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Abstract

The soul of the thesis is dual, reflecting the different research activities that characterized
this PhD project, which was carried out part at the University and part at Helica s.r.l., an
Italian company specialized in airborne remote sensing.
In the first part, orientation problems in photogrammetry and laser scanning are studied
from a methodological point of view and solved via Procustes Analysis, a set of least squares
mathematical tools used to perform transformations among corresponding points belonging
to a generic k-dimensional space, in order to satisfy their maximum agreement. In particular,
novel Procrustes models are developed and exploited in several applications, ranging from
the exterior orientation of an image, to the matching between two sets of keypoints and to
the registration of multiple point clouds.
The second part focuses on the implementation of novel algorithms for the processing of
photogrammetric and LiDAR data acquired by helicopters or Unmanned Aerial Vehicles.
In particular, we present an innovative method based on deep learning and Convolutional
Neural Networks to perform the classification of full-waveform LiDAR data. Moreover, we
propose an original pipeline developed to create seamless planar mosaics from aerial images,
based on a global approach known as synchronization, applied for image registration and
colour correction.
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Chapter 1

Introduction

Information about the physical environment can be nowadays easily obtained thanks to pho-
togrammetry and laser scanning. The aim of these two technologies is to provide automated
or semi-automated procedures for solving tasks in mapping, surveying and high-precision
metrology, with a particular attention on accuracy, reliability and completeness of the ex-
tracted information [53].
During this PhD, we focused on different phases of the photogrammetric and laser scanning
data processing, developing innovative methods and procedures for the solution of problems
such as image orientation, multi-view matching and LiDAR (Light Detection and Ranging)
data classification. Carried out in collaboration with Helica s.r.l., an Italian company spe-
cialized in airborne remote sensing, the PhD project was divided into two main branches,
from which the dual soul of this thesis originates.
On the one hand, together with the members of the research group Geomatics and Computer
Vision of the Polytechnic Department of Engineering and Architecture of Udine University,
orientation problems in photogrammetry and laser scanning were studied from a method-
ological point of view and Procustes Analysis was proposed for their solution. On the other
hand, the research activity carried out within the company was focused on remote sens-
ing applications. Advanced techniques were applied and evaluated for the processing of
photogrammetric and LiDAR data acquired from helicopters or Unmanned Aerial Vehicles
(UAVs), with the aim of creating cartographic products useful in infrastructure management,
environmental monitoring and land cover change detection.

The thesis is therefore divided into two parts, reflecting the parallel research activities com-
pleted in these three years. More in detail, it is organized as follows.
As already mentioned, in the first part Procrustes Analysis is applied to solve orientation
problems. The term Procrustes Analysis is referred to a set of least squares mathematical
models used to perform transformations among corresponding matrix elements belonging to
a generic k-dimensional space, in order to satisfy their maximum agreement. Several varia-
tions of Procrustes models have been proposed in the literature, according to the searched
transformation parameters. In Chapter 2 we provide a comprehensive survey on Procrustes
Analysis and at the same time we develop novel total least squares solutions, applying the
Errors-In-Variables model to classical Procrustes Analysis formulations. One of the pro-
posed method is employed to compute the image exterior orientation parameters. Chapter
3 addresses instead the problem of finding correspondences among element sets, that can be
seen as a Permutation Procrustes problem in the case of two sets. In particular, we propose
an innovative efficient solution to the multi-view matching problem, based on a spectral de-
composition. An extended formulation of the Generalized Procrustes Analysis is presented
in Chapter 4, which allows to apply Procrustes Analysis even if the correspondences be-
tween matrix elements are unknown. This method finds application in the registration of
multiple point clouds. Finally, Chapter 5 proposes an affine space formulation of the Ex-
tended Orthogonal Procrustes Analysis that allows to compute the transformation between
two matrices composed by both points and vectors. The method is successfully applied to
perform the Virtual Trial Assembly of a complex steel structure.
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The second part of the thesis is instead devoted to remote sensing applications. Chapter 6
describes an innovative algorithm to perform LiDAR point cloud classification, that is based
on Convolutional Neural Networks and takes advantage of full-waveform data registered by
modern laser scanners. Thanks to the employed architecture, even challenging classes such
as power line and transmission tower can be automatically identified, representing a valuable
support tool in the data analysis for the management and maintenance of electric power lines.
Chapter 7 presents instead a novel method to create high-quality seamless planar mosaics.
The proposed approach allows to stitch together multiple images, ensuring at the same time
good robustness against many common mosaicking problems (e.g., misalignments, colour
distortion, moving objects, parallax). The creation of a unique wide image facilitates the
usage and the interpretation of the single photos acquired from a helicopter or a UAV.

Part of the material contained in this thesis is taken from the following works.

1. Fabio Crosilla, Alberto Beinat, Andrea Fusiello, Eleonora Maset and Domenico Vi-
sintini. Advanced Procrustes Analysis Models in Photogrammetric Computer Vision.
CISM International Centre for Mechanical Sciences, Springer, in press.

2. Stefano Zorzi, Eleonora Maset, Andrea Fusiello and Fabio Crosilla. Full-Waveform
Airborne LiDAR Data Classification using Convolutional Neural Networks. Under
Minor Revision.

3. Daniele Zonta, Eleonora Maset, Ivan Mario Alba, Fabio Crosilla and Andrea Fusiello.
Virtual Trial Assembly of Complex Steel Structures by Affine Procrustes Analysis: the
Case of Vessel in New York. Submitted.

4. Emanuele Santellani, Eleonora Maset and Andrea Fusiello. Seamless image mosaicking
via synchronization. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, Volume IV-2, pages 247–254, 2018.

5. Eleonora Maset, Federica Arrigoni and Andrea Fusiello. Practical and efficient multi-
view matching. International Conference on Computer Vision (ICCV), pages 4568 –
4576, 2017.

6. Federica Arrigoni, Eleonora Maset and Andrea Fusiello. Synchronization in the sym-
metric inverse semigroup. International Conference on Image Analysis and Processing
(ICIAP), volume 10485 of Lecture Notes in Computer Science, pages 70 – 81. Springer
International Publishing, 2017.

7. Fabio Crosilla, Eleonora Maset and Andrea Fusiello. Procrustean Photogrammetry:
from exterior orientation to bundle adjustment. New Advanced GNSS and 3D Spa-
tial Techniques. Lecture Notes in Geoinformation and Cartography, pages 157–165.
Springer, Cham, 2017.

8. Eleonora Maset, Fabio Crosilla and Andrea Fusiello. Errors-in-Variables Anisotropic
Extended Orthogonal Procrustes Analysis. IEEE Geoscience and Remote Sensing
Letters, 14(1), pages 57–61, 2017.
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Part I

Solving Orientation Problems
via Procrustes Analysis
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Photogrammetry and laser scanning are two scientific fields whose analytical models are fun-
damentally based on geometrical transformations of point coordinates expressed in different
reference frames. From the analytical point of view, the main issue of these transformations
is that they are expressed, almost always, by nonlinear models. To solve the transforma-
tion problems, it is common to resort to the linearization of the original models and to the
solution of linearized systems of equations in order to reach, through the introduction of a
proper error distribution model, the best estimation of the unknown parameters and of their
precision. To carry out the computational procedure, it is therefore necessary to determine,
by a different method, the approximate value of the unknown parameters.
The advantage of using computational tools that do not require a linearization process
of the equation system and the consequent knowledge of the approximate values of the
unknown parameters is therefore clearly evident. For this reason, in this part we propose an
alternative procedure, well known in the multifactorial analysis field as Procrustes Analysis,
that allows to directly solve via least squares nonlinear systems that generally characterize
orientation problem in photogrammetry and laser scanning. Procrustes algorithms do not
require approximate numerical solutions of the unknown parameters and offer the capability
to take into consideration weights of the systems involved, requiring only matrix products
and the singular value decomposition of a matrix.
As it will be shown in the following chapters, applications of Procrustes Analysis range
from the exterior orientation of an image, to the matching between two sets of keypoints
and to the registration of multiple point clouds. Moreover, it will be demonstrated how it
represents a valuable tool also to perform the Virtual Trial Assembly of the elements of a
steel structure.
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Chapter 2

Procrustes Analysis Models

Procrustes Analysis is a well known least squares technique that allows to directly find the
transformation parameters between origin and destination sets of observations belonging
to a k-dimensional space. This chapter provides a unifying view on the many variants of
Procrustes models, that can be employed to solve nonlinear transformation problems that
generally characterize the analytical theory behind photogrammetry and laser scanning.
In particular, we apply an Errors-In-Variables model to Procrustes Analysis and derive
novel total least squares solutions that can deal with the uncertainty affecting both sets of
observations.

2.1 Introduction

The terms Procrustes Analysis or Procrustes Techniques are referred to a set of least squares
mathematical models used to perform transformations among corresponding matrix elements
belonging to a generic k-dimensional space, in order to satisfy their maximum agreement.
They are particularly appealing from the computational point of view, for they employ only
matrix products and the singular value decomposition of a k × k matrix, requiring neither
the linearization of equations nor the knowledge of approximate parameters values.
The name Procrustes comes from the Greek mythology. Procrustes was in fact a giant
that tortured his victims forcing them to lie on an iron bed, and fitting their height to the
bed length. If the victim was shorter than the bed length, his body was lengthened and
hammered, if the victim height was longer, the outgoing part was cut off.
The term was first proposed by Hurley and Cattel in 1962 [81], but the origins of these
techniques are older. Goodall [61] quotes the psychometrist Mosier [118] as one of the first
developers of the method. The morphometrist Cole [33], instead, indicates Boas [17] e his
fellow Phelps [126] as inventors of the Orthogonal Procrustes Analysis and of an initial form
of the Generalized Procrustes Analysis, respectively.
A continuous branch of research on Procrustes Analysis, that starts from the fifties of the
last century and that is still active nowadays, is the one followed by the psychometrists. To
the fundamental works by Green [70], Cliff [32], Schönemann [133], Schönemann and Carroll
[134] and Gower [66] in multifactorial analysis, the studies by Lissitz et al. [104], ten Berge
[147], ten Berge and Knol [150] and ten Berge et al. [149] can be added, until the most
recent contributions by ten Berge [148] and Bennani Dosse and ten Berge [15].
Parallel to this activity, Procrustes techniques have been successfully applied in shape anal-
ysis. The reference works are those from Mardia et al. [115], Kendall [85], Bookstein [18, 19],
Dryden and Mardia [44], Goodall [61], Kent [87] and Stoyan et al. [29]. Some books on this
topic are from Stoyan et al. [29], Small [140] and Dryden and Mardia [44]. Recent contribu-
tions in different fields are given, for instance, by Gower and Dijksterhuis [67], Larsen [96],
Wang and Mahadevan [157], Kenobi and Dryden [86].
The first application of Procrustes algorithms in geodesy is due to Crosilla [36, 37], who pro-
posed this technique for the construction of an ideal variance-covariance matrix for control
networks.
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Currently, Procrustes techniques are widely used in statistics, in multifactorial analysis,
in biometrics, in management engineering, as well as in computer applications like image
matching and robotic vision. Procrustes Analysis has been successfully applied in geodesy,
photogrammetry and laser scanning by Awange [9], Crosilla [38], Beinat, Crosilla and Visin-
tini [14], Beinat [11], Crosilla and Beinat [39], Grafarend and Awange [68, 69]. More recent
contributions in these fields are due to Crosilla and Beinat [12, 39, 13, 40], Awange and Gra-
farend [10], Toldo et al. [151], Garro et al. [57], Fusiello et al. [56] and Fusiello and Crosilla
[54, 55].

2.1.1 Contribution

In this chapter we provide a comprehensive survey on Procrustes Analysis, gathering several
models that have been proposed in the last decades in different communities, including also
photogrammetry, computer vision and laser scanning. At the same time we propose novel
total least squares solution, applying the Errors-In-Variables model to classical Procrustes
Analysis formulations. More precisely, our contributions are the following.
First, Section 2.2 gives a brief overview and a classification of the variants of Procrustes
Analysis. Then, in Section 2.3 we review the least squares (LS) solutions of the most
common orthogonal Procrustes models, namely the so called Orthogonal (OPA), Extended
Orthogonal (EOPA), Weighted Extended Orthogonal (WEOPA) and Anisotropic Extended
Orthogonal (AEOPA) models.
Secondly, we introduce in Section 2.4 the so called Errors-in-Variables (EIV) model and its
solutions that can be found in the literature. Section 2.5 represents the main contribution of
this chapter and is devoted to the generalization of Procrustes Analysis to the EIV model.
In contrast to ordinary least squares Procrustes approach, that finds the transformation
parameters between origin and destination sets of observations minimizing errors affecting
only the destination one, we present the total least squares (TLS) solution of several isotropic
and anisotropic Procrustes models, that can deal with the uncertainty affecting both sets of
observations. In particular, we derive novel TLS solutions for the WEOPA (Section 2.5.2)
and AEOPA (Section 2.5.3) models.
Finally, in Section 2.6 the TLS solution of the WEOPA model is tested to perform the datum
transformation of points belonging to a small topographic network, while the TLS version
of the AEOPA is applied to solve the exterior orientation of an image and compared with
the ordinary LS AEOPA solution.

2.2 Classification of Orthogonal Procrustes Models

A first subdivision in the wide field of Procrustes algorithms can be made considering Oblique
and Orthogonal models. While the first ones aim to separately rotate each axis of the origin
datum in such a way to find the best approximation with respect to the destination set
[107, 20], the latter impose an orthogonal constraint to the transformation matrix. Due
to the nature of the problems encountered in photogrammetry and laser scanning, we will
focus only on orthogonal models and, in particular, we are interested in rotation matrices,
i.e., orthogonal matrices with positive determinant.
According to the searched parameters and to the stochastic model associated to the point
configurations, the various orthogonal Procrustes models can be identified as:

• OPA – Orthogonal Procrustes Analysis that allows to determine the least squares
rotations between two configurations;

• EOPA – Extended OPA that permits to define translations, rotations and an isotropic
scale factor of a least squares similarity transformation between two geometrical con-
figurations;

• WEOPA – Weighted EOPA that allows to obtain the expressions for the rotations,
translations and the isotropic scale factor between two sets of points separately weighted;
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• AEOPA – Anisotropic EOPA that permits to define translations, rotations and anisotropic
scale factors for each component or for each measurement of two geometrical configu-
rations.

Figure 2.1: Functional relationship among the Orthogonal Procrustes Analysis models.

Figure 2.1 shows the relationships existing among the various models. OPA model can be
considered a particular case of the EOPA, that in turn can be considered as a simple case
of the most general WEOPA model. The more recent AEOPA formulation can be seen
as a further generalization, allowing a different scaling of the components or of the points
belonging to the two configurations. Alongside these models, the Generalized Procrustes
Analysis (GPA) has also been proposed to simultaneously consider a virtually unlimited
number of matrix configurations. Employing the tools of the Orthogonal Procrustes models,
GPA determines the mean configuration among the given ones and the parameters of the
various similarity transformations that relate each configuration to the mean one. GPA will
be described in detail in Chapter 4, showing how it can be successfully applied to perform
the global registration of multiple point clouds.

2.3 Least Squares Solutions of Procrustes Models

In the following sections we will review in detail the aforementioned Orthogonal Procrustes
models and report their least squares solutions. This is a preparatory step to subsequently
introduce the EIV approach and derive the novel total least squares solutions.

2.3.1 Orthogonal Procrustes Analysis (OPA)

This is the fundamental model, formulated by Green in [70], that allows to match two
matrices only by rotation, satisfying the least squares principle. The following description is
inspired by the works by Schönemann [133], Crosilla [36] and Beinat [11] with appropriate
integration. Let us consider a matrix A (origin or source) and a matrix B (destination or
objective), containing a set of numerical data, e.g., the coordinates of p-points in Rk, so
defined:

A =

⋃
⎢⎢⎢⨄

xA
11 xA

12 · · · xA
1k

xA
21 xA

22 · · · xA
2k

...
...

. . .
...

xA
p1 xA

p2 · · · xA
pk

⋂
⎥⎥⎥⎦ B =

⋃
⎢⎢⎢⨄

xB
11 xB

12 · · · xB
1k

xB
21 xB

22 · · · xB
2k

...
...

. . .
...

xB
p1 xB

p2 · · · xB
pk

⋂
⎥⎥⎥⎦ . (2.1)

The method allows to directly estimate the unknown rotation matrix R, for which the square
of the Frobenius (or Euclidean) norm of the transformation residual matrix is minimum, i.e.

∥E∥2
F = ∥AR −B∥2

F = tr (E′E) = tr (EE′) = min (2.2)

with the condition that the k × k matrix R is orthogonal, that is R′R = I. Defining
a function F = F (E, R, L), where L is a diagonal k × k matrix of unknown Lagrangian



10 Chapter 2. Procrustes Analysis Models

multipliers, and exploiting the trace properties, the cost function F can be expressed as:

F =tr (E′E) +tr [L (R′R − I)]

=tr [(AR −B) ′ (AR −B) + L (R′R − I)]

=tr [R′A′AR −R′A′B−B′AR + B′B + LR′R − L] .

(2.3)

The minimum condition is reached imposing the partial derivative of F with respect to R
equal to zero:

∂F

∂R
= (A′A + A′A) R − 2A′B + R (L + L′)

=2A′AR − 2A′B + R (L + L′) = 0.
(2.4)

Multiplying on the left all the elements by R′

2R′A′AR − 2R′A′B + R′R (L + L′) = 0 (2.5)

one can see that, being R′A′AR and L+L′ symmetric matrices, and exploiting the orthog-
onal condition of matrix R, also R′A′B must be symmetric. Calling

S = A′B (2.6)

and taking into account the symmetry of R′S, it follows:

R′S = (R′S)′ = S′R. (2.7)

Carrying out the Singular Value Decomposition (SVD) of S = VDSW′ and substituting it
in the previous relationship yields:

R′VDSW′ = (VDSW′)′R = WDSV′R. (2.8)

From a comparison of the corresponding terms of the matrix products, it results:

W′ = V′R.

Reminding that V and W are orthonormal, it is possible to derive the expression of matrix
R, that represents the final result obtained as a product of two eigenvector matrices:

R = VW′. (2.9)

This formula only guarantees that R is orthogonal. The least squares estimate of a rotation
matrix is obtained by [156]

R = V diag (1, 1, det(VW′)) W′. (2.10)

Summarizing, from the computational point of view, given A and B, after computing the
SVD of the matrix product A′B, that is A′B = VDSW′, it is possible to directly determine
the rotation matrix R as R = V diag (1, 1, det(VW′)) W′.

2.3.2 Extended Orthogonal Procrustes Analysis (EOPA)

EOPA model computes the least squares similarity transformation between two matrices.
Its first formulation was given by Schönemann and Carroll [134] and is reported in the
following.
Given matrices A and B, with the meaning assigned in the preceding section, EOPA allows
to define, in addition to the rotation matrix R already retrieved with the OPA model, also
a translation vector t and a global scale factor c. It corresponds to searching a matrix B̃
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defined as:
B̃ = cAR + jt′ (2.11)

with j = (1, 1, · · · , 1) ′ of dimensions p× 1, for which the following condition is satisfied:

∥E∥2
F =

//B− B̃
//2

F
= min (2.12)

under the orthogonality constraint R′R = RR′ = I. The minimum condition reported in
(2.12) is equivalent to:

tr (E′E) = min . (2.13)

Defining a Lagrangian function F = F (E, t, R, c, L), where L is an unknown matrix of
Lagrangian multipliers, it follows

F =tr (E′E) + tr [L (R′R − I)]

=tr [(B− cAR − jt′) ′ (B− cAR − jt′) + L (R′R − I)]

=tr
[
B′B + c2R′A′AR + tj′jt′ − 2cR′A′jt′ − 2B′jt′ − 2cB′AR + LR′R − L

] (2.14)

and imposing the partial derivatives of F with respect to R, t and c equal to zero, it results:

∂F

∂R
= 2c2A′AR − 2cA′B + 2cA′jt′ + R (L + L′) = 0 (2.15)

∂F

∂t
= 2j′jt + 2cR′A′j− 2B′j = 0 (2.16)

∂F

∂c
= 2c tr (R′A′AR)− 2tr (R′A′B−R′A′jt′) = 0 (2.17)

Please note that the product j′j generates a scalar p, corresponding to the number of rows
of A and B. After multiplying Formula (2.15) on the left by R′, observing that R′A′AR
and R′R (L + L′) are symmetric, one can notice that also

R′A′B−R′A′jt′ (2.18)

must be symmetric. Substituting in Equation (2.18) the expression of t that results from
(2.16):

t = (B− cAR) ′ j

j′j
(2.19)

the symmetric condition for the global term becomes:

R′A′B−R′A′j
j′

j′j
(B− cAR) = R′A′

(
I− jj′

j′j

)
B + cR′A′

(
jj′

j′j

)
AR. (2.20)

Since R′A′
(

jj′

j′j

)
AR is symmetric, it consequently happens that:

R′A′

(
I− jj′

j′j

)
B (2.21)

is also symmetric. Matrix I − jj′/j′j is symmetric and idempotent and its role is to trans-
late the matrix values to which it is applied (in this case A and B) to the corresponding
barycenter. Calling

S = A′

(
I− jj′

j′j

)
B (2.22)

as done for the OPA model, it results:

R′S = (R′S) ′ = S′R (2.23)
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from which one obtains
R = VW′ (2.24)

with S = VDsW′ SVD of S. In order to retrieve a rotation matrix, one must resort to the
following formulation:

R = V diag (1, 1, det(VW′)) W′. (2.25)

Once R is known, one can compute t from (2.19) and the scale factor c from Equation
(2.17). Substituting the expression for vector t, the solution becomes:

c =
tr
[
R′A′

(
I− jj′

j′j

)
B
]

tr
[
R′A′

(
I− jj′

j′j

)
AR

] =
tr
[
R′A′

(
I− jj′

j′j

)
B
]

tr
[
A′
(

I− jj′

j′j

)
A
] (2.26)

after having considered the orthogonality condition of R. It is easy to see that the residual
matrix E, that measures the discrepancies of matrices A and B after having applied the
similarity transformation, is independent of the translation vector t. In other words, the
matching result does not depend on the relative distance between the barycenters of A and
B. In fact, one can retrieve E as:

E = B− B̃ =

(
I− jj′

j′j

)
(B−cAR) (2.27)

where t is not considered. Summarizing, given A and B, it is convenient to first calculate
the barycenter matrices Ā and B̄:

Ā =

(
I− jj′

j′j

)
A =

(
I− jj′

p

)
A (2.28)

B̄ =

(
I− jj′

p

)
B. (2.29)

Once the SVD decomposition of the matrix product Ā′B̄ has been carried out, that is
Ā′B̄ = VDsW′, it is possible to directly compute R = VW′. The scale factor is then given
by:

c =
tr
[
R′Ā′B̄

]

tr
[
Ā′Ā

] (2.30)

which corresponds to the least squares solution of B̄ = cĀR, while the translation is:

t = (B− cAR) ′j/p. (2.31)

Please note that multiplying by the term j/p in the previous expression corresponds to
perform the mean of the difference B− cAR.

2.3.3 Weighted Extended Orthogonal Procrustes Analysis
(WEOPA)

This model allows to determine the similarity transformation between two matrices, per-
mitting a different weighing for each point (by rows), for each component (by columns) or
for both. The first formulation was proposed by [61] and the solution is presented below,
following the derivation reported in [11]. Given a p×p weight matrix P2

R and a k×k weight
matrix P2

C , the unknown parameters R (rotation), t (translation) and c (isotropic scale
factor) are searched so to satisfy the following minimum condition:

tr
[
(B− cAR − jt′) ′P2

R (B− cAR − jt′) P2
C

]
= min (2.32)
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under the orthogonality constraint R′R = RR′ = I. Please note that P2
R weights the

points, while P2
C weights the components. We shall allow P2

R and P2
C to be any square

matrix, but in most applications they will be diagonal [67].
Let us separately consider the different situations, according to the value assumed by the
weight matrices.

First case: Point weighing (P2
R ̸= I and P2

C = I) .

If P2
R ̸= I is real, symmetric and positive definite, the minimum condition (2.32) corresponds

to the minimum of the Lagrangian function:

F =tr
[
B′P2

RB + c2R′A′P2
RAR + tj′P2

Rjt′ − 2cB′P2
RAR − 2B′P2

Rjt′+

+2cR′A′P2
Rjt′

]
+ tr [LR′R − L] .

(2.33)

Imposing the partial derivatives of F with respect to R, c and t equal to zero, it follows:

∂F

∂R
= 2c2A′P2

RAR − 2cA′P2
RB + 2cA′P2

Rjt′ + R (L + L′) = 0 (2.34)

∂F

∂t
= 2tj′P2

Rj + 2cR′A′P2
Rj− 2B′P2

Rj = 0 (2.35)

∂F

∂c
= 2c tr

(
R′A′P2

RAR
)
− 2tr

(
R′A′P2

RB−R′A′P2
Rjt′

)
= 0 (2.36)

and from (2.35) it results:

t = (B− cAR) ′ P2
Rj

j′P2
Rj

. (2.37)

From (2.34), after having multiplied on the left all the terms by R′ and observing that
R′R (L + L′) and R′A′P2

RAR are symmetric, it follows that also R′A′P2
RB−R′A′P2

Rjt′

must be symmetric.
Substituting the expression of t given by (2.37), one gets1:

sym

[
R′A′P2

RB−R′A′ P2
Rjj′P2

R

j′P2
Rj

B + cR′A′ P2
Rjj′P2

R

j′P2
Rj

AR

]
. (2.38)

Furthermore, observing that the term

R′A′ P2
Rjj′P2

R

j′P2
Rj

AR (2.39)

in Equation (2.38) is also symmetric, it is possible to conclude that both terms of the
equation:

R′A′P2
RB−R′A′ P2

Rjj′P2
R

j′P2
Rj

B = R′A′P2
R

(
I− jj′P2

R

j′P2
Rj

)
B (2.40)

must be symmetric.
Defining

S = A′P2
R

(
I− jj′P2

R

j′P2
Rj

)
B (2.41)

one reaches the same condition of (2.7) and (2.23). Being

S = VDsW′ (2.42)

1The predicate sym[ ] is true when the argument is a symmetric matrix.
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the SVD of matrix S, as for Equations (2.10) and (2.25), the rotation is given by:

R = V diag (1, 1, det(VW′)) W′. (2.43)

For what concerns the scale factor c, substituting in (2.36) the expression of t given by
(2.37), it is possible to obtain:

c =
tr
[
R′A′P2

R

(
I− jj′P2

R

j′P2

R
j

)
B
]

tr
[
R′A′P2

R

(
I− jj′P2

R

j′P2

R
j

)
AR

] . (2.44)

Summarizing, given matrices A, B and P2
R, matrix S is computed by means of (2.41) and

the SVD of S is carried out to directly obtain R. The scale factor c is then computed by
(2.44) and finally t is derived by means of (2.37).
Being P2

R symmetric and positive definite, it admits the Cholesky decomposition P2
R =

PR
′PR. It is then useful to observe that the WEOPA model is nothing but the EOPA

model applied to the matrices A and B "extended" by the component PR of the weight
matrix P2

R, namely PRA and PRB. This can be proven substituting matrix A with PRA,
matrix B with PRB and j with PRj in the formulas of the EOPA model, obtaining the
same expressions (2.37), (2.41) and (2.44) derived up to now. In fact, the expression of the
translation t of the EOPA model, given by (2.19), becomes:

t = (PRB− cPRAR) ′ PRj

j′PR
′PRj

= (B− cAR) ′ PR
′PRj

j′PR
′PRj

= (B− cAR) ′ P2
Rj

j′P2
Rj

while matrix S of the EOPA model (given by (2.22)), from which the components of R are
obtained, results from:

S = A′PR
′

(
I− PRjj′PR

′

j′PR
′PRj

)
PRB = A′PR

′PR

(
I− jj′PR

′PR

j′PR
′PRj

)
B = A′P2

R

(
I− jj′P2

R

j′P2
Rj

)
B.

