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Abstract

We investigate different aspects of the analysis and control of interconnected systems. Dif-
ferent tools, based on Lyapunov methods, are provided to analyze such systems in view of
stability, to design observers and to control systems subject to stabilization. All the differ-
ent tools presented in this work can be used for many applications and extend the analysis
toolbox of networks.
Considering systems with inputs, the stability property input-to-state dynamical stability

(ISDS) has some advantages over input-to-state stability (ISS). We introduce the ISDS prop-
erty for interconnected systems and provide an ISDS small-gain theorem with a construction
of an ISDS-Lyapunov function and the rate and the gains of the ISDS estimation for the
whole system.
This result is applied to observer design for single and interconnected systems. Observers

are used in many applications where the measurement of the state is not possible or disturbed
due to physical reasons or the measurement is uneconomical. By the help of error Lyapunov
functions we design observers, which have a so-called quasi ISS or quasi-ISDS property to
guarantee that the dynamics of the estimation error of the systems state has the ISS or ISDS
property, respectively. This is applied to quantized feedback stabilization.
In many applications, there occur time-delays and/or instantaneous “jumps” of the systems

state. At first, we provide tools to check whether a network of time-delay systems has
the ISS property using ISS-Lyapunov-Razumikhin functions and ISS-Lyapunov-Krasovskii
functionals. Then, these approaches are also used for interconnected impulsive systems with
time-delays using exponential Lyapunov-Razumikhin functions and exponential Lyapunov-
Krasovskii functionals. We derive conditions to assure ISS of an impulsive network with
time-delays.
Controlling a system in a desired and optimal way under given constraints is a challenging

task. One approach to handle such problems is model predictive control (MPC). In this thesis,
we introduce the ISDS property for MPC of single and interconnected systems. We provide
conditions to assure the ISDS property of systems using MPC, where the previous result of
this thesis, the ISDS small-gain theorem, is applied. Furthermore, we investigate the ISS
property for MPC of time-delay systems using the Lyapunov-Krasovskii approach. We prove
theorems, which guarantee ISS for single and interconnected systems using MPC.
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Introduction

In this thesis, we provide tools to analyze, to observe and to control networks with regard to
stability based on Lyapunov methods.
A network consists of an arbitrary number of interconnected subsystems. We consider

such networks, which can be modeled using ordinary differential equations of the form

ẋi(t) = fi(x1(t), . . . , xn(t), u(t)), i = 1, . . . , n, (1)

which can be seen as one single system of the form

ẋ(t) = f(x(t), u(t)), (2)

where the time t is continuous, x(t) = (x1(t), . . . , xn(t))T ∈ R
N , with xi(t) ∈ R

Ni , N =
∑
Ni,

denotes the state of the system and u ∈ R
m is a measurable and essentially bounded input

function of the system. For example, the dynamics of a logistic network, such as a production
network, can be described by a system of the form (1) [48, 15, 12, 13, 103].
In this work, we investigate interconnected systems in view of stability. We consider

the notion of input-to-state stability (ISS), introduced in 1989 by Sontag, [114]. ISS means,
roughly speaking, that the norm of the solution of a system is bounded for all times by

|x(t;x0, u)| ≤ max {β(|x0| , t), γISS(‖u‖)} , (3)

where x(t;x0, u) denotes the solution of a system with initial value x0, where | · | denotes the
Euclidean norm and ‖·‖ is the essential supremum norm. The function β : R+ × R+ → R+

increases in the first argument and tends to zero, if the second argument tends to infinity.
The function γISS : R+ → R+ is strictly increasing with γISS(0) = 0, called a K∞-function.
In contrast, instability of a system can lead to infinite states. For example, in case of

a logistic system the state can be the work in progress or the number of unsatisfied orders.
Instability, by means of an unbounded growth of a state, for example, may cause high inven-
tory costs or loss of customers, if orders will not be satisfied. Hence, for many applications it
is necessary to analyze networks in view of stability and to provide tools to check whether a
system is stable to avoid such negative outcomes described above.
During the last decades, several stability concepts, such as exponential stability, asymp-

totic stability, global stability and ISS were established, see [115, 64, 120], for example. Based
on ISS, several related stability properties were investigated: input-to-output stability (IOS)
[56], integral ISS (iISS) [116] and input-to-state dynamical stability (ISDS) [35]. The ISS

7
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property and its variants became important during the recent years for the stability analysis
of dynamical systems with disturbances and they were applied in network control, engineer-
ing, biological or economical systems, for example. Survey papers about ISS and related
stability properties can be found in [118, 11].
Furthermore, the stability analysis of single systems can be performed in different frame-

works such as passivity, dissipativity [108], and its variations [1, 36, 98, 57].
It can be a challenging task to check the stability of a given system or to design a stable

system. Lyapunov functions are a helpful tool to investigate the stability of a system, since
the existence of a Lyapunov function is sufficient for stability, see [115, 64], for example.
Moreover, the necessity of the existence of a Lyapunov function for stability for some stability
properties was proved [115, 64]. In [119, 74], it was shown that the ISS property for a system
of the form (2) is equivalent to the existence of an ISS-Lyapunov function, which is a locally
Lipschitz continuous function V : R

N → R+ that has the properties

ψ1 (|x|) ≤ V (x) ≤ ψ2 (|x|) , ∀x ∈ R
N ,

V (x) ≥χ (|u|)⇒ ∇V (x) · f(x, u) ≤ −α (V (x))

for almost all x and all u, where ψ1, ψ2, χ ∈ K∞, α is a positive definite function and ∇
denotes the gradient of V .
Based on a Lyapunov function, we provide tools to check stability, to design observers

and to control networks. To this end, we consider interconnected systems of the form (1).
The notion of ISS is a useful property for the investigation of interconnected systems in view
of stability, because it can handle internal and external inputs of a subsystem. The ISS
estimation of a subsystem is the following:

∣∣xi(t;x0
i , u)

∣∣ ≤ max
{
βi

(∣∣x0
i

∣∣ , t) ,max
j �=i

γISS
ij

(
‖xj‖[0,t]

)
, γISS

i (‖u‖)
}
, (4)

where ‖·‖[0,t] denotes the supremum norm over the interval [0, t], γ
ISS
ij , γ

ISS
i : R+ → R+ are

K∞-functions and are called (nonlinear) gains.
Investigating a whole system in view of stability, it turns out that a network must not

possess the ISS property even if all subsystems are ISS. A method to check the stability
properties of networks is the so-called small-gain condition. It is based on the gains and the
interconnection structure of the system.
For n = 2 coupled systems an ISS small-gain theorem was proved in [56] and its Lyapunov

version in [55], where an explicit construction of the ISS-Lyapunov function for the whole
system was shown. For an arbitrary number of interconnected systems, an ISS small-gain
theorem was proved in [25, 98] and its Lyapunov version in [28]. For a local variant of
ISS, namely LISS, a Lyapunov formulation of the small-gain theorem can be found in [27].
Considering iISS, a small-gain theorem can be found in [49] for two coupled systems and in
[50] for n coupled systems. Another approach, using the cycle small-gain condition, which
is equivalent to the maximum formulation of the small-gain condition in matrix form, was
used in [57, 77] to establish ISS of interconnections. A small-gain theorem considering a
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mixed formulation of ISS subsystems in summation and maximum formulation was proved
in [19, 66]. General nonlinear systems were considered in [58] and [59], where small-gain
theorems were proved, using vector Lyapunov functions.
Applying the mentioned tools to check whether a system has the ISS property one can

derive the estimation (3) or (4) of the norm of the solution of a system. A stability property
equivalent to ISS, which has some advantages over ISS, is the following:

Input-to-state dynamical stability

The definition of ISDS is motivated by the observation that the ISS estimation takes the
supremum norm of the input function u into account, despite this the input can change and
especially can tend to zero. The ISDS estimation takes essentially only the recent values of
the input u into account and past values will be “forgotten” by time. This is known as the
so-called “memory fading effect”. The ISDS estimation is of the form

|x(t;x0, u)| ≤ max{μ(η(|x0|), t), ess sup
τ∈[0,t]

μ(γISDS(|u(τ)|), t− τ)},

where the function μ : R+ × R+ → R+ increases in the first argument, tends to zero, if the
second argument tends to infinity and has the property μ(r, t+ s) = μ(μ(r, t), s),∀r, t, s ≥ 0.
The benefit for logistic systems, for example production networks, is the following: con-

sider the number of unprocessed parts within the system as the state, which have to be stored
in a warehouse. By the ISS estimation, which gives an upper bound for the trajectory of the
state of the system, we can calculate the size or the capacity of the warehouse to guarantee
stability. The costs for warehouses increase by increasing the size or dimension of the ware-
house. Consider the case that the influx of parts into the system is large at the beginning
of the process, i.e., the number of unprocessed parts in a system is relatively large, and the
influx tends to zero or close to zero by time. If the system has the ISS property, the number of
unprocessed parts tends also to zero or close to zero by time, which means that the warehouse
becomes almost empty by time. Therefore, it is not necessary to provide a huge warehouse
to satisfy the upper bound of parts calculated by the ISS estimation. Taking recent values
of the input into account by the ISDS estimation, we can calculate tighter estimations in
contrast to ISS. The size of the warehouse can be smaller, which avoids high costs caused by
the over-dimensioned warehouse.
Another advantage over ISS is that the ISDS property is equivalent to the existence of an

ISDS-Lyapunov function, where μ, η and γISDS can be directly taken from the definition of
an ISDS-Lyapunov function. Considering ISS-Lyapunov functions and the ISS property, the
functions of the according definitions are different, in general.
There exist no results for the application of ISDS and its Lyapunov function characteri-

zation to networks. This work fills this gap and an ISDS small-gain theorem is proved, which
assures that a network consisting of ISDS subsystems is again ISDS under a small-gain con-
dition. An explicit construction of the Lyapunov function and the corresponding gains of the
whole system is given. This result was published in [20] and presented at the CDC 2009, [26].
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The advantages of the ISDS property will be transfered to observer design:

Observer and quantized output feedback stabilization

In many applications, measurements are used to get knowledge about the systems state. To
analyze such systems, we consider systems with an output of the form

ẋ = f(x, u),

y = h(x),
(5)

where y ∈ R
P is the output.

In view of production networks, it can happen that the measurement of the state of a
system is uneconomic or impossible due to physical circumstances or disturbed by perturba-
tions, for example. For these cases, observers are used to estimate the state. An observer for
the state of the system (5) is of the form

˙̂
ξ = F (ȳ, ξ̂, u),

x̂ = H(ȳ, ξ̂, u),
(6)

where ξ̂ ∈ R
L is the observer state, x̂ ∈ R

N is the estimate of the system state x and ȳ ∈ R
P

is the measurement of y that may be disturbed by d: ȳ = y + d. The state estimation error
is given by x̃ = x̂− x.
Here, we transfer the idea of ISDS to the design of an observer: the challenge is that the

observer of a general system or network should be designed in such a way that the norm of the
trajectory of the state estimation error has the ISS property or ISDS property, respectively.
First approaches in the observer design using the (quasi-)ISS property with respect to the

state estimation error were performed in [110]. Motivated by the advantages of ISDS over
ISS, we introduce the notion of quasi-ISDS observers with respect to the state estimation
error of a system. We show that a quasi-ISDS observer can be designed, provided that there
exists an error Lyapunov function (see [88, 60]). The design of the observer is the same as
for quasi-ISS observers, based on the works [112, 60, 72, 61, 110], for example, but it has
the advantage that the estimation of the error dynamics takes only recent disturbances into
account (see above for the ISDS property). Namely, if the perturbation of the measurement
tends to zero, then the estimation of the norm of the error dynamics tends to zero, which is
not the case using the quasi-ISS property.
The approach of the quasi-ISS/ISDS observer design is used here for interconnected sys-

tems. We design quasi-ISS/ISDS observers for each subsystem and for the whole system,
provided that error Lyapunov functions of the subsystems exist and a small-gain condition is
satisfied.
We apply the presented approach to stabilization of single and interconnected systems

based on quantized output feedback. The problem of output feedback stabilization was
investigated in [62, 63, 60, 71, 72, 110], for example. The question, how to stabilize a system,
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plays an important role in the analysis of control systems. In this work, we use quantized
output feedback stabilization according to the results in [7, 70, 72, 110]. A quantizer is a
device, which converts a real-valued signal into a piecewise constant signal, i.e., it maps R

P

into a finite and discrete subset of R
P . It may affect the process output or may also affect

the control input.

We show that under sufficient conditions a quantized output feedback law can be designed
using quasi-ISS/ISDS observer, which guarantee that a single system, subsystems of a network
or the whole system are stable, i.e., the norm of the trajectories of the systems are bounded.
Furthermore, we investigate dynamic quantizers, where the quantizers can be adapted by
a so-called “zooming” variable. This leads to a feedback law, which provides asymptotic
stability of a single system, subsystems of a network or the whole system. The results were
partially presented at the CDC 2010, [22].

Another type of systems is the following:

Time-delay systems

In many applications from areas such as biology, economics, mechanics, physics, social sci-
ences and logistics [5, 65], there occur time-delays. For example, delays appear by considering
transportation of material, communication and computational delays in control loops, pop-
ulation dynamics and price fluctuations [94]. A time-delay systems (TDS) is given in the
form

ẋ(t) = f(xt, u(t)),

x0(τ) = ξ(τ), τ ∈ [−θ, 0] ,

and it is also called a retarded functional differential equation. θ is the maximum involved
delay and the function xt ∈ C (

[−θ, 0] ;RN
)
is given by xt(τ) := x(t+ τ), τ ∈ [−θ, 0], where

C
(
[t1, t2] ;RN

)
denotes the Banach space of continuous functions defined on [t1, t2] equipped

with the supremum norm. ξ ∈ C (
[−θ, 0] ;RN

)
is the initial function of the system.

The tool of a Lyapunov function for the stability analysis of systems without time-delays
can not be directly applied to TDS. Considering single TDS, a natural generalization of a
Lyapunov function is a Lyapunov-Krasovskii functional [44]. It was shown in [87] that the
existence of an ISS-Lyapunov-Krasovskii functional is sufficient for the ISS property of a
TDS. In contrast to functionals, the usage of a function is more simpler for an analysis. This
motivates the introduction of the Lyapunov-Razumikhin methodology for TDS. In [121], the
sufficiency of the existence of an ISS-Lyapunov-Razumikhin function for the ISS property of
a single TDS was shown. In both methodologies, the necessity is not proved yet.

