OPTIMAL MODELING LANGUAGE AND FRAMEWORK FOR
SCHEDULABLE SYSTEMS

Guner Orhan

October 31, 2019

OPTIMAL MODELING LANGUAGE AND FRAMEWORK FOR
SCHEDULABLE SYSTEMS

DISSERTATION

to obtain
the degree of doctor at the Universiteit Twente,
on the authority of the rector magnificus,
Prof.dr. T.T.M. Palstra,
on account of the decision of the graduation committee
to be publicly defended
on Thursday 31 October 2019 at 16.45 uur

by
Giiner Orhan

born on 25™ of July, 1989
in Ankara, Turkey

This dissertation has been approved by:

Supervisor:
Prof. dr. M. Aksit

This is a cooperation framework between Aselsan and the university of Twente. The
framework actually consists of a set of individual projects, which are carried out concur-
rently and cooperatively by a PhD student. The project PLOS proposes a productline ar-
chitecture for designing optimal schedulers for the digital receivers that takes care of ap-
plication semantics in scheduling, can cope with dynamically changing context, can deal
with variations in scheduling objectives, optimizes the scheduling criteria and causes an ac-
ceptable overhead. The productline approach enables to effectively reuse the basic building
elements of the scheduler asset base in different application settings.

UNIVERSITY OF TWENTE.

Typeset with BIEX

Cover design: The image is retrieved from [101]

Printed by: GildePrint

ISBN: 978-90-365-4873-1

DOI: 10.3990/1.9789036548731

Available online at https://doi.org/10.3990,/1.9789036548731

© 2019 Giiner Orhan, The Netherlands. All rights reserved. No parts of this thesis may be
reproduced, stored in a retrieval system or transmitted in any form or by any means with-
out permission of the author. Alle rechten voorbehouden. Niets uit deze uitgave mag wor-
den vermenigvuldigd, in enige vorm of op enige wijze, zonder voorafgaande schriftelijke
toestemming van de auteur.

Graduation Committee:

Chairman / Secretary:
Supervisor:

Committee Members:

prof.dr. J.N. Kok
prof.dr.ir. M. Aksit
prof.dr.ir. M. Aksit

prof.dr.ir. G.J.M. Smit

dr. L. Ferreira Pires

prof. dr. ir. B. Tekinerdogan
prof. dr. C. De Roover

prof. dr. A. Dogru

dr. M. Dursun

Acknowledgements

The journey from an idea to the thesis begins with difficulties such as leaving hometown
and family for the first time, traveling to not only another city, but another country. That’s
one small step for mankind, but it was one giant leap for me. In this journey, I have accu-
mulated lots of unforgettable memories. Thanks to some of my Turkish friends, colleagues,
and especially our group secretary Ida, for showing me their generous hospitality, I could
manage to finalize this activity.

First of all, I would like to show my gratitude to my supervisor Mehmet Aksit. From the
beginning of my journey to the Netherlands, he has always behaved me like my elder family
member. One of the main reasons, which avoids me giving up this study, is his warm and
kind attitude towards me. Like most Turkish students, I have had so much trouble with
scientific writing in English due to grammatical differences between Turkish and English.
Nevertheless, he has never left me alone. He has sat next to me and helped me to examine
each sentence word-by-word. I can never forget these moments throughout my life. We
have so much memories with him, but there is one that I will remember. When I heard
that my mother had got cancer, the whole world fell upon me. He has sat in front of me
for at least two hours and convinced me that everything would be fine, and yes. He was
right. My mother is getting better each day. Again, I would like to thank him for being
such a wonderful person and for every word that I have learned from him. I will always be
in touch with him throughout my life. In addition, Mustafa Dursun is one of the greatest
person and team leader in my company. He was my mentor and coordinate everything
between the company and the doctorate program. It is impossible to express my feeling for
him. He was such a wonderful brain and big-hearted person. If I had a brother, he would
definitely be him. I wish the best for him and his family. As my second mentor, I would like
to thank Cihan for sharing his wide knowledge with me. I wish one day I would be “the guru
of radar systems” like him. It is impossible to forget two of the most significant supporter
of this program. They are Hakime Ko¢ and Giirsel Sahin, who are my manager and director
in my company, respectively. They made the bureaucratic processes much easier for me. I
would like to thank them for all.

Secondly, I would like to mention about my parents. Although we have stayed apart from
each other, we have been as close as one-telephone distance. Almost each day, I have called
my parents via video call. Although it is not the same like sitting and chatting together in
the same place, this is the only way that I could talk and see them from more than 3000

km distance away. Before coming to the Netherlands, I had always lived together with my
family. This was really difficult for me once I started to live here. At the end of the first
year, I got used to live by myself. However, nothing decreased my longing towards my
parents. They have always supported me for each decision that I had made either correct
or wrong. They have always showed me what are ethical and correct and what are not. I
always feel myself lucky for having such wonderful and extraordinary parents. Thank you,
my parents! If I am standing here and getting this degree, it is just because of them. It is
impossible to complete this part without mentioning about my grandpa. He was my first
mentor in primary school. Thanks to him, he made me like Math and Science. Now, He
is 96. I am afraid of even the feeling of losing him someday. He is not different than my
parents. Sometimes, he meant more than my parents in my life. He encouraged me to get
this degree, and for this reason, I will show my respect to him until the death tears us apart.
Although he may not be with me, I always believe that he will eternally be with me and
watch me above the clouds.

At the end of the third year, someone entered my life. At that time, I was not aware
that she would be the center of my life. At the beginning, my first impression was she had
been talking too much compared to me (I do not want to be misunderstood. She never lost
anything from being a talkative person :)). After knowing her better and understanding
her unique way of thinking, I really like her a lot and started to think that she was the right
person with whom I can live all my life. Unlike me, she is always cheerful and funny, and
has a really big heart. She was the childish person who I have looked inside of me to find
all the time, but could never find. I do believe that couples should complete the missing
parts of each other for great and eternal happiness. Therefore, we got engaged on 22nd of
July, 2019. Now, I think that it was the one of the correct decisions that I have made for
the whole life. In near future, I will definitely take one step further and marry her. I am
not a romantic guy that she has expected from me. Maybe, it is because I am a computer
engineer, but I can promise one thing with my heart: I do and always will love her. I hope
we will accumulate so much happy and unforgettable memories together. I love you so
much!

Let’s talk about my Turkish friends in the Netherlands. Maybe, I should call them as
“Turkish mafia” as other colleagues call. I would like to say thank them by saying their
name in my thesis. I would like to say at least one word for each of my friend. Muharrem
(basgan) is the leader of our Turkish mafia :). You are really kind and helpful. As one of my
paranymph, Akin is the one of the wonderful person I have met here. The only thing that I
can say is he is and always will be more than just a friend for me. As the second paranymph,
Oguzhan (Ramazan) is my ahiretlik (I don’t know an English word for it). We have shared
too many things (I do not want to talk about everything that we shared. I think this is not
the right place :)). For instance, we have moved lots of houses and made constructions
with his songs from Black sea district of Turkey. We have played basketball, swim, walked,
talked, eat together. I will never forget each moment that we had together. Devrim (hoca)
is the lecturer at UT. We had many fruitful political discussion. To be honest, I always envy
on his romantic part. He knows how to touch the hearth of the girls. I will really miss the

Vi

days when we played basketball together. Deniz! You are such a perfect person that your
ex-supervisor has never deserved. I wish you will find the life that you have dreamed of in
Italy. Seda and I will visit you in your new home as soon as possible. Moreover, I would like
to thank you all: Burcu, Cihan, Yigitcan, Pelin, Derya Demirtas, Derya Atac, Atil, Armagan
and Nurcan. Thank you all for all the memories.

Finally, I would like to thank to all of my colleagues in my group, Formal Methods and
Tools. I would like to mention about some of them specifically. Tom, Jeroen and Stefano
were my office mates that I came here. We had so many discussion in various topics. Sir
Marcus! I remember the funny conversations we had in the corridor in front of the coffee
machine. Our secretary Ida, I cannot forget her sudden entrance to my office while she is
talking. You helped me a lot to proceed my group duty as a hardware guy. In addition, I
would like to thank to my ex-daily supervisor Pim and ex-co-supervisor Arend for helping
me in the beginning of this journey.

I may forget to mention about the ones that our ways were crossed. Please accept my
apologizes for not giving your name in this section.

Vii

To my beloved family and my fiancée..

Abstract

Scheduling processes have been applied to a wide range of application areas, such as
scheduling tasks in operating systems, scheduling facilities at airports, scheduling assem-
bly lines in production, scheduling resources in project management, timetabling in public
transportation, and scheduling activities in cyber-physical systems.

In general, scheduling problems are not trivial to solve effectively and efficiently. De-
sign and implementation of scheduling software is expensive and time-consuming. This
dissertation makes three main contributions:

First, we have adopted a feature-oriented Software Product Line Engineering (SPLE) ap-
proach. If applied correctly, the SPLE approach provides more economic solutions in case a
family of products is developed instead of one product. Companies that develop scheduling
systems generally implement product families. After an extensive domain analysis of the
theory, the common and variable “features” have been defined. By choosing and configuring
the right set of “features”, the designers can efficiently define scheduling systems according
to their needs.

As a second contribution, to convert the abstract definitions into executable programs, we
have designed and implemented an “application framework” called First Scheduling Frame-
work (FSF). We consider reusability and dynamic extensibility as two quality attributes of
the framework. To this end, generic “constraint-solvers” are adopted to translate the pre-
defined “scheduling constraints” into the “constraint-language” of the corresponding solver
and to use them to solve the translated problem. We have extended our implementation
using MDE (Model-Driven Engineering) techniques so that “feature-oriented” models can
be easily converted to the abstractions of the “application framework”.

As a third contribution, we have expanded our “feature-oriented” approach to a general
“model optimization framework”. Scheduling systems can be influenced by many contex-
tual factors, such as the desire for lower energy consumption, more precise computation,
and dealing with certain hardware limitations. Due to contextual factors, it can be very
difficult to define an optimal system that gives the best compromise for such multiple con-
cerns. For this purpose, we propose OptML Framework, which accepts different models
representing the contextual factors in the language of ECORE in the MDE environment and
calculates the optimal models that meet user-defined requirements.

Contents

|IAcknowledgements|

1 [Introduction

1.1 |Application of Software to Products and Businesses| .

1.2 [Functional Correctness, Timeliness, Reusability and Evolvablhty of Software|.

1.3 |Software Engineering Methods and Techn1ques|

1.4 |Scheduling of Tasks] .

1.5 [Application of Schedulers in Software Systems|

1.6 [Challenges in Designing Scheduling Software|.

1.7 |Challenges in Designing Optimal Models in M

odel-Driven Engineering|.

1.8 [Research Questions| .

1.9 [The Research Methodolo

1.10 [Thesis Outline and Contri 3utions|.

2 [Scheduling|

2.1 [Scheduling Theory| .

2.1.1 [Machine Env1ronmen11

2.1.2
2.1.3

Job Characteristics] .

Objectives| .

2.2 [Scheduling in Real-Time Systems|

2.2.1
222
2.2.3

Task-related Constraints| .

Resource-related Constraints|

Scheduling Constraints|

3 |iVIodeI-Based Software Engineering|

3.1 [Software Product-Line Engineering]

3.2 [Model-Driven Engineering|

3.2.1
3.2.2

Models and meta models|.

Model Transformations|

3.3 |Application Frameworks| .

3.4 [Search-Based Software Englneerlng|

3.5 [Model-Based Verification| .

Xi
Page

NN P OWODNDRER =

.11
.12
.13
. 14
. 14
.15
.16

17

.18
.19
. 20
.21
.21
.22
.23

Xiv |

4 |ﬁorma| Product-Line Engineering Approach for Schedulers| 25
4.1 [Related WorEI . .27
4.2 [Objectives . .27
4.3 |Our SPLE Approach for Schedulers| .27
4.4 |A Feature Model of Schedulers]| . .28

4.4.1 |A Feature Model of Tasks|. .29
4.4.2 |A Feature Model of Resources| .31
4.4.3 |A Feature Model of Scheduling Character15t1cs| .32
4.4.4 |A Feature Model of the Scheduling Strategy] . .35

4.5 |Model Validation through Experiments| . . 36
4.5.1 [Rate-Monotonic Scheduling (RMS) Problem| . 36
4.5.2 |Multiple-Resource Scheduling Problem (MRSP)| .37
4.5.3 [Elevator Scheduling Problem| . . .39
4.5.4 [Flow-shop Scheduling Problem (FSP) w1th Permutat10n| .42
4.5.5 Job-shop Scheduling Problem (JSP)|. .42
4.5.6 |Open-shop Scheduling Problem with Preemptlon (OSP/PMTN)| . 44
4.5.7 [Open-shop Scheduling Problem without Preemption (OSP)| . . 44
4.5.8 [Travelling Salesman Problem (TSP) as an Optimization Problem| . 44

4.6 |[Evaluation| . . 46
4.6.1 |Assessment Method| . 46

4.7 |Conclusio e e e e e e . 49

5 [Designing Reusable and Run Time Evolvable Scheduling

[Software] 51
5.1 [Problem Statement and Objectives|. .53
5.2 [Related Work]| . . 53
5.3 [Framework Archltecture and Conﬁgurat10n| .54
5.3.1 [Component Diagram of the Framework Archltecture of FSF| . 54
5.3.2 [Instantiation of the Framework to Create a Scheduler| . .59

5.4 [Case Studies] . . 61
5.4.1 |_ ate Monotonic Scheduhng (RMS)| . 64
5.4.2 Multiple Resource Scheduling (MRS)| . 66
5.4.3 [Job-shop Scheduling (JS)| . 68
5.4.4 [Flow-shop Scheduling (FS) . .71
5.4.5 |Open-shop Scheduling (OS)| .74

5.5 [Evaluation and Conclusions] . .77
5.5.1 |Assessment Method|. .77
5.5.2 Conclusions| . 80

6 |OptML Framework and its Application to Model Optimization| 81
6.1 [llustrative Example, Problem Statement and Requirements|. . 83
6.2 [Framework Architecture| 86
6.3 |[Examples of Models for Registration Systems based on Various Architectural

| Views|. C .. . 86
6.3.1 |[UML Class Model| . 87
6.3.2 |Feature Meta Model| . 87
6.3.3 |Platform Meta Model| . . 88

6.3.4

Process Meta model|

6.3.5

Value Meta Model| .

Processing Subsystem).

6.4 [Model
5 [Model

Optimization Subsystem).

6.5.1
6.5.2
6.5.3

Optimization Process| .

A Model Optimization Subsystem Arch1tecture|

Example Scenarios| .

6.6 [Related Wor

7 |Conc|usions|

7.1 [Designing Scheduling Software|.

7.1.1
7.1.2
7.1.3
7.1.4

Challenges|.

The Software Englneerlng Approach|

Research Questions and Solutions| .

Discussions and Future Wor

7.2 [Designing Optimal Models in Model Driven Engineering| .

7.2.1
7.2.2
7.2.3
7.2.4

Al
A2
A3

Challenges|.

The Software Englneerlng Approach|

Research Questions and Solutions| .

Discussions and Future Work| .

Process Model| .

.91
.92
.93
. 98

.99
100
102
105
108
110

111

112
112
112
113
114
114
114
115
115
116

127

127
127
128

A.4 [Instantiation of the Value Meta Model for Energy Consurnptlon and

Computation Accuracy} .

[Samenvatting|

132
135

CHAPTER 1

Introduction

1.1 Application of Software to Products and Businesses

Software today is applied to a large category of products. Almost all products contain
software or are produced through processes controlled by software [4]. From business per-
spective, the main motivation of adopting software is to increase efficiency and effectiveness
[107]]. Efficiency is defined as to do more work per unit of money, and effectiveness is de-
fined as getting closer to the business objectives. Within this context, one can consider, for
example, two kinds of businesses: i) Software development for business; and ii) Business
for software development [6]]. The first one refers to a business where software is deployed.
The second one refers to a business where software is developed.

Due to a large variety of products and processes, software systems are in general very
diverse. Depending on the requirements and domain of application, software systems can
be also very complex. Complexity is defined as “the state of being hard to separate, analyze
and/or solve” [97]. In Computer Science literature, the term complexity refers to specific
challenges related to the different phases of software development. Examples are prob-
lem complexity, model complexity, structural complexity and algorithmic complexity[40, [45]].
Naturally, complexity can negatively influence the desired quality attributes of software
systems. Historically, the term software crisis has been used to denote a large category of
challenges associated with developing software systems [[102].

CHAPTER 1. INTRODUCTION

1.2 Functional Correctness, Timeliness, Reusability and Evolv-
ability of Software

The term quality is defined as “the degree to which a set of inherent characteristics fulfills
requirements” [[75].

Consider the definitions of the following quality attributes:

+ Functional Correctness. “Degree to which a product or system provides the correct
results with the needed degree of precision.” [74]

+ Timeliness. “The ability of a software system to complete its execution in the specified
time.”

+ Reusability. “Degree to which an asset can be used in more than one system, or in
building other assets.” [74]]

+ Evolvability. “The ability of a software system to adapt in response to changes in its
environment, requirements and technologies that may have impact on the software
system in terms of structural and/or functional requirements, while still taking the
architectural integrity into consideration.” [21]

If the corresponding requirement specification supports the desired business objectives, a
correctly implemented system will be effective as desired. Although functional correctness is
the essential property of every software system, other quality attributes such as timeliness,
reusability and evolvability can be considered equally important.

In practice, if a system does not satisfy its timeliness requirement, it can, for example, lead
to unsatisfied users. Even worse, in safety-critical applications, it can result in catastrophic
outcomes, such as damage of properties or loss of life. In the literature, to express the
combined effect of the quality attributes correctness and timeliness, the terms soft real-time
and hard real-time are used:

+ Soft Real-time System. The system in which a missed deadline does not result in system
failure, but the effectiveness can drop in proportion to the delay, depending on the
application. [91]]

+ Hard Real-time System. “The system in which the failure of a component to meet its
timing deadline can result in an unacceptable failure of the whole system” [73]]

The quality attributes reusability and evolvability are important to decrease the costs of
software development. Instead of designing each software system from scratch, providing
reusable software libraries, for example, can help decreasing the costs considerably. In addi-
tion, reuse of well-proven code can also help assuring software correctness. Similarly, since
software requirements continuously change, evolvability can help creating new versions of
software in a cost-effective way.

In the software-engineering literature, definitions of these terms are specialized depend-
ing on the artifacts of software development. For example, the term correctness may be as-
sociated with requirement specifications, models of software, algorithms and/or programs
[124]. Similarly, the term reusability can be specialized as model reusability, code reusabil-
ity, etc. The term evolvability can be classified, for example, as static program evolvability
or run time evolvability.

1.3. SOFTWARE ENGINEERING METHODS AND TECHNIQUES

1.3 Software Engineering Methods and Techniques

In software engineering literature, a large number of publications have been written to
address software crisis. We will now elaborate on some of the methods and techniques that
are considered relevant for this thesis.

If a problem to be solved is inherently complex, naturally, the designed software to solve
the problem can be also complex. The intention in software development activity is not
to introduce unnecessary complexity to the resulting software system [[130]. To this aim,
it is generally considered that the most powerful instrument in software engineering is to
apply the notion of abstraction, which can be defined as “a selective emphasis on detail”
[121]. To manage complexity, various techniques have been proposed, such as modular
programming languages, domain-specific languages, software libraries such as application
frameworks, model-driven engineering and product-line engineering.

General-purpose programming languages offer various mechanisms to group, abstract
and encapsulate related program code using the constructs such as procedures, functions,
predicates, modules, objects and components.

Domain-specific languages are tailored and as such they offer specific constructs to gain
more expressiveness in the corresponding domains [96].

There have been a considerable number of publications addressing how to verify the
correctness of programs. Commonly used techniques are type checking [29]], assertions
[98] and run time verification [35]. There are also attempts to verify programs by using
mathematical models of programming languages [67]. Despite all these developments,
proving the correctness of programs is still a very challenging task.

Reusability of programs can be improved by building software libraries. An application
framework is a reusable, “semi-complete” application that can be specialized to produce
custom applications [47]]. The interfaces of an application framework enhance the reuse
of generic components to create new applications. Application frameworks generally refer
to object-oriented implementations of software libraries. In this approach, the user can in-
stantiate, extend or modify a library when needed, for example, by using object-creation,
inheritance and/or aggregation mechanisms of the language adopted [78]]. Application
frameworks, therefore, support reusability and evolvability in dedicated application do-
mains. Application frameworks may help creating correct software if the reused framework
is correct, and if the extensions do not violate the previously defined invariants.

Model-driven engineering (MDE) is a model-based approach, where software is repre-
sented using abstract models in contrast to programming-language constructs [86]. In gen-
eral, three types of models are used: Application model, meta model, meta meta model. In
addition, model-transformation techniques are used to convert models between each other
if needed. Model transformation techniques are also expressed as models using the same
principles. Code can be generated from models using dedicated transformation operations.
Model-driven approaches can help creating correct programs, if programs are generated
from models which are correct. To define expressive models, one needs to carry out a thor-
ough domain analysis. Various checks can be performed at the model level to assure that

3

CHAPTER 1. INTRODUCTION

models are used in the right way, for example, by type checking of model parameters and
causal dependency checking among tasks. If more than one model is used for the same
application, it is important that models are consistent with each other. Model-driven engi-
neering supports reusability and evolvability at the model-level through instantiation and
transformation of models. Timeliness of programs generated from models depends on the
complexity of the domain, definitions of models and effectiveness of code generation.

More and more companies develop and market families of products instead of a single
product. This creates additional complexity and reusability challenges. Software Product-
Line (SPL) engineering techniques are defined to reuse the common software assets and
maintain the product families [135]. A software product-line design method consists of
two main phases: domain engineering and application engineering. These phases are distin-
guished as development for reuse and with reuse, respectively. In the first phase, the domain
is explored and analyzed, and the components, generators and reuse infrastructures are
implemented for reuse. In general, feature models are defined to represent common and
variable software components and relationships among these. Later, in application engi-
neering phase, a particular software product is created with reuse by configuring feature-
models according to the requirements. Thorough domain analysis is necessary to define
expressive feature models. Commonality and variability aspects of feature models must
cover the whole product space. It is important that product configurations obtained from
feature models are correct. This means there exists at least one configuration in which the
constraints of the feature model are satisfied. Reusability and evolvability are supported
with the variability characteristics of feature models.

1.4 Scheduling of Tasks

A software system incorporates one or more tasks that executes on computing resources
to fulfill its desired functionality. If the resources that are utilized in the system are con-
sidered explicitly as design concerns, mapping of execution of tasks to resources becomes
important. In the literature, such problems are studied under the field of scheduling theory.

Scheduling is a decision-making process in which the resources are allocated to the tasks
over time [[109]. A program that carries out a scheduling task is called a scheduler. The
outcome of a scheduling task is a schedule. Specification of a scheduling requirement, which
is also termed as the scheduling problem must incorporate the description of the tasks and
resources, and their properties associated with the desired timing constraints. If a scheduler
can compute a schedule, the problem is defined as schedulable. There can be more than one
schedule for a given scheduling problem.

1.5 Application of Schedulers in Software Systems

Historically, scheduling has been applied in a large category of software systems [28], for ex-
ample, processor scheduling in operating systems [[123], car scheduling in elevator systems
[103]], work-force scheduling in project management [[84], facility scheduling at airports

4

1.6. CHALLENGES IN DESIGNING SCHEDULING SOFTWARE

[115]], antenna scheduling in radar systems [68]] and assembly line balancing (scheduling)
in factories [18].

Due to the emergence of new application domains, adoption of schedulers in software
tends to increase. For example, scheduling of events, control signals and data in cyber-
physical systems [[132]], sensor networks [138] and big-data architectures [59] play a crucial
role in the overall functioning of these systems.

1.6 Challenges in Designing Scheduling Software

Implementing software systems that incorporate schedulers can be experienced as a time
consuming process. In addition to dealing with well-known challenges in designing soft-
ware systems, the software engineer has to define and implement the required tasks, re-
sources, associated parameters, objectives, strategies and the constraints, and/or algo-
rithms. Due to the inter-dependencies, this can be a complex process. For example, the
constraints must be considered in a very precise and robust manner: The tasks have to
be scheduled within their life-scope; the periodic tasks have to be spawned at each inter-
arrival time; the resource requirements of the allocation have to be realized for each task;
the precedence relations have to be satisfied for each allocation; the capacity constraints
of resources have to be satisfied; the preemption capability is supposed to be realized; the
migration capability has to be satisfied; the mutual exclusion constraint among resources
have to be satisfied, etc.

Such systems are generally large and complex. For example, facility scheduling systems at
airports are very large systems, since they contain many interrelated scheduling parameters
such as planes, runways, gates, staff members, passengers, etc. Moreover, such systems are
also safety-critical systems, where the correctness of software must be assured. In addition,
determining the schedulability of activities [134] is essential. Due to the complexity of such
systems, it is generally very costly to develop them from scratch. Therefore, reusability of
software is considered very beneficial for these kinds of software systems.

These systems are, in general, long-living as well. Systems, therefore, must be evolvable
to cope with the continuous change of user requirements. Since many of scheduling sys-
tems, such as airport systems and production systems must be continuously operational,
solutions to the new requirements must be introduced to the systems at run time without
discontinuing their operations.

A company may be obliged to develop a family of products. For example, different airport
facility scheduling systems may be required depending on the characteristics of airports.

In this thesis, these challenges are addressed at three complementary levels:

i Application Frameworks. To ease the development of a software system that incorpo-
rates schedulers, the concept of application frameworks is adopted. The scheduling
framework can incorporate domain-specific class hierarchies with the necessary op-
erations and attributes so that the desired schedulers can be instantiated with the
necessary parameters if needed. In the application framework approach, the software
engineer has the full freedom to extend, modify, and discard parts of the software li-

5

CHAPTER 1. INTRODUCTION

brary. As a disadvantage, the software engineer must have detailed knowledge about
the library and the programming language used.

ii Model-Driven Engineering. This approach provides a higher-level abstraction of the
scheduling domain. Dedicated tools for checking the consistency of the parameters
are supplied. The advantage is that domain experts on schedulers can conveniently
define the desired schedulers since the models are assumed to be closer to the experts’
perception with respect to low-level programs. However, the experts can only define
schedulers that can be expressed by models.

iii Software Product-Line. This is an extension of MDE approaches with the concepts of
product families. The advantages and disadvantages are similar to the ones of the
MDE approach.

Unfortunately, to the best of our knowledge, there are no publications in the literature
that propose an application framework, a model-driven engineering approach and/or a
software product-line engineering approach to develop scheduling systems. As such, while
designing scheduling systems, the software engineers are not effectively supported with the
state of the art software engineering techniques.

1.7 Challenges in Designing Optimal Models in Model-Driven En-
gineering

In general, when designing software systems, multiple quality attributes are considered
together. In addition to schedulability of tasks as discussed in Section for example,
energy reduction and improved precision can be considered as additional quality attributes.
Energy reduction can be accomplished by lowering the execution speed of tasks and/or
by allocating tasks to low-level energy resources. However, this may negatively affect the
schedulability of tasks. Precision of tasks can be improved by incorporating algorithms that
produce more precise results. Again, this may negatively affect schedulability of tasks. Of
course, there may be many other quality attributes that one must consider. It is clear that in
addition to schedulability of tasks, one may need to search for optimal models that satisfy
various quality concerns.

We think that, within the context of trade-off analysis of multiple quality attributes in an
MDE approach, the following aspects must be taken into consideration:

i Large configuration spaces of models: It is a common practice that multiple related
models are used in MDE environments for a given system. Each of these models
may define different kinds of variations. The valid combinations of all variations may
potentially enable many possible instantiations of models, which can be difficult for
the MDE expert to comprehend. It is, furthermore, difficult to determine the invalid
combinations of these variations for the MDE expert.

ii Introduction of new quality attributes. New quality models must be introduced if nec-
essary.

iii Optimization of configurations. Software engineers generally have to trade-off differ-
ent quality attributes to configure the most suitable model for a given application

6

1.8. RESEARCH QUESTIONS

setting. For example, a particular model configuration may improve the quality at-
tribute “reducing energy consumption” while decreasing the quality attribute “time
performance”. MDE environments must provide means to optimize model configura-
tions based on multiple quality attributes.

To compute the “optimal” architectural decomposition for a software system, there exist
various approaches [[64, [127]. However, to the best of our knowledge, within the MDE
context, optimization of models with respect to various quality considerations has not been
studied yet.

1.8 Research Questions

To address the problems discussed in Section the following research questions are

formulated:

RQ1. What are the most relevant concepts of scheduling systems and accordingly how to
define an expressive domain model for scheduling systems?

RQ2. How to define an expressive feature model for scheduling systems so that a large
category of families of scheduling systems can be expressed?

RQ3. How to ensure the invariants of feature models and check if a valid configuration can
be generated accordingly?

RQ4. How to design and implement an object-oriented application framework library for
scheduling systems with i) a high degree of reusability and ii) evolvability?

RQ5. How to design an MDE environment so that new models and meta models, model
pruning techniques, quality attributes, quality optimization criteria and search meth-
ods can be introduced in a convenient manner?

RQ6. Within the MDE environment, how can the following activities be performed and
computed, effectively?

i) Checking consistency among various models,
ii) Generating the model-configuration space,
iii) Annotating various quality attributes to model configurations,
iv) Assigning relative priority to the predefined quality attributes,
v) Analyzing schedulability of models,
vi) Optimizing models based on multiple quality values.

1.9 The Research Methodology

The adopted research methodology can be summarized as follows:

+ Model-based. By using thorough domain analysis, models are defined to represent the
related domains as accurate as possible.

+ Framework-based. Instead of searching for dedicated solutions to the addressed prob-
lems, generic frameworks are developed. The term generic, here, refers to reusability
of the methods, techniques and tools by a large category of relevant applications.
The term framework refers to an extensible tooling environment that can be used by

7

CHAPTER 1. INTRODUCTION

software engineers.

+ Incorporation of the state-of-the-art tools. Instead of building from scratch, state-of-the-
art tools such as model-checkers, constraint solvers, modeling environments, transfor-
mation languages are incorporated in the realization of the framework, where possi-
ble.

+ Mathematical analysis. Formal techniques are adopted as much as possible to validate
the claims.

¢ Practically verified. Developed techniques are implemented and tested in practice.

+ Scenario-based analysis. Scenarios are defined to verify the claims that cannot be for-
mally assured. These scenarios are generated as much as possible from the developed
canonical models so that the coverage of the scenarios can be determined.

1.10 Thesis Outline and Contributions

Chapters [2| and 3| give the necessary background of the thesis so that readers can be-
come familiar with the adopted terminology and the underlying domains. To this aim, the
adopted concepts of scheduling theory, application frameworks, model-driven engineering
and product-line engineering are presented.

Motivated by the research question RQ1, in Chapter |4, an expressive domain-model is
defined in the scheduling domain.

As answers to the research questions RQ2 and RQ3, in Chapter |4, a feature model for
schedulers and associated tools are described. This framework enables the product-line
engineer to conveniently configure the products as desired.

As an answer to the research question RQ4, in Chapter|5] a reusable and run time evolvable
application framework called First-Scheduling-Framework (FSF) is introduced. This frame-
work enables the software engineer to create programs for a large category of schedulers
by reusing the library.

As answers to the research questions RQ5 and RQ6, in Chapter [6, an MDE-based pro-
gramming environment called Optimal Modeling Language (OptML) framework is described.
This framework allows the software engineers to introduce various quality models, check
the consistency among models, analyze the schedulability of the tasks defined by the mod-
els over the resources and optimize the models with respect to the given quality attributes
and optimization criteria.

Chapter [7] gives our concluding remarks and identifies topics for future work.

CHAPTER 2

Scheduling

This chapter introduces the scheduling domain as background for the thesis. For this goal, a
notation which is commonly used in the literature is described in Section [2.1] This notation
is extended in Section by the attributes necessary to specify real-time systems.

CHAPTER 2. SCHEDULING

2.1 Scheduling Theory

In the literature, various definitions for the term Scheduling exist. In Pinedo [109], the
following definition is used:

“Scheduling is a decision-making process that is used on a regular basis in many manufac-
turing and services industries.”,

Similarly, Baker defines the scheduling problem as allocating resources to activities over
time [[15]. The resources and the activities might be in any form according to the application
area. For instance, in airports, runways are reserved for planes for taking-off and landing
activities; in project management, employees are assigned to projects for working activities;
and in computing systems, hardware components are reserved to processes for computing
activities.

In practice, there can be many factors that determine allocation. One can also define
scheduling as a decision-making problem in which goals are formalized as explicit objective
functions. From this perspective, a scheduling problem can be seen as an optimization
problem. In [15], three decision-making goals are defined: turnaround, timeliness and
throughput. Turnaround refers to the time required by an activity to complete, and timeliness
corresponds to the latest allowed completion time for an activity. Finally, throughput is the
number of performed activities within a unit of time.

