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Abstract 

A model-based engineering (MBE) framework has been developed for Multi-Disciplinary Optimisation (MDO) of 

a Blended Wing Body (BWB) configuration during early design stages. Specifically, a planform optimisation has 

been performed by focusing on three objective functions, namely, aerodynamic efficiency (Eff), drag coefficient 

(CD) and Operational Empty Weight (OEW). Particle Swarm Optimisation (PSO) has been used as algorithm for 

the optimisation, an open-source Vortex Lattice Method (VLM), with empirical corrections for compressibility, as 

aerodynamic module, along with a mass estimation model with respect to BWB considerations. A successful 

multidisciplinary optimisation has been performed for the BWB-11 configuration flying at cruise condition, 

specifically at Mach 0.85 and at an altitude of 10 km. Increment in Eff and decrement in CD and OEW compared 

to the baseline BWB has been achieved. The OEW has been calculated from a newly developed mass estimation 

model and successfully validated via statistical methods. The paper presents a rapid MDO framework for efficient 

BWB planform optimisation to be used at the early design stage, providing useful guidance to the designers. A 

detailed analysis of the integrated design system, the methods as well as the optimisation results are provided. 

In addition, further research to the current framework is also presented. 
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1. Introduction 

1.1 BWB concept 

There has not been any major configurational change in an aircraft since the successful introduction 
of the Boeing 707 in 1958. Since then the ’Tube and Wing’ (TAW) airplane design has dominated the 
aircraft design. Given the success of the ’tube and wing’ aircraft design concept, certain major flaws 
are yet to be addressed like the increased sound levels and fuel consumption. In the past decades, 
major aeronautical industries focused their attentions and investments looking at every possible way 
to improve flight efficiency on commercial airplanes. Nowadays, the key parameter of efficiency has 
been maximized to the highest level possible, in a point where even slightly improvements will cost 
millions in terms of investments. ACARE’s Flight Path vision for 2050 [1] aims to reduce Carbon-di-
Oxide (CO2) and NOx emissions by 75% and 90% respectively per passenger kilometer. Also, 
perceived noise emissions are expected to decrease by 65%. Flights demanding is exponentially 
increasing and the aviation industry has the commitment to find a brand-new way of transporting 
passengers and goods to overcome nowadays problems such as limited fossil fuel reservoirs and 
alarming global warming levels. Civil aviation faces great challenges because of its robust projected 
future growth and potential adverse environmental effects. Therefore, it is urgent to limit and to reduce 
environment impact of aviation by legislation, new infrastructure and flight management, and 
introduction of new highly effective aircrafts and adoptions of advanced low-emission technologies. 
During the past decade’s investigations, the Blended-Wing-Body (BWB) concept has emerged as a 
potential solution [2, 3, 4]. The Blended Wing Body is a different approach to commercial aircraft 
design, utilizing the airframe to produce an efficient lifting surface. The superior aerodynamics of the 
Blended-Wing Body (BWB) has the potential to reduce the fuel consumption, also by the possibility of 
having engines that ingest the boundary layer of the centre and reduce noise since the exhaust noise 
is not reflected by the wing. Therefore, this BWB configuration promises to be a solid candidate for the 
future commercial aircraft. 
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1.2 Optimisation overview 

The design of modern complex engineering products requires the product definition to be delivered as 
quickly as possible, to the required functional specification, at the least cost to enable a successful 
market introduction. This requires the use of appropriate design methods, which are not necessarily 
the most rigorous, in terms of physical fidelity, or the state-of-the-art. The need for this data to be 
available rapidly to allow for many concepts and configurations to be assessed in these trade-off 
studies allows the costs of the conceptual design stage to be minimized. 
For an aircraft industry, in order to be competitive in today’s global market, where aggressive weight 
targets, shortened development time scale and reduced costs are the primary objectives and 
constraints, a different approach for the design process is necessary to be introduced. Optimisation 
has become part of the design activity in many disciplines that are not only restricted to engineering. 
Multidisciplinary optimisation represents the new frontier of aircraft design [5]. The motivation behind 
this inclusion is the need to produce economically relevant products with embedded quality. In the 
industrial context, optimisation is usually associated with design and it means to identify the best 
solutions under certain circumstances. Modern design techniques seek for the best design to perform 
the desired tasks. Engineering optimisation deals with the optimal design of elements and systems in 
all engineering fields. The main aim of an optimisation process is to find an optimal geometry that fulfils 
the minimization of the objective functions. In an optimisation problem values of the variables that lead 
to an optimal value of the function that is to be optimised are sought. In order to improve something, 
there must be aspects that can be changed. In design optimisation these are called design variables, 
and collectively they are grouped in a design vector. Hence, design optimisation is the determination 
of a set of values for the design variables that minimizes (or maximizes) the objective functions and 
satisfies requirements. Specifically, wing or planform design is dependent on many factors, which must 
be considered. Changing a wing design parameter may change the overall design of the wing hence 
making it an iterative process. Raymer [6] mentions that the developmental cost in a new aircraft is 
massive as compared to the per-plane cost. Thus, multidisciplinary design will be crucial in bringing 
down the development cost of a new aircraft configuration such as the BWB, by introducing highly 
automated process, which can perform iterative wing planform designs.  

