339 research outputs found

    Secure and Robust Image Watermarking Scheme Using Homomorphic Transform, SVD and Arnold Transform in RDWT Domain

    Get PDF
    The main objective for a watermarking technique is to attain imperceptibility, robustness and security against various malicious attacks applied by illicit users. To fulfil these basic requirements for a scheme is a big issue of concern. So, in this paper, a new image watermarking method is proposed which utilizes properties of homomorphic transform, Redundant Discrete Wavelet Transform (RDWT), Arnold Transform (AT) along with Singular Value Decomposition (SVD) to attain these required properties. RDWT is performed on host image to achieve LL subband. This LL subband image is further decomposed into illumination and reflectance components by homomorphic transform. In order to strengthen security of proposed scheme, AT is used to scramble watermark. This scrambled watermark is embedded with Singular Values (SVs) of reflectance component which are obtained by applying SVD to it. Since reflectance component contains important features of image, therefore, embedding of watermark in this part provides excellent imperceptibility. Proposed scheme is comprehensively examined against different attacks like scaling, shearing etc. for its robustness. Comparative study with other prevailing algorithms clearly reveals superiority of proposed scheme in terms of robustness and imperceptibility

    Perceptual Copyright Protection Using Multiresolution Wavelet-Based Watermarking And Fuzzy Logic

    Full text link
    In this paper, an efficiently DWT-based watermarking technique is proposed to embed signatures in images to attest the owner identification and discourage the unauthorized copying. This paper deals with a fuzzy inference filter to choose the larger entropy of coefficients to embed watermarks. Unlike most previous watermarking frameworks which embedded watermarks in the larger coefficients of inner coarser subbands, the proposed technique is based on utilizing a context model and fuzzy inference filter by embedding watermarks in the larger-entropy coefficients of coarser DWT subbands. The proposed approaches allow us to embed adaptive casting degree of watermarks for transparency and robustness to the general image-processing attacks such as smoothing, sharpening, and JPEG compression. The approach has no need the original host image to extract watermarks. Our schemes have been shown to provide very good results in both image transparency and robustness.Comment: 13 pages, 7 figure

    A Good Performance OTP Encryption Image based on DCT-DWT Steganography

    Get PDF
    The security aspect is very important in data transmission. One way to secure data is with steganography and cryptography. Surely research on this should continue to be developed to improve security. In this paper, we proposed a combination of steganographic and cryptographic algorithms for double protection during data transmission. The selected steganographic algorithm is the use of a combination of DCT and DWT domain transformations. Because the Imperceptibility aspect is a very important aspect of steganographic techniques, this aspect needs to be greatly improved. In the proposed method of DCT transformation first, proceed with DWT transformation. From the experimental results obtained better imperceptibility quality, compared with existing methods. To add OTP message security applied algorithm to encrypt the message image, before it is inserted. This is evidenced by experiments conducted on 20 grayscale images measuring 512x512 with performance tests using MSE, PSNR, and NC. Experimental results prove that DCT-DWT-OTP generates PNSR more than 50 dB, and NC of all images is 1

    A study and some experimental work of digital image and video watermarking

    Get PDF
    The rapid growth of digitized media and the emergence of digital networks have created a pressing need for copyright protection and anonymous communications schemes. Digital watermarking (or data hiding in a more general term) is a kind of steganography technique by adding information into a digital data stream. Several most important watermarking schemes applied to multilevel and binary still images and digital videos were studied. They include schemes based on DCT (Discrete Cosine Transform), DWT (Discrete Wavelet Transform), and fractal transforms. The question whether these invisible watermarking techniques can resolve the issue of rightful ownership of intellectual properties was discussed. The watermarking schemes were further studied from malicious attack point of view, which is considered an effective way to advance the watermarking techniques. In particular, the StirMark robustness tests based on geometrical distortion were carried out. A binary watermarking scheme applied in the DCT domain is presented in this research project. The effect of the binarization procedure necessarily encountered in dealing with binary document images is found so strong that most of conventional embedding schemes fail in dealing with watermarking of binary document images. Some particular measures have to be taken. The initial simulation results indicate that the proposed technique is promising though further efforts need to be made

