773 research outputs found

    Submodular Function Maximization for Group Elevator Scheduling

    Full text link
    We propose a novel approach for group elevator scheduling by formulating it as the maximization of submodular function under a matroid constraint. In particular, we propose to model the total waiting time of passengers using a quadratic Boolean function. The unary and pairwise terms in the function denote the waiting time for single and pairwise allocation of passengers to elevators, respectively. We show that this objective function is submodular. The matroid constraints ensure that every passenger is allocated to exactly one elevator. We use a greedy algorithm to maximize the submodular objective function, and derive provable guarantees on the optimality of the solution. We tested our algorithm using Elevate 8, a commercial-grade elevator simulator that allows simulation with a wide range of elevator settings. We achieve significant improvement over the existing algorithms.Comment: 10 pages; 2017 International Conference on Automated Planning and Scheduling (ICAPS

    Vertical transportation in buildings

    Get PDF
    Nowadays, the building industry and its associated technologies are experiencing a period of rapid growth, which requires an equivalent growth regarding technologies in the field of vertical transportation. Therefore, the installation of synchronised elevator groups in modern buildings is a common practice in order to govern the dispatching, allocation and movement of the cars shaping the group. So, elevator control and management has become a major field of application for Artificial Intelligence approaches. Methodologies such as fuzzy logic, artificial neural networks, genetic algorithms, ant colonies, or multiagent systems are being successfully proposed in the scientific literature, and are being adopted by the leading elevator companies as elements that differentiate them from their competitors. In this sense, the most relevant companies are adopting strategies based on the protection of their discoveries and inventions as registered patents in different countries throughout the world. This paper presents a comprehensive state of the art of the most relevant recent patents on computer science applied to vertical transportationConsejería de Innovación, Ciencia y Empresa, Junta de Andalucía P07-TEP-02832, Spain

    A review of multi-car elevator system

    Get PDF
    This paper presents a review of a new generation of elevator system, the Multi-Car Elevator System. It is an elevator system which contains more than one elevator car in the elevator shaft. In the introduction, it explains why the Multi-Car Elevator System is a new trend elevator system based on its structural design, cost saving and efficiency in elevator system. Different types of Multi-Car Elevator System such as circulation or loop-type, non-circulation and bifurcate circulation are described in section 2. In section 3, researches on dispatch strategies, control strategies and avoidance of car collision strategies of Multi-Car Elevator System since 2002 are reviewed. In the discussion section, it reveals some drawbacks of the Multi-Car Elevator System in transport capability and the risk of car collision. There are recommendations to the future work as well

    Optimal Modeling Language and Framework for Schedulable Systems

    Get PDF

    Quality and quantity of service in lift groups

    Get PDF
    This research was focused on quality of service experienced by passengers in lift systems where multiple cars are sharing same shafts (multi car lift systems) and destination control. These modern lift systems have opportunities and constraints for control algorithms arising by existing and additional quality of service criteria. These additional criteria have rarely been considered in existing literature, control algorithms or traffic analysis. The overall aim of the research was to determine and analyse existing and new quality of service criteria for destination control systems and multi car lift systems in terms of traffic handling and developing lift control concepts considering these criteria. Therefore, the impact on passengers’ quality of service was reviewed using psychology of waiting principles. Detailed definition and analysis was done for reverse journeys in destination control systems and departure delays with a focus on multi car lift systems. To develop and analyse control algorithms known event based traffic simulation, round trip time calculation and Monte Carlo simulation were extended and applied. Traffic control algorithms and concepts were developed to improve passenger experience when using lifts. Additional to dispatching algorithms equations for improved lift kinematics and controlled stopping distances were derived to reduce departure delays in multi car lift systems. Possible improvements were shown in case studies. Compared to traditional lift systems, special opportunities and constraints of a circulating multi car lift system in traffic handling were explored and analysed. New cycle time calculations for shuttle and local group applications were developed. Results were provided using case studies, and necessary control concepts were addressed. With the results of this research, better understanding and assessments of multi car lift systems and destination controls are possible. The traffic control algorithms explored help to build better lift controllers, considering passengers perception. The introduced traffic analysis methods for circulating multi car lift systems support lift planning

    Requirements Engineering: Frameworks for Understanding

    Get PDF

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems
    corecore