Finally, the expression of the scale factor c, computed from Equation (2.26) of the EOPA
model, is:

c =
tr
[
R′A′PR

′
(

I− PRjj′PR
′

j′PR
′PRj

)
PRB

]

tr
[
R′A′PR

′
(

I− PRjj′PR
′

j′PR
′PRj

)
PRAR

] =
tr
[
R′A′P2

R

(
I− jj′P2

R

j′P2

R
j

)
B
]

tr
[
R′A′P2

R

(
I− jj′P2

R

j′P2

R
j

)
AR

] .

Second case: Component weighing (P2
R = I and P2

C ̸= I) .

In this case, no algebraic direct solutions are known in the literature [91, 67]. In fact, starting
from Equation (2.32), one can demonstrate that matrix R can be directly computed via a
SVD decomposition only if

RP2
CR′ = R̄′R̄ = I (2.45)

that is satisfied when
P2

C = I (2.46)

in contrast to the initial assumption P2
C ̸= I. Therefore, such a problem can be faced only

by adopting an iterative algorithm like the one proposed in [91].

2.3.4 Anisotropic Extended Orthogonal Procrustes Analysis
(AEOPA)

The EOPA model, described in Section 2.3.2, can be further extended by substituting the
isotropic scale factor c with an anisotropic scaling characterized by a diagonal matrix Γ of
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different scale factors [66]. Anisotropic Extended Orthogonal Procrustes Analysis (AEOPA)
comes in – at least – three flavors, which implies the minimization of different cost functions.
Following the pre-scaling on the variables (or space dimension) approach [66, 15], the model
can be formulated as:

min∥B−AΓR − jt′∥2
F (2.47)

whereas the post-scaling on the variables leads to:

min∥B−AR′Γ− jt′∥2
F (2.48)

both subject to R′R = I. These models find application in data analysis, where the columns
of A are variables that can be independently scaled, and in shape analysis, constituting a
solution to problems where the transformation of a configuration is nonlinear [62].
Finally, data (or row) scaling can be considered, where each data point or measurement is
scaled independently of the others [57]. The model, defined by [67] as Anisotropic EOPA
with row scaling, can be formulated as:

min∥B− ΓAR − jt′∥2
F subject to R′R = I. (2.49)

In the next paragraphs, we will focus the attention on this last case, that allows to solve in
an innovative and efficient way a classical photogrammetric problem, i.e. the image exterior
orientation. We will report the derivation of its general solution following the procedure
proposed in [57].
To obtain the least squares solution for model (2.49), let us make explicit the residual matrix
E:

B = ΓAR + jt′ + E (2.50)

where Γ is an unknown p× p diagonal matrix. So Equation (2.49) can be written as

min∥E∥2
F = min tr (E′E) subject to R′R = I. (2.51)

The problem is equivalent to the minimization of the Lagrangian function:

F = tr (E′E) + tr (L (R′R − I)) (2.52)

where L is the matrix of Lagrangian multipliers. This can be solved by setting to zero the
partial derivatives of F with respect to the unknowns R, t and the diagonal matrix Γ.
Let us start from (2.52), and substitute (2.50) for E:

F = tr (B′B) + tr (R′A′Γ′ΓAR) + p tr (tt′)−
− 2 tr (B′jt′)− 2 tr (B′ΓAR)+

+ 2 tr (R′A′Γ′jt′) + tr (L (R′R − I)).

(2.53)

The translation vector t can be obtained by equating to zero the partial derivative:

∂F

∂t
= 2pt− 2B′j + 2R′A′Γ′j = 0. (2.54)

Hence:
t = (B− ΓAR) ′j/p. (2.55)

Once the derivative of F with respect to R is set to zero, it results:

∂F

∂R
= A′Γ′ΓAR −A′Γ′B + A′Γ′jt′ + R (L + L′) /2 = 0. (2.56)

Let us multiply (2.56) on the left by R′:

R′A′Γ′ΓAR −R′A′Γ′B + R′A′Γ′jt′ + R′R (L + L′) /2 = 0. (2.57)
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Since matrices R′A′Γ′ΓAR and (L + L′) /2 are symmetric, then

sym [R′A′Γ′B−R′A′Γ′jt′]. (2.58)

Substituting (2.55) in (2.58), it results

sym [R′A′Γ′B−R′A′Γ′ (jj′/p) (B−ΓAR) ] (2.59)

which is equivalent to

sym[R′A′Γ′B−R′A′Γ′ (jj′/p) B + R′A′Γ′ (jj′/p) ΓAR ] (2.60)

and finally:
sym[R′A′Γ′ (I− jj′/p) B + R′A′Γ′ (jj′/p) ΓAR ]. (2.61)

Since R′A′Γ′ (jj′/p) ΓAR is symmetric, also the first term must be symmetric, i.e.,

sym [R′A′Γ′ (I− jj′/p) B]. (2.62)

Let us define the matrix S equal to

S = A′Γ′ (I− jj′/p) B (2.63)

Matrix R′S is symmetric, therefore the following condition must be satisfied

R′S = S′R (2.64)

that leads to the usual solution R = VW′, with S = VDSW′ the SVD of S. In order to
guarantee that R is not only orthogonal but has positive determinant [156], we shall use:

R = V diag (1, 1, det(VW′)) W′. (2.65)

The least squares solution for the diagonal matrix Γ can be retrieved by first computing the
partial derivatives of (2.53) with respect to Γ:

∂F

∂Γ
=

∂

∂Γ
tr (R′A′Γ′ΓAR)− 2

∂

∂Γ
tr (B′ΓAR) + 2

∂

∂Γ
tr (R′A′Γ′jt′)

∂F

∂Γ
= 2ΓAA′ − 2ARB′ + 2ARtj′ (2.66)

and then setting the derivatives to zero, obtaining:

ΓAA′ = AR (B′ − tj′) (2.67)

and then
Γ = (AA′ ⊙ I)

−1
(AR(B′ − tj′)⊙ I) (2.68)

where ⊙ is the Hadamard (or element-wise) product.
We now demonstrate that Expression (2.68) for matrix Γ can be derived also in an alternative
and more intuitive way, without resorting to the partial derivative of F with respect to
Γ. Assuming that R and t are known and defining U = R (B′ − tj′), Procrustes model
B = ΓAR + jt′ becomes

A′Γ = U. (2.69)

Exploiting the Khatri-Rao product, denoted with ◦, and its property involving diagonal
matrices and the vec operator2, Equation (2.69) can be written as

(I ◦A) diag−1(Γ) = vec U (2.70)

2The vec operator transforms a matrix into a vector by stacking its columns.



2.4. Errors-In-Variables Model And Total Least Squares Solutions 17

where diag−1 returns a vector containing the diagonal elements of its argument. In the
over-determined case, the least squares solution of (2.70) is given by

diag−1(Γ) = [(I⊙A) ′ (I ◦A)]
−1

(I ◦A) ′ vec U (2.71)

which is equivalent to the following more compact formulation applying the Hadamard
product [99]:

diag−1(Γ) = (I⊙AA′)
−1

diag−1(AU). (2.72)

It is easy to see that (2.72) corresponds to the original solution (2.68).
Please note that, whereas in the classical solution of the EOPA problem (Section 2.3.2) one
can recover first R, that does not depend on the other unknowns, then the isotropic scale
(that depends only on R) and finally t, in the anisotropic case the unknowns are entangled
in such a way that one must resort to the so called block relaxation scheme [42] (also known
as alternating least squares), where each variable is alternatively estimated while keeping
the others fixed. The algorithm can be summarized as:

1. Assuming known Γ, find R = V diag (1, 1, det(VW′)) W′, with A′Γ′ (I− jj′/p) B =
VDSW′, and t = (B− ΓAR) ′j/p;

2. Given R and t, solve for Γ = (AA′ ⊙ I)
−1

(AR(B′ − tj′)⊙ I);

3. Iterate over steps 1. and 2. until convergence.

2.4 Errors-In-Variables Model And Total Least Squares
Solutions

As shown in the previous sections, given a matrix A (origin) and a matrix B (destination),
containing the coordinates of p points in Rk, classical least squares (LS) Procrustes solutions
find the transformation parameters between the two point sets assuming that all random
errors are confined to the destination matrix B, whereas A is noise-free. However, this
assumption is often unrealistic, since both A and B are corrupted by errors if they derive
from measurements. Therefore, it seems appropriate to introduce the Errors-In-Variables
(EIV) model, which is a more general model wherein both matrices A and B are assumed
to be contaminated by errors. The problem of parameters estimation in the EIV model is
often called the total least squares (TLS) problem [59].
The first TLS solutions were developed in literature to solve linear problems expressed by
the following EIV model:

y + ey = (Π + EΠ) x (2.73)

where ey and EΠ are the error vector of observations y and the error matrix of the design
matrix Π, respectively, and x is the vector of unknown parameters. Golub and Van Loan
[59] introduced in mathematical literature the total least squares method applied to the EIV
model (2.73) to treat regression problems where all the data are affected by random errors.
The solution they developed was based on a SVD approach.
In geoinformatics, one of the first applications of the TLS method was described in [50].
The authors developed a Structured Total Least Squares (STLS) algorithm to solve a pla-
nar linear conformal transformation with a particular structure of the coefficient matrix
Π. Moreover, Shaffrin and Felus [131] proposed a method based on the nonlinear Euler-
Lagrange condition equations for estimating a planar affine transformation by multivariate
TLS problem (MTLS). Results showed that the differences between the total least squares
and the classical least squares estimated parameters are small; nevertheless they can affect
significantly the final accuracy of the transformed coordinates.
Another issue that has received considerable attention in recent years is the weighing of
observations according to their accuracy. Mahboub [111] developed an algorithm for the
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weighted TLS problem that allows for a general weight matrix, preserving at the same time
the structure of the design matrix Π.
Moreover, the EIV-model can also be considered as a nonlinear Gauss-Helmert model
(GHM), since both minimize the same objective function. Amiri-Simkooei and Jazaeri
[3], who formulated a simple solution to the weighted TLS problem as an extension of the
standard least squares solution, showed that the results obtained with their algorithm are
identical to those provided by a rigorous nonlinear GHM. However, the simplicity of the TLS
solution avoids the critical issues that must be handled when solving the nonlinear GHM.
Furthermore, in photogrammetric and geomatics applications, constraints on the unknown
parameters are often introduced, e.g., to take into account prior knowledge such as orthogo-
nality condition. Schaffrin [130] solved a TLS problem with linear constraints, while in [132]
a procedure to treat linear and quadratic constraints has been proposed. The TLS solution
of [48] can be used instead with arbitrary applicable constraints.
In any case, all these methods are based on the linear EIV model (2.73), that requires to
linearize condition equations in order to compute the parameters of the transformation. The
Procrustes solutions that will be presented in the next sections are closed-form ones, and no
linearization nor approximate parameter values are needed.

2.5 Total Least Squares Solutions of Procrustes Models

Arun [8] was the first to deal with the TLS solution of the orthogonal Procrustes prob-
lem, proving that for rigid transformations the classical LS Procrustes solution coincides
with the TLS one. Felus and Burtch [49] started instead from the EIV-Extended Orthog-
onal Procrustes model (EIV-EOPA) to compute the unknown parameters of a similarity
transformation (rotation matrix, translation vector and scale factor), showing that, in this
case, LS and TLS are not coincident. In the following, we will report the derivation of
these solutions, highlighting the differences with respect to the LS ones. In Section 2.5.2
we will extend the TLS solution of the weighted model (EIV-WEOPA) presented in [49],
allowing a different weighing of the two coordinate matrices. Moreover, we will develop in
Section 2.5.3 a new TLS solution of the Anisotropic Extended Orthogonal Procrustes model
(EIV-AEOPA).
First of all, let us recall the EOPA model introduced in Section 2.3.2, calling for clarity
reasons the error matrix affecting the destination set as EB:

cAR + jt′ = B + EB. (2.74)

The LS Procrustes solution allows to directly estimate the unknown rotation matrix R, the
translation vector t and the global scale factor c minimizing the square of the Frobenius
norm of the residual matrix EB, i.e.

min∥EB∥2
F = min tr (EBEB

′) (2.75)

under the orthogonality condition R′R = RR′ = I. In order to take into account that also
matrix A can be noisy, (2.74) should be replaced by the EIV model expressed as follows:

c(A + EA)R + jt′ = B + EB (2.76)

where matrix EA represents the errors affecting the coordinates contained in matrix A. The
unknowns are then computed by minimizing the square of the Frobenius norm of the matrix
(EA♣EB), i.e.

min
(
∥EA∥2

F + ∥EB∥2
F

)
= min tr

([
EA♣EB

] [EA
′

EB
′

])
(2.77)

under the constraint that matrix R is orthogonal. Let us now consider a rigid transformation,
where the only unknown parameters are the rotation matrix R and the translation vector t.
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As shown in [8], the solution to the EIV model (2.76) with c=1 is the same as the solution
to the orthogonal Procrustes problem (2.74). In fact, solving problem (2.77) with c=1 leads
to the cost function:

F = tr

[
1

2

(
R′A′AR + B′B + tj′jt′ + 2R′A′jt′ − 2B′jt′ − 2B′AR

)
+ LR′R − L

]
(2.78)

where L is a diagonal matrix of unknown Lagrangian multipliers. Considering instead the
classical orthogonal Procrustes problem (2.75) with c=1, the cost function F is

F = tr (R′A′AR + B′B + tj′jt′ + 2R′A′jt′ − 2B′jt′ − 2B′AR + LR′R − L) . (2.79)

The two cost functions (2.78) and (2.79) are identical, except for the constant value 1/2,
and their minimization leads then to the same solution. Therefore, the Procrustes solution
for a rigid transformation (c=1) also solves the EIV model. However, this property is not
valid for similarity transformations (c̸=1), as we will show in the next section.

2.5.1 EIV-Extended Orthogonal Procrustes Analysis
(EIV-EOPA)

The original solution of the EIV-EOPA model is due to Felus and Burtch [49]. In the
following, we retrieve the same TLS solution in a different way, first rewriting Equation
(2.76) as

[
cR′♣ − I

] [EA
′

EB
′

]
= −

[
cR′♣ − I

] [ A′

B′ − tj′

]
(2.80)

and then exploiting the minimum norm solution to the above system, namely

[
EA♣EB

]
=− 1

c2 + 1

[
A♣ (B− jt′)

] [ c2 −cR
−cR′ I

]

=− 1

c2+1

[
c2A−c (B− jt′) R′♣−cAR+ (B−jt′)

] (2.81)

which has been computed taking into account the orthogonality condition R′R = RR′ = I.
Starting from Expression (2.81), the cost F as a function of R, t and c to be minimized to
solve (2.77) is therefore

F = tr

([
EA♣EB

] [EA
′

EB
′

])
+ tr (L (R′R − I))

= tr

(
1

(c2 + 1)
2

[
c2A− c (B− jt′) R′♣ − cAR + (B− jt′)

]

·
[
c2A′ − cR (B′ − tj′)
−cR′A′ + (B′ − tj′)

]⎜
+ tr (L (R′R − I)) . (2.82)

Using the properties of the trace, it follows

F = tr

[
1

c2 + 1

(
c2R′A′AR + B′B + tj′jt′

+ 2cR′A′jt′−2B′jt′−2cB′AR
)

+LR′R − L

]
.

(2.83)

The translation vector t can be obtained by equating to zero the partial derivative:

∂F

∂t
=

1

c2 + 1
[2j′jt + 2cR′A′j− 2B′j] = 0 (2.84)
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from which it results

t = (B′ − cR′A′)
j

j′j
. (2.85)

Setting to zero the derivative of F with respect to R, it follows

∂F

∂R
=

1

c2+1

[
2c2A′AR+2cA′tj′−2cA′B

]
+R(L+L′)=0. (2.86)

Let us multiply (2.86) on the left by R′:

cR′A′AR + R′A′jt′ −R′A′B + R′RΘ = 0 (2.87)

where Θ = (c2 +1)(L+L′)/2. Observing that matrices R′A′AR and R′RΘ are symmetric,
then

sym [−R′A′jt′ + R′A′B] . (2.88)

Substituting (2.85) in (2.88), it results

sym

[
R′A′

(
I− jj′

j′j

)
B + cR′A′ jj′

j′j
AR

]
. (2.89)

Since cR′A′ jj′

j′j
AR is symmetric, it must be

sym

[
R′A′

(
I− jj′

j′j

)
B

]
. (2.90)

As already discussed in Section 2.3.2, matrix I− jj′/(j′j) is symmetric and idempotent and
it translates the matrix values to which it is applied to the corresponding barycenter. Let
us compute the intermediate matrix Ā

Ā = A′

(
I− jj′

j′j

)
(2.91)

that is the transposed barycentric matrix A. Calling

S = Ā′B̄ (2.92)

with B̄ =

(
I− jj′

j′j

)
B the barycentric matrix B, from (2.90) it follows that

R′S = (R′S) ′ = S′R (2.93)

and finally
R = V diag (1, 1, det(VW′)) W′ (2.94)

where S = VDSW′ is the SVD of S and the term diag (1, 1, det(VW′)) guarantees that R
has positive determinant. In order to compute the scale factor c, let us substitute (2.85) in
(2.83). After some rewriting, the cost function F becomes

F= tr

[
1

c2+1

(
c2Ā′Ā+B̄′B̄−2cB̄′ĀR

)
+LR′R−L

]
. (2.95)

Setting to zero the partial derivatives of (2.95) with respect to c, one obtains

tr
(
B̄′ĀR

)
c2 + tr

(
Ā′Ā− B̄′B̄

)
c− tr

(
B̄′ĀR

)
= 0. (2.96)
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Analyzing Equation (2.96), it can be noticed that there are two real solutions, one positive
and one negative. The searched value of the scale factor c is the positive one computed from
the expression:

c1,2 =
− tr

(
Ā′Ā− B̄′B̄

)
±
√

∆

2 tr
(
B̄′ĀR

) (2.97)

∆ = tr2
(
Ā′Ā− B̄′B̄

)
+ 4 tr2

(
B̄′ĀR

)
. (2.98)

Interestingly, these results correspond to the ones obtained in [26] with an alternative deriva-
tion. In fact, [26] found a closed-form least squares solution for the 3D similarity transfor-
mation problem under a Gauss-Helmert model with equal weights, that is equivalent to the
EIV-EOPA solution.
Comparing this solution with the results deriving from the classical EOPA (Section 2.3.2),
it is easy to see that the the scale factor c – and consequently the translation vector t –
resulting from the EOPA is different from the one derived with the EIV-EOPA. In fact,
(2.30) is not a root of (2.96), unless c=1. On the contrary, the rotation matrix R is the
same.

2.5.2 EIV-Weighted Extended Orthogonal Procrustes Analysis
(EIV-WEOPA)

The EIV-EOPA can be augmented by weighing the coordinate matrices in two different
ways: by rows or by columns. Let us first consider the weighing by rows, which is applied
to the case when distinct points have different accuracy. From the analytical point of view,
this corresponds to minimizing the following function:

F = tr

(
PR

[
EA♣EB

] [EA
′

EB
′

]
PR

′

)
+ tr [L (R′R−I)] (2.99)

where PR is a p× p diagonal weight matrix and, after some rewriting

F = tr

[
1

c2 + 1

(
c2R′A′PR

′PRAR + PRBB′PR
′ + tj′PR

′PRjt′

+ 2cR′A′PR
′PRjt′ − 2B′PR

′PRjt′ − 2cB′PR
′PRAR

)
+ LR′R − L

]
.

(2.100)

One can notice that (2.100) can be derived also by substituting matrix A with PRA, matrix
B with PRB and j with PRj in (2.83). Therefore the solution to the EIV-Weighted Orthog-
onal Procrustes Analysis model, corresponding to the minimization of (2.99), is nothing but
the EIV-EOPA solution to which the aforementioned substitutions have been applied.
Coordinate matrix can be weighted also by columns, that corresponds to assigning a different
accuracy to the point coordinate components. The function to minimize is

F = tr

([
EA♣EB

]
PCPC

′

[
EA

′

EB
′

])
+ tr [L (R′R−I)] (2.101)

where PC is a 2k×2k diagonal matrix able to differently weighs the various components. As
already shown in Section 2.3.3, if PC ̸= I, no algebraic solutions are known in the literature
[38, 67, 91]; an iterative solution has been proposed in [91]. However, if we are not interested
in weighing differently each component of A and B, but we want to assign a different weight
to the entries of A versus those of B as a whole, assuming that the two datasets A and B
have been measured with different accuracy, a closed-form solution can be derived.
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Let 1/α and 1/β be the weights assigned to A and B, respectively. Matrix PC can then be
written as

PC =

[
α−1I 0

0 β−1I

]
. (2.102)

Substituting (2.102) in (2.101), it results

F= tr

([
α−1EA♣β−1EB

]
II′

[
α−1EA

′

β−1EB
′

])
+ tr [L (R′R−I)] (2.103)

and, after some manipulations

F= tr

[(
1

c2 + 1

)2 ( c2

α2
+

1

β2

)(
c2R′A′AR+B′B + tj′jt′

+2cR′A′jt′−2B′jt′−2cB′AR
)

+LR′R−L

]
.

(2.104)

The translation vector t derives from equation

∂F

∂t
=

(
c2/α2+1/β2

)

(c2 + 1)
2 [2j′jt+2cR′A′j−2B′j] = 0 (2.105)

hence

t = (B′ − cR′A′)
j

j′j
. (2.106)

Setting to zero the derivative of F with respect to R, it follows

∂F

∂R
=

(
c2/α2+1/β2

)

(c2+1)
2

[
2c2A′AR+2cA′tj′−2cA′B

]
+R(L+L′). (2.107)

Applying the same procedure used to derive R for the EIV-EOPA, one obtains the rotation
matrix

R = V diag (1, 1, det(VW′)) W′ (2.108)

where S = VDSW′ is the SVD of S, withS = Ā′B̄. Substituting (2.106) in (2.104), it
results

F= tr

⎟(
c2/α2+1/β2

)

(c2+1)
2

(
c2Ā′Ā+B̄′B̄−2cB̄′ĀR

)
+LR′R−L

]
. (2.109)

The solution for the scale factor c can be obtained by setting to zero the partial derivative
of (2.109) with respect to c, which leads to the following equation

2

α2
tr
(
B̄′ĀR

)
c4

+
[ 4

α2
tr
(
Ā′Ā

)
− 2

β2
tr
(
Ā′Ā

)
− 2

α2
tr
(
B̄′B̄

) ]
c3

+
[
− 6

α2
tr
(
B̄′ĀR

)
+

6

β2
tr
(
B̄′ĀR

) ]
c2

+
[ 2

α2
tr
(
Ā′Ā

)
+

2

β2
tr
(
Ā′Ā

)
− 4

β2
tr
(
B̄′B̄

) ]
c

− 2

β2
tr
(
B̄′ĀR

)
= 0. (2.110)

The searched value of c is the root of the 4th order polynomial (2.110) that minimizes the
cost function (2.109).
It is worth noting that the rotation matrix R computed through (2.108) is the same as that
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one resulting from the EIV-EOPA and from the classical EOPA. The expression of the scale
factor c and the translation vector t are different instead.

2.5.3 EIV-Anisotropic Extended Orthogonal Procrustes Analysis
(EIV-AEOPA)

Let us now introduce the EIV-AEOPA model, that allows an anisotropic scaling and con-
siders the errors affecting both origin matrix A and destination matrix B, namely:

B + EB = Γ(A + EA)R + jt′. (2.111)

A TLS estimation of the parameters of this model is novel and we report the derivation of
its solution below. Following the traditional Lagrangian approach, the target function to be
minimized can be written as

F (EB, EA, G, L, t, R, Γ) =
1

β
tr (EBEB

′) +
1

α
tr (EAEA

′) +

2 tr
[
G′ (B + EB − ΓAR − ΓEAR − jt′)

]
+ 2 tr

[
L (R′R − I)

]
(2.112)

where G and L are the matrix of Lagrangian multipliers, whereas 1/α and 1/β are different
weights assigned to A and B, respectively. This can be solved by setting to zero the partial
derivatives with respect to the unknowns. Eventually, the following necessary equations can
be obtained:

∂F

∂EB

=
2

β
EB + 2G = 0 (2.113)

∂F

∂EA

=
2

α
EA − 2Γ′GR′ = 0 (2.114)

∂F

∂G
= 2 (B + EB − ΓAR − ΓEAR − jt′) = 0 (2.115)

∂F

∂L
= 2 (R′R − I) = 0 (2.116)

∂F

∂t
= −2G′j = 0 (2.117)

∂F

∂R
= 2 (−A′Γ′ −EA

′Γ′) G + 2R (L′ + L) = 0 (2.118)

∂F

∂Γ
= G (−R′A′ −R′EA

′)⊙ I = 0 (2.119)

The translation vector t can be computed substituting (2.113) and (2.114) in (2.115), thus
obtaining

jt′ = B− βG− ΓAR − αΓΓ′G. (2.120)

Transposing the whole Expression (2.120) and multiplying on the right by (βI + αΓ2)−1j,
with Γ2 = ΓΓ′, one gets

tj′
(
βI + αΓ2

)−1
j = (B− ΓAR) ′

(
βI + αΓ2

)−1
j−G′j. (2.121)

Taking into account also condition (2.117) leads to the solving expression:

t = (B− ΓAR) ′(βI + αΓ2)−1 j

ε
(2.122)

where ε = j′(βI + αΓ2)−1j = tr
[
(βI + αΓ2)−1

]
.
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To retrieve matrix R, let us first substitute (2.114) in (2.118) and, after multiplying on the
left by R′, one obtains

αG′ΓΓ′G + R′A′Γ′G−R′R (L′ + L) = 0. (2.123)

Since αG′ΓΓ′G and R′R (L′ + L) are symmetric, then

sym [R′A′Γ′G] . (2.124)

From (2.120), G can be written also as

G = (βI + αΓ2)−1 (B− ΓAR − jt′) . (2.125)

Hence, substituting (2.125) and (2.122) in (2.124), it results

sym

[
R′A′Γ′(βI + αΓ2)−1

[
I− jj′

ε
(βI + αΓ2)−1

]
B−

R′A′Γ′(βI + αΓ2)−1

[
I− jj′

ε
(βI + αΓ2)−1

]
ΓAR

]
.

