst-case scenario of updating, that can lead to relabelling of all nodes

in the document [40, 41]. In our scheme, it is possible to manipulate single

nodes and support for dynamic document updates. eXist and BaseX have

a user-friendly GUI for both database management and query

processing. We applied the SAX parser in our scheme; this is due to the

improved performance of the SAX parser in terms of handle large-scale

XML documents [26]. The eXist database applied the DOM parser, which

demands memory space. This is due to loading the entire XML tree in

memory. Since the DOM parse could be larger than the original XML

document up to 10 times [73, 148]. BaseX uses different XML parsers,

121

SAX parser, which is covered by the SAX-WRapper class, and a DOM

parser covered by DOM-Wrapper class [148].

Documents in eXist, BaseX and Pentagonal scheme are not required to

have an associated data type definition (DTD) or scheme [150]. The

eXist, BaseX and Pentagonal Scheme automatically build indexes on the

loading of XML documents [41, 150]. The supported standard in eXist

and BaseX is XPath queries which allow users to query part of the

document or even all the documents in the database [40, 149]. Similar to

eXist and BaseX, Pentagonal scheme also uses XPath as its database

query language.

7.3 Functional Comparison: Experiments based on

the comparison of loading time and query

response time.

The experiment measured the performance on the basis of query

response time. This experiment used Shakespeare's plays dataset [8, 55,

111, 151] and the XMark dataset [117, 118]. We applied queries in

Hamlet, one of Shakespeare's plays, which was stored as an XML

ordered dataset with a document size 273KB and in XMark with a

document size 111MB. See (Chapter 5) for detailed characteristics of the

dataset.

122

Query Axis name Dataset Example & description

Query1: Child Axes. XMark dataset /site/regions/*/item
- Selects all children of the current

node, and all the items.

Query2: Parent
Axes.

XMark dataset /site/regions/*/item[parent::namerica
or parent::samerica]
- The (North or South) American

items. Element named items are the

children of the world region they

belong to. Retrieve all items

belonging to either North or South

America.

Query3: Ancestor
Axes.

XMark dataset //keyword/ancestor::listitem
- Ancestor: Selects all ancestors

(parent, grandparent, etc.) of the

current node.

Query4: Child Axes. Shakespeare's

Hamlet

dataset

/PLAY/*/TITLE

- Selects all children of the current
node, all the title.

Query5:

Parent
Axes.

Shakespeare's

Hamlet

dataset

/PLAY/*/TITLE[parent::PERSONAE]
The PERSONAE Title.
Element named Title are the

children of the world Play they

belong to. Retrieve all Title

belonging to Personae.

Query6:

Ancestor-
Descendent
Axes

Shakespeare's

Hamlet

dataset

/descendant-or-self::SPEECH

- Descendant-or-self: Selects all
descendants (children,
grandchildren, etc.) of the current
node and the current node itself.

Table 7.2. XPath Queries for Hamlet - one of Shakespeare's plays – dataset
and XMark dataset.

123

The XPath queries used in our experiments are defined in Table 7.2. for

Shakespeare's plays dataset and XMark dataset [117, 118, 152].

7.4 Results’ Analysis

In this experiment, we evaluate the eXist, BaseX databases and our

scheme for the query performance by using XPath queries [152] on the

dataset for Shakespeare's Hamlet and XPathMark queries [118] on the

XMark dataset. In this section, we compared the query performance to

an indexing scheme and labelling scheme. Each query was individually

executed several times, for a minimum of 10 times [128, 129] in order to

enhance the accuracy of the test. Our work was based on a personal

computer with an Intel Core i7 processor, 8GB of main memory, a 64-bit

Operating System, and running a Windows 10 system.

7.4.1 Load Time Performance

 In this section, we described the experiments that were used to evaluate

the proposed Pentagonal Dynamic Labelling scheme compared to the

eXist database and the BaseX Database. The first experiment measured

loading time performance. Each of the databases was separately

executed several runs in order to gain considerable results and enhance

https://www.sciencedirect.com/science/article/pii/S016412120800201X?casa_token=01JDPBA5W1cAAAAA:soKqMguW1i8f4mUdER57lThbhGvdPajv8NRPq9SWEmpNb9lPZDBKh07gFw7wcGMZ6Y5dK6lAkQ#tbl2

124

the accuracy of the loading times [123]. In this work, the first three runs

were omitted to validate the accuracy, the reliability of the results.

