1,359 research outputs found

    Input-to-state stability of infinite-dimensional control systems

    Full text link
    We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the input-to-state stability of a system. Then for the case of systems described by abstract equations in Banach spaces we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system which linear approximation is ISS. In order to study interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page

    Stability Analysis and Decentralized Control of Coupled Oscillators with Feedback Delays

    Get PDF
    Most dynamic systems do not react instantaneously to actuation signals. The temporal evolution of some others is based on retarded communications or depends on information from the past. In such cases, the mathematical models used to describe these systems must include information about the past dynamics of the states. These models are often referred to as delay or retarded systems. Delays could channel energy in and out of a system at incorrect time intervals producing instabilities and rendering controllers\u27 performance ineffective. The purpose of this research is two folds. The first investigates the effect of inherent system delays on the stability of coupled oscillators subjected to decentralized control and the second studies the prospectus of augmenting the delay into a larger delay period that could actually stabilize the coupled system and enhance its damping characteristics. Towards these ends, a system of two linearly-coupled oscillators with decentralized delayed-proportional feedback is considered. A comprehensive linear stability analysis is utilized to generate maps that divide the controllers\u27 gain and delay domain into regions of stability for different coupling values. These maps are then used to draw definite conclusions about the effect of coupling on the stability of the closed-loop in the presence of delay. Once the stability maps are generated, the Lambert-W function approach is utilized to find the stability exponents of the coupled system which, in turn, is used to generate damping contours within the pockets of stability. These contours are used to choose gain-delay combinations that could augment the inherent feedback delays into a larger delay period which can enhance the damping characteristics and reduce the system settling time significantly. An experimental plant comprised of two mass-spring-damper trios coupled with a spring is installed to validate the theoretical results and the proposed control hypothesis. Different scenarios consisting of different gains and delays are considered and compared with theoretical findings demonstrating very good agreement. Furthermore, the proposed delayed-proportional feedback decentralized controller is tested and its ability to dampen external oscillations is verified through different experiments. Such a research endeavor could prove very beneficial to many vital areas in our life. A good example is that of the coupled system of the natural and artificial cardiac pacemakers where the natural pacemaker represents a rhythmic oscillating system and the coupled artificial pacemaker provides a stabilizing signal through a feedback mechanism that senses the loss in rhythm. In this system, even the minute amount of delay in the sensing-actuating could prove very detrimental. The result of this research contributes to the solution of this and similar problems

    Synchronous behavior in networks of coupled systems : with applications to neuronal dynamics

    Get PDF
    Synchronization in networks of interacting dynamical systems is an interesting phenomenon that arises in nature, science and engineering. Examples include the simultaneous flashing of thousands of fireflies, the synchronous firing of action potentials by groups of neurons, cooperative behavior of robots and synchronization of chaotic systems with applications to secure communication. How is it possible that systems in a network synchronize? A key ingredient is that the systems in the network "communicate" information about their state to the systems they are connected to. This exchange of information ultimately results in synchronization of the systems in the network. The question is how the systems in the network should be connected and respond to the received information to achieve synchronization. In other words, which network structures and what kind of coupling functions lead to synchronization of the systems? In addition, since the exchange of information is likely to take some time, can systems in networks show synchronous behavior in presence of time-delays? The first part of this thesis focusses on synchronization of identical systems that interact via diffusive coupling, that is a coupling defined through the weighted difference of the output signals of the systems. The coupling might contain timedelays. In particular, two types of diffusive time-delay coupling are considered: coupling type I is diffusive coupling in which only the transmitted signals contain a time-delay, and coupling type II is diffusive coupling in which every signal is timedelayed. It is proven that networks of diffusive time-delay coupled systems that satisfy a strict semipassivity property have solutions that are ultimately bounded. This means that the solutions of the interconnected systems always enter some compact set in finite time and remain in that set ever after. Moreover, it is proven that nonlinear minimum-phase strictly semipassive systems that interact via diffusive coupling always synchronize provided the interaction is sufficiently strong. If the coupling functions contain time-delays, then these systems synchronize if, in addition to the sufficiently strong interaction, the product of the time-delay and the coupling strength is sufficiently small. Next, the specific role of the topology of the network in relation to synchronization is discussed. First, using symmetries in the network, linear invariant manifolds for networks of the diffusively time-delayed coupled systems are identified. If such a linear invariant manifold is also attracting, then the network possibly shows partial synchronization. Partial synchronization is the phenomenon that some, at least two, systems in the network synchronize with each other but not with every system in the network. It is proven that a linear invariant manifold defined by a symmetry in a network of strictly semipassive systems is attracting if the coupling strength is sufficiently large and the product of the coupling strength and the time-delay is sufficiently small. The network shows partial synchronization if the values of the coupling strength and time-delay for which this manifold is attracting differ from those for which all systems in the network synchronize. Next, for systems that interact via symmetric coupling type II, it is shown that the values of the coupling strength and time-delay for which any network synchronizes can be determined from the structure of that network and the values of the coupling strength and time-delay for which two systems synchronize. In the second part of the thesis the theory presented in the first part is used to explain synchronization in networks of neurons that interact via electrical synapses. In particular, it is proven that four important models for neuronal activity, namely the Hodgkin-Huxley model, the Morris-Lecar model, the Hindmarsh-Rose model and the FitzHugh-Nagumo model, all have the semipassivity property. Since electrical synapses can be modeled by diffusive coupling, and all these neuronal models are nonlinear minimum-phase, synchronization in networks of these neurons happens if the interaction is sufficiently strong and the product of the time-delay and the coupling strength is sufficiently small. Numerical simulations with various networks of Hindmarsh-Rose neurons support this result. In addition to the results of numerical simulations, synchronization and partial synchronization is witnessed in an experimental setup with type II coupled electronic realizations of Hindmarsh-Rose neurons. These experimental results can be fully explained by the theoretical findings that are presented in the first part of the thesis. The thesis continues with a study of a network of pancreatic -cells. There is evidence that these beta-cells are diffusively coupled and that the synchronous bursting activity of the network is related to the secretion of insulin. However, if the network consists of active (oscillatory) beta-cells and inactive (dead) beta-cells, it might happen that, due to the interaction between the active and inactive cells, the activity of the network dies out which results in a inhibition of the insulin secretion. This problem is related to Diabetes Mellitus type 1. Whether the activity dies out or not depends on the number of cells that are active relative to the number of inactive cells. A bifurcation analysis gives estimates of the number of active cells relative to the number of inactive cells for which the network remains active. At last the controlled synchronization problem for all-to-all coupled strictly semipassive systems is considered. In particular, a systematic design procedure is presented which gives (nonlinear) coupling functions that guarantee synchronization of the systems. The coupling functions have the form of a definite integral of a scalar weight function on a interval defined by the outputs of the systems. The advantage of these coupling functions over linear diffusive coupling is that they provide high gain only when necessary, i.e. at those parts of the state space of the network where nonlinearities need to be suppressed. Numerical simulations in networks of Hindmarsh-Rose neurons support the theoretical results