The ISS property for interconnected systems of TDS has not been investigated so far.
In Chapter 4, we provide tools to analyze networks in view of ISS and LISS, based on the
Lyapunov-Razumikhin and Lyapunov-Krasovskii approaches, which were presented at the
MTNS 2010, [21]. The results are applied to a scenario of a logistic network to demonstrate
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the relevance of the stability analysis in applications. Further applications of the ISS property
for logistic networks can be found in [15, 16, 103, 12, 13], for example.
The Lyapunov-Razumikhin and Lyapunov-Krasovskii approaches will be used for impul-

sive systems with time-delays:

Impulsive systems

Besides time-delays, also sudden changes or “jumps”, called impulses of the state of a system
occur in applications, such as loading processes of vehicles in logistic networks, for example.
Such systems are called impulsive systems and they are closely related to hybrid systems, see
[43, 100, 34, 66], for example. They combine continuous and discontinuous behaviors of a
system:

ẋ(t) = f(x(t), u(t)), t 
= tk, k ∈ N,

x(t) = g(x−(t), u−(t)), t = tk, k ∈ N,

where t ∈ R+ and tk are the impulse times.
The ISS property for hybrid systems was investigated in [8] and for interconnections of

hybrid subsystems in [66].
The ISS and iISS properties for impulsive systems were studied in [45] for the delay-

free case and in [10] for non-autonomous time-delay systems. Sufficient conditions, which
assure ISS and iISS of an impulsive system, were derived using exponential ISS-Lyapunov(-
Razumikhin) functions and a so-called “dwell-time condition”. In [45], the average dwell-time
condition, introduced in [46] for switched systems, was used, whereas in [10] a fixed dwell-
time condition was utilized. The average dwell-time condition takes the average of impulses
over an interval into account, whereas the fixed dwell-time condition considers the (minimal
or maximal) interval between two impulses.
In impulsive systems, also time-delays can occur. For the stability analysis for such

kinds of a system, we provide a Lyapunov-Krasovskii type and a Lyapunov-Razumikhin type
ISS theorem for single impulsive time-delay systems using the average dwell-time condition.
In contrast to the Razumikhin-type theorem from [10], we consider autonomous time-delay
systems and the average dwell-time condition. Our theorem allows to verify the ISS property
for larger classes of impulse time sequences, however, we have used an additional technical
condition on the Lyapunov gain in our proofs.
Networks of impulsive systems without time-delays and the ISS property were investigated

in [66], where a small-gain theorem was proved under the average dwell-time condition for
networks. However, time-delays were not considered in the mentioned work.
Considering networks of impulsive systems with time-delays, we prove that under a small-

gain condition with linear gains and the dwell-time condition according to [45, 66] the whole
system has the ISS property. We use exponential Lyapunov-Razumikhin and exponential
Lyapunov-Krasovskii function(al)s. The results regarding impulsive systems with time-delays
were partially presented at the NOLCOS 2010, [18], and published in [17].
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The analysis of networks with time-delays in view of ISS motivates the investigation of
ISS for model predictive control (MPC) of time-delay networks. Furthermore, the advantages
of the ISDS property over ISS will be used for MPC of networks:

Model predictive control

Model predictive control (MPC), also known as receding horizon control, is an approach for
an optimal control of systems under constraints. For example, MPC can be used to control a
system in a optimal way (optimal according to small effort to achieve the goal, for example)
such that the solution of the system follows a certain trajectory or that the solution is steered
to an equilibrium point, where certain constraints have to be fulfilled.
By the increasing application of automation processes in industry, MPC became more

and more popular during the last decades. It has many applications in the chemical, oil or
automotive and aerospace industry, for example, see the survey papers [89, 90].
MPC transforms the control problem into an optimization problem: at sampling times

t = kΔ, k ∈ N, Δ > 0, the trajectory of a system will be predicted until a prediction
horizon. A cost function J will be minimized with respect to a control u and the solution
of this optimization problem will be implemented until the next sampling time. Then, the
prediction horizon is moved and the procedure starts again.
By the choice of the cost function one has many degrees of freedom for the definition and

the achievement of the goals. The MPC procedure results in an optimal control to reach the
goals and to satisfy possible constraints. There could be constraints to the state space, the
control space or the terminal region of the state of the system. More details about MPC can
be found in [78, 9, 38], for example.
However, the stability of MPC is not guaranteed in general, see [91], for example. There-

fore, it is desired to derive conditions to assure stability. An overview of existing results
regarding (asymptotic) stability and optimality of MPC can be found in [81] and recent re-
sults regarding (asymptotic) stability, optimality and algorithms of MPC can be found in
[92, 84, 68, 38], for example.
The ISS property for MPC was investigated in [80, 79, 73, 69] for single nonlinear discrete-

time systems with disturbances. There, sufficient conditions to guarantee ISS for MPC were
established. Interconnections and the ISS property for MPC were analyzed in [93]. The
approach in these papers is that the cost function is a Lyapunov function, which implies ISS.
In this thesis, we want to combine the ISDS property and MPC, which is not done yet.

Considering single nonlinear continuous-time systems, we show that the cost function of
the used MPC scheme is an ISDS-Lyapunov function, which implies ISDS of the system. For
interconnections, we apply the ISDS small-gain theorem, which is a result of this thesis, show-
ing that the cost function of the ith subsystem of the interconnection is an ISDS-Lyapunov
function for the ith subsystem. We establish the ISDS property for MPC of single and
interconnected nonlinear systems.
Considering time-delay systems, the asymptotic stability for MPC was investigated for
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single nonlinear continuous-time TDS in [29, 96, 95]. Besides asymptotic stability, the de-
termination of the terminal cost, the terminal region and the computation of locally stabiliz-
ing controller were performed in these papers, using Lyapunov-Razumikhin and Lyapunov-
Krasovskii arguments.
The ISS property for MPC of TDS has not been investigated so far. Here, we want

to introduce the ISS property for MPC of nonlinear single and interconnected TDS. We
show that the cost function for a single system is an ISS-Lyapunov-Krasovskii functional and
apply the ISS-Lyapunov-Krasovskii approach of the chapter regarding TDS. Using the ISS
Lyapunov-Krasovskii small-gain theorem for interconnections, which is a result of this thesis,
we derive conditions to assure ISS for MPC of networks with TDS.
The tools presented in this work enrich the toolbox for the analysis and control of in-

terconnected systems. They can be used in many applications from different areas, such as
logistics and economics, biology, mechanics and physics, or social sciences, for example.

Organization of the thesis

Chapter 1 contains all necessary notions for the analysis and for the main results of this
work. The ISDS property is investigated in Chapter 2, where we prove an ISDS small-gain
theorem. Chapter 3 is devoted to the quasi-ISS/ISDS observer design for single systems and
networks and the application to quantized output feedback stabilization. Time-delay systems
are considered in Chapter 4, where ISS small-gain theorems using the Lyapunov-Razumikhin
and Lyapunov-Krasovskii approach are proved. They are applied to a scenario of a logistic
network in Section 4.3. Proceeding with impulsive systems with time-delays, ISS theorems
are given in Chapter 5. The tools within the framework of ISS/ISDS for model predictive
control can be found in Chapter 6. Finally, Chapter 7 summarizes the work with an overview
of all results combined with open questions and outlooks of possible future research activities.



Chapter 1

Preliminaries

In this chapter, all notations and definitions are given, which are necessary for the following
chapters. More precisely, the definition of ISS and its Lyapunov function characterization for
single systems are included. Considering interconnected systems, we recall the main theorems
regarding ISS of networks.

By xT we denote the transposition of a vector x ∈ R
n, n ∈ N, furthermore R+ := [0,∞)

and R
n
+ denotes the positive orthant {x ∈ R

n : x ≥ 0}, where we use the standard partial
order for x, y ∈ R

n given by

x ≥ y ⇔ xi ≥ yi, i = 1, . . . , n,

x 
≥ y ⇔ ∃i : xi < yi and

x > y ⇔ xi > yi, i = 1, . . . , n.

For a nonempty index set I ⊂ {1, . . . , n} , n ∈ N, we denote by #I the number of elements
of I and yI := (yi)i∈I for y ∈ R

n
+. A projection PI from R

n
+ into R

#I
+ maps y to yI . By

B(x, r) we denote the open ball with respect to the Euclidean norm around x of radius r.

|·| denotes the Euclidean norm in R
n. The essential supremum norm of a (Lebesgue-)

measurable function f : R → R
n is the smallest number K such that the set {x : f(x) > K}

has (Lebesgue-) measure zero and it is denoted by ‖f‖.
|x|∞ denotes the maximum norm of x ∈ R

n and ∇V is the gradient of a function V :

R
n → R+. We denote the set of essentially bounded (Lebesgue-) measurable functions u from

R to R
m by

L∞(R,Rm) := {u : R → R
m measurable | ∃ K > 0 : |u(t)| ≤ K, for almost all (f.a.a.) t} ,

where f.a.a. means for all t except the set {t : |u(t)| > K}, which has measure zero.
For t1, t2 ∈ R, t1 < t2, let C

(
[t1, t2] ;RN

)
denote the Banach space of continuous functions

defined on [t1, t2] with values in R
N and equipped with the norm ‖φ‖[t1,t2] := supt1≤s≤t2 |φ(s)|

and takes values in R
N . Let θ ∈ R+. The function xt ∈ C (

[−θ, 0] ;RN
)
is given by xt(τ) :=

x(t+τ), τ ∈ [−θ, 0]. PC (
[t1, t2] ;RN

)
denotes the Banach space of piecewise right-continuous

functions defined on [t1, t2] equipped with the norm ‖·‖[t1,t2] and takes values in R
N .

15
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For a function v : R+ → R
m we define its restriction to the interval [s1, s2] by

v[s1,s2](t) :=

{
v(t) if t ∈ [s1, s2],
0 otherwise,

t, s1, s2 ∈ R+.

We define the following classes of functions:

Definition 1.0.1.

P := {f : R
n → R+ | f(0) = 0, f(x) > 0, x 
= 0} ,

K := {γ : R+ → R+ | γ is continuous, γ(0) = 0 and strictly increasing} ,
K∞ := {γ ∈ K | γ is unbounded} ,
L :=

{
γ : R+ → R+

∣∣∣ γ is continuous and decreasing with lim
t→∞ γ(t) = 0

}
,

KL := {β : R+ × R+ → R+ | β is continuous, β(·, t) ∈ K, β(r, ·) ∈ L, ∀t, r ≥ 0} .

We will call functions of class P positive definite.

Note that, if γ ∈ K∞, then there exists the inverse function γ−1 : R+ → R+ with
γ−1 ∈ K∞, see [98], Lemma 1.1.1.
To introduce interconnected systems, we consider nonlinear systems described by ordinary

differential equations of the form

ẋ(t) = f(x(t), u(t)), (1.1)

where t ∈ R+ is the (continuous) time, ẋ denotes the derivative of x ∈ R
N , the input

u ∈ L∞(R+,R
m) and f : R

N+m → R
N , N,m ∈ N. We assume that the initial value

x(t0) = x0 is given and without loss of generality we consider t0 = 0. Systems of the form
(1.1) are examples of dynamical systems according to [115, 64, 48].
For the existence and uniqueness of a solution of a system of the form (1.1), we need the

notion of a locally Lipschitz continuous function.

Definition 1.0.2. Let f : D ⊂ R
N → R

N be a function.

(i) f satisfies a Lipschitz condition in D, if there exists a L ≥ 0 such that it holds

∀ x1, x2 ∈ D : |f(x1)− f(x2)| ≤ L|x1 − x2|.

L is called Lipschitz constant and f is called Lipschitz continuous.

(ii) f is called locally Lipschitz continuous in D, if for each x ∈ D there exists a neighbor-
hood U(x) such that the restriction f |D∩U satisfies a Lipschitz condition in D ∩ U .

Since we are dealing with locally Lipschitz continuous functions, we recall the following
theorem.

Theorem 1.0.3 (Theorem of Rademacher). Let f : R
N → R

N be a function, which satisfies
a Lipschitz condition in R

N . Then, f is differentiable in R
N almost everywhere (a.e.) (which

means everywhere except for the set with (Lebesgue-)measure zero).
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A proof can be found in [30], page 216, for example.
To have existence and uniqueness of a solution of (1.1) we use the following theorem:

Theorem 1.0.4 (Carathéodory conditions). Consider a system of the form (1.1). Let the
function f be continuous and for each R > 0 there exists a constant LR > 0 such that it holds

|f (x1, u)− f (x2, u) | ≤ LR|x1 − x2|

for all x1, x2 ∈ R
N and u ∈ L∞ (R,Rm) with |x1|, |x2|, |u| ≤ R. Then, for each x0 ∈ R

N and
u ∈ L∞ (R,Rm) there exists a maximal (open) interval I with 0 ∈ I and a unique absolute
continuous function ξ(t), which satisfies

ξ(t) = x0 +
∫ t

0
f (x(τ), u(τ)) dτ, ∀t ∈ I.

The proof can be found in [117], Appendix C.
We denote the unique function ξ from Theorem 1.0.4 by x(t;x0, u) or x(t) in short and

call it solution of the system (1.1) with initial value x0 ∈ R
N and u ∈ L∞ (R+,R

m). For the
existence and uniqueness of solutions of systems of the form (1.1), we assume in the rest of
the thesis that the function f : R

N × R
m → R

N satisfies the conditions in Theorem 1.0.4,
i.e., f is continuous and locally Lipschitz in x uniformly in u.

1.1 Input-to-state stability

It is desirable to have knowledge about the systems behavior. For example, in applications it
is needed to know that the trajectory of a system with bounded external input remains in a
ball around the origin for all times whatever the input is. This leads to the notion of (L)ISS,
introduced by Sontag [114]:

Definition 1.1.1 (Input-to-state stability). The System (1.1) is called locally input-to-state
stable (LISS), if there exist ρ > 0, ρu > 0, β ∈ KL and γISS ∈ K∞ such that for all |x0| ≤ ρ,
‖u‖ ≤ ρu and all t ∈ R+ it holds

|x(t;x0, u)| ≤ max {β(|x0| , t), γISS(‖u‖)} . (1.2)

γISS is called gain. If ρ = ρu =∞, then system (1.1) is called input-to-state stable (ISS).

(L)ISS establishes an estimation of the norm of the trajectory of a system. On the one
hand, this estimation takes the initial value into account by the term β(|x0| , t), which tends
to zero if t tends to infinity. On the other hand, it takes the supremum norm of the input
into account by the term γISS(‖u‖).
Note that we get an equivalent definition of LISS or ISS, respectively, if we replace (1.2)

by

|x(t;x0, u)| ≤ β(|x0| , t) + γISS(‖u‖), (1.3)
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where β and γISS in (1.2) and (1.3) are different in general. It is known for ISS systems that if
lim supt→∞ u(t) = 0 then also limt→∞ x(t) = 0 holds, see [114, 118], for example. However,
with t→∞, (1.2) provides only a constant positive bound for u 
≡ 0.
The relationship between ISS and other stability concepts was shown in [120]. One of

these concepts is the 0-global asymptotic stability (0-GAS) property, which we use in the
following chapters and is defined as follows (see [120]):

Definition 1.1.2. The system (1.1) with u ≡ 0 is called 0-global asymptotically stable (0-
GAS), if there exists β ∈ KL such that for all x0 and for all t ∈ R+ it holds

|x(t;x0, 0)| ≤ β(|x0| , t),

where 0 denotes the input function identically equal to zero on R+.

It is not always an easy task to find the functions β and γISS to verify the ISS property
of a system. As for systems without inputs, Lyapunov functions are a helpful tool to check
whether a system of the form (1.1) possesses the ISS property.

Definition 1.1.3. A locally Lipschitz continuous function V : D → R+, with D ⊂ R
N open,

is called a local ISS-Lyapunov function of the system (1.1), if there exist ρ > 0, ρu > 0,
ψ1, ψ2 ∈ K∞, γ̃ISS ∈ K and α ∈ P such that B(0, ρ) ⊂ D and

ψ1 (|x|) ≤ V (x) ≤ ψ2 (|x|) , ∀x ∈ D, (1.4)

V (x) ≥γ̃ISS (|u|)⇒ ∇V (x) · f(x, u) ≤ −α (V (x)) (1.5)

for almost all x ∈ B(0, ρ)\ {0} and all |u| ≤ ρu. If ρ = ρu =∞, then the function V is called
an ISS-Lyapunov function of the system (1.1). γ̃ISS is called (L)ISS-Lyapunov gain.

The function V can be interpreted as the “energy” of the system. The condition (1.4)
states that V is positive definite and radially bounded by two K∞-functions. The meaning
of the condition (1.5) is that outside of the region {x : V (x) < γ̃ISS (|u|)} the “energy” of
the system is decreasing. In particular, for every given external input with finite norm, the
energy of the system is bounded, which implies, by (1.4) that the trajectory of system also
remains bounded for all times t > 0. However, there is no general method to find a Lyapunov
function for arbitrary nonlinear systems.
The equivalence of ISS and the existence of an ISS-Lyapunov function was shown in

[119, 74]:

Theorem 1.1.4. The system (1.1) possesses the ISS property if and only if there exists an
ISS-Lyapunov function for the system (1.1).

With the help of this theorem one can check, whether a system has the ISS property: the
existence of an ISS-Lyapunov function for the system is sufficient and necessary for ISS.
Note that the ISS-Lyapunov gain γ̃ISS and the gain γISS in the definition of ISS are different

in general. An equivalent definition of an ISS-Lyapunov function can be obtained, replacing
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(1.5) by

∇V (x) · f(x, u) ≤ γ̂ISS(|u|)− α̃(V (x)),

where γ̂ISS ∈ K, α̃ ∈ P, which is called the dissipative Lyapunov form, see [119], for example.