2. Methodology 

The optimisation is performed using software units corresponding to distinct disciplines. Generally, 

applications found in the academic literature provide only a small number of tools to calculate 

aerodynamic and structural performance. However, early-stage design in the industrial context 

requires a framework capable of incorporating existing tools and database of experimental data in 

order to give complete freedom to the designer.  

The multidisciplinary planform optimisation workflow schematically shown in Figure 1 is based on a 

model-based framework [7], where it is implemented via an object-oriented method. Since the 

research done is an extension of the wing optimisation work performed by Pagliuca [8], a similar 

implementation of the framework has been adopted. Interface declares input and output for each of 

the class of models. In turn, a model belonging to a given class must meet the requirements set by 

the interface, where communication between models is allowed only via the interface. Each model can 

utilize one or multiple tools to undertake its task such that reusability of data and multi-fidelity 

approaches are possible. The optimal configurations are found via a Pareto plot which goes through 

data post-processing in MATLAB, which generates plots, lift-distribution and BWB planform changes. 
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Figure 1 - Optimisation problem workflow. 

The optimisation workflow displayed in Figure 1, depicts four blocks for the baseline configuration, an 

optimiser, a performance model and the optimised configurations. The optimiser interrogates the 

performance model to compute the objective function and assess new sets of parameters. The 

optimiser utilized is a single objective PSO algorithm implemented in parallel [9]. It performs a search 

for global optimality which requires up to thousands of evaluations of the objective functions and 

searches for optimal configurations using a gradient-free method, which do not rely on differentiable 

objective functions, and often adopted by engineers to optimise complex systems [10]. They 

demonstrated to be an efficient choice when a large number of design variables are involved [6], and 

this is the case of early-design since no ultimate decision about the aircraft configuration is made at 

that stage. The optimiser takes the weighted sums of all the single objectives. The objective functions 

considered for objective weighting as previously stated are the aerodynamic efficiency (Eff or L/D), 

drag coefficient (CD) and operational empty weight (OEW). Their values are normalized with the 

performance of the baseline. In this case more weighting is given towards Eff. This approach is similar 

to the one taken at the conceptual design phase. Certain geometric and stability constrains are 

adopted to avoid non-sensible configurations. The optimiser interacts with the performance model to 

produce objective-functions for different optimal configurations, eliminating the configurations that do 

not lie within the given constraints. 

The performance model with the inputs and outputs displayed at the left and right side of the 

performance model respectively, see bottom part of Figure 1 consists of four models concerning the 

CAD geometry, mass estimation, aerodynamics and center of gravity (CG) position. The flight 

conditions and the geometric parameters are input into the performance model by the optimiser. The 

parametric CAD model is an in-house Cranfield code developed for early-stage design, which 

produces a new BWB planform geometry. Based on the parametric CAD model, the mass estimation 

model calculates the aircraft’s wing structural mass (e.g. wing ribs etc.) from the methods presented 

by Howe [11] with the propulsion, nacelle, payload and landing gear calculations done by utilizing 

equations form Torenbeek [12]. The center of gravity (CG) position is obtained from the mass 

distribution by a model written on purpose since such information is needed to compute stability 

derivatives accurately. Then, the aerodynamic takes in the calculated OEW and CG position to trim 

the aircraft. The design lift-coefficient is calculated by balancing the aircraft’s weight.  



