645 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Analytical target cascading framework for engine calibration optimisation

    Get PDF
    YesThis paper presents the development and implementation of an Analytical Target Cascading (ATC) Multi-disciplinary Design Optimisation (MDO) framework for the steady state engine calibration optimisation problem. The case is made that the MDO / ATC offers a convenient framework for the engine calibration optimisation problem based on steady state engine test data collected at specified engine speed / load points, which is naturally structured on 2 hierarchical levels: the “Global” level, associated with performance over a drive cycle, and “Local” level, relating to engine operation at each speed / load point. The case study of a gasoline engine equipped with variable camshaft timing (VCT) was considered to study the application of the ATC framework to a calibration optimisation problem. The paper describes the analysis and mathematical formulation of the VCT calibration optimisation as an ATC framework, and its Matlab implementation with gradient based and evolutionary optimisation algorithms. The results and performance of the ATC are discussed comparatively with the conventional two-stage approach to steady state calibration optimisation. The main conclusion from this research is that ATC offers a powerful and efficient approach for engine calibration optimisation, delivering better solutions at both “Global” and “Local” levels. Further advantages of the ATC framework is that it is flexible and scalable to the complexity of the calibration problem, and enables calibrator preference to be incorporated a priori in the optimisation problem formulation, delivering important time saving for the overall calibration development process.The research work presented in this paper was funded by UK Technology Strategy Board (TSB) through the CREO (Carbon Reduction through Engine Optimisation) project

    A Framework for Hyper-Heuristic Optimisation of Conceptual Aircraft Structural Designs

    Get PDF
    Conceptual aircraft structural design concerns the generation of an airframe that will provide sufficient strength under the loads encountered during the operation of the aircraft. In providing such strength, the airframe greatly contributes to the mass of the vehicle, where an excessively heavy design can penalise the performance and cost of the aircraft. Structural mass optimisation aims to minimise the airframe weight whilst maintaining adequate resistance to load. The traditional approach to such optimisation applies a single optimisation technique within a static process, which prevents adaptation of the optimisation process to react to changes in the problem. Hyper-heuristic optimisation is an evolving field of research wherein the optimisation process is evaluated and modified in an attempt to improve its performance, and thus the quality of solutions generated. Due to its relative infancy, hyper-heuristics have not been applied to the problem of aircraft structural design optimisation. It is the thesis of this research that hyper-heuristics can be employed within a framework to improve the quality of airframe designs generated without incurring additional computational cost. A framework has been developed to perform hyper-heuristic structural optimisation of a conceptual aircraft design. Four aspects of hyper-heuristics are included within the framework to promote improved process performance and subsequent solution quality. These aspects select multiple optimisation techniques to apply to the problem, analyse the solution space neighbouring good designs and adapt the process based on its performance. The framework has been evaluated through its implementation as a purpose-built computational tool called AStrO. The results of this evaluation have shown that significantly lighter airframe designs can be generated using hyper-heuristics than are obtainable by traditional optimisation approaches. Moreover, this is possible without penalising airframe strength or necessarily increasing computational costs. Furthermore, improvements are possible over the existing aircraft designs currently in production and operation

    Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review

    Get PDF
    Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach

    Blended wing body (BWB) planform multidisciplinary optimisation (MDO) for early stage aircraft design using model based engineering

    Get PDF
    A model-based engineering (MBE) framework has been developed for Multi-Disciplinary Optimisation (MDO) of a Blended Wing Body (BWB) configuration during early design stages. Specifically, a planform optimisation has been performed by focusing on three objective functions, namely, aerodynamic efficiency (Eff), drag coefficient (CD) and Operational Empty Weight (OEW). Particle Swarm Optimisation (PSO) has been used as algorithm for the optimisation, an open-source Vortex Lattice Method (VLM), with empirical corrections for compressibility, as aerodynamic module, along with a mass estimation model with respect to BWB considerations. A successful multidisciplinary optimisation has been performed for the BWB-11 configuration flying at cruise condition, specifically at Mach 0.85 and at an altitude of 10 km. Increment in Eff and decrement in CD and OEW compared to the baseline BWB has been achieved. The OEW has been calculated from a newly developed mass estimation model and successfully validated via statistical methods. The paper presents a rapid MDO framework for efficient BWB planform optimisation to be used at the early design stage, providing useful guidance to the designers. A detailed analysis of the integrated design system, the methods as well as the optimisation results are provided. In addition, further research to the current framework is also presented

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure
    • …
    corecore