(2.126)

It is easy to see that R′A′Γ′(βI + αΓ2)−1

[
I− jj′

ε
(βI + αΓ2)−1

]
ΓAR is symmetric, so

sym

[
R′A′Γ′(βI + αΓ2)−1

[
I− jj′

ε
(βI + αΓ2)−1

]
B

]
. (2.127)

Calling

S = A′Γ′(βI + αΓ2)−1

[
I− jj′

ε
(βI + αΓ2)−1

]
B (2.128)

from (2.127) it follows that
R = VW′ (2.129)

where S = VDSW′ is the SVD of S. As previously observed, to retrieve a rotation matrix
one resorts to

R = V diag (1, 1, det(VW′)) W′. (2.130)

Finally, substituting (2.114) and (2.125) in (2.119)

(βI + αΓ2)−1 (B−ΓAR−jt′)
[
α (B−ΓAR−jt′) ′(βI + αΓ2)−1Γ + R′A′

]
⊙ I = 0 (2.131)

and defining X = AR and Y = B− jt′, after some rewriting one obtains:

(αΓXY′Γ + βΓXX′ − αYY′Γ− βYX′)⊙ I = 0. (2.132)

Equation (2.132) can be solved independently for each element ci of matrix Γ. The value of
each scale factor is retrieved from the following equation:

∏
∐α

3∑

j=1

XijYij

∫
⎠ c2

i +

∏
∐β

3∑

j=1

X2
ij − α

3∑

j=1

Y2
ij

∫
⎠ ci − β

∏
∐

3∑

j=1

XijYij

∫
⎠ = 0 (2.133)

Analyzing Equation (2.133), it can be noticed that there are two real solutions, one negative
and one positive; the latter is the searched value of the scale factor ci.
Let us recall the solving equation for Γ derived from the classical AEOPA model (2.67),
that can be written also as follows:

(ΓXX′ −YX′)⊙ I = 0. (2.134)
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Comparing Equation (2.134) with the one derived from the EIV model (2.111), it is easy to
see that the two terms of the LS solution (2.134) are contained in the TLS solution (2.133).
Let us rewrite (2.134) and (2.133) as follows:

[(ΓX−Y)X′]⊙ I = 0 (2.135)

[β(ΓX−Y)Y′Γ + α(ΓX−Y)X′]⊙ I = 0. (2.136)

It is important to underline that, if the system ΓX = Y has an exact solution (i.e., matrices
A and B are error-less), this satisfies both (2.135) and (2.136). Therefore in the ideal
case ordinary LS and TLS approaches coincide, as expected, whereas they lead to different
solutions when the data are affected by noise.
Similarly to the LS solution of the AEOPA problem, the TLS solution of the EIV-AEOPA
model requires a block relaxation scheme to estimate the unknowns R, t and Γ.

2.6 Experiments

The EIV-EOPA and EIV-WEOPA algorithms described in Sections 2.5.1 and 2.5.2 were
tested to perform the datum transformation of four points belonging to a small topographic
network. The points coordinates were determined in the datum WGS84 through GPS mea-
surements (Table 2.1) and they were also measured in a local reference system using a total
station (Table 2.2). The GPS measurements were assumed to have a standard deviation of
σGP S = ±5 cm, while the coordinate in the local datum were assumed to have a standard
deviation of σEDM = ±1 cm.

Table 2.1: Point coordinates in the source system WGS84.

Point XGP S [m] YGP S [m] ZGP S [m]

A 4314478.698 1013256.717 4571659.536
B 4314521.907 1013215.197 4571628.184
C 4314570.538 1013205.789 4571584.703
D 4314530.926 1013136.124 4571637.601

Table 2.2: Point coordinates in the target local system.

Point XEDM [m] YEDM [m] ZEDM [m]

A 0.000 0.000 100.000
B 0.000 67.655 100.066
C -33.056 124.680 100.091
D 62.684 117.572 100.691

The parameters of the similarity transformation between the two reference systems were
computed by applying the classical least squares EOPA solution reported in Section 2.3.2,
the EIV-EOPA model and the novel EIV-WEOPA solution. The weights assigned to the
two datasets for the latter case were α = 1/σ2

GP S = 0.04 and β = 1/σ2
EDM = 1.

The rotation matrix obtained with all the three methods is the following:

R =

⎟
−0.3706961890 0.6380215670 0.6749168953
−0.7739159876 −0.6139475490 0.1553140405

0.5134572812 −0.4647546526 0.7213631078

]
.

It is easy to see that R is an orthogonal matrix, with det(R) = 1. In Table 2.3 the values of
the scale factor c and the translation vector t computed by the three different algorithms are
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reported. The differences between the estimated parameters can be considered significant
when a high accuracy of the coordinate values resulting from the transformation is required.

Table 2.3: Parameters c and t estimated using different methods.

Parameter EOPA EIV-EOPA EIV-WEOPA

c [-] 1.0000852732 1.0000853646 1.0000855921
tx [m] 36187.583 36187.586 36187.594
ty [m] -5944.436 -5944.436 -5944.437
tz [m] -6367557.047 -6367557.629 -6367559.077

The AEOPA (Section 2.3.4) and the EIV-AEOPA (Section 2.5.3) can instead be applied and
compared for solving the problem of estimating the position and orientation of a perspective
camera given its intrinsic parameters and a set of world-to-image correspondences [57],
known as exterior orientation problem in photogrammetry or Perspective-n-Point camera
pose in computer vision.
First of all, we briefly review here how this problem can be formulated in terms of model
(2.50) or (2.111). Given at least three control points and their projections, the exterior
orientation problem requires to find a rotation matrix R and a vector t (specifying attitude
and position of the camera) such that the vector form of collinearity equations:

ai = c−1
i R(bi − t) (2.137)

is satisfied for some positive scalar ci, where

• bi is the coordinate vector of the i-th control point in the external system;

• t is the coordinate vector of the projection center in the external system;

• ci is a positive scalar proportional to the “depth” of the point, i.e., the distance from
the i-th control point to the plane containing the projection center and parallel to the
image plane;

• R is the rotation matrix transforming from the external system to the camera system;

• ai is the coordinate vector of the i-th control point in the camera system, where the
third component is equal to the principal distance or focal length.

Expressing (2.137) with respect to bi yields:

bi = ciR
′ai + t. (2.138)

After transposing and extending to p control points b1 . . . bp, it results:

B = ΓAR + jt′ (2.139)

where A is the matrix by rows of image point coordinates defined in the camera frame, B
is the matrix by rows of point coordinates defined in the external system, Γ is the diagonal
(positive) depth matrix.
Formula (2.139) can then be rewritten in the form of the AEOPA model (2.50) or the EIV-
AEOPA model (2.111), according to whether the error is assumed to affect only B or both
A and B. It is particularly significant in this photogrammetric application the capability of
our solution (Section 2.5.3) to take into account the different variances of EA and EB, since
image coordinate ai and 3D points coordinate bi are measured with different accuracy.
Garro et al. [57] compared the LS solution of (2.50) with state-of-the-art algorithms that
perform the exterior orientation, showing that AEOPA reaches the best trade-off between
speed and accuracy. In this chapter, we tested the proposed TLS solution of the AEOPA
for solving the exterior orientation of an image against the LS formulation [57].
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Figure 2.2: Rotation error vs noise using 10 correspondences and a distance of the camera from the
origin equals to 10 m. The RMSE and the median rotation errors are plotted against the standard
deviation of the noise added to image coordinates and 3D points coordinate.
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Figure 2.3: Rotation error vs number of points. The RMSE and the median rotation errors are
plotted against the number of points that have been used. The distance of the camera from the
origin is equal to 10 m and the standard deviation of the noise added is 3 pixel for the image
coordinate and 0.71 mm for the 3D points coordinate.
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To carry out the simulation, p = ¶6, ..., 30♦ 3D points were randomly distributed in a sphere
of unit radius centered on the origin and perturbed with random noise with standard devi-
ation σB = ¶0.10, 0.27, 0.71, 1.88, 5.00♦ [mm] (corresponding to five logarithmically spaced
values from 0.10 to 5.00). The camera was positioned at distances of 5 and 10 meters from
the origin and the focal length was chosen so as to yield a view angle of 60◦ with an image
size of 1000 x 1000 pixels. Different values of noise σA = ¶1, ..., 5♦ [pixel] were added to
the image coordinates obtained from the projection of the noise-free 3D points. For each
setting the test was run 500 times and the mean and median error norms were computed.
In all the experiments the initial depths were set to one. Results are reported in Figures
2.2 and 2.3. As a figure of merit only the rotation errors are shown, since the behavior of
the translations errors is similar. The rotation error is the angle of the residual rotation,
computed as ∥log(R′R̂)∥F , where R is the ground truth, R̂ is the actual rotation and ∥·∥F

is the Frobenius norm.
Comparing the median error, one can notice that EIV-AEOPA and AEOPA lead almost
to the same accuracy. On the other hand, the root mean square error (RMSE) is different
when the number of correspondences in the image is small (n ≤ 15) (this is clear in Figure
2.2 where 10 points are considered). This is due to the fact that AEOPA in a few cases
converges to wrong results, that are not sufficient to skew the median, but affects the mean
error. The rundown of this simulation is that the new TLS solution works better than the
ordinary LS algorithm when the number of reference points (whose coordinate are known
in both the camera and the external reference frame) is small, which is a common situation
in photogrammetry.

2.7 Conclusion

The aim of this chapter was twofold. On the one hand, we gave a comprehensive view of
the classical least squares orthogonal Procrustes variants, a set of mathematical tools used
to perform transformations among corresponding matrix elements. Procrustes Analysis can
play a significant role in photogrammetry, since it represents the basic tool for an alter-
native and efficient solution of classical photogrammetric problems such as image exterior
orientation and bundle block adjustment. On the other we applied the Errors-In-Variables
model, developing novel total least squares solutions of the Weighted Extended Orthogonal
Procrustes Analysis and the Anisotropic Extended Orthogonal Procrustes Analysis that can
cope with the uncertainty affecting both origin and destination sets of observations. In this
way, we obtained algorithms that maintain all the advantages of the classical Procrustes
Analysis, i.e., problems related to linearization and approximate parameters values deter-
mination are avoided, and at the same time removing the unrealistic assumption that the
source coordinates are error-less. This Errors-In-Variables model is closer to reality and
leads to a more realistic estimation of the unknown transformation parameters.
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Chapter 3

Permutation Procrustes
Problem and Variations

In this chapter we address the problem of finding correspondences among element sets,
where the elements can be, e.g., keypoints extracted from images or point clouds. When
two sets are involved, this can be seen as a Permutation Procrustes problem. In particular,
we propose a novel solution to the multi-view matching problem that, given a set of noisy
pairwise correspondences, jointly updates them so as to maximize their consistency. Our
method is based on a spectral decomposition, resulting in a closed-form efficient algorithm,
in contrast to other iterative techniques that can be found in the literature. Experiments
on both synthetic and real datasets show that our method achieves comparable or superior
accuracy to state-of-the-art algorithms in significantly less time. We also demonstrate that
our solution can efficiently handle datasets of hundreds of views, which is unprecedented in
the literature.

3.1 Introduction

Establishing correspondences between keypoint sets is a fundamental problem in photogram-
metry and computer vision, that lies at the basis of any geometric computation (e.g., struc-
ture from motion and point cloud registration). In this chapter we consider the case in
which keypoints are extracted from a collection of images, while in Chapter 4 we will show
an application to the point cloud registration problem.

3.1.1 Permutation Procrustes Analysis

The majority of works on this topic focus on finding correspondences between two sets
[106, 98, 103, 102, 109, 128], that can be formulated as a Permutation Procrustes Analysis
(PPA) [67]. In fact, given two matrices A, B ∈ Rm×m′

, the matching problem corresponds
to identifying the permutation Q that best align B onto A, i.e., solving

∥A−BQ∥F = min (3.1)

under the condition that Q is a permutation matrix, i.e., exactly one entry in each row and
column is equal to 1 and all other entries are 0. Permutation matrices are orthogonal, so
this is a special case of the OPA model (see Section 2.3.1). The minimization of (3.1) is
equivalent to

tr(PC) = max (3.2)

with P = Q′ and C = B′A.
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Let us consider a relaxed problem:

maximize

n∑

i=1

n∑

j=1

pijcij

subject to pij ≥ 0
n∑

i=1

pij = 1

n∑

j=1

pij = 1.

(3.3)

This is a linear programming problem, hence its solution must occur at a vertex of the
feasible region, which corresponds to a permutation matrix. This is in fact an assignment
problem, which can be solved by the Hungarian method [94, 119] (−cij is the cost of assigning
agent i to task j, and pij represents the assignment).
Setting B = I in (3.1), the solution Q is the closets permutation matrix to A and this can
be used also to project a matrix onto the set of permutations.

3.1.2 Multi-View Matching

In many tasks it is often required to find matches across multiple views and recent studies
have suggested that jointly optimizing the correspondences across the whole set can lead to
significant improvements when compared to computing matches between pairs of views in
isolation [124, 166], since pairwise matching algorithms can generate noisy and unreliable
results. Hence, one can resort to higher level constraints that arise from the closed-loop
consistency of matching across multiple views. This is called joint matching or multi-view
matching by some authors and it is a problem that cannot be solved via the Permutation
Procrustes model, so one must resort to different formulations.
A key concept in this context is that of cycle consistency, namely the composition of pair-
wise matches along any loop should give the identity. This property is exploited in several
algorithms to remove outliers among pairwise correspondences [164, 122, 88]. However, in
practice, a few number of consistent cycles may be found due to noise, and considering all the
cycles is computationally intractable. It is shown in some recent works [124, 78, 166] that,
if all the pairwise correspondences are collected in a block-matrix, then cycle consistency
can be reduced to the requirement that such a matrix is positive semidefinite and low-rank.
In [124] and [6] multi-view matching is expressed as a synchronization problem, which is
approximately solved via spectral decomposition. In [78] a solution based on semidefinite
programming is proposed, which, however, assumes total correspondences between all views.
Such technique is extended in [28] in order to handle partial correspondences, and theoreti-
cal guarantees for exact matching in the presence of corrupted input are provided, assuming
a certain noise model. In [166] the joint matching problem is formulated as a low-rank
matrix recovery task and the nuclear-norm relaxation for rank minimization is employed.
The resulting cost function is optimized via the Alternating Direction Method of Multipliers
(ADMM). Finally, in [162] a solution based on the proximal Gauss-Seidel method is pro-
vided, which, as [78], assumes total correspondences between all the views, thus limiting its
applicability to real scenarios.

3.1.3 Contribution

After formally defining the problem in Section 3.2, in this chapter we propose a novel closed-
form method for multi-view matching, called MatchEIG, that is extremely simple and can
be coded in a few lines of Matlab. The developed solution share the same framework as [124],
since it is based on a spectral decomposition. Differences with respect to [124] are detailed
in Section 3.3 and they imply a significant improvement in performance, as demonstrated by
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the experimental validation. Synthetic and real experiments, presented in Section 3.4, show
in fact that the accuracy of MatchEIG is comparable or superior to the state of the art
and it is significantly faster than all the competing methods. Thanks to its computational
efficiency, it successfully handles sets of hundreds of views, where others fail to produce a
solution.

3.2 Problem Formulation

The goal of multi-view matching is to establish correspondences between all pairs of views.
Let n denote the number of views and let mi denote the number of keypoints in view i. The
correspondences between the keypoints in view j and those in view i can be represented as a
partial permutation matrix Pij ∈ ¶0, 1♦mi×mj . It can be constructed as follows: [Pij ]h,k = 1
if keypoint k in view j is matched with keypoint h in view i; [Pij ]h,k = 0 otherwise. If row
[Pij ]h,· is a row of zeros, then keypoint h in view i does not have a matching keypoint in
view j. If column [Pij ]·,k is a column of zeros, then keypoint k in view j does not have
a matching keypoint in view i. Figure 3.1 graphically shows how a permutation matrix is
related to keypoints correspondences.
A partial permutation matrix has at most one nonzero entry in each row and column, and
these nonzero entries are all 1. If exactly one entry in each row and column is equal to 1
(and all other entries are 0), then the permutation is total. Partial permutations are suitable
to model matches in practical scenarios, since they can represent missing correspondences,
whereas the usage of total permutations requires that the same set of keypoints is present
in all the views, which is an unrealistic assumption.

(a) (b)

Figure 3.1: (a) Keypoint matches between two sets of views and (b) corresponding partial per-
mutation matrix.

Let us assume that all the keypoints belong to a universe set. Let Pi ∈ ¶0, 1♦mi×d denote
the partial permutation matrix representing the correspondences between the keypoints in
view i and those in the universe, where d denotes the size of the universe. In the absence
of noise, the correspondences between view j and view i can be equivalently represented by
first computing the matches between view j and the universe, and then from the universe
to view i, namely

Pij = PiPj
′. (3.4)

Equation (3.4) is called the consistency constraint. The matrix Pij is referred to as the rela-
tive permutation of the pair (i, j), and the matrix Pi (resp. Pj) is referred to as the absolute
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permutation of view i (resp. j). According to Equation (3.4), the solution to the multi-
view matching problem can also be achieved by first computing n absolute permutations
P1, . . . , Pn and then setting Pij = PiPj

′.

3.2.1 Spectral Properties

As observed in [124, 78, 166, 6], the consistency constraint can be expressed in a compact
matrix form if all the absolute and relative permutations are collected in two block-matrices
X ∈ ¶0, 1♦m×d and Z ∈ ¶0, 1♦m×m respectively, where m =

√n
i=1 mi, namely

X =

⋃
⎢⎢⨄

P1

P2

. . .
Pn

⋂
⎥⎥⎦ , Z =

⋃
⎢⎢⨄

P11 P12 . . . P1n

P21 P22 . . . P2n

. . . . . .
Pn1 Pn2 . . . Pnn

⋂
⎥⎥⎦ . (3.5)

Note that Z may contain zero blocks: if all the keypoints in view i do not match with any
keypoint in view j, then Pij = 0. Using this notation, Equation (3.4) becomes

Z = XX′ (3.6)

which implies that Z is symmetric positive semidefinite and has rank d.

Proposition 3.1. [124, 139] The columns of X are d (orthogonal) eigenvectors of Z corre-
sponding to the eigenvalue n, assuming that all the permutations are total.

Proof. In the case of total permutations we have Pi
′Pi = Id and hence X′X = nId, where

Id denotes the d × d identity matrix. Thus ZX = XX′X = nX, which means that the
columns of X are d eigenvectors of Z corresponding to the eigenvalue n.

The following new result generalizes Proposition 3.1 to the case of partial permutations.

Proposition 3.2. The columns of X are d (orthogonal) eigenvectors of Z and the corre-
sponding eigenvalues are given by the diagonal of V :=

√n
i=1 Pi

′Pi.

Proof. In the case of partial permutations, Pi does not have an inverse, thus the d × d
(diagonal) matrix Pi

′Pi is not equal to the identity: [Pi
′Pi]k,k = 1 if the k-th keypoint in

the universe is present in view i; [Pi
′Pi]k,k = 0 otherwise. Define the d× d diagonal matrix

V := X′X =
√n

i=1 Pi
′Pi. Then

ZX = XV (3.7)

which is a spectral decomposition, i.e., the columns of X are d eigenvectors of Z and the
corresponding eigenvalues are given by the diagonal of V. Specifically, the k-th eigenvalue
is an integer which counts how many views match the k-th keypoint in the universe.

Note that in the case of total permutations all the keypoints are present in all the views,
therefore V = nId and all the eigenvalues are equal, hence we get Proposition 3.1. Since Z
has rank d, the matrix V contains the largest eigenvalues of Z and all the other eigenvalues
are zero. Thus, in the presence of noise, we can take the eigenvectors of Z corresponding to
the d largest eigenvalues as an estimate of X. In Section 3.2.2 we describe the meaning of
this procedure in terms of an optimization problem, and in Section 3.3 we show how it can
be exploited to derive an efficient method for multi-view matching.

3.2.2 Optimization Problem

In practice, pairwise correspondences contain errors, hence what we measure is an estimate
P̂ij of the relative permutation between view i and view j (in this chapter we use the hat
accent to denote approximate quantities). The goal is to compute a set of partial permutation
matrices ¶Pij♦n

i,j=1 such that the consistency constraint is satisfied and Pij is as close as
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possible to its measure P̂ij , namely Pij ≈ P̂ij for all i, j ∈ ¶1, . . . , n♦. A possible approach
consists in considering the following optimization problem

max
¶Pij♦n

i,j=1

n∑

i,j=1

⟨P̂ij , Pij⟩ s.t. Pij = PiPj
′ (3.8)

where each optimization variable is constrained to be a partial permutation matrix. Here
⟨·, ·⟩ denotes the matrix inner product. The cost function in (3.8) counts, for each view pair

(i, j), the number of keypoints equally matched by permutations Pij and P̂ij .

If Ẑ denotes the block-matrix containing the measured relative permutations P̂ij , then
Equation (3.8) rewrites

max
Z
⟨Ẑ, Z⟩ = max

Z
tr(ẐZ′) s.t. Z = XX′ (3.9)

⇐⇒ max
X
⟨Ẑ, XX′⟩ = max

X
tr(X′ẐX) (3.10)

where X is constrained to be composed of partial permutation matrices. Maximizing the
objective function in Equation (3.10) is a challenging task since the feasible set consists of
binary variables which makes the problem combinatorially NP-hard. Moreover, optimiz-
ing with respect to multiple permutation matrices simultaneously increases the difficulty
of the problem. For these reasons, it is common practice to relax some constraints on
the optimization variables, thus providing tractable approaches that solve the multi-view
matching problem approximately but efficiently. Some examples include the semidefinite
relaxation [28], the low-rank relaxation [166] and the spectral relaxation [124, 6]. The Spec-
tral method of [124] treats X as a real matrix instead of a binary matrix and enforces the
columns of X to be orthogonal, resulting in the following optimization problem

max
U′U=Id

tr(U′ẐU) (3.11)

where the notation U instead of X is used to underline that, due to the relaxation, the
optimal U will not be composed of partial permutation matrices. Equation (3.11) is a

generalized Rayleigh problem, whose solution is given by the d leading eigenvectors of Ẑ.

3.2.3 Partial Permutation Procrustes Analysis

In order to obtain proper correspondences from U, each mi × d block is projected onto
the nearest partial permutation matrix, i.e., one must solve a variation of the Permutation
Procrustes Analysis (3.2) formulated in Section 3.1.1, which we will refer to as Partial
Permutation Procrustes Analysis (PPPA).
In order to cater for partial permutation the relaxed constraint is changed to

√n
i=1 pij ≤ 1

(and likewise for the columns). Moreover, a soft thresholding is applied to cij with a small
threshold, otherwise even a negligible cij would justify a pij = 1, which would compel the
solution to be always a total permutation. The resulting linear programming problem is:

maximize

n∑

i=1

n∑

j=1

pijSλ(cij)

subject to pij ≥ 0
n∑

i=1

pij ≤ 1

n∑

j=1

pij ≤ 1.

(3.12)
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which can be seen as an assignment problem and solved by the Hungarian method, as in
the PPA case.

3.3 Our Method

The Spectral method is extremely fast, as multi-view matching is solved in one shot via
spectral decomposition. However, since absolute permutations are computed, the knowledge
of the size of the universe d is required, which is not available in practice. The importance
of a correct estimate of d is also demonstrated experimentally in Section 3.4.1.
We introduce here a novel technique for multi-view matching, dubbed MatchEIG, which
inherits the positive aspects of the Spectral method, namely efficiency and simplicity,
and at the same time it overcomes its drawback, i.e., the need of the correct value of d as
input. The key observation is that relative permutations are independent from d, thus a
method that aims at producing relative permutations instead of absolute ones can get by
without knowing precisely d. Specifically, our method proceeds as follows. First, the top d
eigenvectors of Ẑ are computed and collected in a m× d matrix U, as done by Spectral.
Let D be the diagonal matrix containing the corresponding d eigenvalues λ1, . . . λd. The
matrix

Ẑd = UDU′ (3.13)

is the solution of (3.9) under the spectral relaxation. In this way we get an estimate of
Z – which contains relative permutations, and this is a key difference with respect to the
Spectral method that provides an estimate of X – which contains absolute permutations.
Suppose that we are given an estimate d̂ of the size of the universe such that d̂ ≥ d, and
we compute Ẑ

d̂
accordingly. Since Ẑ has approximately rank d, we expect that the least

d̂− d eigenvalues λd+1, . . . λ
d̂

are smaller than the top d eigenvalues, thus the corresponding

eigenvectors in U have a limited impact on Ẑ
d̂
, in particular: ∥Ẑd − Ẑ

d̂
∥2 = ♣λd+1♣.

Note that, due to the relaxation, the mi ×mj blocks of Ẑd are not guaranteed to be partial
permutation matrices. In order to enforce this constraint we analyze two different strategies.
A first stage common to both consists in setting to zero all the entries smaller than a given
threshold t. We set t = 0.25 in simulations and t = 0.5 in real experiments. A higher
threshold allows for more missing matches, and this is useful in real datasets to model the
presence of isolated keypoints.
Then, a principled approach consists in projecting each block onto the closest partial per-
mutation matrix via PPPA. We call this method MatchEIG-CP, where CP stands for
“closest permutation”. This projection, however, slows down the computing time, so in our
MatchEIG algorithm we use a greedy strategy that, if applied to each block, returns a valid
permutation, although not necessarily the closest one. This strategy is approximate but it
produces no noticeable loss in accuracy, while greatly boosting the speed, as experiments
will demonstrate.
The proposed projection method takes a matrix C as input and returns a (partial) permu-
tation matrix P constructed as follows: search among the non-zero entries of C for the ones
where the maximum over the corresponding row or column is achieved. These entries are
then sorted by decreasing magnitude and examined sequentially starting from the largest el-
ement: let (i, j) be the index of the current entry, and let P be the output matrix, initialized
to 0; then [P]i,j is set to 1 provided that P remains a partial permutation.
The idea behind this procedure is the following. For a given row i, which corresponds to
a keypoint in one view, each entry [C]i,j represents the extent of pairing between keypoint
i and keypoint j, and the greatest element in this row can be regarded as the most likely
correspondence. The same holds for each column. To these putative matches we need to
apply the principle of exclusion, and we do it in a greedy way, as in [136]: the strongest
match wins and inhibits other 1s to be placed in its row or column.
To summarize, MatchEIG proceeds as follows:
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1. Compute the eigenvalue decomposition of matrix Ẑ, keeping only the d̂ largest eigen-
vectors and eigenvalues:

Ẑ
d̂

= UDU′.

2. Set to zero all the entries smaller than a given threshold t.

3. Project each block of Ẑ
d̂

onto the space of permutation matrices using the following
greedy strategy:

a) Compute maximums over rows/columns, which represent putative matches;

b) Sort such maximums by decreasing magnitude;

c) Initialize the output matrix P to zero;

d) Starting from the largest element, analyze sequentially each maximum, indexed
by (i, j), and place a 1 in correspondence of [P]i,j provided that P remains a
partial permutation.

When implementing the algorithm, some properties of MatchEIG can be exploited in order
to reduce the computing time and the memory requirement. In fact, note that, because of
noise, Ẑ

d̂
is full, in general, and its size can become large in practical scenarios. However,

this matrix needs not to be explicitly computed, for only one block is needed at a time.
Specifically, when a view pair (i, j) is considered, the product UiDUj

′ need to be computed,

where Ui denotes the mi× d̂ block in U corresponding to view i and Uj denotes the mj × d̂

block in U corresponding to view j. Therefore we only need to store the matrix UD
1

2

instead of Ẑ
d̂
, and this observation considerably reduces the storage space necessary to run

the algorithm.
Note also that the projection step (either via the PPPA or via the approximate strategy) can
be performed in parallel, since each view pair is independent from the others, thus speeding
up the process.