Baptiste adopts the same definition of Baker, and divides the scheduling problems into
two categories: decision problem and optimization problem [16]]. In the former, the number
of schedules that satisfy all the constraints are determined; whereas, in the latter, the most
suitable schedule that minimizes the objective function is decided. While the predefined
constraints restrict the boundary of the solution space, the objectives are the optimization
criteria that decide a solution (schedule) among many solutions within the solution space.
For instance, as an example of constraints, an activity may require the other to be completed
before starting. Therefore, it is blocked unless the other activity completes. In contrast, fair
allocation of resources is an example of objectives. The optimal schedule among valid
schedules is determined according to how much it satisfies the aimed objective. From this
perspective, scheduling problems are grouped as a specific subset of optimization problems.

Buttazzo [28] explains the necessity of scheduling from the perspective of real-time com-
puting systems. Here, it is claimed that the effective behavior of any real-time computing
system does not only depend on the precise computation of the processes, but also the
reaction of the system within a certain amount of time.

To define a scheduling problem, the following triplet notation of Graham [61] is com-
monly adopted [16), [23]:

a8y, 2.1)

where « represents the machine environment; 3 defines the scheduling constraints; and
corresponds to the scheduling objective.

Different terminologies for the activities exist. For instance, they are termed as tasks in
[28], jobs and operations in [61}, [109]. Terminology differences can also be observed for
resources and machines. Throughout the thesis, we adopted the terminology in the book

10

2.1. SCHEDULING THEORY

[28]], where a task may consist of an activity or a sequence of activities. These activities are
called instances or jobs. From this perspective if a task has an activity, it is called as job.
The following attributes are used to define jobs:

+ r;: the release time of the job j, which specifies the earliest start time.

+ ¢;;: the worst-case execution time (wcet) of the job j, which is the maximum amount
of time required for an instance of a task to complete on the machine . It can also
be denoted as c¢; according to the attributes of the resources which will be explained
later. In the literature, the terms processing time, execution time, computation time are
also used instead of the term wecet.

¢ d;: the deadline of the job j, which determines the latest finish time. This attribute
can also be termed as the due date.

+ p.: the period of the task 7 which is the inter-arrival time of the jobs unless it has only
one instance.

+ w;: the priority of the task 7, which denotes the relative importance of the task among
other tasks. It is also termed as the weight in the literature.

To clarify these attributes, we refer to Figure

Pz

A
(\
LG T

| T T2 *e°
{) f ' i

.
Tin DGy diy 152 dja

Figure 2.1: Fundamental attributes of the periodic task. Only two consecutive jobs are shown.

We define the time interval between release time and the deadline of a job as time-scope.

In addition to these attributes, some derived attributes exist. For instance, the relative
deadline is the time distance between the actual deadline D;) = d(;) — 7(jx) and the
release time of the job, and the laxity is the residual time within the duration of the relative
deadline after extracting the execution time of a job X(; 1) = D(; k) — ¢ij-

2.1.1 Machine Environment

The machine environment « is composed of two parts «; sy, namely machine identifier and
number of the machines, respectively. According to the literature, there exist 7 machine
identifiers (a1):

¢ 1: It refers to the single machine environment on which the jobs can execute sequen-
tially.

+ P: All the machines are identical and in parallel, meaning that the execution speed
of the jobs does not vary from one machine to the other and the jobs can be executed
in parallel unless there is some restriction.

+ @: Unlike identical machines, the resources have different execution speed, therefore
the execution time of the jobs depends on the speed of the machine. The execution

11

CHAPTER 2. SCHEDULING

time of the resource is calculated according to the operational load of the jobs and the
speed of the utilized resource.

+ R: These machines are unrelated to each other and the execution speed may change
according to the job. Therefore, the speed of the machine is denoted as v;;.

+ O: This machine environment refers to the Open Shop. In this environment, there
is no restriction to the execution order of the jobs, but they can not be processed in
parallel. In addition, a one-to-one relation between the jobs and the resources exists,
meaning that the jobs are supposed to execute on each machine.

¢ F: The Flow Shop environment differs from the Open Shop in one aspect. Each job
has a predetermined path on each one of the machines.

¢ J: Like the Flow Shop environment, the jobs have a route of execution, but they do
not need to visit each machine.

We express the number of the machines (a9) using positive natural numbers N*. For
instance, 3-machine Flow Shop environment is denoted as o = F'3.

2.1.2 Job Characteristics

In this category, the scheduling process constraints and restrictions are defined as follows:

+ pr={pmin, e}
This expresses the preemption ability (preemptability) of a job. In this case, a job may
be suspended by another job without completing the execution. The preempted job is
restarted to complete the execution when the resource available again.

s Ba={rj e}
This indicates that a job may have a specific release time, before which it cannot start
to execute. Otherwise, a job may start at anytime.

o By = {prec,e}
The precedence relation of jobs blocks the start of one job if it requires the completion
of another job. This is commonly represented by directed graphs in which the nodes
and the edges represent the jobs and the precedence relations, respectively (see Figure
2.2)). If all jobs have at most one predecessor and successor, the relation is referred to
as chains. If each job has at most one successor, it is denoted as in-tree. If a job has at
most one predecessor, then the precedence relation is defined as out-tree.

* Puy= {ij €}
The Machine Eligibility constraint obliges jobs to run only on a specific subset of all
resources. It is only for machine environment with more than one resource.

¢ B5={pj=p,¢}
It represents that all jobs have fixed execution time p.

* 66 = {dj = d,E}
In this case, each job is supposed to complete before the fixed deadline d.
o Br={sjr €}

This is defined as the sequence dependent setup time, which represents the required
amount of time for a machine to start to execute the job k after finishing the job ;.
Unless it is not specified, all the setup times are initially assumed to be zero.

12

2.1. SCHEDULING THEORY

(a) chains (b) outtree (c) intree

Figure 2.2: The graph representation of precedence relations.

+ (g ={batch(b),e}
A resource may execute b jobs simultaneously if this constraint is defined. The entire
batch is finished when the last job of the batch is completed.
The character ¢ above means the corresponding constraint is not applied to the configura-
tion.

2.1.3 Objectives

The objectives are also called the optimality criteria [23]. As shown in the following, 7 ob-
jectives are commonly formulated using the completion times of the jobs, which is denoted
as Cj:

Objectives Formula

Lateness L; =C)—d;

Earliness FE; = max{0,-L;}

Tardiness 7T} = max{0, L;}
Absolute Deviation D; = |L;|
Squared Deviation S; = (L;)?
3 0 if Cj < dj
|1 deadline missed
Makespan C,q; = mjax Cj

Unit Penalty U;

Table 2.1: The commonly known objective functions defined in [23]]

The objective function that is chosen to be optimized determines the quality of the calcu-
lated schedule. From this perspective, the aim of minimizing the objective function Lateness

13

CHAPTER 2. SCHEDULING

is to complete the tasks immediately after their release time, whereas the objective function
Earliness is the complement of Lateness. Minimizing Tardiness objective is exactly the same
with minimizing Lateness when the completion fo a job exceeds its deadline. The quality
of the schedule is fixed if the task is scheduled and completed before its deadline. The
remaining items in the list (Table are derived from these functions and are considered
self-explanatory.

In addition, the common objective functions are formulated as maximum, summation
and weighted summation over the tasks. For instance, the maximum L,,,, = max; L;, the
summation Ly, = 37 L; and the weighted summation L, ,, = S w;L; are the versions of

sum
the Lateness objective. The linear combinations of these formulas are also considered.

2.2 Scheduling in Real-Time Systems

In real-time systems, it is crucial for a task to complete its execution not only in a logi-
cally correct way but also within the specified time. Not being able to satisfy the timing
constraints may result in irreversible system-wide failures. Naturally, real-time scheduling
problems have additional constraints over jobs and resources.

2.2.1 Task-related Constraints

In real-time systems, there exists some task which needs to be scheduled regularly. Each
activation of the task is called the instance (job) of that task and has its own release time and
absolute deadline. The other types of tasks are taken into consideration when it is requested
by applications and they have only one instance and possible future arrival of this kind of
tasks is unknown to the scheduler. From this perspective, the tasks are classified as periodic
and aperiodic in terms of their period instantiations.

For periodic tasks, the release time of the first instance is specially termed as phase and
denoted by ¢;. Therefore, the release time of the k*" instance is calculated as follows:

k) = @5+ (k=1)p; (2.2)

On the other hand, an aperiodic task has only one instance and it is requested in case of
necessity by the system. An intermediate class between periodic and aperiodic tasks also
exists, namely sporadic. Unlike aperiodic tasks, they have sequential instances to execute,
and the minimum time interval between two consecutive jobs are known. Knowing the
earliest next instance of a sporadic task gives the freedom and certainty to the scheduler to
schedule another task instance to the time duration after the completion time of this task,
by ignoring its existence. From this point, they are considered and scheduled as periodic
tasks. Since they do not have fixed periods and are requested each time, they are considered
as aperiodic tasks.

During the scheduling process, there may be more than one task whose time-scopes over-
lap in time. In such a case, there are three possible reactions to take: i. the tasks are tested
whether they can be scheduled without missing any deadline. It is only possible when the
duration between the earliest release time and the latest deadline of the overlapping jobs

14

2.2. SCHEDULING IN REAL-TIME SYSTEMS

must be as much as the total execution time of the tasks. ii. if there are more than one
resource, other available resources are requested. iii. ordering tasks with respect to their
priorities and reserving resources to the tasks one by one. The priority value of a task is de-
termined according to the scheduling policy. In general, the scheduling policies are related
with the timing properties of the task. For example, a policy with respect to the periods
of tasks is Shortest Period First; this is also known as Rate Monotonic policy [90]. Assign-
ment of a priority may be either fixed or flexible. In fixed-priority assignment, tasks have
static priorities that do not change in time, whereas in the case of flexible priority, they are
re-calculated for each instance of a task.

Another task-related constraint that affects the utility of the system is related to the natu-
ral outcome of the missing deadlines of tasks. Depending on the consequences of not being
able to satisfy a deadline constraint, the tasks are classified under three categories:

+ Hard. Especially in real-time systems, the tasks with a hard deadline constraint must
be treated strictly since missing one deadline could lead to the failure of the system

+ Soft. A task is said to be soft if missing its deadline does not cause any harm to the
system, but decreases the benefit obtained from it.

+ Firm. The firm tasks might be completed after the deadline like the soft tasks, but
finishing the task after deadline has neither utility nor harm to the system.

2.2.2 Resource-related Constraints

To represent resource-related constraints, the notation introduced in the previous section
has to be extended. For instance, Holenderski [69] classified resources based on their
capacities as single- and multi-unit resources. The latter allows more than one job to execute
on the same resource if the demanded total capacity of jobs do not exceed the total capacity
of the shared resource. In case multiple tasks accesses the same resource, they have to be
synchronized [28]]. it is known as race condition in concurrent programming that multiple
read/write or write/write accesses to a shared resource must be synchronized. This kind of
resources is commonly termed as mutually exclusive resources.

A task may commonly require multiple resources at the same time such as memory, bus
and peripheral devices. One may classify resources as passive and active [139]. Active
resources are for example CPU’s and they are always needed to execute tasks. Passive
resources can be described in terms of the capacities of “resource units”. There may be
constraints among passive and active resources as well such as “a memory may belong to a
certain processor”. It must be possible to express such cases adequately.

Mobile devices bring additional challenges since they aim to provide long operation times
before batteries are exhausted. Since the mobile devices operate on battery power, they
should provide long lasting battery life to users. To accomplish this objective, Dynamic
Voltage Scaling can be adopted [108| [119, 112} [122] 30, 95]], which is used to decrease
energy consumption with the price of decreasing processing power. This requires extensions
to the model that has been given in Section [2.1.1

15

CHAPTER 2. SCHEDULING

2.2.3 Scheduling Constraints

Some application-specific scheduling constraints may have to be considered. Consider the
following two examples:

+ Migration is a process of suspending a running task on a certain machine and moving
the task and its contextual environment to another machine. Two kinds of migration
exist, namely task-level and job-level. Task-level migration allows the instances of a
task to run on different machines, but each instance (job) has to be completed on
the same resource where it has started to execute. In job-level migration, there is,
nevertheless, no such a limitation on instances. This kind of processing can be seen
as a specialization of preemption of resources.

+ Conditional Preemption is the mechanism to reduce the run time overhead due to
preemption. There are various techniques published in the literature:

i- Preemption Threshold gives freedom to the tasks that have higher priority values
than the specified threshold [136].
-+ Deferred Preemptions defines the longest time interval in which a task may exe-
cute.
i Task Splitting (Cooperative Scheduling) is only allowed at pre-defined preemption
points of each task [26].

16

CHAPTER 3

Model-Based Software Engineering

We consider model-based software engineering as an important category of software-engineering
methods, where models are used as the fundamental artifacts of engineering. Model is de-
fined by OMG as [[100]: “A model of a software system is a description or specification of
that system and its environment for some certain purpose.” Adopting models is an alterna-
tive to using general-purpose programming languages; if defined properly, the abstractions
of models can be considered semantically closer to the domain of interest whereas general-
purpose programming languages are in general defined from the perspective of computing
machines. Advantages of model-based software engineering are claimed to be reducing
complexity; and enhancing expressivity, reusability, adaptability, correctness, etc. [4].

In the sub-sections to as examples of model-based engineering practices, re-
spectively, we describe software product-line engineering, application frameworks, model-
driven engineering, search-based software engineering, and model-based verification.

CHAPTER 3. MODEL-BASED SOFTWARE ENGINEERING

3.1 Software Product-Line Engineering

Software Product-Line Engineering (SPLE) is a paradigm to develop software using plat-
forms and mass customization [110].

A platform is an asset base that consists of reusable software artifacts designed for a given
domain. Mass customization is a large-scale of mass production process, which is diversified
by the desires of customers. The software products belonging to the same product family
differ from each other in detail but naturally they share the common aspects of the family.
To define expressive models for a product-line, one needs to represent the commonalities
and variabilities of the product family, adequately. Domain expertise is one of the most
crucial prerequisite to derive such models.

A software development method based on SPLE, in general, consists of two phases: do-
main engineering and application engineering. In domain engineering, the asset base is built,
which consists of reusable software components; these are defined according to the prod-
uct portfolio based on certain marketing strategy. In application engineering, products are
configured from the asset base according to the product requirements. To gain more under-
standing of the practical application of these phases, the reader may refer to [110].

This reuse-oriented software development approach has various advantages compared to
developing dedicated software per product:

i Reducing the development costs. Setting up an asset base requires initial investment.
Nevertheless, since products of a given product family share certain properties, reduc-
tion of development costs can be achieved in due time, when a sufficient number of
products are produced.

ii Facilitating correctness of software. It is assumed that the reusable components in an
asset base are well-tested. Naturally, this simplifies testing of the configured products
because in this case only the configurations are required to be tested.

iii Reducing time to market. After the asset base is built, time to market can be shorter
since configuration of products from the asset base generally takes less time than
developing products from scratch.

iv Increasing adaptability. If designed accordingly, configuration mechanisms can en-
hance adaptability since products can be re-configured after the product release.

To model the common and variable parts in an asset base, in general, feature models
are used [89, [79]. As the name implies, a feature in a feature model corresponds to a
basic element that represents some concern in the asset base. A feature can be detailed by
relating a sub-feature to it. A sub-feature can be also extended by its sub-feature, where a
tree of features can be formed. In such a model, one may term features as super-features
and sub-features, where sub-features represent the detailed characteristics of their super-
features.

Four basic relations are defined between features, which are shown in Figure The
root-feature is the super-feature shown at the top of the figure. If a mandatory relation is
used, the sub-feature is a necessary feature of its super-feature. The commonalities in an
asset base are expressed using mandatory features.

18

3.2. MODEL-DRIVEN ENGINEERING

An optional relation indicates that during configuration it must be decided if a sub-feature
is included or not. An or relation between a super-feature and one or more sub-features
indicates that during configuration at least one sub-feature must be included. In Figure
the possible configurations of or relations are PCy, PCs, and PC,C5. An alternative (XOR)
relation between a super-feature and one or more sub-features indicates that during config-
uration at most one sub-feature must be included. In Figure the possible configurations
of alternative relations are either PC; or PCs.

P P P P
C C1 Ca Ch Co
Mandatory Optional Or Alternative

Figure 3.1: Possible relations between features.

Possible configurations can be further limited by using so-called cross-tree constraints.
Two commonly used cross-tree constraints are:

+ A relation that is specified as a % b, where a and b are the features under considera-
tion, if the feature «a is selected, the feature b must be selected as well.
« A relation that is specified as a — b, where a and b are the features under considera-
tion, if the feature «a is selected, the feature b must not be selected.
One may also define the cardinality properties of relations [[37]. A cardinality property
can be expressed by a pair of integers [[..u], where [and u represent the lower and upper
bounds of the corresponding sub-features, respectively.

3.2 Model-Driven Engineering

In Model-Driven Engineering (MDE), a software system to be developed is expressed using
one or more models, which are also called views. Each view represents a different aspect of
the corresponding software system [81),[116]. In MDE, in addition to defining models in a
certain notation such as UML, meta models, meta meta models, and model transformation
modules are used. Model transformation modules are specified in a similar way as models.
This terminology is explained in the following sections.

19

CHAPTER 3. MODEL-BASED SOFTWARE ENGINEERING

(/ \'
| |
} \
1 M3 <<meta meta model>> }
! MOF |
! I
[\
N N B D P //
<<instanceOf>> <<modelOf>>
oV N
(/ \'
| v |
i |
| <<meta model>> |
I M2 UML |
‘ \
! I
i)

0 VO N

<<instanceOf>> "\ <<modelOf>>

e L NN -
P)

/ <<instanceOf>> <<modelOf>> <<instanceOfs>> 1~ <<modelOfs> AN
[| '
\ i |
| o] \

|
} \
1 M1 <<model>> <<model>> <<model>> }
| Class Object Activity [
! 1
‘ \
!]
\ /

Figure 3.2: A hierarchical structure of meta meta model, meta model and model of a Unified Mod-
eling Language (UML).

3.2.1 Models and meta models

According to the level of abstraction, the models are divided into two groups, Platform
Independent Models (PIM) and Platform Specific Models (PSM). The former is a view of a
system regardless of an underlying platform; whereas, the latter encompasses the informa-
tion about a part of the platform that is relevant for the system. To instantiate a model,
there exists a set of rules that is defined in the corresponding meta model. In this sense,
a meta model is a description of the syntactic and semantic rules from which the model is
instantiated.

In Figure a UML example is used to show the relation between meta models and
models. At the top layer (M3) in the hierarchy, Meta Object Facility (MOF) provides an
open-source meta model specification language to define meta models. In this example,
UML is an instance of MOF, and MOF is a meta model of UML. To define a new meta model
at the level M2, one needs to specify its own rules using MOF. At the bottom layer (M1),
class, object and activity models are instantiated from UML.

With the help of meta meta models, meta models, and model transformation models, a
more expressive modeling technique than traditional model-based approaches is provided.

20

3.3. APPLICATION FRAMEWORKS

<<meta meta model>>
: Ecore :
: <<modelOf>> :
E <<meta model>> i
; Transformation :
<<modelOf>> ! Language | <<modelOf>>
i <<modelOf>> i
v v
<<meta model>> <<model>> . <<meta model>>
Source Meta S<uses>> Transformation S Target Meta
Model (EMF) Rules Model (EMF)
<<modelOf>> <<uses>> <<modelOf>>
<<model>> - - Transformation cctransformsss <<model>>
<uses>> ranstorms.
Source Model Engine — = — = . 3 Target Model
(EMF) (EMF) (EMF)

Figure 3.3: Model transformation schema for EMF.

For example, various meta models and model transformation models can be integrated by
using a common meta meta model. In addition, considering transformation specifications
also as a model enables reuse of model transformation techniques across different modeling
approaches.

3.2.2 Model Transformations

Eclipse Modeling Framework (EMF) [[129] is a well-known MDE framework that provides
modeling and model transformation capabilities for Eclipse applications. As symbolically
depicted in Figure the Model Transformation Engine is a module that gathers Trans-
formation Rules to transform a source model to a target model. The model Transformation
Rules is defined at the meta-level and includes a set of rules. This “modelOf” relation contin-
ues until the meta meta model Ecore is reached. Such an organization of models facilitates
reuse of transformation models within the context of source and target models.

3.3 Application Frameworks

In traditional library-based reuse, generic functions/procedures are offered that can be
called from applications. The main difference between traditional library-based reuse and
application frameworks is that application frameworks do not only offer functions, but they
also define the main parts of the software applications in an abstract manner. With the use
of frameworks, applications are instantiated, configured and/or extended.

21

CHAPTER 3. MODEL-BASED SOFTWARE ENGINEERING

Naturally, application frameworks are defined within specific domains. To this aim, based
on a thorough domain analysis, application framework designers must identify the essen-
tial concepts in the domains of interest and represent these as the abstract components of
the framework. In a way, an application framework defines a skeleton of the applications
that can be created from the framework. Variations are generally implemented using the
adaptability mechanisms of object-oriented programming (OOP) languages.

OOP languages provide three important design features that support the development of
application frameworks: encapsulation, polymorphism, and inheritance [47,[78]l. Encapsula-
tion restricts direct access to certain internal components and helps software developers fo-
cus on the interfaces of components only; this increases modularity. In this way, framework
designers can hide the unnecessary details of their frameworks from the users. Polymor-
phism enables framework users to flexibly configure their applications by using the poly-
morphic interfaces of the components. By using the Inheritance mechanisms of languages,
framework users can reuse and/or extend certain parts of the adopted framework.

3.4 Search-Based Software Engineering

One of the main challenges in software engineering practices is to find an optimal solution
to a design problem constrained by possibly conflicting requirements. In general, traditional
design methods provide a large number of informal design heuristics. Based on intuition
and experience, software engineers consider these heuristics and design software systems
that offer the best compromise according to their perception. To determine if software sat-
isfies the requirements or not, various techniques are used, such as scenario-based analysis,
metrics and dynamic testing.

During the last decades, several researchers have investigated how to compute the best
software design using computational methods [63] [126], (64} 140, [127]. In these approaches,
a software design problem is converted to an optimization problem and solved computa-
tionally. To this aim, first a model of the software system is defined that allows various
design configurations along with the constraints and design objectives. The best design
alternative is searched using a suitable computational method. This way of designing soft-
ware systems can give more accurate results. However, defining suitable models causes
an additional overhead. Moreover, depending on the optimization problem to be solved,
finding an optimal design solution can demand large computing resources.

A considerable number of publications on search-based approaches are available. For
example, to find a trade-off among quality attributes availability, reduced memory usage
and time performance, in [126], an optimal architectural decomposition is computed. In
[40], multi-objective techniques are used to optimize software architectures with respect
to qualities production speed, reduced energy usage and print quality. In [20], by using
genetic algorithms, model re-factoring is performed to maximize cohesion and minimize
coupling.

22

3.5. MODEL-BASED VERIFICATION

3.5 Model-Based Verification

As the name implies, Model-Based Verification aims to check the correctness of software
systems based on models [46]. This is in contrast to dynamic testing of software where
checking is carried out on the actual software. Since most models are not specified in a
formal language, it is necessary to translate the models to a language that allows formal
verification. There are a number of verification systems available. Example categories of
verification systems are static analyzers, logic-based analyzers, state-based model checkers,
constraint solvers, etc. Depending on the type of a verification problem and the type of
models used, an appropriate verification system has to be selected.

There are several challenges in model-based verification. Firstly, accurate models must be
defined for the software system to be verified. Secondly, depending on the complexity of a
problem, the verification process can be computationally very intensive. Finally, the models
must be kept consistent with the software system that is represented.

There have been a considerable number of publication demonstrating the applicability of
model-based verification in practice. For example, in [46]], a software system is verified to
guarantee deadlock freedom and the fulfillment of timing constraints and memory usage. In
[[71, a graph-based model checking approach is used to detect interference among software
components. An interested reader can refer to [55].

23

CHAPTER 4

A Formal Product-Line Engineering
Approach for Schedulers

Scheduling is a decision-making process in which resources are allocated to the activities
over time [[109]. In general, companies, which market scheduling systems, have to design
and implement a family of products instead of a single product.

Designing and implementing robust scheduling systems, however, are not trivial. Firstly,
due to many operational constraints in the requirements, software that implements schedul-
ing processes can be very complex. For example, the multi-car elevator scheduling problem
is known to be NP-hard [83]. Secondly, details in the requirements may result in a very large
scheduling system. For example, software systems that implement facility scheduling at air-
ports are very large systems, since they contain many interrelated scheduling parameters
such as planes, runways, gates, staff members, passengers, etc.

To overcome these challenges, the following measures can be adopted. Firstly, complex-
ity can be addressed by defining an expressive domain model for scheduling techniques.
Secondly, the cost of developing a family of products can be reduced by adopting Software
Product Line Engineering (SPLE) methods. In SPLE, instead of developing from scratch
through ad-hoc reuse, products are configured from predefined reusable software com-
ponents. Reusable components are derived from domain models which are generally ex-
pressed in the feature model notation [79]. Unfortunately, to the best of our knowledge,
apart from our work, there has not been a comprehensive work in the literature along this
line.

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

This chapter introduces a novel domain model, which represents the scheduling domain.
The model is expressed using the feature model notation so that it can be integrated with
existing SPLE approaches. In addition, the specification language of Clafer [9] is used
to formalize the model. This allows verification of the configured products against the
invariants of the domain model.

This chapter is organized as follows: The related work is given in the next section. Section
summarizes the aimed objectives of this chapter. Our SPLE approach is introduced in
Section In Section |4.4, a feature model is derived from the domain knowledge. In
Section [4.5] a number of canonical examples are presented to demonstrate the expressivity
of the feature model. An assessment of our approach is presented in Section The last
section concludes the chapter.

26

4.1. RELATED WORK

4.1 Related Work

There have been a considerable number of publications that report on the practical applica-
tion of SPLE approaches [93]. To the best of our knowledge, none of them has been applied
in the domain of scheduling. This chapter extends our earlier conference paper [105], with
a detailed description of the configured feature models.

In the literature, there has been a considerable amount of publications in solving schedul-
ing problems [61] [28]]. Accordingly, a large category of algorithms has been developed. In
addition, different kinds of solver-based solutions have been studied and presented in the
literature to address planning and scheduling problems [54) 66, [71]]. There exists also a
study [82]] which presents a formal framework to implement reusable schedulers. How-
ever, these publications do not aim at creating SPLE based solutions to define a family of
products which incorporates scheduling software.

There have been various publications on the formal verification of feature models [17].
In general, these publications do not integrate the verification process in a specific design
environment. Moreover, verification of product configurations in the area of scheduling
domain has not been studied before.

4.2 Objectives

The objective of our work is to define an SPLE method, and associated tools and techniques
to create a family of scheduling applications with the following characteristics:

¢ Reduced complexity: To deal with complexity, it is important to identify and define
the necessary abstractions in the scheduling domain that encapsulate the unnecessary
details.

+ Expressive domain models: To utilize an effective SPLE method in the scheduling
domain, it is important to define an expressive domain model that can cover a large
category of scheduling applications. To represent a family of applications, special
attention must be paid to explicitly deal with the variations in the scheduling domain.
The terms applications and products are used interchangeably in this context.

+ Verification: In the process of configuring applications from the corresponding fea-
ture models, the created product must not violate the constraints of the scheduling
domain.

4.3 Our SPLE Approach for Schedulers

We have developed a novel SPLE approach for configuring applications that incorporate
schedulers. Figure depicts our application-engineering process.

A product is defined as a dedicated configuration of the corresponding feature model. A
description of the feature model is given in the next section. By the help of Configuration
Tool for Feature Model, the software engineer binds the variabilities defined in the feature
model to specify a dedicated product. As symbolically shown in the figure, Verification Tool

27

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

Feature Model
for
Schedulers

Verification
Tool for
Feature Model

Configuration Tool for
uses Feature Model

Product Configuration A Configured Product

Figure 4.1: An application of our SPLE method. Rectangles and ellipses represent the operations
and the data, respectively.

for Configuration takes the data configuration of products (also called partial configuration
in the literature) and checks the number of configurations. The binding process may result
in zero or more configured feature models. A zero configuration indicates that the binding
process does not result in any product, possibly because the specification is too restrictive.
In this case, the software engineer must reconsider the configuration. A single configuration
refers to a desired specification, in which all the variabilities are bound. If there is more
than one configuration, not all variabilities are bound and as such the configuration refers
to multiple products. In this case, the software engineer needs to complete the binding
specifications.

4.4 A Feature Model of Schedulers

In this section, we explain how an expressive feature model can be derived from schedul-
ing theory given in Section Most studies in the scheduling domain offer dedicated
algorithms that are claimed to be beneficial in certain context [23] 26 28, (39| 43| 70, 94,
109,120, 128]. The aim in the domain-engineering phase, however, is to seek for a generic
model, which can represent the common aspects of most relevant scheduling techniques. To
realize this, we aim to identify commonalities and variabilities in the scheduling and related
domains; these refer to mandatory and optional features in the feature model, respectively.
In the application-engineering phase, it must be possible to conveniently configure and
instantiate a dedicated scheduler derived from the feature model.

After an extensive comparison of various approaches, we have found out that the fol-
lowing model is expressive and generic enough to represent a wide range of scheduling
solutions:

S=(T,R.C,S), 4.1)
where S is the scheduler; 7 is the task; R is the resource; C is the scheduling characteristics;

and S is the scheduling strategy. The corresponding feature model is depicted in Fig.
The feature cardinality [a..b], defined in [37], is shown above the features. It means that

28

4.4. A FEATURE MODEL OF SCHEDULERS

| Scheduler Sch |

L] [1..1]

Tack Resource Schedul.lng Scheduling
Characteristics Strategy
T R c S

Figure 4.2: A feature model of schedulers.

the parent feature can be configured for at least a and at most b instances of the feature.
If the upper bound is defined with wild-card character (+), there may be infinite number
of instances of the feature. In the chapter, each mandatory and optional feature without
cardinality information is assumed to have the boundaries [1..1] and [0..1], respectively.

The concept R in Definition |4.1| has a similar meaning as « used in Definition After
analyzing the related literature in detail, we have observed that the definitions of the terms
g and ~ strongly relate to all the fields of Definition For example, § may define both
the characteristics of tasks and of scheduling processes. Similarly, v relates to the objec-
tives related to both tasks and resources. Although we believe that Definition [2.1|is useful
for expressing the domain of scheduling problems in general, it is less optimal for reuse
purposes. Moreover, variations in the implementation of schedulers tend to be classified as
variations in the definitions of tasks, resources, characteristics of the scheduling processes
and scheduling strategies. The fields of Definition [4.1] therefore, are considered to be more
suitable to encapsulate these variations.

There are also various cross-tree constraints between inter- or intra-models. These con-
straints are necessary because naturally sub-models are not orthogonal to each other. Such
constraints limit the number of scheduling applications that can be configured. Elabora-
tion on the cross-tree constraints are considered outside the scope of this chapter. A more
interested reader can refer to the feature model definition in the repository.

4.4.1 A Feature Model of Tasks

Most publications in the scheduling domain come along with their own task models. Nev-
ertheless, they largely share common terminology. Based on our literature analysis, we
generalize a task model with the following formula where a feature model representation
of it is shown in Fig. 4.3}

T= ('Eime’ ’Tpm'o’ 7:iepa Emtna 7;eq7 Eram 7:)bj)a (42)

In the definition above, the symbols are explained as follows:
* Tiime: It corresponds to the fundamental time-related attributes of a task, which iden-

29

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

o
Objective
Tobj

Priority
Tprio

Dependency Preemptable
Taep Tpmin

5
Periodicity ‘

P

Requirement
Treq

‘ Granularity

Tgran

o o
Terminal Composite
Task Task

Maximize

Deadline
d

Execution Time
c

Release Time
”

Minimize

[1.4] [0..4]

Deadline

Mutex
Requirement D

Resource
Requirement B

Requirement I' ‘

Hard Firm Soft
Deadline Deadline Deadline

Figure 4.3: A feature model representation of tasks.

tify the task. These are:
ﬁime = (T‘, ¢, d7p)7 (43)

where the parameters above correspond to the task attributes explained in Section
In addition, we defined the time interval between release time and deadline of a
task as life-scope. More information can be found in [28].

* Tprio: It represents the priority of a task, which is also termed as weight in Section[2.1]

¢ Taep: It refers to the concept of data dependency between tasks. We adopted the
token-based dependency approach explained in [3] [88]. It blocks the execution of
a task until the dependent data (token) is fired even if its release time has already
passed. In addition, we have defined sequence dependent setup time as explained in
[109]]; This means that after a dependent token is fired, the corresponding task may
either immediately start to execute or wait according to the amount of setup time.

o Tpmin: It refers to the preemption-ability (preemtability) of a task. Preemptable tasks
can be interrupted in time and continue afterwards.