1.2 Interconnected systems

Many systems in applications are networks of subsystems, which are interconnected. This
means that the evolution of a subsystem could depend on the states of other subsystems and
external inputs. Analyzing such a network in view of stability the notion of ISS is useful,
because it takes (internal and external) inputs of a system into account. The question is,
under which condition the network possesses the ISS property and how it can be checked?
For the purpose of this work, we consider n ≥ 2 interconnected subsystems of the form

ẋi(t) = fi(x1(t), . . . , xn(t), u(t)), i = 1, . . . , n, (1.6)

where n ∈ N, xi ∈ R
Ni , Ni ∈ N, u ∈ L∞ (R+,R

m), fi : R

∑n
j=1 Nj+m → R

Ni . We assume
that the function fi satisfies the conditions in Theorem 1.0.4 to have existence and uniqueness
of a solution of a subsystem for all i = 1, . . . , n.
Without loss of generality we consider the same input function u for all subsystems in

(1.6). One can use a projection Pi such that ui is the input of the ith subsystem and
fi(. . . , u) = f̃i(. . . , Pi(u)) = f̃i(. . . , ui) with u = (u1, . . . , un)T , see also [25].
The ISS property for subsystems is the following: The i-th subsystem of (1.6) is called

LISS, if there exist constants ρi, ρij , ρ
u > 0 and functions γISS

ij , γ
ISS
i ∈ K∞ and βi ∈ KL such

that for all initial values
∣∣x0

i

∣∣ ≤ ρi, all inputs ‖xj‖[0,∞) ≤ ρij , ‖u‖ ≤ ρu and all t ∈ R+ it
holds

|xi(t)| ≤ max
{
βi

(∣∣x0
i

∣∣ , t) ,max
j �=i

γISS
ij

(
‖xj‖[0,t]

)
, γISS

i (‖u‖)
}
. (1.7)

γISS
ij are called gains. If ρi = ρij = ρu =∞, then the i-th subsystem of (1.6) is called ISS. By
replacing (1.7) by

|xi(t)| ≤ βi

(∣∣x0
i

∣∣ , t)+∑
j �=i

γISS
ij

(
‖xj‖[0,t]

)
+ γISS

i (‖u‖) (1.8)

we get an equivalent formulation of ISS for subsystems. We refer to this as the summation
formulation and (1.7) as the maximum formulation of ISS. Note that βi and the gains in (1.7)
and (1.8) are different in general, but we use the same notation for simplicity.
Note that in the ISS estimation (1.7) or (1.8) the internal and external inputs of a subsys-

tem are taken into account. In contrast to the ISS estimation (1.2) or (1.3) for a single system,
this results in adding the gains γISS

ij

(
‖xj‖[0,t]

)
to the ISS estimation of the ith subsystem,

where the index j denotes the jth subsystem that is connected to the ith subsystem.
Also, an ISS-Lyapunov function for the ith subsystem can be given, where the subsystems

have to be taken into account, which are connected to the ith subsystem. It reads as follows:
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We assume that for each subsystem of the interconnected system (1.6) there exists a function
Vi : Di → R+ with Di ⊂ R

Ni open, which is locally Lipschitz continuous and positive definite.
Then, the function Vi is called a LISS-Lyapunov function of the i-th subsystem of (1.6), if
Vi satisfies the following two conditions:
There exist functions ψ1i, ψ2i ∈ K∞ such that

ψ1i (|xi|) ≤ Vi(xi) ≤ ψ2i (|xi|) , ∀ xi ∈ Di (1.9)

and there exist γ̃ISS
ij , γ̃

ISS
i ∈ K, αi ∈ P and constants ρi, ρij , ρ

u > 0 such that B(0, ρi) ⊂ Di

and with x = (xT
1 , . . . , x

T
n )

T it holds

Vi(xi) ≥ max
{
max
j �=i

γ̃ISS
ij (Vj(xj)) , γ̃ISS

i (|u|)
}
⇒ ∇Vi(xi) · fi(x, u) ≤ −αi (Vi(xi)) (1.10)

for almost all xi ∈ B(0, ρi), |xj | ≤ ρij , |u| ≤ ρu. If ρi = ρij = ρu = ∞, then Vi is called
an ISS-Lyapunov function of the i-th subsystem of (1.6). Functions γ̃ISS

ij are called (L)ISS-
Lyapunov gains.
Note that an equivalent formulation of an ISS-Lyapunov function can be obtained, if we

replace (1.10) by

Vi(xi) ≥
∑
j �=i

γ̄ISS
ij (Vj(xj)) + γ̄ISS

i (|u|)⇒ ∇Vi(xi) · fi(x, u) ≤ −ᾱi (Vi(xi)) , (1.11)

where γ̄ISS
ij , γ̄

ISS
i ∈ K and ᾱi ∈ P.

We consider an interconnected system of the form (1.6) as one single system (1.1) with
x =

(
xT

1 , . . . , x
T
n

)T
, f(x, u) =

(
f1(x, u)T , . . . , fn(x, u)T

)T and call it overall or whole system.
It is not guaranteed that the overall system possesses the ISS property even if all subsystems
are ISS. A well-developed condition to verify ISS and to construct a Lyapunov function for the
whole system is a small-gain condition, see [25, 98, 28], for example. To this end, we collect
all the gains γ̃ISS

ij in a matrix, called gain-matrix Γ := (γ̃ISS
ij )n×n, i, j = 1, . . . , n, γ̃ISS

ii ≡ 0,
which defines a map Γ : R

n
+ → R

n
+ by

Γ (s) :=
(
max

j
γ̃ISS

1j (sj), . . . ,max
j
γ̃ISS

nj (sj)
)T

, s ∈ R
n
+. (1.12)

Note that the matrix Γ describes in particular the interconnection structure of the network.
Moreover, it contains information about the mutual influence between the subsystems, which
can be used to verify the (L)ISS property of networks.
If we use (1.11) instead of (1.10), we collect the gains in the matrix Γ := (γ̄ISS

ij )n×n, i, j =

1, . . . , n, γ̄ISS
ii ≡ 0, which defines a map Γ : R

n
+ → R

n
+ by

Γ (s) :=

⎛⎝∑
j

γ̄ISS
1j (sj), . . . ,

∑
j

γ̄ISS
nj (sj)

⎞⎠T

, s ∈ R
n
+. (1.13)

For the stability analysis of the whole system in view of LISS, we will use the following
condition (see [27]): we say that a gain-matrix Γ satisfies the local small-gain condition
(LSGC) on [0, w∗], w∗ ∈ R

n
+, w

∗ > 0, provided that

Γ(w∗) < w∗ and Γ(s) 
≥ s, ∀s ∈ [0, w∗] , s 
= 0. (1.14)
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Notation 
≥ denotes that there is at least one component i ∈ {1, . . . , n} such that Γ(s)i < si.
In view of ISS, we say that Γ satisfies the small-gain condition (SGC) (see [98]) if

Γ(s) 
≥ s, ∀ s ∈ R
n
+\ {0} . (1.15)

If we consider the summation formulation of ISS or ISS-Lyapunov functions, respectively, the
SGC is of the form (see also [25])(

Γ ◦D) (s) 
≥ s, ∀ s ∈ R
n
+\ {0} , (1.16)

where D : R
n
+ → R

n
+ is a diagonal operator defined by

D (s) :=

⎛⎜⎜⎝
(Id+)(s1)

...
(Id+)(sn)

⎞⎟⎟⎠ , s ∈ R
n
+,  ∈ K∞.

For simplicity, we will use Γ for a matrix defined by (1.12), using the maximum formulation
or defined by (1.13), using the summation formulation. Note that by γISS

ij ∈ K∞ ∪ {0} and
for v, w ∈ R

n
+ we get

v ≥ w ⇒ Γ(v) ≥ Γ(w).

Remark 1.2.1. The SGC (1.15) is equivalent to the cycle condition (see [98], Lemma
2.3.14 for details). A k-cycle in a matrix Γ = (γij)n×n is a sequence of K∞ functions
(γi0i1 , γi1i2 , . . . , γik−1ik) of length k with i0 = ik. The cycle condition for a matrix Γ is that
all k-cycles of Γ are contractions, i.e.,

γi0i1 ◦ γi1,i2 ◦ . . . ◦ γik−1,ik < Id,

for all i0, . . . , ik ∈ {1, . . . , n} with i0 = ik and k ≤ n. See [98] and [57] for further details.

To recall the Lyapunov versions of the small-gain theorem for the LISS and ISS property
from [28] and [27], we need the following:

Definition 1.2.2. A continuous path σ ∈ Kn∞ is called an Ω-path with respect to Γ, if

(i) for each i, the function σ−1
i is locally Lipschitz continuous on (0,∞);

(ii) for every compact set P ⊂ (0,∞) there are constants 0 < K1 < K2 such that for all
points of differentiability of σ−1

i and i = 1, . . . , n we have

0 < K1 ≤ (σ−1
i )′(r) ≤ K2, ∀r ∈ P ; (1.17)

(iii) it holds

Γ(σ(r)) < σ(r), ∀r > 0. (1.18)
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More details about an Ω-path can be found in [98, 99, 28].
The following proposition is useful for the construction of an ISS-Lyapunov function for

the whole system.

Proposition 1.2.3. Let Γ ∈ (K∞ ∪ {0})n×n be a gain-matrix. If Γ satisfies the small-
gain condition (1.15), then there exists an Ω-path σ with respect to Γ. If Γ satisfies the
SGC in the form (1.16), then there exists an Ω-path σ, where Γ(σ(r)) < σ(r) is replaced by
(Γ ◦D) (σ(r)) < σ(r), ∀r > 0.

The proof can be found in [28], Theorem 5.2, see also [98, 99], however only the existence
is proved in these works. In [20], Proposition 3.4., it was shown how to construct a finite but
arbitrary “long” path.
For the case that Γ satisfies the LSGC (1.14) a strictly increasing path σ : [0, 1]→ [0, w∗]

exists, which satisfies Γ(σ(r)) < σ(r), ∀r ∈ (0, 1]. σ is piecewise linear and satisfies σ(0) =
0, σ(1) = w∗, see Proposition 4.3 in [28], Proposition 5.2 in [99].
Now, we recall the main results of [27] and [28]. They show under which conditions

the overall system possesses the (L)ISS property. Moreover, an explicit construction of the
(L)ISS-Lyapunov function for the whole system is given.

Theorem 1.2.4. Let Vi be an ISS-Lyapunov function for the i-th subsystem in (1.6), for all
i = 1, . . . , n. Let Γ be a gain-matrix and satisfies the SGC (1.15). Then, the whole system
of the form (1.1) is ISS and the ISS-Lyapunov function of the overall system is given by
V (x) = maxi σ

−1
i (Vi(xi)).

The proof can be found in [23], Theorem 6 or in a generalized form in [28], Corollary 5.5.
A version using LISS is given by the following:

Theorem 1.2.5. Assume that each subsystem of (1.6) admits an LISS-Lyapunov function
and that the corresponding gain-matrix Γ satisfies the LSGC (1.14). Then, the whole system
of the form (1.1) is LISS and the LISS-Lyapunov function of the overall system is given by
V (x) = maxi σ

−1
i (Vi(xi)).

The proof can be found in [27], Theorem 5.5.
An approach for a numerical construction of LISS-Lyapunov functions can be found in

[33].
The mentioned theorems provide tools how to check, if a network possesses the ISS prop-

erty: we have to find ISS-Lyapunov functions and the corresponding gains for the subsystems.
If the gains satisfy the small-gain condition, then the whole system is ISS.
In the following chapters, we use the mentioned tools for the stability analysis, observer

design and control of interconnected systems. Moreover, tools for the stability analysis of
networks of time-delay systems and of networks of impulsive systems with time-delays are
derived. With all these notations and considerations of this chapter, we are able to formulate
and prove the main results of this work in the next chapters.



Chapter 2

Input-to-state dynamical stability
(ISDS)

In this chapter, the notion of input-to-state dynamical stability (ISDS) is described and as
the main result of this chapter, we prove an ISDS-Lyapunov small-gain theorem.

The stability notion ISDS was introduced in [35], further investigated in [36] and some
local properties studied in [40]. ISDS is equivalent to ISS, however, one advantage of ISDS
over ISS is that the bound for the trajectories takes essentially only the recent values of the
input u into account and in many cases it gives a better bound for trajectories due to the
memory fading effect of the input u.

Similar to ISS systems, the ISDS property of system (1.1) is equivalent to the existence
of an ISDS-Lyapunov function for system (1.1), see [36]. Also a 0-GAS small-gain theorem
for two interconnected systems with the input u = 0 can be found in [36].

Another advantage of ISDS over ISS is that the gains in the trajectory based definition
of ISDS are the same as in the definition of the ISDS-Lyapunov function, which is in general
not true for ISS systems.

In this chapter, we extend the result for interconnected ISS systems to the case of ISDS
systems. In particular, we provide a tool for the stability analysis of networks in view of
ISDS. This is a small-gain theorem for n ∈ N interconnected ISDS systems of the form (1.6)
with a construction of an ISDS-Lyapunov function as well as the rates and gains of the ISDS
estimation for the entire system. Moreover, we derive decay rates of the trajectories of n ∈ N

interconnected ISDS systems and the trajectory of the entire system with the external input
u = 0. These results are compared to an example in [36] for n = 2 interconnected systems
with u = 0.

The next section introduces the notion of ISDS for single systems of the form (1.1).
Section 2.2 contains the main result of this chapter. Examples are given in Section 2.3.

23
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2.1 ISDS for single systems

We consider systems of the form (1.1). For the ISDS property we define the class of functions
KLD by

KLD := {μ ∈ KL | μ(r, t+ s) = μ(μ(r, t), s),∀r, t, s ≥ 0} .

Remark 2.1.1. The condition μ(r, t+s) = μ(μ(r, t), s) implies μ(r, 0) = r,∀ r ≥ 0. To show
this, suppose that there exists r ≥ 0 such that μ(r, 0) 
= r. Then

μ(r, 0) = μ(r, 0 + 0) = μ(μ(r, 0), 0) 
= μ(r, 0),

which is a contradiction. The last inequality follows from the strict monotonicity of μ with
respect to the first argument. This shows the assertion.

The notion of ISDS was introduced in [35] and it is as follows:

Definition 2.1.2 (Input-to-state dynamical stability (ISDS)). The system (1.1) is called
input-to-state dynamically stable (ISDS), if there exist μ ∈ KLD, η, γISDS ∈ K∞ such that
for all initial values x0 and all inputs u it holds

|x(t;x0, u)| ≤ max{μ(η(|x0|), t), ess sup
τ∈[0,t]

μ(γISDS(|u(τ)|), t− τ)} (2.1)

for all t ∈ R+. μ is called decay rate, η is called overshoot gain and γISDS is called robustness
gain.

Remark 2.1.3. One obtains an equivalent definition of ISDS if one replaces the Euclidean
norm in (2.1) by any other norm. Moreover, it can be checked that all results in [36] and [35]
hold true, if one uses a different norm instead of the Euclidean one.

It was shown in [35], Proposition 3.4.4 (ii) that ISDS is equivalent to ISS in the maximum
formulation (1.2). Note that in contrast to ISS, the ISDS property takes essentially only the
recent values of the input u into account and past values of the input will be “forgotten” by
time, which is also known as the memory fading effect. In particular, it follows immediately
from (2.1):

Lemma 2.1.4. If the system (1.1) is ISDS and lim sup
t→∞

|u(t)| = 0, then it holds

lim
t→∞ |x(t;x0, u)| = 0.

Proof. Since (1.1) is ISDS we have

|x(t;x0, u)| ≤ max{μ(η(|x0|), t), ess sup
τ∈[0,t]

μ(γISDS(|u(τ)|), t− τ)}

= max{μ(η(|x0|), t), ess sup
τ∈[0, t

2 ]
μ(γISDS(|u(τ)|), t− τ), ess sup

τ∈[ t
2
,t]

μ(γISDS(|u(τ)|), t− τ)}

≤ max{μ(η(|x0|), t), μ(γISDS(‖u‖[0, t
2 ]
),
t

2
), ess sup

τ∈[ t
2
,t]

μ(γISDS(|u(τ)|), 0)}.
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It holds lim sup
t→∞

|u(t)| = 0 and u is essentially bounded, i.e., there exists a K ∈ R+ such

that ‖u‖[0,t] ≤ K, for all t > 0. Furthermore, for all ε > 0 there exists a T > 0 such that
for all τ ∈ [

T
2 , T

]
it holds ess supτ∈[T

2
,T ] γ

ISDS(|u(τ)|) < ε. With these considerations, the
KLD-property of μ and Remark 2.1.1 we get

lim
t→∞ |x(t;x0, u)| ≤ lim

t→∞max{μ(η(|x0|), t), μ(γISDS(‖u‖[0, t
2 ]
),
t

2
), ess sup

τ∈[ t
2
,t]

γISDS(|u(τ)|)}

≤ max{ lim
t→∞μ(γ

ISDS(K),
t

2
), lim

t→∞ ess sup
τ∈[ t

2
,t]

γISDS(|u(τ)|)} = 0.