BWB planform MDO for early stage aircraft design using Model Based Engineering  
 

4 
 

Regarding the aerodynamic model, the Athena Vortex Lattice (AVL) code [13] is utilized, which 

operates on a Vortex Lattice Method (VLM) along with the use of empirical methods for transonic 

corrections. The aerodynamic model takes into account the OEW and CG position value of the aircraft 

to generate the aerodynamic performance. A Python wrapper is in charge of writing the input files, 

executing the external tools, and loading the results from output files. Inputs and outputs are performed 

using files, data is then stored in the performance model. Parallel execution is performed using the 

multiprocessing module, and results are stored in the Performance model by exploiting inter-process 

communication. All the models communicate via objected-oriented code written in Python, which 

facilitates reduction in time, spent transferring data and reusability of the code. The resulting 

framework is versatile since it incorporates existing tools developed in a variety of programming 

languages. 

2.1 Particle swarm optimisation 

According to Coello [14], Particle Swarm Optimisation, is considered an evolutionary algorithm which 

is a heuristic search technique simulating a swarm to find the optimal solution. It has been initially 

introduced by Kennedy and Ebhart [15]. In PSO terminology, swarm or particle, which travel through 

the search space to find the optimal solution by computing their personal best (pbest), interacting with 

their neighbors (lbest) and having a global best solution (gbest). The position of each particle is 

updated according to its own best location (pbest) and the best location of its neighbors (lbest). 

If 𝑥⃗(𝑡) denotes the position of a particle 𝑝𝑖 at time-step 𝑡 then its position is changed by adding the 

calculated velocity at time-step 𝑡 as follows: 

 
 𝑥⃗𝑖(𝑡) =  𝑥⃗𝑖(𝑡 − 1) + 𝑣⃗𝑖(𝑡) (1) 

 

The velocity vector of each particle at time-step t is found by the social behavior of all the swarm with 

its neighbor and the cognitive behavior with itself by the following scheme: 

 

 𝑣⃗𝑖(𝑡) =  𝑊𝑣⃗𝑖(𝑡 − 1) + 𝐶1𝑟1(𝑥⃗𝑝𝑏𝑒𝑠𝑡𝑖
−  𝑥⃗𝑖(𝑡))  + 𝐶2𝑟2(𝑥⃗𝑙𝑒𝑎𝑑𝑒𝑟 −  𝑥⃗𝑖(𝑡)) (2) 

Where, 

𝑊 = weight (or inertia) factor 

𝐶1 = cognitive learning factor 

𝐶2 = social learning factor 

𝑟1, 𝑟2 = Constants 𝜖 [0, 1]; defined by the user 

 

A larger weight factor 𝑊 in equation 2 facilitates a more global behavior adopted by the swarm. By 

Coello’s [14] explanation, swarm is affected more by a global success of finding the optimal solution 

than the success of its neighbors. The constants 𝐶1 and 𝐶2 in equation 1 are defined as the ‘trust’ 

parameters for controlling the swarm’s local and social behavior. Higher value of 𝐶1 means that the 

particles in the swarm have most trust in themselves and higher 𝐶2 value means that the particles in 

swarm have more trust in its neighbors. 

2.1.1 Algorithm 

The basic algorithm used in PSO is explained by Venter [16] as follows: 

• The optimisation begins with selecting a randomly distributed set of particles in the design 

space (In this research, the randomly set of particles are the planform configurations). 

• The velocity vector for each particle is calculated through equation 2. 

• The position of each particle is updated by utilizing the velocity calculated in step II through 

equation 1. 

• Steps II and III are repeated until convergence is achieved. 
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Another explanation is given by Coello [14] is displayed in Figure 2. The optimisation loop begins with 

the initialization of the swarm particles position and velocity. The corresponding pbest is initialized 

along with the leader. Then the particle’s position and velocity get updated through equations 1 and 2 

respectively in each iteration followed by its pbest and the gbest. At the end, the leader is also updated. 

This continues until convergence is achieved. 

 

 

Figure 2 – Pseudocode for general PSO algorithm [14]. 

2.1.2 Objective weighing 

A general optimisation problem consists of several objectives and its associated equality and inequality 
constraints. The problem is explained as follows: 

Minimize/Maximize 𝑓𝑖(𝑥)   

 𝑖 = 1,2, … , 𝑁 (3) 

Such that 

 𝑔𝑗(𝑥) ≤ 0  𝑗 = 1,2, … , 𝐽  (4) 

 ℎ𝑘(𝑥) = 0 𝑘 = 1,2, … , 𝐾 (5) 

where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑝] is a dimensional vector with p decision or design variables and equations 4 

and 5 are the inequality and equality constraints. 

