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Accuracy and Timeliness in ML Based Activity Recognition

Robert J. Ross and John Kelleher
Applied Intelligence Research Group

Dublin Institute of Technology
Ireland

Abstract
While recent Machine Learning (ML) based techniques for
activity recognition show great promise, there remain a num-
ber of questions with respect to the relative merits of these
techniques. To provide a better understanding of the rela-
tive strengths of contemporary Activity Recognition meth-
ods, in this paper we present a comparative analysis of Hid-
den Markov Model, Bayesian, and Support Vector Machine
based human activity recognition models. The study builds
on both pre-existing and newly annotated data which includes
interleaved activities. Results demonstrate that while Sup-
port Vector Machine based techniques perform well for all
data sets considered, simple representations of sensor histo-
ries regularly outperform more complex count based models.

Introduction
Although there has been a clear movement from determin-
istic to probabilistic activity recognition methods in the last
10 years, there remains a lack of consensus on the most ap-
propriate techniques for achieving robust activity recogni-
tion across multiple data sets. Naturally the choice of a suit-
able activity recognition method is primarily centred on the
accuracy of activity identification. However, we argue that
raw prediction accuracy on isolated datasets is not the only
measure of appropriateness which should be employed. For
example, in the ambient assistive living domain, the ability
to identify missing actions or incomplete activities is essen-
tial. Similarly, in order to provide users with assistance in
a timely fashion, the activity recognition method must pro-
vide an accurate activity description as early as possible in
the execution of the activity. We view this issue of timeliness
as key to online and real-time plan recognition methods. In
the case of plan recognition in real situated environments,
we also assume that plan recognition methods must be ro-
bust both to noise in data and to the partial loss of data.

Given the above difficulties and considerations, in this pa-
per we present a study of the utility of three well regarded
activity recognition techniques. We evaluate utility not only
in terms of raw accuracy results, but also in terms of the
robustness of the techniques to loss of data, and the timeli-
ness of accurate classification responses. The activity recog-
nition techniques which we consider are those based on
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Hidden Markov Models (Rabiner 1989), Naive Bayes Clas-
sifiers (Rish 2001), and Support Vector Machines (Burges
1998). We will begin the main body of this paper with a
brief overview of related work in the area of Human Ac-
tivity Recognition with a particular focus on those efforts
which have considered the techniques just mentioned. We
then introduce and detail the testbeds that we have made
use of in this study. In addition to describing the testbeds
in terms of the raw data, we also detail all essential data
pre-processing steps and the representation choices which
we adopted. Following this, we present the results of our
analysis in detail. Finally we draw conclusions and outline
proposed future work.

Related Work
Unlike purely logical and inferential approaches to plan
recognition, likelihood based Activity Recognition deter-
mines to what extent evidence supports competing plan hy-
potheses. Of likelihood based methods, we see those based
on Hidden Markov Models, Bayesian techniques, and Sup-
port Vector Machines as best placed to provide robust and
timely plan recognition.

The Hidden Markov Model (see Rabiner for a useful tu-
torial introduction) is a modeling technique which can be
used to capture processes that cannot be observed directly.
This feature, most famously leveraged for identifying un-
derlying models in the case of noisy channels, corresponds
well to the problem of activity recognition in real world
environments. Specifically, in the case of activity recogni-
tion individual actions may be observable but it is not al-
ways possible to know the activity being pursued by the
user – or even the procedural structure of a plan as under-
stood by a user. For this reason a number of researchers
have investigated the use of Hidden Markov Models and
their variants in the plan recognition task. Bui for exam-
ple has applied a variant on Hidden Markov Modelling to
recognize behaviour in noisy domains and across multi-
ple levels of abstraction (Bui, Venkatesh, and West 2002;
Bui 2003).