¢ Treq: It represents the resource requirement, mutex requirement and deadline require-
ment of a task. On the contrary to the traditional notation in Definition[2.1] a task may
have more complex resource requirements. For instance, expressing a system with
shared [28]] and multi-unit resources [69] is impossible using the traditional notation.
To be more expressive, we have extended the specification of resource requirement. In
case of shared resources, the mutex requirement is a necessary feature to be adopted.
If there is a task, which modifies the internal structure of a resource, such as writing
to a memory space, the other tasks have to wait until it is completed. For instance,
assume that there exist three tasks using the same-shared resource and 7 has mutex
requirement. This means that the scheduler should produce a schedule in which the
life-scope of the other two tasks cannot overlap with the life-scope of the task 7. The
deadline requirement of a task represents the consequences of missing the deadline on

30

4.4. A FEATURE MODEL OF SCHEDULERS

Resource (R)

Power
Consumption R o

Capacity
Reap

O
Objective
Robj

Minimize

O 9
Exclusive Maximize

Abstraction
o

Identifier
P

[Discrete-State][Continuous-State |

Capacity-Based || Semantic-Based

ACTIVE PASSIVE COMPOSITE

Figure 4.4: A feature model representation for resources.

an underlying system where tasks are running. These are called hard, firm and soft
which have been introduced and explained in [25] 28] [128]].

¢ Tgran: It represents the granularity of a task. It can be either terminal or composite.
The granularity of tasks as presented in the literature can be classified as terminal. A
composite task can be decomposed into terminal and/or composite tasks, which are
contextually related to each other.

* Topj: A performance measure is defined in the literature as an overall system constraint
to be enforced [28]. On the other hand, a task may also have its own objective. For
this reason, we have introduced the attribute task-related objectives.

4.4.2 A Feature Model of Resources

For resource models, although there are some differences, most publications in the schedul-
ing domain adopt a similar terminology. For the sake of expressivity and generality, we
propose the following model, shown in Fig.

R = (Rcapa Rtypey Rmodey Rpoun Robj); (44)

¢ Reqp: It represents the capacity of a resource. With respect to the attribute capacity,
single- and multi-unit are the two kinds of resources [69]. Since any single-unit re-
source can also be defined as a multi-unit resource with single capacity, in our model,
we only adopt the term multi-unit.

¢ Ryype: It represents the type of a resource. In [139], resources are categorized in
two groups: active and passive. In addition to an active resource, such as central-
processing-unit, a task may also require passive resources to perform some supple-
mentary operations, such as sensing the environment, storing and transferring data,
etc. Bus, memory, peripheral devices are the examples of passive resources. A passive
resource may be associated with an active resource. For example, a processor cache
memory as a passive resource may only be accessed through its processor. To this
aim, we introduce two additional abstractions called composite resource and accessi-
bility tree.

31

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

A task running on an active resource R, has access to the passive resources, which are
the siblings of R,, the terminal resources of its ancestors or of each sibling composite
resources. Consider the example resource tree depicted in Fig. Now assume
that the task 7 is running on cpu, meaning that it can utilize the terminal resources
of the sibling composite resource, namely cache _cpu-1 and cache_cpu-2; and the
terminal passive resources of all the ancestors, i.e all passive resources except the
cache memories under GPU composite sub-tree.

The structure of a resource y is expressed as follows:

e {ACTIVE, PASSIVE,COMPOSITE}. (4.5)

In addition, we define the identifier v to refer to a human-understandable name for
any type of resource.
Resource type is therefore expressed as follows:

Rtype = (M7¢)7 (46)

There may be more than one resource with the same type, but each resource has only
one type.

¢ Roode: It corresponds to the mode of a resource. In [28, [139]], resources are grouped
in two groups based on share-ability among tasks. A shared resource can be required
by multiple tasks but the capacity demand of a task must not exceed the maximum
capacity of the corresponding resource. On the other hand, exclusive resources are
divided into two sub-categories: capacity-based and semantic-based. For a resource
running in capacity-based exclusive mode, the total capacity utilized by tasks cannot
be more than the capacity of a resource; whereas the mode semantic-based exclusive al-
lows only one of mutually exclusive resources to run at the same time, still preserving
the capacity constraint.

¢ Rpow: It represents the power consumption of a resource. Dynamic Voltage Scaling
(DVS) has been introduced in [30, 95|, [108], 112} [119] [122]]. For the resources with
discrete-state power consumption, a resource can execute tasks at one of a predefined
set of power scales. On the other hand, continuous-state power consumption indicates
that a resource is able to run at a power scale within the range of predefined maximum
and minimum power scales.

+ Ropj: Because of the individual performance requirements of resources, we define
the resource-related objectives such as minimizing power consumption, maximizing
utilization, etc.

4.4.3 A Feature Model of Scheduling Characteristics

In this section, we focus on scheduling characteristics, which is expressed as C in Definition
The following is an extension of the model presented in [28] (39, [120]. A sub-feature
model is depicted in Fig.

C= (Ctypea Cpmtn’ Cmiga Cpola Ctrem Cprioa Cwindow» Cobj)a (47)

32

4.4. A FEATURE MODEL OF SCHEDULERS

SYSTEM

-7 @ @

memory-1 memory-2 temp_sensor prox_sensor

-

cache cpu-1 cache cpu-2 gpu-1 cache gpu-1 gpu-m cache gpu-m

G (COMPOSITE, CompRes) > (PASSIVE, MemoryUnit) @ (PASSIVE, SensorUnit)
(W]} (ACTIVE, ProcUnit) VIS (PASSIVE, TransferUnit) [55) (PASSIVE, Peripheral)

Figure 4.5: An example resource tree to specify the accessibility of resources.

Ciype: It refers to the type of the scheduling process. It can be either offline or online.
In offline scheduling, resources are allocated to the tasks within a predefined time
interval. In online scheduling, the most convenient tasks are chosen for each resource
at an instant of time. In both types, the constraints and the objectives as explained in
Section [2.1.3] must be satisfied and optimized, respectively.

Cpmin: It defines whether a scheduling process is preemptive or not. Even in cases
where tasks are specified as preemptable, the scheduler produces non-preemptive so-
lutions unless it is set to preemptive.

Cmig: It specifies whether a scheduling process supports migration or not. The at-
tribute migration indicates the capability of a scheduler to suspend a running task on
a resource and move its execution context to another resource. Task-level and job-
level are the two migration strategies. The former supports the migration of only the
instances of tasks; each instance must be executed only on the same resource. The
latter does not have such a restriction if it is preemptable.

Cpoi: It represents the scheduling policy, which is a criterion to decide on which task
takes the permission to utilize a resource at an instant of time. The sub-feature group-
ing is an optional, aimed to specify the importance to a specific set of tasks according
to their credentials. After priority-based clustering among tasks with respect to the
grouping criteria, the ranking policy is performed to the tasks separately within the
same group.

Cires: It refers to the time resolution of the requested scheduling process. It is the min-
imum time interval within which resources are allocated to tasks. In online scheduling,

33

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

Type
Ciype

Scheduling

Characteristic ©

O O O
Preemptive Migration Scheduling Time Priority Scheduling Objective
Cormp Crnig Policy Cpol Resolution Cyes Assignment Cy,i, Window Cuindow Cobj
o o o
Task-level Maximize Minimize

e

Cmmﬂ.a.m::ma

Figure 4.6: A feature model for the characteristics of schedulers.

[Time-Related | [Resource-Related |

[Criteria |

Abstract

34

4.4. A FEATURE MODEL OF SCHEDULERS

Scheduling
Strategy (S)
Inr;ut Solver Out.put
Sin Ssolver Sout

SCIP MipWrapper Mistral Mistral2 SatWrapper Toulbar2 Walksat Other

Figure 4.7: A feature model for representing scheduling strategies.

it means time quantum [[123]. In offline scheduling, it determines the context switch
(preemption) points in time.

¢ Cprio: The scheduling algorithms in the literature are also classified in terms of the
priority assignment. If the scheduling process is classified as fixed-priority, the priority
values of the tasks are determined when they are appended to the taskset and remain
the same; whereas in dynamic-priority scheduling process, the scheduling policy de-
pends on the attributes which vary with respect to time. Therefore, the priorities are
recalculated even during the same scheduling process.

¢ Cuindows: It corresponds to the scheduling window whose boundaries determine the
duration of the time interval when the tasks are scheduled. In online and offline
scheduling, it equals to the time resolution and multiple of the time resolution, respec-
tively.

¢ Copj: It corresponds to the objectives of the scheduling process. It directly relates to
the objectives defined in Section [2.1.3]

4.4.4 A Feature Model of the Scheduling Strategy

In our domain model, a scheduling strategy is responsible for the approach to solve the
scheduling problem defined using the sub-models presented in Sections and
Our design framework consists of generic constraint solvers for the sake of fostering
reuse. Therefore, the model for scheduling strategy depends on solvers. A scheduling
problem is expressed in a given format as input, fed into a particular solver and the solver
produces a schedule in a desired format as output.

A feature model representation for scheduling strategy is shown in Fig.

We formulate a model of scheduling strategy as:

S = (Szru Ssolvera Sout)> (48)

where S, COrresponds to the set of constraint solvers; S;,, and S,,; are the specifications
of the scheduling problem and the desired format of the schedule, respectively.

The sub-features of S, from left to right SCIP to Walksat represent the solvers sup-
ported in our framework. Other corresponds to a solver implementation that can be plugged

35

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

into the system. The dedicated sub-features of S;,, and S,,,; which correspond to the adopted
solvers are not shown in the figure. This is, because, in our framework a generic input/out-
put language is used for each solver. Translation to a specific language is encapsulated.

4.5 Model Validation through Experiments

This section demonstrates how the feature model can be configured to express 7 different
scheduling solution examples and one optimization example. Each example is presented
in the following order: (i) Explaining the problem; (ii) Expressing the problem using the
traditional notation formalized in Definition The motivation for using the traditional
notation is due to its common usage in the field of scheduling theory; (iii) Presenting the
example as a configured feature model; and (vi) for the sake of readability, partially visual-
izing the representations of the corresponding configurations are given. In the figures, the
mandatory features that are not directly crucial for the problem definition are omitted and
denoted by three dots; and the optional features shown in the figures are all utilized in the
configurations of the products.

4.5.1 Rate-Monotonic Scheduling (RMS) Problem

According to the articles [90} [94], in the problem RMS, the tasks are assumed to be pre-
emptable and have various release time requirements. The priorities of the instances of
tasks are determined with respect to the period values. The shorter the period of a task, the
higher its priority.

Furthermore, there exists only one resource with single-unit capacity and the optimality
criteria is to minimize the lateness penalty for each task. Based on this definition, the 3-field
notation of this problem is as follows:

1|rj,pmtn|L; (4.9)

In a nutshell, the RMS can be defined as “a fixed-priority online algorithm for schedul-
ing independent, preemptable, periodic tasks on a single processor by minimizing lateness
objective”.

This example can be expressed directly by our feature model: The partial visual represen-
tations of the configuration can be found in Figure There exists only one task instance,
which a taskset may include many copies derived from, with different run time values. We
term a copy of a task instance as run time task. According to the problem domain, the tasks
are defined as preemptable and any run time task may have different release time, the period-
icity feature is set to be periodic under the task instance and preemptive feature is included
in the configuration under the sub-feature model Scheduling Characteristic. According to
Definition there exists a single machine. Therefore, the abstraction of the resource
instance is defined as active by selecting the corresponding feature under the sub-feature
tree rooted by Resource. Since the period values of run time tasks do not vary, the Priority

36

4.5. MODEL VALIDATION THROUGH EXPERIMENTS

Assignment feature is classified as Fixed and Scheduling Policy is set to Default to enable pre-
defined policies. As stated optimality criteria in Definition Minimize and Time-Related
under the feature Objective are selected. From the perspective of scheduling strategy, we
have selected SCIP solver for this problem as well as for the following examples due to its
robustness and transcending performance over other open-source constraint solvers.

4.5.2 Multiple-Resource Scheduling Problem (MRSP)

In this problem, unlike the previous example, we have two tasks and two resources. The
tasks are either periodic or aperiodic. While the periodic tasks are not preemptable, the
aperiodic tasks are preemptable. In addition, the aperiodic tasks depend on the periodic tasks
with predefined sequence dependent setup time. We assume that there are two active and
two passive resources. The active resources have discrete-state scalable power consumption;
whereas the power consumption of the passive resources is assumed to be constant per
capacity. Furthermore, the passive resources can execute more than one task at a time
with respect to a given capacity (batch). Moreover, both of the task instances may need to
execute on defined resources.

From the perspective of the scheduling process, the scheduler is offline and preemptive.
Moreover, it has the capability of job-level migration. The scheduling policy is FIFO and the
priority assignment of the tasks is fixed. The objectives are to minimize the power consump-
tion and lateness, separately. The definition of this problem is:

Q2|rj, dj, prec, pmtn, Mj, s, batch| ZLj. (4.10)
j

The example can be expressed by the feature model as follows. The partial visual rep-
resentations of the configuration can be found in Figure In this example, there exist
two instances of tasks, specified as periodic and aperiodic. Therefore, the instances 7; and
79 are configured by selecting Aperiodic and Periodic, respectively. Since the instance 7
may have a dependency to the run time tasks of the instance 7, the feature dependency is
included in the configuration. According to the problem definition, the feature preemptable
is selected only for the instance 7. The resource requirements of the task instances are the
same in terms of configuration and each run time task belonging to any task instance may
require utilization on resources integrated into the system. The deadline requirements of the
instances are hard. In this configuration, we instantiate two different resource instances.
The instances res; and resy are specified as active and passive, respectively. Since the ac-
tive resource has discrete-state power consumption, the corresponding feature is included
in the configuration for the instance ress. As specified, scheduling characteristic sub-feature
diagram includes offline and preemptive features. In addition, it consists of the features
with the same name job-level migration capability. The scheduling policy is predefined in our
design environment like in the case of the RMS example, hence default feature is selected
under the feature ranking. Since the policy is static and time-invariant, the feature fixed
is chosen for priority assignment mechanism. Finally, the aim of the scheduling process is

37

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

[Task 7|
Timing tm| |Preemptable

Periodicity p

Figure 4.8

Scheduler sch

fesayee hseries Sareding
Resource resy E E >mmﬂ_‘%ﬁ<m3 wowmmﬁo_u:@ iO_u_.mQZl E [Solver]
E E -+ [Online] [Fixed| ;w:ﬁ:@:i_zaﬁl [Criteria) [5cP)
[Abstraction] F
[ACTIVE]

: A configuration of the feature model expresses the RMS problem as defined in mmnno:E

38

4.5. MODEL VALIDATION THROUGH EXPERIMENTS

to minimize the power consumption and lateness, separately. Therefore, we have included
both time- and resource-related features as well as the feature minimize in the configuration.
The scheduling strategy is constructed using the solver SCIP.

4.5.3 Elevator Scheduling Problem

In this example, we assume that we have two cars (elevator cabins). Therefore, the schedul-
ing process consists of two phases: (i) dispatching the passengers to the cars (passenger-to-
car assignment) and (ii) stopping cars on the corresponding floors according to the requests
of passengers [83,[117]. Tasks are categorized into two groups, namely Car- and Hall-Call.
The former is the request of a passenger inside a car to go to the desired destination floor
index; whereas the latter is the request to indicate the desired travel direction of a passen-
ger on the floors using Up and DOWN button calls. To ease the computation, we assume that
moving between successive floors and the time resolution are unit time. Since the elevator
should visit the closest destination floor first, the scheduling policy is set to Shortest Job
First and the priority assignment is dynamic.

In this example, we have defined our objective as to minimize the waiting time of the
passengers. Therefore, minimizing the total lateness objective is chosen. According to the
specifications above, this problem can be formalized as follows:

P2‘7‘j,dj|ZLj. (411)
J

The partial visual representations of the configuration can be found in Figure Al-
though we have two different run time tasks, namely Car-Call and Hall-Call, they share the
common properties in terms of scheduling. Therefore, in the configuration, there exists only
one instance of a task. Since the request time of any call in elevator systems is in general
unpredictable, the periodicity is chosen sporadic. Due to the policy, a task in operation may
be suspended in case of another call with shortest execution time, i.e. a call from or to a
floor which is closer, which results in the inclusion of the feature preemptable. Therefore,
the tasks have soft deadline requirement, and the resource requirement is only to a car. In
our scenario, there may exist more than one run time resource termed as multi-car elevator
scheduling problem in the literature. However, the characteristics of cars are the same ac-
cording to our problem definition. The instance car is an active resource and it is impossible
to adjust the power consumption. Since the choice of a task that executes first is instanta-
neous, the scheduling type is selected online in the configuration. In addition, the feature
preemptive is included. The corresponding feature to Shortest Job First scheduling policy is
selected, and we specified the features ranking and default. Priority assignment is set to dy-
namic as moving one floor to another may change the priorities of tasks with respect to the
selected policy. In addition, we assume that after assigning any task to a car, it is impossible
to switch it to an another car. Due to this assumption, the scheduling characteristics excludes
the feature migration. The objective shown in Definition [4.11]is to minimize the lateness
and the feature objective is specified accordingly. For this case, we have deployed the solver
Mistral2.

39

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

Task 7

[Task]

Preemptable i i Dependency i i Requirement

Resource
Requirement

Deadline
Requirement

Deadline
Requirement| |Requirement

Resource

Scheduler sch

Scheduling
Characteristics

[Type] [Preompive] [Vigraton] | perer™

Assignment

Job-level Ranking

Resource R

Resource

Power
Consumption

Discrete-state

Default

Resource resy

Power
Consumption

Capacity = M
[Abstraction]

Scheduling

Strategy

Criteria

[Time-Related]

[Resource-Related]

Figure 4.9: A configuration of the feature model expresses the MRSP problem as defined in Section E

40

4.5. MODEL VALIDATION THROUGH EXPERIMENTS

€°G"f| U0NDIS Ul pauyap se wa[qoid JST 9y sassaidxa [ppour a1nIeay 9y Jo UONEISYUD Y 10T Y 31
[3n1LOV]

uondwnsuo)
Jamod

En

pajeloy-awl Hnegeq 02 80Inosay | [4os] [472Do.1]

Jawalinbay EoEm:_s_umm

e az|w|ul

[eiowd] [pawun] [Bupiuey| sujpeaq | eonosey

aA1193lq0 Eoﬁ“ﬂ%(m:__AM“”_vMMom E adAL TcmEQ_:_uwm:m_nm&c_wwhn; EEE_L
L ysel
SolsLajoeIeyD)

E E Buiinpayos
SE

ABajens E

Buiinpayog

475 18INPayds

41

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

4.5.4 Flow-shop Scheduling Problem (FSP) with Permutation

In Section the flow-shop machine has been defined. Unlike the flow-shop problem,
the permutation constraint inhibits the sequence changes of tasks among machines [109],
so that the execution orders of tasks are the same on different machines.

The corresponding definition of the problem is as follows:

FAlprec, prmu|Chaq- 4.12)

The partial visual representations of the configuration can be found in Figure There
is only one instance of a task. The run time tasks have dependencies to be satisfied, so the
feature dependency is bound for the configuration. Since the shop problems are specifically
realized for factory production assembly lines, the preemption of a task is not possible. For
this reason, the configuration does not consist of preemptable in the configuration of a task
and preemptive in the configuration of scheduling characteristic. Each run time task requires
exactly one run time resource even if there are many copies of the instances of the resource,
and has no strict deadline. Consequently, the feature Soft is included in the configuration.
The shop problems have standard resources, which are multiple conveyor belts to carry the
products. Therefore, in our example, we have one instance of a resource that is defined
as active resource with constant power consumption. Therefore, the feature scalable under
the feature power consumption is not bounded to the product configuration. In terms of
scheduling characteristic, the type of the scheduling is offline. The scheduling policy in this
example is not crucial since it is impossible to experience any case such that there exist
two ready-to-execute task at the same time due to the strict dependency relation among
them, hence we set the ranking policy to default. Again for the same reason, the priority
assignment is specified as fixed. The objective in Definition |4.12| is realized by integrating
the features minimize and time-related into the configuration. In the scheduling strategy
sub-configuration, we selected again the solver SCIP.

4.5.5 Job-shop Scheduling Problem (JSP)

JSP is one of the well-known combinatorial optimization problems [31, [58]. We have de-
fined four machines and three tasks with 3, 4, 3 jobs each of which requires one of the
machines. Since the execution order of the task instances on each machine is predefined,
there exists natural precedence relation between tasks. The aim of the scheduling process is
to minimize the makespan. According to this scenario, the problem definition is as follows:

J4|M;, prec|Crqz- (4.13)

From the perspective of the shop scheduling problems, the variations emerge from the
strictness of the dependency among tasks. Especially, for FSP and JSP problems, there is no
difference in terms of configuration, but run time initialization. Therefore, they have the
same product configuration that is shown in Figure However, their data dependencies
between the jobs are different. This property is defined in Section |2.1.1

42

4.5. MODEL VALIDATION THROUGH EXPERIMENTS

A[oAndadsax

[S°S"t] pue [t G| suonoas ur pauyap se waqoid dSr 9yl pue S Y} sesseidxa [PPoW 2INIesj Yl JO uoneIn3yuod v [Ty MSL]

dIos]

palejoy-aul L

anoslqo

7 Indino 7 [19n0g]

f:a:;

Abeyens
Buiinpayos

[nejeq]
paxi4
swubissy £alj0d
Aoud Buinpayog

solisusjoeley)
Buiinpayog

495 19|NPOYIS

ouppoUWp 5

juswaiinbay
90In0say

wews.nbey | fouspuedaq]

[Buiw |

JAILOY
uopdwnsuo)
Jamod
[4oynuapl| [uonoensqy |
1 = Ayoeden
En
2ULYIDUL 9DINOSBY E
wawalnbay
aujpeaq
2/ 80In0SaYy

43

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

4.5.6 Open-shop Scheduling Problem with Preemption (OSP/PMTN)

Since the open-shop machine environment has been explained in Section there is no
need to mention its explanation. In this example, we assumed that the tasks are preempt-
able, and so the scheduling strategy, and we have three resources and 5 tasks each of which
has 3 jobs assigned to the machines one-by-one. Each task instance has its own release time
and deadline. The objective is to minimize the makespan.

The definition of this problem is:

O3|Tjudj7Mjapmtn|Cmax- (4.14)

The partial visual representations of the configuration can be found in Figure As we
stated earlier, the shop problems share almost the same configuration in terms of modeling.
One of the differences in this example, which can be understood from the title of the section
is the preemption capability of the tasks and preemptive feature of the scheduling character-
istic. Further, since the strength of the dependency among tasks is alleviated in the context
of shop scheduling problems with the order of FSP, JSP, OSP; to avoid contextually inter-
related tasks assigned to different run time resources to execute in parallel, it is necessary
to define the mutex requirement under the feature requirements.

4.5.7 Open-shop Scheduling Problem without Preemption (OSP)

Only the difference of this example from the previous one is the preemption capability of the
tasks. Therefore, the definition of the problem using the traditional notation is as follows:

O3|T’j,dj,Mj|Cmax. (415)

Since the tasks are non-preemptable unlike the example in Section |4.5.6, the feature pre-
emptable in Figure does not exist in the configuration, which is the only difference.

4.5.8 Travelling Salesman Problem (TSP) as an Optimization Problem

TSP is an optimization problem [50] (also known as a path planning problem). The aim
is to find the minimum traveling path for a salesman who is visiting each city on a route
and finally arriving at the departure city. We need to map the concepts of this problem to
the concepts in the scheduling domain. We model the traveling cost between two cities as
sequence dependent setup time. Furthermore, the salesman’s worst case staying time in a city
is represented as the execution time of the corresponding task. Finally, for simplicity, we
assume that all tasks have the same execution time.

The objective is to minimize the criteria Makespan [28]. The corresponding problem
definition is as follows:

1|5jkapj = 1|Cmam- (4.16)

44

4.5. MODEL VALIDATION THROUGH EXPERIMENTS

[d19s]

ABajens

Buiinpayog

pajeled-awIL ineea

[euawg] [ezILIUIN] [Bupiuey|

juswubissy Aoljod

onRlA0] | ™ fuoug | | Buinpauog

sonsualoee
E lislsjoeIBYD

Buiinpayog

uonein3dyuo) NIINd/dSO 2Tt 2In31g

[3n1LOV]

uondwnsuo)
Jamod

En

2UNYIDUWE 3IINOSAY

Ee]

g

475 18INPayds

juswalinbay
aujpeeq

EwEm::_umm
xainpy|

Eme::cwm
80Inosay

TcmEQ_:_uwm :m_nm&c_wwi 7

|Bunuy |

L yjse

el

45

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

The partial visual representations of the configuration can be found in Figure To
travel from one city to another, the dependency constraint between two corresponding
cities is supposed to be satisfied. Therefore, the configuration of the task has to include the
feature dependency. Besides, the problem is defined as visiting each city once and arriving
to destination city. For this reason, run time tasks should be aperiodic without sporadic
property. In addition, the execution time of run time tasks are equal to a symbolic value
which is also the same for time resolution value, meaning that it is impossible to interrupt
tasks before completion. Therefore, the instance of the task is configured by excluding
the feature preemptable. For this example, the deadline of the task is set to the maximum
time which is enough to travel even if a salesman takes the longest path, which makes
the deadline requirement of a task soft. The problem is modeled with a single run time
resource instantiated from the instance of a resource named city. The run time resource
has a single-unit capacity without scalable power consumption capability. TSP is an offline
scheduling problem in which the priorities of the run time tasks are unique. Because of this
reason, we designate the ranking of scheduling policy as default and the priority assignment
as fixed. As shown in Definition [4.16}, the objective of the problem is selected accordingly by
including the features time-related of the feature criteria and the feature minimize.

4.6 Evaluation

In this section, we assess our approach explained in three previous sections with respect to
the objectives described in Section (4.2

4.6.1 Assessment Method

In general, models that represent “commonalities/variabilities” form the backbone of any
PLE process, as they offer the necessary abstractions that derive the various implementa-
tions in the related domain. In our case, the feature model notation is used for this purpose.
From this perspective, we firstly assume that the “quality of the feature model” is one of the
most important factors that determine the “quality of the PLE approach”. Secondly, the
“quality of a PLE approach” is also determined by the configurability of the feature model.

Our method to evaluate our feature model is as follows: Firstly, based on a thorough
domain analysis, a feature model is defined. Secondly, as presented previously, the feature
model is configured with respect to a set of well-known canonical applications defined in
the literature. Thirdly, based on these examples, our approach is evaluated with respect to
the following three requirements: reduced complexity, expressivity and verification of the
feature model.

Reduced Complexity

A company that develops a family of software systems that incorporates possibly different
kinds of scheduling techniques have to deal with two important challenges: (1) Well-known
software engineering challenges such as correctness, timeliness, adaptability, reusability,
etc.; and (2) A product family in which applications have many common features but still
they are different in some significant ways. Model-based development is crucial in guiding

46

4.6. EVALUATION

E uond3S Ul pauyap se wa[qoid dSI, 9yl s9ssa1dxa [opowl 21n3jesj a3 Jo uoneindyuod y €1y aandig
[3A1LOV]

uopndwnsuo)
Jamod

[teynuapl] [uonoessqy |

1 = Ayoeden

palejoy-owi L

E fi310 92IN0S8Y

paxig

SZJWIUIN

juawalinbay || juswainbay
aulpeaq 90Inosay

juawubissy Aaij0d
Ayioud Buynpayog

juswainbay : Aouspuadaq 7

[Bupw |

2/ 82Inosay

sonsusoeleyd
Bulinpayos

15 19|NPaLYIS

47

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

the software engineers in dealing with both problems. If effective models in the related
domain are available, the modeling abstractions, attributes and relations can function as an
effective guideline for the software engineer to shape the software system to be designed.
Additionally, to address the second problem, the domain models must explicitly specify the
commonalities and variabilities so that different versions of the family can be created with
less effort. In particular, designing software systems that incorporate scheduling techniques
can be experienced as a complex process due to the involvement of many parameters: tasks,
resources, objectives, strategies, constraints, etc. While specifying these parameters, for ex-
ample, the software engineer may need to define the following constraints in a very precise
and robust manner: life-scope of tasks, periodic/aperiodic tasks, resource requirements,
precedence relations, capacity constraints of resources, mutual exclusion constraints among
resources and tasks, preemption and migration capability of resources, etc. Obviously, com-
pared to software development from scratch, an effective feature model as presented in this
chapter with all the necessary modeling abstractions can help reducing the complexity of
designing such systems. A key property to accomplish effectiveness is the expressivity of
the domain model. This property is evaluated in the following subsection.

Naturally, the adopted feature model notation and the associated tools support variability
in the domain model. In the previous sections, we derive a generic model that is capable of
expressing a large category of different schedulers and present a set of illustrative examples
from the scheduling domain to demonstrate the expressivity of our model.

Expressivity of the Domain Model

To evaluate the expressivity of our feature model, we first refer to the 3-field notation
introduced in Definition [2.1] which is used in the literature as a common notation to express
scheduling problems. Each example given in this chapter is explained using the 3-field
notation.

ap [£%)
P Q [F | 0 T T M
7§ ESP | MRSP OSP/PMTN, OSP RMS | MRSP, ESP, OSP/PMTN, OSP
Dj=p TSP
prec MRSP | FSP JSP MRSP, FSP, JSP
pmin MRSP OSP/PMTN RMS MRSP, OSP/PMTN
b d; =d | ESP | MRSP OSP/PMTN, OSP MRSP, ESP, OSP/PMTN, OSP
M; MRSP OSP/PMTN, OSP | JSP MRSP, JSP, OSP/PMTN, OSP
55k MRSP TSP MRSP
batch MRSP MRSP
prmu FSP FSP

Table 4.1: Coverage of examples in Section

Table [4.1|depicts the overall scheduling domain. The letters shown in the cells correspond
to the abbreviations of the examples presented in this chapter. The parameters in the rows
of the table corresponds to the scheduling characteristics and the set of all these parameters

48

4.7. CONCLUSION

are denoted by 3; whereas the columns of the table are grouped into two categories, namely
the machine identifier and the number of machines which are denoted by a; and «, respec-
tively. Within these categories, the parameters P, Q, F, O, J, 1, M are explained in detail in
Section As also argued in the linkEI, the scheduling domain can be represented using
these parameters as shown in Table As it can be seen, in each column and row from top
to bottom and left to right, respectively, at least one example resides. This illustrates that
the examples cover at least one case of the parameters in the scheduling domain. Since we
manage to define the examples using our feature model, we claim that our feature model
is expressive enough to cover a large category of scheduling applications.

Verification

In Section 4.2] it was stated that the configured models must not violate the constraints of
the domain. To detect whether the configured application violates the domain constraints
or not, the configured feature model, which is the model of the application, is checked
using Clafer [[9]. The complexity of the model-checking process mainly depends on the
characteristics of the feature model and as such it is more or less independent of the ex-
amples given in Section We have verified the configurations of all the examples and in
case all variabilities are bound. Approximately 0.25 seconds are needed for the verification
of the configured applications using the MacBook Pro computer on 2.6 GHz Intel Core i5
processor and 8 GB 1600 MHz DDR3 memory with MacOS X 10.9.5.

4.7 Conclusion

Scheduling techniques have been applied to a large category of software systems. Com-
panies that manufacture such systems generally design and implement family of products.
Designing and implementing robust scheduling systems, however, are not trivial. The cost
of developing family of scheduling products can be reduced by adopting SPLE methods.
There has not been a comprehensive work in the literature along this line.

As stated in Section however, to be effective, an SPLE approach for designing a fam-
ily of scheduling software must fulfill three requirements: reduced complexity, expressive
domain models, and verification of the configurations of the domain models.

To address these challenges, in Section [4.4] a feature model is presented by using the
scheduling theory. To this aim, a large set of relevant literature is studied and compared.
The invariant characteristics in the existing literature were used to identify the commonali-
ties, whereas the variations were used to derive the variabilities of the future model.

To exemplify the feature model, in Section [4.5 a set of canonical examples have been
selected and defined. Each example is configured by using the abstractions as defined by
the feature model.

To evaluate the reduced complexity and expressivity, in Section first the domain
of scheduling is defined as a matrix. Second, to evaluate the coverage of the examples,
each canonical example presented in Section [4.5] is placed in the matrix. By this way,

Thttp://www2.informatik.uni-osnabrueck.de/knust/class

49

http://www2.informatik.uni-osnabrueck.de/knust/class

CHAPTER 4. A FORMAL PRODUCT-LINE ENGINEERING APPROACH FOR SCHEDULERS

we showed that the examples cover a large cases in the scheduling domain, and as such
the feature model is expressive. To verify the feature models, we adopt standard model-
checking techniques where each configured model is translated to the language of the model
checker.

In this chapter, we show that it is possible to adopt SPLE approaches in the scheduling
domain, and effective domain models based on the feature model notation can be used for
this purpose.

50

CHAPTER 5

Designing Reusable and Run Time
Evolvable Scheduling Software

Implementing software systems that incorporate scheduling systems can be a time con-
suming process. In addition to dealing with well-known challenges in designing software
systems, the software engineer has to define and implement the required tasks, resources,
associated parameters, objectives, strategies, and the constraints, and/or algorithms. Deal-
ing with all these constraints can be a very time consuming and error-prone tasks. For ex-
ample, the constraints must be considered in a very precise and robust manner: Tasks have
to be scheduled within their life-scope; periodic tasks have to be spawned at each inter-
arrival time; the resource requirements of the allocation have to be realized for each task;
the precedence relations have to be satisfied for each allocation; the capacity constraints of
resources have to be satisfied; the preemption capability is supposed to be realized; the mi-
gration capability has to be satisfied; the mutual exclusion constraint among resources have
to be satisfied. A highly reusable and run time evolvable framework designed specifically in
the scheduling domain can ease this burden [53} 99]].