A common difficulty for multi-objective optimisation problem is the appearance of an objective conflict 

[17]. Objective conflict as defined by [Hans 1988], occurs when none of the feasible outputs from 

optimisation give simultaneous optimal solutions for all objectives. Hence mathematically, the most 

favorable optimal solution in a Pareto will be that solution which provides the least objective conflict 

[18]. However, such solutions may not satisfy some priorities set by the decision maker [18]. To find 

such solutions efficiently, scalarization of objective vector into one vector is performed such that all 

the objective functions find their optimal solutions and certain priorities are met. One such methods of 

vector scalarization is the method of Objective Weighting. 

For this research the method of Objective Weighting is utilized and hence is explained as follows: 

 𝑍 =  𝛴𝑖=1
𝑁  𝑤𝑖𝑓𝑖(𝑥) (6) 

  where 𝑥 ∈ 𝑋, (𝑋 is the feasible region) 

In equation (6), 𝑓𝑖(𝑥) is the objective vector and weights in weight vector 𝑤𝑖 are fractional numbers. 

The optimal solutions are controlled by the weight vector 𝑤𝑖. Adjusting a corresponding weight in 𝑤𝑖 

changes the preference of the objective. Mathematically, equal weights for all objectives may generate 
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least objective conflicts [18]. But priorities should be induced for real world optimisation problems: for 

this research, aero efficiency (Eff) of the aircraft is given more priority than aircraft’s drag (CD) and 

weight (OEW) and hence their respective weights are modified accordingly. Usually, each objective is 

first optimised and all objective functions values are computed at each individual optimum solution. A 

suitable weight is then chosen for each objective based on their importance and equation (6) is utilized 

to find the desired solution. 

2.2 Mass estimation model 

The mass estimation model was developed according to the BWB configuration considerations since 

the original model utilized by Pagliuca [8] was for a Tube and Wing (TAW) aircraft configuration which 

would have given non-sensible OEW calculations due to its completely different geometry than the 

BWB. For the OEW calculations, the structural weight was calculated by the equations from Howe 

[19] with the propulsion, nacelle, payload and landing gear calculations done by utilizing equations 

from Torenbeek [20]. 

2.2.1 BWB Idealization 

Since the BWB aircraft is essentially like a flying wing without a proper defined fuselage, a new 

approach for the idealization was adopted for clear explanation of the optimised results. Figure 3 

shows the BWB geometry along with the idealization adopted for defining certain parts. The 

idealization displayed in figure was defined based on the similar idealization adopted by Howe [18]. 

The kink station is a semi-span location where the cabin ends, and the front and rear spar begins. The 

nose is the coordinate (0, 0). The outer and inner wing is the section of the BWB geometry inboard 

and outboard of the kink station. The weight model in the workflow adopted the same parametric 

idealization as shown for calculation of the baseline structural weight. Moreover, few terms such as 

kink station, outer wing and inner wings is used for explanation of the results. 
 

 

Figure 3 - BWB geometry idealization. 

2.2.2 Structural weight calculation 

The total structural mass is defined the sum of the inner wing mass, outer wing mass and the ‘fuselage 

section’ mass, as presented below: 

 𝑀𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 =  (𝑀𝑤)𝑜 + (𝑀𝑤)𝑖 + (𝐹𝑖)𝑓 (7) 
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where, 

𝑀𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 = Total structural mass [kg] 

(𝑀𝑤)𝑜 = Inner wing mass [kg] 

(𝑀𝑤)𝑖 = Outer wing mass [kg] 

(𝐹𝑖)𝑓 = Total ‘fuselage’ function mass penalty [kg] 

The inner and outer wing mass was defined by Howe [18] as: 

 
 (𝑀𝑤)𝑋 =  𝐷𝑋 +  (𝑀𝑟)𝑋 + 𝐹𝑋 (8) 

Where, 

𝐷 = mass of the wing covers & webs of the structural box [kg] 

𝑀𝑟 = mass of wing ribs [kg] 

𝐹 = penalty function in the outer wing due to the departure from ideal wing box and allowance for 
secondary structure [kg] 

𝑋 = subscript notation for outer (𝑜) or inner (𝑖) wing 

The fuselage function mass penalty defined by Howe [19] is treated by three separate items: Nose 
fuselage (e.g. – crew accommodation, attachment of nose landing gear unit etc.), main payload mass 
(e.g.–floor and bulkhead) and secondary structures penalty mass (e.g.–freight doors, emergency exits 
and windows). Howe [18] mentions that the ‘fuselage section’ mass uses a theoretical basis and not 
empirical. That is why, direct values for predicted airframe mass as a percentage of take-off mass 
(MTOW) for the Cranfield BW-98 aircraft as calculated by Howe [19] is taken (Table 1). From the table, 
it is clear that: 

 (𝐹𝑖)𝑓 = (5.48/100) ∗ 𝑀𝑇𝑂𝑊 (9) 

 
Table 1 – Predicted ‘fuselage function’ mass as a percentage of take-off mass (MTOW) [18] 

Component (item) Mass percentage (%) 

Nose fuselage 0.91 

Main payload 3.27 

Secondary structures 1.3 

Total 5.48 

 

The full detail on the structural mass of the Blended Wing Body aircraft can be found in Howe [18], 
and is not presented here for the sake of the length of the paper. 