3.3.1 Computational Complexity

The core of the algorithm is the eigenvalue decomposition of a sparse matrix, which is
computed with a Lanczos method. The method is iterative: every iteration is O(m) [60],
but the number of iterations cannot be bounded by a constant.
The second and final step of our algorithm is the projection onto permutation matrices. For
a matrix of dimension r, computing the nearest permutation via PPPA takes O(r3) time
[21]. As for the approximate strategy, we have to sum the cost for computing the maximums
over rows/columns, which is O(r2), and the cost for sorting such values, which is O(r log(r)),

resulting in O(r2). Since the average dimension of each block in Ẑ is m/n and the number
of blocks is n2, the total cost for the projection step is O(m3/n) for MatchEIG-CP and
O(m2) for MatchEIG.

3.3.2 Numerical Example

For a better comprehension of the proposed method, we report a simple numerical example,
showing also the intermediate results of the algorithm. The analyzed situation is illustrated
in Figure 3.2, where a total number of d = 5 points are seen in n = 3 views. Please note
that views 1 and 2 see only four points.
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View 1

View 2

View 3

Figure 3.2: Example of multi-view matching. A total number of d = 5 points are seen in n = 3
views. Please note that not all the points are seen in all views.

The ground-truth matrix Xgt of absolute permutations, that describes the correspondences
between the keypoints in each view and those in the universe, is:

Xgt =

⋃
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⨄

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

⋂
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.14)

which corresponds to the ground-truth matrix of relative permutations:

Zgt =

⋃
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⨄

1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1

⋂
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.15)
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Simulating errors in the pairwise correspondences, we assume that the noisy input matrix is

Ẑ =

⋃
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⨄

1 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1

⋂
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.16)

where wrong entries are highlighted in red. Following the procedure described in Section
3.3, we first determine the eigenvalue decomposition of Ẑ, obtaining matrix U:

U =

⋃
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⨄

0 0.60 0 0 0
0.58 0 0 0 0

0 0 0.56 0.44 0
0 0 0 0.394 0

0.58 0 0 0 0
0 0 0.39 0.31 0
0 0 0 0.56 0
0 0.60 0 0 0.37
0 0.37 0 0 0
0 0.37 0 0 0.60
0 0 0 0.39 0

0.58 0 0 0 0
0 0 0.39 0.31 0

⋂
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.17)

Then, the product UDU′ is computed:

UDU′ =

⋃
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⨄

1.17 0 0 0 0 0 0 0.72 0.95 0.22 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1.21 0 0 0.85 0 0 0 0 0 0 0.85
0 0 0 0.60 0 0 0.85 0 0 0 0.60 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 0.85 0 0 0.60 0 0 0 0 0 0 0.60
0 0 0 0.85 0 0 1.21 0 0 0 0.85 0 0

0.72 0 0 0 0 0 0 1.17 0.22 0.95 0 0 0
0.95 0 0 0 0 0 0 0.22 0.95 0 0 0 0
0.22 0 0 0 0 0 0 0.95 0 0.95 0 0 0

0 0 0 0.604 0 0 0.85 0 0 0 0.60 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 0.85 0 0 0.60 0 0 0 0 0 0 0.60

⋂
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.18)
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and, after setting to zero all the entries smaller that 0.25, the desired output matrix Z is
obtained by projecting each block of UDU′ onto the space of permutation matrices:

Z =

⋃
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⨄

1 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1

⋂
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.19)

Please note that in the noisy input matrix Ẑ three matches are incorrect, whereas the output
of our algorithm has only one incorrect match. The entries of the recovered matrix Z that
differs from the ones of the input matrix Ẑ are highlighted in red.

3.4 Experiments

In order to evaluate the performance of the proposed method, we ran experiments on both
synthetic and real datasets. In the synthetic experiments, performances have been measured
in terms of precision (number of correct matches returned divided by the number of matches
returned) and recall (number of correct matches returned divided by the number of correct
matches that should have been returned). In order to provide a single figure of merit we
computed the F-score (twice the product of precision and recall divided by their sum),
which is a measure of accuracy and reaches its best value at 1 and worst at 0. In the real
experiments the number of matches that should have been returned is not known, hence
only the precision can be computed.
Results in terms of accuracy (or precision) and computing time are compared with methods
which, as ours, first compute pairwise matches and then jointly update them without involv-
ing the keypoints, namely MatchALS [166] and Spectral [124]. The MatchALS code
is available online1 and the Spectral code is courtesy of the authors of [166]. The method
described in [28] has already been shown to have accuracy comparable with [166] with a
much higher computing time. For this reason we did not consider it in the experiments. All
the algorithms are implemented in Matlab and tested on a PC with an Intel Core i5-4200M
CPU @ 2.50GHz and 8GB RAM. Our implementation of MatchEIG is available on the
web2.

3.4.1 Synthetic Experiments

For the synthetic case, the size of the universe was set to d = 100, while the number of
views varied from n = 10 to n = 50. The observation ratio ro, i.e., the probability that
a keypoint is seen in a view, decreased from 1 (that corresponds to total permutations) to
0.2. After generating ground-truth absolute permutations, pairwise matches were computed
from Equation (3.6), and random errors were added to relative permutations by switching
two matches, removing true matches or adding false ones. In the experiments the input
error rate re, i.e., the ratio of mismatches, varied from 0 to 0.8. For each configuration the
test was run 10 times and the average F-score was evaluated.

1 https://fling.seas.upenn.edu/ xiaowz/dynamic/wordpress/matching/
2 http://www.diegm.uniud.it/fusiello/demo/mvm/
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(a) MatchEIG

(b) MatchEIG-CP

(c) MatchALS [166]

(d) Spectral [124]

Figure 3.3: F-score for the competing methods (the higher the better). In the left column, the
number of views n and the input error rate re are varying, while the observation ratio ro is constant
and equal to 0.4. In the right column, ro and re are varying, while n = 30. In all the experiments,
the size of the universe d is set to 100.
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Figure 3.4: Average computing time against size of the universe, observation ratio and number of
views. MatchEIG and Spectral [124] show similar performance, while MatchALS [166] is the
slowest algorithm.

Synthetic experiments were run providing the true rank (equal to the size of the universe d)
to all the methods (MatchALS uses it to compute the parameter k = 2d, as suggested in
[166]). Moreover, for MatchALS we fixed the number of possible iterations to 100 and we
chose the values proposed by the authors for all the other parameters.
Results in terms of accuracy are illustrated in Figure 3.3. The analyzed methods show similar
behaviors, achieving high accuracy rates even in the presence of high noise contamination,
especially when the number of views is large. Please note that there is no loss of accuracy
when using the approximated projection onto permutations (MatchEIG) with respect to
the exact closest permutation, as done by MatchEIG-CP.
We also evaluated the computing time, varying the size of the universe, the observation
ratio and the number of views. Figure 3.4 shows that MatchEIG and Spectral are the
fastest algorithms, while MatchALS is on average an order of magnitude slower. Compar-
ing MatchEIG and MatchEIG-CP, it is clear that the PPPA is computationally much
more expensive than the approximate procedure. Since the accuracy provided by the two
projection algorithms is the same, as demonstrated by Figure 3.3, only the fastest version
(MatchEIG) will be used in real experiments.

Sensitivity to Rank Estimate

All the evaluated methods require as input an estimate of the size of the universe, which
corresponds to the rank of the ground-truth matrix Z. However, when the input matrix
Ẑ is noisy, estimating this rank can be difficult [166], hence the sensitivity of a method

to the estimated rank d̂ becomes crucial. As demonstrated in Figure 3.5, MatchEIG and
MatchALS give good results whenever d̂ ≥ d. The Spectral method, instead, is extremely
sensitive to this parameter and performs well only if d̂ = d.
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Figure 3.5: F-score versus estimated size of the universe d̂. The true size of universe is d = 100,
n = 30, ro = 0.6, and re = 0.1.

3.4.2 Real Experiments

For evaluating the applicability of the proposed method in real scenarios, we tested MatchEIG,
MatchALS and Spectral on popular benchmark datasets (Graffiti, EPFL [142] and Mid-
dlebury [137] datasets) with up to 363 images. To generate the input to the algorithms,
a set of keypoints was first extracted in each image with SIFT [106] using the VLFeat
library3. Subsequently, correspondences between pairs of images were established using
nearest neighbor and ratio test as in [106] and refined using RANSAC [52]. Finally, key-
points with matches in less than two images were removed, since they are not significant in
joint matching.
In these experiments the universe set is not known, so we estimated its dimension as twice
the average number of keypoints present in each image, and provided all the methods with
this estimate. For the same reason only the precision value is reported, together with the
absolute number of correct matches returned, that can give some relative indication on
the recall. For MatchALS, we set the parameter m′/m to 0.7 (see [166]) to take into
consideration the presence of isolated keypoints in real images, as suggested by the authors.
The maximum number of iterations was fixed to 100 and the default values were used for
all the other parameters.
Matches are considered correct if the corresponding point is located within a given distance
threshold from what is predicted. In the case of the Graffiti datasets the ground-truth
homographies allow to predict the position of the point, whereas for EPFL and Middlebury
datasets the ground-truth cameras allow to predict the epipolar line where the corresponding
point should lie. In both cases the threshold (in pixels) has been set equal to 0.01 times the
image diagonal.

Graffiti Dataset

The Graffiti datasets4 consist of eight sequences with six images each, showing different
structured and textured planar scenes. Each dataset is characterized by different image
transformations, e.g., change of viewpoint, zoom, blur, illumination and rotation.
Table 3.1 shows the performances of joint matching on these datasets. The input error is
already small, and all the methods achieve a precision higher than 95%, with a comparable
number of correct matches returned, confirming the results of the synthetic experiments.
This dataset is not particularly challenging, as it consists of few images with little differences
in visual content among them; however it is widely used for testing multi-view matching
algorithms, therefore it has been included here. A consideration can be made regarding
the computing time, with MatchEIG being on average 5 times and 1.5 times faster than
MatchALS and Spectral, respectively.

3 http://www.vlfeat.org/
4 http://www.robots.ox.ac.uk/ vgg/data/data-aff.html
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Input MatchEIG MatchALS [166] Spectral [124]

Dataset n d̂ PR [%] PR [%] CM T [s] PR [%] CM T [s] PR [%] CM T [s]

Graffiti 6 382 93.85 95.63 678 12 96.02 747 91 96.24 614 24

Boat 6 578 98.75 99.03 1731 35 98.63 1154 209 98.66 1544 45

Bark 6 684 99.71 99.77 1323 58 100.00 914 307 99.67 1225 77

Ubc 6 891 99.36 99.66 3828 139 99.67 3030 681 99.63 3533 207

Trees 6 1015 98.48 98.46 2885 184 98.73 2484 971 98.51 2719 255

Light 6 1113 98.67 99.39 4105 336 99.43 3287 1258 98.95 2253 416

Wall 6 1236 99.40 99.45 3253 341 99.38 2871 1644 99.57 2760 456

Bikes 6 1759 99.12 99.39 4866 954 99.53 4228 3828 99.26 4149 1298

Table 3.1: Results on the Graffiti dataset. n is the number of images, PR is the precision, CM is
the number of correct matches returned, T is the time expressed in seconds.

Input MatchEIG MatchALS [166] Spectral [124]

Dataset n d̂ PR [%] PR [%] CM T [m] PR [%] CM T [m] PR [%] CM T [m]

Herz-Jesu-P8 8 386 94.40 95.08 4545 < 1 94.87 4047 2 94.41 3987 < 1

Entry-P10 10 432 75.11 79.24 5978 5 74.17 5726 4 76.10 6236 4

Fountain-P11 11 374 94.35 94.70 6988 3 94.15 6717 3 91.92 7849 3

Castle-P19 19 314 70.29 75.21 5109 3 66.22 7014 9 34.41 7605 3

Herz-Jesu-P25 25 517 90.20 93.45 25120 7 89.23 32528 41 47.86 32876 8

Castle-P30 30 445 72.32 81.01 16754 8 68.92 24844 57 34.67 25884 10

Temple Ring 47 396 73.72 88.25 18426 6 55.91 40096 260 28.99 46432 7

Dino Ring 48 340 75.37 92.11 23406 2 66.66 44215 94 34.49 48979 3

Temple 312 689 55.50 89.06 3.8 ·105 153 – – – 14.56 1.6 ·106 228

Dino 363 493 63.48 95.66 8.6 ·105 88 – – – 18.97 2.2 ·106 111

Table 3.2: Results on the EPFL [142] and Middlebury datasets [137]. n is the number of images,
PR is the precision, CM is the number of correct matches returned, T is the time expressed in
minutes.
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EPFL Dense Multi-View Stereo Test Images

A more challenging benchmark are the EPFL dense multi-view stereo test images [142].
These are six image sets representing outdoor scenes, composed of a number of images
that varies from 8 to 30. Performing multi-view matching on the Entry-P10 and Castle-P*
sequences is particularly difficult due to the presence of repetitive structures. For practical
reasons, we rescaled images to 20% of the original size.
As can be seen in the upper part of Table 3.2, the quality of the input matches is lower than
that on the Graffiti datasets and it can be significantly improved by joint matching. On
these datasets, MatchEIG outperforms the other algorithms, both in terms of precision
and computing time.
Note that on some sequences Spectral achieves a very low precision, probably due to
the fact that the chosen value of d̂ is not an accurate estimate of d. Figure 3.6 shows a
representative example of the results obtained by the competing methods. With respect to
pairwise matching, joint matching reduces the number of false matches and complete the
matches with new ones retrieved indirectly via loop closure.

(a) Input (b) MatchALS

(c) MatchEIG (d) Spectral

Figure 3.6: Representation of the matches between two images of the Castle-P19 set [142]. Wrong
matches are drawn in red.

Middlebury Multi-View Stereo Dataset

Multi-view matching often needs to be applied on sets of hundreds of images. Therefore
we selected the two largest sets among the Middlebury multi-view stereo datasets [137]
to evaluate the practical applicability of MatchEIG, MatchALS and Spectral. The
Temple and the Dino sets consist of 312 and 363 views respectively, sampled on a hemisphere.
We also considered the smaller Dino Ring and Temple Ring sets, that contain approximately
50 views each, sampled on a ring around the object.
Results are reported at the bottom of Table 3.2. In these cases, the initial pairwise match-
ing provides a noisy input, upon which only MatchEIG is able to improve. In fact, on
the smaller datasets, MatchALS and Spectral produced results worse than the input
(MatchALS taking a very long time), while on larger sets MatchALS did not achieve a
solution: due to a memory request that exceeded the available space it aborted prematurely.
Figure 3.7 gives a visual demonstration of the improvements that can be achieved through
MatchEIG with respect to pairwise matching.
The precision/recall trade-off in MatchEIG is affected by the threshold t, which controls
the degree of “partiality” of the permutations. A small t yields more matches, but with
low precision. On the other hand, a high t produces few but extremely reliable matches.
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(a) Input (b) MatchEIG

(c) Input (d) MatchEIG

Figure 3.7: Representation of the matches between two images of the Dino and Temple sets [137].
Wrong matches are drawn in red.

Figure 3.8 shows the precision vs CM curve (recall is not available) on a typical dataset:
MatchALS has an almost constant precision for a wide range of the controlling parameter
(m′/m), whereas in the left part of the curve MatchEIG has a superior precision, and this
is where we suggest our algorithm should be used. We tuned the value of t empirically so
as to be in this part of the curve in all the considered datasets. This choice is motivated by
applications: with respect to the null hypothesis that a match is an inlier, a Type I error
(rejecting an inlier) is less serious than a Type II error (not rejecting an outlier) when using
matches to compute geometrical models.
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Figure 3.8: Precision vs CM curve on the Castle-P19 set [142].

3.5 Conclusion

In this chapter we presented a closed-form solution to (joint) multi-view matching, based on
a spectral decomposition. MatchEIG handles realistic situations, such as partial permuta-
tions and image sets of unprecedented size in the literature. While experiments on simulated
data – and one easy real dataset – only highlight the superior computational efficiency of
the method, with the accuracy being on a par with the others, on challenging real datasets
MatchEIG outperforms the competing methods both in speed and precision.
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Applications for a practical multi-view matching are countless, which motivates this study
as well as future developments. Chapter 4 will show how the proposed algorithm can be
profitably used in the point cloud registration process.
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Chapter 4

Closest Point Variation of the
Generalized Procrustes Analysis

The aim of this chapter is to extend the Generalized Procrustes Analysis (GPA) to the case
in which correspondences among matrix elements are unknown. In particular, we embed the
matching step of Chapter 3 inside the GPA iterative scheme, obtaining a more generalized
formulation that can be profitably applied to the point cloud registration problem. Moreover,
we show that our method generalizes the well known Iterative Closest Point (ICP) to the
case of multiple point sets.

4.1 Introduction

Procrustes models presented in the previous chapters allow to compute transformations only
between two sets. In order to simultaneously consider m > 2 matrix configurations, one must
resort to the so called Generalized Procrustes Analysis (GPA), proposed in [66, 61]. In this
case, all the matrices are independently and simultaneously rotated, scaled and translated
so to satisfy a prefixed objective function. Figure 4.1 gives a geometric interpretation of the
problem. Given m matrices A1, . . . , Am, each one containing the coordinates of the same
p points in Rk defined in m different reference systems, GPA retrieves for each matrix Ai

the similarity transformation that allows to obtain the best alignment with respect to all
the other ones or, equivalently, the transformation that minimizes the residual with respect
to the unknown matrix Z, containing the true coordinates of the p points defined into a
common mean coordinate frame.

A1 A2

Am

Z 

A1p

A2p

Amp

{R1, t1, c1}

{R2, t2, c2}

{Rm, tm, cm}

Figure 4.1: The Generalized Procrustes Analysis concept.

In the last years, GPA has been applied to several fields, including photogrammetry and laser
scanning. In [39] , e.g., it is used for the alignment of different 3D models deriving from pairs
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of images, whereas in [12] it is adopted to register several point clouds acquired by a laser
scanner, relying on manually selected corresponding tie points. A main limitation emerges
from these works: to apply the GPA solution, correspondences among points must be known
in advance. This restriction has been partially overcome in [151], that takes advantage of
the GPA to define an iterative closest point algorithm that can register multiple views in
a simultaneous way. To broaden the GPA application fields, avoiding the manual search
of the point matches, it is therefore necessary to introduce inside the GPA framework the
automatically estimation of the correspondences.

4.1.1 Contribution

In this chapter we first review the GPA model and the solutions that can be found in
the literature (Section 4.2). Then, in Section 4.3, we describe an extension of the GPA,
that we call Closest Point Generalized Procrustes Analysis (CP-GPA), that embeds the
correspondence estimation among point sets inside the classical framework of the GPA. The
well known Iterative Closest Point (ICP) algorithm [16] is also described as a special case
of the CP-GPA. Finally, in Section 4.4 we show some preliminary results of our method to
the registration of multiple point clouds.

4.2 Original GPA Solutions

Generalized Procrustes Analysis allows to simultaneously align m matrices A1, . . . , Am,
which contain the same set of p points, whose coordinates are expressed in m different
k-dimensional reference systems, so as to minimize the cost function:

F =

m∑

i<j

//Ap
i −Ap

j

//

= tr

m∑

i<j

[
(ciAiRi + jti)−

(
cjAjRj + jtj

)]
′
[
(ciAiRi + jti)−

(
cjAjRj + jtj

)]
(4.1)

where Ap
i = ciAiRi + jti represents the transformed matrix Ai, while ci, ti and Ri (i =

1 . . . m) are the unknown parameters of the similarity transformation. The solution can be
retrieved in two different ways, described in the following.
The original formulation and the first solution of (4.1) are due to Gower [66], based on
a iterative scheme previously proposed in [92]. According to this approach, the minimum
condition is reached through the following algorithm:

1. Solve for all the translations by computing the barycenter of the matrices Ai (i =

1 . . . m), multiplying them by I− jj′

p
;

2. Solve for the rotations applying the following iterative method, based on consecutive

OPA solutions (Section 2.3.1). At each iteration t, rotate every Ap
i R

(t−1)
i matrix with

respect to the sum of the remaining ones:

a) Matrix Ap
1R

(t−1)
1 is rotated towards

m√
j=2

Ap
j R

(t−1)
j , so to obtain Ap

1R
(t)
1

b) Matrix Ap
2R

(t−1)
2 is rotated towards Ap

1R
(t)
1 +

m√
j=3

Ap
j R

(t−1)
j , so to obtain Ap

2R
(t)
2

c) Matrix Ap
mR

(t−1)
m is rotated towards

m−1√
j=2

Ap
j R

(t)
j , so to obtain Ap

mR
(t)
m

d) Iterate from step a) until internal convergence.
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3. Solve for the scale factors, computing the correlation matrix of the vector vec (Ap
i ),

with f the eigenvector corresponding to the largest eigenvalue. The scale factor ci is
given by:

ci =

∏
⨄
⋃

∏
∐

m∑

j=1

//Ap
j

//2

∫
⎠ / ∥Ap

i ∥
2

⎫
⎬
⋂

1
2

fi (4.2)

where fi is the i-th element of eigenvector f .

4. Iterate from step 2. until global convergence.

Please note that, at each step of the procedure Ap
i is updated, until the final value reached

at convergence. At the end it is possible to determine the so called centroid of the matrices,
given by the arithmetic mean of all the sets Ap

i :

C =
1

m

m∑

i=1

Ap
i . (4.3)

Figure 4.2 offers a graphical description of the GPA solution and of the meaning of the
centroid. In this example there are three sets Ai, each one represented by a quadrilateral.
Figure 4.2(a) shows the initial conditions, while Figure 4.2(b) illustrates the centering effect:
the sets are overlapped in correspondence of their barycenter. Figure 4.2(c) emphasizes a
step of the rotation and scaling sequence maintaining unchanged the common barycenter
until the satisfaction of the prefixed minimum condition. Figure 4.2(d) shows in blue the
centroid, that is the mean shape of the final transformed sets.

(a) Initial configuration (b) Centering

(c) Rotation and scaling (d) Centroid

Figure 4.2: Visualization of the GPA procedure.

An alternative and more efficient solution of the GPA problem is described in [34]. Instead
of searching the transformation parameters ci, ti and Ri that minimize Equation (4.1), the
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cost function is rewritten in terms of the centroid, expressed by (4.2). More in detail, the
author starts from the proposition:

Proposition 4.1. [34] Given m points in a k-dimensional space, the sum of the squared
distances among the m points is equal to m times the sum of the squared distances among
the m points and their centroid.

That is:
m∑

i<j

(xi − xj) ′ (xi − xj) = m

m∑

i

(c− xi)
′ (c− xi) (4.4)

where xi, xj represent the generic column vectors containing the coordinates of the m points

and c =
1

m

m√
i=1

xi is the centroid.

Proof. The first term of (4.4) can be expressed also as:

m∑

i<j

(xi − xj) ′ (xi − xj) =

m∑

i<j

(xi
′xi + xj

′xj)− 2

m∑

i<j

xi
′xj = (m− 1)

m∑

i

xi
′xi − 2

m∑

i<j

xi
′xj .

The right-hand term of (4.4) can instead be rewritten as:

m
m∑

i

(c− xi)
′ (c− xi) =m

m∑

i

c′c + m
m∑

i

xi
′xi − 2mc′

m∑

i

xi

=

m∑

j

xj
′

m∑

i

xi + m

m∑

i

xi
′xi − 2

m∑

i

xi
′

m∑

i

xi

from which one obtains

m

m∑

i

(c− xi)
′ (c− xi) =2

m∑

i<j

xi
′xj + (1 + m)

m∑

i

xi
′xi − 2

∏
∐

m∑

i

xi
′xi + 2

m∑

i<j

xi
′xj

∫
⎠

= (m− 1)

m∑

i

xi
′xi − 2

m∑

i<j

xi
′xj

that completes the proof.

The proposition can be extended to the case of m matrices, each one containing p points in
Rk. The formulation is equivalent when applied to matrices instead of vectors. This allows
us to write:

m∑

i<j

//Ap
i −Ap

j

//2
= m

m∑

i

∥Ap
i −C∥2

. (4.5)

So, the objective function (4.1) becomes:

F = m

m∑

i

∥Ap
i −C∥2

= m

m∑

i

tr (Ap
i −C) ′ (Ap

i −C). (4.6)

The GPA problem can therefore be solved through the following iterative scheme, that leads
to significant advantages in terms of simplicity and efficiency with respect to the previously
described algorithm.

1. For each matrix Ai, compute via EOPA (Section 2.3.2) the similarity transformation
that best aligns matrix Ai to the centroid C, obtaining Ap

i = ciAiRi + jti;

2. Update the centroid C with Equation (4.3);
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3. Iterate from step 1. until convergence, i.e., until the stabilization of the centroid C.

4.2.1 Weighted GPA with Missing Points

GPA can be applied also to the case in which the m matrices do not contain all p points,
i.e., one or more rows are missing from each matrix.
The problem was completely solved in [34], where it is demonstrated that Proposition 4.1
can be generalized premultiplying each Ap

i by a diagonal matrix Di, that is a matrix having
0 in correspondence of the missing values and 1 otherwise, obtaining:

m∑

i=1

tr (Ap
i −C) ′Di (Ap

i −C) =

m∑

i<j

tr
(
Ap

i −Ap
j

)
′DiDj

(
m∑

k=1

Dk

⎜−1 (
Ap

i −Ap
j

)
(4.7)

where:

C =

(
m∑

k=1

Dk

⎜−1 m∑

i=1

DiA
p
i . (4.8)

Thanks to this formulation, sets with missing points can be easily managed. In fact, Equa-
tion (4.7) leads to simply substitute EOPA in step 1. of the previous algorithm with its
weighted variant, i.e., WEOPA (Section 2.3.3).
Moreover, the binary matrix Di can be replaced by a weight matrix, having 0 in correspon-
dence of the missing points and real values otherwise. This allows to differently weight each
point of each set.
Figure 4.3 geometrically explains the GPA solution with missing values. The complete point
sets would represent three hexagons. In two cases the required number of points is missing
and the figures become a rectangle and a trapezium, respectively. The GPA is carried out
according to the corresponding vertices of the figures.