In the literature, to the best our knowledge, studies on schedulers do not aim to develop
a reusable and run time evolvable scheduling software implementation; they rather con-
centrate on specific application-dependent solutions. Since there exists hardly any generic
and expressive library, framework or design environment, the software engineer has to im-
plement all the necessary scheduling abstraction by herself, which increases the complexity
and effort. In addition, due to lack of run time evolution support, maintenance of continu-

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

ously operating scheduling systems becomes a challenge.

This chapter introduces an object-oriented application framework called FSF which can
be utilized to implement schedulers with a high-degree of reusability and run time evolv-
ability. The utility of the framework is demonstrated with a set of canonical examples and
evolution scenarios. The framework is fully implemented and tested.

This chapter focuses on the actual implementation of schedulers and as such it deals with
the software architecture, run time environment and the result of execution of schedulers.
Whereas Chapter [4] focuses on the early phases of product-line software development pro-
cesses, as such it mainly deals with feature models and product (scheduler) configuration.

The remaining sections of this chapter are organized as follows: the next section presents
the problem statement and objectives that are addressed in this chapter. The related work
is summarized in Section The software architecture of the framework is described in
Section In Section [5.4] as case studies, a set of canonical examples is introduced to
evaluate the proposed framework. Finally, the evaluation of the framework and concluding
remarks are presented in Section (5.5

52

5.1. PROBLEM STATEMENT AND OBJECTIVES

5.1 Problem Statement and Objectives

A considerable number of publications have been presented in the literature to guide soft-
ware engineers in designing software systems [124]]. It is generally agreed that certain
quality attributes play an important role along this line. Although many proposals have
been presented to enhance reusability and run time evolvability quality attributes in soft-
ware development practices, there has been hardly any publication aiming at designing
scheduling systems.

Our focus on these software quality attributes in this chapter is limited to the scheduling
domain.

We adopt the term reusability as ease of use of a dedicated software library and associated
tools to create a large category of scheduling systems. To this aim, to create a particular
scheduling system, the code written from scratch must be much shorter than the code of the
library that is reused. To fulfil the reusability requirement, the concept of application frame-
works [78] can be utilized. An object-oriented application framework is defined within a
context of an application domain and consists of a set of dedicated class hierarchies that
can be instantiated and/or sub-classed to create a specific application in that domain. An
important motivation for using this approach is two fold: to provide a reusable program-
ming library for the programmer within the scheduling domain, and to give flexibility to
the programmer to alter the library if needed.

We adopt the term run time evolvability as an ease of modification of an existing schedul-
ing software with respect to a new meaningful set of user requirements. Since many
scheduling systems, such as airport systems and production systems must be continuously
operational, solutions to the new requirements must be introduced to the system at run
time. The term meaningful here refers to the fact that requirements are natural and defined
within a single application context. It is assumed, for example, that an airport scheduling
system is not expected to evolve into an elevator scheduling system.

Within the context of this chapter, run time evolvability must be supported for the follow-
ing cases:

Changing (adding, removing or modifying) resources and/or tasks;
Changing the optimization criteria based on the number of existing tasks.
Changing the timing constraints of the tasks.

Changing the dependency specifications among existing tasks.

Changing the attributes of existing tasks.

HEOO®E»

5.2 Related Work

There have been a considerable number of publications that report on the practical appli-
cations of frameworks [93] 78, [1]. To the best of our knowledge, none of them has been
applied to the domain of scheduling.

Many researchers focus on scheduling problems, and much research work has been pub-
lished in this area [|61},128]. Accordingly, a large category of algorithms has been developed.

53

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

In addition, different kinds of solver-based solutions have been studied and presented in
the literature to address planning and scheduling problems [54, 66, 71]]. There exists also a
study [[82]] which presents a formal framework to implement reusable schedulers. However,
these publications do not aim at creating a framework satisfying reusability and run time
evolvability as defined in this chapter.

5.3 Framework Architecture and Configuration

We define software architecture as an abstract (blue-print) representation of a software
system [5]. Diagrams describing software architecture can ease understanding the essential
elements of software systems. In addition, software architecture plays an important role in
determining the software quality of systems. In the following subsections, both static and
dynamic models of the architecture of the framework are presented. The static model is
expressed in the UML component diagram notation, which shows the logical structure of
our framework. It represents the important abstractions, called components, which have
well-defined interfaces. Each component corresponds to a piece of object-oriented program
that implements a logical concern. A component can only be invoked through its interface
functions. Subsystems group related components together. The dynamic model is expressed
in the UML sequence diagram notation. It shows how components interact with each other
to perform a system-wide behavior. In our example, we utilize sequence diagrams to express
the instantiation processes to create scheduling software.

5.3.1 Component Diagram of the Framework Architecture of FSF

FSF software architecture has been designed after an extensive study of the scheduling
theory. The components and the relationships of the architecture are derived from the
essential concepts of the theory. Furthermore, the architecture is justified by considering
the applications of the theory to a large category of scheduling problems. It is implemented
using an object-oriented library and supported by a set of open-source software and own
developed tools.

FSF software architecture is symbolically shown in Figure The overall architec-
ture is depicted as a large rectangle with thick lines and denoted by the UML stereotype
(«<System>>). The architecture consists of three subsystems: Resource, Task and Sched-
uler. These are shown as dark gray rectangles and are denoted by the UML stereotype
(«<Subsystem>>). The components are shown as light gray rectangles and placed in the
subsystems. The users of the system are shown using the UML actor notation (X). These
indicate the roles and named as Resource Designer, Task Designer and Scheduler Designer.
In practice, one or more person can fulfill the roles. Interfaces are shown using specific
symbols. Components exchange information among each other through interfaces. These
are classified under provided (©) and required (2) interfaces. The direction of an arrow
indicates a dependency relationship from a required to a provided interface.

54

5.3. FRAMEWORK ARCHITECTURE AND CONFIGURATION

<<System>> FSF

Define
Resource

Types

O

Create
Resource]

O
< ww

Resource]

Resource
Designer

Consumption

O

Create
Task

Task
Designer O‘
R/W
Task

<<Subsystem>> Resource

£]
Typ
Definitions
Resource
Factory
|

e
()

Resource
Management
Power =
Consumption

<<Subsystem>> Task

£]
Task Factory
Task =
Management

Read

<<Subsystem>> Scheduler

=] Z]
Solvers ® Strategy

Scheduling
Process
Management

Z] Z]
o o [N
()

Delegate

ReadTasks

Initialize
&
Manage
Scheduler

O

.O Scheduler

Designer
Display
Schedule

Figure 5.1: FSF software architecture depicted as a UML component diagram notation.

55

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

Resource Subsystem

The subsystem Resource contains four components: Type Definitions, Resource Factory, Re-
source Management and Power Consumption. The interfaces of these components are ex-
ported to the user Resource Designer.

The component Type Definitions keeps tracks of all resource types defined. Currently,
three kinds of abstract resource types are provided: Active, Passive and Composite. Abstract
resource types are parameterized to create the concrete resource types such such as Memory,
CPU, Machine, Antenna, Bus, GPU, Sensor, etc.

The user Resource Designer interacts with the component Resource Factory to create in-
stances of the desired resources by “using” the predefined concrete resource types.

The component Resource Management contains all the instances and provides an interface
to the user to read and write their properties. Furthermore, a read interface is provided to
the subsystem Scheduler.

The component Power Consumption is used to read and/or write the power consumption
related properties of instances. The motivation for defining a separate component is to
provide sharing: different kinds of instances may share similar power consumption charac-
teristics. In this case, these instances can simply denote to the same power consumption
definition.

The rationale to define the subsystem Resources in this way is to create a hierarchically
organized resource structures, which is motivated in the following: According to [139], the
resources in computing systems are classified as either active or passive. While a task can
only be executed on an active resource, it may also require one or more passive resources.
The traditional resource model introduced in [61]] does only support active resource. This
makes it cumbersome to express tasks that require also passive resources.

Recently, general purpose computing on graphic cards (GP-GPU) has gained importance
to solve the problems which can be divided into sub-problems such as rendering images,
performing audio operations, etc., where each of them can be executed in parallel. While
defining resources, it may be necessary to consider the hardware architecture of GPU’s.
This requires hierarchical resource models where each resource element in hierarchy may
define its own rules of accessibility. To represent complex resource structures such as the
ones adopted in GPU’s, we define both active, passive and composite resources. Active and
passive resources are represented as the terminal nodes in the hierarchy.

A composite resource may embody one or more active, passive and/or composite re-
sources. The accessibility of resources is defined as follows: A task running on an active
resource has access to the terminal resources of each of its ancestors, and all the termi-
nal resources of each of its sibling composite resources. For example, assume that a task
executes on cpu shown in Figure It has access to the terminal resources of its ances-
tors, antenna, bus, memory-1 memory-2, temp_sensor and prox_sensor; and the terminal
resources of its sibling composite resources, cache_cpu-1 and cache_cpu-2.

Recently, reducing energy consumption has become more and more important. For this
reason, for example, Dynamic Voltage Scaling (DVS) has been introduced to reduce power
consumption of processing units [30} [95, [108]]. This requires dedicated task scheduling.

56

5.3. FRAMEWORK ARCHITECTURE AND CONFIGURATION

SYSTEM

W
A OO e @

antenna PROCESSORS._ bus memory-1 memory-2 temp sensor prox_ sensor

P GPU

L I g ... i

cpu ACHE GPU GPUY

< < [l <. Wl <

cache cpu-1 cache cpu-2 gpu-1 cache gpu-1 gpu-m cache gpu-m

(COMPOSITE, CompRes) > (PASSIVE, MemoryUnit) @ (PASSIVE, SensorUnit)

) (ACTIVE, ProcUnit) VIS (PASSIVE, TransferUnit) [¢5) (PASSIVE, Peripheral)

Figure 5.2: An example resource tree defines the accessibility relation among the resources.

To reduce energy consumption within the timing constraints, the scheduler has to consider
both voltage levels and corresponding executing speeds.

To express these scheduling problems, in FSF power consumption is explicitly modeled
in two options: discrete- and continuous-state power consumption options. For the resources
specified as the former, there exist power states, each of which is the pair of the value sc
(0 < sc < 1.0) and the power consumption value pc; whereas for the resources belonging to
the latter, any value between minimum and maximum power scales can be chosen.

In [69], resources are categorized as single- or multi-unit capacity. A resource with mul-
tiple units, each of which is serially accessible entity is reserved partially to more than one
tasks; whereas a single-unit resource can only be accessed by a task at a time. Therefore, we
defined the numeric attribute capacity representing the number of units for resources with
both single- or multi-unit capacities.

To express simultaneous access in utilizing the capacity of a resource as explained in [28]],
we defined the term mode. If a resource operates in a shared mode, each capacity unit can
be accessed by tasks, simultaneously. Otherwise, the resource can either work in capacity-

57

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

based exclusive mode in which each capacity unit can be accessed by at most one task at
a time or semantic-based exclusive mode in which the utilization of any capacity unit of a
resource is blocked in case a task is executing on one of its exclusive resources.

Task Subsystem

The subsystem Task includes two components: Task Factory and Task Management.

The user Task Designer utilizes the component Task Factory to create instances of tasks.

The component Task Management contains all the instances and provides an interface
to the user Task Designer for reading and writing their properties. Furthermore, a read
interface is provided to the subsystem Scheduler.

Like resources, tasks can also have composite structure. A task can be classified either
composite or terminal. The tasks assigned to a composite resource are recursively dispatched
to resources within its life-cycle until there are no composite tasks left. The design ratio-
nale for this way of allocation of tasks is to ease the scheduling process since it divides a
scheduling problem into simpler sub-problems and deals with each of them in its own time
scope. Since the computational complexity of each sub-system is supposed to decrease,
this process should reduce the execution time of the scheduler. In addition, it groups the
relatively similar sub-tasks that have the same resource requirements.

A number of task attributes are not shown in Figure |5.1|for brevity reasons. Some essen-
tial ones are described in the following:

+ Class Time has been defined to provide system-wide consistency for time-related at-
tributes, and it is used within the definition of tasks. It has class variables such as
resolution of time, and unit of time.

+ The attribute precedence constraint is also used in the definition of tasks. It ensures
tasks to execute in certain order [28]. The predecessor task has to complete its ex-
ecution to let the successor task of it start. In [3]], a precedence constraint has been
expressed by data dependency; a predecessor task fires a token when it finishes and
the successor task has to consume this token in order to start. We have adopted a
more expressive constraint specification, which extends the token-based dependency
with the relational operators AND, OR and the temporal operator AFTER.

+ The attribute resource requirements is defined for each task to express capacity re-
quirements for a set of actual resources belonging to the same concrete resource type.

For brevity, the attributes that are used in tasks such as time, precedence and resource
requirements are not shown in Figure[5.1] These are set in the component Task Management.

The other timing related attributes of tasks will be handled in Section 6.3

Scheduler Subsystem

The subsystem Scheduler consists of five components: Scheduling Process Management, Pa-
rameters, Strategy, Solvers and Schedule.

The component Scheduling Process Management functions as the coordinator. To this aim,
it first interacts with the user Scheduler Designer to set the scheduler-related properties and
store them in the component Parameters, then retrieves the information about the resources
and tasks from the corresponding subsystems, determines the strategy to be used, and

58

5.3. FRAMEWORK ARCHITECTURE AND CONFIGURATION

activates the solver. Finally, it stores the result of the solver in the component Schedule.

The component Strategy determines which solver algorithm should be utilized. To accom-
plish this, it interacts with the Scheduling Process Management and makes a request to the
component Solver to select a particular solver algorithm.

The component Solvers incorporates a set of solver algorithms.

In addition to contain the schedule, the component Schedule provides the scheduling
execution context and offers various utilities to display the results in different output format.

To realize the token-based data dependency, each scheduler instance includes an attribute
corresponding to a token pool.

We consider the scheduling problem as an optimization problem; This requires the defi-
nition of the optimization criteria. In Section various criteria are shown in Table
The purpose of the optimizer is to either minimize or maximize the selected criterion. In our
framework, all the criteria that are shown in the table have been implemented.

The scheduling policy is used to determine the relative importance of tasks for an un-
derlying system. Currently, our framework supports the policies FIFO (First-In-First-Out),
EDF (Earliest Deadline First), SJF (Shortest Job First), LJF (Longest Job First), RM (Rate-
Monotonic, i.e. Shortest Period First), ERT (Earliest Release Time). It is also possible to
define new policies by modifying and extending the related parts in the framework.

Since our framework adopts a solver-based approach, the solver has to be specified as
well. The available solvers are SCIP, MiniSat, MipWrapper, Mistral, Mistral2, SatWrapper,
Toulbar2 and Walksat.

5.3.2 Instantiation of the Framework to Create a Scheduler

Application frameworks [78]] offer a reusable library in a certain domain which must be
instantiated and if necessary extended to create a particular application. In our approach,
to create a dedicated scheduler, the framework must be instantiated according to the re-
quirements of the desired scheduler. Since run time evolvability is one of the key objectives,
an instantiation process is realized at run time.

In the following subsections we illustrate an instantiation process for a particular schedul-
ing example in three steps: instantiation of resources, tasks, and the scheduler.

Instantiation of Resources

Assume that we would like to create an implementation of a resource model with two
elements: cpu and mem. In FSF, as shown in Figure this can be realized at run time
by calling the necessary operations on the corresponding components/objects.

Figure shows a sequence diagram in UML to illustrate the creation process. On the
top left of the figure, as an UML actor notation, the role Resource Designer is shown who
is in charge of defining the resource model. The vertical bars on the most left side of
the figure depict the actions that are initiated by Resource Designer. The other vertical bars
correspond to the instances which are involved in the interaction process. The types of these
components/objects, namely SystemCompositeResource, ResourceFactory and PowerFactory,
are represented at the top of the picture and linked to their instances by dashed-lines: The
sequence of interactions are from top to bottom. In our framework, system incorporates all

59

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

X

ResourceDesigner: ‘ system:CompositeResource ‘ ‘ ResourceFactory ‘ ‘ PowerFactory‘ cpu-t:Type H mem-t:Type ‘

D (1) create ‘D
D (2) create ‘D

(3) create instance for cpu using cpu-t ~ —

create =} cpu:TerminalResource ‘

— (4) create instance for mem using mem-t =:
create =} mem:TerminalResource
i (5) set the capaci;to 1 .
D (6) set the capacity to 512 D R
i d
— (7) create instance for discrete-state for 0.5 and 1.0 scales »
j create » cpu-pc:FixedStatePC

— (8) add state: < 0.8,75 > N
i d

(9) get states

A 4

[0.5, 0.8, 1.0]

— create instance for fixed-state ‘j

create

=} mem-pc:FixedStatePC

set power consumption to cpu-pc

N
v
[]

set power consumption to mem-pc
=D

0) add the resource cp

1) add the resource mgj

Figure 5.3: Sequence diagram to create and configure cpu and mem resources; and add them to the
composite resource system.

60

5.4. CASE STUDIES

the resources that are created. Initially, system is empty.

As shown in Figure the sequence of calls has the following meaning: In the first two
calls (1) and (2), the Resource Designer creates the identities of cpu and mem types. The
text on the call arrows illustrates their meaning informally. In calls (3) and (4), by calling
on ResourceFactory with the identities as parameters, actual resource objects are created. In
calls (5) and (6), the capacities of cpu and mem are defined as 1 and 512, respectively. In
calls (7), (8) and (9), the power consumption characteristics of the resources are defined
as discrete states. For illustration purposes, the call (9) is defined as a read operation. The
dashed line from right to left illustrates the response for this call. Finally, in calls (10) and
(11) are used to add the created resources to the system.

Instantiation of Tasks

Assume that we would like to create 3 tasks called t1, t2, and t3. The actor Task Designer
represents the role who creates, instantiates and configures the tasks. In Figure call (1)
is used to create an instance of the task t1. Calls (2), (3), and (4) are used to set the timing
parameters of this task. The calls (5) and (6) are used to set the resource requirements of
t1. Similarly, calls (7) and (8), and (9) and (10) symbolize the creation and definition of
the tasks t2 and t3. For brevity the details are not shown. Calls (11), (12), and (13) are
used to illustrate possible definitions of dependencies between tasks. An interested reader
should refer to the FSF website (previously called LFOS El) for the details.

Instantiation of the Scheduler

This part illustrates how a scheduler can be created at run time based on the tasks and
resources defined in the previous sections. The actor Scheduler Designer represents the role
who creates, instantiates and configures the scheduler. In Figure[5.5] call (1) symbolizes the
initial creation operation of the necessary objects. Call (2) initializes the scheduler with the
previously defined tasks. Call (3) is responsible for setting the resource tree as presented in
Section Calls (4) to (10) symbolize how the important parameters of the schedulers
are set. Where necessary, the component scheduler delegates the calls to the responsible
components. Finally, call (11) starts the scheduling process. This call sets the parameters
of the solver, instantiates it with the given type and starts the algorithm of the solver. The
solver returns a schedule, which can be in turn utilized to execute the tasks accordingly.
Eventually, the obtained schedule can be plotted. Call (12) represents such an action.

5.4 Case Studies

In Section design and implementation of a scheduler framework which has a high-
degree of reusability and run time evolvability are defined as the two key research objec-
tives. To obtain these quality attributes, a common practice today is to design an application
framework. As a design method, we have adopted the method of deriving the key abstrac-
tions of the framework from the corresponding theories [8]]. In application frameworks, to

"https://github.com/gorhan/LF0S/tree/master/LF0S

61

https://github.com/gorhan/LFOS/tree/master/LFOS
https://github.com/gorhan/LFOS/tree/master/LFOS

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

X

TaskDesigner: TaskFactory

>
>

Task Creation - t1) create terminal task instaan

(2) set release time to Time(0)

h 4

(3) set:deadline to Time(8)

\ 4

(4) set period to Time(12)

(5) add resource requirement 1-unit capacity on cpu during Time(3)

\ 4

(6) add resource requirement 256-unit capacity on mem

4

-

create -
» t1:TerminalTask

>
>

i
i
i
i
i
Lo Crening -2 DV) create terminal task instaan
1
i
i
i

create -
» t2:TerminalTask
8) ... =D
Task Creation - t3) create terminal task instang
QT create
» t3:TerminalTask
(10) ... ‘D

(11) set dependency relation to OR-relation ‘D
(12) add dependency to the token of t2 after Time(2) ‘D
D (13) add dependency to the token of t3 after Time(3) ‘D

Figure 5.4: Sequence diagram to create and configure the tasks t1, t2 and t3.

62

5.4. CASE STUDIES

X

SchedulerDesigner: ‘ sch:Scheduler ‘ ‘ SchedulingCharacteristics ‘ ‘ SchedulingStrategy ‘ ‘ SolverAdapter TokenPool

create D

create

— (1) create scheduler instance —

create

create D

(2) add the tasks t1, t2 and t3

% (3) assign System as a root resource %

(4) set scheduling policy to FIFO

delegate
4,1]
delegate
4,1]
delegate D
delegate D
delegate
4,1]

delegate

—(5) set scheduling window to [Time(0) Time(18)1—

- (6) set migration unavailable —

. (7) set preemptive available —

— (8) set scheduling type to offline —

— (9) set solver to SCIP —

delegate

s (10) set objective to minimizing lateness s

delegate

create »| obj:ObjectiveFactory

— (11) schedule tasks —

define and configure solver variables —

delegate D

delegate

run the solver and get results —

I¢
create schedule:Schedule

P schedule

schedule

i K (12) plot_schedule ~D

Figure 5.5: Sequence diagram to create, configure scheduler sch and get the optimized schedule as
a graph.

63

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

provide a high-degree of reusability in a given domain, the framework library must be ex-
pressive enough to implement the well-known examples of that domain. To this aim, to
demonstrate reusability of FSF, this section presents a set of canonical examples from the
scheduling domain which are instantiated from the framework. To demonstrate the quality
attribute run time evolvability, each example is extended with a set of evolution scenarios.

5.4.1 Rate Monotonic Scheduling (RMS)

Rate Monotonic Scheduling (RMS) is a scheduling method deployed in real-time operating
systems. Although in real-time systems tasks can be defined both as periodic and aperiodic
tasks, in RMS only periodic tasks are assumed. The priority values of the instances of the
tasks are fixed and determined with respect to inter-arrival time (period) of instances. The
shorter period a task has, the more privileged it becomes. Unlike aperiodic tasks, the pe-
riodic ones have hard deadline requirements and these are equal to the beginning of the
next request of the task. The scheduling process is preemptive. As a consequence, a task
can never be in a waiting state for a less privileged task [94]].

Initial Requirement

Assume that the following RMS is desired, which is expressed using Definition [2.1| which is

presented in Section [2.1}
Lpmtn,rj| > w;L;. (5.1)
J
In fact, an RMS is a “a fixed-priority online scheduling problem for scheduling independent,
preemptable, periodic tasks on a single processing unit aiming at minimizing the total weighted

lateness objective”.

Implementation of the Initial Requirement

We assume that our taskset consists of four tasks, and a single resource named cpu. We
specify the end of the scheduling window as the completion time of the latest second in-
stance of a task in the taskset?

As for the required parameters, we have generated the timing attributes of the tasks
randomly; the values are shown in Table

Tasks | Release | Execution | Period | Priorities
Times Times
T1 7”(7.170) =0 C(n,cpu) =7 Pr = 29 *
T2 | T(r5,0) =3 | Clrasepu) =3 | Py =28 | **
T3 | T(r3,0) = 2 C(r3,cpu) = 2| Dry =22 | % xxx
T4 7“(7470) =1 C(T4,Cpu) =4 Pry = 25 * X %

Table 5.1: Randomly generated values of the timing attributes for the taskset. The number of stars in
the column priority corresponds to the relative importance of the corresponding task in the taskset.

2An interested reader can refer to our repository: https://github.com/gorhan/LF0S/blob/master/
Tests/RMS. py

64

https://github.com/gorhan/LFOS/blob/master/Tests/RMS.py
https://github.com/gorhan/LFOS/blob/master/Tests/RMS.py
https://github.com/gorhan/LFOS/blob/master/Tests/RMS.py
https://github.com/gorhan/LFOS/blob/master/Tests/RMS.py

5.4. CASE STUDIES

I Task_0l:Default
Task_02::Default
Task_03::Default

Il Task_04:Default

CPU*

1 L L L 1 L 1 L L L L 1 L 1 L L L L
910111213141516171819202122232425262728293031323334353637383940
Time (msec)

Figure 5.6: A graphical output of the example RMS instantiated with the initial requirements.

L e s e s B B
I I I 1 I I 1 1 I 1 I I 1
L A A N | L N A |
= 4 == 4 ==} - A -|-+4d=-1-+ 44
L O A R | L B R R |
: : : : : : : : h—— : : : : : Il Task_01:Default
o [[Task_02::Default
St - -t Task_03::Default
o L |11 | |mmm Task_04::Default

I I S [I e Sy |

012345678 910111213141516171819202122232425262728293031323334353637383940

Time (msec)

Figure 5.7: A graphical output of the example RMS according to the new requirements.

Based on this initial requirement, a scheduler is instantiated and executed. The result is
displayed in Figure Since 74 is more privileged than 71, the resource is reserved to 74 at
t = 1. Again for the same reason, 73 and 7 take the permission of utilization of the resource
cpu at ¢t = 2 and ¢ = 31, respectively.

Evolution of the requirement: Platform is extended with an additional CPU

To demonstrate run time evolvability of the scheduler, we assume the following change in
the requirements: The system is migrated to a new platform where 2 CPU’s are utilized.
The additional CPU has the same characteristics as the initial one.

The evolved requirement can be defined as follows:

P2lpmtn,r;| Y w;L;. (5.2)
J

Since both resources are assumed to be identical, the execution times of the tasks do not
change.

Implementation of the new requirement

We will now extend the implementation of the previously instantiated scheduler at run time
in 3 steps: (i) creating an additional resource; (ii) setting the resource properties, which
are equal to the ones of the first resource; and (iii) introducing this new resource instance
to the system.

After run time evolution, a new scheduler is configured. The output of it is shown in
Figure Since there are no available resources and the task 74 is ready to execute, the
scheduler preempts the task 1 at 1. Due to the additional resource, the second instances of
the tasks have completed their executions in 4 units of time earlier than the initial case.

65

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

5.4.2 Multiple Resource Scheduling (MRS)

This example is defined to demonstrate the implementation of a complex scheduling prob-
lem involving multiple tasks and resources.

Initial Requirement

Assume that there are 2 tasks and 2 resources each with different characteristics. There are
periodic and aperiodic tasks, which are referred to as system-level and application-level tasks,
respectively. A system-level task has a higher priority than an application-level task. Unlike
an application-level task, a system-level task cannot be suspended. It is also assumed that
an application-level task requires a system-level task to complete. Therefore, aperiodic tasks
depend on periodic tasks. The resources in this example are classified as active and passive
resources and named as processing unit and memory, respectively. The active resources can
process the tasks with different speeds by adjusting the exerted power. This is not possible
with the passive resource. The scheduling process is defined as offline. It is also assumed
that some tasks are preemptable. As a design choice, the tasks are prioritized with respect
to their release times. Therefore, the scheduling policy is defined as Earliest-Release-Time-
First.

Instances of a task are re-prioritized after the completion of each instance for the follow-
ing 2 reasons: (1) the release time of each instance can be different; and (2) an instance
with earliest release time compared to the other instances may not have the same release
time characteristics in the next scheduling window with respect to its period.

Finally, the overall objective of the scheduler is defined as minimizing the consumed
power on the resources while executing the tasks.

The requirement is expressed using Definition 2.1}

Q2’7'j7 dj, prec,pmin, Mj, Sjk> batch| Z PW (i, j), 5-3)
Z"j

where PW (i, j) is the total exerted power of the resource 7 on running the task j.

Implementation of the Initial Requirement

The framework is configured in the following wa: There are two instances for each task:
7(1,1) and 71 9y, and 75 1) and 7(5 5y are defined as instances of periodic tasks and aperi-
odic tasks, respectively. There are also two instances for each resource: cpul and cpu2,
memory1 and memory2 are instances of active resources with single-unit capacities, and
as passive resources with 512-unit capacities, respectively. In addition, in terms of power
consumption, the active resources have two modes, half-scale (0.5) and full-scale (1.0). If
a resource is running in half-scale mode, the execution time of any task on that resource
becomes two times longer than its actual execution time.

In Table the timing attributes of instances of tasks are shown. Since the attributes
used for periods are irrelevant for aperiodic tasks they are shown as NV A (not applicable).

3An interested reader can refer to our repository: https://github.com/gorhan/LF0S/blob/master/
Tests/MRSP.py

66

https://github.com/gorhan/LFOS/blob/master/Tests/MRSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/MRSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/MRSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/MRSP.py

5.4. CASE STUDIES

Tasks | Release Times Execution Times Deadlines Period
T(1,1) T(T(l,l)yo) =0 C(T(1,1)70PU1) = C(T(l,l):Cpuz) =3 d(T(l,l)vo) =6 pT(1,1) =6
7(1,2) T(T(1,2)70) =2 C(T(1,2)7CPU1) = C(T(1,2)7CPU2) =1 d(T(1,2)70) =4 pT(1,2) =4
7(2,1) T(T(2,1):0) =3 C(T(2,1)7CPU1) B C(T(Q,l)7cpuz) =2 d(T(z,l)»O) =14 pT(2,1) =NA
7(2,2) T(T(2,2)50) =8 C(T(2,2)7CPU1) B 0(7(2,2)anU2) =1 d(T(Z,Q)»O) =11 pT(2,2) =NA

Table 5.2: The timing attributes of tasks. (NA = Not Applicable)

[Task 2.1

1) 2

Figure 5.8: Data dependency graph.

Data dependencies between tasks are shown in Figure The numbers above the edges
represent the sequence dependent setup times explained in [[109]. The direction of an arrow
indicates the dependency of tasks. The target tasks (; ;) and 7(; 5y depend on the source
tasks 7(5 1) and 7(, »). An instance of a task is eligible to execute at any time after at least one
of the dependency relations is satisfied. We term this type of dependency as OR-dependency.

In addition, the instances of tasks 7(; ;) and 7(, ;) are instantiated with 650- and 140-unit
capacities on the passive resources, respectively.

With these settings, the framework is instantiated and executed. The result is shown
in Figure As it can be seen from the figure, to lower the power consumption, the
scheduler utilizes the resource cpu2 at half-scale mode. Due to the dependency relation
defined for 75 ;), this task cannot start immediately after its release time, and consequently
its completion is deferred. The resource cpul, therefore, has to operate at a full-scale mode
at t = [9,11) so that the tasks 7(5 9y and 7(; ») can be completed within their deadlines.

Run time evolution of the requirement: change of the objective due to increasing task
demand

To evaluate the run time evolvability of the example, we introduce the following new re-
quirement. Assume that the number of instances of tasks is becoming more than the un-
derlying system can support. In this case, the overall objective of the scheduling process is
changed to minimize the total weighted lateness. The justification of this change is to avoid
missing deadline. Since the evolution is not correlated with the scheduling parameters but

67

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

I I I

| | |
CPUl*__A__ D __“__ .

| | |

| | |

CPU 2+ | R e i e e e e e e e L A |

I
I
I
Memoryl: - 4 - -F -4 --F-H4--F-4--] — - |--t----1+-4
| Task_1_1::Default

— [— ! Task_1_2::Default

=111 11T 1 - f‘;f————k—— EEl Task_2_l::Default
1 - | B Task_2_2:Default
1 1 | 1 1 1 | 1 1 1 | | 1

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Time (msec)

Memory2 - — - - — 4 - -

Figure 5.9: A schedule aimed to minimize power consumption of the resources.

the objective, the specification of the evolved scheduler is expressed as follows:

Q2[r;j,dj, prec, pmin, Mj, sji, batch| Y w;.L;. (5.4)
J

To instantiate the scheduler at run time with respect to the new requirements, we execute
the following calls: (i) altering the objective to minimizing the total weighted lateness; and
(ii) calling the method schedule on Scheduler.

Implementation of the new requirement

To realize the new requirement, the following modifications are carried out at run time: (i)
before each scheduling process, a conditional statement is added to check the number of
instances. (ii) if there exist more than five task instances, the overall objective is set to the
total weighted lateness. After the re-instantiation, the schedule is computed. The result is
shown in Figure The scheduler chooses to run the resources at a full-scale mode and
complete the tasks as soon as possible to realize the desired objective.

