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ABSTRACT

The Multi-scale Variance Stabilization Transform (MSVST) has recently been proposed for 2D Poisson data
denoising.1 In this work, we present an extension of the MSVST with the wavelet transform to multivariate
data–each pixel is vector-valued–, where the vector field dimension may be the wavelength, the energy, or the
time. Such data can be viewed naively as 3D data where the third dimension may be time, wavelength or
energy (e.g. hyperspectral imaging). But this naive analysis using a 3D MSVST would be awkward as the data
dimensions have different physical meanings. A more appropriate approach would be to use a wavelet transform,
where the time or energy scale is not connected to the spatial scale. We show that our multivalued extension of
MSVST can be used advantageously for approximately Gaussianizing and stabilizing the variance of a sequence
of independent Poisson random vectors. This approach is shown to be fast and very well adapted to extremely
low-count situations. We use a hypothesis testing framework in the wavelet domain to denoise the Gaussianized
and stabilized coefficients, and then apply an iterative reconstruction algorithm to recover the estimated vector
field of intensities underlying the Poisson data. Our approach is illustrated for the detection and characterization
of astrophysical sources of high-energy gamma rays, using realistic simulated observations. We show that the
multivariate MSVST permits efficient estimation across the time/energy dimension and immediate recovery of
spectral properties.

Keywords: Poisson noise, multivariate data, wavelets, multi-scale variance stabilization.

1. INTRODUCTION

A host of estimation methods have been proposed in the literature for non-parametric Poisson noise removal.
Major contributions consist of variance stabilization: this is a classical approach which consists in preprocessing
the data by applying a variance stabilizing transform (VST) such as the Anscombe transform.2 It can be
shown that the transformed data are approximately stationary, independent and Gaussian. Once we are brought
to the Gaussian denoising problem, standard approaches are used before the VST is inverted to get the final
estimate. Haar-Fisz transform is another widely used VST,3,4 which combines the Fisz transform5 within the
Haar transform. Jansen6 introduced a conditional variance stabilization (CVS) approach which can be applied
in any wavelet domain resulting in stabilized coefficients. However, these transformations are only valid for a
sufficiently large number of counts per pixel (and of course, for a larger still number of counts, the Poisson
distribution becomes Gaussian with equal mean and variance).

Hypothesis testing has also been proposed for Poisson noise removal. Kolaczyk7 first introduced a Haar
domain threshold, which implements a hypothesis testing procedure based on a user-specified false positive rate
(FPR). Zhang et al.8 extended the hypothesis testing to the biorthogonal Haar domain, leading to a more regular
reconstruction for smooth intensities. Bijaoui and Jammal9 derived the probability density function (pdf ) of any
wavelet coefficient allowing hypothesis testing in a general wavelet domain, but is computationally complex than
Haar-based methods due to the lack of closed-form pdf expressions. Kolaczyk10 proposed “corrected” versions
of the usual Gaussian-based thresholds for Poisson data. However, the asymptotic approximation adopted by10

may not allow reasonable solutions in low-count situations.
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Empirical Bayesian estimators for Poisson noise removal were studied in.6,11–13 The low-intensity case apart,
Bayesian approaches generally outperform the direct wavelet filtering.14,15 Poisson denoising has also been
formulated as a penalized maximum likelihood estimation problem16–18 within wavelet, wedgelet and platelet
dictionaries.

In a recent paper, Zhang et al.1 have proposed to combine variance stabilization and multiscale transforms,
leading to the Multi-Scale Variance Stabilization Transform (MSVST). MSVST can be seen as a generalization
of the Anscombe transform; see section 2 for details. This new approach is fast and easy to implement, and more
importantly, works very well at very low count situations, down to 0.1 photons per pixel.

This paper

In this paper, we propose a multivalued extension of MSVST, which allows us to remove the Poisson noise in
multivariate data sets, when the third dimension is not a spatial dimension, but the wavelength, the energy or
the time. Such 3D data are called 2D-1D data sets in the sequel. We show that this multivalued extension can be
used advantageously for approximately Gaussianizing and stabilizing the variance of a sequence of independent
Poisson random vectors. This approach is shown to be fast and very well adapted to low-count situations. We use
a hypothesis testing framework in the wavelet domain to denoise the Gaussianized and stabilized coefficients, and
then apply an iterative reconstruction algorithm to recover the estimated vector field of intensities underlying
the Poisson data. Our approach is illustrated for the detection and characterization of astrophysical sources of
high-energy gamma rays, using realistic simulated observations. We show that the multivariate MSVST permits
efficient estimation across the time/wavelength/energy dimension and recovery of spectral properties. Section 2
reviews the MSVST method relative to the isotropic undecimated wavelet transform and section 3 shows how
it can be extended to the 2D-1D case. Section 4 presents some experiments on realistic simulated astronomical
data. Conclusions are drawn in section 5.