3. BWB optimisation problem formulation 

The formulation of the BWB planform optimisation problem is presented in this section. The BWB-11 

configuration that has been developed at Cranfield University as research geometry for the 

assessment of blended wing body aircraft has been taken as the baseline. It was initially derived from 

the Cranfield Aerospace/BAe Systems Kestrel BWB demonstrator [21] and the Boeing X-48B 

demonstrator [22]. The three-dimensional (3D) computer aided drawing (CAD) model is displayed in 

Figure 4 from where parametric dimensions were taken to generate the baseline in the optimisation 

workflow.  
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Figure 4 - CAD model of the BWB-11 baseline (units in metres). 

The BWB planform has been parametrically defined by twelve geometrical parameters as is shown 

in Figure 5 (left side). Parameters P1 to P4 and P5 to P8 define the trailing edge and leading-edge 

location respectively such that the root chord and tip chord length are defined by P1, and P5-P4 

respectively. The wing span-wise location is defined by the parameters P9 through P12 along with 

the representation of the kink station (see Figure 3) chord by P8-P1. Constraints were given to 

prevent negative sweep angles with M or W-shaped wings and a minimum value was set for the tip 

chord length of 1.5 meters to avoid pointy wings. Figure 5 (right side) also displays these constraints 

with C1, C2 and C3, C4 defining the outer wing sweep angles of the trailing and leading edges 

respectively and C5 denoting the tip chord length. Moreover, the stability derivative was considered 

to be negative (dCm/dα < 1) such that a longitudinally stable BWB configuration is achieved, where 

Cm denotes the moment coefficient. Maximum change of the root chord (P1) was constrained to ± 1 

meter and all of the other parameters were allowed a maximum change of ± 2 meters. 

  

 

Figure 5 - Geometric parameterisation and constraints. 

AVL outputs the angle of attack at which the aircraft is flying based on the given lift-coefficient. A 
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constraint bracket of (-5, 5) was given for the maximum and minimum angle of attack generated by 

AVL. Table 2 displays all the mentioned formulation explained above, which has been taken into 

account for this optimisation problem such that the design targets meet their requirements. The 

negative sign in front of aerodynamic efficiency (Eff) denotes its maximization in order to reach the 

design target. 

Table 2 – Formulation given to the optimisation problem. 

Design target  minimize: {CD/CD (baseline), OEW/OEW (baseline), -E ff/E ff (baseline)} 

CONSTRAINTS CONDITION 

C1, C2, C3 & C4 C3 > C4, C2 > C1 

C5 > 1.5 meters 

Upper/lower bound (P1) ± 1.0 meter 

Upper/lower bound (except P1) ± 2.0 meter 

 

4. Results 

A successful optimisation of the BWB planform has been performed for cruise condition flying at M = 
0.85 at an Altitude = 10000m and with a baseline OEW = 2.08 x 106 kg. The baseline has been defined 
parametrically based on the planform view of the CAD model shown in Figure 6. The Particle Swarm 
Optimisation (PSO) algorithm has been used as the optimiser where convergence has been assumed 
when the maximum distance between swarm particle position and best swarm particle was less than 1 
x 10-5 at back-to-back iterations. The velocity of the swarm has been updated every iteration by taking 
50% of particle’s change in position and 50% of the particle’s best velocity. The optimiser run with a 
swarm size of 128 and the maximum number of iterations was set to 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Baseline BWB Planform 

VLM along with the empirical corrections for transonic flows have been utilized for the aerodynamic 

model. The weight model has displayed sensible values for OEW for the baseline and has been 

successfully validated using a statistical approach based on outliers via Chauvenet’s criterion [23] in 

section 4.4. Three objective-functions are considered for performing optimisations, namely: 

aerodynamic efficiency (Eff), drag-coefficient (CD) and OEW. Graph representation is utilized for 

comparison between the optimised and the baseline planform and their respective lift-distributions. 

Moreover, the Pareto plot is displayed for double and multi-objective optimisations. 