Also in the activity recognition domain, in a range of
papers Singla et al. investigated the use of both Hid-
den Markov Models and the more straightforward Markov
Model for Activity Recognition. With respect to the use
of Hidden Markov Models, Singla, Cook, and Schmitter-



Edgecombe(2009) analysed a dataset of users performing
an extended number of Activities of Daily Living (ADL)
where users were free to interleave activities. Whereas in
previous work with Markov Models Singla et al. trained one
model per ADL, in this work on HMMs, a single Hidden
Markov Model was instead trained for all activities to be
performed. The authors argument for this change was that
this allows for the modelling of potential sequences of ac-
tivities without worrying about the particular sequences of
events which together compose individual activities. While
the authors openly state that they have no interest in the se-
quential nature of the activities, we see this as a sacrifice of
information that may not be necessary.

In addition to Hidden Markov Models, classifier based
techniques may also be used for activity recognition. Of the
classifier based techniques, those based on Bayes Theorem
have arguably been the most extensively applied to activity
recognition in the last ten years. While some early applica-
tion of Bayes theory to activity and plan recognition looked
at the use of Bayesian Networks (See e.g., Charniak and
Goldman(1993) and Pynadath and Wellman(1995)), more
recent work has focused on the use of the naive Bayes clas-
sifier which is a Bayesian inference model that has a strong
independence assumption. In addition to applying Markov
based methods to the CASAS smart home datasets, Singla,
Cook, and Schmitter-Edgecombe (2009) have also for ex-
ample made use of a naive bayes classifier to identify activ-
ities in the case of interleaved data. Singla’s approach to us-
ing the Naive Based classifier centres on using each sensor
event as a feature type, and learning the probability distri-
butions over features for each event type. Using this simple
approach, Singla reports relatively poor accuracy results of
approximately 66% for the interleaved data set considered.
Such a result is in contrast with the usually well accepted
performance for Naive Bayes

An increasingly popular classification technique is the
Support Vector Machine (Das and Cook. 2011). Essentially
Support Vector Machines build on the observation that the
essential job for any classifier is to create suitable decision
boundaries between different classes based on observed in-
stances. In a brief comparison of SVM methods to neural
network and boosting methods, Chen, Das, and Cook(2010)
applied Support Vector Machines to the human activity
recognition problem. In this work a large number of features
are used to identify the activity currently being performed.
The primary focus of this work was on the benefits of boost-
ing methods and on the the description of the features em-
ployed. As such limited detail was given on the relative per-
formance of the methods considered, or of any indication
of their relative performance with respect to Bayesian or
Markov based techniques. Nevertheless this work and follow
up work such as the more recent related study by Krishnan
and Cook(2012) highlights the utility of applying machine
learning methods other than bayesian techniques to the ac-
tivity recognition problem,

It is clear from the literature that each of Bayesian,
Markov based, and SVM based activity recognition methods
have shown considerable promise for human activity recog-
nition in the case of non-trivial data. Yet it could be argued

that no single method has emerged as the definitive method
of choice for activity recognition. Moreover while there are
many studies which have investigated raw accuracy perfor-
mance, we argue that there is a dearth of investigation of
other key performance metrics such as the performance ro-
bustness in the case of missing data and the timeliness of
prediction. We argue that performance metrics such as these
are essential in the case of real time activity recognition in
real environments.

Testbeds
Given the relative importance of these methods, we in-
vestigated the relative performance of HMM based, Naive
Bayes based, and SVM based methods in activity recogni-
tion. Specifically in the following we outline a study to eval-
uate the relative utility of these methods with respect to ac-
curacy, robustness to missing data, and timeliness. For this
work we made use of three human activity-centric testbeds.
In the following we give background on these testbeds and
describe the representations which we adopted for each of
the Activity Recognition methods that were investigated.