2. THE 2D MULTISCALE VARIANCE STABILIZATION TRANSFORM (MSVST)

In this section, we review the MSVST method,1 restricted here to the wavelet transform. Indeed, the MSVST
can use other transforms such as the ridgelet or the curvelet transforms; see.1

2.1 VST of a filtered Poisson process

Let’s start with a simple 1D case. Given X a sequence of n independent Poisson random variablesXi, i = 1, · · · , n,
each of mean λi, let Yi =

∑n

j=1 h[j]Xi−j be the filtered process obtained by convolving the sequence X with a

discrete filter h. Y denotes any one of the Yi’s, and τk =
∑

i(h[i])
k for k = 1, 2, · · · .

If h = δ, then we recover the Anscombe VST2 of Yi (hence Xi) which acts as if the stabilized data arose from
a Gaussian white noise with unit variance, under the assumption that the intensity λi is large. This is why the
Anscombe VST performs poorly in low-count settings. But, if the filter h acts as an “averaging” kernel (more
generally a low-pass filter), one can reasonably expect that stabilizing Yi would be more beneficial, since the
signal-to-noise ratio measured at the output of h is expected to be higher.

Using a local homogeneity assumption, i.e. λi−j = λ for all j within the support of h, it has been shown1

that for a filter h, the transform Z = b sign(Y + c)
√

|Y + c| with b and c defined as

c =
7τ2
8τ1

− τ3
2τ2

, b = 2

√

|τ1|
τ2

(1)

is a second order accurate variance stabilization transform, with asymptotic unit variance. By second-order
accurate, we mean that the error term in the variance of the stabilized variable Z decreases rapidly as O(λ−2).
From (1), it is obvious that when h = δ, we obtain the classical Anscombe VST parameters b = 2 and c = 3/8.
The authors in1 have also proved that Z is asymptotically normally distributed with mean b

√

|τ1|λ and unit
variance.
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Figure 1. Behavior of the expectation E[Z] (left) and variance Var [Z] (right) as a function of the underlying intensity, for
the Anscombe VST, 2D Haar-Fisz VST, and out VST with the 2D B3-Spline filter as a low-pass filter h.

Fig.1 shows the Monte-Carlo estimates of the expectation E[Z] (left) and the variance Var [Z] (right) obtained
from 2 · 105 Poisson noise realizations of X, plotted as a function of the intensity λ for both Anscombe2 (dashed-
dotted), Haar-Fisz (dashed)19 and our VST with the 2D B3-Spline filter as a low-pass filter h (solid). The
asymptotic bounds (dots) (i.e. 1 for the variance and

√
λ for the expectation) are also shown. It can be seen that

for increasing intensity, E[Z] and Var [Z] approach the theoretical bounds at different rates depending on the
VST used. Quantitatively, Poisson variables transformed using the Anscombe VST can be reasonably considered
to be unbiased and stabilized for λ ' 10, using Haar-Fisz for λ ' 1, and using out VST (after low-pass filtering
with the chosen h) for λ ' 0.1.

2.2 MSVST with the Wavelet Transform

2.2.1 The Undecimated Wavelet Transform

The undecimated wavelet transform (UWT) uses an analysis filter bank (h, g) to decompose a signal a0 into
a coefficient set W = {w1, . . . , wJ , aJ}, where wj is the wavelet (detail) coefficients at scale j and aJ is the
approximation coefficients at the coarsest resolution J . The passage from one resolution to the next one is
obtained using the “à trous” algorithm20

aj+1[l] = (h̄↑(j) ⋆ aj)[l] =
∑

k

h[k]aj [l + 2jk],

wj+1[l] = (ḡ↑(j) ⋆ aj)[l] =
∑

k

g[k]aj [l + 2jk] .
(2)

where h↑(j)[l] = h[l] if l/2j ∈ Z and 0 otherwise, h̄[l] = h[−l] is the time-reversed version of h, and “⋆” denotes
discrete circular convolution. The reconstruction is given by

aj [l] =
1

2

(

(h̃↑(j) ⋆ aj+1)[l] + (g̃↑(j) ⋆ wj+1)[l]
)

.