5.4.3 Job-shop Scheduling (JS)

In Job-shop scheduling, the resources are identical. They show differences based on the de-
pendency relation between tasks and the machine eligibility of them. An interested reader
can refer to Section In JS, each job has a predetermined path of execution and it
is not necessary for a job to visit each resource during its execution [16]. In addition, the
execution orders of jobs on resources may be different. For instance, the job k; and ko
may have the execution orders (3,2,4,1) and (1,4,2,3) on the resources, respectively. The
eligible resources for the third activities of the jobs are denoted by 11(3 1,y = 4 and ji(3 ,) = 2.
In the following sub-section, we present a specific JS example.

68

5.4. CASE STUDIES

CPUL*

CPU2*

Memoryl

Task_1_1::Default
Task_1_2::Default
EEl Task_2_1::Default
BN Task_2_2::Default

Memory2

|

| | | Il Il

5 6 7 8 9 10 11 12 13 14 15 16 17 18
Time (msec)

Figure 5.10: A schedule of the example which aims at minimizing total weighted lateness.

Initial Requirements

Assume that there are three tasks with 3, 4 and 3 instances, respectively. The machine
environment consists of four resources with single-unit capacity.

From the perspective of scheduling process, the priority is determined with respect to
the execution duration of a job, which is constant. Due to this condition, the priorities
are assigned to jobs once and remain constant unless they are modified. The scheduling
algorithm is chosen to be non-preemptive. The objective is to minimize the makespan.

The initial requirement is expressed as follows:

J4|M;, prec|Crqz- (5.5)

Implementation of the Initial Requirement

In our implementation, jobs and machines are modeled as instances of tasks and resources,
respectively, We have adopted the parameters defined in Example 7.1.1 in [109] Each
task is defined aperiodic and non-preemptable. To oblige each instance of a task to execute
on a specific resource, the machine eligibility constraint is defined. In addition, we define
the dependency relation among instances of tasks to specify the execution path of a task
on different resources. Since the tasks have no release time or deadline constraints, a task
may start to execute if the dependency constraint is satisfied. The eligible resources and
execution times of the instances of tasks are given in Table

The execution paths of jobs as defined in JS are expressed as dependency relations of
tasks. These are shown in Figure[5.11}

The framework is instantiated and executed. The obtained schedule can be seen in Fig-
ure The tasks 7(49) and 73 ;) are ready to execute at time 18 on the resource Re-

*The details about the implementation can be found in our repository https://github. com/gorhan/LF0S/
blob/master/Tests/JSP.py

69

https://github.com/gorhan/LFOS/blob/master/Tests/JSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/JSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/JSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/JSP.py

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

Run time
Tasks

Fe(i,g)

C(i,5)

(1)

—
o

T(2.1)

T(3.1)

T(1.2)

T(2,2)

7(3.2)

T(4.2)

7(1,3)

7(2.3)

NR W R RN W N~

7(3.3)

N

WIN| OV W| O |

Table 5.3: Execution times of the instances of tasks.

Figure 5.11: Dependency graph of tasks in the example.

70

5.4. CASE STUDIES

Resource 01+ [N (-« R, — - — - - - - - - - T~

Resource 02* |- 4 —

Task_01::Job_01
Task_01::Job_02
Task_01::Job_03
Task_02::Job_01
Task_02::Job_02
Task_02::Job_03
Task_03::Job_01
Task_03::Job_02
Task_03::Job_03
Task_04::Job_02

I

I

]
Resource_03* |- 1 -

Resource_04* |- + -

|
|
|
4
|
|
|
|
|
|
4
|
|
|
I

|

I

I

1 Il Il 1 Il 1
9101112131415161718192021222
Time (msec)

r——"-"T~-~-"="=-°=°7r

[[
[
[
== - -+ —l—+ -
[
[
[[
Lo

|
|
|
.
|
|
|
I
3

u““
w
wE - - -
w
vl

| |
2425262728293031323

Figure 5.12: An optimized schedule by minimizing the makespan.

source_03. Since the task with the longer execution time (74 7)) has higher priority than
the others, it executes first.

Run time evolution of the requirement: adding release time constraint

As a run time evolution of the previous example, now assume that some of the tasks cannot
execute immediately after requesting a schedule. The new problem definition is accordingly
expressed as follows:

J4|IM;, prec,r;|Caz- (5.6)

Implementation of the new requirement

To implement this evolution request, a new release time for the targeted instances of tasks
must be set. To this aim, we define the release times of the tasks 7(; ;) and 7 3y as 2 and
21, respectively, so that, to this aim, the corresponding method to set the release time of
each instance of tasks is called.

As shown in Figure due to the restriction on release times, the completion time of
the latest task 7(3 3y is delayed to 31.

5.4.4 Flow-shop Scheduling (FS)

Flow-shop Scheduling is commonly utilized in industrial production. It is a kind of shop
problem where jobs have the same execution order on each machine, V; ; y(; ;) = i. There-
fore, the execution path of jobs in the first machine have to be preserved on other resources,
which is defined as permutation in [109]. Since the process of jobs in an assembly line
should not be altered, the scheduling algorithm is not preemptive. Furthermore, all the
queues are postulated to operate under the policy First-In-First-Out (FIFO).

71

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

T
I
I
Resource_01* |- - - SEEN |
I
I
|

Resource 02* - 4 —|- + |- 1 —|— F |- ~ - — — [[- — —

Task_01:Job_01
Task_01::Job_02
Task_01::Job_03
Task_02::Job_01
Task_02::Job_02
Task_02::Job_03
Task_03::Job 01
Task_03::Job 02
Task_03::Job_03
Task_04::Job_02

Resource_03* -

|
|
|
_ 1
|
|
|
|

F———7-—————p——=—=—==

[
[
[
J
[
[
[
[[|
[[N R
[[|
==+ = Bl i I S A e -
[[N R
[[|
[[|
L1 L L

1 1 | | | 1 | | | | | 1
1011121314151617 18192021222324252627 28293031 32333435
Time (msec)

|
|
|
J
|
|
|
|
|
|
Resource_04* |- -+ —
|
|
|
|
1

Figure 5.13: A graphical representation of the schedule of the evolved JS example.

Initial Requirements

In our framework, jobs and machines are represented as instances of tasks and resources,
respectively. Each instance of a task is assigned to exactly one resource. This is specified
as machine eligibility. Since each instance of a task has to execute on each instance of
a resource once, tasks are defined as aperiodic. There exist dependency relations among
tasks to ensure the order of executions on each instance of a resource. According to the
requirements:
+ The tasks are not preemptable.

The resources are active and have single-unit capacities.
The speed of resources is assumed to be constant.
The scheduling process is defined as offline.
The scheduling policy is determined as FIFO.
The priority assignment is defined as dynamic.

+ The overall objective is chosen as minimizing the makespan.
This requirement can be represented as follows:

L R R R R ¢

Fdlprec, prmu, M;|Cpaz. (5.7)

Implementation of the Initial Requirement

Example 6.1.1 in the book of Pinedo [109] is adopted in the implementation of our F.ﬂ
There are five instances of tasks and four instances of resources. Since each job is supposed
to execute on each resource, the taskset consists of 20 instances (5 jobs x 4 resources). The

>The implementation using our design environment and details can be found in our repository https:
//github.com/gorhan/LF0S/blob/master/Tests/FSP.py

72

https://github.com/gorhan/LFOS/blob/master/Tests/FSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/FSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/FSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/FSP.py

5.4. CASE STUDIES

Ta5) |l 51531613
Ten || 44244
7’(37]-) 4 4 3 4 1
’7'(47]*) 3 6 3 2 5

Table 5.4: Execution times for the tasks.

T Tq

©
©

)

(2.1

&

&)
/ﬁ 3

€/
(0
NG
=
&/

(EAV)

P
)
.
g/

(=0

€/
3

€

(3
\\3
&

T(4J) T \

™
4
E
4

*
e

>
S
kB
S

Figure 5.14: Dependency graph of the flow-shop scheduling example.

execution times of the tasks are shown in Table The columns correspond to the jobs.
The row 7(; ;) corresponds to the execution time of the job j on the resource i.

The dependency relations of the tasks are shown in Figure Here, the tasks (nodes)
with two incoming edges have to wait until both dependency constraints are satisfied. We
call this constraint as AND-dependency.

The example is implemented and executed. The obtained schedule is given in Figure[5.15
Since the objective is minimizing the makespan, it is not required to schedule the tasks as
soon as possible. For this reason, some instances of tasks starts later than its earliest start
time., such as 7(5 3) and 7(3 3y. As it can be seen in the figure, the makespan of the schedule
is 34.

Evolution of the requirement: relaxation of dependencies

Assume that dependencies among the tasks have to be relaxed at run time by removing the
dependencies shown as vertical edges in Figure Since there is no change in general
scheduling attributes, the problem definition given in Equation [5.7|is still valid.

73

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

Task_01::Job_01
Task_01::Job_02
Task_01::Job_03
Task_01::Job_04
Task_01::Job_05
Task_02::Job_01
Task_02::Job_02
Task_02::Job_03
Task_02::Job_04
Task_02::Job_05
Task_03::Job_01
Task_03::Job_02
Task_03::Job_03
Task_03::Job_04
Task_03::Job_05
Task_04::Job_01
Task_04::Job_02
Task_04::Job_03
Task_04::Job_04

D Task_04::Job_05
Lo
91011121314151617181920212223242526272829303132333435
Time (msec)

Resource_01*

Resource_02*

Resource_03*

Resource_04*

o
[
[
[
[
Tl T
[
[
[
[
Lo

Figure 5.15: A graphical representation of the schedule.

Implementation of the new requirement

There are two ways to implement the required evolution: Data dependency relations of
each task are abandoned and the new ones are defined, or the undesired dependencies
(shown as vertical edges) for each task is removed.

This evolution requirement is instantiated at run time and executed. The resulting output
is shown in Figure[5.16]

5.4.5 Open-shop Scheduling (OS)

In open-shop scheduling, like the previous shop examples, a job is assigned to one machine.
On the other hand, the dependencies among jobs are relaxed. A job can be freely allocated
the corresponding machine when it is available. However, any two activities of a job cannot
execute in parallel and therefore they cannot be active at the same time; an activity should
finish its execution before another activity of the same job starts to execute. Like all shop
problems, the jobs are not preemptable.

Initial Requirements

Assume that there are five jobs and three active resources. Each job is supposed to execute
on each resource. Therefore, there are 15 instances (5 jobs x 3 resources) according to our
model. The details of the example are adopted from Example 8.4.1 of I[[ilﬂl and modified

®The implementation using our design environment and details can be found in our repository of https:
//github.com/gorhan/LF0S/blob/master/Tests/0SP.py

74

https://github.com/gorhan/LFOS/blob/master/Tests/OSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/OSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/OSP.py
https://github.com/gorhan/LFOS/blob/master/Tests/OSP.py

5.4. CASE STUDIES

Task _01::job_01
Task_01::Job_02
Task _01::job_03
Task_01::Job_04
Task _01::job_05
Task_02::Job_01
Task_02::Job_02
Task_02::Job_03
Task _02::Job_04
Task_02::Job_05
Task_03::Job_01
Task_03::Job_02
Task_03::Job_03
Task_03::Job_04
Task_03::Job_05
Task_04::Job_01
Task_04::Job_02
Task_04::Job_03
Task_04::Job_04
Task_04::Job_05

Resource 01*- —F -} -+ -F-F -+ -+ -+ —+

Resource_02*

Resource_03*

e

Resource_04*

|
|
|
|
4
|
|
|
|
|
|
|
|
=
|
|
|
|
I

| | | | | 1 | | | | | 1
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Time (msec)

o

=

NE -
w

Py .
wl -
ol -
)
ool —
ol -

Figure 5.16: A graphical representation of the output of the evolved FS example.

according to our model.
The adapted problem definition of this example is as follows:

O3|’I“j,dj,Mj|Lmax. (58)

Implementation of the Initial Requirement

Similar to other shop examples, jobs and machines are defined as tasks and resources,
respectively. Each instance of a task is assigned to exactly one resource using the machine
eligibility specification. Instances of tasks in the same subset as mutually-exclusive.

The execution times of the tasks on each resource, their release times and deadlines are
shown in Table [5.5]

This example was instantiated and executed. The resulting schedule is displayed in Figure
There exists only one solution to this scheduling problem. The duration between
release times and deadlines of the job task j; and j, is equal to their execution times.
Therefore, there is no any other scheduling possibility. Since the execution time of task
7(1,5) is 3 and its deadline is 11, it is supposed to be scheduled immediately after task 7(; 4.
Due to the non-preemptable tasks, although task 7(; ;) has the highest priority among the
tasks, task 7(; o) has to be scheduled at the time when its release time starts.

Evolution of the requirement: preemptable tasks

As an evolution step, now assume that the tasks are defined to be preemptable. This new
requirement can be expressed as:

75

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

Tanpll 1]2]2]2]3
7‘(2’]') 3 1 2 2 1
7'(37]‘) 2 1 1 2 1
;1]1]3]3]3
d; [[11]9]8]9]11

Table 5.5: The execution times, release times and deadlines for the taskset.

Task_01::Job_01
Task_01::Job_02
Task_01::Job_03
Task_01::Job_04
Task_01::Job_05
Task_02::Job_01
Task_02::Job_02
Task_02::Job_03
Task_02::Job_04
Task_02::Job_05
Task_03::Job_01
Task_03::Job_02
Task_03::Job_03
Task_03::Job_04
Task_03::Job_05

Resource 01*

Resource_02*

Resource_03*

Time (msec)

Figure 5.17: A graphical representation of a schedule of the OS example.

76

5.5. EVALUATION AND CONCLUSIONS

Task_01::Job_01
Task_01::Job_02
Task 01::job 03
Task_01::job_04
Task 01::Job 05
Task_02::Job_01
Task _02::Job 02
Task_02::Job_03
Task _02::Job 04
Task_02::Job_05
Task 03::Job 01
Task_03::Job_02
Task 03::Job 03
Task_03::Job_04
Task 03::Job 05

Resource_01*

Resource_02*

Resource_03*

Time (msec)

Figure 5.18: A graphical representation of the output of the evolved example.

03|Tj7dj7Mj7pmtn|Lmax- (5.9)

Implementation of the new requirement

To implement this evolution, the taskset must be traversed and the tasks must be re-specified
as preemptable. The previously defined schedule is modified at run time accordingly and
executed. The output schedule is shown in Figure m Here, the task 7(; 4 is able to start
immediately after its release time as the task 7(; o is preempted by the task 7(; 4.

5.5 Evaluation and Conclusions
In this section, the framework is evaluated against the objectives described in Section [5.1

5.5.1 Assessment Method

Our framework is evaluated against the two required quality attributes reusability and run
time evolvability.

From the perspective of reusability, it is stated that to create a particular scheduling sys-
tem, the code written from scratch must be shorter than the code of the library that is
reused. This definition refers to the Lines-of-Code (LoC) metric [52]. There is much debate
on the preciseness of the metric, because it may not accurately express the effort spent. The
metric may be influenced from many factors, such as the characteristics of the adopted pro-
gramming language, the formatting styles used in coding etc. Therefore, the validity of the
LoC metric in a particular measurement context must be considered carefully. In addition,
the definition of reusability within the context of application frameworks implies that the

77

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

framework must be expressive enough to instantiate a large category of implementations in
the domain of the framework.

Run time evolvability is defined as ease of modification of an existing scheduling software
with respect to a new meaningful set of user requirements during the operational phase of
the software. This implies that all relevant parameters of a system must be set by invoking
operations on the corresponding objects. To validate this quality attribute, one can define
evolution scenarios for each possible parameter change. One disadvantage of this evalua-
tion is that there may be too many possible evolution scenarios. Nevertheless, within the
domain of scheduling, the number of relevant attributes is limited. For example, in Section
run time evolution support is required for five cases.

aq Qo
Q |F|lO]|J 1 M

Tj MRS oS RMS MRS, OS

prec | MRS | FS JS MRS, FS, JS

pmin | MRS oS RMS MRS, OS
B dj=d | MRS oS MRS, OS

M; MRS oS | JS MRS, JS, OS

Sjk MRS MRS

batch | MRS MRS

prmu FS FS

Table 5.6: Domain coverage of examples used. Abbreviations represent the scheduling examples
referred to in this chapter.

Reusability of the Framework

To evaluate the expressivity, in Section five canonical examples from the scheduling
domain are presented.

It is argued that the scheduling domain can be represented using Table The cells
refer to the abbreviations of the example schedulers. The parameters in the rows of the table
corresponds to the scheduling characteristics and are denoted by 3; whereas the columns of
the table are grouped into two categories, namely the machine identifier and the number
of machines which are denoted by a; and «s, respectively. Within these categories, the
parameters Q, F, O, J, 1, M are explained in detail in Section As it can be seen, in
each column and row from top to bottom and left to right, respectively, at least one example
resides. This illustrates that the examples cover at least one case of the parameters in the
scheduling domain.

As previously shown in Figure the framework can be divided into three subsystems:
Resources, Tasks and Scheduler. As for implementation languages, Python and C/C+ + are
used. The third-party software that is adopted in the architecture are Numberjack [65],

"http://www2.informatik.uni-osnabrueck.de/knust/class

78

http://www2.informatik.uni-osnabrueck.de/knust/class

5.5. EVALUATION AND CONCLUSIONS

SCIP [57], MiniSat [[125]], MipWrapper [65]], Mistral [44], Mistral2 [[65]], SatWrapper [65],
Toulbar2 [36] and Walksat [118]. To implement the supporting functions, we have inte-
grated the following third-party tools: Clafer [9] and MatplotLib [[72].

The framework library including third-party software contains 18071 and 927904 LoC
written in Python and C/C++ programming languages, respectively. The LOC of the sup-
porting software is not included in this count.

RMS | MRS | FS | JS | OS
Additional LoC (Python) 67 94 | 58| 67 | 57

Table 5.7: LoC for each example in Section

In Table the columns refer to the examples presented in this chapter. The row indi-
cates the LoC of the examples.

The LOC metric is not very precise and not all the code of the library is used in each
example. Nevertheless, the amount of reuse of the library code is so much higher than the
metrics shown in the row of Table that the impreciseness in this context is considered
negligible. Therefore, it is assumed the framework satisfies the reusability requirement.

Run Time Evolvability of the Framework

Scenario | Example
Adding new resource RMS
Changing the objective MRS
Adding different release times to the tasks JS
Removing some dependency relations FS
Setting the tasks preemptable 0S

Table 5.8: Scenarios to evaluate run time evolvability of the framework.

Parameter Symbol RMS MRS FS JS oS
Constraints ni 4067 738 13980 2818 545
BrE Time for constraint definition (sec) ty 1.3961 | 0.46911 | 11.36172 | 5.1782 | 0.50092
Time for solver execution (sec) t 268.93 107.41 | 22342.83 | 274.71 7.71
Overhead | ¢, = ¢,/(, + 1) || 0.0052 | 0.00435 | 0.00051 | 0.0185 | 0.06101
Constraints ne 4629 738 12322 2417 754
ArE Time for constraint definition (sec) g 1.91886 | 0.5057 | 12.22426 | 4.92931 | 0.5021
Time for solver execution (sec) t¢ 251.65 | 107.18 | 14955.39 | 167.76 11.76
Overhead | ¢ = t5/(t5+tS) || 0.00757 | 0.0047 | 0.00082 | 0.02854 | 0.04095

Table 5.9: FSF time performance overhead with respect to a bare solver alternative.

In Section five cases for run time evolvability are given. Here, the capital letters in
the first column correspond to the cases. The second column Scenario describes briefly the
evolution scenarios presented for each example in Section The last column lists the
abbreviations of each corresponding example. It is clear from the table that these evolution

79

CHAPTER 5. DESIGNING REUSABLE AND RUN TIME EVOLVABLE SCHEDULING SOFTWARE

scenarios can be realized at run time. Therefore, it is assumed that the framework satisfies
the run time evolvability requirement.

Evolution of the Time-Performance Overhead

As demonstrated in the previous two subsections, FSF provides a high-degree of reusability
and run time evolvability. A legitimate question one may ask is what is the cost of enhancing
these quality attributes in terms of time performance? To answer this question, the time
performance of FSF is compared with bare solver-based solutions. Consider Table Here,
two tables are integrated into one. The upper and lower tables, which are named as BrE and
ArE refer to the examples before and after evolution scenarios, respectively. The columns
Parameter and Symbol refer to the relevant parameters for our evaluation. The columns
RMS, MRS, FS, JS, and OS represent the measured parameters of the examples presented
in Section[5.4} The row # Constraints indicates the number of constraints generated; these
are to be considered by the solver. Obviously, the number of constraints gives an indication
about the complexity of the problem and the required time-delay caused by the solver. The
actual time performance of the solver also depends on the nature of the constraints and
how they are related to each other. The parameter Time for constraint definition refers
to the time spent for the generation and transformation of constraints realized by FSF. The
parameter Time for solver execution refers to the time required by the bare solver. In this
case, it is assumed that no time is spent in the preparation of the constraints since they are
readily expressed in the specification language of the solver. A ratio of these two parameters
is defined as Overhead.

As it can be seen from the table, Overhead varies between 0.00051 and 0.06101. It is
clear that the execution time caused by FSF is comparably much lower than the execution
time of the solver adopted.

5.5.2 Conclusions

In this chapter, reusability and run time evolvability are defined as the two key requirements
of an object-oriented framework aimed at creating scheduling software. To this aim, a
framework called FSF has been implemented. With the help of canonical examples, it
is shown that FSF satisfies the reusability requirement. The run time evolvability of the
framework is demonstrated with a set of evolution scenarios. To the best of our knowledge,
FSF is the first framework that provides a scheduling design framework with these quality
attributes.

80

CHAPTER 6

OptML Framework and its Application
to Model Optimization

During the last decade, there has been an increasing emphasis on model-driven engineering
(MDE) [27]. There has been a considerable effort in definition and implementation of
models in a large category of application domains and as such many useful models are
readily available for use.

Availability of models in the domains of interest, however, creates its own problems to
deal with:

First, due to complexity of the domain of interest, complexity and size of models can be
very large [19]. Although there have been some approaches, such as model splitting/merg-
ing/transforming [24]], which can be used to deal with model complexity, generally they
must be “hand-tailored” and their effects in reducing complexity can be rather limited. A
number of model complexity reduction approaches has been proposed. However, as it is
stated in Babur’s article on models [[14], this is an active research area and the problem of
model complexity has not been solved yet satisfactorily.

Second, due to built-in variation mechanisms, models may be configured in many dif-
ferent ways. In addition to functional requirements, selection and configuration of models
may largely depend on certain quality attributes and contextual parameters, which may not
be explicitly specified as parts of models. Examples of quality attributes are for example,
time-performance, energy reduction, precision in computations, etc. Examples of contex-
tual parameters are software and hardware architectural styles of adopted platforms, their

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

characteristics, etc.

Last but not least, since the number of model configurations can be very large, given a
set of requirements, it may be very hard for software engineers to derive the most suitable
configurations in a convenient manner. Optimizing a model-configuration for a single pur-
pose is generally not satisfactory. Software engineers generally have to trade-off different
objectives to configure the most suitable model for a given application setting.

This chapter proposes a novel tool workbench called Optimal Modeling Language (OptML)E]
framework to represent certain quality attributes and contextual parameters, explicitly. This
approach is supported by Optimal Modeling Process (OptMP) to guide the software engi-
neer in selecting and configuring models, according to the desired optimization criteria.
The framework incorporates a dedicated set of tools to compute the desired optimal model
configurations. Examples of currently supported quality attributes are time performance,
energy reduction and precision. Furthermore, as contextual parameters, single- and multi-
core platforms and various distributed and/or parallel system architectures are supported.
The software engineer can define new quality attributes by using the value meta model of
the framework. The utility of the model, the associated process and tools are demonstrated
by a set of examples. A prototype implementation is realized using the Eclipse framework
[129] and FSF application framework. FSF is a dedicated software library to implement a
large category of scheduling systems [105].

This chapter is organized as follows. The following section introduces an illustrative
example and explains the addressed problems. Section presents the architecture of
the framework. Section gives a set of examples models based on various architectural
views. Model Processing Subsystem and Model Optimization Subsystem of the framework are
described in Sections and respectively. Section briefly summarizes the related
work. Section evaluates the approach. Finally, Section concludes the chapter.

!The term Optimal Modeling Language is selected for the following reason. The purpose of this framework
is to compute the optimal configuration from a set of models utilized by the software engineer. We assume that
each model is based on a dedicated modeling language (meta model) in Ecore Modeling Language tradition.
In addition, to compute the optimal model, appropriate models must be introduced to specify the optimization
constraints.

82

6.1. ILLUSTRATIVE EXAMPLE, PROBLEM STATEMENT AND REQUIREMENTS

6.1 lllustrative Example, Problem Statement and Requirements

In this section, an illustrative example from the image processing domain is given which
will be used throughout the chapter to demonstrate the problems and the proposed solu-
tions. This example is considered illustrative for the following reasons. First, this chapter
addresses the concerns where model size and complexity are considerably high. There is
a comprehensive and fully-implemented software library of the example, which is consid-
ered representative for the purpose of the chapter. Second, this software library can be
configured in many ways. This chapter aims at dealing with models with a large number
of configurations. Third, while reusing this software library for a particular application, the
software engineers are typically concerned with various quality attributes, such as timeli-
ness, energy consumption, and precision. This chapter aims to select the optimal model
configuration that satisfy multiple quality constraints.

Registration is a problem of reconstructing an image output by matching two or more
related images captured in different environmental conditions [22]], so that the obtained
image is more expressive for a particular purpose than the individual input images. This
may be needed in systems where multiple sensors are used with different resolutions, posi-
tions and imaging characteristics.

-
‘—y[Input }—»[Filter '—»[FExtract |—> Match '—»[Transform i»—»(:)
\

\ ;

Inputs Output

e[exs o

Figure 6.1: The process of a Registration system to reconstruct an image from multiple inputs.

Consider, for example, the following pipeline architecture for a Registration system, which
is represented in five consecutive states, depicted in Figure[6.1] This architecture is inspired
from the Point Cloud Library (PCL) [114]]. From the left, the state Input represents the data
acquisition loop which gathers image data from one or more sensors. The second state Filter
aims to reduce the data size if necessary so that only the relevant information is used for
further processing. In addition, the original images are preserved. The third state FExtract
is responsible to compute the predefined key features from the data to reason about the
geometric characteristics of the images. The fourth state Match is used to correlate the
extracted features with each other. The state Transform is used to transform the original
images into a common image based on the matching process. Here, the sign @ represents
the transformation operator.

Assume that a version of the PCL library is instantiated in an Ecore MDE environment
with the following models, which represent the system from different architectural views
[34]. More detailed information about these models can be found in Section[6.3

83

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

* o

*

*

A class model, which describes the logical structure of the system.

A feature model, which defines the variations to configure different versions of regis-
tration systems.

A platform model, which describes the underlying computational resources of the
registration system.

A process model, which illustrates the execution flow of the processes and the neces-
sary synchronization points among them.

From the perspective of this chapter, the following potential problems can be observed:

1.

Large configuration spaces of models: It is a common practice that multiple related
models are used in MDE environments for a given system. Each of these models may
define different kinds of variations. The possible combination of all variations may
potentially enable many possible instantiations of models, which can be difficult for
the MDE expert to comprehend. Consider, for example, the registration system which
is described by four different kinds of models. Due to the variations of each model,
the design space of the registration system can be very large. In our example case, for
instance, the number of variations of the defined feature model is computed as 6144
(see Section [6.4). There have been a number of proposals, such as model splitting,
merging or transforming [24} [14], which can be used to deal with model complexity.
However, many of these proposals provide dedicated solutions, for example, through
the application of predefined rules.

. Lack of quality concerns in model configurations: This problem is a natural consequence

of the previous problem. An important set of criteria for creating a particular configu-
ration from a model space is to select the configuration that fulfills the desired quality
attributes.

For example, while configuring a particular Registration system, it may be necessary
to check whether the tasks in the process model can be completed on a given platform
configuration within a given time. To this aim, it must be possible i) to decorate the
process model with the desired attributes, such as the execution times of processes,
and ii) to check if the process can be completed on time (schedulability analysis [49]).
Obviously, new models can be introduced aiming at different architectural views if
necessary. Assume that we would like to extend the set of models in the MDE envi-
ronment with two additional models:

Energy model: it is a model to define the energy demanded by processes (also called
operations) to complete them on the configuration of the underlying platform in cer-
tain time. The factors that affect the completion time of processes depend on the
demanded energy by them and the offered energy by the platform configuration.
Precision model: It is a model to define the quality of the resulting image accuracy
in registration process. In the implementation, alternative algorithmic solutions are
defined with different precision. Depending on the requirements, a low-precision
algorithm may be preferred to a high-precision one for the sake of time performance.

. Optimization of configurations: Software engineers generally have to trade-off dif-

ferent quality attributes to configure the most suitable model for a given application

84

6.2. FRAMEWORK ARCHITECTURE

setting. For example, a particular model configuration may improve the quality at-
tribute “reducing energy consumption” while decreasing the quality attribute “time
performance”. The MDE environment must provide means to optimize model config-
urations by considering multiple quality attributes.

Based on these observations, OptML Framework should support at least the following
requirements.
It must be possible to evaluate:

1.

3.

4.

configurations of models whether at least one configuration exists that can be mapped
on a specified platform architecture while satisfying the timing and resource con-
straints; and/or
find out the optimal model among configurations based on certain optimization crite-
ria and objectives. Along this line, for example, it must be possible to
(a) introduce a model for each quality attribute;
(b) normalize the quality attributes;
(c) relatively prioritize the quality attributes with respect to each other;
(d) apply the comparison operators on the values of attributes, such as “<, >, <>, =";
(e) select the models with respect to minimization or maximization of the quality
attributes;
and/or
find out the optimal model among configurations based on certain optimization crite-
ria and objectives, and/or
whether the introduced models are consistent with each other with respect to the
predefined consistency rules.

The software engineers may demand many different kinds of models when developing
their applications. The facilities provided by OptML Framework may need to be extended
accordingly. The effort that is spent in realizing OptML Framework can only be justified if
the facilities of OptML Framework are demanded by multiple software engineers. OptML
Framework, therefore, must offer solutions to the recurring problems of software engi-
neers. If, however, OptML Framework is required to be extended to satisfy the emerging
needs of software engineers, it must be extended correctly. I addition, enhancements to
the implementation of OptML may be necessary from time to time, for instance, to im-
prove performance. Based on these assumptions, the following extensions are considered
foreseeable:

5.
6. introducing new pruning mechanisms while extracting models from the model-base;
7.
8
9

supporting new models defined in the ECORE environment;

introducing new value-based quality attributes;

. introducing new value optimization algorithms where necessary;
. adopting new search strategies for the schedulability analysis and optimization tech-

niques;

85

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

6.2 Framework Architecture

As shown in Figure the architecture of OptML Framework consists of three sub-systems.
The Model Editing Subsystem, which is symbolically shown on the left side of the figure, can
be used to define various models representing different architectural views based on the
corresponding meta models. If necessary, new meta models can be introduced to the sys-
tem using MDE facilities. We assume that this subsystem corresponds to a standard MDE
editing facilities such as the Eclipse Modeling Framework. The second process in the figure,
Model Processing Subsystem is used to transform the introduced models into a representation
that can be processed by Model Optimization Subsystem. The Model Optimization Subsystem
part of the framework, which is shown symbolically at the right-hand side of the figure, au-
tomatically process the transformed models and computes the optimal model based on the
criteria provided by the model driven (MD) engineer. The last two processing subsystems
form the essential components of OptML Framework. In our approach, we adopt Ecore
Modeling language and the Eclipse platform for Model Editing Subsystem. Since this frame-
work is well-known, we do not explain it further in this chapter. Nevertheless, in sections
and we describe Model Processing Subsystem and Model Optimization Subsystem in
detail, respectively.

6.3 Examples of Models for Registration Systems based on Var-
ious Architectural Views

We will now introduce six models subsequently as running examples to show how the
framework works and to deal with the complexity of the example design problem.

The modeling paradigm adopted in this chapter follows the MDE ECore tradition, which
means that first a meta model is to be defined that conforms the Ecore meta meta model
(called ECore EMF format) [[129]. A model is an instantiation of its meta model. In the
following subsections, the described meta models are:

+ UML Class diagram meta model: To depict the logical view [85] of the example,

+ Feature meta model: To specify the possible configurations of the example [80].

+ Platform meta model: To specify the physical view and the deployment view [85] of
the example.

+ Process meta model: To specify the process view [85]] of the example.

MDE Framework OptML Framework
defines Model Editing Model Processing Model Optimization computes [g timg|
Subsystem Subsystem Subsystem Model
MD
Engineer

Figure 6.2: A Software architecture of OptML Framework.

86

6.3. EXAMPLES OF MODELS FOR REGISTRATION SYSTEMS BASED ON VARIOUS ARCHITECTURAL VIEWS

+ Value meta model: To specify the quality concerns of the example.

These models are selected because they are considered as fundamental models required
by many applications as published by Kruchten [85]. In addition, to address the require-
ments of this chapter, the value meta model is introduced so that the optimal model can be
computed accordingly.

6.3.1 UML Class Model

Class diagram is used for specifying the logical building blocks of a software system. We do
not define a new meta model for classes, but rather we adopt the standard UML Class meta
model, which is one of the registered packagesE] of Epsilon Modeling Framework in Eclipse
IDE.