 



BWB planform MDO for early stage aircraft design using Model Based Engineering  
 

10 
 

4.1 Single-objective optimisation 

Three single-objective optimisations have been performed, specifically maximizing aerodynamic 

efficiency Eff or L/D, minimizing CD and minimizing OEW. Please note that Eff and L/D both denote 

aerodynamic efficiency and the notation Eff will be used hereafter.  

Results minimizing/maximizing single-objectives generate impractical values for the objective-

functions not being taken into consideration. The objective function being taken into consideration is 

being maximized/minimized as expected. For example, for Eff maximization there is an increase in Eff 

by a substantial 4.06%. However, OEW increases by 1.99% even though CD is decreased by 1.9%. 

The comparison of the optimised configuration with the baseline is represented in Figure 8. The inner 

wing stays almost the same as compared to the baseline but the outer wing becomes lightly slender 

and increases in span, hence the higher lift-distribution, shown in Figure 7 towards the tip chord. For 

CD minimization, it has been reduced by 1.61% but an increase in OEW by 0.11% and decrease in Eff 

by 3.45% has been obtained. This decrease in lift is due to the decrease in total lift in the inner wing 

as shown in Figure 9. The outer wing is longer with a smaller chord, except near the tip, than the 

baseline (Figure 10).  

There is a decrease in OEW by 1.87% for OEW minimization but CD increases massively by 10.46% 

and Eff consequently increases by 2.98%. The total lift is greater just in the inner wing (Figure 11), but 

the overall configuration is swept back, making the chord smaller throughout the span and the root 

chord length also decreases, hence decreasing the value of OEW. Single-objective optimisations are 

generating configurations where the objective function being taken into consideration has been 

significantly improved, but on the expense of other objective functions. For example, for configuration 

shown in Figure 11, even though OEW and Eff are meeting the design targets, but there is a massive 

increase in the drag (10.46%), which is not desirable. Hence, there is a need for a multi-objective 

consideration. 

 

Figure 7 – Lift distribution comparison for 
maximizing Eff. 

 

Figure 8 – Planform comparison for maximizing 
Eff. 
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4.2 Double-objective optimisation 

Thereafter, three double-objective optimisations have been performed: maximizing Eff & minimizing 

CD, maximizing Eff & minimizing OEW and minimizing CD & OEW. The double-objective optimisation 

generates multiple optimal configurations lying on the pareto front. The authors have chosen a trade-

off optimal configuration and the results are presented only for the selected configurations. 

Results for the optimisation Eff & CD are presented first. Figure 13 displays the optimisation result for 

this particular optimisation. The Pareto front is denoted by black circles, hollow circles denote the 

optimal configurations which match the design target (i.e. Eff /Eff (BWB) >1 and CD/CD(BWB) < 1). The 

baseline configuration is displayed by a red cross (i.e. at co-ordinate [1, 1]). Configuration A denoted 

by solid blue square is the chosen configuration by the authors, which is a trade-off between Eff and 

CD values. For this configuration Eff increases by 1.97% and CD decreases by 3.97% but there is an 

increase in OEW by 0.36%. The planform and the lift-distribution and comparison of configuration A 

with the baseline are shown in Figure 14 and Figure 15 respectively. The inner wing remains almost 

the same with the outer wing becoming gradually thinner. The semi-span length increases by about 2 

meters reducing the induced drag. Although the total lift slightly decreases across the wing.  

 

Figure 9 – Lift-distribution comparison for 
minimizing CD. 

 

 

Figure 10 – Planform comparison for 
minimizing CD. 

 

 

Figure 11 – Lift-distribution comparison for 
minimizing OEW. 

 

 

Figure 12 – Planform comparison for minimizing 
OEW. 
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Figure 16 displays the results for Eff and OEW optimisation. The Pareto plot shows that there are five 

optimal configurations meeting the design target out of which configuration B is the one chosen by the 

authors. For configuration B, Eff increases by 1.43% and OEW decreases by 1.44% but at the expense 

of increasing the CD by 4.75%. The optimal configuration has a greater lift distribution than the baseline 

(Figure 18). The crank station moves inward and the sweep increases slightly at the inner wing as 

shown in Figure 17, and the outer wing sweep decreases with a shorter chord length. 