The filter bank (h, g, h̃, g̃) needs to satisfy the so-called exact reconstruction condition21,22.

The so-called Isotropic UWT (IUWT)23 uses the filter bank (h, g = δ−h, h̃ = δ, g̃ = δ) where h is typically a

symmetric low-pass filter such as the B3-Spline filter. The reconstruction is trivial, i.e., a0 = aJ +
∑J

j=1 wj . This

algorithm is widely used in astronomical applications24 and biomedical imaging25 to detect isotropic objects.

2.2.2 MSVST with the UWT

Now the VST can be combined with the UWT to stabilize the wavelet coefficients of a standard separable UWT.
The VST is applied to the approximation coefficients (aj)j , leading to the following scheme:

UWT

{

aj = h̄↑(j−1) ⋆ aj−1

wj = ḡ↑(j−1) ⋆ aj−1
=⇒

MS-VST
+

UWT

{

aj = h̄↑(j−1) ⋆ aj−1

wj = ḡ↑(j−1) ⋆Aj−1(aj−1)
(3)



where

Aj(aj) = b(j)sign(aj + c(j))
√

|aj + c(j)|. (4)

Let us define τ
(j)
k =

∑

i

(

h(j)[i]
)k

. Then according to (1), the constants b(j) and c(j) associated to h(j) must be
set to

c(j) =
7τ

(j)
2

8τ
(j)
1

− τ
(j)
3

2τ
(j)
2

, b(j) = 2

√

√

√

√

|τ (j)
1 |
τ

(j)
2

. (5)

The constants b(j) and c(j) only depend on the filter h and the scale level j. They can all be pre-computed once
for any given h. Since these constants scale-dependent, so is the VST, hence the name MSVST.

In the case of the isotropic UWT (IUWT), given the structure of the filter bank, the stabilization procedure
is given by

IUWT

{

aj = h̄↑(j−1) ⋆ aj−1

wj = aj−1 − aj
=⇒

MSVST
+

IUWT

{

aj = h̄↑(j−1) ⋆ aj−1

wj = Aj−1(aj−1) −Aj(aj)
, (6)

where Aj−1 is defined similarly to Aj in (4).

2.2.3 Asymptotic Distribution of the Detail Coefficients

The following result shows the asymptotic normality of the MSVST detail coefficients under the null hypothesis
H0 that the underlying true intensity λ is locally homogeneous. The asymptotic normal distribution has an
intensity-independent variance which relies solely on the filter h and the current scale.

Theorem 2.1.

(i) MSVST+IUWT: let b(j) := sign(τ
(j)
1 )/

√

|τ (j)
1 |. If λ is constant within the support of the filter h(j)[k − ·],

then

wj [k]
D−→

λ→+∞
N
(

0,
τ

(j−1)
2

4τ
(j−1)
1

2 +
τ

(j)
2

4τ
(j)
1

2 − 〈h(j−1), h(j)〉
2τ

(j−1)
1 τ

(j)
1

)

, (7)

where 〈., .〉 represents the scalar product.

(ii) MSVST+UWT: let b(j) := 2

√

|τ (j)
1 |/τ (j)

2 , and h(j) = h̄↑(j−1) ⋆ · · · ⋆ h̄↑(1) ⋆ h̄ for j ≥ 1 and h(0) = δ. If λ is

constant within the support of the filter (ḡ↑(j−1) ⋆ h(j−1))[k − ·], then wj [k]
D−→

λ→+∞
N (0, σ2

j ), where

σ2
j =

1

τ
(j−1)
2

∑

m,n

ḡ↑(j−1)[m]ḡ↑(j−1)[n]
∑

k

h(j−1)[k]h(j−1)[k +m− n] (8)

Again, the above values of b(j), c(j), τ
(j)
k and σj can all be pre-computed once (h, g) has been chosen.