A1
A2

A3

Z 

Figure 4.3: Geometric representation of GPA with missing points.
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4.3 Closest Point Generalized Procrustes Analysis

As already mentioned, previous solutions assume that the correspondences between matrix
elements are known in advanced. However, this requirement is usually hardly satisfied and a
manual identification of the correspondences is often unfeasible. It appears therefore useful
to extend the GPA solution to the case in which correspondences are missing, embedding
the matching step within the GPA iterative process.
The general scheme of this, called Closest Point Generalized Procrustes Analysis (CP-GPA),
is the following:

1. Heuristically establish tentative correspondences among points in different views;

2. Compute the centroid using Equation (4.8);

3. Align each view to the centroid using WEOPA (Section 2.3.3);

4. Iterate from step 1. until convergence.

Step 1. can be instantiated with any heuristic, but usually it is one informed by the “closest
point” relation, defined as follows: given two sets A and B, two points a ∈ A and b ∈ B are
in the relation cp(a, b) iff b has the shortest distance (a notion of distance must be defined,
usually the Euclidean one) to a among all the points in B. Please note that cp is not
symmetric (cp(a, b) ̸= cp(b, a)) and not transitive (cp(a, b) ∧ cp(b, c) ; cp(a, c)).
Better results are usually obtained by considering the “mutual closest-point” symmetric
relation, that can be formally defined as cp∗ = cp∩ cp−1 (this is also the greatest symmetric
subset of cp).
When working with multiple point clouds, the problem is how to extend pairwise matches to
multiple-view correspondences. A straightforward approach is taking the transitive closure
of cp, cp∗. The points in the relation constitute a track, in the same way as (a, b) with
cp∗(a, b) is a match.
Another way to define the tracks is the following: consider the undirected graph where
points are the nodes and edges represent matches; a track is a connected component of that
graph.
The heuristic we propose for step 1. include our multi-view matching algorithm (Chapter 3)
and the subsequent detection of closed-loop consistency violation: if vertices of the afore-
mentioned graph are labeled with the view the points belong to, an inconsistency arises
when in a track a label occurs more than once.
In summary, our heuristic for step 1. of CP-GPA is the following:

a) Compute mutual closest-points between pairs of views;

b) Apply the multi-view matching algorithm MatchEIG, presented in Chapter 3;

c) Connect point matching into tracks and discard the inconsistent ones.

In [151] a different heuristic have been described, which is very fast but does not not guar-
antee closed-loop consistency.

As a final remark, it is interesting to note that CP-GPA does not only extend the GPA,
but it is also a generalization of the Iterative Closest Point (ICP) algorithm [16], the most
common solution in literature to align two point clouds. ICP can be summarized as follows:

1. Compute mutual closest-points between the two views and pretend these are corre-
sponding points;

2. Align the two views using EOPA (Section 2.3.2);

3. Iterate from step 1. until convergence.
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This is CP-GPA restricted to two views and with a simple mutual closest-point heuristic in
step 1.
Please note that in this case it is not needed to resort to the WEOPA, unless one want to
assign different weights to each point. In fact, since only two views are involved, correspon-
dences are bijective and one do not have to manage missing rows in the two matrices of
points.

(a) Initial configuration (b) CP-GPA

(c) Cross sections

Figure 4.4: Results of the point cloud registration via CP-GPA. Initial configuration is obtained by
perturbing the ground-truth motions by a rotation with random axis and angle uniformly distributed
over [0, 5◦].
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(a) Initial configuration (b) CP-GPA

(c) Cross sections

Figure 4.5: Results of the point cloud registration via CP-GPA. Initial configuration is obtained by
perturbing the ground-truth motions by a rotation with random axis and angle uniformly distributed
over [0, 20◦].
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4.4 Point Cloud Registration via CP-GPA: Preliminary
Results

In this section we present some preliminary results of the application of CP-GPA to the
registration of multiple point clouds. In particular, we use the Bunny dataset from Stanford
repository1 which contain 10 point sets. Point clouds were initially randomly downsampled,
in order to have approximately 1000 points per views. We perturbed the available ground-
truth motions by a rotation with random axis and angle uniformly distributed over [0, α],
with α = ¶5◦, ..., 20◦♦.
In all cases, CP-GPA managed to register the views. For results visualization purposes, we
report in Figure 4.4 and 4.5 the alignments obtained with a noise of α = 5◦ and α = 20◦,
respectively.

4.5 Conclusion

In this chapter, we extended the GPA formulation to the case in which correspondences
among matrix elements are unknown. In particular, we embedded the multi-view matching
algorithm inside the GPA iterative scheme, developing a procedure that we called Closest
Point Generalized Procrustes Analysis (CP-GPA). Moreover, we demonstrated that our
method generalizes ICP to the case of multiple point clouds registration. Some preliminary
experiments on a simple dataset were proposed, showing promising results. However, a more
accurate evaluation of the developed method will be performed in the future, in order to
assess the robustness of CP-GPA in many different scenarios.

1http://graphics.stanford.edu/data/3Dscanrep/
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Chapter 5

Affine Procrustes Analysis

In this chapter we propose a variation of the classical Extended Orthogonal Procrustes Anal-
ysis, that allows to compute the transformation between two matrices composed by both
points and vectors. The method is called Affine Extended Orthogonal Procrustes Analysis
(Affine-EOPA), because it actually extends the space where EOPA can be applied from
Euclidean (points) to affine (points and vectors).
Motivated by a Virtual Trial Assembly application, we derive from Affine-EOPA a new
model which is capable of catering for undetermined motion components, i.e., can retrieve
the best transformation among corresponding matrix elements under the condition that
the position of each plane is undetermined along its normal. The case study that will be
described in this chapter is the VTA of the elements of a complex steel structure, the so
called dogbones of Vessel in New York. Taking into account the geometrical characteristics
of the structural elements under study, the developed procedure allows to easily verify the
parallelism condition of the flange planes and the satisfaction of the tolerances on the bolt
hole positions. In this way, possible manufacturing defects are effectively and automatically
identified, together with the relative corrections that have to be made.

5.1 Introduction

As extensively discussed in the previous chapters, Procrustes Analysis can be applied in
several fields, ranging from geoinformatics to photogrammetry and computer vision, to solve
tasks such as the coordinates transformation between different reference systems, the exterior
orientation of an image or the registration of multiple point clouds. In this chapter we will
introduce a variation of EOPA that finds application in civil engineering, and in particular
in the Virtual Trial Assembly (VTA) of a steel structure [24].
In the field of steel constructions it is often necessary to verify in the factory the geometric
congruence of the manufactured elements with respect to the nominal values and whether all
the connecting points of the various elements guarantee the final assembly of the building,
in compliance with the required tolerances.
As a matter of fact, considering the performances in the carpentry field and in mechanical
works, there always remains a residual between the size and shape of a workpiece and
its technical specifications. Therefore, once the composing parts are manufactured, it is
necessary to proceed with their geometric control. This is carried out by using different
instruments according to the desired accuracy: metrology-grade laser trackers in the case of
very high precision measurements, topographic total stations otherwise.
The compliance of the single elements, however, does not guarantee the assemblability of
the whole structure: small errors below the tolerance can accumulate in the assembling and
result in an inadmissible error at some stage. It is therefore necessary to proceed with a
trial assembly, which can be physical or virtual.
It often happens that it is not possible to perform a complete Physical Trial Assembly
(PTA) of the various elements in the manufacturing site, due to the large dimensions of
some building structures, and also because of time and cost reasons. It becomes therefore
crucial to resort to a Virtual Trial Assembly, that analyzes the discrepancies between the
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workpieces and their nominal parameters and also simulate the assembly of the structural
parts on a computer, thereby reducing time and costs. If this process detects some problems,
within the VTA it is possible to define shape and dimensions of the corrective elements, by
means of which the assembly of the structure can be achieved.
Once the VTA has been successfully carried out, the actual position of the elements during
the construction phases can be predicted by adding the nominal deformation values, com-
puted through a FEM (Finite Element Method) model, to the coordinates computed by the
VTA. This is a necessary step to compare the predicted positions with the ones that can be
subsequently measured on site, since the VTA alone does not consider the deformations to
which the structure is subjected.

5.1.1 Contribution

Procrustes models, and in particular the use of the Generalized Procrustes Analysis, have
already been proposed in the literature [24] for the global matching of all the manufactured
structural elements of the New Safe Confinement of the Chernobyl nuclear reactor. In
this chapter, instead, we present an affine variation of the Extended Orthogonal Procrustes
Analysis that allows to compute the trasformation between two matrices composed by both
points and vectors. The method, that we call Affine-EOPA, is presented in Section 5.2,
and applied in Section 5.3 to perform the VTA of Vessel, a complex steel structure in New
York. After describing the characteristics of Vessel (Section 5.4), we discuss the differences
between EOPA and Affine-EOPA (Section 5.4.1), showing with the experimental validation
presented in Section 5.4.3 that, for the case under study, the novel Affine-EOPA is more
suitable to perform the VTA than the classical EOPA.

5.2 Affine Extended Orthogonal Procrustes Analysis
(Affine-EOPA)

Procrustes Analysis has been described in Chapter 2, illustrating the different models that
have been proposed in the literature to perform transformations among corresponding points
belonging to a generic k-dimensional Euclidean space, in order to satisfy their maximum
agreement. Let us consider a matrix A (origin) and a matrix B (destination), containing
the coordinates of p points in Rk. Classical EOPA model (Section 2.3.2) allows to directly
estimate the unknown rotation matrix R, the translation vector t and a global scale factor
c for which the residual:

∥B− cAR − jt′∥2
F (5.1)

is minimum, under the orthogonality condition: R′R = RR′ = I.
The space where the EOPA operates is a Euclidean one, whose elements are points. We can
straightforward extend this to an affine space, where points and vectors are represented,
each one by Rk.
If matrix A is partitioned into points Apt and vectors An, and B accordingly into Bpt and
Bn, it is easy to see that the rotation is computed as usual (see Section 2.3.2) by

R = V diag (1, 1, det(VW′)) W′ (5.2)

where S = VDsW′ is the Singular Value Decomposition of

S = [AptJ, An]′[BptJ, Bn] (5.3)

and J =

(
I− jj′

p

)
is the usual centering matrix, whose role is to translate the matrix

values to which it is applied to the corresponding barycenter. Please note that points are
“centered”, whereas normals are not. The translation vector instead depends only on points
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(not on vectors):
t = (Bpt − cAptR) ′j/p. (5.4)

This model will be henceforth dubbed Affine Extended Orthogonal Procrustes Analysis
(Affine-EOPA).

5.2.1 Affine-EOPA with Undetermined Motion Components
(Affine-EOPA∗)

Let us now assume that we can partition the point set into planes (at least two) and that
each plane can slide along its normal without this influencing the EOPA result. In other
words, the position of each plane is undetermined along its normal. Point coordinates shall
be used in the Affine-EOPA in such a way they do not pose any constraint on t along the
normal of the plane they belong to. The Affine-EOPA solution can be then constructed as
follows:

1. Rotation is computed only from plane normals;

2. For each plane, the formula for t (5.4) is projected onto the plane itself, therefore
cancelling any component along the normal.

Hence, rotation is computed from the SVD of

S = A′
nBn. (5.5)

As for the translation, let us consider plane i and let ni be its normal. Moreover, let
Ni = I−nini

′ be the projector onto the plane orthogonal to ni. By applying the projection
to Equation (5.4) we get:

Nit = Ni

(
Bi

pt −Ai
ptR

)
′j/p. (5.6)

This is a system of three equations in the unknown t. Since rank(Ni) = 2 by construction,
only two are independent. With at least two planes we can stack enough independent
equations and solve for t the resulting least squares system.
In the remaining part of this chapter, we will refer to Affine-EOPA with undetermined
motion components as Affine-EOPA∗.
For a better comprehension of the proposed model, we now give a simple geometric inter-
pretation of the searched solution. In the analyzed problem points belong to planes and we
want to minimize the distance between destination points and the projection of the origin
points on the destination plane, previously rotated through matrix R. The situation is
illustrated in Figure 5.1.
Let pA = (xA, yA, zA)′ and pB = (xB , yB , zB)′ be the origin and destination point, re-
spectively. Let also prt = (xrt, yrt, zrt)′ be the transformed coordinates of the origin point,
i.e.,

prt = R′pA + t (5.7)

where t = (tx, ty, tz)′ is the unknown translation vector and R is the rotation matrix com-
puted with (5.2). Finally, let pn = (xn, yn, zn)′ be the projection of prt onto the destination
plane, defined by the following equation

n1x + n2y + n3z + s = 0 (5.8)

with n = (n1, n2, n3)′ normal vector, s = −(n1xg + n2yg + n3zg) constant term and
(xg, yg, zg) coordinates of a generic point belonging to the plane. The distance to be mini-
mized is therefore

d(pn,pB) = ∥pn − pB∥2
2. (5.9)

One can easily verify that the coordinates of the projected point pn can be expressed in the
form

pn = Nprt − sn (5.10)
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Destination
Plane

Transformed origin point
prt = (xrt,yrt,zrt)'

Destination point
pB = (xB,yB,zB)'

Projected point
pn = (xn,yn,zn)'

Generic reference
system

X

Y
Z

Normal vector
n = (n1,n2,n3)'

||pn - pB||

Figure 5.1: Minimization of the distance on the destination plane between destination and origin
points.

with the projector N

N =

⋃
⨄

1− n2
1 −n1n2 −n1n3

−n1n2 1− n2
2 −n2n3

−n1n3 −n2n3 1− n2
3

⋂
⎦ (5.11)

depending only on the known nominal normal vector n. Substituting (5.7) in (5.10), one
obtains

pn = Nt + NR′pA − sn. (5.12)

The objective function to be minimized takes into account all the kpt points belonging to
each i-th plane. Assuming a total number of kn planes, the cost can be written as

F (t) =

kn∑

i=1

kpt∑

j=1

∥(pn)i,j −
(
pB
)

i,j
∥2

2 =

kn∑

i=1

kpt∑

j=1

∥Nit + NiR
′
(
pA
)

i,j
− sni−

(
pB
)

i,j
∥2

2 (5.13)

where subscript j refers to the j-th point of plane i. The components of matrix N depend
only from the destination planes, therefore a matrix Ni is defined for each plane. Setting
to zero the derivatives of F (t) with respect to the unknowns (tx, ty, tz), it is easy to verify
that one obtains the normal equations of system (5.6).

5.3 Application of Affine-EOPA∗ for the Virtual Trial
Assembly of a Steel Structure

An emerging trend in manufacturing and design is represented by product proliferation,
heterogeneous market, customization increase and shorter product life cycle [25]. Thus,
the challenge that industries like manufacturing, automotive and construction are facing
nowadays is to reduce production time and cost, in order to remain competitive in the
marketplace. Virtual assembly (VA) and virtual prototyping are powerful tools to reach
this goal, since visualizing and testing CAD models, before they are physically fabricated or
during the early production stage, are effective ways to decrease product development cycle
time. In addition, virtual assembly systems could be used to identify and analyze problems
that might arise during service and maintainability operations, and they could also provide
a platform for the training of assembly workers [138].
In the last years, several computer-based tools to perform virtual assembly, that allow to
map the real assembly operation process in a virtual environment, have been proposed in the
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literature. Exploiting virtual reality technology, real-time collision detection and assembly
path planning can be achieved interactively.
Commonly, virtual assembly systems are based on CAD models of ideal size, however, VA
can also be implemented by using object scanning models. These can reflect the real surface
characteristics and the actual machining dimensions of the part, leading to a more realistic
assembly simulation and a more accurate collision detection [161].
In complex multistage manufacturing systems, in addition to an accurate design of each step
of the assembly, it is important to simulate and predict dimensional variation propagation as
well. In [25] and [80] the stream-of-variation analysis (SOVA) is applied in the design phase
to generate math-based prediction of potential individual assembly errors that contribute to
an accumulating set of dimensional variations, which can lead to parts and products that
do not respect tolerances.
VA methods have been developed mainly for the manufacturing, automotive and aerospace
industry. On the contrary, in the construction industry virtual assembly and virtual pro-
totyping techniques are not widely used. As noticed in [100], this can be caused by the
fact that construction industry does not have a production line and each building can be
considered a one of a kind. Nevertheless, even the civil engineering world can benefit from
the use of virtual assembly techniques. A Construction Virtual Prototyping (CVP) system
was developed by Li et al. [100] to support the construction planning in virtual environment.
The proposed framework allows, among other things, an effective assemblability analysis,
the reduction of construction risks, the optimization of construction schedules and the effec-
tive management of design changes. Applied in various scenarios, CVP proved to increase
accuracy of process planning and to shorten planning times [79].
Further innovations have been recently introduced not only in the design phase, but also
in the construction step for the as-built test of a civil work. Algorithms for construction
defect detection [65] and automated visual assessment of changes on a building site [108]
were proposed in the last decade. These methods rely on both 3D design models and 3D
as-built models, the latter deriving usually from photogrammetric and laser scanning survey
techniques.
Another issue in the construction field, pointed out in [163], concerns the steel structures,
for which a trial assembly is required in order to verify their assemblability, satisfying the
tolerances and the requirements of the project. Since a Physical Trial Assembly is often
unfeasible due to time and cost, a Virtual Trial Assembly can be alternatively performed.
To the best of our knowledge, in the literature only a few works can be found that apply
the virtual assembly to as-built 3D models. Among them, Case et al. [24] proposed an
algorithm based on Generalized Procrustes Analysis to simulate the Virtual Trial Assembly
of the New Safe Confinement of the Chernobyl nuclear reactor. This work demonstrates the
usefulness of VTA and highlights how Procrustes Analysis can be a valuable tool also for
this application.

5.4 Precision Controls of the Structural Elements of
Vessel

Vessel is a steel structure under construction at the center of the Hudson Yards district of
New York. To design Vessel, the architect, Thomas Heatherwick, found inspiration by the
Indian water tanks, the so called pushkarani, with a central small water lake at the bottom,
reachable by a segmented staircase. The shape of Vessel is similar to a chalice or a vase
(Figure 5.2), with a diameter at the base of almost 17 m, increasing to 40 m at the top of
the construction. The total height is almost 46 m: it is possible to reach the top by walking
along the stair ramps or by using an elevator that follows the structure profile. Vessel should
be ready and opened to the public in 2019. At the moment, the steel structure has been
already assembled.
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Figure 5.2: Rendering of Vessel and a construction phase (courtesy of Cimolai S.p.A.).

Among the different structure elements characterizing Vessel, the most important for the
aims of this work are the so called dogbones. These represent the steel units of the building,
that are connected to the neighbor ones by a series of four connection flanges per dogbone.
The total number of dogbones is 65 (5 for each level, for a total of 13 levels) and the weight
of each element is almost 25 t. Rising in elevation, the dimensions of the dogbones become
wider, since the diameter of Vessel increases with height. Only the dogbones belonging to
adjacent levels are connected; elements of the same level instead do not touch each other.
In this way, every dogbone constitutes a landing to which four stair ramps are branched off,
two upstairs and two downstairs.
The body of the dogbone (Figure 5.3) is constituted by a central gabion, to which four horns
are successively welded, while staircases are welded in a second moment. A shim plate is
located between the flanges of two adjacent dogbones, whose thickness can be modified in
order to correct errors in the elements geometry, if necessary.

Figure 5.3: The characteristic Vessel element: the dogbone (courtesy of Cimolai S.p.A.).

The building of the dogbone starts with the parallel construction of the central body and of
the horns. At this stage, the dogbones have not yet undergone mechanical processing such as
milling and drilling. The flanges appear therefore without any hole and their surface is not
leveled by machine tools. In this phase the geometric control is directly carried out by the
carpenters with proper instruments, so as to verify the project tolerances of the elements.
After this test, two horns of the same dogbone are joined one to each other. The topographic
control begins when the core steel skeleton of the dogbone is enveloped by a cladding. It
is therefore necessary to guarantee the expected tolerances for what concerns the geometry
of the produced element not only along the dogbone-dogbone connections, but also along
the dogbone-cladding connections. The topographer verifies with a total station that the
discrepancies are lower than 10 mm. If this value is satisfied, it is possible to carry on with
the welding process of the dogbone central core and the two pairs of horns and with a further
topographic control that identifies possible deformations caused by the welding cooling.
Two different kinds of mechanical machining follow the welding step: first, the milling process
of each flange and the lateral planes of the structure, so as to satisfy a planarity error of
less than 0.1 mm, then the boring of the flange plane. All the operations are managed by a
machine tool, using a CAD/CAM technology. The geometric survey of a completed element
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is carried out by a laser tracker, an instrument commonly used in the industrial metrology
that can reach a precision of the order of 10−6 m.
In particular, the laser tracker measures:

• the plane of the flanges. About 50 points on the flange are measured and the inter-
polating plane is fitted. It is important to evaluate the planarity of the milled surface
and its inclination w.r.t. the theoretical one;

• the edges of the flange. Each edge is geometrically projected on the flange plane and
deviations from the project geometry have to be compatible with the misalignment
tolerance;

• the holes on the flange. The hole axes are represented by points that have to respect
manufacturing tolerances. As for the edges, also these points are projected on the
flange plane.

Eventually, the result of the topographic survey is constituted by a series of points and
vectors belonging to the interpolated flange plane.
Thanks to the laser tracker survey, the as-built geometry of each dogbone is known with high
precision and can be compared to the project values. Moreover, the Virtual Trial Assembly
of the whole structure can be performed to understand how possible defects of the dogbones
belonging to the lower levels and discrepancies with respect to the theoretical shape can
influence the assembly of the upper level elements. In the next section, we demonstrate that
Affine-EOPA∗ is the best Procrustes model to perform these tasks.

5.4.1 EOPA vs Affine-EOPA∗ in the Virtual Trial Assembly Process

Let us first demonstrate how the classical EOPA can produce misleading results, if applied
for the VTA of Vessel elements. When comparing the as-built geometry of an element to the
project one, the origin and destination matrices contain the coordinates of the measured and
nominal holes, respectively. In particular, exploiting the EOPA solution with fixed unitary
scale factor (c = 1), the survey of the dogbone can be aligned to the theoretical configuration
via a roto-translation and the residuals represent the differences between real and project
values. Similarly, for the VTA process the origin matrix contains the surveyed points of the
dogbone to be assembled, whereas the destination matrix is composed by the coordinates
of the dogbones belonging to the lower level, virtually assembled in a previous step. Please
note that, since dogbones of the same level are not directly connected and the assembly of
an element depends only on the position assumed by the lower level ones, it is not necessary
to consider together the configuration of several elements, i.e., it is not required to resort to
the Generalized Procrustes Analysis, that simultaneously aligns multiple elements.
Moreover, it is important to consider that, during the machining of the dogbone flanges, the
most common flaw that can be generated is that some of them can be milled with an offset of
some millimeters in the orthogonal direction to the plane. This difference does not represent
a problem for the assembly of the whole structure, because it can be easily filled by a shim
plate of adequate thickness. Nevertheless, ordinary EOPA does not take into account the
possible offset and does not allow to reach the correct alignment between the survey and the
project model, since it minimizes the 3D Euclidean distance between corresponding points.
Figure 5.4 illustrates the problem and the result obtained by the direct application of the
EOPA solution, assuming a unitary scale factor.
It is therefore easy to see that the solution is represented by Affine-EOPA with undetermined
motion components (Affine-EOPA∗). In fact, the method proposed in Section 5.2.1 allows
to first find the rotation that best aligns the plane normals. The alignment between the bolt
holes is determined in a subsequent step, through an estimate of the translation between the
rotated configuration and the theoretical one, that takes also into account that the position
of the bolt holes does not pose any constraint along the normal of the plane they belong to.
In this way, when performing the VTA of the structure, machining flaws can be easily iden-
tified and corrected by the shim plates, avoiding to compute incorrect rigid transformations
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(a) (b) (c)

Figure 5.4: Problem connected to the EOPA application. The red dogbone represents the theo-
retical configuration, the blue element is instead the measured one. Please note that the lower-left
flange is machined with an offset that can be corrected with a customized shim plate. The alignment
obtained by ordinary EOPA solution is shown in (c).

that, propagating through the various levels, lead to a configuration far from the project
values (see Figure 5.5).
Further evidence of how the Affine-EOPA∗ model is more suitable than the EOPA one will
be given in the Section 5.4.3.

(a)

(b)

Figure 5.5: VTA performed by the ordinary EOPA solution (with c = 1) (a) and using Affine-
EOPA∗ (b). The yellow rectangle in (b) represents the shim plate placed to correct the machining
flaw.

5.4.2 Proposed Procedure

Starting from the considerations made in the previous section, we developed a robust pro-
cedure based on the Affine-EOPA∗ model, that allows to

• verify the actual geometry of each dogbone compared to the nominal one;

• perform the Virtual Trial Assembly of the whole structure, highlighting potential flaws
that can prevent the structure to be assembled.

As shown in Figure 5.6, the proposed procedure is composed of two main steps. The goal
of the first stage is to retrieve the rotation matrix R that allows to align the planes of
the flanges surveyed with the laser tracker to the theoretical configuration. The input data
are the measured and nominal points corresponding to the center of the bolt holes. So,
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Figure 5.6: Flowchart of the proposed method.
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for each flange fi (i = 1, ..., 4), the measured and nominal planes are estimated from the
subset of kpt points belonging to the i-th flange. More in detail, the best fitting plane is
estimated exploiting the Principal Component Analysis (PCA) [84] and the normal vector
is computed as the eigenvector corresponding to the smallest eigenvalue of the covariance
matrix built from the point coordinates. It is important to underline that, for each plane,
two normals with the same direction but different orientation can be defined. In this case,
the outward-pointing normal vectors are chosen.
Hence, origin matrix An and destination matrix Bn containing in each row measured and
nominal normals, respectively, are used to estimate through Equations (5.2) and (5.5) the
rotation R that maximizes in the least squares sense the parallelism of measured and nominal
flange planes.
Residuals deriving from this transformation are correlated to the discrepancy in inclination
between the as-built flanges and the nominal ones. The angular difference γi between the
rotated and theoretical configuration of each flange i (described by the i-th row of matrix
AnR and Bn, respectively) can be computed as

γi = arccos
(AnR)i,·(Bn)′

i,·

∥(AnR)i,·∥∥(Bn)i,·∥
(5.14)

and compared with the maximum allowed deviation γmax, defined by the regulations. If the
following condition

γi ≤ γmax (5.15)

is not satisfied for all flanges, further analysis is needed. More specifically, a robust procedure
is carried out and the rotation is calculated again excluding one flange at a time from
the input data, i.e., eliminating a row from matrices An and Bn and verifying condition
(5.15) at each iteration. This method, with a breakdown point of 0.25, allows to detect
a possible outlier plane, whose inclination is far from the nominal value, and at the same
time to estimate a rotation matrix that is not biased by the outlier flange. In this way, the
rotated configuration of inlier flanges is perfectly aligned to the nominal geometry, while the
inclination error of the outlier plane can be corrected during the assembly of the structure
using, e.g., a wedge shim.
Once the rotation has been estimated, the final translation that aligns measured and nominal
holes is computed as described in Section 5.2.1, solving the linear system (5.6). Thanks
to this approach, if a flange present an offset, it is successfully aligned to the nominal
configuration, as shown in Figure 5.7.

(a) (b) (c)

Figure 5.7: Project configuration (a), as-built geometry (b) and alignment obtained via Affine-
EOPA∗ (c).