Figure 7.4 Loading time for Hamlet - one of Shakespeare's plays – dataset

Figure 7.5 Loading time for XMark – dataset

0

200

400

600

800

1000

1200

eXist BaseX Pentagonal
Scheme

Lo
ad

 t
im

e
(m

s)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

eXist BaseX Pentagonal
Scheme

Lo
ad

 t
im

e
(m

s)

125

From Figure 7.4, the BaseX database performs best in hamlet dataset;

its loading time was 2 milliseconds. The Pentagonal scheme performs

better than eXist in Hamlet dataset as the results have shown that for the

Pentagonal scheme and eXist database when applied in Hamlet Dataset,

the loading time for the Pentagonal scheme was 272 milliseconds. In

comparison to eXist database in which its loading time was longer and

reached 1 second and 3 milliseconds. From Figure 7.5, the BaseX and

the Pentagonal scheme both perform better than eXist database in XMark

Dataset as the results have shown that for the BaseX and Pentagonal

scheme, when applied in XMark Datasets, their loading time was 7 and

11 seconds respectively in comparison to eXist database in which its

loading time was longer and reached 2 minute and 38 seconds,

consequently leading to the conclusion that the time required to load XML

document in Pentagonal scheme is efficient with larger and small

document sizes. In addition, it would be reasonable to expect the growth

of the loading time as the document size increases. From Figure 7.5, we

can identify that the time of loading the document for XMark dataset,

BaseX are almost the same as the pentagonal scheme. The eXist

database had the worst loading time; This is due to loading the entire

XML tree in memory which can delay the loading time. eXist database

applied the DOM parser, which demands large memory space as the

parser can be larger than the original XML document by up to 10 times

126

[73, 148]. In the Pentagonal scheme, the SAX parser was applied, this is

due to the improved performance of the SAX parser in terms of handling

large XML documents. In addition, BaseX is applying the advantage of

both the DOM and SAX parser. This can be seen as the reason for BaseX

have faster execution time than the Pentagonal Scheme.

7.4.2 Query performance

In this section, we evaluate the Pentagonal scheme for the query

performance compared to the eXist database and the BaseX Database,

using Shakespeare’s Hamlet dataset and XMark dataset. In this

experiment, we compared the query execution time of eXist database,

BaseX database and Pentagonal scheme. Moreover, we executed our

experiments by evaluating different XPath queries (see Table 7.2).

The queries run over XMark dataset, they represent a parent-child

relationship for Q1 and Q2 and an ancestor-descendent relationship for

Q3. In addition, Q4, Q5 and Q6 run over Hamlet Shakespeare's dataset,

they represent a parent-child relationship for Q4 and Q5, and Q6

represents the ancestor-descendent relationship.

127

Figure 7.6. Query performance in Shakespeare's Hamlet and XMark datasets

According to the query performance in the datasets for XMark and

Shakespeare's Hamlet, the eXist dataset presented a better performance

in all queries. This is because determining the structural relationships

using DOM is less complicated than in comparison to SAX [26]. In

contrast, Pentagonal scheme showed better performance in Q1, Q2 and

Q3 compared to BaseX.

Pentagonal is more efficient than the BaseX database with the parent-

child and ancestor-descendent relationships which had a faster response

0

0.5

1

1.5

2

2.5

3

3.5

4

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Querying time

eXist BaseX Pentagonal

128

in with XMark database. This is because the queries benefit considerably

from fast access to the parent-child and ancestor-decedent nodes. This

is due to the labelling storage mechanism being based on Pentagonal

numbering and prefix labelling scheme, where each node is associated

with one value for the node-id path from the root to the last component.

In contrast, the BaseX mechanism stores a combination of values to each

node based on interval labelling schemes, each node is labelled as a 3-

tuple <pre,dist,size>, leading to long labels. Interval labelling scheme

suffers from very long labels [26]. As a result of this restriction, the interval

labelling scheme is typically not appropriate for applying with dynamic

XML data [9, 13, 47, 86, 100].

Our labelling mechanism of nodes is generated based on the prefix

labelling approach, which could be seen as the reason for our scheme

being more efficient in determining the parent-child and the ancestor-

descendent relationships. The query response time in Pentagonal

scheme compared with BaseX can perform better in large size XML

dataset such as XMark.

Our experiment showed that the Pentagonal scheme and BasX database

are powerful in loading time. However, the loading time in the eXist

database was very long compared to other schemes. In addition,

Pentagonal scheme, eXist and BaseX databases are fully supported the

XPath [153] specification. However, the eXist database efficiently

129

performed in all queries. In contrast, Pentagonal scheme showed better

performance in parent-child and ancestor-descendent relationships

compared to BaseX in large size XML dataset such as XMark.

7.5 Conclusion

The experiment compared the ability of the Pentagonal Dynamic

Labelling Scheme, the eXist database and BaseX database to handle

different dataset sizes and executed for different queries. In the

experiments, the tests covered 111MB and 273KB database sizes, in

order to illustrate how the labelling schemes and different native XML

databases deal with different XML document sizes. According to our

experimental results, BaseX and the Pentagonal scheme both perform

better than eXist database as the results have shown that for the BaseX

and Pentagonal scheme when applied in XMark Dataset and Hamlet

Shakespeare's dataset, their loading time was less in comparison to eXist

database in which its loading time was longer and reached 2 minute and

38 seconds.

According to the query response time in the datasets for XMark and

Shakespeare's Hamlet, Pentagonal scheme showed better behaviour in

XMark dataset compared to BaseX. In contrast, the eXist dataset

presented better behaviour in all queries. Our experiment showed that

130

the Pentagonal scheme is powerful in loading and queries large

document sizes. XPath queries were run over eXist, BaseX and the

Pentagonal scheme; moreover, all the databases loaded the document

and fully supported the XPath [153] specification.