3. 2D-1D MSVST POISSON DENOISING

3.1 2D-1D Wavelet Transform

In the previous section, we have seen how a Poisson noise can be removed from 2D image using the wavelet
transform and the MSVST. Extension to a qD data sets is straightforward by separable tensor product, and the
denoising will perform very well as long as each object belonging to this q-dimensional space is roughly isotropic.
In the case of 3D data where the third dimension is either the time, wavelength or energy, we are clearly not in
this situation, and the naive analysis of a 3D wavelet does not make sense. Therefore, we want to analyze the



data with a wavelet transform, where the scale along the non-spatial dimension is not connected to the spatial
scale. Hence, an ideal wavelet function would be defined by:

ψ(x, y, z) = ψ(xy) (x, y)ψ(z)(z) , (9)

where ψ(xy) is the spatial wavelet and ψ(z) is the wavelet along the non-spatial dimension.

In the following, for the sake of clarity and without loss of generality, we will consider only the IUWT filter
bank in the spatial domain. We note j1 the spatial resolution index (i.e. scale = 2j1), j2 resolution index along
the non-spatial dimension. In order to have a fast algorithm for discrete data, we use wavelet functions associated
to filter banks. Hence, our wavelet decomposition consists in applying first a 2D IUWT for each frame kz, and
then, for each spatial location (kx, ky) and for each 2D wavelet scale scale j1, to apply a 1D wavelet transform
along z on the spatial wavelet coefficients.

Therefore, given the properties of the IUWT filter bank, the 2D-1D IUWT of the input data S is such that

S[kx, ky, kz] = aJ1,J2
[kx, ky, kz] +

J1
∑

j1=1

wj1,J2
[kx, ky, kz] +

J2
∑

j2=1

wJ1,j2 [kx, ky, kz] +

J1
∑

j1=1

J2
∑

j2=1

wj1,j2 [kx, ky, kz] .

(10)

In this expression, we distinguish four kinds of coefficients:

• Detail-Detail coefficients (j1 ≤ J1 and j2 ≤ J2):

wj1,j2 [kx, ky, kz] = (δ − h̄) ⋆
(

h(j2−1) ⋆ aj1−1[kx, ky, .] − h(j2−1) ⋆ aj1 [kx, ky, .]
)

, (11)

where h is the low-pass defining the IUWT filter bank.

• Approximation-Detail coefficients (j1 = J1 and j2 ≤ J2):

wJ1,j2 [kx, ky, kz] = h(j2−1) ⋆ aJ1
[kx, ky, .] − h(j2) ⋆ aJ1

[kx, ky, .] . (12)

• Detail-Approximation coefficients (j1 ≤ J1 and j2 = J2):

wj1,J2
[kx, ky, kz] = h(J2) ⋆ aj1−1[kx, ky, .] − h(J2) ⋆ aj1 [kx, ky, .] . (13)

• Approximation-Approximation coefficients (j1 = J1 and j2 = J2):

aJ1,J2
[kx, ky, kz] = h(J2) ⋆ aJ1

[kx, ky, .] . (14)

3.2 2D-1D MSVST

Putting all pieces together, we are now ready to plug the MSVST into the 2D-1D IUWT. The idea again is to
first stabilize the (low-pass) approximation subbands, and then compute the stabilized detail coefficients. As in
section 3.1, we distinguish the previous four types of coefficients for which the 2D-1D MSVST takes the following
forms:

• Detail-Detail coefficients (j1 ≤ J1 and j2 ≤ J2):

wj1,j2 [kx, ky, kz] = (δ − h̄) ⋆

(

Aj1−1,j2−1

[

h(j2−1) ⋆ aj1−1[kx, ky, .]

]

−Aj1,j2−1

[

h(j2−1) ⋆ aj1 [kx, ky, .]
]

)

.

(15)

• Approximation-Detail coefficients (j1 = J1 and j2 ≤ J2):

wJ1,j2 [kx, ky, kz] = AJ1,j2−1

[

h(j2−1) ⋆ aJ1
[kx, ky, .]

]

−AJ1,j2

[

h(j2) ⋆ aJ1
[kx, ky, .]