In the rest of the thesis, we assume the functions μ, η and γISDS to be C∞ in R+ × R

or R+, respectively. This regularity assumption is not restrictive, because for non-smooth
rates and gains one can find smooth functions arbitrarily close to the original ones, which
was shown in [35], Appendix B.
As we know that Lyapunov functions are an important to tool to verify the ISS property

of systems of the form (1.1), this is also the case for the ISDS property.

Definition 2.1.5 (ISDS-Lyapunov function). Given ε > 0, a function V : R
N → R+, which

is locally Lipschitz continuous on R
N\ {0}, is called an ISDS-Lyapunov function of the system

(1.1), if there exist η, γISDS ∈ K∞, μ ∈ KLD such that it holds

|x|
1 + ε

≤ V (x) ≤ η (|x|) , ∀x ∈ R
N , (2.2)

V (x) >γISDS (|u|)⇒ ∇V (x) · f(x, u) ≤ − (1− ε) g (V (x)) (2.3)

for almost all x ∈ R
N\ {0} and all u, where μ solves the equation

d
dt
μ(r, t) = −g (μ (r, t)) , r, t > 0 (2.4)

for a locally Lipschitz continuous function g : R+ → R+.

The equivalence of ISDS and the existence of a smooth ISDS-Lyapunov function was
proved in [36]. Here, we use locally Lipschitz continuous Lyapunov functions, which are
differentiable almost everywhere by Theorem of Rademacher (Theorem 1.0.3).

Theorem 2.1.6. The system (1.1) is ISDS with μ ∈ KLD and η, γISDS ∈ K∞, if and only
if for each ε > 0 there exists an ISDS-Lyapunov function V .

Proof. This follows by Theorem 4, Lemma 16 in [36] and Proposition 3.5.6 in [35].

Remark 2.1.7. Note that for a system, which possesses the ISDS property, it holds that the
decay rate μ and gains η, γISDS in Definition 2.1.2 are exactly the same as in Definition 2.1.5.
Recall that the gains of the definition of ISS (Definition 1.1.1) are different in general from
the ISS-Lyapunov gains in Definition 1.1.3.
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In order to have ISDS-Lyapunov functions with more regularity, one can use Lemma 17
in [36], which shows that for a locally Lipschitz function V there exists a smooth function
Ṽ arbitrary close to V . To demonstrate the advantages of ISDS over ISS, we consider the
following example:

Example 2.1.8. Consider the system

ẋ(t) = −x(t) + u(t), (2.5)

x ∈ R, t ∈ R+ with a given initial value x0. The input is chosen as

u(t) =

{
4, 0 ≤ t ≤ 10,

0, otherwise.

From the general equation for the solution of linear systems, namely x(t;x0, u) = eA(t−t0)x0+∫ t
t0
eA(t−s)Bu(s)ds, we get with t0 = 0

|x(t;x0, u)| ≤ |x0| e−t + ‖u‖∞ ,

which implies that the system (2.5) has the ISS property with β(|x0| , t) = |x0| e−t and
γISS(‖u‖∞) = ‖u‖∞. The estimation is displayed in the Figure 2.1 with x0 = 0.1.

To verify the ISDS property, we use ISDS-Lyapunov functions. We choose V (x) = |x| as
a candidate for the ISDS-Lyapunov function. For any ε > 0 and by the choice γISDS (|u|) :=
1
δ |u|, with given 0 < δ < 1 we obtain

(1 + ε)γISDS (|u|) ≤ V (x) ⇒ ∇V (x) · f(x, u) ≤ −1+ε2+δ−δε
1−ε2 |x| ≤ −(1− ε)(1− δ) |x| .

By g (r) := (1− δ) r we get μ(r, t) = e−(1−δ)tr (as solution of μ̇ = −g(μ)) and hence, the
system (2.5) has the ISDS property.

Note that the choice δ close to 1 results in a sharp gain γISDS but slow decay rate μ

(Figure 2.2 with δ = 99
100 and x0 = 0.1). In contrast, by a smaller choice δ this results in

more conservative gain γISDS but faster decay rate μ (Figure 2.3 with δ = 3
4 and x0 = 0.1).

Figure 2.1: ISS estimation with x0 = 0.1.
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Figure 2.2: ISDS estimation with δ = 99
100 ,

x0 = 0.1.
Figure 2.3: ISDS estimation with δ = 3

4 ,
x0 = 0.1.

From Figures 2.1-2.3, we perceive that the ISDS estimation tends to zero, if the input tends
to zero in contrast to the ISS estimation. This property of the ISDS estimation is known as
the memory fading effect.

In the next section, we provide an ISDS small-gain theorem for interconnected systems
with a construction of an ISDS-Lyapunov function for the whole system.

2.2 ISDS for interconnected systems

We consider interconnected systems of the form (1.6). The ISDS property for subsystems
reads as follows:
The i-th subsystem of (1.6) is called ISDS, if there exists a KLD-function μi and functions

ηi, γ
ISDS
i and γISDS

ij ∈ K∞ ∪ {0} , i, j = 1, . . . , n with γISDS
ii = 0 such that the solution

xi(t;x0
i , u) = xi(t) for all initial values x0

i and all inputs xj , j 
= i, u satisfies

|xi(t)| ≤ max
{
μi(ηi(|x0

i |), t),max
j �=i

νij(xj , t), νi(u, t)
}

(2.6)

for all t ∈ R+, where

νi(u, t) := ess sup
τ∈[0,t]

μi(γISDS
i (|u(τ)|), t− τ),

νij(xj , t) := sup
τ∈[0,t]

μi(γISDS
ij (|xj(τ)|), t− τ)

i, j = 1, . . . , n. γISDS
ij , γISDS

i are called (nonlinear) robustness gains.
To show the ISDS property for networks, we need the gain-matrix ΓISDS, which is defined

by ΓISDS :=
(
γISDS

ij

)
n×n

with γISDS
ii ≡ 0, i, j = 1, . . . , n and defined by (1.12).

Definition 2.2.1. For vector valued functions x = (xT
1 , . . . , x

T
n )

T : R+ → R

∑n
i=1 Ni with

xi : R+ → R
Ni and times 0 ≤ t1 ≤ t2, t ∈ R+ we define

x(t) := (|x1(t)| , . . . , |xn(t)|)T ∈ R
n
+ and x [0,t] accordingly.
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For u ∈ R
m, t ∈ R+ and s ∈ R

n
+ we define

γ̄ISDS(|u(t)|) := (γISDS
1 (|u(t)|), . . . , γISDS

n (|u(t)|))T ∈ R
n
+,

μ̄(s, t) := (μ1(s1, t), . . . , μn(sn, t))
T ∈ R

n
+,

η̄(s) := (η1(s1), . . . , ηn(sn))
T ∈ R

n
+.

Now, we can rewrite condition (2.6) for all subsystems in a compact form

x(t) ≤ max

{
μ̄
(
η̄
(
x0

)
, t
)
, sup
τ∈[0,t]

μ̄ (ΓISDS ( x(τ) ) , t− τ) , ess sup
τ∈[0,t]

μ̄(γ̄ISDS(|u(τ)|), t− τ)
}

(2.7)

for all t ∈ R+. Note that the maximum, the supremum and the essential supremum used
in (2.7) for vectors are taken component-by-component. For the ISDS property, from (2.7),
using the KLD-property of μ and with ΓISS := ΓISDS, γ̄ISS := γ̄ISDS, β̄(r, t) := μ̄(η̄(r), t) we
get

x(t) ≤ max
{
β̄
(
x0 , t

)
,ΓISS

(
x [0,t]

)
, γ̄ISS(‖u‖)} .

This implies that each subsystem of (1.6) is ISS and provided that ΓISDS satisfies the SGC
(1.15), also ΓISS satisfies the SGC (1.15), i.e., the interconnection is ISS and hence ISDS. How-
ever, we loose the quantitative information about the rate and gains of the ISDS estimation
for the whole system in such a way.
In order to conserve the quantitative information of the ISDS rate and gains of the overall

system, we utilize ISDS-Lyapunov functions. For subsystems of the form (1.6) they read as
follows:
We assume that for each subsystem of (1.6) there exists a function Vi : R

Ni → R+, which
is locally Lipschitz continuous and positive definite. Given εi > 0, a function Vi : R

Ni → R+,
which is locally Lipschitz continuous on R

Ni\ {0} is an ISDS-Lyapunov function of the i-th
subsystem in (1.6), if it satisfies:
(i) there exists a function ηi ∈ K∞ such that for all xi ∈ R

Ni it holds

|xi|
1 + εi

≤ Vi(xi) ≤ ηi (|xi|) ; (2.8)

(ii) there exist functions μi ∈ KLD, γISDS
i ∈ K∞∪{0}, γISDS

ij ∈ K∞∪{0} , j = 1, . . . , n, i 
=
j such that for almost all xi ∈ R

Ni\ {0}, all inputs xj , j 
= i and u it holds

Vi(xi) > max{γISDS
i (|u|) ,max

j �=i
γISDS

ij (Vj(xj))} ⇒ ∇Vi(xi)fi(x, u) ≤ − (1− εi) gi(Vi(xi)),

(2.9)

where μi ∈ KLD solves the equation d
dtμi(r, t) = −gi (μi (r, t)) , r, t > 0 for some locally

Lipschitz continuous function gi : R+ → R+.
Now, we state the main result of this chapter, which provides a tool to check whether a

network possesses the ISDS property. Moreover, the decay rate and the gains of the ISDS
estimation for the network can be constructed explicitly.
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Theorem 2.2.2. Assume that each subsystem of (1.6) has the ISDS property. This means
that for each subsystem and for each εi > 0 there exists an ISDS-Lyapunov function Vi, which
satisfies (2.8) and (2.9). Let ΓISDS be given by (1.12), satisfying the small-gain condition
(1.15) and let σ ∈ Kn∞ be an Ω-path from Proposition 1.2.3 with Γ = ΓISDS. Then, the whole
system (1.1) has the ISDS property and its ISDS-Lyapunov function is given by

V (x) = ψ−1

(
max

i

{
σ−1

i (Vi(xi))
})

(2.10)

with rates and gains

g(r) = (ψ−1)′ (ψ(r))min
i

{
(σ−1

i )′(σi(ψ(r)))gi(σi(ψ(r)))
}
,

η(r) = ψ−1(max
i

{
σ−1

i (ηi(r))
}
),

γISDS(r) = ψ−1(max
i

{
σ−1

i (γISDS
i (r))

}
),

(2.11)

where r > 0 and ψ (|x|) = mini σ
−1
i

( |x|√
n

)
.

The proof of Theorem 2.2.2 follows the idea of the proof of Theorem 5.3 in [28] and
corresponding results in [24] with changes due to the construction of the gains and of the rate
of the whole system.

Proof. Let 0 
= x =
(
xT

1 , . . . , x
T
n

)T . We define

V (x) := max
i

{
σ−1

i (Vi(xi))
}
, η̄(|x|) := max

i

{
σ−1

i (ηi(|x|))
}
, ψ (|x|) := min

i
σ−1

i

( |x|√
n

)
,

where Vi satisfies (2.8) for i = 1, . . . , n. Note that σ−1
i ∈ K∞. Let j be such that |x|∞ = |xj |∞

for some j ∈ {1, . . . , n}, then it holds

max
i
σ−1

i

( |xi|
1+εi

)
≥ max

i
σ−1

i

( |xi|∞
1+ε

)
≥ σ−1

j

( |xj |∞
1+ε

)
≥ min

i
σ−1

i

( |x|√
n(1+ε)

)
(2.12)

where ε := maxi εi and we have

ψ

( |x|
1 + ε

)
≤ V (x) ≤ η̄(|x|). (2.13)

Note that V is locally Lipschitz continuous and hence it is differentiable almost everywhere.
We define I := {i ∈ {1, . . . , n}| V (x) = {

σ−1
i (Vi(xi))

} ≥ maxj,j �=i{σ−1
j (Vj(xj))}}. Fix an

i ∈ I. Let γ̄ISDS(|u|) := maxj

{
σ−1

j (γISDS
j (|u|))

}
, j = 1, . . . , n. Assume V (x) > γ̄ISDS(|u|).

Then,

Vi(xi) = σi(V (x)) > σi(σ−1
i (γISDS

i (|u|))) = γISDS
i (|u|).

From (iii) in Definition 1.2.2 we have

Vi(xi) = σi(V (x)) > max
j �=i

γISDS
ij (σj(V (x))) ≥ max

j �=i
γISDS

ij (Vj(xj)).

Thus, for almost all x ∈ R
N (2.9) implies

∇V (x)f(x, u) ≤ −(1− εi)
(
σ−1

i

)′ (Vi(xi))gi(Vi(xi)) = −(1− εi)g̃i(V (x)),
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where g̃i(r) :=
(
σ−1

i

)′ (σi(r))gi(σi(r)) is positive definite and locally Lipschitz. As index i
was arbitrary in these considerations, with γ̄ISDS(|u|) = maxj

{
σ−1

j (γISDS
j (|u|))

}
and ḡ(r) :=

mini g̃i(r), ε = maxi εi the condition (2.3) for the function V is satisfied. From (2.13) we get

|x|
1 + ε

≤ ψ−1
(
V (x)

) ≤ ψ−1 (η̄ (|x|))

and we define V (x) := ψ−1
(
V (x)

)
as the ISDS-Lyapunov function candidate of the whole

system with η (|x|) := ψ−1 (η̄ (|x|)). Note that ψ−1 ∈ K∞ and V (x) is locally Lipschitz
continuous. By the previous calculations for V (x) it holds

V (x) > ψ−1 (γ̄ISDS (|u|)) =: γISDS (|u|) ⇒ V̇ (x) ≤ −(1− ε)g (V (x)) , a.e.,

where g(r) := (ψ−1)′ (ψ(r)) ḡ (ψ(r)) is locally Lipschitz continuous. Altogether, V (x) satisfies
(2.2) and (2.3). Hence, V (x) is the ISDS-Lyapunov function of the whole system and by
application of Proposition 2.1.6 the whole system has the ISDS property.

This theorem provides a tool how to check, whether a network possesses the ISDS prop-
erty: one has to find the ISDS-Lyapunov functions and gains of the subsystems and has
to check, if the small-gain condition is satisfied. Moreover, the theorem gives an explicit
construction of the ISDS-Lyapunov function and the corresponding rate and gains.
In the following, we present a corollary, which is similar to Theorem 10 in [36] for two

coupled systems and covers n ∈ N coupled systems, where the rates and gains defined in
Theorem 2.2.2 are used. Here, we get decay rates for the norm of the solution of the whole
system and for each subsystem of n coupled systems with external input u = 0.

Corollary 2.2.3. Consider the system (1.6) and assume that all subsystems have the ISDS
property with decay rates μi and gains ηi, γ

ISDS
i and γISDS

ij , i, j = 1, . . . , n, i 
= j. If the
small-gain condition (1.15) is satisfied, then the coupled system

ẋ =

⎛⎜⎜⎝
ẋ1

...
ẋn

⎞⎟⎟⎠ =

⎛⎜⎜⎝
f1(x1, . . . , xn)

...
fn(x1, . . . , xn)

⎞⎟⎟⎠ = f(x) (2.14)

is 0-GAS with

|xj(t)| ≤ |x(t)| ≤ μ

(
ψ−1

(
max

i

{
σ−1

i

(
ηi

(∣∣x0
∣∣))}) , t) (2.15)

for i, j = 1, . . . , n, all t ∈ R+, with functions μ, σ, ψ and ηi from Theorem 2.2.2.