    Input-to-state stability of infinite-dimensional control systems

    Get PDF
    We define the notion of local ISS-Lyapunov function and prove, that existence of a local ISS-Lyapunov function implies local ISS (LISS) of the system. Then we consider infinite-dimensional systems generated by differential equations in Banach spaces. We prove, that an interconnection of such systems is ISS if all the subsystems are ISS and the small-gain condition holds. Next we show that a system is LISS provided its linearization is ISS. In the second part of the thesis we deal with infinite-dimensional impulsive systems. We prove, that existence of an ISS Lyapunov function (not necessarily exponential) for an impulsive system implies ISS of the system over impulsive sequences satisfying nonlinear fixed dwell-time condition. Also we prove, that an impulsive system, which possesses an exponential ISS Lyapunov function is uniform ISS over impulse time sequences, satisfying the generalized average dwell-time condition. Then we generalize small-gain theorems to the case of impulsive systems

    Stability, observer design and control of networks using Lyapunov methods

    Get PDF
    We investigate different aspects of the analysis and control of interconnected systems. Different tools, based on Lyapunov methods, are provided to analyze such systems in view of stability, to design observers and to control systems subject to stabilization. All the different tools presented in this work can be used for many applications and extend the analysis toolbox of networks. Considering systems with inputs, the stability property input-to-state dynamical stability (ISDS) has some advantages over input-to-state stability (ISS). We introduce the ISDS property for interconnected systems and provide an ISDS small-gain theorem with a construction of an ISDS-Lyapunov function and the rate and the gains of the ISDS estimation for the whole system. This result is applied to observer design for single and interconnected systems. Observers are used in many applications where the measurement of the state is not possible or disturbed due to physical reasons or the measurement is uneconomical. By the help of error Lyapunov functions we design observers, which have a so-called quasi ISS or quasi-ISDS property to guarantee that the dynamics of the estimation error of the systems state has the ISS or ISDS property, respectively. This is applied to quantized feedback stabilization. In many applications, there occur time-delays and/or instantaneous jumps of the systems state. At first, we provide tools to check whether a network of time-delay systems has the ISS property using ISS-Lyapunov-Razumikhin functions and ISS-Lyapunov-Krasovskii functionals. Then, these approaches are also used for interconnected impulsive systems with time-delays using exponential Lyapunov-Razumikhin functions and exponential Lyapunov-Krasovskii functionals. We derive conditions to assure ISS of an impulsive network with time-delays. Controlling a system in a desired and optimal way under given constraints is a challenging task. One approach to handle such problems is model predictive control (MPC). In this thesis, we introduce the ISDS property for MPC of single and interconnected systems. We provide conditions to assure the ISDS property of systems using MPC, where the previous result of this thesis, the ISDS small-gain theorem, is applied. Furthermore, we investigate the ISS property for MPC of time-delay systems using the Lyapunov-Krasovskii approach. We prove theorems, which guarantee ISS for single and interconnected systems using MPC
    • …
    corecore