7,911 research outputs found

    Road network equilibrium approaches to environmental sustainability

    Get PDF
    Environmental sustainability is closely related to transportation, especially to the road network, because vehicle emissions and noise damage the environment and have adverse effects on human health. It is, therefore, important to take their effect into account when designing and managing road networks. Road network equilibrium approaches have been used to estimate this impact and to design and manage road networks accordingly. However, no comprehensive review has summarized the applications of these approaches to the design and management of road networks that explicitly address environmental concerns. More importantly, it is necessary to identify this gap in the literature so that future research can improve the existing methodologies. Hence, this paper summarizes these applications and identifies potential future research directions in terms of theories, modelling approaches, algorithms, analyses, and applications.postprin

    Microsimulation models incorporating both demand and supply dynamics

    Get PDF
    There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework. The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamic

    The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study

    Get PDF
    Negative externalities cause inefficiencies in the allocation of capacities and resources in a transport system. Marginal social cost pricing allows to correct for these inefficiencies in a simulation environment and to derive real-world policy recommendations. In this context, it has been shown for analytical models considering more than one externality, that the correlation between the externalities needs to be taken into account. Typically, in order to avoid overpricing, this is performed by introducing correction factors which capture the correlation effect. However, the correlation structure between, say, emission and congestion externalities changes for every congested facility over time of day. This makes it close to impossible to calculate the factors analytically for large-scale systems. Hence, this paper presents a simulation-based approach to calculate and internalize the correct dynamic price levels for both externalities simultaneously. For a real-world case study, it is shown that the iterative calculation of prices based on cost estimates from the literature allows to identify the amplitude of the correlation between the two externalities under consideration: for the urban travelers of the case study, emission toll levels—without pricing congestion—turn out to be 4.0% too high in peak hours and 2.8% too high in off-peak hours. In contrary, congestion toll levels—without pricing emissions—are overestimated by 3.0% in peak hours and by 7.2% in off-peak hours. With a joint pricing policy of both externalities, the paper shows that the approach is capable to determine the amplitude of the necessary correction factors for large-scale systems. It also provides the corrected average toll levels per vehicle kilometer for peak and off-peak hours for the case study under consideration: again, for urban travelers, the correct price level for emission and congestion externalities amounts approximately to 38 EURct/km in peak hours and to 30 EURct/km in off-peak hours. These toll levels can be used to derive real-world pricing schemes. Finally, the economic assessment indicators for the joint pricing policy provided in the paper allow to compare other policies to this benchmark state of the transport system

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication
    corecore