131

8
5 CONCLUSION and

FUTURE WORK

In this thesis, we reviewed state of the art labelling schemes in order to

design a novel algorithm that addresses some of the limitations of existing

techniques. The study aimed to achieve the target of supporting dynamic

updates without relabelling nodes. This was designed to obtain a small

label size and support frequent insertions without overflow problems, and

to experimentally evaluate the labelling time and query performances.

We have illustrated the limitations related to labelling scheme to XML

documents. Therefore, the Pentagonal labelling scheme was proposed

to resolve these restrictions and limitations. The experimental results and

the evaluation of the proposed scheme were discussed in the previous

chapters as well as the objectives and implementations.

132

The remainder of this chapter are organized as follows: Section 8.1

summarises the work, while section 8.2 reflects on the research

questions and describes the main contributions of this research. Section

8.3 suggests future work relating to our thesis topic, while section 8.4

concludes the thesis.

8.1 Thesis Summary

This study designed a novel prefix dynamic labelling scheme, named the

Pentagonal scheme. The scheme is designed to support updates in a

dynamic XML tree without the need to relabel old nodes or duplicate any

labels. The Pentagonal scheme generates labels based on the prefix

labelling scheme.

The thesis was divided into eight chapters which are organized as

follows: the first chapter introduced the research work that influenced the

construction of the hypothesis, the research motivation, objectives and

research aims. The second chapter provided a brief overview of XM and,

the structure of XML documents, and described the storage. In addition,

it described its syntax and illustrated the concepts of XML parsing

techniques. The third chapter represented different labelling schemes in

the literature review and discussed the structure, restriction, strengths

and weaknesses of several XML labelling schemes. The fourth chapter

133

compared the most common XML labelling schemes, namely Prefix

Dewey encoding and Range-based encoding; furthermore, this chapter

has already been published (Taktek, Thakker and Neagu, 2018). In the

fourth chapter, different XML datasets were used that represent various

features of XML trees, and several experiments were performed to

investigate the storage space and labelling time requirement for each

scheme. This also enabled a comparison of the relevance of the two

schemes to the dataset structures. The aim was to ensure that the

generation of short labels in terms of memory size and to achieve the

fastest labelling time. Chapter 5 explained the proposed scheme by

describing the structure of the scheme and defining the rules of the

algorithms. Furthermore, from a practical perspective, this chapter

illustrated the design and implementation of the proposed scheme.

Several experiments were performed to evaluate the Pentagonal

labelling scheme on different datasets. Also, this chapter included the

experimental results in order to evaluate the reliability, scalability and

performance of the proposed scheme. Chapter 6 evaluated the query

performance of the Pentagonal scheme. The experiment compared the

ability of the proposed scheme to investigate the queries’ response times

and determined the relationship between the nodes; the work in chapters

5 and 6 has been published for Elsevier Journal of Knowledge-Based

Systems (Taktek, E. and Thakker, D 2020). Chapter 7 identified the

134

concept of Native XML database systems and compared two such

systems with the proposed scheme. Furthermore, the experiment

compared the ability of the BaseX database, eXist database and

Pentagonal dynamic labelling scheme to execute different queries and

handle different datasets sizes. The next section discusses the research

contributions of this thesis.

8.2 The Research Contributions of this Thesis

This section reflects on the research questions and highlights the main

contributions of this thesis.

1. The Pentagonal scheme has been applied for the first time to label

XML data. The storage mechanism in our scheme is based on

Pentagonal numbering and prefix labelling scheme, where each

node is associated with one value for the node-id path. The

experiments have covered insertions of small and large numbers

of nodes for a range of two to sixty thousands nodes in order to

investigate the label size and the execution time. In terms of the

implementation and the design of the proposed scheme, we

applied the SAX parser due to its improved performance in relation

135

to handling large XML documents. The outcome showed that our

scheme achieved the fastest labelling times in term of random

skewed node insertions. In addition, our scheme leads to

reduction in the storage costs by applying the get-original function

using equation (3). It is also shown that The Pentagonal Scheme

performs the best when a significant number of random skewed

nodes is updated (for more detail, see chapter 5).

2. The Pentagonal labelling scheme handles insertions without

relabelling existing nodes by providing four scenarios of inserting

nodes: inserting before the leftmost node, inserting after the

rightmost node, inserting between two siblings, and inserting a

child into a leaf node. Our scheme was designed effectively for

dynamic XML documents and completely avoids relabelling in

thses four scenarios based on the mathematical equations for

assigning initial labelling and handling XML updates. Unlike other

labelling schemes, our scheme preserves the pentagonal

numbers theorem [130] for insertions when updates occur. In

inserting between two siblings, the new label is generated as the

prefix label and concatenated with the new self-label. Our

algorithm applies the get-original function using equation (3) for

136

the last component of the siblings in order to reduce the size of the

label.

 Equation (3) used for get-original function :

 𝑓2 = (1 + √1 + (24 ∗ 𝑝))/ 6, where p is a pentagonal value

…..(3).

Several experimental works were carried out to ensure that the

scheme efficiently deals with insertions when updates occur

without duplicating labels or relabelling old nodes. As well as

obtaining reduced labels.