]

. (16)



• Detail-Approximation coefficients (j1 ≤ J1 and j2 = J2):

wj1,J2
[kx, ky, kz] = Aj1−1,J2

[

h(J2) ⋆ aj1−1[kx, ky, .]
]

−Aj1,J2

[

h(J2) ⋆ aj1 [kx, ky, .]
]

. (17)

• Approximation-Approximation coefficients (j1 = J1 and j2 = J2):

cJ1,J2
[kx, ky, kz] = h(J2) ⋆ aJ1

[kx, ky, .] . (18)

Now, all 2D-1D wavelet coefficients wj1,j2 are stabilized. In the same vein as in Theorem 2.1, it can be shown
that under the null hypothesis that the 2D-1D intensity Λ is locally homogeneous within the support of the
2D-1D wavelet at scales (j1, j2), the noise on the stabilized coefficients is Gaussian with known scale-dependent
variance that depends solely on h. Thus one can detect significant detail coefficients by binary hypothesis testing
or hard thresholding at a given critical threshold. The appeal of a binary hypothesis testing approach is that it
allows quantitative control of statistical significance.

3.3 Iterative Reconstruction

Following the detection step, we have to invert the MSVST scheme to reconstruct an estimate of the underlying
intensity Λ. This is however not straightforward because there is no explicit reconstruction formula available.
The formal reason is that the stabilizing operators Aj1,j2 and the convolution operators along (x, y) and z do not
commute, even though the filter bank satisfies the exact reconstruction formula. To circumvent this difficulty, we
propose to reformulate the reconstruction as a sparsity-promoting convex optimization problem. In the sequel,
as the noise on the stabilized coefficients is Gaussian, we assume without loss of generality that it is standardized
to a unit variance.

We define the multiresolution support Mj1,j2 which is determined by the set of detected significant coefficients
at each scale j1 ≤ J and j2 ≤ J2 and location (kx, ky, kz), i.e.,

Mj1,j2 [kx, ky, kz] =

{

1 if wj1,j2 [kx, ky, kz] is significant,

0 otherwise.
(19)

We denote W the 2D-1D undecimated wavelet transform described above, R the inverse transform and S
the observed Poisson noisy data set. We are seeking an estimate that preserves the significant structures in the
original data by reproducing exactly the same coefficients as the wavelet coefficients of the input data S, but
only at scales and positions where significant signal has been detected. At other scales and positions, we want
the smoothest solution with the lowest budget in terms of wavelet coefficients. Furthermore, as Poisson intensity
functions are positive by nature, a positivity constraint is imposed on the estimated intensity data Λ. Therefore
our reconstruction is formulated as a constrained sparsity-promoting minimization problem over the transform
coefficients w

min
w

‖w‖1 subject to

{

Mw = MWS

and Rw ≥ 0
, (20)

and the intensity estimate Λ̂ is reconstructed as Λ̂ = Rŵ, where ŵ is a minimizer of (20). Note that the set of
minimizers is not empty by coercivity. Moreover, this problem is a convex optimization problem which can be
cast as a Linear Program (LP) and solved using interior-point methods. However, the computational complexity
of the LP solver increases dramatically with the size of the problem. Here we propose an alternative based on the
hybrid steepest descent (HSD).26 The HSD approach allows minimizing convex functionals over the intersection
of fixed point sets of nonexpansive mappings. It is much faster than LP, and in our problem, the nonexpansive
mappings do have closed forms. Transposed into our context, its main steps can be summarized as follows:



Inputs: noisy data S; a low-pass filter h; multiresolution support M from the detection step; number of
iterations Nmax.
Initialization: w(0) = MWS = MwS ,
for t = 1 to Nmax do

1. w̃j1,j2 = Mj1,j2wSj1,j2
+ (1 −Mj1,j2)w

(t−1)
j1,j2

, ∀j1, j2.

2. w(t) = WP+ (R STβt
[w̃]),

3. Update the step βt = (Nmax − t)/(Nmax − 1).

Output: Λ̂ = Rw(Nmax).

P+ is the projector onto the positive orthant, i.e. P+(x) = max(x, 0). STβt
is the soft-thresholding operator

with threshold βt. A careful convergence analysis of this algorithm is given in.1

In summary, 2D-1D wavelet Poisson denoising with the MSVST involves the following three main steps:

1. Transformation : Compute the 2D-1D-MSVST using (15)-(18).

2. Detection : Detect significant detail coefficients by hypothesis testing. Here, we take benefit from the
asymptotic Gaussianity of the noise in the stabilized data. We can then detect the significant coefficients
by classical binary hypothesis testing (corrected or not for multiple testing and dependencies).

3. Reconstruction : Reconstruct the denoised data using the knowledge of the detected coefficients in the
algorithm above.