After the application of the roto-translation parameters estimated by the Affine-EOPA∗

solution to the measured points, the residuals with respect to the nominal configuration
can be studied. In particular, the components of the residual vector perpendicular to the
nominal flange plane are used to adjust the thickness of the shim plate placed between
adjacent dogbones. The projection on the plane of the residual vector, instead, is compared
to the tolerance imposed for the realization of the bolted connection. If the condition is not
verified, a robust procedure is carried out, similarly to what is done to estimate a robust
rotation matrix. More in detail, the computation is repeated considering three flanges at
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a time, in order to robustly compute t and to localize the flange that does not respect the
tolerance. Again, the breakdown point value is equal to 0.25.
To summarize, when applied to a single dogbone, the proposed procedure allows to check the
as-built geometry w.r.t. the nominal one, identifying possible outlier flanges, and permits
to preliminary evaluate the correct thickness of the shims and the possibility to realize the
bolted connections between adjacent dogbones.
As already mentioned, the developed algorithm can be applied with minor changes for further
analysis on the assemblability of the whole structure. In fact, it can be used to perform the
VTA of all the workpieces, verifying in this way not only the as-built geometry of each
single dogbone, but also that they can be connected to each other, respecting the tolerances
imposed by the regulations.
Since dogbones of the same level do not touch each other, each element can be analyzed
independently. Going into detail, the VTA of a dogbone belonging to level n is achieved
assuming in this case that the destination configuration is represented by the upper flanges
of the dogbones belonging to level n−1. The origin configuration, instead, is constituted by
the two lower flanges of the dogbone to be assembled. Thus the roto-translation that best
aligns a dogbone with the lower level ones is computed by the same algorithm previously
presented, with the difference that in this situation only two flanges can be considered.
For this reason, the robust analysis and the subsequent detection of the outlier flange that
must be corrected is performed only during the comparison between as-built and theoretical
geometry, as it requires four flanges.
Figure 5.8 illustrates the VTA process. Red dogbones represent the elements already as-
sembled, whereas the gray workpiece is the one under study.

Figure 5.8: A step of the Virtual Trial Assembly process. Red dogbones represent the elements
already assembled, whereas the gray workpiece is the one under study.

As stated above, a shim plate is placed between adjacent dogbones. Its thickness has a
default value of 25 mm, but it can be modified in order to compensate for the flaws generated
by the machining. A first value of the thickness correction is computed in the previous
step, i.e., when the geometry of each single dogbone is verified. However, a more accurate
correction can be estimated during the VTA process, that allows to take into account also
the geometry of lower level dogbones that influence the real assembly. The final thickness
value is directly computed by the proposed procedure, analyzing the residual distance in the
normal direction between a flange of level n and the corresponding one of level n−1 after the
translation process. The VTA procedure allows therefore to estimate the most appropriate
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shim thickness between dogbones and to check the feasibility of the bolted connections in
an efficient and automatic way.

Flange
EOPA Affine-EOPA∗

Max Min Average Max Min Average

[mm] [mm] [mm] [mm] [mm] [mm]

1 0.91 0.21 0.46 0.48 0.15 0.28

2 1.94 1.16 1.51 0.38 0.07 0.20

3 1.54 0.84 1.28 0.41 0.08 0.24

4 0.79 0.03 0.52 0.48 0.08 0.25

Table 5.1: Summary values of the residuals projected on the nominal plane obtained through
EOPA and Affine-EOPA∗.

Flange
EOPA Affine-EOPA∗

Max Min Range Max Min Range

[mm] [mm] [mm] [mm] [mm] [mm]

1 +2.44 +1.12 1.32 +3.82 +2.87 0.95

2 +2.26 +1.60 0.66 +1.70 +1.12 0.58

3 -0.19 -0.42 0.23 +0.22 -0.08 0.30

4 -1.58 -1.89 0.31 -3.23 -3.66 0.43

Table 5.2: Comparison between residuals in the normal direction of the nominal plane obtained
through ordinary EOPA and Affine-EOPA∗.

5.4.3 Experimental Validation

The proposed method has been successfully applied to verify the as-built geometry of the
elements of Vessel and to perform the VTA of some levels. In the following, results of the
comparison between surveyed and nominal geometry of a dogbone are reported in detail,
together with the differences that arise when applying the ordinary EOPA method (with
unitary scale factor) instead of the proposed Affine-EOPA∗ model. The element chosen as
case study (dogbone 421 belonging to level 8) presents some flanges that were milled with
an offset with respect to the nominal geometry. As previously illustrated, these flaws do
not constitute a problem for the erection of the structure, as they can be corrected through
shims of adequate thickness. However, they can alter the results obtained by the ordinary
EOPA.
Table 5.1 reports the distances projected on the nominal plane between roto-translated
surveyed holes and nominal ones. One can easily see that, according to Affine-EOPA∗,
differences between surveyed and nominal holes are always less than 1 mm, in compliance
with the tolerances imposed by the regulations. Ordinary EOPA, instead, furnishes results
that are biased by the flaws generated during the milling procedure. These results could
lead to the erroneous conclusion that two flanges (number 2 and 3) cannot be bolted.
It is interesting to evaluate also the residuals in the normal direction of the nominal plane
(Table 5.2). For each flange, the maximum and minimum residual values and their absolute
difference are reported. The latter is a measure of the discrepancy in inclination between
the as-built flange and the theoretical one. If it is low (e.g., less than 1 mm), the lack of
parallelism is negligible and no customized wedge shim is needed. For the dogbone under
study, one can notice that Flange 1 presents a higher deviation; nevertheless, the discrepancy
is acceptable and no further robust analysis is required. The mean value of the residual along



5.4. Precision Controls of the Structural Elements of Vessel 69

EOPA Affine-EOPA∗

Shim thickness Residual Shim thickness Residual

[mm] [mm] [mm] [mm]

Dogbone 405
Flange 1 24.8 0.5 25.9 0.6

Flange 2 24.9 0.4 21.2 0.4

Dogbone 406
Flange 1 24.5 0.6 26.4 0.5

Flange 2 24.6 0.7 21.7 0.6

Dogbone 407
Flange 1 25.4 1.9 25.9 0.4

Flange 2 23.2 1.8 22.4 0.8

Dogbone 408
Flange 1 25.1 1.8 23.2 1.0

Flange 2 26.0 1.2 28.1 1.4

Dogbone 409
Flange 1 23.7 0.9 21.9 1.5

Flange 2 24.4 1.1 24.3 0.9

Table 5.3: Results of the VTA process. Shim thickness and the average residual projected on the
flange plane are reported.

the normal direction can be taken as an approximate correction of the shim thickness, that
can be refined during the subsequent VTA process. It is important to underline that higher
residuals along the normal direction do not mean worse results, since in this case they only
represent the shim correction needed and do not affect the structure assemblability. Lower
residual values generated by the EOPA method for Flanges 1 and 4 (Table 5.2) derive from
the different roto-translation applied, that changes the residual distribution in the 3D space.
As already mentioned, the proposed method has been applied with minor changes to sim-
ulate the assembly of the structure, allowing to identify any critical issue that may arise
during the assembly phases on site. Specifically, we assume as starting point the position
of the dogbones belonging to level 4. The surveyed dogbones of this level are individually
roto-translated with respect to their theoretical configuration and represent the destination
configuration of the elements belonging to level 5. Dogbones of the upper levels are then
virtually assembled following the procedure described in Section 5.4.2, i.e., the lower flanges
of each dogbone of level n are aligned with the upper flanges of the workpieces of level n−1.
Results obtained for the VTA of dogbones belonging to level 5 are reported in Table 5.3. The
VTA process highlights another advantage of the Affine-EOPA∗ compared to the ordinary
EOPA. In fact, the developed algorithm implicitly takes into account the presence of the
shims and the VTA of an element can be performed directly, without any modification
of the hole coordinates. Ordinary EOPA, instead, requires the preliminary adjustment of
the destination configuration: points on the dogbone flanges of the lower level must be
translated along the normal direction of 25 mm, that is the theoretical shim thickness.
Without this preprocessing step, ordinary EOPA, that aims at minimizing the 3D distance
between corresponding points, tends to "squash" the dogbones of the upper level on those
of the lower level. Results of the ordinary EOPA reported in Table 5.3 are obtained after
the application of the aforementioned correction to the destination configuration.
The validity of the proposed method was confirmed during the construction of the structure.
In fact, the results of the VTA were compared with the surveys carried out on site, showing
a tight correspondence between what was predicted by the VTA and what was realized on
site. Moreover, the absence of problems for the dogbones installation demonstrated the
correctness of the values chosen for the shim thickness, calculated through the procedure
described in Section 5.4.2.
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5.5 Conclusion

In this chapter we proposed the Affine-EOPA model, a variation of the Extended Orthog-
onal Procrustes Analysis that allows to compute the trasformation between two matrices
composed by both points and vectors and can be further customized to take into account
undetermined motion components.
Its application in the structural engineering context is innovative. The algorithm allows
to automatically verify the geometry of the manufactured steel elements and to perform
the Virtual Trial Assembly of the whole structure, taking into account the geometrical
characteristics of the workpieces. The method, in fact, is thought to maximize the parallelism
of the planes belonging to adjacent elements and to optimize the possibility to realize the
bolted connections between them. Although it was designed for a particular structure, it can
be employed to successfully perform the VTA of other steel constructions sharing analogous
characteristics.
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Part II

Advanced Methods for Remote
Sensing Data Processing
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Digital terrain models, aerial image mosaics, topographic and geologic maps as well as digital
cartography are essential tools for the management and control of a territory. Applications
of remotely sensed data are countless: environmental monitoring, planning, management
and maintenance of electric power lines, quantification of mining activities, monitoring of
anthropic activities like deforestation and urban development, evaluation of land use or
surveillance, just to name a few. However, in order to be used for these purposes, remotely
sensed data such as LiDAR point clouds and aerial images require some processing steps that
are often expensive and time consuming. For this reason, the research activity carried out
at Helica s.r.l. was application oriented and focused on developing novel algorithms for the
processing of photogrammetric and LiDAR data acquired by helicopters or drones. In the
following chapters we will first present a novel method based on deep learning to perform the
classification of full-waveform LiDAR data. Then, we will propose an innovative algorithm,
based on a mathematical tool known as synchronization, to create seamless planar mosaics
from aerial images.
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Chapter 6

Full-Waveform Airborne LiDAR
Data Classification using
Convolutional Neural Networks

Point cloud classification is one of the most important and time consuming stages of airborne
LiDAR data processing, playing a key role in the generation of cartographic products. This
chapter describes an innovative algorithm to perform LiDAR point cloud classification, that
is based on Convolutional Neural Networks and takes advantage of full-waveform data reg-
istered by modern laser scanners. The employed architecture allows to accurately identify
even challenging classes such as power line and transmission tower.

6.1 Introduction

Airborne laser scanning (ALS) relies on the LiDAR (Light Detection and Ranging) principle,
namely to measure the time of flight of a short laser pulse travelling to the target and back,
that allows to compute the distance between the sensor and the target. Ranges are then
converted to discrete 3D points exploiting GNSS (Global Navigation Satellite System) and
IMU (Inertial Measurement Unit) data. During its path, the laser ray can be reflected
by more than one surface placed at different heights, e.g. part of the laser beam can be
reflected from the top of a tree and some part within the tree or the ground surface. The
first commercial laser scanners detected only the first and last echo per emitted pulse.
Nowadays, most instruments have the ability to record up to six reflections for each emitted
pulse and, since 2004, these multi-echo laser scanners have been joined by a new category,
the so called full-waveform laser scanners, that are finally able to record the entire waveform
of the reflected signal. Several studies have shown that these instruments provide a higher
spatial point density as well as additional information on the characteristics of the target
[155, 154, 112]. In fact, the shape and size of the backscattered waveform is related to the
geometry and the reflectance properties of the hit surface.
ALS is currently being employed in a variety of applications, including urban planning, nat-
ural hazard management, forestry and facilities monitoring. In almost all the applications,
the classification of LiDAR point cloud is required, being a necessary processing step, e.g.,
to create Digital Terrain Models (DTMs), to perform analyses on data belonging to par-
ticular classes (e.g., to evaluate the vegetation density) and to automatically determine the
relationships between different classes (e.g., to calculate the distance between power line
conductors and vegetation or buildings).
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6.1.1 Contribution

The aim of this chapter is to develop a new classification method for full-waveform air-
borne LiDAR data using Convolutional Neural Networks (CNNs) and exploiting both full-
waveform and spatial information. First of all, a brief review of the literature on full-
waveform LiDAR data classification is presented in Section 6.2. In Sections 6.3 and 6.4
we introduce deep networks and some basic concepts of deep learning, that can be useful
for a better comprehension of the proposed method, described in detail in Section 6.5. As
shown in Section 6.6, thanks to the combination of a first CNN that provides a compact
representation of the waveforms, and a subsequent Fully Convolutional Network (FCN) that
takes into account also the spatial relations between the points, the proposed architecture
is able to distinguish (e.g.) among six classes, namely: ground, vegetation, building, power
line, transmission tower and street path, with an overall accuracy of 92.6%.

6.2 Related Work

As shown in several studies [47, 114, 121, 127], the LiDAR point cloud classification process
can significantly benefit from the data collected by full-waveform laser scanners. In fact,
the waveform registered by these instruments offers the possibility to extract additional fea-
tures related to the reflectivity characteristics of the target. Over the last years, several
classification methods have been proposed in the literature using full-waveform data and
the features derived from them [51]. Among these, we mention simple thresholds, both set
up manually [153] and automatically [2]. The first method distinguishes between vegetation
and non-vegetation point with an accuracy of 89.9% for a dense natural forest and 93.7%
for a baroque garden area, while the latter exploits the backscatter coefficient derived from
the waveform to classify urban areas into vegetation, roads and building roofs. Amplitude,
pulse width and number of pulses are the features used in [47] to perform a binary clas-
sification and extract vegetation points via a decision tree. Other methods are based on
statistical learning classifiers like Support Vector Machines (SVMs, [113]), which belong to
non-parametric methods and perform nonlinear classification. This algorithm is well suited
for high dimensional problems with limited training set and proved to reach high accuracy
(around 95%) when distinguishing between three classes, namely ground, vegetation and
building. For urban vegetation detection Höfle et al. [76] use instead geometric and radio-
metric features that are fed to an artificial neural network classifier consisting of a single
hidden layer of neurons and trained by back propagation. Finally, Wang and Glennie [158]
apply a "voxelization" method that divides the waveform data into voxels, merging the ones
falling in the same voxel into a synthesized waveform. Features are then extracted and fused
with the information derived from hyperspectral images, constituting the input of a SVM
that is able to discriminate among 9 classes with an overall accuracy of 92.6%.
All these algorithms rely on hand-crafted features, that are subsequently fed to statistical
classifiers or simple machine learning algorithms. An alternative approach is the one pro-
posed by Maset et al. [117], that exploits a Kohonen’s Self Organizing Maps (SOMs) to
perform the unsupervised classification of raw full-waveform data without the need of ex-
tracting features from them. The method proved to reach an accuracy of 93.1% over three
different classes: grass, trees and road.
In the last years disciplines such as computer vision and robotics have pushed forward and
exploited the potential of deep learning [63]. Approaches based on hand-engineered features
can nowadays be effectively replaced by methods that learn both features and classifier from
the data end-to-end. In particular, Convolutional Neural Networks (CNNs) represent the
most powerful and reliable tool for classification and segmentation [144, 129].
While many researchers are focused on the development of new architectures for image
and video processing, the application of deep learning to LiDAR data – and, notably, to
full-waveform data – is still almost unexplored.
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In the case of conventional LiDAR data, the recent works of Hu et al. [77] and Yang et
al. [160] can be recalled, in which the potential of CNNs for the classification of LiDAR
data is demonstrated. More specifically, in [77] a CNN is used to detect ground points,
exploiting a point-to-image framework. For each point in the dataset, context information
are computed from the neighbouring points in a window and subsequently transformed into
an image that is fed to a CNN. In this way, point classification is treated as the binary
classification of an image. Similarly, Yang et al. [160] perform a multi-class segmentation
of the point cloud by first transforming the 3D neighbourhood features of a point into a
2D image that is then classified by a CNN. The method reaches an overall accuracy of
82.3% when distinguishing between nine classes, showing however poor performances in the
identification of points belonging to small and thin objects such as power line and fences.
Our system is novel both in the type of data it consumes – full-waveform – and in the
approach to the problem. Unlike the aforementioned methods, we treat the LiDAR data
classification task as a problem of image segmentation solved with a FCN that takes advan-
tages also on the full-waveform data processed by a CNN classifier.

6.3 An Introduction to Deep Learning

In recent years, deep learning has revolutionized many fields, including computer vision,
speech and audio processing, robotics, bioinformatics and finance. Deep learning can be
defined as a machine learning technique that learns features and tasks directly from data,
where data can be, e.g., images, text or sound. Deep learning is therefore often referred to
as end-to-end learning. Let us assume that we have a set of images and we want to recognize
which category of objects each image belongs to: cars, trucks or boat. The starting point
is represented by the labelled set of images, or training data. The labels correspond to the
desired output of the task. The deep learning algorithm needs these labels as they tell the
algorithm about the specific features and objects in the image, so it can learn how to classify
input images into the desired categories.
Many of the techniques used in deep learning today have been known for decades and
applied to solve important commercial application. For example, they have been used to
recognize handwritten postal codes in the US mail service since the 1990s. However, the
use of deep learning has surged over the last ten years primarily due to three factors. First,
deep learning methods, and in particular Convolutional Neural Networks (CNNs), proved
to be extremly powerful in several machine learning and computer vision contests, starting
when Krizhevsky et al. [93] won the ImageNet object recognition challenge. Deep learning
algorithms are now more accurate than people, e.g., at classifying images. Second, GPUs
enable us to now train deep networks in less time. Finally, large amount of labelled data
required for deep learning has become accessible over the last few years.

6.3.1 Deep vs Shallow Machine Learning

Deep learning and shallow machine learning algorithms both offer ways to train models and
classify data. Shallow approaches first require to extract hand-crafted features from the
data, that are then used to train a model that describes or predict the object.
On the other hand, deep learning skips the manual step of extracting relevant features.
Instead, data are fed directly into the deep learning algorithm, which then predicts the
object. So, deep learning is a subtype of machine learning, it deals directly with data and is
often more complex. When choosing between shallow machine learning and deep learning,
it is first important to consider whether lots of labelled data and a high performance GPU
are available. To work successfully with deep learning, in fact, at least a few thousand
samples are required to get reliable results and powerful computational resources are needed
to train the model. However, deep learning offers many advantages in terms of accuracy and
one does not have to understand which features are the best representation of the object,
because thay are learned directly.
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Hence, the choice between shallow machine learning and deep learning depends on the data
and the problem one is trying to solve. The comparison between deep and shallow machine
learning approaches is summarized in Table 6.1.

Deep Learning Shallow Machine Learning

Training dataset Large Small

Choose your own features No Yes

# trainable parameters Many Few

Training time Long Short

Table 6.1: Comparison between deep learning and shallow machine learning approaches.

6.3.2 Deep Feed-forward Networks

As already mentioned, among all deep learning techniques, image processing has benefited
from the development of the so-called Convolutional Neural Networks (CNNs), a specialized
kind of deep feed-forward networks employed also in this chapter to solve the point cloud
classification task. It seems therefore appropriate to introduce deep feed-forward networks,
the characteristics of some common kind of layers and some aspects related to their training.
The aim of a feed-forward network is to approximate a function f∗. Considering the case of
a classifier, e.g., y = f∗(x) maps an input x to a class y. A feed-forward network defines a
mapping y = f(x; θ), learning the parameter values θ that give the best function approxi-
mation. The term feed-forward derives from the fact that information flows unidirectionally
through the function being evaluated from x, passing through the intermediate layers that
define f , and finally reaching the output y.
Feed-forward models are typically represented by composing together many different func-
tions, for this reason they are called networks. The model is associated with a graph describ-
ing how the functions are composed together. Let us consider the case of three functions
f (1), f (2), and f (3) connected in a chain to form f(x) = f (3)(f (2)(f (1)(x))). Function f (1)

is called the first layer of the network, f (2) is called the second layer, and so on for all the
hidden layers, until the final one that is called output layer. The overall length of the chain
gives the depth of the model. During the training, f(x) is driven to match f∗(x) by the
learning algorithm and by the training data that directly specifies what the output layer
must return at each point x.
When talking about these models, we call them neural because they are partially inspired
by neuroscience. In fact, each unit of a hidden layer of the network can be seen as playing
a role analogous to a neuron, since it receives input from many other units and computes
its own activation value. However, it is important to underline that modern neural network
research is guided by many mathematical and engineering disciplines, and the aim of neural
networks is not to reproduce the behaviour of the brain [95, 64].
Usually, in deep learning neurons apply a nonlinear transformation to the input in order to
avoid linear models limitations. In particular, linear networks have the drawback that they
cannot learn nonlinear functions, so they are not able to understand interactions between
input variables. A way to solve this issue is to use a model that learns a different feature
space in which a linear model is able to represent the solution. This can be done by a neural
network by computing an affine transformation followed by a fixed nonlinear function called
activation function. A generic input-output function of a layer can be written as:

h = f(x) = g(W⊤x + c) (6.1)

where W is a matrix that defines the parameters used to learn the desired function (also
called weights of the linear transformation), c is a vector of biases and g is the activation
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function. Every neuron of the layer applies the activation function, so, the generic equation
that describes a neuron i is:

hi = g(x⊤W:,i + ci). (6.2)

The most common activation function is the rectified linear unit, or ReLU [83, 120], and it
is defined by the function g(z) = max¶0, z♦, represented in Figure 6.1.
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Figure 6.1: Rectified linear unit (ReLU) activation function.

As already mentioned, the goal of a feed-forward network is to approximate a function and
the tunable parameters of the layers are the weights and biases. When a neural network is
deep (with several layers) and has a lot of hidden units, the tunable parameters may even be
tens of thousand. Usually, deep learning models are trained using gradient based learning
techniques that allow to automatically find the parameters that fit the model. In order to do
that, it is necessary to make some design decisions: e.g., choosing the optimizer, the right
cost function and the shape of output units. In the following sections we will give some
insights on these aspects.

6.3.3 Cost Functions

The training of a neural network implies the iterative computation of a cost value (cost
function). The cost is a relation between the output predicted by the network and the
expected value, deriving from the training data. The cost is then lowered by making slight
adjustments to the weights and biases throughout the training process, until a minimum is
reached. The training algorithm is almost always based on using the gradient to decrease
the cost function, because the nonlinearity introduced by the activation functions causes
loss function to become non convex [75].
The chosen cost function must be appropriate for the task solved by the neural network.
For example, a deep neural network designed to perform a classification task could use a
cost function called cross entropy, defined as follows:

J(θ) = −
n∑

n=1

pi · log(qi) (6.3)

where p and q are two probability distribution vectors over n values, that describe the ideal
output of the classifier and the predicted one, respectively.
Another example of cost function is the mean square error, defined as:

J(θ) =
1

2

n∑

n=1

(yi − xi)
2. (6.4)
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This cost function is the sum of squared differences between the model inputs xi and the
model outputs yi and it is often associated to autoencoders. Without going into detail, an
autoencoder is a neural network that is trained to attempt to copy its input to its output
[63]. If input values of an autoencoder are real and not binary, then the mean square error
is the right choice because it provides a metric to measure the distance between the input
and the output.

6.3.4 Output Units

Many tasks require to predict the value of a binary variable y, including, e.g., binary clas-
sifiers that have to assign a label to the input data distinguishing between two classes. An
example can be a network trained to recognize if an input image represents a vehicle. In
this case, the output unit predicts only the probability P (y = 1♣x), or, in this example, the
probability of recognizing the vehicle in the given input image.
To be a valid probability distribution, this number must lie in the interval [0, 1]. Some
careful design efforts are required in order to satisfy this constraint. A first solution could
be to threshold the output of linear units in order to obtain a valid probability, but with this
approach the model would not be able to train effectively with gradient descend. In fact, the
thresholding would result in a gradient of the output equal to zero, negatively influencing
the learning algorithm that no longer has a guide to update weights. Another approach that
is used to always ensure a strong gradient, regardless of the model output, is based on the
sigmoid output unit, that can be thought as composed by two stages. The first stage uses a
linear layer to compute z = w⊤ · h + b, while the second stage uses the sigmoid activation
function, represented in Figure 6.2 and defined by

g(z) =
1

1 + exp¶−z♦ , (6.5)

to convert z into a probability, as follows

ŷ =
1

1 + exp¶−(w⊤h + b)♦ . (6.6)
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Figure 6.2: The sigmoid function produces a valid probability distribution, with values in the
range [0,1].

Let us now consider the case in which a network is trained to classify objects given an
input image. In this situation, the task of the network consists in representing a probability
distribution over a discrete variable with n possible values, i.e., the desired output must be
a vector ŷ, with ŷi = P (y = i♣x), with each element ŷi bounded between 0 and 1. It is also
required that the sum of the elements of the output vector is equal to 1, in order to describe
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a valid probability distribution. Even in this case, the output units are characterized by two
stages. First, a linear layer provides unnormalized probabilities:

z = W⊤ · h + b (6.7)

then one can apply the softmax function, defined by

softmax(z)i =
exp¶zi♦√
j exp¶zj♦

. (6.8)

As highlighted in [63], it is interesting to think of the softmax output layer as a way to
establish a form of competition between the units that participate in it. The sum of the
output values, in fact, is always equal to 1, so an increase in the value of one unit necessary
corresponds to a decrease in another unit.

6.3.5 Hidden Units

The choice and the design of hidden units is a very active topic of research, since predicting
in advance which kind of hidden layers performs better is nowadays almost impossible. The
typical approach consists in trial and error, guessing which type of activation function may
work well, training the network and comparing the results on a validation set with the ones
obtained with different hidden units. As already described, rectified linear units, or ReLUs,
have g(z) = max¶0, z♦ as activation function. These units have the advantage that they are
easy to optimize due to their similarity to linear units. As a result, when the unit is active
the derivative is significantly larger that zero [83, 120]. On the contrary, when zi < 0 their
derivative is zero, thus in this situation rectified linear units cannot learn exploiting gradient
based methods. Various alternative activation functions have been proposed to overcome
the problem. Equation (6.9) describes a general rectified linear function that uses a non
zero slope αi for zi < 0:

hi = g(z, α)i = max(0, zi) + αi ·min(0, zi). (6.9)

Absolute value rectification [83] sets αi = −1 in order to have g(z) = ♣z♣. Other examples
are the leaky ReLU [110] that fixes αi to a small value and parametric ReLU that treats αi

as a parameter to learn [74].
Anyway, rectified linear units and their generalizations are the most commonly used because
they are easy to optimize when they are close to linearity. Many other kinds of hidden units
and activation functions are possible but are less frequent. One can mention, e.g., the
Sigmoid activation function (mostly used in the output layer and shown in the previous
section), the Hyperbolic Tangent and the Softplus activation functions.