Remark 2.2.4. Note that for large n function ψ in (2.11) becomes “small” and hence the
rates and gains defined by ψ−1 become “large” which is not desired in applications. To avoid
this kind of conservativeness one can use the maximum norm |x|∞ for the states in the above
definitions and in Theorem 2.2.2 and Corollary 2.2.3. This is possible as we have noted in
Remark 2.1.3. In this case, the division by

√
n in (2.12) can be avoided and we get (2.11)

with ψ (|x|∞) = mini σ
−1
i (|x|∞). This is used in our examples below.
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Unfortunately, we cannot compare directly the estimation of Theorem 10 in [36] with our
estimation (2.15), since another approach for estimations of the trajectories for two coupled
systems was used in [36]. The extension of this approach to n > 2 seems to be hardly possible.
Our approach allows to consider n interconnected systems. In the first example of the next
section, we compare our result for two coupled systems to the result in [36].

2.3 Examples

To compare Theorem 10 in [36] with Corollary 2.2.3 for the case of two subsystems, we
consider Example 12 given in [36].

Example 2.3.1. Consider two interconnected systems

ẋ1(t) = −x1(t) +
x3
2(t)
2 ,

ẋ2(t) = −x3
2(t) + x1(t).

As in [36] we choose Vi = |xi| and γ1(r) = 2
3r

3, γ2(r) = 3

√
4
3r, η1, η2 = Id, g1(r) =

1
4r, g2(r) =

1
4r

3. It is easy to check that the small-gain condition is satisfied and an Ω-path

can be chosen by σ1(r) = Id, σ2(r) = 3

√
4.49
3 r. For x0

1 = x0
2 = 2 the solution x was calculated

numerically. The plot of |x|∞ as well as its estimations by (2.15) and from [36] are shown on
Figure 2.4. To compare our estimation with [36], we plot the ISDS estimation in Example 12
in [36] with respect to the maximum norm for states using Remark 11 in [36]. The solid
(dashed) curve is the estimation of |x|∞ by Corollary 2.2.3 ([36]). Both estimations tend

Figure 2.4: |x|∞ and estimations with help of Corollary 2.2.3 (solid curve) and Example 12
in [36] (dashed curve)

to zero as well as the trajectory and provide nearly the same estimate for the norm of the
trajectory as it should be expected.
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The advantage of our approach is that it can be applied for larger interconnections. The
following example illustrates the application of Theorem 2.2.2 for a construction of an ISDS-
Lyapunov function for the case n ≥ 2.

Example 2.3.2. Consider n ∈ N interconnected systems of the form

ẋ1(t) = −a1x1(t) +
n∑

j>1

1
nb1jx

2
j (t) +

1
nu(t),

ẋi(t) = −aixi(t) + 1
nbi1

√
x1(t) +

n∑
j>1,j �=i

1
nbijxj(t) + 1

nu(t), i = 2, . . . , n,

(2.16)

for bij ∈ [0, 1) , ai = (1 + εi), εi ∈ (1,∞) and any input u ∈ R
m. We choose Vi(xi) = |xi|∞

as an ISDS-Lyapunov function candidate for the i-th subsystem, i = 1, . . . , n and define

γISDS
1j (r) := b1jr

2, j = 2, . . . , n,

γISDS
j1 (r) := bj1

√
r, j = 2, . . . , n,

γISDS
ij (r) := bijr, i, j = 2, . . . , n, i 
= j,

γISDS
i (r) := r, i = 1, . . . , n,

ΓISDS :=
(
γISDS

ij

)
n×n

, i, j = 1, . . . , n, γISDS
ii ≡ 0, ηi(r) := r and μi(r, t) = e−εit r as solution

of d
dtμi(r, t) = −gi(μi(r, t)) with gi(r) := εir. We obtain that Vi is an ISDS-Lyapunov function

of the i-th subsystem. To check whether the small-gain condition is satisfied, we use the cycle
condition, which is satisfied (this can be easily verified).

We choose σ(s) = (σ1(s), . . . , σn(s))
T with σ1(s) := s2 and σj(s) := s, j = 2, . . . , n for

s ∈ R+, which is one of the possibilities of choosing σ. Then, σ is an Ω-path, which can be
easily checked. In particular, σ satisfies ΓISDS (σ(s)) < σ(s), ∀s > 0. Now, by application of
Theorem 2.2.2 the whole system is ISDS and the ISDS-Lyapunov function is given by

V (x) = ψ−1

(
max

i
σ−1

i (|xi|∞)
)

with ψ(r) = mini σ
−1
i (r) =

{ √
r, r ≥ 1,

r, r < 1
. The gains and rates of the ISDS estimation and

ISDS-Lyapunov function, respectively, are given by (2.11). Furthermore, if u(t) ≡ 0 then by
Corollary 2.2.3 the whole system is 0-GAS and the decay rate is given by (2.15).

In the following, we illustrate the trajectory and the ISDS estimation for a system consist-
ing of subsystems of the form (2.16) for n = 3. We choose ai = 11

10 , bij =
1
2 , i, j = 1, 2, 3, i 
=

j, u(t) = e−t as the input and the initial values x0
1 = 0.5, x0

2 = 0.8 and x0
3 = 1.2. Then, we

calculate the ISDS estimation of the whole system as described above and get

|x(t)|∞ ≤ max{μ((x0
3)

2, t), ess sup
τ∈[0,t]

μ(
√
u(τ), t− τ)}.

This estimation is displayed in the Figure 2.5 (dashed line). To verify whether the norm of the
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Figure 2.5: |x|∞ and ISDS estimation of the whole system consisting of n = 3 subsystems of
the form (2.16).

trajectory of the whole system is below the ISDS estimation we solve the system of the form
(2.16) for n = 3 numerically. The norm of the resulting trajectory of the whole system is also
displayed in the Figure 2.5. We see, if the input u(t) tends to zero, the ISDS estimation tends
to zero as well, whereas in the case of ISS this is not true. Also, the norm of the solution
tends to zero and it is below the ISDS estimation.

In the next chapter, the idea of ISDS and its advantages are transferred to observer design
for single systems, for subsystems of interconnections and for whole networks. Furthermore,
we combine the ISDS property with model predictive control in Chapter 6.
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Chapter 3

Observer and quantized output
feedback stabilization

In this chapter, we introduce the notion of quasi-ISDS reduced-order observers and use error
Lyapunov functions to design such observers for single systems. Considering interconnected
systems we design quasi-ISS/ISDS observers for each subsystem and the whole system under
a small-gain condition. This is applied to stabilization of systems subject to quantization.

We consider systems of the form (1.1) with outputs

ẋ = f(x, u),

y = h(x),
(3.1)

where y ∈ R
P is the output and function h : R

N → R
P is continuously differentiable with

locally Lipschitz derivative (called a C1
L function). In addition, it is assumed that h(0) = 0

holds.

In practice, observers are used for systems, where the state or parts of the state can
not be measured due to uneconomic measurement costs or physical circumstances like high
temperatures, where no measurement equipment is available, for example. They are also
used in cases, where the output of a system is disturbed and for stabilization of a system, for
example. There, a control law subject to stabilize a system is designed using the estimated
state of the system generated by the observer based on the disturbed output. This can lead
to an unbounded growth of the state estimation error and therefore to a design of a control
law, which does not stabilizes the system.

A state observer for the system (3.1) is of the form

˙̂
ξ = F (ȳ, ξ̂, u),

x̂ = H(ȳ, ξ̂, u),
(3.2)

where ξ̂ ∈ R
L is the observer state, x̂ ∈ R

N is the estimate of the system state x and ȳ ∈ R
P

is the measurement of y that may be disturbed by d: ȳ = y+d, where d ∈ L∞(R+,R
P ). The

function F : R
P ×R

L×R
m → R

L is locally Lipschitz in ȳ and ξ̂ uniformly in u and function

35
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H : R
P ×R

L×R
m → R

N is a C1
L function. In addition, it is assumed that F (0, 0, 0) = 0 and

H(0, 0, 0) = 0 holds.

We denote the state estimation error by

x̃ = x̂− x.

We are interested under which conditions the designed observer guarantees that the state
estimation error is ISS or ISDS. The used stability properties for observers are based on ISS
and ISDS, and are called quasi-ISS and quasi-ISDS, respectively.

Inspired by the work [110], where the notion of quasi-ISS reduced-order observers was
introduced and the advantages of ISDS over ISS, investigated in Chapter 2, this motivates
the introduction of the quasi-ISDS property for observers, where the approaches of reduced-
order observers and the ISDS property are combined. The property has the advantage that
the recent disturbance of the output of the system is taken into account. We investigate under
which conditions a quasi-ISDS reduced-order observer can be designed for single nonlinear
systems, where error Lyapunov functions (see [88, 60]) are used. The design of observers in
the context of this thesis was investigated in [112, 60, 72, 61, 110], for example, and remarks
on the equivalence of full order and reduced-order observers can be found in [111].

Considering interconnected systems it is desirable to have observers for each of the sub-
systems and the whole network. Here, we design quasi-ISS/ISDS reduced-order observers for
each subsystem of an interconnected system, from which an observer for the whole system
can be designed under a small-gain condition.

Furthermore, the problem of stabilization of systems is investigated and we apply the
presented approach to quantized output feedback stabilization for single and interconnected
systems. The goal of stabilizing a system is an important problem in applications. Many
approaches were performed during the last years and the design of stabilizing feedback laws
is a popular research area, which is linked up with many applications. The stabilization using
output feedback quantization was investigated in [7, 70, 62, 63, 60, 71, 72, 110], for example.
A quantizer is a device, which converts a real-valued signal into a piecewise constant signal,
i.e., it maps R

P into a finite and discrete subset of R
P . It may affect the process output or

may also affect the control input.

Adapting the quantizer with a so-called zoom variable this leads to dynamic quantizers,
which have the advantage that asymptotic stability for single and interconnected systems can
be achieved under certain conditions.

This chapter is organized as follows: The notion of quasi-ISDS observers is introduced in
Section 3.1, where the design of such an observer for single systems under the existence of
an error ISDS-Lyapunov function is performed. Section 3.2 contains all the results for the
quasi-ISS/ISDS observer design according to interconnected systems. The application of the
results to quantized output feedback stabilization for single and interconnected systems can
be found in Section 3.3.
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3.1 Quasi-ISDS observer for single systems

In this section, we introduce quasi-ISDS observers and give a motivating example for the
introduction. Then, we show that the reduced-order observer designed in [110], Theorem 1,
is a quasi-ISDS observer provided that an error ISDS-Lyapunov function exists.
We recall the definition of quasi-ISS observers from [110], which guarantee that the norm

of the state estimation error is bounded for all times.

Definition 3.1.1 (Quasi-ISS observer). The system (3.2) is called a quasi-ISS observer for
the system (3.1), if there exists a function β̃ ∈ KL and for each K > 0, there exists a function
γ̃ISS

K ∈ K∞ such that

|x̃(t)| ≤ max{β̃(|x̃0|, t), γ̃ISS
K (

∥∥d[0,t]

∥∥)}, ∀t ∈ R+

whenever ||u[0,t]|| ≤ K and ||x||[0,t] ≤ K.

Modifying this definition by using the idea of the ISDS property to transfer the advantages
of ISDS over ISS to observers we define quasi-ISDS observers:

Definition 3.1.2 (Quasi-ISDS observers). The system (3.2) is called a quasi-ISDS observer
for the system (3.1), if there exist functions μ̃ ∈ KLD, η̃ ∈ K∞ and for each K > 0 a function
γ̃ISDS

K ∈ K∞ such that

|x̃(t)| ≤ max{μ̃(η̃(|x̃0|), t), ess sup
τ∈[0,t]

μ̃(γ̃ISDS
K (|d(τ)|), t− τ)}, ∀t ∈ R+

whenever ||u[0,t]|| ≤ K and ||x||[0,t] ≤ K.

Recalling that ISDS possesses the memory fading effect, the motivation for the introduc-
tion of quasi-ISDS observers is the following: quasi-ISDS observers take the recent disturbance
of the measurement into account, whereas a quasi-ISS observer takes into account the supre-
mum norm of the disturbance. The advantage will be illustrated by the following example.

Example 3.1.3. Consider the system as in Example 1 in [110]

ẋ = −x+ x2u,

y = x,
(3.3)

where ˙̂x = −x̂+ y2u is an observer. We consider the perturbed measurement ȳ = y + d, with
d = e−t 1

10 . Then, the error dynamics becomes

˙̃x = −x̃+ 2xud+ ud2.

This system is ISS and ISDS from d to x̃ when u and x are bounded. Let u ≡ 1 be constant,
then the estimations of the error dynamics are displayed in the Figure 3.1 for x0 = x̃0 = 0.3.
The ISS estimate is chosen equal to 1, since β̃(|x̃0|, t) ≤ γ̃ISS

K (
∥∥d[0,t]

∥∥) for a sufficient function
β̃, ‖d‖ = 1, x̃0 small enough and with γ̃ISS

K = Id. The ISDS estimation follows by choosing
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Figure 3.1: Displaying of the trajectory, error, quasi-ISS and quasi-ISDS estimate of the
system (3.3).

γ̃ISDS
K (|d(τ)|) = (d(τ))2

1−ε and μ̃(r, t) = e−ε(t)r, r ≥ 0 and ε = 0.1. Here, the quasi-ISS estimation
takes the maximal value of d into account, whereas the quasi-ISDS estimation possesses the
so-called memory-fading effect. Using a quasi-ISDS observer, it provides a better estimate of
the norm of the state estimation error in contrast to the usage of a quasi-ISS observer.

In the following, we focus on the design of reduced-order observers. We assume that
systems of the form (3.1) can be divided into one part, where the state can be measured
and a second part, where the state can not be measured. The practical meaning is the
following: for systems it can be uneconomic to measure all of the systems state, because the
measurement equipment or the running costs for the measurement are very expensive, for
example. Therefore, a part of the state is measured and the other part has to be estimated.
Here, we use quasi-ISS/ISDS reduced-order observers for the state estimation, where only the
part of the state is estimated that is not measured.
We assume that there exists a global coordinate change z = φ(x) such that the system

(3.1) is globally diffeomorphic to a system with linear output of the form

ż =

[
ż1

ż2

]
=

[
f̃1(z1, z2, u)

f̃2(z1, z2, u)

]
= f(z, u),

y = z1,

(3.4)

where z1 ∈ R
P and z2 ∈ R

N−P .
For the construction of observers we need the following assumption, where we use reduced-

order error Lyapunov functions. Error Lyapunov functions were first introduced in [88] and
in [60] the equivalence of the existence of an error Lyapunov function and the existence of an
observer was shown.

Assumption 3.1.4 (Error ISS-Lyapunov function). There exist a C1
L function l : R

P →
R

N−P , a C1 function V : R
N−P → R+, called an error ISS-Lyapunov function, and functions
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αi ∈ K∞, i = 1, . . . , 4 such that for all e ∈ R
N−P , z ∈ R

N and u ∈ R
m

α1(|e|) ≤ V (e) ≤ α2(|e|), (3.5)∣∣∣∂V (e)
∂e

∣∣∣ ≤ α4(V (e)), (3.6)

∂V (e)
∂e

(
[f̃2(z1, ẽ, u) +

∂l(z1)
∂z1

f̃1(z1, ẽ, u)]− [f̃2(z1, z2, u) +
∂l(z1)
∂z1

f̃1(z1, z2, u)]
)

≤ − α3(V (e)),
(3.7)

ẽ := e+ z2 and there exists a function α ∈ K∞ such that

α(s)α4(s) ≤ α3(s), s ∈ R+.

Remark 3.1.5. Note that in [110] the properties of an error Lyapunov function are slightly
different, namely for α̃3, α̃4 ∈ K∞

α1(|e|) ≤ V (e) ≤ α2(|e|),∣∣∣∂V (e)
∂e

∣∣∣ ≤ α̃4(|e|),
∂V (e)

∂e

(
[f̃2(z1, ẽ, u) +

∂l(z1)
∂z1

f̃1(z1, ẽ, u)]− [f̃2(z1, z2, u) +
∂l(z1)
∂z1

f̃1(z1, z2, u)]
)

≤− α̃3(|e|),
which are equivalent to (3.5), (3.6) and (3.7).