The SCARE Testbed
The SCARE multimodal corpus of situated dialogues is a
collection of annotated videos and audio recordings of par-
ticipant pairs performing joint tasks in a simulated 3D en-
vironment (Stoia et al. 2006). In total 15 session recordings
are included in the corpus. For each of these sessions, two
participants were recorded while performing 5 distinct activ-
ities. Each activity in turn involved moving an item from one
location to another in a virtual environment. One of the two
session participants, the Instruction Giver was provided with
a schematic map of the environment and was informed of the
five activities that were to be performed. Specifically, the In-
struction Giver was aware of: (a) which objects were to be
moved; (b) where these objects were to be moved from; and
(c) where these objects were to be moved to. The Instruc-
tion Follower meanwhile could maneuver around in the vir-
tual environment and manipulate that environment by mov-
ing objects, opening and closing containers, as well as pick-
ing up and placing down items. In the real environment, the
Instruction Giver and Instruction Follower were placed in
separate rooms and verbally communicated via headsets to
jointly complete all five tasks.

The SCARE corpus was selected as a testbed for a number
of reasons. First, instruction givers and instruction followers
were not constrained in terms of the sequence in which ac-
tivities were to be performed, and whether or not these ac-
tivities could be performed in parallel. Thus there was wide
variation in terms of the interleaving of activity completion
in this tesbed. Second, the activities seen in the data are
also varied in length with both very long and short activi-
ties present. Third, the SCARE dataset came pre-annotated
with respect to a number of features which will be beneficial
to our long term studies, i.e.., the SCARE corpus is provided
with time-aligned speech recognition transcriptions and ref-
erence information.

Although the SCARE corpus includes a number of useful



Figure 1: Annotation of the SCARE corpus with activity in-
formation in the ANVIL tool.

annotations such as time aligned speech transcriptions, Ac-
tivity Recognition requires further annotation of the data. We
therefore developed and applied an annotation scheme for
activity recognition with the SCARE corpus. The annotation
scheme included three distinct layers which labeled the data
with respect to: (a) location of the instruction follower; (b)
actions being performed by the instruction follower; and (c)
activities or goals currently being pursued. Specifically, the
location layer denoted which of 19 possible area of the envi-
ronment that the Instruction Follower was currently located
in. The action layer on the other hand denoted what phys-
ical manipulation actions – if any – were currently being
performed by the Instruction Follower. In total there were
six action types where these types could in turn be param-
eterised. Examples of action types include Pickup(Silencer)
and Open-Cabinet(C1) where Silencer was an object in the
environment and C1 was a named container in that environ-
ment. The activity layer was a more course grained annota-
tion layer that denoted what activities were currently being
pursued by the participant pairing. In total 5 activities were
pursued by each dyad, and these activities were frequently
interleaved by participants. Thus the annotation scheme was
defined to mark only the start and end of each activity; thus
allowing for activities to be concurrently active.

The annotation scheme was applied to each of the 15
SCARE session recordings. For annotation we made use of
the ANVIL multimodal annotation tool (Kipp 2001). For il-
lustration, Figure 1 shows the in-world view as seen by the
instruction follower and the instruction giver; and an excerpt
of our extended activity-oriented SCARE annotation as con-
ducted with the ANVIL tool.

The Washington State University Testbeds
The second and third testbeds that we consider have been
sourced from the collection of daily living activity corpora
that were collected and annotated by the CASAS Smart
Home Project at Washington State University (Cook and

2008-02-27 12:52:44.712481 M17 ON
2008-02-27 12:52:46.943816 M17 OFF
2008-02-27 12:52:48.29525 M17 ON
2008-02-27 12:52:52.22381 M17 OFF
2008-02-27 12:53:03.940956 M17 ON
2008-02-27 12:53:04.74972 D01 OPEN
2008-02-27 12:53:07.523938 D01 CLOSE
2008-02-27 12:53:19.6455 AD1-A 3.28802
2008-02-27 12:53:26.812782 M17 OFF
2008-02-27 12:53:27.142702 M16 ON
2008-02-27 12:53:34.467035 M16 OFF

Figure 2: Sensor log extract from the Kyoto-ADL Data Set.

Schmitter-Edgecombe 2009; Singla, Cook, and Schmitter-
Edgecombe 2009). The corpora collection provides a wide
range of data sets which record activities performed by par-
ticipants in smart home and smart apartment settings. Over
20 individual corpora are provided, and these vary in terms
of whether the data was recorded for single versus multi-
ple participants; interleaved versus non-interleaved activi-
ties; and whether the data was recorded in an apartment,
workplace or real home setting.