Figure|6.3[shows a class model for the registration system, which is introduced in Section
Here, for brevity, the attributes and operations are not shown in the figure.

The names of classes Input, Filter, FExtract, Match and Transform are indicated in bold
in the figure, and they correspond to the subsystems of a registration system presented our
example in Figure [6.1] of Section|[6.1

6.3.2 Feature Meta Model

The meta model representing feature models is shown in Figure The aim with the
feature model is to express commonalities and variabilities in a family of software systems.
A feature model enables the model-driven (MD) engineer to express various configurations
of the system. Due to various options, configuring a feature model may refer to more than
one software system. In a traditional model-driven engineering approach, the MD engineer
is supposed to evaluate each configuration and choose the most suitable one based on some
criteria.

Fundamentally, any feature model has exactly one root from which sub-feature models
are originated. Each feature may have zero or more child features and attributes. Each
attribute has a type and defaultValue, which may belong to the primitive types Boolean,
String, Integer or Object. In addition, each feature has a type as optional, alternative or
or if it is a variability; or mandatory if it is a common asset for the product family. All the
features are placed into a Group with upper and lower. The number of bound features
inside the same group has to be between these values in any configuration instantiated
from one feature model. Finally, a feature model may have cross-tree constraints that are
defined as rules in any constraint-based language such as OCL.

A feature model must be consistent with the process model and the class diagram. There-
fore, we assume that each feature defined in a feature model must correspond to a class in
the class diagram.

A feature model of the registration system, which is instantiated from the Feature meta
model, is given in Appendix[A.1]

2EMF-based implementation of the Unified Modeling Language (UML)

87

https://wiki.eclipse.org/MDT/UML2

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

Input Registration Transform
1.1 . 1.1
CalibratedInput
CoarseTransform FineTransform
0..1
Match
FPCA_IA SAC_IA ICP
0..1
FExtract ﬁ
LinearlCP NLinearICP
NARF SIFT FPFH
Filter
0.1
NoiseRemoval Sampling
& %
StatisticalOutlierRemoval PassThroughFilter RadiusOutlierRemoval VoxelGrid Uniform

Figure 6.3: Class diagram for the registration system.

6.3.3 Platform Meta Model

We will present the Platform meta model, as adopted in OptML Framework. A platform
model, which is also termed as deployment model [104], is an instance of this meta model,
and enables the designer to express the components of the computational system. If a
platform model is not specified, it is assumed that the underlying computational system is
transparent and as such mapping of software modules to computer architecture is to be
handled by the operating system in some way. In many system design problems, however,
it may be necessary to consider the platform into account, for example, when designing
software architecture over distributed and/or multi-core systems, in Internet of Things (IoT)

applications to map software modules to the underlying architecture, etc.

88

6.3. EXAMPLES OF MODELS FOR REGISTRATION SYSTEMS BASED ON VARIOUS ARCHITECTURAL VIEWS

% VariabilityType | ID

mandatory = id: ID
= optional = version : EString
= alternative
= or
constraints
0..*
[Constraint
= id:ID
& getModel
description
0..1
description
0.1 [] Description
= id: ID
Q Rule 1 text : EString

= language : EString

= code : EString

[AttributeType

E FeatureModel

[Feature

= id:ID

= name : EString

1 type : VariabilityType
& getParent

& getParentGroup

& getModel

@ getVariabilityType
attributes 9 YIvp

0..%

attributes
description 0..*
0..1

E Attribute
= id: ID
—_ 1 name : EString
description
0..1 = setable : EBoolean
1.1

type
defaultvalue

1.1

E Group
children = id: ID
0..*
= lower : Eint
= upper : EInt
features
1.*

E AttributeValueEObject

[AttributeValueBoolean

= value : EBoolean

Q AttributeValue

[AttributevalueString

= value : EString

E AttributeTypelnt E AttributeTypeString E AttributeTypeBoolean E AttributeTypeEObject

Q AttributeValuelnt

= value : EInt

Figure 6.4: Feature meta model.

The Platform meta model is shown in Figure It expresses hierarchically nested soft-
ware/hardware architectures, which can be composed of various types of architectural com-
ponents. The Platform meta model is represented as class PlatformDiagram, which aggre-
gates classes ResourceType and CompositeResource. Class ResourceType specifies the
characteristics of the corresponding resources with a unique string-type identifier and an
enumeration of the literals ACTIVE, PASSIVE and COMPOSITE. We aim to create a uniform
model by considering all possible architectures as a special configuration of a composite
object. To this aim class PlatformDiagram aggregates class CompositeResource. To create
a hierarchical platform organization, class CompositeResource uses the composite pattern
format [56]. Class Resource here corresponds to an abstract representation of an archi-
tectural component, since every resource inherits its properties. Class CompositeResource
may encompass zero or more terminal and/or composite resources, where composite re-
sources may further aggregate resources and so on. The aggregation relation from class
CompositeResource to class Resource enables to create nested instances of classes Com-

89

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

“#* ResourceAbstraction

E PlatformDiagram
= COMPOSITE

= ACTIVE
= PASSIVE

[TerminalResource

I capacity : Elnt

states
1.*

Q StateDVS
= scale : EFloat

= energy : EFloat

resourceTypes
1.*
System
1.1 [ResourceType

= identifier : EString

- 1 abstraction : ResourceAbstraction
Q CompositeResource

belongs
childs 1.1
0..*

[Resource

= name : EString
exclusiveResources
0..%

Figure 6.5: Platform meta model.

positeResource and/or TerminalResource. Class TerminalResource, as the name implies,
is the representation of the resources that cannot be decomposed any further. The attribute
capacity of class TerminalResource defines the maximum utilization unit that a resource
can provide [69]].

In recent years, mobile devices are increasingly used as a computing platform. Due to
limited operational time of batteries, reducing power consumption of mobile device has
become important. To this aim, for example, the Dynamic Voltage and Frequency Scaling
(DVES) technique is introduced [30, [92]. In Lin’s article [92]], the concept of operating
frequency levels has been defined. The levels correspond to the frequency-scaling factors
varying between O and 1. A higher value means higher energy consumption. Due to the
popularity of this approach in practice, we adopt this technique in our platform model as
well; Class StateDVS is introduced for this purpose. Each level has its scaling factor and
corresponding power consumption value. Each level has its scaling factor and correspond-
ing power consumption value, which are represented by the attributes scale and energy of
class StateDVS, respectively.

To avoid race conditions and simultaneous access to shared resources, the self-reference
relation over abstract class Resource is defined. It avoids that multiple resources run at the
same time.

The reference relation from Resource to ResourceType is used to denote the type of the
corresponding resource.

The platform model as an instantiation of this meta model for the registration system is

given in Appendix

90

6.3. EXAMPLES OF MODELS FOR REGISTRATION SYSTEMS BASED ON VARIOUS ARCHITECTURAL VIEWS

E ProcessDiagram
“* LogicalOperation
= name : EString =

= AND

= XOR

dataset
0..* nodes
0..*
H Requirement
Q Process = resourceName : EString
E Data =1 name : EString = requiredCapacity : EFloat
0.1 requires
= no_available : Eint | producedBy 1 namespace : EString 1.*
1 alias : EString =1 period : EInt
=1 id : Ent
Q ActiveResourceRequirement E PassiveResourceRequirement
E Output
1.1 =1 no_provided : Eint
data 0% 0..1
1.1 N i execution
data output input L.
E Execution
H Input L H InputList = weet : EFloat
item)
= no_required : EInt I operation : LogicalOperation = class : EString

Figure 6.6: Process meta model.

6.3.4 Process Meta model

Our framework allows the MD engineer to understand the dynamic behavior of systems,
for example, when allocating software to the underlying architecture, verifying the oper-
ational semantics of software, determining the time performance, etc. In the literature,
various kinds of models have been presented such as state diagrams, process diagrams, col-
laboration diagrams and activity diagrams. If the timing-constraints are to be considered
when mapping the functionality to a particular platform, we assume that a process model
is defined which represents the processes and their execution flow, input-output data de-
pendencies and resource requirements. Consider, for example, the following Process meta
model which is shown in Figure

A common practice to represent a process model is to consider it as a graph where each
process is a node and the dependencies among processes are the edges of the graph [13].
In our approach, in Figure class ProcessDiagram represents the root of the graph. Since
there may be multiple independent processes in the system, the attribute name of this class
is used to denote a particular process diagram.

Class ProcessDiagram aggregates zero or more nodes, where each node is represented
by class Process. The attribute name of this class is used to identify a particular process
in a process diagram. In pure object-oriented programs, a process is associated with an
object of a class. To represent this property, the attribute namespace is used to denote
the corresponding class. In the literature, periodic processes are executed repeatedly at
each time interval [28]. To represent this characteristic of a process, the attribute period is

91

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

defined. In case of multiple instances of a process, the attribute id can be used to distinguish
the instances from each other.

The application semantics why requires processes to execute in a certain order [28}, [109]].
To specify such conditions, we adopt the concept of data dependency constraint explained in
[88,3]. A data dependency constraint specifies the data that are required and/or provided
by a process. If, say the process P; provides the data d; which is demanded by the process
Py, then P, is eligible to execute only after the completion of P;. In Figure the required
and provided data for a process are represented by classes Input and Output, respectively.
Both classes refer to only one instance of class Data. The availability of a particular data
item is indicated by the attribute no-available of class Data. The attributes no-required
and no-provided of classes Input and Output refer to the required and provided number of
available data items, respectively. Class InputList specifies the input dependency constraints
of a process. If a process requires more than one data item, and it is eligible to start when
only one of the data items is available, the attribute operation of class InputList should be
defined as XOR. However, if the process requires the availability of all data items, then the
attribute should be defined as AND, instead.

Resource requirements of a process are expressed by class Requirement. The attributes
resourceName and requiredCapacity refer to the necessary resource type and its capac-
ity, respectively. To increase the utilization factor of resources, it may be profitable to
divide resource types in active and passive resources [105, [139]. To this aim, classes
ActiveResourceRequirement and PassiveResourceRequirement are defined which inherit
from class Requirement. For allocating active resources to processes that complete in a
timely manner, worst-case execution time of a process is an important factor to consider.
The attribute WCET of class ActiveResourceRequirement is used for this purpose.

The process model of our example case defined by instantiating the meta model shown

in Figure [6.6]is presented in Appendix
6.3.5 Value Meta Model

OptML Framework aims to optimize software models based on various quality attributes.
Value meta model assumes that these attributes are expressed in numeric values associated
with the models®] If there are multiple attributes, the associated values must be differen-
tiated by the types of the qualities used. We define nevertheless a common Value meta
model, which can be instantiated for different quality attributes if needed. The Value meta
model is shown in Figure Here, class ValueModel has an attribute name that is used to
specify the type of a quality attribute. The value of a quality attribute is assigned to each
operation within a class. As short-hand notation, it is also possible to assign a value to a
class. This means however that the values of the operations defined in that class are equal.

3According to the principals of measurement theory, each quality attribute must be expressed in an appro-
priate value system [48]]. However, the computation of values of quality attributes and their association with
modeling elements can be defined in various ways. If different value model is required than the presented
one in this chapter, the tool designer must extend OptML Framework accordingly. This is briefly discussed in

Section

92

6.4. MODEL PROCESSING SUBSYSTEM

inherits
0.

E ValueModel E Class E Operation
1 name : EString 1 name : EString oper(.';ltifns = name : EString

classes
O *

contributes contributes
0..1 0..1

g Contribution

=1 included : EFloat

= excluded : EFloat

Figure 6.7: Value meta model.

If two different values are assigned to a class and an operation of that class, the value of
the operation overrides the value of the class. It is also possible to override values through
the inheritance relation. To specify these values, class Contribution is defined which is asso-
ciated with Class and Operation. Here, the attributes included and excluded indicate the
positive and the negative contribution values depending on the inclusion or exclusion of the
corresponding element in the configuration, respectively.

The instantiations of the Value meta model for energy consumption and computation
accuracy are given in Appendix

6.4 Model Processing Subsystem

Model Processing Subsystem is used to combine the models with each other. The output of
this subsystem is expressed as a dynamic data structure called pipeline data which will be
explained in the following subsections. Figure symbolically depicts the processing steps
of this subsystem.

As shown in the figure, for each model that is defined, there exists a corresponding trans-
formation unit (TU). TU’s are organized in a pipeline structure and carry out the following
two operations: inputModel and transform. The input and output formats of each TU con-
form to the pipeline data type. The operation inputModel retrieves the corresponding model
from the model base.

The operation transform is specialized with respect to the characteristics of the corre-

93

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

UML
Meta Model Xo
¥
UML Class Class
Editor Model TU

Feature X
’
Meta Model

¥
Feature Feature Feature
Editor Model TU

Platform X,
Meta Model

¥
Platform Platform Platform
Editor Model TU

Process X3
Meta Model

N .\\

¥
\) Process Process Process
MD Editor Model TU
Engineer
Value X4
Meta Model
1 Energy Energy
U Model TU
Y
Value
Editor Xs
Precision Precision
Model TU
-
N n
Meta Model
- Xn—1
¥
N N N N Pipeline
Editor Model TU Data
. M |
Model Editing P ode.
Subsystem rocessing
Subsystem

Figure 6.8: Symbolic representation of the Model Editing and Model Processing subsystems. Here,
the ellipses represent data; whereas, the rectangles represent the processes.

94

6.4. MODEL PROCESSING SUBSYSTEM

sponding model. A typical transformation operation consists of the following steps:

1. it retrieves the incoming data from the pipeline.

2. it checks the consistency between the incoming data and the corresponding model.
An error message is generated in case of inconsistency.

3. it transforms the structure of the corresponding model to the format of the pipeline
data.

4. it concatenates the incoming pipeline data with the transformed data and place it at
the output. The next processing unit takes it as an incoming pipeline data, and so on.

An example pipeline data is represented in Listing[6.1]

L ...,
{
"owner": <aTU>,
"size": <aSize>,
"data": <aData>
},
]

Listing 6.1: Structure of pipeline data.

Pipeline data consist of zero or more entities. Each TU adds its own data as an entity to
the pipeline data. The three dots before and after the brackets { and } indicate a possible
existence of more entities. The key owner denotes the identity of the TU which outputs this
data. Here, the item <aTU> must be replaced with the name of a concrete identity of the
corresponding TU. The key size indicates the number of entries in the corresponding data.
The key data holds the instance of the data type that represents the corresponding model.
As defined in Figure now assume that the first TU in the pipeline corresponds to a
class model. Since this is the first TU in the pipeline, it creates the first entity, which is
shown in Listing[6.2] Here, owner is defined as ClassTU, and the data size is computed as
24. A class model is defined as a dictionary where each key indicates an operation and the
corresponding value indicates one or more classes that incorporate the operation. This data
format is accepted by Model Optimization Subsystem. In our example class model given in
Section there are 24 operations with unique names. In the figure, this is represented
in the following way. After the key data, first the operation getData and classes Input and
Calibratedinput which incorporate this operation are specified. Following this, 23 more
operations must be included in the list. For brevity, in the figure, only the last operation is
shown. Here, the operation transform, is associated with four classes: FineTransform, ICP,
LinearICP, NLinearICP.

[

"owner": "Class,TU",
"size": 24,
lldatall .

{

95

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

"getData": ["Input", "CalibratedInput" 1],

"transform": ["FineTransform", "ICP", "LinearICP", "
NLinearICP"]

Listing 6.2: Representation of the Class TU output data.

The second TU corresponds to the Feature model. In the description of the feature model,
we assumed that each feature corresponds to a class in the class model. For this reason,
Feature TU checks whether for each feature there exists a matching class in the class model.
In case of a mismatch, an error condition is raised. In Listing[6.3] the output of our example
Feature TU is shown. Here, we will only focus on the keys size and data. The value of size
is calculated as 6144, meaning that with the current specification of the feature model 6144
configurations are possible. Feature TU computes the configurations and adds these as the
entries of the instance of the data type list, as required by Model Optimization Subsystem,
and stores it at data. For example, the first configuration in the list includes the features
Registration, Input, Filter, Sampling, VoxelGrid, Match, Transform, ICP, and Linear|CP. For
brevity, the remaining configurations are not shown in the figure.

[...,
{
"owner": "Feature,TU",
"size": 6144,
"data": [
["Registration", "Input", "Filter", "Sampling",
"VoxelGrid", "Match", "Transform", "ICP",
"LinearICP"],
]
}
]

Listing 6.3: Representation of the Feature TU output data.
Platform TU is the third unit in the pipeline. The output of this TU is shown in Listing
The key size is set to value one, meaning that there is only a single entry in the model
and that is the platform model. The key data refers to the instance object of the platform
model, denoted by the variable name System, which is defined in the model base. Model
Optimization Subsystem directly accepts the models (objects) that conform to the platform
meta model.

L ...,

"owner": "Platform, TU",
"size": 1,

96

6.4. MODEL PROCESSING SUBSYSTEM

"data": System

Listing 6.4: Representation of the Platform TU output data.

Process TU is defined as the fourth unit in the pipeline. In the process model, we assumed
that each process corresponds to an operation in the class model. Furthermore, there is a
consistency relation between the process model and the feature model, since there is one-
to-one relation between features and classes. Therefore, Process TU first checks whether
these conditions are satisfied. It is possible that while configuring Feature model some of
the optional features are not included. The operations corresponding to these excluded
features must be excluded from the process model as well. Listing shows the output
data of Process TU. From the figure, it can be seen that the value of size is dropped from
6144 to 966 due to elimination of the irrelevant configurations in our example. The data
are organized as a dictionary type where the keys are the configurations and the values
are the corresponding instances that represent the relevant portions of the process model.
Model Optimization Subsystem requires this dictionary data type. In Listing[6.5] only the first
entry of the dictionary is shown. Here, the features Registration, Input, Filter, Sampling,
VoxelGrid, Match, Transform, ICP and LinearlCP correspond to a relevant configuration of
the feature model. This configuration is associated with the instance Process that includes
the portion of the corresponding processes. In the figure, for brevity, the remaining 965
instances are not shown.

L ...,
{
"owner": "Process_ TU",
"size": 966,
"data":

{ ["Registration", "Input", "Filter", "Sampling",
"VoxelGrid", "Match", "Transform", "ICP",
"LinearICP"] : Process,

}

}
]

Listing 6.5: Representation of the Process TU output data.
Energy TU is defined as the fifth unit in the pipeline. First, Energy TU checks if the Energy
model and the models retrieved from the pipeline data are consistent with each other. In
this context, the consistency is specified as follows: Every class and operation defined in
the Energy model must conform to the class model. Second, the configurations of processes
are taken from the pipeline data and the total energy value per configuration is computed.
Third, Energy TU creates a dictionary where the keys are the relevant configurations, and
the values are the total energy value of the processes that are utilized in the corresponding

97

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

configuration. Finally, this dictionary is concatenated with the incoming pipeline data and
placed in the output. This data representation is required by Model Optimization Subsystem.
An example output pipeline data is shown in Listing[6.6] Consider now the key data. Here,
only the first configuration is shown, which consists of Registration, Input, Filter, Sampling,
VoxelGrid, Match, Transform, ICP and LinearlCP. In this example, the total energy value
consumed by this configuration is computed as 80.0.

L ...,

"owner": "Energy,TU",

"size": 966,

"data": {["Registration", "Input", "Filter", "Sampling",
"VoxelGrid", "Match", "Transform", "ICP",
"LinearICP"] : 80.0],

3

Listing 6.6: Representation of the Energy TU output data.
The last unit in the pipeline is Precision TU. The steps carried out in this TU are the same of
the previous one, namely, checking consistency, extracting configurations from the process
model, computing the value of each configuration and concatenate the obtained data with
the incoming pipeline data. In this context, the values correspond to the precision values.
The output pipeline data is shown in Listing[6.7] The first configuration associated withdata
is the same but the associated value of this configuration is computed as 320.0.

[...,

"owner": "Precision_ TU",

"size": 966,

"data": {["Registration", "Input", "Filter", "Sampling",
"VoxelGrid", "Match", "Transform", "ICP",
"LinearICP"] : 320.0,

}

Listing 6.7: Representation of the Precision TU output data.

6.5 Model Optimization Subsystem

In this section, we first define the adopted optimization process. Second, we shortly de-
scribe the architecture of Model Optimization Subsystem. Finally, we give three example

98

6.5. MODEL OPTIMIZATION SUBSYSTEM

scenarios to illustrate how the subsystem computes the optimal model according to the
given constraints.

6.5.1 Optimization Process

OptML Framework is used in this example to optimize software models. According to our
definition, the essential property of every software system is the execution of operations
according to a certain program. The Process meta model is defined to express the dynamic
behavior of a software system. The MD engineer must specialize this meta model to describe
the dynamic behavior of the system being designed. This model is particularly useful to
compute the timeliness and energy consumption properties of the models.

A process configuration corresponds to a program, which is defined as a valid set of processes
conforming to its process model. In general, more than one process configuration can be
derived from a process model. We assume that if there are inconsistent definition, they are
detected by Model Processing Subsystem before the pipeline data reaches Model Optimization
Subsystem.

Model Optimization Subsystem searches for a solution of a process configuration, where
each process is allocated to the appropriate elements of the Platform model, while satisfying

the constraints{z_f] defined by the MD engineer of each process. Currently, the following
constraints are supported:

+ Capacity. This is specified based on the units of the relevant platform elements. Ex-
amples are memory size, processing power, etc.

Worst-case execution time.

Release time.

Deadline.

Dependency constraints.

Preemption constraint.

Migration constraint.

Mutual-exclusion constraint.

The Platform model specifies the resources and their characteristics so that they can be
matched to the constraint defined in the process model.

While searching for an optimal configuration, Model Optimization Subsystem may adopt
various strategies among the set of candidate configurations, such as first-fit, nth-fit and
first-n searches. In the first-fit search approach, the first configuration that satisfies the
requirements is selected and the search process is terminated. In the nth-fit search, as the
name implies, the first n valid configurations are selected if they exist. Finally, in the first-n
search, the first n configurations are selected even if some of them is invalid.

In addition to the process requirements, the optimization process can be extended by defin-
ing constraints that can be derived from the Value meta model similarly to the examples of
the energy and precision models presented in Appendix These additional constraints

* 6 6 6 6 o o

“These are canonical constraints taken from [28]]

99

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

Pipeline Instances
@ Parser of Models Extractor

ADAPTER

Ranked Value
Configurations Optimizer

A

Strategies

Configuration
+ Values

FNP

I' Configuration
+a Value

VALUE PRQCESSOR
Schedulability
Searcher
Y
Scheduler _—
I Search
Strategies

SCHEDULABILITY ANALYZER

./ Optimal
Model

Model Optimization Subsystem

Figure 6.9: Representation of a Model Optimization Subsystem architecture.

are only meaningful if more than one configuration is considered. The configurations that
satisfy the process requirements and are within the boundaries of the desired value con-
straints, ranked according to the optimal required value. The optimal value may be either
minimum or maximum of the values of the considered configurations.

A Class model is a static representation of a program, and as such it defines the bindings of
processes to the operations of classes which can be overridden through inheritance. There-
fore, the Class model restricts the definition of configurations derived from the Process meta
model. Similarly, the Feature model can be seen as a restriction over the Class model.

6.5.2 A Model Optimization Subsystem Architecture

Model Optimization Subsystem consists of three components: Adapter, Value Processor and
Schedulability Analyzer as shown in Figure
Adapter has two subcomponents:

+ Parser accepts the pipeline data as input and extracts the instances of models that are
generated by the transformation units. These are a dictionary representing the class
model, a list of configurations obtained from the feature model, an instance object that
represents the platform, a dictionary of process configurations, and two dictionaries
representing energy and precision models, respectively.

+ Extractor processes the instances of models and generates a list of process configura-
tions associated with the values to be considered for the optimization process.

The module Value Processor includes two subcomponents:
+ FNP, implements three operations Filter, Normalize and Prioritize. First, the operation

100

6.5. MODEL OPTIMIZATION SUBSYSTEM

Filter, eliminates the process configurations that have associated values out of the de-
sired boundaries. For example, the MD engineer may indicate that the precision value
must be above a certain number, and/or the energy value must be less than a certain
number, etc. Second, the operation FNP normalizes each value between 0 and 1. Fi-
nally, based on the input given by the MD engineer, the operation Prioritize computes
a single value using the following formula:

n
P(ﬁml,@m2,...,ﬁmn):ZaixNoF(ﬁmi)7 6.1)
=1

where «; represents the priority of the corresponding model m; in the total equation;
N o F indicates the composition of functions normalize and filter; and v,,, represents
the list of values of the process configurations computed according to the value model
m;.

¢ Value Optimizer ranks the list with respect to the selected Rank Strategy in an ascend-
ing or a descending order. According to the choice of the strategy, the MD engineer
may request for the best n number of process configurations rather than delegating
all of them to the following subcomponent Schedulability Searcher. The best config-
urations are computed by using an appropriate optimization algorithm. In this way,
only the most promising configurations are considered first. If no quality attributes
are defined, this component has no effect.

The module Schedulability Analyzer incorporates two subcomponents:

¢ Scheduler is based on an application framework called First Scheduling Framework
(FSF) [106], which provides the necessary abstractions and mechanisms to implement
schedulers and explained in Chapter [5in detail.
Since the models defined in this chapter are designed in accordance with the mod-
els in FSF, the transformation of the models is realized in the following way: Firstly,
the platform model in OptML is translated to the resource model in FSF. Secondly,
the Process model that defines the execution flow of the operations in the Class model
converted to the task model in FSF. Thirdly, the scheduling characteristics are de-
fined with respect to the requirements of each process defined in Section [6.5.1}, and
scheduling strategy is defined as minimizing the makespan. Since the execution time
of a process in the Process model changes with respect to the class in which it is de-
fined, a separate scheduling problem is generated for each configuration. In the sense
of schedulability, any feasible solution (schedule) computed by Scheduler makes the
corresponding process configuration valid.

¢ Schedulability Searcher implements the search algorithm based on a certain strategy.
To this aim, it retrieves the top element of the ranked configurations from the sub-
component Value Processor and calls Scheduler to evaluate it. Depending on the result
of this evaluation, this process may iterate over the remaining configurations in the
ranked list based on the selected strategy. For example, if the first-fit strategy is used,
Schedulability Searcher terminates the search as soon as Scheduler finds a solution
that satisfies the constraints. This configuration is considered to be the optimal model.

101

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

Other related models, such as the Class model, can be reconstructed based on this
result.

6.5.3 Example Scenarios

In the following subsections, we will give a set of model optimization scenarios to illus-
trate the utility of OptML Framework with respect to the requirements defined in Section
In practice, it is not possible to validate the correctness of a software system with
the help of user-defined scenarios since the number of scenarios in any practical system
can be extremely large. Therefore, we categorize the scenarios in the following way: (i)
time analysis on a single- and multi-processor architecture; (ii) model optimization based
on time analysis combined with single quality attribute; (iii) model optimization based on
time analysis on multiple quality attributes; (iv) three different search strategies to find an
optimal model. We assume that these four categories represent a large number of scenarios
that can be experienced in practice.

With respect to the requirements given in Section the fulfillment of the first three
requirements, finding the schedulable optimal model while satisfying the quality require-
ments, is demonstrated by the three categories of the scenarios that will be given in the
following subsections.

Scenario 1: Finding out the schedulability of the model with respect to a platform
model

This scenario aims at demonstrating the fulfillment of the first requirement: schedulability
of processes on platforms. To this aim, we have made the following assumptions about the
models:

+ The class, feature and process models are shown in Appendix.

+ The platform model has the following characteristics: It has two terminal resources
cpu0101 and MEMO0101, belonging to ACTIVE and PASSIVE resource types, respec-
tively. The object diagram for the corresponding platform model is shown in Figure
The capacity of the active terminal resource is 1; whereas, the passive terminal
resource has 1024-unit capacity. Each of these terminal resources has one running
state. In this scenario, we choose a more restricted platform model (with a single pro-
cessing unit) than the one given in Appendix[A.2|to demonstrate the effect of platform
capacities on the schedulability process.

+ The criteria of the scheduling objective is set to “minimizing the maximum makespan”
[109].

+ The scheduling window for the processes is set to 50.

+ The search strategy is chosen as first-fit.

+ The process configurations are not ranked by the subcomponent Value Optimizer.
With these given assumptions, Scheduler returns a solution that is depicted in Figure [6.11
The figure consists of two rectangles. The top horizontal rectangle depicts the schedule
computed by Scheduler. This figure only includes the processes that are selected by the
optimizer. The horizontal axis corresponds to Time, and the vertical axis corresponds to the
capacities of the two terminal resources, cbu0101 and MEMO101. Each unit in the vertical

102

6.5. MODEL OPTIMIZATION SUBSYSTEM

5 PlatformDiagram
resourceTypes|[2]
resourceTypes[1]
< resourceTypes|0]
<
System
\
B CompositeResource = ResourceType
= name="System” belongs = identifier="COMPOSITE_t"
""""""" * = abstraction=COMPOSITE

childs[0] ? childs[1]
, v !

= ResourceType B8 TerminalResource 5 TerminalResource = ResourceType
= identifier="CPU_t" belongs | name=“CPU0101” = name="MEMO0101” belongs = identifier="MEM_t"
= abstraction=ACTIVE [= capacity=1 = capacity=1024 [~7°777777 * = abstraction=PASSIVE
t states[0] z states[0]
B StaeDvs (B stateDvs
= scale=1.0 = scale=1.0

= energy=100.0 = energy=50.0

Figure 6.10: An object diagram of the platform model.

axis corresponds to total amount of capacity for each resource. The larger rectangle shows
all the processes, although some of them may not be included in the schedule. Each process
is indicated by a different color as shown in the legend.

Scenario 2: Finding the schedulable optimal model with respect to a single quality
attribute

The second scenario is defined to illustrate the first three requirements in Section [6.1f
introducing new quality attributes and finding out the optimal model that satisfies both the
schedulability and the quality requirements.
Along this line, the following assumptions are made:

+ The class, feature, platform and process models are taken from Appendix.

+ Asingle quality model energy consumption is introduced, which is defined in Appendix

The criteria of the scheduling objective is set to “minimizing the maximum makespan”.
The scheduling window for the processes is set to 23.

The search strategy is chosen as 3rd-fit.

The process configurations are ranked by the subcomponent Value Optimizer with
respect to the ascending energy values.

In this scenario, the multi-processor architecture is selected. The result of the optimization
process based on the given assumptions is shown in Figure This figure consists of three
subfigures where each subfigure shows the evaluation of a particular process configuration.

* & o o

103

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

CPUO101*

MEMO0101

o-
]
Ny
w
N
e
o
<
Py

Figure 6.11: Schedule produced by Scheduler using the first-fit strategy.

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Time (msec)

CalibratedInput-getData[0]::CalibratedInput
FExtract-extract[0]::NARF
FExtract-extract[1]::NARF
FExtract-setFExtractingParams[0]::NARF
FExtract-setinputData[0]::NARF
FExtract-setinputData[1]::NARF
Filter-filter[0]::StatisticalOutlierRemoval
Filter-filter[1]::StatisticalOutlierRemoval
Filter-setFilteringParams[0]::StatisticalOutlierRemoval
Filter-setinputData[0]::StatisticalOutlierRemoval
Filter-setinputData[1]::StatisticalOutlierRemoval
FineTransform-transform[0]::LinearICP
Match-computeCorrespondences[0]::Match
Match-setinputDstData[0]::Match
Match-setInputSrcData[0]::Match
Match-setMatchingParams[0]::Match
Transform-setCorrespondences[0]::LinearlCP
Transform-setinputDstData[0]::LinearICP
Transform-setinputSrcData[0]::LinearlCP
Transform-setTransformingParams[0]::LinearICP

104

6.6. RELATED WORK

The top subfigure shows a schedule with the least energy consumption; whereas, the bottom
subfigure shows the most among the ones that are evaluated. Therefore, the top subfigure
is considered as the optimal model.

Scenario 3: Finding the schedulable optimal model with respect to multiple quality
attributes

This scenario extends the previous one with an additional precision quality attribute. To this
aim, the assumptions are the same as the previous scenario except the followings:

+ The scheduling window size is set to 21.

The search strategy is set to first-25.

A new precision quality attribute is defined in Appendix[A.4]

The priorities of the quality attributes energy and precision are defined as 0.2 and 0.8,
respectively.

+ The process configurations are ranked by the subcomponent Value Optimizer with
respect to the ascending both energy and precision values. To preserve uniformity,
normalized value 1 corresponds to lowest precision; whereas 0 is the highest.

The result is given in Figure Here only two configurations are shown. The second
configuration found in the ranked configurations happens to be not schedulable. This is,
because, the operation transform exceeds the specified scheduling window size if it is im-
plemented with a high precision value.

The figure consists of two subfigures, where the top subfigure corresponds to a configuration
with a better quality value. This configuration is selected as the optimal model.