3. We have evaluated the Pentagonal scheme’s query performance

and illustrated the efficiency of determining the relationships

between nodes over dynamic XML documents. We applied the

SAX parser due to its improved performance in relation to handling

large XML documents and using different XPath Queries.

The main strength of our labelling scheme is that it is efficiently supports

updates in all the cases of insertion, it performs best when a vast number

of random skewed nodes has been updated. Also, it proved its capability

in terms of the query performance and in determining the relationships.

Our scheme also supports frequent insertions without overflow problems.

137

Following the work in this thesis, the main contributions are highlighted

as follows:

1) The novel Pentagonal labelling scheme supports dynamic updates by

avoiding relabelling.

2) The Pentagonal labelling scheme obtains a small label size and

performs best when a vast number of random skewed nodes has been

updated.

3) The Pentagonal labelling scheme reduces the time taken to generate

labels. It has achieved the fastest labelling time when handling random

skewed node insertions.

4) The Pentagonal labelling scheme supports frequent insertions without

overflow problems.

5) The Pentagonal labelling scheme helps to reduce the query processing

time in some cases.

6) Pentagonal labelling scheme was applied for the first time to label XML

data.

7) The loading time was quicker for the Pentagonal labelling scheme than

for the eXist database.

8) The Pentagonal labelling scheme showed better behaviour in the large

dataset compared to the BaseX database.

138

All the contributions above are supported by evidence obtained

experimentally, as demonstrated in the earlier chapters.

8.3 Future Work

The thesis presented a novel dynamic labelling scheme to support

updates over XML data. The proposed algorithm of this thesis was based

on Pentagonal theory, which labels XML data, handles insertions and

query XML data.

Combination of Parsers for Optimum performance trade-off:

In terms of the implementation and the design of the proposed scheme,

we applied the SAX parser due to its improved performance in relation to

handling large XML documents. In contrast, other labelling schemes,

such as the eXist database, applied the DOM parser, which demands

large memory space and as shown in the experimental results, had

longer loading time. However, the DOM parser had the advantage of

better performance in all queries because determining the structural

relationships using DOM is less complicated than in comparison to SAX

[26]. Therefore, in order to enhance this aspect, it is possible to apply the

advantage of both the DOM and SAX parser in the future. In addition, it

139

would be a good improvement for this scheme to investigate and execute

more complex queries in order to gain more inclusive results.

Application of compression method with Pentagonal scheme:

Additional investigations could be carried out experimentally to discover

the effects of applying compression methods such as the Fibonacci

method to our scheme [114], to see if applying them can improve our

scheme , in order to get more compact representations of the labels in

term of memory size.

Applying different labelling schemes:

Another future work suggestion is to redesign the proposed scheme with

other labelling schemes instead of Prefix based labelling such as Interval

based schemes [7, 14, 32, 39, 46, 85, 90, 91]), Multiplicative based

schemes [39, 43, 49, 93-99] or Hybrid based schemes [7, 16, 47, 48,

100]. This could lead to a new scheme and may improve the efficiency of

our scheme.

8.4 Conclusion

The main aim of this research was to improve the efficiency of XML data

management, mainly in dynamic XML databases. This thesis proposed a

140

novel prefix dynamic labelling scheme, called the Pentagonal scheme,

and considered the restrictions of existing XML labelling schemes to

overcome the challenges associated with labelling-based methods for

dynamic XML data. This involved our scheme’s ability to support data

updates without duplicating labels or relabelling old nodes as it is

important to use dynamic XML labelling schemes to avoid relabelling

existing XML nodes during updates. It also includes the reduction of time

and the size taken to generate the labels.

The results concluded that the Pentagonal labelling scheme achieved an

efficient performance in many sectors, including the label size, label time,

query processing, and structural relationship determination. Moreover, it

supported dynamic updates without relabelling nodes. Finally, this

chapter summarised the thesis, outlined the research contributions and

explained and potential future work.

141

REFERENCES

1. St.Laurent, S., Why XML. 1998.
2. Chaudhri, A., R. Zicari, and A. Rashid, XML data management: native XML and

XML enabled DataBase systems. 2003: Addison-Wesley Longman Publishing
Co., Inc.

3. Khare, R. and A. Rifkin, XML: A door to automated Web applications. IEEE
Internet Computing, 1997. 1(4): p. 78-87.

4. Abiteboul, S., P. Buneman, and D. Suciu, Data on the Web: from relations to
semistructured data and XML. 2000: Morgan Kaufmann.

5. Lloyd, C.M., M.D.B. Halstead, and P.F. Nielsen, CellML: its future, present and
past. Progress in biophysics and molecular biology, 2004. 85(2-3): p. 433-450.

6. Wu, X., M.-L. Lee, and W. Hsu. A prime number labeling scheme for dynamic
ordered XML trees. 2004. IEEE.

7. O'Connor, M.F. and M. Roantree. Desirable properties for XML update
mechanisms. 2010. ACM.

8. Li, C., T.W. Ling, and M. Hu, Efficient updates in dynamic XML data: from
binary string to quaternary string. The VLDB Journal—The International
Journal on Very Large Data Bases, 2008. 17(3): p. 573-601.