For our current studies we used the Kyoto ADL (Activi-
ties of Daily Living) and Kyoto Interleaved ADL data sets1.
Kyoto-ADL is a labelled dataset which captures the perfor-
mance of 5 distinct activities by 24 individuals. Each indi-
vidual performed each of the 5 activities in sequence and
without allowing the activities to overlap. For each activ-
ity performance, the dataset records a sequence of time-
stamped events. The timestamps for these events is the ab-
solute date and time at which the event was recorded. The
events themselves may be of two different types. Location
events record the likely position of the participant as indi-
cated by a set of motion sensors. Activation events on the
other hand record when the participant has triggered one of
a range of embedded environmental sensors that record the
opening and closing of kitchen cabinet doors and so forth.
To illustrate, Figure 2 provides a sensor log extract from the
Kyoto ADL Data Set. Note that each sensor event is gen-
erally associated with a parameter. Motion detection sensor
events (labelled M17, M16 in the excerpt) can be either ON
or OFF. Other sensor events can have either categorial pa-
rameters, e.g., such as the sensor events associated with the
Door D01, or can be real valued as is the case with sensor
AD1-A.

The Kyoto-ADL corpus is useful as a baseline testbed,
but is limited by a small number of performed activities
and non-interleaving of activity execution. In light of this
we also made use of the Kyoto-Interleaved dataset. As with
Kyoto-ADL, the Kyoto-Interleaved dataset is a collection of
recordings of individuals as they perform a range of activi-
ties of daily living in an apartment setting. However in this
case the recorded data is more complex in that each partic-
ipant performs 8 rather than 5 activities, and crucially, par-

1From this point on we will refer to these testbeds simply as
Kyoto-ADL and Kyoto-Interleaved respectively.



ticipants first perform all activities sequentially, but then are
asked to perform the activities again in any order or inter-
leaved manner they see fit. Otherwise the datasets are oth-
erwise similar to those recorded for Kyoto-ADL, with each
activity recorded as a sequence of sensor events that are both
time stamped and may be parametrized with categorial or
real values. While data for 20 individuals are published for
the Kyoto-Interleaved corpus, two of these are partial with
recordings of certain activities absent. We therefore omitted
the data for these two individuals from subsequent analysis.

Data Preparation
HMMs operate over a sequence of observations which in our
case are low-level actions or events. For the Kyoto-ADL and
Kyoto-Interleaved datasets this sequence of events was de-
rived straightforwardly from the raw data sequences. Specif-
ically each event corresponded to a sensor type and the pa-
rameter which was applied to it. Thus the sensor event for
the first line in Figure 2 was simply M17 ON. In the case of
real valued parameters we truncated parameter information
to a single ACTIVE class. While we acknowledge that this
leads to a loss of information, we believe that at least in the
case of the datasets under consideration that this is an ac-
ceptable simplification. Thus, in the case of the eighth event
in Figure 2, the sensor event was simply AD1-A ACTIVE.

In the case of the SCARE dataset the construction of event
sequences for HMMs was also straightforward. For each ac-
tivity an event stream was algorithmically constructed from
raw annotated data. The event stream consisted of either
place events which were triggered by a new place annota-
tion in the Location annotation layer, or action events which
were triggered by annotations in the Action layer.

For classification with either SVM or Naive Bayes tech-
niques we require a suitable set of features for analysis. We
adopted a similar modelling approach for both the SCARE
and Kyoto datasets where a baseline set of almost history-
less features were augmented with a suitable representation
of event history. Namely as the base set of features for the
SCARE dataset the following six features were used:

• Step - The number of observations since the beginning of
this task.

• Time - The amount of time that has passed since the be-
ginning of this task.

• Place - The current location of the instruction follower in
the virtual environment.

• Activity - The current activity being performed by the in-
struction follower. Possibly none or null if no action is
being performed.

• LastPlace - The last location of the instruction follower.