    A dual watermarking scheme for identity protection

    Get PDF
    A novel dual watermarking scheme with potential applications in identity protection, media integrity maintenance and copyright protection in both electronic and printed media is presented. The proposed watermarking scheme uses the owner’s signature and fingerprint as watermarks through which the ownership and validity of the media can be proven and kept intact. To begin with, the proposed watermarking scheme is implemented on continuous-tone/greyscale images, and later extended to images achieved via multitoning, an advanced version of halftoning-based printing. The proposed watermark embedding is robust and imperceptible. Experimental simulations and evaluations of the proposed method show excellent results from both objective and subjective view-points

    Data hiding in multimedia - theory and applications

    Get PDF
    Multimedia data hiding or steganography is a means of communication using subliminal channels. The resource for the subliminal communication scheme is the distortion of the original content that can be tolerated. This thesis addresses two main issues of steganographic communication schemes: 1. How does one maximize the distortion introduced without affecting fidelity of the content? 2. How does one efficiently utilize the resource (the distortion introduced) for communicating as many bits of information as possible? In other words, what is a good signaling strategy for the subliminal communication scheme? Close to optimal solutions for both issues are analyzed. Many techniques for the issue for maximizing the resource, viz, the distortion introduced imperceptibly in images and video frames, are proposed. Different signaling strategies for steganographic communication are explored, and a novel signaling technique employing a floating signal constellation is proposed. Algorithms for optimal choices of the parameters of the signaling technique are presented. Other application specific issues like the type of robustness needed are taken into consideration along with the established theoretical background to design optimal data hiding schemes. In particular, two very important applications of data hiding are addressed - data hiding for multimedia content delivery, and data hiding for watermarking (for proving ownership). A robust watermarking protocol for unambiguous resolution of ownership is proposed

    Entropy Based Robust Watermarking Algorithm

    Get PDF
    Tänu aina kasvavale multimeedia andmeedastus mahtudele Internetis, on esile kerkinud mured turvalisusest ja piraatlusest. Digitaalse meedia paljundamise ja muutmise maht on loonud vajaduse digitaalse meedia vesimärgistamise järgi. Selles töös on tutvustatud vastupidavaid vesimärkide lisamise algoritme, mis lisavad vesimärgid madala entroopiaga pildi osadesse. Välja pakutud algoritmides jagatakse algne pilt blokkidesse ning arvutatakse iga bloki entroopia. Kõikide blokkide keskmine entroopia väärtus valitakse künniseks, mille järgi otsustatakse, millistesse blokkidesse vesimärk lisada. Kõik blokid, mille entroopia on väiksem kui künnis, viiakse signaali sageduse kujule kasutades Discrete Wavelet Transform algoritmi. Madala sagedusega sagedusvahemikule rakendatakse Chirp Z-Transform algoritmi ja saadud tulemusele LU-dekompositsiooni või QR-dekompositsiooni. Singular Value Decomposition meetodi rakendamisel diagonaalmaatriksile, mis saadi eelmisest sammust, saadakse iga bloki vastav väärtus. Vesimärk lisatakse pildile, liites iga bloki arvutatud väärtusele vesimärgi Singular Value Decomposition meetodi tulemused. Kirjeldatud algoritme testiti ning võrreldi teiste tavapärast ning uudsete vesimärkide lisamise tehnoloogiatega. Kvantitatiivsed ja kvalitatiivsed eksperimendid näitavad, et välja pakutud meetodid on tajumatud ning vastupidavad signaali töötlemise rünnakutele.With growth of digital media distributed over the Internet, concerns about security and piracy have emerged. The amount of digital media reproduction and tampering has brought a need for content watermarking. In this work, multiple robust watermarking algorithms are introduced. They embed watermark image into singular values of host image’s blocks with low entropy values. In proposed algorithms, host image is divided into blocks, and the entropy of each block is calculated. The average of all entropies indicates the chosen threshold value for selecting the blocks in which watermark image should be embedded. All blocks with entropy lower than the calculated threshold are decomposed into frequency subbands using discrete wavelet transform (DWT). Subsequently chirp z-transform (CZT) is applied to the low-frequency subband followed by an appropriate matrix decomposition such as lower and upper decomposition (LUD) or orthogonal-triangular decomposition (QR decomposition). By applying singular value decomposition (SVD) to diagonal matrices obtained by the aforementioned matrix decompositions, the singular values of each block are calculated. Watermark image is embedded by adding singular values of the watermark image to singular values of the low entropy blocks. Proposed algorithms are tested on many host and watermark images, and they are compared with conventional and other state-of-the-art watermarking techniques. The quantitative and qualitative experimental results are indicating that the proposed algorithms are imperceptible and robust against many signal processing attacks
    corecore