The ubiquity of integrating detectors in imaging and other applications
implies that a variety of real-world data are well modeled as Poisson random
variables whose means are in turn proportional to an underlying vector-valued
signal of interest. In this article, we first show how the so-called Skellam
distribution arises from the fact that Haar wavelet and filterbank transform
coefficients corresponding to measurements of this type are distributed as sums
and differences of Poisson counts. We then provide two main theorems on Skellam
shrinkage, one showing the near-optimality of shrinkage in the Bayesian setting
and the other providing for unbiased risk estimation in a frequentist context.
These results serve to yield new estimators in the Haar transform domain,
including an unbiased risk estimate for shrinkage of Haar-Fisz
variance-stabilized data, along with accompanying low-complexity algorithms for
inference. We conclude with a simulation study demonstrating the efficacy of
our Skellam shrinkage estimators both for the standard univariate wavelet test
functions as well as a variety of test images taken from the image processing
literature, confirming that they offer substantial performance improvements
over existing alternatives.Comment: 27 pages, 8 figures, slight formatting changes; submitted for
publicatio