* & o

6.6 Related Work

Model-driven architecture (MDA) aims at separating platform-independent and platform-
dependent models from each other [[12]]. MDE adds engineering practices to MDA with meta
models and model transformations [38]. In MDE, not only models but also meta models
and model transformations are the core assets of software development. The research ac-
tivities over MDE are very broad, including domain specific models, model building, model
verification, model reuse, model transformation and code generation [77, [131]].

In the literature, the terms model and optimization are used in two ways: (i) models for
optimization; and (ii) model optimization. There have been considerable number of works
on models for optimization, where researchers investigate mostly mathematical models
to define and implement optimization processes. For our approach, such techniques are
adopted in the subcomponents FNP and Value Optimizer for value optimization, and in the
subcomponents Schedulability Searcher and Scheduler for schedulability analysis.

The purpose of model optimization, however, is to search for the models within a model-
base that satisfy certain criteria. This is the main focus of the chapter. In contrast with
models for optimization, there are hardly any publications that address this problem. As
stated by Chenouard [32], a constraint-programming based design synthesis process is pre-
sented using MDE techniques. A similar approach is adopted in Joachim’s article [42],
where an optimal model is searched within the context of certain requirements. The dif-

105

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

CPUO101*

CPU0201* -

MEMO0101

MEMO0201

CPUO101*

CPU0201*

MEMO0101

MEMO0201

CPUO101*

CPU0201*

MEMO0101

MEM0201

I CalibratedInput-getData[0]::Calibratedinput

W FExtract-extract[0]::NARF
FExtract-extract[1]::NARF

I FExtract-setFExtractingParams[0]::NARF
FExtract-setinputData[0]::NARF

I FExtract-setinputData[1]::NARF

Il Filter-filter[0]::VoxelGrid
Filter-filter[1]::VoxelGrid

Il Filter-setFilteringParams[0]::VoxelGrid
Filter-setinputData[0]::VoxelGrid

I Filter-setinputData[1]::VoxelGrid

B FineTransform-transform[0]::LinearlCP

B Match-computeCorrespondences[0]::Match
Match-setinputDstData[0]::Match

Il Match-setinputSrcData[0]::Match

B Match-setMatchingParams[0]::Match

I Transform-setCorrespondences[0]::LinearlCP
Transform-setinputDstData[0]::LinearlCP

I Transform-setinputSrcData[0]::LinearlCP

B Transform-setTransformingParams[0]::LinearICP

— T
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time (msec)

I Calibratedinput-getData[0]::Calibratedinput

I FExtract-extract[0]::NARF
FExtract-extract[1]::NARF

I FExtract-setFExtractingParams[0]::NARF
FExtract-setinputData[0]::NARF

I FExtract-setinputData[1]::NARF

Il Filter-filter[0]::VoxelGrid
Filter-filter[1]::VoxelGrid
Filter-setFilteringParams[0]::VoxelGrid

I Filter-setinputData[0]::VoxelGrid

Il Filter-setinputData[1]::VoxelGrid

Il FineTransform-transform[0]::NLinearICP

B Match-computeCorrespondences[0]::Match
Match-setinputDstData[0]::Match

EEl Match-setinputSrcData[0]::Match

B Match-setMatchingParams[0]::Match

B Transform-setCorrespondences[0]::NLinearlCP
Transform-setinputDstData[0]::NLinearlCP

B Transform-setinputSrcData[0]::NLinearICP

Bl Transform-setTransformingParams[0]::NLinearICP

% é é 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 18 19 20 21 22 2‘3
Time (msec)

,_.<
N
w
o
.
.

CalibratedInput-getData[0]::CalibratedInput
FExtract-extract[0]::SIFT
FExtract-extract[1]::SIFT
FExtract-setFExtractingParams[0]::SIFT
FExtract-setinputData[0]::SIFT
FExtract-setinputData[1]::SIFT
Filter-filter[0]::VoxelGrid
Filter-filter[1]::VoxelGrid
Filter-setFilteringParams[0]::VoxelGrid
Filter-setinputData[0]::VoxelGrid
Filter-setinputData[1]::VoxelGrid
FineTransform-transform[0]::LinearlCP
Match-computeCorrespondences[0]::Match
Match-setinputDstData[0]::Match
Match-setinputSrcData[0]::Match
Match-setMatchingParams[0]::Match
Transform-setCorrespondences[0]::LinearICP
Transform-setinputDstData[0]::LinearlCP
Transform-setinputSrcData[0]::LinearlCP
Transform-setTransformingParams[0]::LinearICP

L—

L B e e e e N S
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time (msec)

T
01 2 3 456 7

Figure 6.12: Three schedules ordered according to their energy consumption values.

106

6.6. RELATED WORK

‘sanfea uoispaid pue uondumnsuod A319us I19y1 01 SUTPIOIIR PAIdPIO SANPAYIS OM], :€1°9 2In31g

doleaur:i[p]sweledbulwiojsuel | 39S-uwIojsuel |
dDleaur::[plere@o4sindujas-waojsuel |
doueaurt::[pleiegisgindujias-wiojsued |
dDleaul::[0]seouapuodsalio)}as-wiojsuel |
yoien::[olswesedbuiynieias-ysiepn
yole::[0]ere@aisindujias-ysien
yoie::[0lereqisgindupiss-ysie
yojep::[0]s@ouspuodsalio)aindwod-ydiepn
dDlesur::[p]waojsuely-wiojsuelsuly
PUDISXOA::[T]e3e@induj3as-1a3|14
PUDISXOA::[0]ereainduj3as-4ay14
PUDISXOA::[Q]sweledbulia)|i4319s-19314
PUDISXOA:[T Ha3-19311d
PUDISXOA::[014311-49))1d
Hdd4::[T]ereqindujias-3oeaix34
H4d4::[0]ere@indupias-1oeax34
H4d4::[0]sweledbuipeiixq419s-10esixy4
H4d4::[T]nenxa-10enx3y
Hdd4::[0]30R13X3-10R1IXT4
indujpajesqi|ed::[0]eie@iab-indulpajelqijed

doueaur::[plsweledbuluioisuel] 19S-wlojsuel |
dDleaul::[0]ere@oisindulias-waojsuel |
dDoleaur::[p]ere@isgindujas-wiojsuel |
dDl4eaur:i[0]seouspuodsallo)]as-wiojsuel |
yo3ey::[0]swesedbuiydienias-yoiepn
yorew::[0]ere@aisindupas-yszew
ysrew::[0lere@isaindupas-ysie
yoie::[p]saduapuodsaliodaindwod-yiiepn
dDlieaul:i[Q]waojsuell-wiojsuel auly
193|14ybnoiy]ssed::[T]ereginduj3as-iayi4
J433)14yBnoay 1ssed::[0]ere@indulas-ia)id
J9314ybnoJyssed::[plsweledbulial|i41os-493|14
J133)14ybnoay | ssed::[1]493)4-193)14

J433J14ybnoay 1ssed::[0]433(y-43114
H4dd::[T]ereqindupas-3oeiix3d
H4d4::[0]ere@induj3as-3oeaIx34
H4d4::[0]sweiedbulldelixq439s-10e43x34
H4dd::[T]oelIxe-30e43x3
H4d4::[0[30esIxe-10e4)x34
Indujpajesqiied::[0]eie@iab-indulpaielqied

T¢ 0C 6T 8T LT 9T ST ¥T €T ¢T 11 OT

- TOZOWIW

- TOTOW3NW

- x10Z0NdD

-«L0T0NdD

TZ 0C 6T 8T LT 9T ST ¥T €T ZT 1T OT

- TOZOWINW

- TOTOW3NW

“ «+10Z0NdD

- xT0TONdD

107

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

ference between these two articles is that in the former, the optimal model is searched at
a model level using constraint programming, whereas in the latter, search is defined as a
model transformation. The objectives of both articles are, however, different than ours.
The aim in these articles is to synthesize the optimal model that satisfies the constraints,
whereas in our work, the aim is to select the optimal model among model configurations
that satisfy the constraints. There are a number of research initiatives that aim at verifying
models based on certain specifications. With the help of OCL [137], for example, certain
properties of models can be formally specified. Various tools have been developed to ver-
ify models annotated with such specifications [60]. These tools in general are used for
verification and testing purposes but not for model optimization.

To the best of our knowledge, there is no framework proposal that aims at optimizing
models defined in the context of MDE, as proposed in this chapter.

There has been a number of research initiatives aiming at optimizing software architectures
according to a set of quality attributes. In [[127], algorithms are proposed to optimize TV
architectures for the qualities availability, reduced memory usage and time performance.
Multi-objective optimization techniques are proposed in [41]] with respect to certain quality
attributes such as production speed, reduced energy usage and print quality. A design
method for balancing quality attributes energy reduction and modularity of software is
proposed in [133].

6.7 Evaluation

We will now evaluate this chapter with respect to the nine requirements given in Section
The fulfillment of the first three requirements given in Section [6.1| is explained in
Section [6.5.3]

The fourth requirement, checking consistency among models, is realized by the TU’s defined
in Model Processing Subsystem as explained in Section [6.4]

The fifth requirement, supporting new models in EMF, is provided with the following con-
dition: For each new model, the tool engineer must define the corresponding TU with the
necessary model extraction, consistency checking and model transformation functions.
The sixth requirement, pruning models, is supported in the TU’s by re-defining the operation
inputModel with different retrieval strategies so that only the relevant parts of the model
are selected. For example, in the current implementation of the framework, we support the
following strategies: (a) retrieve the complete model (default); (b) include only the classes
denoted by the MD engineer; (c) include all the classes with a query. The architecture
allows to introduce new strategies. However, if not all model elements are selected, the
pruned model can be inconsistent with the other models. In our framework, for example, if
some classes, which are eliminated from the class model, are included in the feature model,
the feature TU will give an error message. For brevity, this chapter does not focus on the
pruning techniques. An interested reader may refer to the report [87]. As it is explained in
Section due to the pipeline architecture of Model Processing Subsystem, the framework
allows the tool designer to introduce such extensions to the existing utilities.

108

6.7. EVALUATION

As demonstrated in Section the seventh requirement, introducing new quality at-
tributes, can be realized by specializing the Value meta model with the following restric-
tions: (a) the quality attributes are expressed in numbers and associated with classes and
their operations; (b) if necessary, the quality attributes per configuration are computed by
the corresponding TU. If this way of representing the desired quality attribute is not appro-
priate, a new value meta model and the corresponding TU must be introduced. The pipeline
architecture of Model Processing Subsystem makes this possible without changing the other
TUs.

The eighth requirement, introducing new value optimization algorithms, is supported in the
following way: Currently, OptML Framework implements a rather straightforward value
optimization based on filtering, normalizing, prioritizing and priority-based ranking with
the help of the subcomponents FNP and Value Optimizer. Different quality values are merged
into a single value. As the next step, the schedulability of the ranked configurations is
analyzed. One may adopt, however, different value optimization techniques depending on
the needs, and the feasibility of time and space complexity of the optimization algorithms.
For example, one may aim at reducing the time of optimization process by using heuristic
rules. In the literature, various optimization algorithms are presented such as hill-climbing,
exhaustive search and pareto-front multi-objective optimization [127]. These changes can
be encapsulated in the subcomponents FNP and Value Optimizer.

The last requirement, adopting new search strategies for scheduling, can be fulfilled by
defining a new search strategy for the subcomponent Schedulability Searcher.

The time performance of the model optimization process is considered important for the
usability of the framework. The current architecture allows performance improvement in
the following ways: (a) introducing effective model-pruning strategies in the correspond-
ing TUs; (b) applying different optimization algorithms in Model Optimization Subsystem;
(c) using efficient schedulability search strategies; and (d) using efficient solvers in the
subcomponent Scheduler.

The average execution time of the solver per configuration are shown in Table In the
figure, the bottom row shows the results of the evaluation. The top five rows defines the
parameters of the implementations. In none of these scenarios, model pruning is used. Nor-
malization of the quality values are only applied to the second and third scenarios where
the values are mapped into the range of O to 1. Here, NA means Not Applicable. The def-
initions of rank and search strategies are self-explanatory. The row Utilized Solver defines
the constraint solver that is used in the subcomponent Scheduler. The execution time of the
solver for the scenario 1 is much higher due to the longer schedulability window size. The
time that is required to search among the possible solutions by the subcomponent Schedu-
lability Searcher is negligible when compared with the time performance of the solvers. To
determine the total time performance, one needs to multiply the last column value with the
number of iterations in the search strategy.

109

CHAPTER 6. OPTML FRAMEWORK AND ITS APPLICATION TO MODEL OPTIMIZATION

Parameter \ Scenarios
Scenario 1 Scenario 2 Scenario 3
Model Pruning No No No
Normalization NA [01] [01]
Rank Strategy NA Ascending Order | Ascending Order
Search Strategy First-fit 3rd-fit first-25
Utilized Solver | Gurobi [[62] Gurobi Gurobi
Average Execut} on Tlme 305 sec 30 sec 26 sec
of the Solver per configuration

Table 6.1: The performance values of the scenarios. The scenarios are implemented on MacBook
Pro with 2.6 GHz Intel Core i5 processor and 8 GB 1600 MHz memory.

6.8 Conclusion

This chapter identifies the following problems: (a) model complexity; (b) the lack of
quality-based model selection; and (c) the lack of support of multiple quality-based eval-
uations. To address these problems, OptML Framework is proposed. This framework ac-
cepts various models defined in EMF and processes them according to user preferences and
model properties; and computes the optimal schedulable models based on value optimiza-
tion and constraint-based scheduling algorithms. To the best of our knowledge, this is the
first generic MDE framework that is suitable for model optimization.

The utility of the framework is demonstrated by implementing three scenarios inspired by
registration systems used in the area of image processing. The scenarios show that the re-
quired objectives of model optimization as defined in this chapter are fulfilled. With the help
of design patterns and various architectural styles, the architecture has a modular structure
and thereby allows the introduction of new strategies for model extraction and transforma-
tion, value optimization and schedulability analysis. The framework is fully implemented
and tested. It integrates a number of third-party software such as Eclipse EMF [51], pyecore
[10], pyuml2 [11]], FSF [106], Numberjack [65], matplotlib [72], Gurobi [62]], SCIP [57],
Mistral [44].

110

CHAPTER 7

Conclusions

This chapter concludes the thesis by reflecting on the addressed research challenges in
two categories: challenges in designing (a) scheduling software, and (b) optimal models
in model-driven engineering. To this aim, first the identified research challenges are pre-
sented. Second, the related research questions are summarized related to the identified
challenges.

CHAPTER 7. CONCLUSIONS

7.1 Designing Scheduling Software

7.1.1 Challenges

In Chapter |1, we stated that implementing software systems that incorporate schedulers
can be challenging due to the following concerns:

1. Time-consuming process: In addition to dealing with well-known challenges in design-
ing software systems, the software engineer has to define and implement the required
tasks, resources, associated parameters, objectives, strategies, and the constraints,
and/or algorithms. Due to the inter-dependencies, the software engineer may have to
spend a considerable amount of time to complete this process successfully.

2. Systems can be large and complex: Scheduling systems may incorporate many objects.
In addition to the scheduling related parameters, these objects may also contain com-
plex inter-dependencies.

3. Safety-critical: Scheduling systems are in general safety-critical systems. Schedulabil-
ity of tasks is an important quality attribute to be enforced.

4. Reusability: Due to the complexity of such systems, it is generally very costly to de-
velop them from scratch. In addition, companies may aim to develop family of prod-
ucts. Therefore, reusability of software is considered very beneficial.

5. Run time evolution: Scheduling systems are in general continuously operational sys-
tems. Therefore, to cope with the continual change of user requirements, solutions to
the new requirements must be introduced to the systems at run time.

Of course, many of these challenges depend on each other. This makes designing software
systems that incorporate schedulers even harder.

7.1.2 The Software Engineering Approach

The challenges stated in Section|7.1.1|are addressed at three complementary levels:

i Application Framework. An application framework for schedulers incorporates
domain-specific class hierarchies with the necessary operations and attributes so that
the desired schedulers can be instantiated with the necessary parameters if needed.
In this approach, the software engineer has the full freedom to extend, modify, and
discard the parts of software library. As a disadvantage, the software engineer must
have a detailed knowledge about the library and the programming language used.

ii Model-Driven Engineering. This approach provides a higher-level abstraction of the
scheduling domain. Dedicated tools for checking the consistency of the parameters
are supplied. The advantage is that domain experts on schedulers can conveniently
define the desired schedulers since the models are assumed to be closer to the ex-
perts’ perception in comparison to expressing schedulers at the level of programming
languages. However, the experts can only define schedulers that can be expressed by
these specific models.

iii Software Product-line. This is an extension of MDE approaches with the concepts of
product families. The advantages and disadvantages are similar to the ones of the

112

7.1. DESIGNING SCHEDULING SOFTWARE

MDE approach.
Unfortunately, to the best of our knowledge, there are no publications in the literature
that propose an application framework, a Model-Driven Engineering approach and/or a
software product-line engineering approach to develop scheduling systems.

7.1.3 Research Questions and Solutions

The identified research questions and the proposed solutions in relation to the challenges

to design scheduling software are the following:

RQ1. What are the important concepts of scheduling systems and accordingly how to define
an expressive domain model for scheduling systems?

Solution proposal: Chapter [2| gives a comprehensive overview of the scheduling theory,
the adopted terminology, and the notations used. Based on Chapters[2|and [5|proposes
a domain model for schedulers. To illustrate the expressivity of the model, a set of
scheduling problems are presented and configured, which are commonly referred to
in the literature as canonical examples. We show in Chapter |4 that the proposed
model is expressive enough to represent these examples adequately.

RQ2. How to define an expressive feature model for scheduling systems so that a large
category of family of scheduling systems can be expressed?

Solution proposal: This research question is related to the first research question. To de-
rive a domain model for a large category of family of scheduling systems, a com-
monality and variability analysis is carried out using the available literature in the
scheduling theory. The result of this analysis is expressed using the feature model no-
tation. The expressivity of the notation is validated by configuring a set of canonical
scheduling examples from the feature model.

RQ3. How to ensure the invariants of feature models and check if a valid configuration can
be generated accordingly?

Solution proposal: As a notation, a feature model defines the mandatory and optional fea-
tures, cardinality rules, cross-tree constraints, etc. Assuring invariants means that the
invariants of the model are respected during the configuration phase of the feature
model. Furthermore, there should be at least one possible configuration from the fea-
ture model otherwise there is no use of adopting a feature model if it cannot express
any configuration in the desired domain. In our case, the feature model must express
the commonality and the variability of the scheduling theory as desired. As described
in Chapter [4] of this thesis, a model checking tool is adopted to generate and verify
the valid configurations from the specified feature model.

RQ4. How to design and implement an object-oriented application framework library for
scheduling systems with i) a high degree of reusability and ii) evolvability?

Solution proposal: An application framework library is presented in Chapter [5| that con-
forms to the feature model described in Chapter The framework is an object-
oriented implementation of the feature model, where classes and class-inheritance
mechanisms are used to express the features. To be able to express the variabilities,
design patterns are used. In addition, APIs are defined to alter the instantiations of

113

CHAPTER 7. CONCLUSIONS

the framework at run time, if needed. It is shown in Chapter |5| that the canonical
scheduling examples can be configured from the framework through reuse and/or by
calling the appropriate functions at run time.

7.1.4 Discussions and Future Work

Justification of the claims for the quality attributes expressivity, reusability and run time
evolvability are based on the following assumptions:
1. The domain of the scheduling theory is rather mature and the notations that are
adopted are expressive enough to cover different scheduling problems.
2. The canonical scheduling examples used in the literature are representative.
3. The adopted design patterns and run time functions are expressive enough to imple-
ment the configurations as required.
4. The feature model notation is sufficient enough to express the invariants of the do-
main.
To determine the validity of these assumptions in practice, we plan to carry out experiments
in real industrial settings.

7.2 Designing Optimal Models in Model Driven Engineering

7.2.1 Challenges

We claim in Chapter [1| of this thesis that in addition to schedulability of tasks, one may
need to search for optimal models that satisfy various quality concerns. Within the context
of trade-off analysis of multiple quality attributes in an MDE approach, the following aspects
must be taken into consideration:

i) Large configuration spaces of models: It is common practice to use multiple related
models in MDE environments for a given system. Each of these models may define
different kinds of variations. The possible combination of all variations may poten-
tially enable many possible instantiations of models, which can be difficult for the
software engineer to manage.

ii) Introducing new quality attributes: New quality models must be introduced if neces-
sary.

iii) Optimization of configurations: Software engineers generally have to trade-off differ-
ent quality attributes to configure the most suitable model for a given application
setting. For example, a particular model configuration may improve the quality at-
tribute “reducing energy consumption” while decreasing the quality attribute “time
performance”. It would be very profitable if the MDE environments are equipped
with tools and techniques to optimize model configurations based on multiple quality
attributes.

114

7.2. DESIGNING OPTIMAL MODELS IN MODEL DRIVEN ENGINEERING

7.2.2 The Software Engineering Approach

Our approach to address the challenges stated in Section|7.2.1]is to design a workbench that
extends the existing MDE environments with the necessary tools. These tools must enable
the designers to check the consistency among the models defined, deal with large configu-
ration spaces, introduce new quality models if needed, define constraints and optimization
criteria and select the model configurations that satisfy the best trade-off conditions accord-
ing to the given criteria.

7.2.3 Research Questions and Solutions

The identified research questions and the proposed solutions in relation to the challenges

of configuring optimal models are the following:

RQ5. How to design an MDE environment so that new models and meta models, model
pruning techniques, quality attributes, quality optimization criteria and search meth-
ods can be introduced in a convenient manner?

Solution proposal: To address these challenges, in Chapter [6, OptML Framework is pro-
posed. Here, we assumed that models and meta models are realized by using the stan-
dard MDE environments like MDE EMF environment. Once the models are defined,
they are provided to Model Processing Subsystem of OptML Framework. The model
processing system adopts a pipeline architecture of transformation units (TU’s). Each
model defined by the MDE engineer has a corresponding TU, which inputs the previ-
ously defined model, checks the consistency rules of the previously defined model and
the current model and transforms these to a common pipeline data format. This pro-
cess continues until the last TU in the pipeline is defined. The output is then provided
to the model optimization subsystem. This subsystem ranks the possible configura-
tions of models according to the optimization criteria. Finally, the schedulability of
the configurations is checked and if necessary, the configurations are re-ordered. The
framework architecture is designed in a modular fashion so that all the desired exten-
sions, such as new model pruning techniques, quality attributes, quality optimization
criteria and search methods can be introduced in a convenient manner.

RQ6. Within MDE environment, how can the following aspects of models can be expressed
and computed effectively?

i) Checking consistency among various models,
ii) Generating the model-configuration space,
iii) Annotating various quality attributes to model configurations,
iv) Assigning relative priority to the predefined quality attributes,
v) Analyzing schedulability of models,
vi) Optimizing models based on multiple quality values.

Proposed solution: These aspects are computed in the framework in a pipeline fashion in
two main subsystems: Model-Processing Subsystem and Model Optimization Subsys-
tem. Each subsystem has an internal pipeline architecture. The above given com-
putations are carried out in order by the dedicated modules in the pipeline. The
implementation of each module can be changed if desired, for example, to optimize

115

CHAPTER 7. CONCLUSIONS

performance, provided that input-output data formats are respected.

7.2.4 Discussions and Future Work

The usefulness of OptML Framework is justified based on the following assumptions:
1. The desired models can be defined using the MDE ECore framework.

2. The consistency among the models can be checked by referring to the static properties

of the models.

3. For every model, there is a corresponding TU. The tool engineer must configure the

framework for this purpose.

4. The pipeline architecture is suitable to process and optimize the models. If there
are mutual dependencies among models, then data rerouting techniques may be em-

ployed.

5. The desired quality models can be defined by associating quality attributes on model

elements.

6. If the current search methods and optimization techniques are not satisfactory, im-
plementations of some modules must be changed. The architecture is prepared to
deal with implementation changes through the adoption of design patterns, if the

input-output signatures of the corresponding modules are kept.
7. The feature model notation is sufficient to express the invariants of the domain.

As future work, it is possible to verify the current decomposition of the OptML architecture
with the use of various quality attributes and optimization criteria within the industrial

projects.

116

Bibliography

[1] Django project. http://www.djangoproject.com/.

[2] Abeni, L. and Buttazzo, G. (2004). Resource reservation in dynamic real-time systems.
Real-Time Systems, 27(2):123-167.

[3] Ahmad, W., de Groote, R., Holzenspies, P., Stoelinga, M., and van de Pol, J. (2014).
Resource-constrained optimal scheduling of synchronous dataflow graphs via timed au-
tomata. In Proceedings of the 14th International Conference on Application of Concurrency
to System Design (ACSD 2014), pages 72-81, United States. IEEE Computer Society.

[4] Aksit, M. (2018). The role of computer science and software technology in organizing
universities for industry 4.0 and beyond. In Ganzha, M., Maciaszek, L., and Paprzycki,
M., editors, Proceedings of the 2018 Federated Conference on Computer Science and Infor-
mation Systems, volume 15 of Annals of Computer Science and Information Systems, pages
5-11. IEEE.

[5] Aksit, M. (2002). Software Architectures and Component Technology. The Springer
International Series in Engineering and Computer Science. Springer Verlag.

[6] Aksit, M. (2004). The 7 c’s for creating living software: A research perspective for qual-
ity oriented software engineering. Turkish Journal of Electrical Engineering and Computer
Sciences, 12:61-95.

[71 Aksit, M., Rensink, A., and Staijen, T. (2009). A graph-transformation-based simulation
approach for analysing aspect interference on shared join points. In AOSD ’09: Proceed-
ings of the 8th ACM International Conference on Aspect-Oriented Software Development,
pages 39-50. Association for Computing Machinery (ACM). Winner of the Best Paper
Award.

[8] Aksit, M., Tekinerdogan, B., Marcelloni, F., and Bergmans, L. (1999). Deriving Object-
Oriented Frameworks from Domain Knowledge, pages 169-198. John Wiley & Sons.

[9] Antkiewicz, M., Bak, K., Murashkin, A., Olaechea, R., Liang, J., and Czarnecki, K.
(2013). Clafer tools for product line engineering. In Software Product Line Conference,
Tokyo, Japan. Accepted for publication.

[10] Aranega, V. (2016). A python(nic) implementation of emf/ecore (eclipse modeling
framework).

[11] Aranega, V. (2018). A python implementation of the uml2 metamodel based on
pyecore.

[12] Assmann, U., Aksit, M., and Rensink, A. (2005). Model Driven Architecture: European

BIBLIOGRAPHY

MDA Workshops: Foundations and Applications, MDAFA 2003 and MDAFA 2004, Twente,
The Netherlands, June 26-27, 2003 and Linkoping, Sweden, June 10-11, 2004. Revised
Selected Papers.

[13] Azizi, S. and Panahi, V. (2012). Formal specification of semantics of uml 2.0 activity
diagrams by using graph transformation systems.

[14] Babur, O., Cleophas, L., van den Brand, M., Tekinerdogan, B., and Aksit, M. (2018).
Models, more models, and then a lot more. In Seidl, M. and Zschaler, S., editors, Soft-
ware Technologies: Applications and Foundations, pages 129-135, Cham. Springer Inter-
national Publishing.

[15] Baker, K. R. and Trietsch, D. (2013). Principles of sequencing and scheduling. John
Wiley & Sons.

[16] Baptiste, P., Le Pape, C., and Nuijten, W. (2012). Constraint-based scheduling: applying
constraint programming to scheduling problems, volume 39. Springer Science & Business
Media.

[17] Batory, D. (2005). Feature Models, Grammars, and Propositional Formulas, pages 7-20.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[18] Becker, C. and Scholl, A. (2006). A survey on problems and methods in generalized
assembly line balancing. European Journal of Operational Research, 168(3):694 — 715.
Balancing Assembly and Transfer lines.

[19] Belady, L. A. and Lehman, M. M. (1976). A model of large program development. IBM
Systems Journal, 15(3):225-252.

[20] Bodhuin, T., Canfora, G., and Troiano, L. (2007). Sormasa: A tool for suggesting
model refactoring actions by metrics-led genetic algorithm. pages 23-24.

[21] Breivold, H. P., Crnkovic, 1., and Eriksson, P. J. (2008). Analyzing software evolv-
ability. In 2008 32nd Annual IEEE International Computer Software and Applications
Conference, pages 327-330. IEEE.

[22] Brown, L. G. (1992). A survey of image registration techniques. ACM Comput. Surv.,
24(4):325-376.

[23] Brucker, P. (2010). Scheduling Algorithms. Springer Publishing Company, Incorpo-
rated, 5th edition.

[24] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., and Sabetzadeh, M.
(2006). A manifesto for model merging. In Proceedings of the 2006 International Work-
shop on Global Integrated Model Management, GaMMa 06, pages 5-12. ACM.

[25] Burns, A. (1991). Scheduling hard real-time systems: a review. Software Engineering
Journal, 6(3):116-128.

[26] Burns, A. (1994). Preemptive priority-based scheduling: An appropriate engineering
approach. In Advances in Real-Time Systems, chapter 10, pages 225-248. Prentice Hall.

[27] Buschmann, F., Henney, K., and Schimdt, D. (2007). Pattern-oriented Software Archi-
tecture: on patterns and pattern language, volume 5. John wiley & sons.

[28] Buttazzo, G. C. (2011). Hard real-time computing systems: predictable scheduling algo-
rithms and applications, volume 24. Springer Science & Business Media.

[29] Cardelli, L. (1987). Basic polymorphic typechecking. Science of Computer Program-

118

BIBLIOGRAPHY

ming, 8(2):147 - 172.

[30] Chen, J.-J. and Kuo, T.-W. (2005). Multiprocessor energy-efficient scheduling for
real-time tasks with different power characteristics. In 2005 International Conference on
Parallel Processing (ICPP’05), pages 13-20.

[31] Cheng, R., Gen, M., and Tsujimura, Y. (1996). A tutorial survey of job-shop scheduling
problems using genetic algorithms—i. representation. Computers & Industrial Engineer-
ing, 30(4):983 - 997.

[32] Chenouard, R., Hartmann, C., Bernard, A., and Mermoz, E. (2016). Computational
design synthesis using model-driven engineering and constraint programming. volume
9946, pages 265-273.

[33] Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., and Little, R. (2002).
Documenting Software Architectures: Views and Beyond. Pearson Education.

[34] Clements, P., Garlan, D., Little, R., Nord, R., and Stafford, J. (2003). Document-
ing software architectures: views and beyond. In Proceedings of the 25th International
Conference on Software Engineering, pages 740-741. IEEE Computer Society.

[35] Colin, S. and Mariani, L. (2005). 18 Run-Time Verification, pages 525-555. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[36] Cooper, M. C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., and Werner, T.
(2010). Soft arc consistency revisited. Artif. Intell., 174(7-8):449-478.

[37] Czarnecki, K., Helsen, S., and Ulrich, E. (2005). Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice, 10:7 — 29.

[38] da Silva, A. R. (2015). Model-driven engineering: A survey supported by the unified
conceptual model. Computer Languages, Systems & Structures, 43:139 — 155.

[39] Davis, R. I. and Burns, A. (2011). A survey of hard real-time scheduling for multipro-
cessor systems. ACM Comput. Surv., 43(4):35:1-35:44.

[40] de Roo, A. (2012). Managing Software Complexity of Adaptive Systems. PhD thesis,
University of Twente, Netherlands. CTIT Ph.D. thesis series no. 12-217.

[41] de Roo, A., Sozer, H., Bergmans, L., and Aksit, M. (2013). Moo: An architectural
framework for runtime optimization of multiple system objectives in embedded control
software. Journal of systems and software, 86(10):2502-2519. eemcs-eprint-24550.

[42] Denil, J., Jukss, M., Verbrugge, C., and Vangheluwe, H. (2014). Search-based model
optimization using model transformations. In Amyot, D., Fonseca i Casas, P., and Muss-
bacher, G., editors, System Analysis and Modeling: Models and Reusability, pages 80-95,
Cham. Springer International Publishing.

[43] Dertouzos, M. L. and Mok, A. K. (1989). Multiprocessor online scheduling of hard-
real-time tasks. IEEE Transactions on Software Engineering, 15(12):1497-1506.

[44] Dillig, 1., Dillig, T., and Aiken, A. (2009). Cuts from Proofs: A Complete and Practical
Technique for Solving Linear Inequalities over Integers, pages 233-247. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[45] Edmonds, B. (1999). Syntactic measures of complexity. Technical report, Department
of Philosophy. PhD Thesis.

[46] Engels, G., Kiister, J. M., Heckel, R., and Lohmann, M. (2003). Model-based veri-

119

BIBLIOGRAPHY

fication and validation of properties. Electronic Notes in Theoretical Computer Science,
82(7):133 — 150. UNIGRAO3, Uniform Approaches to Graphical Process Specification
Techniques (Satellite Event for ETAPS 2003).

[47] Fayad, M. and Schmidt, D. (1997). Object-oriented application frameworks. Commu-
nications of the ACM, 40.

[48] Fenton, N. and Bieman, J. (2014). Software Metrics: A Rigorous and Practical Ap-
proach, Third Edition. CRC Press, Inc., Boca Raton, FL, USA, 3rd edition.

