359 research outputs found

    A Survey of Quality of Service Differentiation Mechanisms for Optical Burst Switching Networks

    Get PDF
    Cataloged from PDF version of article.This paper presents an overview of Quality of Service (QoS) differentiation mechanisms proposed for Optical Burst Switching (OBS) networks. OBS has been proposed to couple the benefits of both circuit and packet switching for the ‘‘on demand’’ use of capacity in the future optical Internet. In such a case, QoS support imposes some important challenges before this technology is deployed. This paper takes a broader view on QoS, including QoS differentiation not only at the burst but also at the transport levels for OBS networks. A classification of existing QoS differentiation mechanisms for OBS is given and their efficiency and complexity are comparatively discussed. We provide numerical examples on how QoS differentiation with respect to burst loss rate and transport layer throughput can be achieved in OBS networks. © 2009 Elsevier B.V. All rights reserved

    QoS Considerations in OBS Switched Backbone Net-Works

    Get PDF
    Optical Burst Switching (OBS) was proposed as a hybrid switching technology solution to handle the multi-Terabit volumes of traffic anticipated to traverse Future Generation backbone Networks. With OBS, incoming data packets are assembled into super-sized packets called data bursts and then assigned an end to end light path. Key challenging areas with regards to OBS Networks implementation are data bursts assembling and scheduling at the network ingress and core nodes respectively as they are key to minimizing subsequent losses due to contention among themselves in the core nodes. These losses are significant contributories to serious degradation in renderable QoS. The paper overviews existing methods of enhancing it at both burst and transport levels. A distributed resources control architecture is proposed together with a proposed wavelength assignment algorithm

    Improving Routing Efficiency, Fairness, Differentiated Servises And Throughput In Optical Networks

    Get PDF
    Wavelength division multiplexed (WDM) optical networks are rapidly becoming the technology of choice in next-generation Internet architectures. This dissertation addresses the important issues of improving four aspects of optical networks, namely, routing efficiency, fairness, differentiated quality of service (QoS) and throughput. A new approach for implementing efficient routing and wavelength assignment in WDM networks is proposed and evaluated. In this approach, the state of a multiple-fiber link is represented by a compact bitmap computed as the logical union of the bitmaps of the free wavelengths in the fibers of this link. A modified Dijkstra\u27s shortest path algorithm and a wavelength assignment algorithm are developed using fast logical operations on the bitmap representation. In optical burst switched (OBS) networks, the burst dropping probability increases as the number of hops in the lightpath of the burst increases. Two schemes are proposed and evaluated to alleviate this unfairness. The two schemes have simple logic, and alleviate the beat-down unfairness problem without negatively impacting the overall throughput of the system. Two similar schemes to provide differentiated services in OBS networks are introduced. A new scheme to improve the fairness of OBS networks based on burst preemption is presented. The scheme uses carefully designed constraints to avoid excessive wasted channel reservations, reduce cascaded useless preemptions, and maintain healthy throughput levels. A new scheme to improve the throughput of OBS networks based on burst preemption is presented. An analytical model is developed to compute the throughput of the network for the special case when the network has a ring topology and the preemption weight is based solely on burst size. The analytical model is quite accurate and gives results close to those obtained by simulation. Finally, a preemption-based scheme for the concurrent improvement of throughput and burst fairness in OBS networks is proposed and evaluated. The scheme uses a preemption weight consisting of two terms: the first term is a function of the size of the burst and the second term is the product of the hop count times the length of the lightpath of the burst

    Node design in optical packet switched networks

    Get PDF

    Packet Loss Rate Differentiation in slotted Optical Packet Switching OCDM/WDM

    Get PDF
    We propose a multi-class mechanism for Optical Code Division Multiplexing (OCDM), Wavelength Division Multiplexing (WDM) Optical Packet Switch (OPS) architecture capable of supporting Quality of Service (QoS) transmission. OCDM/WDM has been proposed as a competitive hybrid switching technology to support the next generation optical Internet. This paper addresses performance issues in the slotted OPS networks and proposed four differentiation schemes to support Quality of Service. In addition, we present a comparison between the proposed schemes as well as, a simulation scheduler design which can be suitable for the core switch node in OPS networks. Using software simulations the performance of our algorithm in terms of losing probability, the packet delay, and scalability is evaluated

    A survey of quality of service differentiation mechanisms for optical burst switching networks

    Get PDF
    This paper presents an overview of Quality of Service (QoS) differentiation mechanisms proposed for Optical Burst Switching (OBS) networks. OBS has been proposed to couple the benefits of both circuit and packet switching for the "on demand" use of capacity in the future optical Internet. In such a case, QoS support imposes some important challenges before this technology is deployed. This paper takes a broader view on QoS, including QoS differentiation not only at the burst but also at the transport levels for OBS networks. A classification of existing QoS differentiation mechanisms for OBS is given and their efficiency and complexity are comparatively discussed. We provide numerical examples on how QoS differentiation with respect to burst loss rate and transport layer throughput can be achieved in OBS networks. © 2009 Elsevier B.V. All rights reserved

    A review burst assembly techniques in optical burst switching (OBS)

    Get PDF
    Optical Burst Switching (OBS) is perceived as the most favorable switching method for the next generation all optical networks to support the growth of the number of Internet users and to satisfy bandwidth demands for greedy-bandwidth applications which are in continuous growth. OBS consists of an edge node and a core node. The edge node is responsible for burst assembly which is the first process in an OBS network. Currently, there is only one review paper for burst assembly; the paper is limited in number of techniques reviewed. In this paper, we have undertaken a comprehensive review of burst assembly techniques proposed for OBS where techniques are reviewed by category. The aim is to identify strengths and weaknesses of these techniques. The analysis of the paper will assist researchers in finding problems; thus, a significant amount of time will be saved which can be used in developing appropriate solutions for OBS networks
    • 

    corecore