Figure 19 shows the optimisation results for the CD and OEW optimisation where five optimal 

configurations are generated. Configuration C was chosen as a trade-off configuration by the authors 

and results comparison for it is presented in Figure 20 and Figure 21. As expected, this optimisation 

resulted in a decrease in both CD and OEW by 2.67% and 0.89% respectively; however, there was 

also a decrease in Eff by 3.25%. The lift-distribution of configuration C is slightly lesser until semi-span 

length of 20 meters after which it increases and then stays almost the same (Figure 21). As for its 

planform, the root chord slightly increases, the outer wing significantly changing and the semi-span 

length decreases slightly. The optimiser successfully improves the two objective-functions being taken 

into consideration but on the expense of the third one. In all the above configurations, the objective-

function not being optimised does not satisfies the design target.  

 

Figure 13 – Pareto plot for Eff and CD optimisation. 

 
Figure 14 – Planform comparison Eff and CD 

optimisation – Configuration A. 
 

 
Figure 15 – Lift-distribution comparison Eff and CD 

optimisation – Configuration A. 
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Figure 16 – Pareto plot Eff and OEW optimisation. 

 
Figure 17 – Planform comparison Eff and OEW 

optimisation – Configuration B. 
 

 
Figure 18 – Lift-distribution comparison Eff and 

OEW optimisation – Configuration B. 
 

 

 

Figure 19 – Pareto plot CD and OEW optimisation. 
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Figure 20 – Planform comparison CD and OEW 

optimisation – Configuration C. 
 

 
Figure 21 – Lift-distribution comparison CD and 

OEW optimisation – Configuration C. 
 

4.3 Triple or multi-objective optimisation 

All the three objective-functions being taken into consideration (i.e. Eff, CD and OEW) have been 

optimised simultaneously. Since there are three objective-functions, the Pareto (see Figure 22) is a 

three-dimensional (3D) plot with the CD, Eff and OEW plotted on the x, y and z-axis respectively. The 

scale on the Eff axis in Figure 22 is reversed so that the optimal configurations lie towards the bottom-

right corner. The notations are identical to the ones in double-objective functions with the baseline is 

plotted at [1, 1, 1].  

The Pareto plot in Figure 22 shows that that there are three optimal configurations which met the 

design targets (i.e. Eff/Eff(BWB) >1, CD / CD(BWB) < 1 and OEW / OEWBWB < 1), out of which configuration 

D was chosen by the authors. Eff was increased by 2.58% along with the reduction of CD and OEW by 

0.1% and 0.69% respectively. 

The lift-distribution of configuration D is compared with the baseline in Figure 24: lift is identical until 

semi-span length of 17 meters, after which it increases slightly. The inner wing of the optimised 

configuration D, as displayed in Figure 23, is also identical until the crank station owing to the same 

lift-distribution, but the outer wing is swept back further with the semi-span length slightly increasing. 

The other two optimal configurations in the Pareto plot also produced results where Eff was increasing 

and CD, OEW were reducing. Hence, the multi-disciplinary optimisation generates optimal 

configurations, which meet the design target.  

Moreover, the current optimisation algorithm is a single-objective PSO algorithm and replacing it by a 

double-objective PSO or a genetic algorithm will generate better results. Lastly, the calculation for 

transonic aerodynamics effects are performed via empirical methods using low-fidelity aerodynamic 

software (AVL) as the aerodynamic model, which essential assumes the baseline as a two-

dimensional flat plate. Inclusion of an aerodynamic analysis via higher-fidelity software such as a 

Viscous Flow Potential (VFP) code into the aerodynamic model will certainly produce more accurate 

results as VFP models are able to take into account twist distribution, thickness and formation of 

transonic shock waves along the wing.  
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Figure 22 – 3D Pareto plot for multi-disciplinary optimisation. 

 

Figure 23 – Planform comparison for multi-disciplinary optimisation. 

 

Figure 24 – Lift-distribution comparison for multi-disciplinary optimisation. 
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4.4 Validation for baseline weight 

The weight model in the optimisation workflow has been developed according to the BWB geometry 

as given in Howe [19]. It can be said that the MDO in the current research takes into account the ‘initial 

sizing’ step of the aircraft design in its conceptual phase. Even though Howe [19] has validated his 

weight calculations but for a slightly different baseline BWB configuration. Moreover, since the 

research performed is an initial step towards developing a more sophisticated BWB aircraft 

configuration optimisation, it is important that the OEW calculated is validated. Statistical validation for 

OEW has been performed via Chauvenet’s criterion for outliers’ identification [23]. The historical 

aircraft weight data have been obtained from Roskam [24] and Liebeck’s BWB weight data [25] and a 

linear fit along with the research (baseline) BWB has been performed. Figure 25 shows the linear fir 

(regression), where Roskam’ s data is not shown for clarity and only the line fit and their upper and 

lower limits are displayed along with another BWB OEW data for consistency. The figure displays that 

the research BWB lies within the limits.  