[49] Fersman, E., Mokrushin, L., Pettersson, P., and Yi, W. (2006). Schedulability analysis
of fixed-priority systems using timed automata. Theor. Comput. Sci., 354(2):301-317.
[50] Flood, M. M. (1956). The traveling-salesman problem. Operations Research, 4(1):61-

75.

[51] Foundation, E. (2016). Eclipse modeling framework.

[52] Frakes, W. and Terry, C. (1996). Software reuse: Metrics and models. ACM Comput.
Surv., 28(2):415-435.

[53] Frakes, W. B. and Kang, K. (2005). Software reuse research: Status and future. IEEE
Trans. Softw. Eng., 31(7):529-536.

[54] Fromherz, M. P. (2001). Constraint-based scheduling. In American Control Conference,
2001. Proceedings of the 2001, volume 4, pages 3231-3244. IEEE.

[55] Gabmeyer, S., Kaufmann, P., Seidl, M., Gogolla, M., and Kappel, G. (2019). A feature-
based classification of formal verification techniques for software models. Software &
Systems Modeling, 18(1):473-498.

[56] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Ele-
ments of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[57] Gamrath, G., Fischer, T., Gally, T., Gleixner, A. M., Hendel, G., Koch, T., Maher,
S. J., Miltenberger, M., Miiller, B., Pfetsch, M. E., Puchert, C., Rehfeldt, D., Schenker,
S., Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt,
J. T., and Witzig, J. (2016). The scip optimization suite 3.2. Technical Report 15-60,
ZIB, Takustr.7, 14195 Berlin.

[58] Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1(2):117-129.

[59] Gautam, J. V., Prajapati, H. B., Dabhi, V. K., and Chaudhary, S. (2015). A survey on
job scheduling algorithms in big data processing. In 2015 IEEE International Conference
on Electrical, Computer and Communication Technologies (ICECCT), pages 1-11.

[60] Gogolla, M. and Cabot, J. (2016). Continuing a benchmark for uml and ocl design and
analysis tools. In Milazzo, P., Varrd, D., and Wimmer, M., editors, Software Technologies:
Applications and Foundations, pages 289-302, Cham. Springer International Publishing.

[61] Graham, R., Lawler, E., Lenstra, J., and Kan, A. (1979). Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey. In Hammer, P., Johnson, E.,
and Korte, B., editors, Discrete Optimization II, volume 5 of Annals of Discrete Mathemat-
ics, pages 287 — 326. Elsevier.

[62] Gurobi Optimization, L. (2018). Gurobi optimizer reference manual.

120

BIBLIOGRAPHY

[63] Harman, M. and Jones, B. F. (2001). Search-based software engineering. Information
and Software Technology, 43(14):833 — 839.

[64] Harman, M., Mansouri, A., and Zhang, Y. (2012). Search-based software engineering:
Trends, techniques and applications. ACM Computing Surveys (CSUR), 45.

[65] Hebrard, E., O'Mahony, E., and O’Sullivan, B. (2010). Constraint Programming and
Combinatorial Optimisation in Numberjack, pages 181-185. Springer Berlin Heidelberg.

[66] Heinz, S., Ku, W.-Y., and Beck, J. C. (2013). Recent improvements using constraint
integer programming for resource allocation and scheduling. In International Confer-
ence on Al and OR Techniques in Constriant Programming for Combinatorial Optimization
Problems, pages 12-27. Springer.

[67] Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun.
ACM, 12(10):576-580.

[68] Hochwald, B. M., Marzetta, T. L., and Tarokh, V. (2004). Multiple-antenna channel
hardening and its implications for rate feedback and scheduling. IEEE Transactions on
Information Theory, 50(9):1893-1909.

[69] Holenderski, M., Bril, R. J., and Lukkien, J. J. (2012). Parallel-task scheduling on
multiple resources. In Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on,
pages 233-244. IEEE.

[70] Hong, K. and Leung, J.-T. (1988). On-line scheduling of real-time tasks. In Real-Time
Systems Symposium, 1988., Proceedings., pages 244-250.

[71] Hooker, J. N. (2007). Planning and scheduling by logic-based benders decomposition.
Oper. Res., 55(3):588-602.

[72] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing In Science &
Engineering, 9(3):90-95.

[73] ISO 24718:2005 (2005). ISO/IEC TR 24718:2005 - Information technology - Pro-
gramming languages — Guide for the use of the Ada Ravenscar Profile in high integrity
systems. Standard, International Organization for Standardization, Geneva, CH.

[74] 1SO 2501n:2019 (2019). ISO/IEC 2501n:2019 - Quality Model Division. Standard,
International Organization for Standardization, Geneva, CH.

[75] ISO 9001:2015 (2015). ISO 9001:2015 - Quality management systems - Require-
ments. Standard, International Organization for Standardization, Geneva, CH.

[76] Jackson, D. (2012). Software Abstractions: Logic, Language, and Analysis. The MIT
Press.

[77] Jacob, F., Wynne, A., Liu, Y., and Gray, J. (2014). Domain-specific languages for devel-
oping and deploying signature discovery workflows. Computing in Science Engineering,
16(1):52-64.

[78] Johnson, R. E. and Foote, B. (1988). Designing reusable classes. Journal of object-
oriented programming, 1(2):22-35.

[79] Kang, K., Cohen, S., Hess, J., Nowak, W., and Peterson, S. (1990). Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report.

[80] Kang, K. C., Lee, J., and Donohoe, P. (2002). Feature-oriented product line engineer-
ing. IEEE Software, 19(4):58-65.

121

BIBLIOGRAPHY

[81] Kent, S. (2002). Model driven engineering. In Proceedings of the Third International
Conference on Integrated Formal Methods, IFM 02, pages 286-298. Springer-Verlag.

[82] Kim, J. H., Legay, A., Traonouez, L.-M., Acher, M., and Kang, S. (2016). A formal
modeling and analysis framework for software product line of preemptive real-time sys-
tems. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, SAC 16,
pages 1562-1565, New York, NY, USA. ACM.

[83] Koehler, J. and Ottiger, D. (2002). An ai-based approach to destination control in
elevators. AI Mag., 23(3):59-78.

[84] Kolisch, R. and Hartmann, S. (1999). Heuristic Algorithms for the Resource-Constrained
Project Scheduling Problem: Classification and Computational Analysis, pages 147-178.
Springer US, Boston, MA.

[85] Kruchten, P. (1995). The 4+1 view model of architecture. IEEE Software, 12:42-50.

[86] Kumar, S., Aylor, J. H., Johnson, B. W., and Wulf, WM. A., A. A. H. M. (1996). pages
129-159. Springer US, Boston, MA.

[87] Kuyucu, B. (2018). On the design of a user-interface for Optimal Modeling Language
(OptML) Framework. University of Twente, Drienerlolaan 5, 7522NB, Enschede, The
Netherlands. Report on practical training.

[88] Lee, E. A. and Messerschmitt, D. G. (1987). Static scheduling of synchronous data
flow programs for digital signal processing. IEEE Trans. Comput., 36(1):24-35.

[89] Lee, K., Kang, K. C., and Lee, J. (2002). Concepts and guidelines of feature modeling
for product line software engineering. In Proceedings of the 7th International Conference
on Software Reuse: Methods, Techniques, and Tools, ICSR-7, pages 62-77, London, UK,
UK. Springer-Verlag.

[90] Lehoczky, J., Sha, L., and Ding, Y. (1989). The rate monotonic scheduling algorithm:
exact characterization and average case behavior. In Real Time Systems Symposium.,
pages 166-171.

[91] Li, Q. and Yao, C. (2003). Real-Time Concepts for Embedded Systems. CRC Press, Inc.,
Boca Raton, FL, USA, 1st edition.

[92] Lin, X., Wang, Y., Xie, Q., and Pedram, M. (2015). Task scheduling with dynamic
voltage and frequency scaling for energy minimization in the mobile cloud computing
environment. IEEE Transactions on Services Computing, 8(2):175-186.

[93] Linden, F. J. v. d., Schmid, K., and Rommes, E. (2007). Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

[94] Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20(1):46-61.

[95] Matic, S., Goraczko, M., Liu, J., Lymberopoulos, D., Priyantha, B., and Zhao, F.
(2006). Resource modeling and scheduling for extensible embedded platforms. Techni-
cal report, MSR-TR-2006-176.

[96] Mernik, M., Heering, J., and M. Sloane, A. (2005). When and how to develop domain-
specific languages. ACM Comput. Surv., 37:316-.

[97] Merriam-Webster Online (2019). Merriam-Webster Online Dictionary.

122

BIBLIOGRAPHY

[98] Meyer, B. (1992). Applying 'design by contract’. Computer, 25(10):40-51.

[99] Mili, H., Mili, F., and Mili, A. (1995). Reusing software: issues and research directions.
IEEE Transactions on Software Engineering, 21(6):528-562.

[100] Miller, J. and Mukeriji, J. (2003). Mda guide version 1.0.1.

[101] miroha (2015). Watch.

[102] Naur, P. and Randell, B., editors (1969). Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels,
Scientific Affairs Division, NATO.

[103] Nikovski, D. and Brand, M. (2003). Decision-theoretic group elevator scheduling. In
ICAPS, volume 3, pages 9-13.

[104] Odell, J. (2000). Extending uml for agents.

[105] Orhan, G., Aksit, M., and Rensink, A. (2017). A formal product-line engineering ap-
proach for schedulers. In 22nd International Conference on Emerging Trends and Technolo-
gies in Convergence Solutions, pages 15-30. The Society for Design and Process Science
(SDPS).

[106] Orhan, G., Aksit, M., and Rensink, A. (2018). Designing reusable and run-time
evolvable scheduling software. In Proceedings of the 12th International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2018), pages 339-373.

[107] P. Haubris, K. and J. Pauli, J. (2013). Improving the efficiency and effectiveness of
penetration test automation. pages 387-391.

[108] Pillai, P. and Shin, K. G. (2001). Real-time dynamic voltage scaling for low-power
embedded operating systems. SIGOPS Oper. Syst. Rev., 35(5):89-102.

[109] Pinedo, M. L. (2010). Scheduling: Theory, Algorithms, and Systems. Springer New
York Dordrecht Heidelberg, 4th edition.

[110] Pohl, K., Bockle, G., and Linden, F. J. v. d. (2005). Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

[111] Prud’homme, C., Fages, J.-G., and Lorca, X. (2016). Choco Documentation. TASC,
INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.

[112] Quan, G. and Hu, X. (2001). Energy efficient fixed-priority scheduling for real-
time systems on variable voltage processors. In Design Automation Conference, 2001.
Proceedings, pages 828-833.

[113] Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point feature histograms (fpfh)
for 3d registration. In Robotics and Automation, 2009. ICRA09. IEEE International Con-
ference on, pages 3212-3217. Citeseer.

[114] Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud library (pcl). In 2011
IEEE International Conference on Robotics and Automation, pages 1-4.

[115] Saraf, A. P. and Slater, G. L. (2006). An efficient combinatorial optimization algo-
rithm for optimal scheduling of aircraft arrivals at congested airports. In 2006 IEEE
Aerospace Conference, pages 11 pp.—.

[116] Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. Com-
puter, 39(2):25-31.

123

BIBLIOGRAPHY

[117] Seckinger, B. (1999). Synthesis of Elevator Controls Based-on Constraint-based
Search. Master’s thesis, Albert-Luwigs University, Freiburg, Germany.

[118] Selman, B., Kautz, H., and Cohen, B. (1995). Local search strategies for satisfiability
testing. In DIMACS SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER
SCIENCE, pages 521-532.

[119] Seo, E., Jeong, J., Park, S., and Lee, J. (2008). Energy efficient scheduling of real-
time tasks on multicore processors. IEEE Transactions on Parallel and Distributed Systems,
19(11):1540-1552.

[120] Sha, L., Abdelzaher, T., arzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G.,
Caccamo, M., Lehoczky, J., and Mok, A. K. (2004). Real time scheduling theory: A
historical perspective. Real-Time Systems, 28(2):101-155.

[121] Shaw, M. (1984). The Impact of Modelling and Abstraction Concerns on Modern Pro-
gramming Languages, pages 49-83. Springer New York, New York, NY.

[122] Shin, Y., Choi, K., and Sakurai, T. (2000). Power optimization of real-time embedded
systems on variable speed processors. In Proceedings of the 2000 IEEE/ACM International
Conference on Computer-aided Design, ICCAD ’00, pages 365-368, Piscataway, NJ, USA.
IEEE Press.

[123] Silberschatz, A., Galvin, P. B., Gagne, G., and Silberschatz, A. (1998). Operating
system concepts, volume 4. Addison-Wesley Reading.

[124] Sommerville, I. (2015). Software Engineering. Pearson, 10th edition.

[125] Sorensson, N. and Een, N. (2002). Minisat v1.13 - a sat solver with conflict-clause
minimization. 2005. sat-2005 poster. 1 perhaps under a generous notion of “part-time”,
but still concurrently taking a statistics course and leading a normal life. Technical
report.

[126] Sozer, H. (2009). Architecting Fault-Tolerant Software Systems. PhD thesis, University
of Twente, Netherlands. IPA Dissertation 2009-05.

[127] Sozer, H., Tekinerdogan, B., and Aksit, M. (2013). Optimizing decomposition of
software architecture for local recovery. Software Quality Journal, 21(2):203-240.

[128] Sprunt, B., Sha, L., and Lehoczky, J. (1989). Aperiodic task scheduling for hard-real-
time systems. Real-Time Systems, 1(1):27-60.

[129] Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2009). EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition.

[130] Suh, N. P. (1998). Axiomatic design theory for systems. Research in engineering
design, 10(4):189-209.

[131] Sun,Y., Gray, J., and White, J. (2015). A demonstration-based model transformation
approach to automate model scalability. Software & Systems Modeling, 14(3):1245-1271.

[132] Tabuada, P. (2007). Event-triggered real-time scheduling of stabilizing control tasks.
IEEE Transactions on Automatic Control, 52(9):1680-1685.

[133] te Brinke, S., Malakuti Khah Olun Abadi, S., Bockisch, C., Bergmans, L., Aksit, M.,
and Katz, S. (2014). A tool-supported approach for modular design of energy-aware
software. In SAC '14, pages 1206-1212, United States. Association for Computing Ma-
chinery.

124

BIBLIOGRAPHY

[134] Tindell, K. and Hansson, H. (1995). Real time systems and fixed priority scheduling.
Technical Report Tech. rept.

[135] Urli, S., Blay-Fornarino, M., and Collet, P. (2014). Handling complex configurations
in software product lines: A tooled approach. In Proceedings of the 18th International
Software Product Line Conference - Volume 1, SPLC 14, pages 112-121, New York, NY,
USA. ACM.

[136] Wang, Y. and Saksena, M. (1999). Scheduling fixed-priority tasks with preemption
threshold. In Proceedings Sixth International Conference on Real-Time Computing Systems
and Applications. RTCSA99 (Cat. No. PR00306), pages 328-335. IEEE.

[137] Warmer, J. and Kleppe, A. (2003). The Object Constraint Language: Getting Your Mod-
els Ready for MDA. Object Technology Series. Addison-Wesley, Reading, MA, 2 edition.
[138] Xiao, J.-J., Cui, S., Luo, Z.-Q., and Goldsmith, A. J. (2006). Power scheduling of
universal decentralized estimation in sensor networks. IEEE Transactions on Signal Pro-

cessing, 54(2):413-422.

[139] Zhao, W., Ramamritham, K., and Stankovic, J. A. (1987). Preemptive scheduling
under time and resource constraints. IEEE Transactions on Computers, C-36(8):949-960.

125

APPENDIX A

Appendix

A.1 Feature Model

The tool designer instantiates the feature meta model shown in Figure The instantiated
model is shown in Figure The number of systems that can be configured from this
model is computed as 1288.

In this section, we present a feature model for the example registration system. This model
conforms to the feature meta model presented in Figure This model is used in the
scenario implementations presented in Section[6.5.3] By definition, in our framework, each
feature corresponds to a class in the class model. The descriptions of the names of the
adopted features are presented in Section To avoid repetition, the features are not
described here again. The number of systems that can be configured from this model is
computed as 1288.

A.2 Platform Model

The meta model shown in Figure [6.5| is instantiated according to the registration system
given in Section To this aim, we define a platform model depicted in Figure in
which System has two composite resources, each of which consists of one active and one
passive resource. Each terminal resource has one state except the active resource of second
composite resource. There are three resource types: processing unit (ACTIVE), memory
(passIVE) and computation node (COMPOSITE). Unlike the other terminal resources, the

APPENDIX A. APPENDIX

Registration

Calibradlnput Coarse Fine
Transform Transform
FPCA_IA| [SAC IA P |

[LinearICP | [NLinearICP |

Statistical Radius
Outlier Outlier
Removal Removal

Passth'roug h
Filter

Figure A.1: A feature model of the registration system derived from the feature meta model.

processing unit of the second node has two states: half- and full-speed running modes.
Each processing unit has a unit capacity. The memory components have 512- and 256-unit
capacity on the first and second computation nodes, respectively.

A.3 Process Model

In Figures and the process model is presented which is created from the process
meta model presented in Figure Since the process model is rather large, in the figure,
we only show elaborate a selected set of processes. As explained previously, the input data
is acquired by utilizing class Input. For this purpose, the operation getData is defined. In
some cases, the accuracy of acquired data may be crucial. To this aim, class CalibratedInput
is used instead of using its superclass. The operation calibrate aims to increase the quality
of the data if it is called before calling getData.

To reduce the size of the input data, class Filter is defined. The operation setlnputData
is used to set the interested data. To set the filtering-related parameters, the operation
setFilteringParams is defined. The operation filter is finally called to gather the filtered
data. Class Filter is specialized further into classes NoiseRemoval and Sampling, which are
responsible for eliminating the erroneous data and getting a part of the data to reduce the
size, respectively. Classes inheriting from these classes, such as StatisticalOutlierRemoval
or VoxelGrid, represent to the different algorithmic approaches.

Class FExtract is responsible for computing predefined key features of the data to reason
about geometric properties. Similarly, the operation setlnputData of class FExtract is uti-
lized to set the interested data, and the operation setFExtractingParams is responsible for

128

A.3. PROCESS MODEL

B PlatformDiagram

resourceTypes|[1]

System

resourceTypes|[2]

resourceTypes|[0]

E CompositeResource

=

= name="“System”

ResourceType

belongs

o identifier="COMPOSITE_t"
""""""" " = abstraction=COMPOSITE

x ¥
i Il
1 i
childs[0] childs[1] i 4
'
i Il
belongs 1 1
___ '
! belongs i
1 |"TeTsssTETsTTEEEETEEEEEY
N v " N 2 v
= ResourceType H CompositeResource 8 CompositeResource = ResourceType
= identifier="CPU_t" belongs |= name="Node01” = name=“Node02” belongs = identifier="MEM_t"
= abstraction=ACTIVE e N N e *| = abstraction=PASSIVE
T T
i1 belongs e . _Dbelongs ! !
i '
P : i
belongs E Rttt :h""""""""""": ! belongs
! childs[0] childs[1] L 1 childs[0] childs[1] H
; \ / ; : _
B TerminalResource B TerminalResource E TerminalResource B TerminalResource
= name=“CPU0101” = name="MEM0101” = name="CPU0201” = name="MEM0201”
= capacity=1 = capacity=512 = capacity=1 = capacity=256
states[0] 6 states[1]
states[0] states[0] J{ i' states[0]
B StateDVS H StateDVS B StateDVS B StateDVS B StateDVS
= scale=1.0 — scale=1.0 = scale=1.0 = scale=0.5 = scale=1.0
= energy=100.0 = energy=50.0 = energy=120.0 = energy=50.0 = energy=75.0

Figure A.2: The platform model derived from the meta model.

129

extract:Process

extract:Process

name = extract

name = extract
namespace = FExtract

namespace = FExtract

id=0 id=1
period =0 period =0
i
setinputData:Process ExtractingParams:Process setinputData:Process
name = setInputData :InputList Extracted-Dst:Data name = i name = setinputData Extracted-Src:Data “InputList
namespace = FExtract pr—— alias = Extracted-Dst = FExtract namespace = FExtract alias = Extracted-Src p——
id=0 D = no_available = 0 id=0 id=1 no_available = 0 peration =
period =0 period =0 period =0
I
[i
filter:Process filter:Process
pow——r Topulist FExtract-setInputData-0:Data FExtract-setFExtractingParams-0:Data o p—gm FExtract-setlnputData- 1:Data
namespace = Filter — alias = FExtract-setinputData-0 alias = FE -0 = Filier — alias = FExtract-setinputData- |
id=0 operation = AND =0 no_available = 0 id=1 operation = AND no_available = 0
0 period =0
1 [1 1
setinputData:Process setFilteringParams:Process setlnputData:Process
name = setlnputData dopuilise] [name = setFilteringParams Filier-Dst:Data name = setlnputData InputList Filter-Sre:Data
namespace = Filter —— 1| namespace = Filter alias = Filter-Dst namespace = Filter — alias = Filter-Src
id=0 operation = AND id=0 no_available = 0 id=1 operation = AND no_available = 0
period =0 period =0 period =0
i
F _k
r—— Filier-setlnputData-0:Data Filier-setFilteringParams-0: Data p—" Filter-setlnputData-1:Data
- alias = Filter-setinputData-0 alias = Filter-setFilteringParams-0 — alias = Filter-setinputData- 1
operation = AND no_available = 0 no_available = operation = AND no_available =

Cloud-Dst:Data Cloud-Src:Data

alias = Cloud-Src

alias = Cloud-Dst
no_available = 0

no_available = 0

APPENDIX A. APPENDIX

Figure A.3: The partial process model including the functions of classes Input, Filter and FExtract

130

A.3. PROCESS MODEL

ULIOfSUD.L], PUB YIIDJA[SISSB[D JO SUOnIUNJ a3 3urpnoul [spowr ssadoid Tented ay], v 2In3ig

0= [qe[IeA ou
,d‘;_gs.:xm_ué__@

BRISQ-PARING

0= aqeieArou
15-PAVRAN = SEI[E

BIR:IS-PARIN

NV = wonmado

rndur:

0= oIquIAT
SRR = ST

aeqesIRG R

!

GNV = woneado

srpndur;

0=powad 0=pouad
0=pt 0=pt 0= = aiqepear-ou
oy = doedsowen Yo = oovdsoure Yo = oovdsoue weqEouapuodsatio) = seie
surIegRunROS = dweu Jsrpndu psqundupias = sweu o = aurey
dBuIR rpndug; qnduy a P rer %)
59001 SWRIRGBUIIPINIAS sso0igEIREsIndurias 5901

0= pouad
0=pt

yowpy = advdsoureu
saouapuodsanio)anduios = oureu

Ssa001g:saouapuodsanioanduios

I

0
21g-pnoj) =

= a[qupeAy

I

0=21
sQ-prory

PIRQIi21S-Pnol)

wRQ:IA-ProD

H

|

f] o=pouad| P
0 = a(quireatou _|A\ — 0= alqEImAr 0= —
’ 15 = seige ANy = wonuiado o L= se 5 = ooudsowen ANV = vontiado
: 3= :
ot 5 wea " = 7 rpndu | PR ©RQIR = awreu Jsrpndu;
H 4 SS9001EIRIOT
i ﬁ
i
0= pouad 0= pouad 0= pouad 0= pouad
0=pt 0=pt 0=2[qe[eAr~ou 0=pt 0=pt
wwiojsur], = aovdsaureu uwojsueag, = aovdsaurn ProjpauLosTLL = seife uwiojsury, = aovdsaureu T | wiogsunay = sovdsoureu
sa0uapuodsatiodNas = aureu wsrpndur: 125 = awreu e " e = awu weqsqndupos = oweu
$59001:$99UPUOASALIOIAS. 220145 ¥ - ssooigmrepsandupias
0=powad
0=pt
o = oodsoweu| T
jsuen = sy
Ssa001- IO

131

APPENDIX A. APPENDIX

adjust the settings of the class. To gather a combination of computed key features and the
given data, the operations extract is called. Classes NARF, SIFT and FPFH represent the
definitions for computing various predefined features.

To relate two different input to each other, class Match is defined. One of the important fac-
tors that is supposed to be decided is the direction of the relation from source to destination
data, which are set with the operations setInputSrcData and setinputDstData, respectively.
The relevant parameters are adjusted using the operation setMatchingParams. The opera-
tion computeCorrespondences is responsible for obtaining the related data in pairs.

To transform the source data into the coordinate frame of the destination data, class Trans-
form is utilized. Similar to class Match, it has two operations setlnputSrcData and set-
InputDstData for setting source and destination data. The operation setTransforming-
Params is used to configure the parameters. To increase the accuracy of a transforma-
tion process, the computed correspondences can be given using setCorrespondences. The
operation getTransformationMatrix gives the transformation matrix including rotation and
translation. This class is specialized into two classes CoarseTransform and FineTransform.
In the literature [113], the coarse transform is known as the pre-process initial alignment to
pre-transforming the data to increase the accuracy of the process. In some cases, there may
be no need to further transformation after initial alignment, but mostly to gather accurate
results, the process fine transformation is applied. Classes CoarseTransform and FineTrans-
form have two different operations, align and transform, respectively, to perform their own
computation and set the transformation matrix, accordingly. Class Coarse Transform is
specialized further into two different approaches FPCA_IA and SAC_IA. Class ICP, called
as iterative closest point, is one of the commonly known algorithms. Classes LinearlCP and
NLinearICP correspond to the different versions of ICP algorithms.

A.4 Instantiation of the Value Meta Model for Energy Consump-
tion and Computation Accuracy

In this section we will illustrate how the value meta model that is presented in Figure is
instantiated for the two quality attributes energy reduction and precision.

The instantiation parameters are shown in Table where the rows and columns represent
the features defined in the feature model and the values for the quality attributes, respec-
tively. In the figure, each cell includes the positive and negative contributions of the feature
to the process configuration. Since the operations are not specifically defined in the value
models, the contributions of operations are the same with the contributions of the owner
class defined in the class model. The higher values for energy model and precision model
mean that the corresponding feature increases the energy consumption and decreases the
computation accuracy, respectively.

132

A.4. INSTANTIATION OF THE VALUE META MODEL FOR ENERGY CONSUMPTION AND COMPUTATION ACCURACY

Energy Value | Precision Value

Registration 0/0 0/0

Input 0/0 0/0

CalibratedInput 50/ 30 20/ 50
Filter 5/0 5/10
NoiseRemoval 10/0 10/ 20
PassthroughFilter 15/0 15/ 30
RadiusOutlierRemoval 15/0 15/ 30
StatisticalOutlierRemoval 15/0 15/ 30
Sampling 10/0 10/ 20
VoxelGrid 15/0 15/ 30
Uniform 15/0 15/ 30
FExtract 10/0 5/10
SIFT 30/0 10/ 30
NARF 30/0 10/ 30
FPFH 30/0 10/ 30
Match 20/0 15/ 50
Transform 5/0 5/5

CoarseTransform 10/0 10/ 30
FPCA 1A 12/0 5/30
SAC_IA 12/0 5/ 30
FineTransform 15/0 2/90
ICP 15/0 3/90
LinearICP 20/0 1/110
NLinearICP 20/ 0 1/110

Table A.1: Values of energy and precision models for each feature.

133

Samenvatting

Planningsprocessen (“scheduling”-processen) worden toegepast in een grote categorie ge-
bieden, zoals taakplanning in besturingssystemen, planning van faciliteiten op luchthavens,
planning van assemblagelijnen in productie, resourceplanning in projectbeheer, planning in
openbaar vervoer en planning in “cyber-physical” systemen.

Over het algemeen is het niet triviaal om planningsproblemen effectief en efficiént op te
lossen. Ontwerp en realisatie van planning-software is kostbaar en tijdrovend. Dit proef-
schrift levert drie bijdragen om hierin verbetering te brengen:

Ten eerste hebben we een feature-georiénteerde Software Product Line Engineering (SPLE)
-aanpak gevolgd. Indien correct toegepast, levert de SPLE-aanpak goedkopere oplossingen
voor het geval dat een productfamilie wordt ontwikkeld in plaats van één product. Bedri-
jven die planningssystemen ontwikkelen implementeren in het algemeen productfamilies.
Na een uitgebreide domeinanalyse van de theorie hebben we de stabiele en variabele fea-
tures gedefinieerd. Door de juiste set features te kiezen en te configureren, kunnen de
ontwerpers efficiént de planningssystemen definiéren.

Als een tweede bijdrage , hebben we een applicatie-framework genaamd First Schedul-
ing Framework (FSF), ontworpen en geimplementeerd, om de abstracte definities om
te zetten in uitvoerbare programma’s. We beschouwen herbruikbaarheid en dynamisch-
uitbreidbaarheid als twee kwaliteitskenmerken van het framework. Hiertoe worden gener-
ieke constraint-oplossers gebruikt om de vooraf gedefinieerde “plannings-constraints” te
vertalen naar de constraint-taal van de overeenkomstige oplosser en in te zetten om het
vertaalde probleem op te lossen. We hebben onze implementatie uitgebreid met MDE-
technieken (Model-Driven Engineering) zodat feature-gerichte modellen gemakkelijk kun-
nen worden omgezet naar de abstracties van het applicatie-framework.

Als derde bijdrage hebben we onze feature-gerichte aanpak uitgebreid tot een algemeen
model-optimalisatie-framework. Planningssystemen kunnen worden beinvloed door vele
contextuele factoren, zoals de wens naar lager energieverbruik, meer precisie en het om-
gaan met bepaalde hardware-beperkingen. Vanwege zulke factoren kan het zeer moeilijk
zijn om een optimaal system te definiéren. Voor dit doel stellen we het OptML Frame-
work voor, dat verschillende modellen van contextuele factoren accepteert (in de ECORE
MDE-omgeving) en daaruitoptimale modellen berekent die voldoen aan door de gebruiker
gedefinieerde eisen.

	Acknowledgements
	Abstract
	Introduction
	Application of Software to Products and Businesses
	Functional Correctness, Timeliness, Reusability and Evolvability of Software
	Software Engineering Methods and Techniques
	Scheduling of Tasks
	Application of Schedulers in Software Systems
	Challenges in Designing Scheduling Software
	Challenges in Designing Optimal Models in Model-Driven Engineering
	Research Questions
	The Research Methodology
	Thesis Outline and Contributions

	Scheduling
	Scheduling Theory
	Machine Environment
	Job Characteristics
	Objectives

	Scheduling in Real-Time Systems
	Task-related Constraints
	Resource-related Constraints
	Scheduling Constraints

	Model-Based Software Engineering
	Software Product-Line Engineering
	Model-Driven Engineering
	Models and meta models
	Model Transformations

	Application Frameworks
	Search-Based Software Engineering
	Model-Based Verification

	A Formal Product-Line Engineering Approach for Schedulers
	Related Work
	Objectives
	Our SPLE Approach for Schedulers
	A Feature Model of Schedulers
	A Feature Model of Tasks
	A Feature Model of Resources
	A Feature Model of Scheduling Characteristics
	A Feature Model of the Scheduling Strategy

	Model Validation through Experiments
	Rate-Monotonic Scheduling (RMS) Problem
	Multiple-Resource Scheduling Problem (MRSP)
	Elevator Scheduling Problem
	Flow-shop Scheduling Problem (FSP) with Permutation
	Job-shop Scheduling Problem (JSP)
	Open-shop Scheduling Problem with Preemption (OSP/PMTN)
	Open-shop Scheduling Problem without Preemption (OSP)
	Travelling Salesman Problem (TSP) as an Optimization Problem

	Evaluation
	Assessment Method

	Conclusion

	Designing Reusable and Run Time Evolvable Scheduling Software
	Problem Statement and Objectives
	Related Work
	Framework Architecture and Configuration
	Component Diagram of the Framework Architecture of FSF
	Instantiation of the Framework to Create a Scheduler

	Case Studies
	Rate Monotonic Scheduling (RMS)
	Multiple Resource Scheduling (MRS)
	Job-shop Scheduling (JS)
	Flow-shop Scheduling (FS)
	Open-shop Scheduling (OS)

	Evaluation and Conclusions
	Assessment Method
	Conclusions

	OptML Framework and its Application to Model Optimization
	Illustrative Example, Problem Statement and Requirements
	Framework Architecture
	Examples of Models for Registration Systems based on Various Architectural Views
	UML Class Model
	Feature Meta Model
	Platform Meta Model
	Process Meta model
	Value Meta Model

	Model Processing Subsystem
	Model Optimization Subsystem
	Optimization Process
	A Model Optimization Subsystem Architecture
	Example Scenarios

	Related Work
	Evaluation
	Conclusion

	Conclusions
	Designing Scheduling Software
	Challenges
	The Software Engineering Approach
	Research Questions and Solutions
	Discussions and Future Work

	Designing Optimal Models in Model Driven Engineering
	Challenges
	The Software Engineering Approach
	Research Questions and Solutions
	Discussions and Future Work

	Appendix
	Feature Model
	Platform Model
	Process Model
	Instantiation of the Value Meta Model for Energy Consumption and Computation Accuracy

	Samenvatting

