23 research outputs found

    Skellam shrinkage: Wavelet-based intensity estimation for inhomogeneous Poisson data

    Full text link
    The ubiquity of integrating detectors in imaging and other applications implies that a variety of real-world data are well modeled as Poisson random variables whose means are in turn proportional to an underlying vector-valued signal of interest. In this article, we first show how the so-called Skellam distribution arises from the fact that Haar wavelet and filterbank transform coefficients corresponding to measurements of this type are distributed as sums and differences of Poisson counts. We then provide two main theorems on Skellam shrinkage, one showing the near-optimality of shrinkage in the Bayesian setting and the other providing for unbiased risk estimation in a frequentist context. These results serve to yield new estimators in the Haar transform domain, including an unbiased risk estimate for shrinkage of Haar-Fisz variance-stabilized data, along with accompanying low-complexity algorithms for inference. We conclude with a simulation study demonstrating the efficacy of our Skellam shrinkage estimators both for the standard univariate wavelet test functions as well as a variety of test images taken from the image processing literature, confirming that they offer substantial performance improvements over existing alternatives.Comment: 27 pages, 8 figures, slight formatting changes; submitted for publicatio

    A proximal iteration for deconvolving Poisson noisy images using sparse representations

    Get PDF
    We propose an image deconvolution algorithm when the data is contaminated by Poisson noise. The image to restore is assumed to be sparsely represented in a dictionary of waveforms such as the wavelet or curvelet transforms. Our key contributions are: First, we handle the Poisson noise properly by using the Anscombe variance stabilizing transform leading to a {\it non-linear} degradation equation with additive Gaussian noise. Second, the deconvolution problem is formulated as the minimization of a convex functional with a data-fidelity term reflecting the noise properties, and a non-smooth sparsity-promoting penalties over the image representation coefficients (e.g. ℓ1\ell_1-norm). Third, a fast iterative backward-forward splitting algorithm is proposed to solve the minimization problem. We derive existence and uniqueness conditions of the solution, and establish convergence of the iterative algorithm. Finally, a GCV-based model selection procedure is proposed to objectively select the regularization parameter. Experimental results are carried out to show the striking benefits gained from taking into account the Poisson statistics of the noise. These results also suggest that using sparse-domain regularization may be tractable in many deconvolution applications with Poisson noise such as astronomy and microscopy

    Poisson noise removal in multivariate count data

    Get PDF
    International audienceThe Multi-scale Variance Stabilization Transform (MSVST) has recently been proposed for 2D Poisson data denoising.1 In this work, we present an extension of the MSVST with the wavelet transform to multivariate data-each pixel is vector-valued-, where the vector field dimension may be the wavelength, the energy, or the time. Such data can be viewed naively as 3D data where the third dimension may be time, wavelength or energy (e.g. hyperspectral imaging). But this naive analysis using a 3D MSVST would be awkward as the data dimensions have different physical meanings. A more appropriate approach would be to use a wavelet transform, where the time or energy scale is not connected to the spatial scale. We show that our multivalued extension of MSVST can be used advantageously for approximately Gaussianizing and stabilizing the variance of a sequence of independent Poisson random vectors. This approach is shown to be fast and very well adapted to extremely low-count situations. We use a hypothesis testing framework in the wavelet domain to denoise the Gaussianized and stabilized coefficients, and then apply an iterative reconstruction algorithm to recover the estimated vector field of intensities underlying the Poisson data. Our approach is illustrated for the detection and characterization of astrophysical sources of high-energy gamma rays, using realistic simulated observations. We show that the multivariate MSVST permits efficient estimation across the time/energy dimension and immediate recovery of spectral properties

    Poisson inverse problems

    Get PDF
    In this paper we focus on nonparametric estimators in inverse problems for Poisson processes involving the use of wavelet decompositions. Adopting an adaptive wavelet Galerkin discretization, we find that our method combines the well-known theoretical advantages of wavelet--vaguelette decompositions for inverse problems in terms of optimally adapting to the unknown smoothness of the solution, together with the remarkably simple closed-form expressions of Galerkin inversion methods. Adapting the results of Barron and Sheu [Ann. Statist. 19 (1991) 1347--1369] to the context of log-intensity functions approximated by wavelet series with the use of the Kullback--Leibler distance between two point processes, we also present an asymptotic analysis of convergence rates that justifies our approach. In order to shed some light on the theoretical results obtained and to examine the accuracy of our estimates in finite samples, we illustrate our method by the analysis of some simulated examples.Comment: Published at http://dx.doi.org/10.1214/009053606000000687 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Intensity estimation of non-homogeneous Poisson processes from shifted trajectories

    Get PDF
    This paper considers the problem of adaptive estimation of a non-homogeneous intensity function from the observation of n independent Poisson processes having a common intensity that is randomly shifted for each observed trajectory. We show that estimating this intensity is a deconvolution problem for which the density of the random shifts plays the role of the convolution operator. In an asymptotic setting where the number n of observed trajectories tends to infinity, we derive upper and lower bounds for the minimax quadratic risk over Besov balls. Non-linear thresholding in a Meyer wavelet basis is used to derive an adaptive estimator of the intensity. The proposed estimator is shown to achieve a near-minimax rate of convergence. This rate depends both on the smoothness of the intensity function and the density of the random shifts, which makes a connection between the classical deconvolution problem in nonparametric statistics and the estimation of a mean intensity from the observations of independent Poisson processes

    Multiscale likelihood analysis and complexity penalized estimation

    Full text link
    We describe here a framework for a certain class of multiscale likelihood factorizations wherein, in analogy to a wavelet decomposition of an L^2 function, a given likelihood function has an alternative representation as a product of conditional densities reflecting information in both the data and the parameter vector localized in position and scale. The framework is developed as a set of sufficient conditions for the existence of such factorizations, formulated in analogy to those underlying a standard multiresolution analysis for wavelets, and hence can be viewed as a multiresolution analysis for likelihoods. We then consider the use of these factorizations in the task of nonparametric, complexity penalized likelihood estimation. We study the risk properties of certain thresholding and partitioning estimators, and demonstrate their adaptivity and near-optimality, in a minimax sense over a broad range of function spaces, based on squared Hellinger distance as a loss function. In particular, our results provide an illustration of how properties of classical wavelet-based estimators can be obtained in a single, unified framework that includes models for continuous, count and categorical data types
    corecore