11 research outputs found

    A survey of orphan enzyme activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using computational database searches, we have demonstrated previously that no gene sequences could be found for at least 36% of enzyme activities that have been assigned an Enzyme Commission number. Here we present a follow-up literature-based survey involving a statistically significant sample of such "orphan" activities. The survey was intended to determine whether sequences for these enzyme activities are truly unknown, or whether these sequences are absent from the public sequence databases but can be found in the literature.</p> <p>Results</p> <p>We demonstrate that for ~80% of sampled orphans, the absence of sequence data is bona fide. Our analyses further substantiate the notion that many of these enzyme activities play biologically important roles.</p> <p>Conclusion</p> <p>This survey points toward significant scientific cost of having such a large fraction of characterized enzyme activities disconnected from sequence data. It also suggests that a larger effort, beginning with a comprehensive survey of all putative orphan activities, would resolve nearly 300 artifactual orphans and reconnect a wealth of enzyme research with modern genomics. For these reasons, we propose that a systematic effort to identify the cognate genes of orphan enzymes be undertaken.</p

    The evolution of enzyme function in the isomerases.

    Get PDF
    The advent of computational approaches to measure functional similarity between enzymes adds a new dimension to existing evolutionary studies based on sequence and structure. This paper reviews research efforts aiming to understand the evolution of enzyme function in superfamilies, presenting a novel strategy to provide an overview of the evolution of enzymes belonging to an individual EC class, using the isomerases as an exemplar

    Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours

    Get PDF
    Many characterized metabolic enzymes currently lack associated gene and protein sequences. Here, pathway and genomic neighbour data are used to assign genes to these ‘orphan enzymes,' and the predictions are validated with experimental assays and genome-scale metabolic modelling

    The CanOE Strategy: Integrating Genomic and Metabolic Contexts across Multiple Prokaryote Genomes to Find Candidate Genes for Orphan Enzymes

    Get PDF
    Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes), a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short). The first step locates “genomic metabolons”, i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12

    Systematic approaches to mine, predict and visualize biological functions

    Full text link
    With advances in high-throughput technologies and next-generation sequencing, the amount of genomic and proteomic data is dramatically increasing in the post-genomic era. One of the biggest challenges that has arisen is the connection of sequences to their activities and the understanding of their cellular functions and interactions. In this dissertation, I present three different strategies for mining, predicting and visualizing biological functions. In the first part, I present the COMputational Bridges to Experiments (COMBREX) project, which facilitates the functional annotation of microbial proteins by leveraging the power of scientific community. The goal is to bring computational biologists and biochemists together to expand our knowledge. A database-driven web portal has been built to serve as a hub for the community. Predicted annotations will be deposited into the database and the recommendation system will guide biologists to the predictions whose experimental validation will be more beneficial to our knowledge of microbial proteins. In addition, by taking advantage of the rich content, we develop a web service to help community members enrich their genome annotations. In the second part, I focus on identifying the genes for enzyme activities that lack genetic details in the major biological databases. Protein sequences are unknown for about one-third of the characterized enzyme activities listed in the EC system, the so-called orphan enzymes. Our approach considers the similarities between enzyme activities, enabling us to deal with broad types of orphan enzymes in eukaryotes. I apply our framework to human orphan enzymes and show that we can successfully fill the knowledge gaps in the human metabolic network. In the last part, I construct a platform for visually analyzing the eco-system level metabolic network. Most microbes live in a multiple-species environment. The underlying nutrient exchange can be seen as a dynamic eco-system level metabolic network. The complexity of the network poses new visualization challenges. Using the data predicted by Computation Of Microbial Ecosystems in Time and Space (COMETS), I demonstrate that our platform is a powerful tool for investigating the interactions of the microbial community. We apply it to the exploration of a simulated microbial eco-system in the human gut. The result reflects both known knowledge and novel mutualistic interactions, such as the nutrients exchanges between E. coli, C. difficile and L. acidophilus

    In silico analysis of microbial communities through constraint-based metabolic modelling