Now, the following lemma can be stated, which was proved in [110]. It shows, how a
quasi-ISS observer for the system (3.4) can be designed, provided that an error ISS-Lyapunov
function exists.

Lemma 3.1.6. Under Assumption 3.1.4, the system

˙̂
ξ = f̃2(ȳ, ξ̂ − l(ȳ), u) + ∂l(ȳ)

∂z1
f̃1(ȳ, ξ̂ − l(ȳ), u),

ẑ1 = ȳ,

ẑ2 = ξ̂ − l(ȳ)

(3.8)

becomes a quasi-ISS reduced-order observer for the system (3.4), where ξ̂ ∈ R
N−P is the

observer state and ẑ1, ẑ2 are the estimates of z1 and z2, respectively, and ȳ = y+ d = z1 + d,
which is the measurement of z1 disturbed by d.

In order to use quasi-ISDS observers we adapt Assumption 3.1.4 according to the ISDS
property:

Assumption 3.1.7 (Error ISDS-Lyapunov function). Let ε > 0 be given. There exist a C1
L

function l : R
P → R

N−P , a C1 function V : R
N−P → R+, called an error ISDS-Lyapunov

function, functions α, η̄ ∈ K∞ and μ̄ ∈ KLD such that for all e ∈ R
N−P , z ∈ R

N and u ∈ R
m

|e|
1+ε ≤ V (e) ≤ η̄(|e|), (3.9)∣∣∣∂V (e)

∂e

∣∣∣ ≤ α(V (e)), (3.10)

∂V

∂e
(e)

(
[f̃2(z1, ẽ, u) +

∂l(z1)
∂z1

f̃1(z1, ẽ, u)]− [f̃2(z1, z2, u) +
∂l(z1)
∂z1

f̃1(z1, z2, u)]
)

≤ − (1− ε) g(V (e)),
(3.11)
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ẽ := e + z2, where μ̃ solves the equation d
dt μ̄(r, t) = −g (μ̄ (r, t)) , r, t ≥ 0 for a locally

Lipschitz continuous function g : R+ → R+ and there exists a function ᾱ ∈ K∞ such that

ᾱ(s)α(s) ≤ (1− ε)g(s), s ∈ R+. (3.12)

The next theorem is a counterpart of Lemma 3.1.6. It provides a design of a quasi-ISDS
reduced-order observer for the system (3.4) provided that an error ISDS-Lyapunov function
exists.

Theorem 3.1.8. Under Assumption 3.1.7 the system (3.8) becomes a quasi-ISDS reduced-
order observer for the system (3.4).

The proof goes along the lines of the proof of Lemma 3.1.6 in [110] with corresponding
changes according to Definition 3.1.2 and Assumption 3.1.7:

Proof. We define ξ := z2 + l(z1) and convert the system (3.4) into

ż1 = f1(z1, ξ − l(z1), u),
y = z1,

ξ̇ = f2(z1, ξ − l(z1), u) + ∂l(z1)
∂z1

f1(z1, ξ − l(z1), u) =: F (z1, ξ, u).

With this F , the dynamic of the observer state in (3.8) can be written as ˙̂ξ = F (ȳ, ξ̂, u), where
ȳ = y + d and d is the measurement disturbance. Let e := ξ̂ − ξ and from Assumption 3.1.7
we obtain

V̇ (e) =
∂V (e)
∂e

(
f2(z1 + d, ξ̂ − l(z1 + d), u)− f2(z1, ξ − l(z1), u)

+∂l(z1+d)
∂z1

f1(z1 + d, ξ̂ − l(z1 + d), u)− ∂l(z1)
∂z1

f1(z1, ξ − l(z1), u)
)

=
∂V (e)
∂e

(
f2(z1 + d, ξ̂ − l(z1 + d), u)− f2(z1 + d, ξ − l(z1 + d), u)

+∂l(z1+d)
∂z1

f1(z1 + d, ξ̂ − l(z1 + d), u)− ∂l(z1+d)
∂z1

f1(z1 + d, ξ − l(z1 + d), u)
)

+
∂V (e)
∂e

(F (ȳ, ξ, u)− F (y, ξ, u))
≤ − (1− ε) g(|e|) + α(|e|) (F (ȳ, ξ, u)− F (y, ξ, u)) .

In [32], Lemma A.14, it was shown that there exist a continuous positive function ρ and γ ∈ K
such that

|F (ȳ, ξ, u)− F (y, ξ, u)| ≤ ρ(y, ξ, u)γ(|d|)

and it follows for an arbitrary δ ∈ (0, 1) with (3.12)

V (e) ≥ ᾱ−1

(
ρ(y, ξ, u)γ(|d|)

1− δ
)
⇒ V̇ (e) ≤ −(1− ε)ḡ(V (e)),
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where ḡ(r) := δg(r), ∀r > 0. By Theorem 3.5.8 in [35] and its proof this is equivalent to

|e(t)| ≤ max

{
μ̄(η̄(|e(0)|), t), ess sup

τ∈[0,t]
μ̄(γ̄ISDS

K (|d(τ)|), t− τ)
}

(3.13)

under ||z||[0,t] ≤ K, ||u[0,t]|| ≤ K, where γ̄ISDS
K ∈ K∞ is parametrized by K. Now, we have

z̃ =

(
z̃1

z̃2

)
:=

(
ẑ1 − z1
ẑ2 − z2

)
=

(
d

e− (l(ȳ)− l(z1))

)
.

By θK ∈ K, parametrized by K such that |l(z1 + d)− l(z1)| ≤ θK(|d|), |z1| ≤ K it follows

|z̃| ≤ |e|+ |d|+ θK(|d|) and |e| ≤ |z̃2|+ θK(|d|). (3.14)

Overall, combining (3.13) and (3.14) we have

|z̃| ≤ max

{
μ̄(η̄(|e(0)|), t), ess sup

τ∈[0,t]
μ̄(γ̄ISDS

K (|d(τ)|), t− τ)
}
+ |d(t)|+ θK(|d(t)|)

≤ max

{
μ̄(η̄(|e(0)|), t), ess sup

τ∈[0,t]
μ̄(γ̄ISDS

K (|d(τ)|), t− τ)
}
+ χK(|d(t)|)

where χK(s) := s+ θK(s), s ≥ 0. Since μ̄ is a KLD-function it follows

|z̃| ≤ max

{
2μ̄(η̄(|e(0)|), t), ess sup

τ∈[0,t]
2μ̄(γ̄ISDS

K (|d(τ)|), t− τ), ess sup
τ∈[0,t]

2μ̄(χK(|d(τ)|), t− τ)
}

≤ max

{
2μ̄(η̄(|z̃2(0)|+ θK(|d(0)|)), t), ess sup

τ∈[0,t]
2μ̄(γ̆ISDS

K (|d(τ)|), t− τ)
}
,

where γ̆ISDS
K (s) := max{γ̄ISDS

K (s), χK(s)}, and we used (3.14) and the inequality α(a + b) ≤
max{α(2a), α(2b)} for α ∈ K, a, b ≥ 0. Furthermore, we have

|z̃| ≤ max

{
2μ̄(η̄(2 |z̃2(0)|), t), 2μ̄(η̄(2θK(|d(0)|)), t), ess sup

τ∈[0,t]
2μ̄(γ̆ISDS

K (|d(τ)|), t− τ)
}

≤ max

{
2μ̄(η̄(2 |z̃2(0)|), t), ess sup

τ∈[0,t]
2μ̄(η̄(2θK(|d(τ)|)), t− τ),

ess sup
τ∈[0,t]

2μ̄(γ̆ISDS
K (|d(τ)|), t− τ)

}

≤ max

{
2μ̄(η̄(2 |z̃2(0)|), t), ess sup

τ∈[0,t]
2μ̄(γ̃ISDS

K (|d(τ)|), t− τ)
}
,

where γ̃ISDS
K (s) := max{η̄(2θK(s)), γ̆ISDS

K (s)}. Finally, by definition of μ̃(r, t) := 2μ̄(r, t) and
η̃(s) := η̄(2s) it follows

|z̃| ≤ max

{
μ̃(η̃(|z̃(0)|), t), ess sup

τ∈[0,t]
μ̃(γ̃ISDS

K (|d(τ)|), t− τ)
}
,

for ||z||[0,t] ≤ K, ||u[0,t]|| ≤ K, which proves the assertion.
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Remark 3.1.9. From Chapter 2 the decay rate and the gain of the definition of ISDS are
the same as the ones using ISDS-Lyapunov functions. Note that this is not the case for the
definition of a quasi-ISDS observer and using error ISDS-Lyapunov functions. It remains as
an open topic to investigate if it is possible to use a different error ISDS-Lyapunov function,
from which the information about the decay rate and the gains of the error ISDS-Lyapunov
function can be preserved for the quasi-ISDS estimation.

In the next section, we are going to extend the notion of quasi-ISS/ISDS observers for
interconnected systems and provide tools to design such kind of observers.

3.2 Quasi-ISS and quasi-ISDS observer for interconnected sys-

tems

We consider n ∈ N interconnected systems of the form (1.6) with outputs

ẋi = fi(x1, . . . , xn, ui),

yi = hi(xi),
(3.15)

i = 1, . . . , n, where ui ∈ R
Mi are control inputs, yi ∈ R

Pi are the outputs and functions
hi : R

Ni → R
Pi are C1

L functions. In addition, it is assumed that hi(0) = 0.
The state observer of the ith subsystem is of the form

˙̂
ξi = Fi(ȳ1, . . . , ȳn, ξ̂1, . . . , ξ̂n, ui),

x̂i = Hi(ȳ1, . . . , ȳn, ξ̂1, . . . , ξ̂n, ui),
(3.16)

i = 1, . . . , n, where ξ̂i ∈ R
Li is the observer state of the ith subsystem, x̂i ∈ R

Ni is the
estimate of the system state xi and ȳi ∈ R

Pi is the measurement of yi that may be disturbed
by di: ȳi = yi + di, di ∈ L∞(R+,R

Pi). The function Fi : R
P × R

L × R
Mi → R

Li , P =∑
i Pi, L =

∑
i Li is locally Lipschitz in ȳ = (ȳ1, . . . , ȳn)T and ξ̂ = (ξ̂1, . . . , ξ̂n)T uniformly in

ui and function Hi : R
P ×R

L×R
Mi → R

Ni is a C1
L function. In addition, it is assumed that

Fi(0, 0, 0) = 0 and Hi(0, 0, 0) = 0 holds.
We denote the state estimation error of the ith subsystem by x̃i := x̂i−xi. It is influenced

by the state estimation error as well as by the measurement error of the jth subsystem
which is connected to the ith subsystem. Therefore, they have to be taken into account for
the estimation of the norm of the state estimation error of the ith subsystem. The quasi-
ISS/ISDS property for interconnected systems reads as follows:

1. The ith subsystem of (3.16) is a quasi-ISS observer for the ith subsystem of (3.15),
if there exists a function β̃i ∈ KL and for each Ki > 0 there exist functions (γ̃Ki

i )ISS,
(γ̃Ki

ij )
ISS ∈ K∞, j = 1, . . . , n, j 
= i such that

|x̃i(t)|

≤ max
{
β̃i(|x̃0

i |), t),max
j �=i

(γ̃Ki
ij )

ISS(||x̃j ||[0,t]),max
j �=i

(γ̃Ki
ij )

ISS(||(dj)[0,t]||), (γ̃Ki
i )ISS(||(di)[0,t]||)

}
,

whenever ||(ui)[0,t]|| ≤ Ki and ||xj ||[0,t] ≤ Ki, j = 1, . . . , n.
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2. The ith subsystem of (3.16) is a quasi-ISDS observer for the ith subsystem of (3.15),
if there exist functions μ̃i ∈ KLD, η̃i ∈ K∞ and for each Ki > 0 there exist functions
(γ̃Ki

i )ISDS, (γ̃Ki
ij )

ISDS ∈ K∞, j = 1, . . . , n, j 
= i such that

|x̃i(t)| ≤ max
{
μ̃i(η̃i(|x̃0

i |), t),max
j �=i

ν̄ij(x̃j , t),max
j �=i

ν̃ij(dj , t), ν̃i(di, t)
}

whenever ||(ui)[0,t]|| ≤ Ki and ||xj ||[0,t] ≤ Ki, j = 1, . . . , n, where

ν̄ij(x̃j , t) := sup
τ∈[0,t]

μ̃i((γ̃Ki
ij )

ISDS(|x̃j(τ)|), t− τ),

ν̃ij(dj , t) := ess sup
τ∈[0,t]

μ̃i((γ̃Ki
ij )

ISDS(|dj(τ)|), t− τ),

ν̃i(di, t) :=ess sup
τ∈[0,t]

μ̃i((γ̃Ki
i )ISDS(|di(τ)|), t− τ).

We assume that there exists a global coordinate change zi = φi(xi) with x = (xT
1 , . . . , x

T
n )

T

such that the ith subsystem of (3.15) is globally diffeomorphic to a system with linear output
of the form

żi =

[
ż1i

ż2i

]
=

[
f1i(z11, . . . , z1n, z21, . . . , z2n, ui)

f2i(z11, . . . , z1n, z21, . . . , z2n, ui)

]
= fi(z1, . . . , zn, ui),

yi = z1i

(3.17)

for i = 1, . . . , n, where z1i ∈ R
Pi and z2i ∈ R

Ni−Pi .
For the design of a quasi-ISS/ISDS observer for each subsystem of (3.15) we assume the

following:

Assumption 3.2.1. 1. For each i = 1, . . . , n there exist a C1
L function li : R

Pi → R
Ni−Pi,

a C1 function Vi : R
Ni−Pi → R+, functions α1i, α2i, α3i, α4i, γij ∈ K∞, j = 1, . . . , n, j 
=

i such that for all ei ∈ R
Ni−Pi , z1i ∈ R

Pi , z2i ∈ R
Ni−Pi and ui ∈ R

Mi it holds

α1i(|ei|) ≤ Vi(ei) ≤ α2i(|ei|),∣∣∣∂Vi
∂ei

(ei)
∣∣∣ ≤ α4i(Vi(ei)),

and whenever Vi(ei) ≥ maxj �=i γij(Vj(ej)) holds, it follows

∂Vi

∂ei
(ei)

([
f2i(z1, e+ z2, ui) +

∂li
∂z1i

(z1i)f1i(z1, e+ z2, ui)
]

−
[
f2i(z1, z2, ui) +

∂li
∂z1i

(z1i)f1i(z1, z2, ui)
])

≤ − α3i(Vi(ei))

z1 = (zT
11, . . . , z

T
1n)

T , z2 = (zT
21, . . . , z

T
2n)

T , e + z2 = (e1 + z21, . . . , en + z2n)T and there
exists αi ∈ K∞ such that

αi(s)α4i(s) ≤ α3i(s), s ∈ R+.



44 3.2. Quasi-ISS and quasi-ISDS observer for interconnected systems

2. Let εi be given. For each i = 1, . . . , n there exist a C1
L function li : R

Pi → R
Ni−Pi, a

C1 function Vi : R
Ni−Pi → R+, functions αi, η̄i, γ̄ij ∈ K∞, j = 1, . . . , n, j 
= i and

μ̄i ∈ KLD such that for all ei ∈ R
Ni−Pi , z1i ∈ R

Pi , z2i ∈ R
Ni−Pi and ui ∈ R

Mi it holds

|ei|
1+εi

≤ Vi(ei) ≤ η̄i(|ei|),∣∣∣∂Vi
∂ei

(ei)
∣∣∣ ≤ αi(Vi(ei)),

and whenever Vi(ei) > maxj �=i γ̄ij(Vj(ej)) holds, it follows

∂Vi

∂ei
(ei)

([
f2i(z1, e+ z2, ui) +

∂li
∂z1i

(z1i)f1i(z1, e+ z2, ui)
]

−
[
f2i(z1, z2, ui) +

∂li
∂z1i

(z1, z2, ui)
])

≤ − (1− εi)gi(V (ei)),

where μ̄i solves the equation d
dt μ̄i(r, t) = −gi(μ̄i(r, t)), r, t > 0 for a locally Lipschitz

continuous function gi : R+ → R+ and there exists ᾱi ∈ K∞ such that

ᾱi(s)αi(s) ≤ (1− εi)gi(s), s ∈ R+.