• LastActivity - The last action performed by the instruc-
tion follower - possibly none if no action has yet been
performed by the instruction follower for this activity.

For the Kyoto-ADL and Kyoto-Interleaved datasets a sim-
ilar baseline set of features was used to characterize each
recorded event. However in the case of the Kyoto datasets
both place and activity were conflated into a single stream

in the raw data, i.e., the four base features for the Kyoto
datasets were:

• Step - The number of observations since the beginning of
this task.

• Time - The amount of time that has passed since the be-
ginning of this task.

• Event - The latest location or activity event that has been
observed.

• LastEvent - The last location or activity event that has
been observed.

Although the baseline features capture a minimal history
by including the LastEvent or LastPlace and LastActivity
features, a more complex model which includes histories for
individual features is essential for modelling medium and
long range dependencies between events. For such a model
we model one feature per sensor and have that feature cap-
ture the activation history for that sensor. While this method
and its motivation are straightforward, some variability is
possible in terms of how we choose to capture sensor history
in each feature. In this analysis we apply and test two differ-
ent modelling approaches. For the first model, we adopted
an approach where independent binary features were cre-
ated for each possible level associated with the original lo-
cation and action/event features. These binary features cap-
tured whether or not that particular event had been observed
in the data stream during a rolling history of n observations.
As outlined later in the results section, we tested for values
of n ranging from 0 (where a feature was only active if the
event type had occurred during the current observation) to
values such as 150 (where a feature was active if the event
type had been seen in any of the previous 150 observations).

For the second set of models, a similar rolling window
method was adopted. However, in this case the binary fea-
tures were replaced with simple counts of how many times
the particular event type had been seen in the past n ob-
servations. In practice the former set of models (based on
binary features) were derived from the latter set of models
by replacing all values greater than 0 with TRUE, and re-
placing all 0 values with FALSE. Both binary feature based
(Model-B) and count feature (Model-C) based models were
developed for each of the Scare, Kyoto-ADL and Kyoto-
Interleaved datasets.

Results
Following pre-processing of the data, we applied Support
Vector Machine and Naive Bayes classifiers to both binary
and count based models for the SCARE and Kyoto datasets.
Similarly we applied Hidden Markov Model based tech-
niques to the raw data for all three datasets. In the follow-
ing we present the results of that analysis with respect to our
key metrics of accuracy, timeliness, and robustness to miss-
ing data.

Accuracy
To perform activity recognition with Hidden Markov Mod-
els there is flexibility in terms of how we choose to model
the domain. For the analysis presented here we adopted a



Figure 3: Illustration of the a 4-state HMM model for the SCARE activity Goal-Move-Silencer.

modelling approach where one HMM was trained per ac-
tivity. Thus, events were observables in this modelling ap-
proach, and one latent variable was assumed per activity,
where states of this variable corresponded to latent states
of the given activity. This modelling approach is in con-
trast with the approach previously adopted by Singla, Cook,
and Schmitter-Edgecombe(2009) where a single HMM was
trained such that internal states of that single HMM mod-
elled specific activities. To illustrate our modelling ap-
proach, Figure 3 presents an illustration of a 4-state HMM
for the SCARE dataset activity Goal-Move-Silencer. While
our modelling approach makes no claims about the specific
internal states of a given activity HMM, we believe that our
approach is a more natural approach to modelling activities
with HMMs since we are taking advantage of the natural
partial ordering of events in a given activity. Moreover, un-
like in Singla’s approach we need not assume any particular
orderings between the pursuit of individual activities of daily
living.

Since HMMs must be parameterized with a specific num-
ber of internal states, we trained HMMs with a variety of
numbers of internal states for each of the three datasets.
HMMs with 4 internal states were found to be optimal for
our purposes, and we thus present performance measures
with respect to these 4 state models. To avoid overfitting to
the dataset we applied a k-fold training and testing strategy
over each dataset. Namely, for each observation sequence to
be tested with, a new HMM was built using a training data
set which consisted of the complete dataset minus the target
data sequence. Moreover since HMM instantiation is par-
tially dependent on an initial probabilistic distribution, we
also ran each epoch of testing 10 times, and took average
accuracy values for each of the 10 iterations.