9. Ghaleb, T.A. and S. Mohammed, A dynamic labeling scheme based on logical
operators: a support for order-sensitive XML updates. Procedia Computer
Science, 2015. 57: p. 1211-1218.

10. He, Y., A Novel Encoding Scheme for XML Document Update-supporting.
2015.

11. Wang, H., et al. ViST: a dynamic index method for querying XML data by tree
structures. 2003.

12. Alsubai, S. and S.D. North. A prime number approach to matching an XML
twig pattern including parent-child edges. 2017. SCITEPRESS.

13. Liu, J. and X.X. Zhang, Dynamic labeling scheme for XML updates. Knowledge-
Based Systems, 2016. 106: p. 135-149.

14. Dietz, P.F. Maintaining order in a linked list. 1982.
15. Bosak, J. and T. Bray, XML and the second-generation Web. Scientific

American, 1999. 280(5): p. 89-93.
16. Haw, S.-C. and C.-S. Lee, Data storage practices and query processing in XML

databases: A survey. Knowledge-Based Systems, 2011. 24(8): p. 1317-1340.
17. Li, C., T.W. Ling, and M. Hu. Reuse or never reuse the deleted labels in XML

query processing based on labeling schemes. 2006. Springer.
18. Khaing, A.A. and N.L. Thein. A persistent labeling scheme for dynamic ordered

XML trees. 2006. IEEE.
19. Duong, M. and Y. Zhang. LSDX: a new labelling scheme for dynamically

updating XML data. 2005. Australian Computer Society, Inc.

142

20. Lu, J., X. Meng, and T.W. Ling, Indexing and querying XML using extended
Dewey labeling scheme. Data & Knowledge Engineering, 2011. 70(1): p. 35-
59.

21. Liu, J., Z.M. Ma, and L. Yan, Efficient labeling scheme for dynamic XML trees.
Information Sciences, 2013. 221: p. 338-354.

22. Xu, L., et al. DDE: from dewey to a fully dynamic XML labeling scheme. 2009.
ACM.

23. O’Connor, M.F. and M. Roantree. SCOOTER: a compact and scalable dynamic
labeling scheme for XML updates. 2012. Springer.

24. Wong, R.K., F. Lam, and W.M. Shui. Querying and maintaining a compact XML
storage. 2007.

25. Zou, Q., S. Liu, and W.W. Chu. Ctree: a compact tree for indexing XML data.
2004.

26. Al Zadjali, H., Compressing Labels of Dynamic XML Data using Base-9 Scheme
and Fibonacci Encoding. 2017.

27. Härder, T., et al., Node labeling schemes for dynamic XML documents
reconsidered. Data & Knowledge Engineering, 2007. 60(1): p. 126-149.

28. Fu, L. and X. Meng. Triple Code: An Efficient Labeling Scheme for Query
Answering in XML Data. 2013. IEEE.

29. Cohen, E., H. Kaplan, and T. Milo, Labeling dynamic XML trees. SIAM Journal
on Computing, 2010. 39(5): p. 2048-2074.

30. Kay, M.H., Ten reasons why Saxon XQuery is fast. IEEE Data Eng. Bull., 2008.
31(4): p. 65-74.

31. Amagasa, T., M. Yoshikawa, and S. Uemura. QRS: A robust numbering scheme
for XML documents. 2003. IEEE.

32. Xu, L., T.W. Ling, and H. Wu, Labeling dynamic XML documents: an order-
centric approach. IEEE transactions on knowledge and data engineering,
2012. 24(1): p. 100-113.

33. Mirabi, M., et al., An encoding scheme based on fractional number for
querying and updating XML data. Journal of Systems and Software, 2012.
85(8): p. 1831-1851.

34. Tatarinov, I., et al. Storing and querying ordered XML using a relational
database system. 2002. ACM.

35. Li, C. and T.W. Ling. QED: a novel quaternary encoding to completely avoid re-
labeling in XML updates. 2005. ACM.

36. Chung, C.-W., J.-K. Min, and K. Shim. APEX: An adaptive path index for XML
data. 2002. ACM.

37. Jiang, Y., et al., An encoding and labeling scheme based on continued fraction
for dynamic XML. JSW, 2011. 6(10): p. 2043-2049.

38. Yu, J.X., et al., Dynamically updating XML data: numbering scheme revisited.
World Wide Web, 2005. 8(1): p. 5-26.

39. Subramaniam, S. and S.-C. Haw. ME labeling: A robust hybrid scheme for
dynamic update in XML databases. 2014. IEEE.

143

40. Kircher, L., BaseX: Extending a native XML database with XQuery Update.
2010.

41. Grün, C., Storing and querying large XML instances. 2010.
42. Al-khazraji, S. and S. North. The emergence computation of overflow in

dynamic XML tree based on prefix and interval labelling schemes. 2017. IEEE.
43. Almelibari, A., Labelling Dynamic XML Documents: A GroupBased Approach.