4. EXPERIMENTAL RESULTS

4.1 MSVST-2D-1D versus MSVST-2D

Figure 2. Image obtained by summing along the z-axis of the noisy data set.

We have simulated a 2D-1D data set containing seven columns and five rows of 2D Gaussian-shaped sources.
Each source has a different power-law spectrum (i.e. the z-axis is energy). The data set size is 161 × 161 × 31,
with an average of 0.032 photons per pixel. As the number of photon counts is very low, for visual convenience,
we show in Fig. 2 the 2D image obtained after summing the noisy data set along the z-axis. Fig. 3 shows a
comparison between 2D-MSVST denoising of this image, and the image obtained by first applying a 2D-1D-
MSVST denoising to the input data, and summing afterward the denoised frames along the z-axis. Fig. 3(a)-(b)



show denoising results for the 2D-MSVST with respectively critical threshold values τ = 3 and τ = 5, and
Fig. 3(c)-(d) depict the results for the 2D-1D-MSVST using respectively τ = 4 and τ = 6 critical thresholds∗.
The reason for using a higher threshold level for the 2D-1D data is to correct for multiple hypothesis testings,
and to get the same control over global statistical error rates. Roughly speaking, the number of false detections
increases with the number of coefficients being tested simultaneously. Therefore, one must correct for multiple
comparisons using e.g. the conservative Bonferroni correction or the false discovery rate (FDR) procedure.27 As
the number of coefficients is much higher with the whole 2D-1D data set, the critical detection threshold τ of
2D-1D denoising must be higher to have a false detection rate comparable to the 2D denoising. As we can clearly
see from Fig. 3, the results are very close. This means that applying a 2D-1D denoising on the whole data set
instead of a 2D denoising on the integrated image preserves the sensitivity of the MSVST. The chief advantage
of the 2D-1D-MSVST is the fact that we recover the energy information for each spatial position.

Fig. 4(a)-(b) display respectively a frame of the input noisy data set and the same frame after the 2D-1D-
MSVST denoising. Fig. 5 displays the obtained spectra at the centers of two distinct sources. This result is
rather impressive given that most of the counts in the 2D-1D data set are at most 1-2 photons (shown in white
in 4(a)).

(a) (b)

(c) (d)
Figure 3. (a)-(b): 2D-MSVST filtering on the integrated image with critical thresholds of respectively τ = 3 and τ = 5 .
(c)-(d): image of frames summed along z-axis after a 2D-1D-MSVST denoising of the noisy data set, with respectively
τ = 4 and τ = 6.



(a) (b)
Figure 4. (a): a frame from the noisy data set and (b): the same frame after the 2D-1D-MSVST denoising at threshold
τ = 6.

Figure 5. Pixel spectra at two different spatial locations after the 2D-1D-MSVST filtering.

4.2 Application to astronomical data

We applied our method to realistic simulated observations with the Large Area Telescope (LAT). The LAT was
launched in June 2008 by NASA on the Fermi Gamma-ray Space Telescope mission. In this experiment, we
generated a simulated 720 × 360 × 128 data set using the Galprop code that has a model of the diffuse gamma-
ray emission of the Milky Way. 128 energy planes are logarithmically spaced from 30 MeV to 50 GeV. A six
months LAT data set was created by multiplying the simulated data set with the exposure (6 months), and by
convolving each energy band with the point spread function of the LAT instrument. Finally we have created the
noisy observations assuming a Poisson noise distribution. Fig. 6 shows from top to bottom the original simulated
data, the noisy data and the denoised data for energy band 171-181 Mev.

5. CONCLUSION

In this paper, we propose a multivalued extension of MSVST associated with an appropriate 2D-1D wavelet
transform, which proved very efficient to denoise Poisson count data. The proposed algorithm is performs as
well as the 2D-MSVST applied to summed frames. But unlike 2D denoising, 2D-1D extension fully exploits the
information in the whole data set and recovers the information along the z-axis which is of paramount importance
in many science fields such as hyperspectral imaging.

∗Recall that the Gaussian noise after the 2D-1D-MSVST is assumed have a unit variance.



Figure 6. Top to bottom: simulated data of the diffuse gamma-ray emission of the Milky Way in energy band 171-181
Mev, noisy simulated data and denoised data using the 2D-1D-MSVST.
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