    Get PDF
    Microbial communities are involved in many vital biological processes from elemental cycles to sustaining human health. The bacterial assemblages are remarkably under-studied as they are reluctant to grow in the laboratory conditions. Therefore, alternative omics-based approaches and computational modelling methods have been an active area of research to investigate microbial communities physiologically, ecologically and biochemically. In this thesis different microbial consortia involved in food production and also the human gut microbiota have been modelled and investigated. In the case of the human gut microbiota, the effects of malnutrition on the overall health of children from three different countries, namely, Malawi and Bangladesh, and Sweden have been studied. In each of the first two countries, a group of malnourished children going through food therapy as well as a healthy cohort were monitored to investigate the effect of food intervention on malnutrition, with their gut microbiota being the focal point. In this project, using metagenomics data we identified the dominant strains in each cohort, reconstructed genome-scale metabolic models (GEMs) for the most abundant ones and used our models to predict diet-microbe, microbe-microbe, and microbe- host interactions. Based on our results in this project, in addition to being less diverse, the gut microbiota of malnourished children showed a lower potency regarding the production of valuable metabolites. The second investigated microbial consortia were the ones used in fermented milk products. Based on the genome sequence and also experimental data for five selected strains, we reconstructed GEMs, curated the models and performed community modelling to predict their metabolic interactions. Using the simulation outcomes, we could predict a ratio for bacterial strains used in yogurt starter culture to maximise the production of acetaldehyde which is a key contributor to yogurt’s unique taste and aroma. GEMs are powerful tools to model an organism’s metabolic capabilities, and although numerous GEMs have been reconstructed, their quality control has not gained enough attention. Evaluation of a repository of semi-automatically reconstructed GEMs related to the human gut microbiota and another repository of manually curated ones was performed comparatively. Assessing these models from topological and functional aspects, it was shown that semi-automatically reconstructed models required extensive manual curation before they could be used for target-specific simulations. In constraint-based modelling, an objective function is usually optimised under particular environmental conditions, however, in case of the microbial communities, there is no distinct and relevant objective function. Therefore, an unbiased uniform randomised sampling algorithm was implemented for microbial communities. The samples acquired from the solution space were analysed statistically to see clustering patterns of the reactions and commensalistic relationships between the community members were identified. Overall, computational modelling paves the way towards gaining a mechanistic understanding of microbial communities and provides us with testable hypotheses and insight

    Automatically exploiting genomic and metabolic contexts to aid the functional annotation of prokaryote genomes

    Get PDF
    Cette thèse porte sur le développement d'approches bioinformatiques exploitant de l'information de contextes génomiques et métaboliques afin de générer des annotations fonctionnelles de gènes prokaryotes, et comporte deux projets principaux. Le premier projet focalise sur les activités enzymatiques orphelines de séquence. Environ 27% des activités définies par le International Union of Biochemistry and Molecular Biology sont encore aujourd'hui orphelines. Pour celles-ci, les méthodes bioinformatiques traditionnelles ne peuvent proposer de gènes candidats; il est donc impératif d'utiliser des méthodes exploitant des informations contextuelles dans ces cas. La stratégie CanOE (fishingCandidate genes for Orphan Enzymes) a été développée et rajoutée à la plateforme MicroScope dans ce but, intégrant des informations génomiques et métaboliques sur des milliers d'organismes prokaryotes afin de localiser des gènes probants pour des activités orphelines. Le projet miroir au précédent est celui des protéines de fonction inconnue. Un projet collaboratif a été initié au Genoscope afin de formaliser les stratégies d'exploration des fonctions de familles protéiques prokaryotes. Une version pilote du projet a été mise en place sur la famille DUF849 dont une fonction enzymatique avait été récemment découverte. Des stratégies de proposition d'activités enzymatiques alternatives et d'établissement de sous familles isofonctionnelles ont été mises en place dans le cadre de cette thèse, afin de guider les expérimentations de paillasse et d'analyser leurs résultats.The subject of this thesis concerns the development of bioinformatic strategies exploiting genomic and metabolic contextual information in order to generate functional annotations for prokaryote genes. Two main projects were involved during this work: the first focuses on sequence-orphan enzymatic activities. Today, roughly 27% of activities defined by International Union of Biochemistry and Molecular Biology are sequence-orphans. For these, traditional bioinformatic approaches cannot propose candidate genes. It is thus imperative to use alternative, context-based approaches in such cases. The CanOE strategy fishing Candidate genes for Orphan Enzymes) was developed and added to the MicroScope bioinformatics platform in this aim. It integrates genomic and metabolic information across thousands of prokaryote genomes in order to locate promising gene candidates for orphan activities. The mirror project focuses on protein families of unknown function. A collaborative project has been set up at the Genoscope in hope of formalising functional exploration strategies for prokaryote protein families. A pilot version was created on the DUF849 Pfam family, for which a single activity had recently been elucidated. Strategies for proposing novel functions and activities and creating isofunctional sub-families were researched, so as to guide biochemical experimentations and to analyse their results.EVRY-Bib. électronique (912289901) / SudocSudocFranceF
    corecore