2015.
44. O'Neil, P., et al. ORDPATHs: insert-friendly XML node labels. 2004. ACM.
45. Xu, L., Z. Bao, and T.W. Ling. A dynamic labeling scheme using vectors. 2007.

Springer.
46. Subramaniam, S., S.-C. Haw, and L.-K. Soon. Relab: a subtree based labeling

scheme for efficient XML query processing. 2014. IEEE.
47. Haw, S.-C. and A. Amin, Node Indexing in XML Query Optimization: A Review.

Indian Journal of Science and Technology, 2015. 8(32): p. 1-9.
48. Qin, Z., et al., Efficient XML query and update processing using a novel prime-

based middle fraction labeling scheme. China Communications, 2017. 14(3):
p. 145-157.

49. Xiao, Y., et al. Branch code: A labeling scheme for efficient query answering
on trees. 2012. IEEE.

50. Gou, G. and R. Chirkova, Efficiently querying large XML data repositories: A
survey. IEEE Transactions on Knowledge and Data Engineering, 2007. 19(10):
p. 1381-1403.

51. W3C. Extensible Markup Language (XML). 2016.
52. Wu, X. and D. Theodoratos, A survey on XML streaming evaluation

techniques. The VLDB Journal, 2013. 22(2): p. 177-202.
53. Lin, R.-R., Y.-H. Chang, and K.-M. Chao. A compact and efficient labeling

scheme for XML documents. 2013. Springer.
54. Zhuang, C., Z. Lin, and S. Feng. Insert-friendly XML containment labeling

scheme. 2011.
55. Ko, H.-K. and S. Lee, A binary string approach for updates in dynamic ordered

XML data. IEEE Transactions on Knowledge and Data Engineering, 2009.
22(4): p. 602-607.

56. Ghaleb, T.A. and S. Mohammed. Novel scheme for labeling XML trees based
on bits-masking and logical matching. 2013. IEEE.

57. Zhou, J., et al., Top-down XML keyword query processing. IEEE Transactions
on Knowledge and Data Engineering, 2016. 28(5): p. 1340-1353.

58. TIDWELL, D., Introducti on to Xml [Online]. 2002.
59. Abiteboul, S., P. Buneman, and D. Suciu, Data on the Web: From Relational to

Semistructured Data and XML. 1999.
60. Harold, E.R., Effective XML: 50 specific ways to improve Your XML. 2004:

Addison-Wesley Professional.
61. Potok, T.E., et al. An ontology-based HTML to XML conversion using

intelligent agents. 2002. IEEE.

144

62. Reis, D.d.C., et al. Automatic web news extraction using tree edit distance.
2004.

63. Klaib, A. and J. Lu. Investigation into indexing XML data techniques. 2014. The
Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp).

64. Nambiar, U., et al. Efficient XML data management: an analysis. 2002.
Springer.

65. Florescu, D. and D. Kossmann, Storing and querying XML data using an
RDMBS. IEEE data engineering bulletin, 1999. 22: p. 3.

66. Meier, W. eXist: An open source native XML database. 2002. Springer.
67. Hall, D. and L. Strömbäck. Generation of synthetic XML for evaluation of

hybrid XML systems. 2010. Springer.
68. Bertino, E., et al., Specifying and enforcing access control policies for XML

document sources. World Wide Web, 2000. 3(3): p. 139-151.
69. Deutsch, A., et al., Querying XML data. IEEE Data Eng. Bull., 1999. 22(3): p.

10-18.
70. Milo, T. and S. Zohar. Using schema matching to simplify heterogeneous data

translation. 1998. Citeseer.
71. Roy, J. and A. Ramanujan, XML schema language: taking XML to the next

level. IT professional, 2001. 3(2): p. 37-40.
72. Haw, S.C. and G.S.V.R.K. Rao. A comparative study and benchmarking on xml

parsers. 2007. IEEE.
73. Kiselyov, O. A better XML parser through functional programming. 2002.

Springer.
74. Tong, T., et al., Rules about XML in XML. Expert Systems with Applications,

2006. 30(2): p. 397-411.
75. Lam, T.C., J.J. Ding, and J.-C. Liu, XML document parsing: Operational and

performance characteristics. Computer, 2008. 41(9): p. 30-37.
76. Wang, F., J. Li, and H. Homayounfar, A space efficient XML DOM parser. Data

& Knowledge Engineering, 2007. 60(1): p. 185-207.
77. Nicola, M. and J. John. Xml parsing: a threat to database performance. 2003.
78. Pan, Y., Y. Zhang, and K. Chiu. Hybrid parallelism for XML SAX parsing. 2008.

IEEE.
79. Takase, T., et al. An adaptive, fast, and safe XML parser based on byte

sequences memorization. 2005.
80. Ahn, J., et al., A dynamic and parallel approach for repetitive prime labeling of

XML with MapReduce. The Journal of Supercomputing, 2017. 73(2): p. 810-
836.

81. Zhuang, C. and S. Feng. Full tree-based encoding technique for dynamic XML
labeling schemes. 2012. Springer.

82. Li, C. and T.W. Ling. An improved prefix labeling scheme: a binary string
approach for dynamic ordered XML. 2005. Springer.