The next theorem is a counterpart of Lemma 3.1.6 and Theorem 3.1.8 for the design of a
quasi-ISS/ISDS reduced-order observer for a subsystem of an interconnected system.

Theorem 3.2.2. 1. Under Assumption 3.2.1, point 1., the system

˙̂
ξi = f2i(ȳ1, . . . , ȳn, ξ̂1 − l1(ȳ1), . . . , ξ̂n − ln(ȳn), ui)

+
∂li
∂z1i

(ȳi)f1i(ȳ1, . . . , ȳn, ξ̂1 − l1(ȳ1), . . . , ξ̂n − ln(ȳn), ui)

ẑ1i = ȳi,

ẑ2i = ξ̂i − li(ȳi)

(3.18)

becomes a quasi-ISS reduced-order observer for the ith subsystem of (3.17).

2. Under Assumption 3.2.1, point 2., the system (3.18) becomes a quasi-ISDS reduced-order
observer for the ith subsystem of (3.17).

Proof. The proof goes along the proof of Theorem 3.1.8 with changes according to the quasi-
ISS/ISDS property for interconnected systems and Assumption 3.2.1.
We define ξi := z2i + li(z1i). Then,

ż1i = f1i(z11, . . . , z1n, ξ1 − l1(z11), . . . , ξn − ln(z1n), ui),

yi = z1i

ξ̇i = f2i(z11, . . . , z1n, ξ1 − l1(z11), . . . , ξn − ln(z1n), ui)

+
∂li
∂z1i

(z1i)f1i(z1i, . . . , z1n, ξ1 − l1(z11), . . . , ξn − ln(z1n), ui)

=: Fi(z11, . . . , z1n, ξ1, . . . , ξn, ui).
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The reduced-order observer (3.18) is written as ˙̂
ξi = Fi(ȳ1, . . . , ȳn, ξ̂1, . . . , ξ̂n, ui). Let ei :=

ξ̂i − ξi. We use the shorthand for j = 1, 2

f̂d
ji = fji(y1 + d1, . . . , yn + dn, ξ̂1 − l1(y1 + d1), . . . , ξ̂n − ln(yn + dn), ui),

fji = fji(y1, . . . , yn, ξ1 − l1(y1), . . . , ξn − ln(yn), ui),

then we have whenever Vi(ei) ≥ maxj �=i γij(Vj(ej)) holds, it follows

V̇i(ei) =
∂Vi

∂ei
(ei)

([
f̂d
2i +

∂li
∂z1i

(z1i + di)f̂d
1i

]
−
[
f2i +

∂li
∂z1i

(z1i)f1i

])
≤ − α3i(Vi(ei)) +

∂Vi

∂ei
(ei) (Fi(ȳ1, . . . , ȳn, ξ1, . . . , ξn, ui)− Fi(y1, . . . , yn, ξ1, . . . , ξn, ui))

≤ − α3i(Vi(ei)) + α4i(Vi(ei))ρi(y1, . . . , yn, ξ1, . . . , ξn, ui)max
j
γi(|dj |),

where γi ∈ K and ρi is a continuous positive function such that

|Fi(ȳ1, . . . , ȳn, ξ1, . . . , ξn, ui)− Fi(y1, . . . , yn, ξ1, . . . , ξn, ui)|
≤ ρi(y1, . . . , yn, ξ1, . . . , ξn, ui)max

j
γi(|dj |)

holds, whose existence can be shown using the results in the appendix in [32]:

|Fi(ȳ1, . . . , ȳn, ξ1, . . . , ξn, ui)− Fi(y1, . . . , yn, ξ1, . . . , ξn, ui)|
≤ ρi(y1, . . . , yn, ξ1, . . . , ξn, ui)γ̃i(|(d1, . . . , dn)T |)
≤ ρi(y1, . . . , yn, ξ1, . . . , ξn, ui)γ̃i(max

j

√
n|dj |)

=: ρi(y1, . . . , yn, ξ1, . . . , ξn, ui)γi(max
j
|dj |).

It follows that for an arbitrary δi ∈ (0, 1), we have

Vi(ei) ≥ α−1
i

(
(1− δi)−1ρi(y1, . . . , yn, ξ1, . . . , ξn, ui)max

j
γi(|dj |)

)
⇒V̇i ≤ −δiα3i(Vi(ei)).

Under the conditions that ||zj ||[0,t] ≤ Ki and ||(ui)[0,t]|| ≤ Ki, j = 1, . . . , n it can be shown
by standard arguments that there exist a function β̄i ∈ KL, functions γ̄Ki

i , γ̄Ki
ij ∈ K∞, j =

1, . . . , n, j 
= i such that

|ei(t)| ≤ max
{
β̄i(|e0i |), t),max

j �=i
γ̄Ki

ij (||(ej)[0,t]||),max
j
γ̄Ki

i (||(dj)[0,t]||)
}
, ∀t ∈ R+. (3.19)

Recalling (3.18), we have that |z̃i| ≤ |di| + |ei| + θKi(|di|) and |ei| ≤ |z̃2i| + θKi(|di|), where
θKi(|di|) is a class-K function, parametrized by Ki such that |l(z1i + di)− l(z1i)| ≤ θKi(|di|)
when |z1i| ≤ Ki. Together with (3.19) we obtain

|z̃i(t)| ≤ max
{
β̄i(|e0i |), t),max

j �=i
γ̄Ki

ij (||(ej)[0,t]||),max
j
γ̄Ki

i (||(dj)[0,t]||)
}
+ θKi(|di(t)|) + |di(t)|

≤ max
{
3β̄i((|z̃0

2i|+ θKi(|d0
i |)), t), 3max

j �=i
γ̄Ki

ij (||z̃2j ||[0,t] + θKj (||(dj)[0,t]||)),

3max
j �=i

γ̄Ki
i (||(dj)[0,t]||), 3χKi

i (||(di)[0,t]||)
}
,
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where χKi
i (r) := max{γ̄Ki

i (r), θKi(r), r}. By α(a+b) ≤ max{α(2a), α(2b)} for α ∈ K we have
that

|z̃i(t)|

≤ max
{
3β̄i(2|z̃0

2i|), t), 3β̄i(2θKi(|d0
i |)), t), 3max

j �=i
γ̄Ki

ij (2||z̃2j ||[0,t]),

3max
j �=i

γ̄Ki
ij (2θKj (||(dj)[0,t]||)), 3max

j �=i
γ̄Ki

i (||(dj)[0,t]||), 3χKi
i (||(di)[0,t]||)

}
≤ max

{
β̃i(|z̃0

i |), t),max
j �=i

(γ̃Ki
ij )

ISS(||z̃j ||[0,t]),max
j �=i

(γ̃Ki
ij )

ISS(||(dj)[0,t]||), (γ̃Ki
i )ISS(||(di)[0,t]||)

}
,

||zj ||[0,t] ≤ Ki and ||(ui)[0,t]|| ≤ Ki, j = 1, . . . , n, where

β̃i(r, t) := 3β̄i(2r, t),

(γ̃Ki
ij )

ISS(r) := max
{
3γ̄Ki

ij (2r), 3γ̄
Ki
ij (2θKj (r), 3γ̄

Ki
i (r)

}
,

(γ̃Ki
i )ISS(r) := max

{
3β̄i(2θKi(r)), 0), 3χ

Ki
i (r)

}
.

This proves that the system (3.18) is a quasi-ISS reduced-order observer for the ith subsystem.
The proof for the quasi-ISDS reduced-order observer for the ith subsystem follows the

same steps as for a quasi-ISS reduced-order observer.

Now, if we define P :=
∑
Pi, N :=

∑
Ni, m :=

∑
Mi, z := (zT

1 , . . . , z
T
n )

T ∈ R
N ,

z1 := (zT
11, . . . , z

T
1n)

T ∈ R
P , z2 := (zT

21, . . . , z
T
2n)

T ∈ R
P−N , u := (uT

1 , . . . , u
T
n )

T ∈ R
m, d =

(dT
1 , . . . , d

T
n )

T and f := (fT
1 , . . . , f

T
n )

T , f̃1 := (fT
11, . . . , f

T
1n)

T , f̃2 := (fT
21, . . . , f

T
2n)

T , then the
system (3.17) can be written as a system of the form (3.4).
Now, we investigate under which conditions a quasi-ISS/ISDS observer for the whole

system can be designed.
We collect all gains (γ̃Ki

ij )
ISS in a gain-matrix Γ̃ISS, which defines a map as in (1.12).We

define Γ̃ISDS accordingly. With these considerations a quasi-ISS/ISDS reduced-order observer
for the overall system can be designed.

Theorem 3.2.3. Consider a system of the form (3.17).

1. Assume that Assumption 3.2.1, point 1. and Theorem 3.2.2, point 1. hold true for
each i = 1, . . . , n. If Γ̃ISS satisfies the SGC (1.15), then the reduced-order error Lya-
punov function V as in Assumption 3.1.4 is given by V = maxi{σ−1

i (Vi)}, where
σ = (σ1, . . . , σn)T is an Ω-path from Proposition 1.2.3 and the quasi-ISS reduced-order
observer for the overall system is given by

ξ̂ = (ξ̂T
1 , . . . , ξ̂

T
n )

T , (3.20)

and

ˆ̇
ξ = f2(ȳ, ξ̂ − l(ȳ), u) + ∂l

∂z1
(ȳ)f1(ȳ, ξ̂, u),

ẑ1 = ȳ,

ẑ2 = ξ̂ − l(ȳ).

(3.21)
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2. Assume that Assumption 3.2.1, point 2. and Theorem 3.2.2, point 2. hold true for
each i = 1, . . . , n. If Γ̃ISDS satisfies the SGC (1.15), then the reduced-order error
Lyapunov function V as in Assumption 3.1.7 is given by V = maxi{σ−1

i (Vi)}, where
σ = (σ1, . . . , σn)T is an Ω-path from Proposition 1.2.3 and the quasi-ISDS reduced-order
observer for the overall system is given by (3.20) and (3.21).

Proof. Ad point 1.: We define the error Lyapunov function candidate of the whole system
by V (e) = maxi{σ−1

i (Vi(ei))}, e = (e1, . . . , en)T . We have to verify the conditions from
Assumption 3.1.4, from which with the help of Lemma 3.1.6 the observer defined by (3.20)
becomes a quasi-ISS reduced-order observer for the whole system of the form (3.4).
Let I := {i ∈ {1, . . . , n}|V (e) = 1

si
Vi(ei) ≥ maxj,j �=i{ 1

sj
(Vj(ej))}}. Fix an i ∈ I. Let

ei := ξ̂i − ξi. From (1.18) it follows

Vi(ei) = σi(V (e)) > max
j �=i

(γ̃Ki
ij )

ISS(σi(V (e))) = max
j �=i

(γ̃Ki
ij )

ISS(Vi(ei))

We observe that there exist c1 > 0, c2 > 0 such that

V (e) ≥ min
i
σ−1

i (α1i(c1|e|)) =: α1(|e|) and V (e) ≤ max
i
σ−1

i (α2i(c2|e|)) =: α2(|e|).

Now, with (1.17) it holds for each i∣∣∣∣∂V (e)∂e

∣∣∣∣ = ∣∣∣∣∂σ−1
i (Vi(ei))
∂ei

∣∣∣∣ = ∣∣∣∣(σ−1
i )′(Vi(ei))

∂Vi(ei)
∂ei

∣∣∣∣ ≤ K2α4i(Vi(ei)) ≤ α4(V (e)),

where α4(r) := maxiK2α4i(σi(r)), K2 is from (1.17) and (3.6) is satisfied.
Furthermore, we have for each i that it holds

V̇ (e) = (σ−1
i )′(Vi(ei))

∂Vi(ei)
∂ei

ėi

= (σ−1
i )′(Vi(ei))

∂Vi(ei)
∂ei

([f2i(z1, e1 + z21, . . . , en + z2n, ui)

+
∂li
∂z1i

(z1i)f1i(z1, e1 + z21, . . . , en + z2n, ui)
]

−
[
f2i(z1, z2, ui) +

∂li
∂z1i

(z1i)f1i(z1, z2, ui)
])

≤ −K1α31(Vi(ei)) ≤ −α3(V (e)),

where α3(r) := miniK1α3i(σi(r)), K1 is from (1.17) and (3.7) is satisfied. Finally, we choose a
function α ∈ K∞ such that α(s)α4(s) ≤ α3(s) and all the conditions from Assumption 3.1.4
are satisfied and by application of Lemma 3.1.6 a quasi-ISS reduced-order observer of the
whole system can be designed.
Ad point 2.: We define

V (e) := max
i

{
σ−1

i (Vi(ei))
}
,

η̄(|e|) := max
i

{
σ−1

i (ηi(|e|))
}
,

ψ (|e|) := min
i
σ−1

i

( |e|√
n

)
,

(3.22)
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where Vi satisfies the conditions in Assumption 3.2.1, point 2. for i = 1, . . . , n. Let j be such
that |e|∞ = |ej |∞ for some j ∈ {1, . . . , n}, then we have

max
i
σ−1

i

( |ei|
1 + εi

)
≥ max

i
σ−1

i

( |ei|∞
1 + ε

)
≥ σ−1

j

( |ej |∞
1 + ε

)
≥ min

i
σ−1

i

( |e|√
n(1 + ε)

)
(3.23)

where ε := maxi εi and we obtain

ψ

( |e|
1 + ε

)
≤ V (e) ≤ η(|e|). (3.24)

Then,
∣∣∣∂V (e)

∂e

∣∣∣ ≤ α(V (e)) holds with α(r) := maxiK2αi(σir), r ≥ 0, where K2 is from
(1.17). Furthermore, we have

V̇ (e) ≤ −(1− ε)ḡ(V (e))

with ε = maxi εi and ḡ(r) := miniK1gi(σir), r ≥ 0 is positive definite and locally Lipschitz,
where K1 is from (1.17). From (3.24) we get

|e|
1 + ε

≤ ψ−1
(
V (e)

) ≤ ψ−1 (η̄ (|e|))

and we define V (e) := ψ−1
(
V (e)

)
as the reduced-order error Lyapunov function candidate

with η (|e|) := ψ−1 (η̄ (|e|)). By the previous calculations for V (e) it holds

V̇ (e) ≤ −(1− ε)g (V (e)) ,

where g(r) := (ψ−1)′ (ψ(r)) ḡ (ψ(r)) is locally Lipschitz continuous. Altogether, V (e) satisfies
all conditions in Assumption 3.1.7. Hence, V (e) is the reduced-order error Lyapunov function
of the whole system and by application of Theorem 3.1.8 a quasi-ISDS reduced-order observer
of the whole system can be designed.

Remark 3.2.4. Note that for large n the function ψ in (3.22) becomes “small” and hence the
rates and gains of the quasi-ISDS property defined by ψ−1 become “large”, which is not desired
in applications. To avoid this kind of conservativeness one can use the maximum norm | · |∞
instead of the Euclidean one in the definitions above and in Theorem 3.2.3. In this case, the
division by

√
n in (3.23) can be avoided and we get (3.22) with ψ (|e|∞) = mini σ

−1
i (|e|∞).

3.3 Applications

In this section, we investigate the stabilization of single and interconnected systems subject to
quantization. At first, we consider single systems and combine the quantized output feedback
stabilization with the ISDS property as in Chapter V in [110] for the ISS property. Then,
we consider interconnected systems and give a counterpart to Proposition 1 in [110] for such
kind of systems. Furthermore, we investigate dynamic quantizers, where the quantizers can
be adapted by a zooming variable. This leads to asymptotic stability of the overall closed-loop
system.
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We consider a single system of the form (3.4). By an output quantizer we mean a piecewise
constant function q : R

P → Q, whereQ is a finite and discrete subset of RP . The quantization
error is denoted by

d := q(y)− y. (3.25)

We assume that there exists M > 0, the quantizer’s range, and Δ > 0, the error bound, such
that |y| ≤ M implies |d| ≤ Δ. This property is referred to saturation in the literature, see
[71], for example.
Now, suppose that Assumption 3.1.7 holds and a quasi-ISDS observer has been designed as

in Lemma 3.1.8. With d as in (3.25) the observer acts on the quantized output measurements
ȳ = q(y). Furthermore, suppose that a controller is given in the form u = k(z). We can now
define a quantized output feedback law by

u = k(ẑ) = k(z + z̃),

where ẑ is the state estimate generated by the observer and z̃ = ẑ− z is the state estimation
error. We impose on the feedback law:

Assumption 3.3.1. The system ż = f(z, k(ẑ)) = f(z, k(z + z̃)) is ISDS , i.e.,

|z(t)| ≤ max

{
μ̂(η̂(|z0|), t), ess sup

τ∈[0,t]
μ̂(γ̂ISDS(|z̃(τ)|), t− τ)

}
(3.26)

for some μ̂ ∈ KLD, η̂ and γ̂ISDS ∈ K∞.