Given a set of HMMs trained for each activity in the
dataset, we determine the most likely activity for a given
event observation by applying the forward algorithm to each
HMM and selecting the HMM with the highest likelihood
as the prediction at that point in the event sequence. Thus
for each observed event we have a specific activity predic-
tion. Table 1 summarizes results for HMM based activity
prediction for the Scare, Kyoto-ADL, and Kyoto-Interleaved
datasets. Moreover, since the activity recognition problem
is essentially a multi-class classification problem we re-
port prediction accuracy both in terms of raw accuracy

and also in terms of Cohen’s Kappa Coefficient κ2. While
the HMM based detection performed relatively well on the
non-interleaved Kyoto-ADL dataset, it can be seen that the
method performed poorly on both of the interleaved activity
datasets.

Scare Kyoto-ADL Kyoto-Interleaved
accuracy 0.541 0.803 0.445
kappa statistic 0.401 0.742 0.346

Table 1: Activity prediction accuracy and Cohen’s Kappa
statistic measures for HMM model with 4 states. Results
presented for SCARE, Kyoto-ADL, and Kyoto-Interleaved
datasets.

For SVM and Naive Bayes based prediction we developed
classifiers for a range of history window lengths for each
dataset. In addition, to avoid over-fitting we also performed
k-fold classification within each dataset. Figure 4 summa-
rizes the kappa coefficient scores for each of the four classi-
fier based prediction models considered with respect ot the
Scare, Kyoto-ADL, and Kyoto-Interleaved datasets. Unsur-
prisingly, accuracy – as measured in terms of Cohen’s kappa
coefficient here – rises as our models allow a greater win-
dow of history to be included in the defining features; here
the SVMs prediction accuracy for Kyoto-ADL at n=100 is
87.48%. Also unsurprisingly, the we see that as with the
case of HMMs we obtain significantly better activity pre-
diction results for the non-interleaved Kyoto-ADL dataset
than we do for the interleaved Scare and Kyoto-Interleaved
datasets. Somewhat surprisingly however, it can be seen that
the SVMs trained on binary features (SVM-B) perform con-
sistently better than the SVM classifiers trained on count
features, and better than both Naive Bayes based classifi-
cation models. It is also significant to note that the Naive
Bayes classifier performed exceptionally poorly on count
based features in both interleaved datasets.

Comparing the classifier based model results to those for
the HMM based prediction methods presented in Table 1, we
see that the classifier based models generally outperformed

2Cohen’s kappa is a conservative measure of accuracy which
takes into account the possibility of class agreement happening by
chance.



the HMM based models. The one exception to this was
in the case of the interleaved Scare and Kyoto-Interleaved
datasets where the count based Naive Bayes classifier per-
formed considerably poorer than the HMM based method.

(a) Accuracy Results for SCARE dataset

(b) Accuracy Results for Kyoto-ADL dataset

(c) Accuracy Results for Kyoto-Interleaved dataset

Figure 4: Accuracy results for SCARE, Kyoto-ADL and
Kyoto-Interleaved datasets. For each of the datasets, we plot
kappa accuracy measure against n – the history window
length used in building models B and C. Results are plot-
ted for both SVM and Naive Bayes based classifiers on both
the binary (B) and count (C) based models.

Timeliness
We also measured the relative timeliness of accurate predic-
tion for both the classifier model variants and the HMM
model. Here we define timeliness as the relative time at
which the classifier obtains an accurate prediction of the ac-
tivity which does not switch to an inaccurate prediction be-
fore the end of all events in that sequence. To illustrate with
an example consider a sequence of 200 events for a given ac-
tivity. If the correct activity was detected for the 40th event
and the class prediction then remains steady until the end of
the event sequence, the timeliness measure for this event is
0.2. If instead the class prediction deviated from the correct
activity after the 40th event and only returned to the correct
activity and become stable after 100 events, then our timeli-
ness measure would be 0.5.