83. Paramasivam, J. and T. Angamuthu, A New Method of Generating Index Label
for Dynamic XML Data. Journal of Computer Science, 2011. 7(3): p. 421.

145

84. O’Connor, M.F. and M. Roantree. FibLSS: a scalable label storage scheme for
dynamic XML updates. 2013. Springer.

85. Li, Q. and B. Moon. Indexing and querying XML data for regular path
expressions. 2001.

86. Kaplan, H., T. Milo, and R. Shabo, A comparison of labeling schemes for
ancestor queries. 2002, ACM-SIAM. p. 954–963.

87. Mlynková, I. An analysis of approaches to xml schema inference. 2008. IEEE.
88. Zadjali, H. and S.D. North. XML Labels Compression using Prefix-encodings.

2016. SCITEPRESS, Science and Technology Publications.
89. Johnson, J.R., et al. Extracting semantic information structures from free text

law enforcement data. 2012. IEEE.
90. Tahraoui, M.A., et al., A survey on tree matching and XML retrieval. Computer

Science Review, 2013. 8: p. 1-23.
91. Al-khazraji, S. and S. North. A relevance comparison between interval and

prefix labelling schemes. 2017. IEEE.
92. Sans, V. and D. Laurent, Prefix based numbering schemes for XML:

techniques, applications and performances. Proceedings of the VLDB
Endowment, 2008. 1(2): p. 1564-1573.

93. Weigel, F., K.U. Schulz, and H. Meuss. The BIRD numbering scheme for XML
and tree databases–deciding and reconstructing tree relations using efficient
arithmetic operations. 2005. Springer.

94. An, D. and S. Park. Group-Based Prime Number Labeling Scheme for XML
Data. 2010. IEEE.

95. Jayanthi, P. Vector based labeling method for dynamic XML documents. 2013.
IEEE.

96. Lee, Y.K., et al. Index structures for structured documents.
97. Lee, Y.K., et al. Index structures for structured documents. 1996.
98. Kha, D.D., M. Yoshikawa, and S. Uemura. A structural numbering scheme for

XML data. 2002. Springer.
99. Al-Shaikh, R., et al. A modulo-based labeling scheme for dynamically ordered

XML trees. 2010. IEEE.
100. Su-Cheng, H. and L. Chien-Sing, Node labeling schemes in XML query

optimization: a survey and trends. IETE Technical Review, 2009. 26(2): p. 88-
100.

101. Liu, J., Z.M. Ma, and Q. Qv, Dynamically querying possibilistic XML data.
Information Sciences, 2014. 261: p. 70-88.

102. Duong, M. and Y. Zhang. Dynamic labelling scheme for xml data processing.
2008. Springer.

103. S, N.E.T. and P. Jayanthi. Vector based labeling method for dynamic XML
documents. 2013. IEEE.

104. Ali Klaib, A., Clustering-based Labelling Scheme-A Hybrid Approach for
Efficient Querying and Updating XML Documents. 2018.

146

105. Azzedin, F., et al., Systematic partitioning and labeling XML subtrees for
efficient processing of XML queries in IoT environments. IEEE Access, 2020. 8:
p. 61817-61833.

106. Hsu, W.-C. and I.E. Liao, UCIS-X: An Updatable Compact Indexing Scheme for
Efficient Extensible Markup Language Document Updating and Query
Evaluation. IEEE Access, 2020. 8: p. 176375-176392.

107. Liu, J., et al., Enabling massive XML-based biological data management in
HBase. IEEE/ACM transactions on computational biology and bioinformatics,
2019.

108. Hao, W., K. Matsuzaki, and S. Sato. A Dual-Index Based Representation for
Processing XPath Queries on Very Large XML Documents. 2021. Springer
International Publishing.

109. Li, J., et al., XML keyword search with promising result type
recommendations. World wide web, 2014. 17(1): p. 127-159.

110. Zeng, Y., Z. Bao, and T.W. Ling. Supporting range queries in XML keyword
search. 2013.

111. Yun, J.-H. and C.-W. Chung, Dynamic interval-based labeling scheme for
efficient XML query and update processing. Journal of Systems and Software,
2008. 81(1): p. 56-70.

112. Chiew, W.S., et al., Labeling schemes for XML dynamic updates: A survey and
open discussions. E-Commerce, E-Business and E-Service, 2014: p. 79-83.

113. Assefa, B.G. and B. Ergenc. OrderBased labeling scheme for dynamic XML
query processing. 2012. Springer.

114. Khanjari, E. and L. Gaeini, A new effective method for labeling dynamic XML
data. Journal of Big Data, 2018. 5(1): p. 1-17.

115. Miklau, G., Xml Data Repository Http://Www.Cs.Washington.
Edu/Research/Xmldatasets/ [Online]. [Accessed August 2018]. 2015.

116. Al-Badawi, M., A Performance Evaluation of a New Bitmap-based XML
Processing Approach. 2010.

117. Schmidt, A., et al. XMark: A benchmark for XML data management. 2002.
Elsevier.

118. Franceschet, M. XPathMark: an XPath benchmark for the XMark generated
data. 2005. Springer.

119. Boag, S., et al., XML path language (XPath) 2.0. W3C, W3C Recommendation,
Jan, 2007.

120. Arroyuelo, D., et al., Fast in‐memory XPath search using compressed indexes.
Software: Practice and Experience, 2015. 45(3): p. 399-434.

