6,799 research outputs found

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    Challenges in Annotation of useR Data for UbiquitOUs Systems: Results from the 1st ARDUOUS Workshop

    Full text link
    Labelling user data is a central part of the design and evaluation of pervasive systems that aim to support the user through situation-aware reasoning. It is essential both in designing and training the system to recognise and reason about the situation, either through the definition of a suitable situation model in knowledge-driven applications, or through the preparation of training data for learning tasks in data-driven models. Hence, the quality of annotations can have a significant impact on the performance of the derived systems. Labelling is also vital for validating and quantifying the performance of applications. In particular, comparative evaluations require the production of benchmark datasets based on high-quality and consistent annotations. With pervasive systems relying increasingly on large datasets for designing and testing models of users' activities, the process of data labelling is becoming a major concern for the community. In this work we present a qualitative and quantitative analysis of the challenges associated with annotation of user data and possible strategies towards addressing these challenges. The analysis was based on the data gathered during the 1st International Workshop on Annotation of useR Data for UbiquitOUs Systems (ARDUOUS) and consisted of brainstorming as well as annotation and questionnaire data gathered during the talks, poster session, live annotation session, and discussion session

    Employing Environmental Data and Machine Learning to Improve Mobile Health Receptivity

    Get PDF
    Behavioral intervention strategies can be enhanced by recognizing human activities using eHealth technologies. As we find after a thorough literature review, activity spotting and added insights may be used to detect daily routines inferring receptivity for mobile notifications similar to just-in-time support. Towards this end, this work develops a model, using machine learning, to analyze the motivation of digital mental health users that answer self-assessment questions in their everyday lives through an intelligent mobile application. A uniform and extensible sequence prediction model combining environmental data with everyday activities has been created and validated for proof of concept through an experiment. We find that the reported receptivity is not sequentially predictable on its own, the mean error and standard deviation are only slightly below by-chance comparison. Nevertheless, predicting the upcoming activity shows to cover about 39% of the day (up to 58% in the best case) and can be linked to user individual intervention preferences to indirectly find an opportune moment of receptivity. Therefore, we introduce an application comprising the influences of sensor data on activities and intervention thresholds, as well as allowing for preferred events on a weekly basis. As a result of combining those multiple approaches, promising avenues for innovative behavioral assessments are possible. Identifying and segmenting the appropriate set of activities is key. Consequently, deliberate and thoughtful design lays the foundation for further development within research projects by extending the activity weighting process or introducing a model reinforcement.BMBF, 13GW0157A, Verbundprojekt: Self-administered Psycho-TherApy-SystemS (SELFPASS) - Teilvorhaben: Data Analytics and Prescription for SELFPASSTU Berlin, Open-Access-Mittel - 201

    A Comparative Study of the Effect of Sensor Noise on Activity Recognition Models

    Get PDF
    To provide a better understanding of the relative strengths of Machine Learning based Activity Recognition methods, in this paper we present a comparative analysis of the robustness of three popular methods with respect to sensor noise. Specifically we evaluate the robustness of Naive Bayes classifier, Support Vector Machine, and Random Forest based activity recognition models in three cases which span sensor errors from dead to poorly calibrated sensors. Test data is partially synthesized from a recently annotated activity recognition corpus which includes both interleaved activities and a range of both temporally long and short activities. Results demonstrate that the relative performance of Support Vector Machine classifiers over Naive Bayes classifiers reduces in noisy sensor conditions, but that overall the Random Forest classifier provides best activity recognition accuracy across all noise conditions synthesized in the corpus. Moreover, we find that activity recognition is equally robust across classification techniques with the relative performance of all models holding up under almost all sensor noise conditions considered

    Can smartwatches replace smartphones for posture tracking?

    Get PDF
    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed

    Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors

    Get PDF
    Infants' spontaneous and voluntary movements mirror developmental integrity of brain networks since they require coordinated activation of multiple sites in the central nervous system. Accordingly, early detection of infants with atypical motor development holds promise for recognizing those infants who are at risk for a wide range of neurodevelopmental disorders (e.g., cerebral palsy, autism spectrum disorders). Previously, novel wearable technology has shown promise for offering efficient, scalable and automated methods for movement assessment in adults. Here, we describe the development of an infant wearable, a multi-sensor smart jumpsuit that allows mobile accelerometer and gyroscope data collection during movements. Using this suit, we first recorded play sessions of 22 typically developing infants of approximately 7 months of age. These data were manually annotated for infant posture and movement based on video recordings of the sessions, and using a novel annotation scheme specifically designed to assess the overall movement pattern of infants in the given age group. A machine learning algorithm, based on deep convolutional neural networks (CNNs) was then trained for automatic detection of posture and movement classes using the data and annotations. Our experiments show that the setup can be used for quantitative tracking of infant movement activities with a human equivalent accuracy, i.e., it meets the human inter-rater agreement levels in infant posture and movement classification. We also quantify the ambiguity of human observers in analyzing infant movements, and propose a method for utilizing this uncertainty for performance improvements in training of the automated classifier. Comparison of different sensor configurations also shows that four-limb recording leads to the best performance in posture and movement classification.Peer reviewe

    Accuracy and Timeliness in ML Based Activity Recognition

    Get PDF
    While recent Machine Learning (ML) based techniques for activity recognition show great promise, there remain a number of questions with respect to the relative merits of these techniques. To provide a better understanding of the relative strengths of contemporary Activity Recognition methods, in this paper we present a comparative analysis of Hidden Markov Model, Bayesian, and Support Vector Machine based human activity recognition models. The study builds on both pre-existing and newly annotated data which includes interleaved activities. Results demonstrate that while Support Vector Machine based techniques perform well for all data sets considered, simple representations of sensor histories regularly outperform more complex count based models
    corecore