6.3.6 Training Algorithms

When a neural network is used to make a prediction, it produces an output ŷ starting
from an input x. This process, called forward propagation, allows information to flow from
the input layer to the output one through the hidden layers. During the training process,
forward propagation produces a scalar cost J(θ). The back propagation, instead, allows
the information from the cost backward through the model until the first layer, in order to
simply compute the gradient that is necessary to update the weights of the network.
This section describes how to estimate the gradient∇xf(x, y) for a generic function f , where
y is a vector of variables that are inputs of the function, and x is another vector of variables
whose derivatives are desired. In deep learning indeed it is required to compute the gradient
of the cost function with respect to the weights and biases ∇θJ(θ). The method described
here is restricted to the case in which the output of the function is a scalar, but it can be
easily extended to a function with multiple outputs.
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To describe back propagation more in detail let us first briefly introduce computational
graph language. Figure 6.3 shows some graphs of known neuron structures. Each node in
the graph indicates a variable that can be a tensor, a matrix, a vector or a scalar, while an
operation is a function between two or more variables and it returns a value as output.
Back propagation is an algorithm that retrieves gradients using the chain rule of calculus.
The chain rule is exploited to calculate derivatives of functions formed by the composition of
other functions whose derivative are known [63]. If x is a scalar, f and g are both functions
that map a real number to a real number, y = g(x) and z = f(g(x)) = f(y), then for the
chain rule it is possible to write:

∂z

∂x
=

∂z

∂y

∂y

∂x
=

∂f(y)

∂y

∂g(x)

∂x
. (6.10)

Generalizing to the case in which x and y are vectors (y = g(x) and z = f(y)), yields

∇xz =

(
∂y

∂x

)⊤

∇yz (6.11)

where ( ∂y

∂x
)⊤ is the Jacobian matrix of g. From (6.11) it is possible to notice that the

gradient with respect to a variable x can be computed multiplying a Jacobian matrix for
a gradient. The back propagation algorithm consists in performing this product for every
operation in the network graph.
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Figure 6.3: Examples of computational graphs. (a) Graph of the sigmoid unit y = σ(x⊤
w + b).

(b) Graph for the expression H = max{0, XW + b}, which describes a rectified linear unit [63].

In general, many subexpressions may be repeated a lot of times within the expression of
the gradient. Every algorithm that retrieves the gradient must handle this phenomenon
choosing between storing the subexpressions or computing them several times. For a very
wide graph, there can be millions of this wasted computations that can make the back
propagation algorithm computationally unfeasible. In other cases, computing the same
factor multiple times can be a good way to reduce memory consumption at the cost of
runtime.

Computing the gradient ∇θJ(θ) exactly is computationally expensive because it requires
to evaluate the neural network model for every training sample in the entire dataset. It is
possible to calculate the expected gradient by randomly sampling a small number of examples
from the training dataset, then the expectation is taken averaging those examples. Ad
advantage of this approach is that all the optimization algorithms converge faster updating
the gradient frequently using its estimate rather than slowly calculating the exact gradient.
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Optimization algorithms can be categorized in three groups, depending on the kind of use
of the dataset [63]:

• Optimization algorithms that exploit all the training samples to compute the exact
gradient are called batch or deterministic gradient methods. They process the entire
dataset simultaneously in a wide batch.

• Optimization algorithms that compute the gradient for a single sample at a time are
called stochastic or online methods.

• Optimization algorithms that exploits more than one but fewer than all training sam-
ples are called minibatch or minibatch stochastic methods. These are the most com-
monly used optimization methods in deep learning models.

The choice of the minibatch size is usually influenced by several factors:

• In order to retrieve a more accurate estimate of the gradient, one should resort to wide
batches.

• Multicore and GPUs architectures are not well exploited using very small batches.

• Typically, all the samples in the batch are processed in parallel. In this case the
amount of memory necessary for the task scales with the size of the batch.

• Some types of hardware train the network faster using specific sizes of tensors. It is
common, for example, to use power of 2 as batch size when using GPUs.

In order to compute an unbiased estimate of the expected gradient from a minibatch, it is
absolutely necessary that those samples are independent. The minibatch, in fact, must be
selected randomly. This operation can be easily performed shuffling and then splitting into
minibatches the entire dataset.
Let us now describe in detail the most common optimization method used to perform the
training using the gradient: the Stochastic gradient descent algorithm [63].
Stochastic Gradient Descent (SGD) updates parameters at each training iteration, exploiting
the following procedure:

1. Prepare a minibatch of m samples from the training dataset ¶x1, x2, ..., xm♦ with their
corresponding labels ¶y1, y2, ..., ym♦;

2. Compute the gradient estimate: ĝ← 1
m
∇θ

√m
i L(f(xi; θ), yi));

3. Update the weights and biases: θ ← θ − ϵĝ;

4. Repeat from Step 1. until convergence or for a predefined number of iterations.

The most important parameter of the algorithm is the learning rate ϵ. Usually it is necessary
to decrease gradually the learning rate over the training epochs. It is a common procedure
to decrease the learning rate linearly until the iteration τ with the following rule:

ϵk = (1− α)ϵ0 + αϵτ (6.12)

where ϵk denotes the learning rate at iteration k, α = k/τ and after epoch τ it is common to
leave ϵ constant. The learning rate value is chosen by trial and error, monitoring the learning
curves as function of time. The main question about Expression (6.12) is how to set ϵ0. If it
is too large, the cost function could often increase significantly and the learning curve may
oscillate violently. If the learning rate is too low, the training procedure progresses slowly.
There are many other optimization algorithms that automatically adapt the learning rate
during the learning procedure. The most famous are Momentum [143], AdaGrad [46] and
Adam [90].
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6.3.7 Regularization

A typical issue in deep learning, and in general in machine learning, is called overfitting.
Overfitting occurs when the test (or generalization) error, i.e., the error made by the network
in the prediction of a test set, is higher than the training error, i.e., the error made on the
data employed in the training stage. It is due to the fact that the model is too complex,
i.e., it has an excessive number of parameters, relative to the number of samples in the
training dataset. Every technique that acts to reduce the generalization error of the machine
learning model is called regularization method. In the following we describe some of the
most commonly used methods for regularization in deep learning, that we also adopt in the
architecture proposed in Section 6.5.
First of all, one must underline that the quality of the training dataset is a very important
factor in order to obtain a machine learning model that performs well in the test dataset. A
good way to obtain a low generalization error is to train the network with more data creating
fake samples to expand the training dataset. This task is quite simple for classification. A
classifier receives complex and multidimensional input and has to recognize it, specifying to
which class the input belongs, using a label. So, a classifier must be robust to transformations
of the represented object. Variations of the image can be easily simulated translating, scaling,
and rotating training images. In some situations it is even possible to inject noise in the
input or in the hidden layers of the neural network in order to make the model more robust.
Bagging, instead, is a method to reduce generalization error exploiting the predictions of
multiple network models [22]. The idea is to train multiple networks sharing the same
architecture with different training datasets. During the test evaluation every model votes
the output for the test sample. The particularity of bagging is that, although all the models
have the same network design, they are trained with different datasets, so also the parameters
are different. Bagging is an example of a general strategy in deep learning called model
averaging, employed by the so-called ensemble methods.
Ensemble methods work well because the trained models usually make different errors in
the test dataset. It is possible to demonstrate, in fact, that if the errors are perfectly
uncorrelated, the expected squared error of the ensemble is v/k, where k is the number
of models and v is the variance of the error. This means that the expected squared error
decreases linearly with the number of models used for the prediction. In order to apply
a bagging method, it is necessary to construct k different datasets. Each dataset has the
same number of samples as the original one, but each of them is made by sampling with
replacement from the original. Using this procedure, with high probability, each dataset
is missing some of the samples from the original dataset and contains several duplicates.
During the test evaluation, the result can be chosen making models to vote.
Dropout is a very used regularization method in deep learning because it is computationally
inexpensive but powerful [141]. Dropout can be seen as a form of averaging multiple models
or as a bagging method that can be used for very large neural networks. As previously
described, bagging consists on using multiple models trained separately. This procedure
seems impractical when each model is a wide and deep neural network because the training
and the evaluation steps have high runtime and memory cost. Dropout provides an inex-
pensive approximation to train an ensemble of an exponential number of neural networks.
It consists in removing, at each training iteration, some nodes in the network in a random
way, reactivating instead all the neurons during the prediction phase.
Finally, batch normalization [82] technique is one of the most important and interesting in-
novations in recent years regarding neural networks optimization. It is a method of adaptive
reparametrization, that was developed to overcome the difficulties in training very deep net-
work models. As already mentioned in previous sections, the gradient tells to the model how
to update every weight, with the assumption that the other layers do not change. However,
in practice all the layers are updated simultaneously. The updating may cause unexpected
results because many functions composed together are changed simultaneously, exploiting
updates computed under the assumption that the other functions are kept constant. Of
course, this phenomenon makes the model harder to train. Batch normalization reduces the
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problem of coordinating updates across many layers, normalizing the activations of the layer
to which it is applied through the mean and the standard deviation of each unit. Thanks to
batch normalization, much higher learning rates can be used. Moreover, since it acts as a
regularizer, it prevents overfitting and in some cases it allows to avoid the use of dropout.

6.4 Convolutional Neural Networks

Convolutional Neural Networks, or CNNs, are deep network models that have completely
dominated the machine vision space in recent years. These networks are so influential that
they have made deep learning one of the hottest topics in artificial intelligence today [63].
First proposed by Lecun in 1998 [97], they currently represent the best solution for many
machine vision tasks.
CNNs are particularly suited for processing data that has a known grid-like topology. These
data usually consist of several channels, corresponding to the observation of a different
quantity at some point in space or time. Examples of data types usually processed with
CNNs are the following:

• 1D data: time-series data such as audio waveforms, with each element corresponding
to the amplitude of the waveform at a specific time interval.

• 2D data: image data, that are represented by a 2D grid of pixels. RGB images are
composed by three channels, one for each color (reg, green, blue).

• 3D data: volumetric data such as medical images or color video data, where one axis
corresponds to time, one to the height and one the width of the video frame.

6.4.1 Convolution and Receptive Fields

The name Convolutional Neural Network originates from the mathematical operation that
lies at the basis of these networks, i.e., convolution. In its most general form, the convolution
is an operation between two functions of real argument, and can be written as:

s(b) =

∫
x(a)w(b− a)da. (6.13)

This operation is also typically denoted as s(b) = (x ⋆ w)(b), where the first function is often
referred as the input while the second function is called kernel. The output is sometimes
called feature map. Machine vision algorithms often involve convolutions over more than
one axis at a time. For example, if the model has to process an image, the convolutional
kernel must slide along rows and columns. Given a two-dimensional image I as input and a
two-dimensional kernel K, convolution can be defined as:

S(i, j) = (K ⋆ I)(i, j) =
∑

m

∑

n

I(i−m, j − n)K(m, n). (6.14)

An example of convolution applied to a 2D input is represented in Figure 6.4.
The success of CNNs is due to three important concepts connected to the use of the convolu-
tion operation, that can improve a machine learning model: sparse interactions, parameter
sharing, and equivariant representations [63].
Fully-connected neural networks are composed by layers that compute a matrix multipli-
cation between the parameters of the units and the inputs. In contrast to fully-connected
neural networks, where each neuron in the input layer is connected to a neuron in the hidden
layer, in a CNN only a small region of input layer neurons can connect to neurons in the
hidden layer. These regions are referred to as local receptive fields. The local receptive field
is translated across the input data to create a feature map from the input layer to the hidden
layer neurons. This characteristic has a positive impact on the memory consumption: in
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Figure 6.4: Example of 2D convolution. The output is computed only for positions where the
kernel lies entirely within the image. Note how the upper-left element of the output is computed
by applying the kernel to the corresponding upper-left region of the input.

fact, the number of parameters to store is lower, as well as the number of operations re-
quired to compute the output. The concept of sparse interactions and local receptive fields
is illustrated in Figures 6.5 and 6.6.
The idea of parameter sharing refers instead to the fact that each element of the kernel
is applied at every position of the input, in contrast to a fully-connected neural network,
where each element of the weight matrix is applied only to an element of the input. This
results in learning a small set of parameters for each convolutional layer (the parameters of
the kernel), rather than learning a separate set of parameters for every input location.
Sharing parameters allows the filter to look for the same pattern in different regions of the
input, which leads to a property called equivariance to translations. For example, when an
image is processed through a convolutional layer, the resulting output is a 2D map that
describes where certain features appear in the input sample. If the object shown in the
input is moved, the output representation will move of the same amount of pixels. This
can be useful when we want to detect the same edges, corners or patterns that may appear

Figure 6.5: Left: in fully-connected neural networks, each neuron in the input layer is connected
to all the neurons in the hidden layer. Right: Convolutional Neural Networks are characterized by
sparse interactions, i.e., a neuron in the input layer affects only a subet of neurons in the following
layer.
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Figure 6.6: Left: in fully-connected neural networks, each neuron is affected by all the neurons
in the previous layer. Right: in Convolutional Neural Networks only a small region of input layer
neurons is connected to a neuron in the hidden layer. This region is known as local receptive field.
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Figure 6.7: Example of ReLU and pooling functions applied to the output of the convolution
operation. The pooling step keeps the maximum value in a 2 × 2 neighbourhood.

everywhere in the image.

6.4.2 Pooling

Typically, a convolutional layer is composed of three stages. In the first one the layer
performs several convolutions in parallel and produce a linear representation of the input.
This linear stage is followed by the usual nonlinear activation function (Section 6.3.5), which
represents the detector stage. Finally, a pooling stage is performed, that replaces the output
of the convolutional layer at a certain position with a summary statistic of the neighboring
outputs (see Figure 6.7 for a numerical example of these steps).
In this way, pooling stage helps to make the output representation of the convolutional layer
invariant to small translations of the input. A typical example of pooling operation is the
max pooling [165] that keeps the maximum output in a rectangular neighbourhood. Pooling
reduces the dimensionality of the feature map by condensing the output of small regions of
neurons into a single output. This helps simplifying the following layers and reduces the
number of parameters that the model needs to learn.
Pooling is an essential operation also to handle inputs of varying size. For example, to
perform the classification of images of variable dimensions, the final classification layer must
have a fixed size. This can be obtained by changing the size of an offset between pooling
regions so that the classification layer always receives the same number of summay features
regardless of the image dimensions.
To summarize, combining convolution and pooling in tens or hundreds of hidden layer, a
CNN can learn to detect different features in an image. Every hidden layer increases the
complexity of the learned image features. For example, the first hidden layer learns how to
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detect edges and the last learns how to detect more complex shapes. Just like in a fully-
connected network, the final layer connects every neuron from the last hidden layer to the
output neurons, to produce the final output.
There are three ways to use CNN for image analysis. The first method is to train a CNN
from scratch. This method is highly accurate, although it is also the most challenging,
as one might need hundreds of thousands of labelled images and significant computational
resources. The second method relies on transfer learning, which is based on the idea that
one can use knowledge of one type of problem to solve a similar problem. For example, one
could use a CNN model that has been trained to recognize animals to initialize and train
a new model that differentiates between cars and trucks. This method requires less data
and fewer computational resources than the first. With the third method, one can use a
pre-trained CNN to extract features for training a machine learning model. For example, a
hidden layer that has learned how to detect edges in an image is probably relevant in images
from many different domains.
The characteristics of CNNs illustrated so far led us to think of their use also to solve the
full-waveform LiDAR data classification problem, as described in the following.

6.5 Proposed Framework

As previously mentioned, the novel method proposed in this chapter for point cloud classi-
fication tries to take advantage of the useful information provided by waveforms recorded
by modern laser scanners and of the potentialities offered by deep learning for solving clas-
sification and segmentation tasks. The entire architecture is summarized in Figure 6.8 and
described in detail in the following sections.
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Height Information

n channels

1 channel
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Output Segmentation Map, n labels
Segmented Image

Classification
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Figure 6.8: Workflow of the proposed classification method. First, the waveform classifier (a
standard CNN) predicts the point class only exploiting full-waveform data. Predictions are then
mapped into an image, together with the height information derived from the 3D coordinates of
the points. The resulting multi-channel image is then processed by a FCN (U-net) that refines
predictions using spatial information.

6.5.1 Waveform Classifier

In the first step of the algorithm, raw waveform data are given as input to a classifier that
outputs a vector of length n (with n total number of classes) containing the probability that
the analyzed input belongs to a certain class. The idea is to train a CNN classifier that
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Figure 6.9: Architecture of the proposed networks. At the top, the waveform classifier. At the
bottom, the U-net model used for the image segmentation.
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provides a compact way to describe each waveform. In fact, as discussed in Section 6.4,
CNNs are particularly suited for processing data that have a known grid-like topology, so
they can also be applied to time series data such as audio tracks or, as in this case, the
recorded waveforms.
The architecture of the CNN used in the proposed method is shown in the upper part of
Figure 6.9. More in detail, the waveform, consisting of a vector of 160 elements, is fed
into two consecutive 1D convolutional layers with kernel size 3, that have 32 and 64 filters,
respectively. Both layers are followed by a rectified linear unit (ReLU) activation function
and a max-pooling layer with kernel size 2. As shown in Section 6.3.5, the activation function
is necessary to introduce nonlinearity, whereas the max-pooling layer helps to make the
representation approximately invariant to small translations of the input and decreases the
computational effort reducing the representation size (Section 6.4).
After the convolutional layers, the network exploits two fully connected layers to perform the
classification. The number of neurons is 2048 and 1024, respectively. Both fully connected
layers are followed by a ReLU activation function and a dropout layer (Section 6.3.7) with
a dropout rate of 0.5. The output layer is a n neurons layer followed by softmax activation
function (Section 6.3.4) which produces a probability distribution over n classes.
As an alternative to this model, we tested also various autoencoder configurations to generate
a description of the waveform. However, as it will be shown in Section 6.6.3, the classifier
proved to perform better.

6.5.2 Point Cloud to Image

The accuracy that can be achieved by the first CNN, that exploits only raw waveform
data, is not sufficient, thus additional spatial information must be considered for a precise
classification.
The idea is then to map the point cloud into a two-dimensional image, exploiting (x, y)
coordinates of the points that correspond to the first return (echo) registered in each wave-
form. In this way, spatial positions and geometrical relationships between neighbouring
data are taken into account. The resulting image has multiple channels: every pixel stores
the n-dimensional probability distribution vector, provided by the classifier employed in the
first stage of the procedure, and the height of the data falling in the pixel. The point cloud
classification problem can therefore be cast to the segmentation of an image, that assigns a
class label per-pixel. This task can be solved by a Fully Convolutional Network (FCN), as
described in detail in Section 6.5.3.
During the mapping procedure a loss of information inevitably occurs because of collisions,
i.e., more than one point is mapped to the same pixel. This phenomenon has a negative
impact on the accuracy of the algorithm. It is possible to limit collisions by reducing the
pixel size, which entails enlarging the image, and at the same time increasing the computing
time. Please note however that collisions are problematic only when involving points of
different classes, otherwise a single class label is adequate for all the points.
With the parameters chosen in our experiments, approximately 5% of the points of the
dataset collides, but fortunately less than 0.5% involve points with different labels. In that
cases, the point with the highest altitude value is chosen, in order to improve classification
of small and thin objects such as towers and power lines, which are the most critical classes.

6.5.3 Image Segmentation via U-net

CNNs were firstly designed to solve image classification tasks, where the desired output is a
single class label assigned to the input image. However, in recent years several architectures
have been proposed to perform image segmentation [31, 105], allowing to assign a class label
to each pixel. In particular, we started from the so called U-net model [129] and implemented
a FCN to segment the multi-channel image created as described in the previous section. A
FCN is composed only of convolutional layers without any fully-connected ones. This allows
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Figure 6.10: In order to be processed by the U-net model, an image of arbitrary size is splitted
in overlapping tiles of size 256 × 256 with an overlap of 28 pixels.

to operate on an input of any size, producing an output of corresponding spatial dimensions
[105].
The network we employed, illustrated in Figure 6.9, consists of a contracting path (upper
part) and an almost symmetrical expansive path (bottom part). In the contracting path,
the network looks like a typical CNN able to recognize both low and high level features.
Each layer is composed by two 3 × 3 convolutions, each followed by batch normalization
and ReLU activation function. A 2× 2 max-pooling operation is then applied to reduce the
representation size by a factor of two, starting from an input of dimensions 256 × 256 and
reaching a size of 8 × 8 at the final layer of the contracting path. The number of feature
channels is doubled at each layer with respect to the previous one. The first layer outputs
64 feature maps, whereas the last one 2048.
Every layer in the expansive path consists instead of an upsampling of the feature maps
that increases the resolution of the output of the previous layer, a concatenation with the
corresponding feature maps from the contracting path and three 3 × 3 convolutions, each
followed by batch normalization and a ReLU activation function. At the final layer a 1× 1
convolution is used to map each 64 components feature vector to the desired number of
classes. While the contracting path captures context information, the expansive path enables
precise localization [129], thus allowing a per-pixel labelling.
The U-net consumes the multi-channel image created as described in Section 6.5.2. The first
layer of the U-net model is designed so as to take in input images of fixed size (256× 256 in
our case) but a point cloud can be mapped in a much larger image. An image of arbitrary
size can be processed by an overlap-tile strategy. Since convolutions in our U-net are padded,
the valid portion of the 256×256 output layer is reduced by 14 pixels at each side. Therefore
input tiles must overlap (by 28 pixels) in order to provide a valid output for each pixel, as
shown in Figure 6.10.

6.6 Experiments and Results

The networks have been implemented in Keras [30] and run on a Tesla K40c GPU. Validation
has been performed on a dataset that we manually labelled and will made available on the
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Table 6.2: Points distribution over the six classes, divided into training and test sets.

Training Test

Label Class # Points % # Points %

1 ground 1787352 20.4 193070 18.1

2 vegetation 4719634 53.9 765327 71.7

3 building 1514486 17.3 49138 4.6

4 power line 71978 0.8 8151 0.8

5 tower 32008 0.4 1829 0.2

6 street path 633606 7.2 49580 4.6

web to allow for future comparisons.

6.6.1 Dataset

Our networks have been trained and validated using a dataset acquired by Helica s.r.l. with
a Riegl LMS-Q780 full-waveform airborne laser scanner. The surveyed area contains both
natural surfaces such as ground and vegetation, as well as artificial objects such as buildings,
power lines and transmission towers.
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Figure 6.11: Waveform samples.

Three different information are associated to every measured point contained in the dataset,
namely the waveform registered by the LiDAR full-waveform sensor, described by a vector
of 160 values, the 3D coordinates of the point and the label that shows the class to which
the point belongs. These labels have been assigned manually among six classes that were
identified: ground, vegetation, building, power line, transmission tower and street path.
The point cloud is composed by more than 9.8 million points, unevenly distributed over the
classes. The dataset is indeed very imbalanced due to the different shape of the scanned
objects and the occupied area: e.g., the number of points belonging to vegetation and ground
is much higher than the number of points belonging to power line and transmission tower
classes. Table 6.2 shows in detail the points distribution over the classes.
To handle the entire point cloud, the dataset is divided into tiles, each containing a different
number of points. In the experiments, one tile is used as test dataset (corresponding to
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approximately 10% of the total number of points), while the remaining tiles are exploited
to train the models.

6.6.2 Training

To overcome the imbalanced distribution of the points over the six classes, when training the
waveform classifier (Section 6.5.1) we sample with replacement a fixed number of waveforms
for each class. More specifically, we employ 200 thousand waveforms per class, for a total
of 1.2 million samples. We tested also techniques to balance the class distribution for the
training stage [27, 73] but no significant improvement on the final results can be noticed.
The training is performed using categorical cross-entropy as loss function and Adam opti-
mizer [89] with 0.001 learning rate (Section 6.3.6), while dropout is applied with rate 0.5 on
the two fully-connected layers. The weights are initialized as described in [58]. The CNN
has 12 million trainable parameters and, fixing the batch size to 256, a training epoch takes
approximately 30 seconds and it converges after a few minutes.
Regarding the U-net (Section 6.5.2), the training is done using 15 thousand 256 × 256
windows with 7 channels for each pixel (see Figure 6.13). Six channels correspond to the
probability vector over the six classes provided as output by the classifier, while one channel
contains the height information. Please note that the training images are randomly cut out
and extracted from the much larger image in which the training point cloud is mapped. To
take into account the unbalancing of the point distribution over the classes, it is ensured
that 1700, 3400 and 3400 training images contain pixels belonging to building, power line
and transmission tower, respectively, which are the under-represented classes.
For the training of this FCN, categorical cross-entropy is used as loss function and Adam
optimizer [89] is applied with learning rate 0.0002, while the weights are initialized as de-
scribed in [58]. Choosing a batch size of 8 images, the training of the U-net model (with 138
million trainable parameters) takes approximately 80 minutes per training epoch, reaching
convergence after 30 epochs.
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Figure 6.12: Confusion matrices: each row of the matrix represents the instances in an actual
class while each column represents the instances in a predicted class. Values are normalized so that
the sum of every row is equal to 1. Left: output of the waveform classifier (first stage). Right:
Output of the U-net (second stage).

6.6.3 Testing

In order to report results that are independent from the training stage, to some extent, five
trainings were performed independently, each time initializing the weights from scratch and
randomly extracting the training dataset from the entire point cloud, as described in Section
6.6.2. The resulting overall accuracy, computed on the test set, is equal to 92.6(±0.7)%,
while the average per class accuracy is 87.0(±0.3)%.
As can be noticed from the confusion matrix represented in Figure 6.12 (right), that reports
the results for one out of the five trainings, the network performs very well for the classes
vegetation, building, power line and transmission tower. Instead, points belonging to the
class street path are often confused with the class ground. This is probably due to the fact
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that the shape of the waveforms belonging to these two classes are often indistinguishable
(see Figure 6.11) and also the geometric characteristics of ground and street path points can
be very similar. In practical applications (e.g., for the creation of DTMs) these two classes
are usually merged together. If we consider ground and street path as a unique class, the
overall accuracy increases to 96.1(±0.2)% and the average per class accuracy to 92.5(±0.5)%.

(a) (b) (c) (d) (e)

Figure 6.13: Sample images (256 × 256) and results. (a) Ground truth images used for training
and validation; (b) Height channel; (c) Labels predicted by the waveform classifier (maximum
probability) that are fed to the U-net; (d) Labels produced by the U-net (maximum probability);
(e) 3D views of the classified point cloud, coloured with the predicted labels. Classes: ground

(brown), vegetation (green), building (orange), power line (white), transmission tower (grey), street

path (yellow).

Although a direct comparison with other methods using full-waveform LiDAR is not possible,
for the labelled full-waveform data used in our experiments is the first public dataset of this
kind, Table 6.3 suggest that our method compares favourably with the state of the art (the
table refers to the methods described in Section 6.2).

Table 6.3: Synopsis of state-of-the-art methods.

Ref # classes Method Accuracy

Ours 6 CNN 92.6

Ours 5 CNN 96.1

[153] 2 threshold 89.9 - 93.7

[113] 3 SVM 95.3

[158] 9 SVM 92.6 (+ hyperspectral)

[117] 3 SOM 93.1

Examples of the input provided to the U-net model and of the obtained results for the test
set are shown in Figures 6.13, 6.14 and 6.15.
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Figure 6.14: Ground truth.
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Figure 6.15: Point cloud classified by our method.
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We also tested the performances of the waveform classifier alone (Section 6.5.1), which turns
out to be unsatisfactory, for it reaches 61.1% overall accuracy in the test set. The confusion
matrix shown in Figure 6.12 (left) indicates that some classes are merged together, namely
ground, building and street path, and also the class transmission tower is often misclassified.
This confirms that our approach reaches high accuracy in the point cloud classification
thanks to the combination of full-waveform data and spatial support.
As previously mentioned, we tried to replace the waveform classifier with autoencoders with
different code dimensions. The best performance was achieved with code dimensions equal
to the number of classes, but the overall accuracy was only 84.9%. When merging the classes
ground and street path, the overall accuracy increases to 89.5%.