We calculated the timeliness of accurate class prediction
for each target sequence in the case of both HMM and clas-
sifier based activity prediction. An overall timeliness value
was then calculated for each prediction technique by taking
the mean over all test sequences. In the case of prediction
failure, i.e., where the HMM method or classifiers failed to
successfully predict the correct target activity type by the
end of a given test event sequence, we assumed an NA value
for the timeliness measure for this activity instance with this
classifier.

Scare Kyoto-ADL Kyoto-Interleaved
timeliness 0.343 0.204 0.412

Table 2: Timeliness measures for HMM model with 4 states.
Results presented for SCARE, Kyoto-ADL, and Kyoto-
Interleaved datasets.

Table 2 presents timeliness measure for HMM based pre-
diction while Figure 5 presents timeliness measures for each
of the 4 classifier based models. From the results we can
see that there is a strong correlation between accuracy re-
sults and timeliness. This can be understood to be due to the
fact that since if a classifier is performing poorly it is not
likely that the correct answer is converged on until a rea-
sonable amount of data has been processed. Despite this, the
relationship between classification accuracy and timeliness
is not direct. For example, the Naive Bayes classifier when
applied to count based data (NB-C) performs best on the
Kyoto-ADL data in terms of timeliness, but is not the best
performer for cases of measurement accuracy.

Robustness
For sensor based event and activity detection, there is a very
real reality of incomplete and noisy data. Even if algorithms
perform well for ideal data, there is no guarantee that they
will perform well for noisy data or missing data. In order
to contrast the relative robustness of SVM, Naive Bayes,
and HMM based activity detection we performed one final
test in which each activity detection algorithm was evalu-
ated against randomly selected portions of the recorded data.
Specifically for each of the datasets we removed between
5% and 45% of the original data during n-fold testing. The



(a) Timeliness Results for SCARE dataset

(b) Timeliness Results for Kyoto-ADL dataset

(c) Timeliness Results for Kyoto-Interleaved dataset

Figure 5: Timeliness results for SCARE, Kyoto-ADL and
Kyoto-Interleaved datasets. For each of the datasets, we plot
timelinesss measure τ against n – the history window length
used in building models B and C. Results are plotted for both
SVM and Naive Bayes based classifiers on both the binary
(B) and count (C) based models.

full data set was however used for training each of the ac-
tivity recognition models. It should be noted that in the case
of the classifier based techniques, it was necessary to regen-
erate the feature sets associated with each remaining event
once a proportion of the data had been eliminated from the
dataset.

Figure 6 presents the results of the robustness tests for
each of the 5 activity recognition algorithms considered
against each of the three datasets. In general we can see
that each of the algorithms performed well in all cases. With
respect to SCARE and Kyoto-ADL we see that the Naive
Bayes classifier operating on the binary data held up partic-
ularly well as the percentage of data presented was reduced
towards the 55% mark. In the case of the Kyoto-Interleaved
dataset meanwhile we see that very little degradation in per-
formance is observed even after almost 50% of the test data
in held back during evaluation. Particularly in the case of
Kyoto-ADL we see this as being due simply the the high
volume of initial data, i.e., even after 45% of data had been
discarded from a test set, there remained a very large quan-
tity of data for each activity, thus meaning there was still a
high probability of characteristic features occurring in the
test data.

Conclusions
The studies presented in this workshop paper aim to provide
a modest review of the relative merits of three prominent
and competing Machine Learning approaches to the activity
recognition problem. We believe our findings confirm the
increasingly ubiquitous dominance of kernel methods such
as Support Vector Machines in general and specifically con-
firm their use in the field of activity recognition. While this
is true, the results also point out that considerable more care
and investigation will be required to determine just what fea-
tures are most appropriate for capturing the event history
such to optimize classifier performance. We saw from our re-
sults that a simple set of binary features outperforms a more
information rich count based approach.

As indicated, we present the current study as an initial
study into the relative merits of likelihood based activity
recognition techniques. In future work we aim to build upon
the work here by investigating representation models for
sensor histories.
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