The location of the research BWB data point in Figure 25 may denote it as an outlier. However, 

Chauvenet’s criterion was successfully applied to all the data points to check if the research BWB is 

an outlier. Figure 26 shows the plot for the Absolute Z-scores versus the OEW from Roskam, Liebeck 

and the research BWB-11. It clearly shows that the calculated OEW value for the research BWB model 

lies below the threshold Chauvenet’s Z-score value of 1.960 for the concerned number of data points 

(10). The exact values for MTOW and OEW for the baseline BWB are marked in Figure 25 as 

1,032,645 lb (468,400 kg) and 42,6535 lb (193,473 kg) respectively. 
 

 

Figure 25 – Linear regression for OEW versus MTOW. 

 

Figure 26 – Chauvenet’s criterion check for outliers. 
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5. Conclusion 

A multidisciplinary optimisation was successfully performed on the Blended Wing Body (BWB) aircraft 

planform flying at Mach 0.85 and 10,000 meters, with the aircraft’s maximum take-off weight (MTOW) 

and the thrust take-off (TTO) taken as 468,400 kilograms and 819,000 Newton respectively. Three 

objective functions were considered for optimisation namely, aerodynamic efficiency (Eff or L/D), drag 

coefficient (CD) and OEW. Maximization of Eff and minimization of CD and OEW have been considered 

as design targets. Particle Swarm Optimisation (PSO) has been used as the optimiser algorithm 

which utilized single objective weighing methods. Open source AVL code [13] along with semi-

empirical methods for transonic corrections in drag has been used in the aerodynamics model.  

It has been observed that the multi-objective optimisation gave superior aircraft configurations as 

compared to single and double-objective, which met the design targets in every run. Occasionally, 

double-objective optimisations may also give configurations which satisfied the design target, but this 

occurrence was random in nature and it was not assured that the design targets will be met every 

time. Moreover, multi-disciplinary optimisation (MDO) gave enough optimised configurations which 

the early stage aircraft designer can choose from for the BWB design. The model-based framework 

can be used in conceptual design stage for a BWB design to optimize the aircraft at conceptual design 

phase, which arises a possibility of an already good aircraft design before advancing it to the 

preliminary design phase. The OEW calculated via developed mass estimation model, which was 

developed for a BWB configuration was validated successfully through statistical approaches [23]. 

The BWB aircraft configuration is essentially a flying wing configuration. Hence, any other new and 

modern wing flying wing designs could potentially utilize this MDO framework at its early design stage 

due to the short computational time and the reusability that the framework facilitates. 

To conclude a useful tool was developed, which is able to take into account targets and constraints 

coming from multiple disciplines and suggest modifications to the BWB reference geometry. 

6. Further research work 

The promising MDO research work performed on the BWB configuration is at a preliminary stage 
where further research is advised by the authors. Furthering this research has the potential to develop 
the current model-based framework MDO more robust and accurate, which may be utilized by 
industries or universities for any BWB or flying-wing at early stage design in future. Following are 
further research, which is advised by the authors and will be performed: 

• Optimiser algorithm: The current research utilizes PSO algorithm with an objective weighing 
method. The optimiser would put more concentration on optimising the single objective on 
which more stress is given (in this case Eff). Thus, the optimiser will generate configurations 
with less reduction in OEW and/or CD. The inclusion of different optimisation algorithms in the 
framework is advised.  For example, Multi-Objective PSO [10, 26] that performs mutation and 
cross breeding or non-dominated sorting algorithm (NSGA – II proposed by Srinivas and Deb 
[18]). Both of the mentioned optimisation algorithms does not put weightage on any single 
objective for optimisation and are the obvious candidates for replacing the current optimiser. 

• High fidelity aerodynamic model: A low fidelity open source code AVL is utilized in the 
aerodynamic model, which essentially considers the BWB planform as a flat surface. Hence, 
no 3D air-flow effects or any aerofoil transonic aerodynamic characteristics are considered.  
This might mean that the optimum is a false optimum when considering the sensitivity of 
viscous and transonic drag more accurately. A higher fidelity Viscous Flow Potential (VFP) [27, 
28] method is advised to be included on the framework as it considers the mentioned effects 
and is more accurate than its counterpart. In fact VFP method was already tested on the same 
configuration and results have been found in good agreement with RANS solutions as 
published in [29]. 
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