6.7 Conclusion

In this chapter we presented an innovative algorithm based on CNNs to perform full-
waveform LiDAR point cloud classification. The proposed network employs directly the
raw full-waveform data, learning both features and classifier end-to-end, unlike other meth-
ods that require preliminary extraction of features. It can be applied to the classification of
points belonging to any kind of area and no prior knowledge on the data characteristics is
required.
Experiments report an overall accuracy of 92.6%, on six classes including challenging in-
stances such as power line and transmission tower. Although a direct comparison with
other methods using full-waveform LiDAR is not possible, experiments suggest that our
method compares favourably with the state of the art. The labelled dataset that we will
made available to the public domain will allow reproducibility and comparison by other
authors.
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Chapter 7

Seamless Image Mosaicking via
Synchronization

This chapter proposes an innovative method to create high-quality seamless planar mosaics.
The developed pipeline ensures good robustness against many common mosaicking problems
(e.g., misalignments, colour distortion, moving objects, parallax) and differs from other
works in the literature because a global approach, known as synchronization, is used for
image registration and colour correction. To better conceal the mosaic seamlines, images
are cut along specific paths, computed using a Voronoi decomposition of the mosaic area
and a shortest path algorithm. Results obtained on challenging real datasets show that the
colour correction mitigates significantly the colour variations between the original images
and the seams on the final mosaic are not evident.

7.1 Introduction

Aligning and stitching together multiple images is a classical problem in photogrammetry
[125] and computer vision [152, 145, 23]. Image mosaicking finds application in various
scenarios, ranging from satellite or aerial imagery [45], street-view panoramas [101] or video
stabilization [72], to name a few.
Since there are many technical difficulties in taking a photo with a very large field of view
(FOV), often the only practical solution is to acquire multiple images with smaller FOV and
merge them together. Image mosaicking can be therefore defined as the process of stitching
different photos of the same scene in a single wide image. It can be performed independently
from (and prior to) the structure-from-motion and dense matching phases, that are instead
required to generate orthophotos. The goal of mosaic creation is, in fact, to visualize a wide
area on a single image under perspective projection, whereas orthophotos are orthographic
projections. Image mosaicking exploits homography as a transformation, thus a mosaic can
be correctly created only if images are either captured from the same position or the images
depict a planar surface in object space. When these conditions are not satisfied, the use of
homography for image alignment can lead to a result in which parallax effects are evident
and it is therefore necessary to resort to techniques that are able to conceal this issue and to
create pleasant looking mosaics. The final mosaic should be as natural as possible, ideally
indistinguishable from a real photo that covers the entire scene.
Aligning and stitching images into seamless mosaics is a procedure usually composed by
three main steps: image registration, colour correction and blending. In the last decades
several methods for automatic image mosaicking appeared in the literature, proposing a
complete pipeline for the final mosaic generation [41, 116, 23] or focusing the attention on
the optimization of one of the previously cited steps [135, 123, 101].
Algorithms for image alignment can be divided into two broad categories [145]: direct (pixel-
based) and feature-based. Direct methods exploit the entire image data, thus providing very
accurate registration but requiring at the same time a close initialization. Feature-based
algorithms, instead, do not require initialization and can be computationally less expensive.
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Moreover, since the introduction of invariant features (e.g. SIFT, [106]) and robust feature
matching, feature-based methods have gained increasing attention and are nowadays widely
used. [23] proved that, formulating stitching as a multi-image matching problem and using
invariant local features to find matching between the images, lead to a method insensitive
to the ordering, orientation, scale and illumination of the input images.
To obtain a clean, pleasant looking mosaic, a robust alignment process must be followed
by colour correction. Neighbouring images can indeed show colour and appearance differ-
ences due to exposure level variation, changes in lighting condition and different camera
settings. Colour correction methods proposed in the literature can be divided into model-
based parametric approaches and non parametric ones [159]. The former assume that the
relation between two images can be described by a colour transfer function, whereas the lat-
ter consider no particular parametric format of the colour mapping function and typically
use a look-up table to directly record the mapping of the colour levels. [159] evaluated the
performance of various colour correction approaches, showing how the gain compensation
method by [23] and the local colour transfer approach by [146] are fast, effective and general
(applicable in various scenarios).
Even after colour correction, seams and artifacts can be visible in the mosaic. Image blending
techniques are able to conceal the colour differences along the seamlines but cannot han-
dle residual geometric misalignment deriving from parallax and moving objects. For these
reasons, it is mandatory to compute optimal seamlines that avoid crossing overlap regions
with high image discrepancies. [41] used the Dijksta’s algorithm [43] to compute the best
cutting path dividing overlapping regions, segmenting the mosaic into disjoint regions and
sampling pixels in each region from a single source image. [152] proposed a weighted vertex
cover algorithm in order to remove effects caused by moving objects and [101] formulated
the seamline optimization as a unified graph cuts energy minimization problem, concealing
the image parallax in the resulting mosaic.

7.1.1 Contribution

The goal of this chapter is to develop an innovative procedure to create seamless mosaics ex-
ploiting a global approach, known as synchronization [139], described in Section 7.2. Starting
from the geometric and radiometric information between pairs of overlapping images, the
synchronization method is able to simultaneously estimate global homographies and colour
corrections for all the images, avoiding the errors that accumulate when adding an image
at a time to the mosaic. Finally, in order to minimize and conceal the seams that can still
be visible after the global colour correction (e.g., due to parallax and moving objects), the
cutting paths are determined using a Voronoi tessellation and optimized with the Dijkstra’s
algorithm [43]. The entire pipeline is presented in Section 7.3.
The experimental validation, illustrated in Section 7.4, was conducted on datasets composed
by tens of images, acquired by a helicopter or an Unmanned Aerial Vehicle (UAV). Although
the scenes are not perfectly planar, there are moving objects and strong illumination and
intensity differences, the obtained mosaics appear homogeneous, without artifacts, and the
seams are well concealed.

7.2 Synchronization

Given a network of nodes, where each node is characterized by an unknown state and pairs of
nodes can measure the ratio (or difference) between their states, the goal of synchronization
is to estimate the unknown states from the pairwise measures. The problem can be modeled
as a graph where nodes correspond to the unknown states and edges encode the pairwise
measures, and it is well-posed only if such a graph is connected.
As an example, consider the graph in Figure 7.1, where nodes and edges are labelled with
integer numbers: the task is to recover the unknown numbers in the nodes by measuring their
differences (on the edges). As one can notice, this problem corresponds to a topographic
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levelling, where differences in elevation between pairs of points are measured, and one want
to retrieve the height of each point. Two things can be immediately observed: a solution
exists only if the sum of the differences along any cycle is zero, and, when it exists, the
solution is not unique, for adding a constant to the nodes does not change the differences.

Figure 7.1: The synchronization problem. Each node is characterized by an unknown state and
measures on the edges are differences (or ratio) of states. The goal is to compute the states that
best agree with the measures.

Mathematically, states are represented by elements of a group Σ. Several instances of syn-
chronization have been studied in the literature, which correspond to different instantiations
of Σ. Among them, it is worth citing SE(d) for rigid-motion synchronization [7], SL(d) for
homograpy synchronization [135] and GA(d) for affine matrix synchronization. Please note
that SL(d) is a subgroup of GL(d), whereas SE(d) and GA(d) are subgroups of GL(d + 1).
Thanks to the formalism of synchronization, several photogrammetric and computer vi-
sion problems can be addressed without relying on features or points, since the problem is
formulated in frame space, or, more abstractly, in a group.
In this chapter the attention is focused on synchronization over SL(3), that will be applied
for image registration, and over GA(1) for colour correction.
In order to formally define the problem and its solution, let Σ be a group and let ∗ denote
its operation. Suppose that the pairwise relations between the index pairs (i, j) ⊆ ¶1, .., n♦
x ¶1, .., n♦ are known, and refer to them as zij . Synchronization can be formulated as the
problem of recovering xi ∈ Σ for i = 1, .., n such that the following consistency constraint
is satisfied

zij = xi ∗ x−1
j . (7.1)

The solution is defined up to a global (right) product with any group element, i.e., if xi ∈ Σ
satisfies (7.1) then also xi ∗ y satisfies (7.1) for any (fixed) y ∈ Σ.
If the known pairwise measures are noisy, the consistency constraint cannot be satisfied
exactly. Thus, the searched solution is the one that minimizes the consistency error :

ϵ(x1, x2, .., xn) =
∑

(i,j)

δ(zij , xi ∗ x−1
j ) (7.2)

where δ : Σ ×Σ → R+ is a metric function for Σ [5].

7.2.1 Synchronization over (GL(d), ·)
In this section we consider the synchronization problem over the General Linear Group
GL(d), which is the set of all d × d invertible matrices, where the group operation ∗ is



102 Chapter 7. Seamless Image Mosaicking via Synchronization

matrix multiplication and 1Σ = Id. Let Xi ∈ Rd×d and Zij ∈ Rd×d denote the matrix
representations of xi ∈ Σ and zij ∈ Σ, respectively. Using this notation, Equation (7.1)
rewrites Zij = XiX

−1
j .

Let us collect the unknown group elements and all the measures in two matrices X ∈ Rdn×d

and Z ∈ Rdn×dn respectively, which are composed of d× d blocks, namely

X =

⋃
⎢⎢⨄

X1

X2

. . .
Xn

⋂
⎥⎥⎦ , Z =

⋃
⎢⎢⨄

Id Z12 . . . Z1n

Z21 Id . . . Z2n

. . . . . .
Zn1 Zn2 . . . Id

⋂
⎥⎥⎦ . (7.3)

If not all the pairwise measures Zij are available, the input matrix becomes ZA := Z ⊙
(A ⊗ 1d×d), where ⊙ denotes the Hadamard product, A is the adjacency matrix and the
Kronecker product with 1d×d is required to match the block structure of the measures. The
n×n adjacency matrix is constructed as follows: Aij = 1 if the pairwise measure Zij exists,
Aij = 0 otherwise. Accordingly, the consistency constraint writes

ZA = (XX−♭)⊙ (A⊗ 1d×d) (7.4)

where X−♭ ∈ Rd×dn denotes the block-matrix containing the inverse of each d× d block of
X.
It can be shown [4] that

ZAX = (D⊗ Id)X (7.5)

thus an estimate of X is represented by the eigenvectors of (D⊗ Id)−1ZA corresponding to
the d largest eigenvalues, where D is the degree matrix defined as D = diag(A1n×1). This
is also called the spectral solution.

7.2.2 Synchronization over SL(d)

Consider now the Special Linear Group SL(d), that is the set of d × d matrices with unit
determinant

SL(d) = ¶R ∈ R
d×d s.t. det(R) = 1♦. (7.6)

Synchronization over SL(3) corresponds to the homography synchronization problem. Since
SL(d) is a subgroup of GL(d), the problem can be addressed via the spectral solution, which
computes the top d eigenvectors of (D⊗ Id)−1ZA, that are collected in a dn× d matrix U.
In order to obtain elements of SL(d) from U, each d×d block in U, denoted by Ui, must be
scaled to unit determinant [135], which can be done by dividing Ui by d

√
det(Ui). However,

if det(Ui) is negative and d is even, real roots do not exist; in this case the determinant can
be always made positive by exchanging two columns of U.

7.2.3 Synchronization over GA(d)

Let us finally consider the Affine Group GA(d), that is the set of invertible affine transfor-
mations in d-space, which admits a matrix representation through (d + 1)× (d + 1) matrices

GA(d) =

∮[
M v
0′ 1

]
, s.t. M ∈ R

d×d, v ∈ R
d

⨀
. (7.7)

GA(d) is a subgroup of GL(d + 1), therefore the synchronization problem can be solved by
computing the top d + 1 eigenvectors of (D ⊗ Id+1)−1ZA. Since this approach leads to an
algebraic solution, it does not enforce constraints that matrices in GA(d) should satisfy.
Specifically, the output matrix U will not have vector [01×d 1] in rows multiple of d + 1.
In order to recover X from U it is sufficient to choose a different basis for the resulting
eigenvectors that satisfies such constraint, which can be found by taking a suitable linear
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combination of the columns of U, as explained in [7]. More precisely, let F ∈ Rn×(d+1)n be
the 0/1-matrix such that FU ∈ Rn×(d+1) consists of the rows of U with indices multiple of
d + 1. The coefficients a, b ∈ Rd+1 of the linear combination are solution of

FUa = 0n×1, FUb = 1n×1 (7.8)

where the first equation has a d-dimensional solution space. Let a1, . . . , ad be a basis for
the null-space of FU. Thus X is recovered as X = U[a1, . . . , ad, b].
In the presence of noise, Equation (7.8) is solved in the least squares sense. Then, such a
solution is projected onto GA(d) by forcing the rows multiple of d + 1 to [01×d 1].

Figure 7.2: Flowchart of the proposed method.

7.3 Proposed Method

The novel algorithm proposed in this paper tries to overcome some common issues in mo-
saic generation (e.g. misalignments, colour correction, moving objects) thanks to the use
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of synchronization and the search for an optimal cutting path between overlapping images.
The entire process is summarized in Figure 7.2 and described in detail in the following
paragraphs.

7.3.1 Image Alignment

The first step of the proposed procedure is to extract features from all the images (e.g. SIFT
features, [106]) and match them. A robust feature matching algorithm should be used in
order to avoid wrong matches that can cause strong misalignments between the images. For
this reason, the method proposed in Chapter 3 has been chosen.
Pairwise homographies are then robustly estimated using RANSAC [52], computing image
transformation parameters through the Direct Linear Transformation (DLT) method [1]. A
possible solution to project all the images in the same reference system for mosaic generation
is to compose relative transformations multiplying the obtained pairwise homographies.
However, this approach accumulates error at each successive multiplication. To solve this
problem, synchronization over SL(3) (see Section 7.2.2) is applied, converting in this way
pairwise homographies into absolute ones. This guarantees that all relative information are
considered simultaneously, minimizing misalignment errors among the whole dataset. The
process of homography synchronization is illustrated in Figure 7.3.

(a) (b)

Figure 7.3: Pairwise homographies (a) are converted into absolute ones (b) via synchronization.

To improve the accuracy of the synchronization process, a weighing factor can be assigned to
each pairwise homography, that describes its reliability. In practice, the unitary elements of
the adjacency matrix A contained in Equation (7.4) are replaced by the estimated weights.
In the proposed procedure, these weights are assumed to be proportional to the area of the
convex hull that contains the features matched in each image pairs.

7.3.2 Colour Correction

Changes of the illumination conditions, different camera settings and vignetting are some
of the causes that make the seams of the mosaic visible, even when the scene is planar, the
images are sharp and the alignment is perfect. Colour variations between overlapping im-
ages should be modelled by a nonlinear function and often involve the three colour channels
simultaneously. However, the simplified approach that considers the RGB channels inde-
pendently and that models the transformation with an affinity proved to work well. Thus,
in the proposed method the relation between the three colour channels of adjacent images
(i, j) is assumed to be an affine transformation, that can be written in matrix form as

[
C
1

]

i

=

[
ac bc

0 1

]

i,j

·
[
C
1

]

j

(7.9)
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where C is in turn R,G, or B. Formulating the problem in this way corresponds to estimating
the parameters of three affine transformations between each pair of overlapping images, that
have to be then composed in order to compute a global colour correction for each single
image. It is easy to see that this problem can be solved via the synchronization over the
Affine Group GA(1), described in Section 7.2.3.
In the presence of small residual misalignments, a pixel-based method used to estimate
the pairwise affine transformations can lead to inaccurate results. An alternative robust
approach, adopted in this chapter, consists in exploiting the histograms of the overlapping
area computed for both images. The parameters of the affine transformation are computed
as the angular coefficient and intercept of the straight line that fits the plot of one cumulative
histogram versus the other cumulative histogram [35].
Once all the relative affine transformations have been computed for each colour channel,
the absolute ones can be retrieved via synchronization, as done for the homographies. A
weighing matrix can be introduced, where the weights are proportional to the overlapping
area size, in order to give more confidence to the most reliable pairwise colour transformation.
Please note that synchronization retrieves absolute affine transformation, up to a global one.
This degree of freedom can be fixed by choosing one image that does not undergo colour
correction. The unaltered image can be identified automatically as the one that has the best
colour balance, or it can be defined by the user.
An example of the results achieved with this approach is represented in Figure 7.4.

(a) (b)

Figure 7.4: Mosaic before (a) and after (b) colour correction.

7.3.3 Voronoi Tessellation and Seams Optimization

Even if image alignment and colour correction produce optimal results, seams can still be
visible on the final mosaic due to, e.g., parallax or moving objects. We therefore propose an
approach that first reduces the seamlines total length and then conceals the remaining ones.
First of all, it is advisable to remove redundant images, i.e., images completely covered by
the adjacent ones. Using all the images can indeed generate a mosaic composed by many
little patches, increasing at the same time the total length of the seamlines. This issue
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can be faced searching for a subset of images with the property that no one is completely
covered by the union of the others. An iterative greedy approach can be followed to discard
redundant elements, considering an image at a time and evaluating if its projection in the
mosaic reference frame is completely covered by the projection of the other images. If so,
the current image is discarded and the dataset is updated. The process is repeated until
all the remaining elements are verified. The drawback of this procedure is that it is order-
dependent and does not guarantee that the minimum subset is kept. The process can be
driven by arranging the dataset in a convenient way, since the first images analyzed are
more likely to be discarded. A possible choice is to sort the images according to their colour
balancing or to the alignment error.
The previously described step reduces the number of tiles that compose the mosaic. To
find a method that further reduces the overall length of the seams, one can start from the
following considerations. The honeycomb conjecture [71] states that the hexagonal tiling is
the best way to divide a surface into regions of equal area with the least total perimeter.
Moreover, the Voronoi tessellation of 2D lattices of points gives an irregular honeycomb
tessellation. For these reasons, the Voronoi decomposition can be applied to approximately
minimize the total length of the seams. The seed points for the Voronoi tessellation are
assumed to be the centroid of the images projected in the mosaic plane; for each seed the
method determines a corresponding region consisting of all points closer to that seed than
to any other.

(a) (b)

Figure 7.5: (a) Image frames projected onto the mosaic reference. (b) Voronoi tessellation.

Figure 7.5(a) shows the area covered by each image after projecting it on the mosaic surface,
whereas Figure 7.5(b) represents the area assigned to the images using Voronoi decomposi-
tion.
Please note that we assume that the Voronoi region is contained in the corresponding image;
this happens in most cases, but it cannot be formally guaranteed unless a constrained



7.3. Proposed Method 107

tessellation is used.
Finally, the best cutting paths between overlapping images are computed, in order to avoid
the creation of seamlines that pass through regions where there are significant differences
between adjacent images. For each seamline, the following procedure is used:

1. Costmap computation: a costmap that provides the information for the search of the
best cutting path is constructed as the squared difference (pixel by pixel) between the
images in the overlap area.

2. Costmap to graph conversion: the 2D costmap is converted into a graph assuming
that each pixel becomes a node and that each adjacent nodes pair is connected by two
oriented edges. The edge takes the weight from the value of the end pixel.

3. Best path identification: Dijkstra’s algorithm [43] is used over the generated graph to
find the path of minimum cost.

When multiple images overlap on the same area, a costmap is computed for each image
pairs and then averaged.
The procedure described requires as input the starting and end points of the seamlines.
Since the Voronoi vertices computed before are independent from the image contents (they
depend only on the position of the image centroids), they can fall in an area where the
differences between adjacent images are high, thus negatively influencing the search of the
best cutting path. To maintain the Voronoi polygons and at the same time determine
optimal cutting paths, starting and end points are chosen as the ones that have the lowest
cost in a neighbourhood of each Voronoi vertex, as shown in Figure 7.6.

(a) (b) (c)

Figure 7.6: Costmap for the vertex optimization. The chosen vertices are represented by a red
cross.

Figure 7.7 reports an example of the seamlines detected through the proposed procedure.
First the Voronoi tessellation is performed (Figure 7.7(a)), then straight cuts between ad-
jacent images are substituted by the optimal seamlines obtained through the Dijkstra’s
algorithm (Figure 7.7(b)). One can notice that the cutting paths follow the space between
the trees and rarely cross them. This is due to the fact that the ground between the trees is
less textured and the cost corresponding to this zone is low. Thus, during the best cutting
path computation, this area is preferred over the ones covered by trees.
The whole procedure described in this section determines a segmentation of the mosaic plane
into disjoint regions. The final mosaic is obtained by filling each region with pixels sampled
from a single source image.
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Figure 7.7: Seams produces by Voronoi tessellation (left) and after optimization.

7.4 Experimental Validation

The proposed method was validated on two challenging dataset of aerial images. The results
were compared to the ones obtained with AutoStitch1 [23], a popular software for image
stitching.
Dataset 1 is composed by 29 images of size 1600× 1200 pixels, acquired by Helica s.r.l. with
a helicopter during a four strips flight. The images are characterized by small overlap areas
and varying camera settings were used for each strip acquisition, thus the images present
significant colour differences that have to be corrected during the mosaic generation. In
particular, some images have a preponderant unrealistic red colour. The scene is almost
planar (parallax effects are limited) but there are moving vehicles.
Figure 7.8 shows the mosaic created by aligning the images via homography synchronization
(see Section 7.3.1) and stitching them together according to a simple painter’s algorithm
(newer images overwrites older ones). Small misalignments can be noticed and strong colour
distortions are evident between adjacent strips.
The result obtained with the complete method proposed in Section 7.3 is represented in Fig-
ure 7.9(a). Please note how the colours have been corrected with the affinity synchronization
step (Section 7.3.2) and differences between adjacent strips have been removed (reddish im-
ages visible in Figure 7.8 are now indistinguishable). Moreover, misalignments have been
concealed and the seamline optimization carried out with the Dijkstra’s algorithm (Section
7.3.3) preserved the integrity of the moving objects and avoided ghosting effects. A limited
number of seams are still visible on the street and they could be easily eliminated by apply-
ing a blending algorithm at the end of the proposed procedure. The mosaic generated with
AutoStitch is shown in Figure 7.9(b). The software uses gain compensation and blending to
conceal seams between overlapping images. The obtained mosaic is good, no misalignment
is visible and the colour correction algorithm worked quite well. However, images with a
strong red component are still visible and the blending in correspondence of moving objects
caused ghosting effects.
Dataset 2 is composed by 27 images of size 4000 × 3000 pixels, acquired with a UAV with
a forward and a side overlap of 80%. The scene is not planar (there is a large building in
the middle and high trees in the bottom left part) and this determines strong misalignments
after the homography computation. There are no evident colour differences except for weak
illumination changes. No moving objects can be noticed in the images.

1 available at http://matthewalunbrown.com/autostitch/autostitch.html
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Figure 7.8: Dataset 1: Mosaic obtained after image alignment, with no colour correction and
seamline optimization.

(a) (b)

Figure 7.9: Dataset 1. (a) Mosaic obtained with the proposed method. (b) Mosaic obtained with
AutoStitch.
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Figure 7.10: Dataset 2: Mosaic obtained after image alignment, with no colour correction and
seamline optimization.

(a) (b)

Figure 7.11: Dataset 2. (a) Mosaic obtained with the proposed method. (b) Mosaic obtained
with AutoStitch.
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Figure 7.10 shows the mosaic generated after homography synchronization, stitching images
together according to the painter’s algorithm, whereas Figure 7.11(a) represents the final
mosaic, in which colour variations and visible cuts are perfectly concealed. Due to the high
overlap, 13 images were removed because completely covered by the others. Minimizing
the number of images used to cover the entire scene results in seams of shorter length and
reduces the misalignment and parallax visible effects. For this dataset, the mosaic generated
with AutoStitch (Figure 7.11(b)) is not satisfactory. The blending algorithm in presence of
strong parallax caused blurred areas and other artifacts.

7.5 Conclusion

In this chapter we proposed a novel procedure for image mosaicking, based on the approach
known as synchronization. The image alignment and colour correction steps that usually
characterize mosaic generation were addressed as a homography synchronization and an
affine synchronization problem, respectively. Synchronization can be seen as upgrading
from relative information, which involves two overlapping images at a time, onto absolute
information, which involves all the images simultaneously. Thanks to this approach, mis-
alignments and colour differences are globally minimized, thus leading to the generation of
homogeneous, visually appealing mosaics. In order to conceal the seams that can still be
visible after image registration and colour correction, a final step is applied, that is composed
by Voronoi tessellation and seams optimization via the Dijkstra’s algorithm [43]. Results
shown in Section 7.4 proved that this novel procedure generates pleasant looking mosaic,
without resorting to blending algorithms. As a matter of fact, each pixel of the resulting
mosaic comes from a single image.
More experiments will be performed in the future, in order to assess the validity of the
proposed method also for different kind of datasets, such as satellite images.
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Chapter 8

Conclusion

In the first part of this thesis, orientation problems in photogrammetry and laser scan-
ning were studied from a methodological point of view and solved via Procustes Analysis, a
set of least squares mathematical tools used to perform transformations among correspond-
ing points belonging to a generic k-dimensional space, in order to satisfy their maximum
agreement. We provided a comprehensive survey on Procrustes Analysis, gathering several
models that were proposed in the last decades by different communities, and proposed novel
Procrustes models that can be useful in several applications.
First of all, we applied an Errors-In-Variables formulation to Procrustes Analysis and de-
rived total least squares solutions that can deal with the uncertainty affecting both sets of
observations.
We then addressed the problem of establishing correspondences between keypoint sets, that
can be formulated as a Permutation Procrustes Analysis when two sets are involved. In
particular, we proposed a novel solution to the multi-view matching problem that, given a
set of noisy pairwise correspondences, jointly updates them so as to maximize their consis-
tency. Our method is based on a spectral decomposition, resulting in a closed-form efficient
algorithm, in contrast to other iterative techniques that can be found in the literature. We
also embedded the developed multi-view matching inside the framework of the Generalized
Procrustes Analysis (GPA), a well known technique used to compute transformations among
multiple element sets. The new GPA formulation that we proposed permits to overcome the
main limitation of the classical model, i.e., correspondences among matrix elements must
be known in advance.
Finally, we implemented a variation of the classical Extended Orthogonal Procrustes Analy-
sis, called Affine Extended Orthogonal Procrustes Analysis (Affine-EOPA), that allows to
compute the transformation between two matrices composed by both points and vectors.
Motivated by a Virtual Trial Assembly (VTA) application, we derived from Affine-EOPA an
innovative model which is capable of catering for undetermined motion components, i.e., can
retrieve the best transformation among corresponding matrix elements under the condition
that the position of each plane is undetermined along its normal. The proposed method was
successfully applied for the VTA of Vessel in New York.
The second part of this work was instead devoted to remote sensing applications.
We described a novel method to perform LiDAR point cloud classification, that is based
on Convolutional Neural Networks and takes advantage of full-waveform data registered by
modern laser scanners. Thanks to the employed architecture, even challenging classes such
as power line and transmission tower can be automatically identified.
Moreover, we developed an innovative procedure to create seamless mosaics, exploiting a
global approach known as synchronization. Starting from the geometric and radiometric
information between pairs of overlapping images, synchronization allows to simultaneously
estimate global homographies and colour corrections for all the images, avoiding the errors
that accumulate when adding an image at a time to the mosaic. A final seamline optimization
step leads to the creation of high-quality planar mosaics.
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The algorithms developed in the second part of the thesis could represent valuable tools
to reduce time and costs of the remote sensing data processing, facilitating the use and
interpretation of the acquired data.
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