121. Benedikt, M. and J. Cheney, Schema-based independence analysis for XML
updates. Proceedings of the VLDB Endowment, 2009. 2(1): p. 61-72.

122. Genevès, P. and N. Layaïda, A system for the static analysis of XPath. ACM
Transactions on Information Systems (TOIS), 2006. 24(4): p. 475-502.

123. Böttcher, S. and R. Steinmetz. Evaluating xpath queries on XML data streams.
2007. Springer.

http://www.cs.washington/

147

124. Taktek, E., D. Thakker, and D. Neagu. Comparison between Range-based and
Prefix Dewey Encoding. 2018.

125. Kobayashi, K., et al. VLEI code: An efficient labeling method for handling XML
documents in an RDB. 2005. IEEE.

126. Zhang, C., et al. On supporting containment queries in relational database
management systems. 2001. ACM.

127. Yergeau, F., UTF-8, a transformation format of ISO 10646. 2003.
128. Ali, S., et al., A systematic review of the application and empirical

investigation of search-based test case generation. IEEE Transactions on
Software Engineering, 2009. 36(6): p. 742-762.

129. Wegener, J., A. Baresel, and H. Sthamer, Evolutionary test environment for
automatic structural testing. Information and software technology, 2001.
43(14): p. 841-854.

130. Andrews, G.E., Euler's pentagonal number theorem. Mathematics Magazine,
1983. 56(5): p. 279-284.

131. Leung, H.-H., On a generalization of the Pentagonal Number Theorem. arXiv
preprint arXiv:1809.00316, 2018.

132. Arcuri, A. and L. Briand, A Hitchhiker's guide to statistical tests for assessing
randomized algorithms in software engineering. Software Testing,
Verification and Reliability, 2014. 24(3): p. 219-250.

133. Al-Khalifa, S., et al. Structural joins: A primitive for efficient XML query pattern
matching. 2002. IEEE.

134. Chien, S.-Y., et al. Efficient structural joins on indexed XML documents. 2002.
Elsevier.

135. Gottlob, G., C. Koch, and R. Pichler, Efficient algorithms for processing XPath
queries. ACM Transactions on Database Systems (TODS), 2005. 30(2): p. 444-
491.

136. Min, J.-K., J. Lee, and C.-W. Chung, An efficient XML encoding and labeling
method for query processing and updating on dynamic XML data. Journal of
Systems and Software, 2009. 82(3): p. 503-515.

137. Lu, J. and T.W. Ling. Labeling and querying dynamic XML trees. 2004.
Springer.

138. Lu, J., et al. From region encoding to extended dewey: On efficient processing
of XML twig pattern matching. 2005. VLDB Endowment.

139. Nachar, N., The Mann-Whitney U: A test for assessing whether two
independent samples come from the same distribution. Tutorials in
quantitative Methods for Psychology, 2008. 4(1): p. 13-20.

140. Grün, C. BaseX – The XML Database for Processing, Querying andVisualizing
large XML data.; Available from: http://basex.org.

141. Bourret, R., XML and Databases. 1999.
142. Meier, W. eXist: An Open Source Native XML Database. Available from:

http://exist-db.org/exist/apps/homepage/index.html.
143. Grün, C., et al. XQuery full text implementation in BaseX. 2009. Springer.

http://basex.org/
http://exist-db.org/exist/apps/homepage/index.html

148

144. Grün, C., A. Holupirek, and M.H. Scholl, Visually exploring and querying XML
with BaseX. 2007.

145. Bosak, J. XML markup of Shakespeare’s plays. January 1998.; Available from:
http://ibiblio.org/pub/sun-info/standards/xml/eg/.

146. Ck, A.R. and J. Jayanthi. A Generic Parser to parse and reconfigure XML files.
2011. IEEE.

147. Lu, W., K. Chiu, and Y. Pan. A parallel approach to XML parsing. 2006. IEEE.
148. Shadura, R., Input and Output with XQuery and XML Databases. 2012.
149. Kolár, P. and P. Loupal, Comparison of native XML databases and

experimenting with INEX. Paper in Electronic Proceedings (CD-ROM or web)
in DATESO, 2006: p. 116-119.

150. Mabanza, N., J. Chadwick, and G. Rao. Performance evaluation of open source
native xml databases-a case study. 2006. IEEE.

151. Li, C., T.W. Ling, and M. Hu. Efficient processing of updates in dynamic XML
data. 2006a. IEEE.

152. MCHUGH, J., https://www.nuwavesolutions.com/xpath-knime/. 2019.
153. W3C. XML Path Language (XPath) 2.0 (Second Edition). 2010; Updated

October 2016; Available from: http: //www.w3.org/TR/xpath20/.

http://ibiblio.org/pub/sun-info/standards/xml/eg/
https://www.nuwavesolutions.com/xpath-knime/
http://www.w3.org/TR/xpath20/