For a detailed discussion for the case of an ISS controller we refer to [72]. The overall
closed-loop system obtained by combining the plant, represented in the form (3.4) after a
suitable coordinate change, the observer and the control law can be written as

ż =

[
ż1

ż2

]
=

[
f1(z1, z2, k(ẑ))

f2(z1, z2, k(ẑ))

]
,

ẑ =

[
ẑ1

ẑ2

]
=

[
q(z1)

ξ̂ − l(q(z1))

]
,

˙̂
ξ = f2(q(z1), ξ̂ − l(q(z1)), k(ẑ)) + ∂l

∂z1
(q(z1))f1(q(z1), ξ̂ − l(q(z1)), k(ẑ)).

We know from the equation (3.13) in the proof of Theorem 3.1.8 that for e = ξ̂ − ξ, where
ξ = z2 + l(z1), the bound

|e(t)| ≤ max

{
μ̄(η̄(|e0|), t), ess sup

τ∈[0,t]
μ̄(γ̄ISDS(|d(τ)|), t− τ)

}

holds. Combining this with (3.26) and |z̃| ≤ |d| + |e| + θK(|d|), θK ∈ K, we obtain the
estimation ∣∣∣∣∣

(
z(t)

ξ̂(t)

)∣∣∣∣∣ ≤ max

{
μ

(
η

(∣∣∣∣∣
(
z0

ξ̂0

)∣∣∣∣∣
)
, t

)
, ν(d, t)

}
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for ‖z‖[0,t] ≤ K,
∥∥u[0,t]

∥∥ = ∥∥k(ẑ)[0,t]

∥∥ ≤ K and μ ∈ KLD, η ∈ K∞, where ν(d, t) :=ess sup
τ∈[0,t]

μ(γISDS(|d(τ)|), t− τ), γISDS ∈ K∞. This follows according to the lines in the proof of Theo-
rem 3.1.8.

Now, we consider an interconnected system of the form (3.15) or (3.17), respectively. The
output quantizer of the ith subsystem is given by qi : R

Pi → Qi, where Qi is a finite subset
of R

Pi , the quantization error by di := qi(yi)− yi, the quantizer’s range M̃i > 0 by |yi| ≤ M̃i,
which implies |di| ≤ Δi, where Δi > 0 is the error bound. We suppose that Assumption 3.2.1
holds and an observer for the ith subsystem has been designed by Theorem 3.2.2, which acts
on the quantized output measurements yi = qi(yi).

Suppose that a controller of the ith subsystem is given by ui = ki(zi) and the quantized
output feedback law is defined by

ui := ki(ẑi) = ki(zi + z̃i),

where ẑi is the state estimate generated by the observer and z̃i = ẑi−zi is the state estimation
error. In the rest of the section we suppose the following:

Assumption 3.3.2. 1. The ith subsystem żi = fi(y1, . . . , zi, . . . , yn, ki(ẑi)) is ISS, i.e.,

|zi(t)| ≤ max
{
β̂i(|z0

i |, t),max
j �=i

(γ̂ij)ISS(||(z̃j)[0,t]||), (γ̂i)ISS(||(z̃i)[0,t]||)
}

for some β̂i ∈ KL and (γ̂ij)ISS, (γ̂i)ISS ∈ K∞.

2. The ith subsystem żi = fi(y1, . . . , zi, . . . , yn, ki(ẑi)) is ISDS, i.e.,

|zi(t)| ≤ max
{
μ̂i(η̂i(|z0

i |), t),max
j �=i

ν̂ij(z̃j , t), ν̂i(z̃i, t)
}

for some μ̂i ∈ KLD, η̂ ∈ K∞ and

ν̂ij(z̃j , t) :=ess sup
τ∈[0,t]

μ̂i((γ̂ij)ISDS(|z̃j(τ)|), t− τ),

ν̂i(z̃i, t) :=ess sup
τ∈[0,t]

μ̂i((γ̂i)ISDS(|z̃i(τ)|), t− τ),

where (γ̂ij)ISDS, (γ̂i)ISDS ∈ K∞.

It can be verified, if Assumption 3.3.2, point 1. holds for the ith subsystem of the overall
closed-loop system obtained by combining the plant, the observer and the control law that it
holds∣∣∣∣∣
(
zi(t)

ξ̂i(t)

)∣∣∣∣∣ ≤ max

{
βi

(∣∣∣∣∣ z0
i

ξ̂0i

∣∣∣∣∣ , t
)
,max

j �=i
(γKi

ij )
ISS(||(dj)[0,t]||), (γKi

i )ISS(||(di)[0,t]||)
}
, (3.27)

for βi ∈ KL, (γKi
ij )

ISS and (γKi
i )ISS ∈ K∞, ||zj ||[0,t] ≤ Ki for j = 1, . . . , n, and ||(ui)[0,t]|| =

||(ki(ẑi))[0,t]|| ≤ Ki.
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If Assumption 3.3.2, point 2. holds for the ith subsystem of the overall closed-loop system
obtained by combining the plant, the observer and the control law, then it holds∣∣∣∣∣

(
zi(t)

ξ̂i(t)

)∣∣∣∣∣ ≤ max

{
μi

(
ηi

(∣∣∣∣∣ z0
i

ξ̂0i

∣∣∣∣∣
)
, t

)
,max

j �=i
νij(dj , t), νi(di, t)

}
(3.28)

for μi ∈ KLD, ηi, (γKi
ij )

ISDS, (γKi
i )ISDS ∈ K∞, ||zj ||[0,t] ≤ Ki, j = 1, . . . , n and ||(ui)[0,t]|| =

||(ki(ẑi))[0,t]|| ≤ Ki, where

νij(dj , t) :=ess sup
τ∈[0,t]

μi((γKi
ij )

ISDS(|dj(τ)|), t− τ),

νi(di, t) :=ess sup
τ∈[0,t]

μi((γKi
i )ISDS(|di(τ)|), t− τ).

Furthermore, we can show that if the small-gain condition (1.15) is satisfied for ΓISS =

((γKi
ij )

ISS)n×n or ΓISDS = ((γKi
ij )

ISDS)n×n, respectively, which defines a map as in (1.12), then
for the overall system it holds

1. ∣∣∣∣∣
(
z(t)

ξ̂(t)

)∣∣∣∣∣ ≤ max

{
β

(∣∣∣∣∣ z0

ξ̂0

∣∣∣∣∣ , t
)
, (γK)ISS(||d[0,t]||)

}
, (3.29)

2. ∣∣∣∣∣
(
z(t)

ξ̂(t)

)∣∣∣∣∣ ≤ max

{
μ

(
η

(∣∣∣∣∣ z0

ξ̂0

∣∣∣∣∣
)
, t

)
, ess sup

τ∈[0,t]
μi((γK)ISDS(|d(τ)|), t− τ)

}
. (3.30)

Let κl
i ∈ K∞ with the property |li(z1i)| ≤ κl

i(|z1i|), ∀z1i, κu
i ∈ K∞ such that |ki(zi)| ≤

κu
i (|zi|), ∀zi and define Ki := max

{
M̃i, κ

u
i (2M̃i +Δi + κl

i(M̃i +Δi))
}
.

With z1 = (zT
11, . . . , z

T
1n)

Twe give a counterpart of Proposition 1 in [110] for interconnected
systems, which provides estimations of the norm of the systems state and the observer state
using quantized output feedbacks.

Proposition 3.3.3. Let γKi
ij ≡ (γKi

ij )
ISDS ≡ (γKi

ij )
ISS and γKi

i ≡ (γKi
i )ISDS ≡ (γKi

i )ISDS.

1. Assume, max{maxj �=i γ
Ki
ij (Δj), γKi

i (Δi)} ≤ M̃i and∣∣∣∣∣
(
z0
i

ξ̂0i

)∣∣∣∣∣ < E0
i (3.31)

where E0
i > 0 is such that βi(E0

i , 0) = μi(M̃i, 0) = M̃i. Then, the corresponding solution
of the ith subsystem of the overall closed-loop system satisfies

lim sup
t→∞

∣∣∣∣∣
(
zi(t)

ξ̂i(t)

)∣∣∣∣∣ ≤ max
{
max
j �=i

γKi
ij (Δj), γKi

i (Δi)
}
. (3.32)
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2. Assume that 1. holds for all i = 1, . . . , n. Define M := max M̃i, Δ := maxΔi, K :=

maxKi and suppose that Γ = (γKi
ij )n×n satisfies the small-gain condition (1.15). Then,

the corresponding solution of the overall closed-loop system satisfies

lim sup
t→∞

∣∣∣∣∣
(
z(t)

ξ̂(t)

)∣∣∣∣∣ ≤ γK(Δ). (3.33)

Proof. Ad point 1.: Note that it holds |yi(t)| = |z1i(t)| ≤ M̃i, |qi(z1i(t)) − z1i(t)| = |di(t)| ≤
Δi. As long as it holds

∣∣∣∣∣
(
zi(t)

ξ̂i(t)

)∣∣∣∣∣ ≤ M̃i, we have |zi(t)| ≤ M̃i ≤ Ki and

|ui(t)| = |ki(ẑi(t))| ≤ κu
i (|ẑi(t)|) ≤ κu

i (|qi(z1i(t))|+ |ξ̂i(t)|+ |li(qi(z1i(t)))|)
≤ κu

i (M̃i +Δi + M̃i + κl
i(M̃i +Δi)) ≤ K.

Define T := sup

{
t ≥ 0 :

∣∣∣∣∣
(
zi(t)

ξ̂i(t)

)∣∣∣∣∣ < M̃i

}
≤ ∞. This is well-defined, since (3.31) and

βi(E0
i , 0) ≥ E0

i = μi(E0
i , 0) holds. It follows that (3.27) or (3.28), respectively, is true for

t ∈ [0, T ] and we obtain ∣∣∣∣∣
(
zi(t)

ξ̂i(t)

)∣∣∣∣∣ < M̃i, ∀t ∈ [0, T ] (3.34)

using the requirements of this proposition. Now, assume that T is finite. Therefore, there

must exists a T ∗ such that

∣∣∣∣∣
(
zi(T ∗)
ξ̂i(T ∗)

)∣∣∣∣∣ = M̃i. But from (3.27) or (3.28), respectively, and

from the above calculations it holds

∣∣∣∣∣
(
zi(T ∗)
ξ̂i(T ∗)

)∣∣∣∣∣ < M̃i, which contradicts the assumption

that T is finite. It follows that T is infinite and from the fact that zi and ξ̂i are continuous
the estimation (3.34) holds for all t ≥ 0.
Now, since βi ∈ KL for every ε > 0 there exists T (ε) such that

βi

(∣∣∣∣∣
(
z0
i

ξ̂0i

)∣∣∣∣∣ , t
)
≤ ε, ∀t ≥ T (ε)

and therefore ∣∣∣∣∣
(
zi(t)

ξ̂i(t)

)∣∣∣∣∣ ≤ max
{
max
j �=i

γKi
ij (Δj), γKi

i (Δi)
}
, ∀t ≥ T (ε),

which proves point 1.
Ad point 2.: This follows by the same steps as for the proof of point 1. using (3.29) or

(3.30), respectively, under the small-gain condition.

3.3.1 Dynamic quantizers

Now, we are going to improve the mentioned results in order to get smaller bounds (3.32)
and (3.33) using a dynamic quantizer, see [70, 72]. Here, we obtain asymptotic convergence
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in (3.32) and (3.33) and we use the zooming-in strategy. We consider single systems of the
form (3.4) and the dynamic quantizer

qλ(y) := λq( y
λ),

where λ > 0 is the zoom variable. The range of this quantizer is Mλ and Δλ is the quan-
tization error. If we increase λ this is referred to the zooming-out strategy and corresponds
to a larger range and quantization error and by a decreasing λ we obtain a smaller range
and smaller quantization error, referred to the zooming-in strategy. The parameter λ can be
updated continuously, but the update of λ for discrete instants of time has some advantages,
see [70]. Using a discrete time the dynamics of the system change suddenly and is referred
to hybrid feedback stabilization, which was investigated in [70].
Considering interconnected systems of the form (3.15) or (3.17), respectively, the dynamic

quantizer of the ith subsystem is defined by qλi
i (yi) := λiqi( yi

λi
), λi > 0 with range M̃iλi and

quantization error Δiλi. Note that to get contraction of the bound (3.32) it must hold that

max{maxj �=i γ
Ki
ij (Δj), γKi

i (Δi)} ≤ E0
i and

βi(max{maxj �=i γ
Ki
ij (Δj), γKi

i (Δi)}, 0) = μi(max{maxj �=i γ
Ki
ij (Δj), γKi

i (Δi)}, 0) < M̃i.

Using this, we can find a λi < 1 such that

βi(max{max
j �=i

γKi
ij (Δj), γKi

i (Δi)}, 0) = μi(max{max
j �=i

γKi
ij (Δj), γKi

i (Δi)}, 0) < M̃iλi.

Now, for Eλi
i > 0 such that βi(Eλi

i , 0) = μi(M̃iλi, 0) = M̃iλi there is a time t̃ for which∣∣∣∣∣
(
zi(t̃)

ξ̂i(t̃)

)∣∣∣∣∣ < Eλi
i . Define K

λi
i := max

{
M̃iλi, κ

u
i (2M̃iλi +Δiλi + κl

i(M̃iλi +Δiλi))
}
and

applying the same analysis as in Proposition 3.3.3, we obtain a smaller bound in (3.32):

lim sup
t→∞

∣∣∣∣∣
(
zi(t)

ξ̂i(t)

)∣∣∣∣∣ ≤ max{max
j �=i

γ
K

λi
i

ij (Δjλi), γ
K

λi
i

i (Δiλi)}. (3.35)

Then, we can choose a smaller value of λi and repeat the procedure. Theoretically, we
can decrease λi to 0 and we obtain asymptotic convergence of the ith subsystem. Practically,
the choice of the size of λi depends on limitations, which determines the size of the bound
(3.35), see [72]. The described procedure can be applied to the overall closed-loop system and

we also obtain a smaller bound in (3.33) provided that Γ = (γK
λi
i

ij )n×n satisfies the small-gain
condition. If we can decrease λi to 0, for all i = 1, . . . , n, we obtain asymptotic convergence
of the overall closed-loop system. We summarize the observations in the following corollary:

Corollary 3.3.4. 1. Under a dynamic quantizer of the form qλi
i (yi) := λiqi( yi

λi
), λi > 0,

it holds for the corresponding solution of the ith subsystem of the overall closed-loop
system:

λi → 0, ⇒ lim sup
t→∞

∣∣∣∣∣
(
zi(t)

ξ̂i(t)

)∣∣∣∣∣ → 0.
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2. Assume that 1. holds for all i = 1, . . . , n. Define λ := maxλi. If Γ = (γK
λi
i

ij )n×n satisfies
the small-gain condition, then for the corresponding solution of the overall closed-loop
system it holds:

λ → 0, ⇒ lim sup
t→∞

∣∣∣∣∣
(
z(t)

ξ̂(t)

)∣∣∣∣∣ → 0.

Proof. Ad point 1.: Applying Proposition 3.3.3, point 1. by using the dynamic quantizer
qλi
i (yi) = λiqi( yi

λi
), λi > 0, we obtain (3.35). If λi → 0, the assertion follows.

Ad point 2.: This follows, using Proposition 3.3.3, point 2.

Considering another type of systems, namely systems with time-delays, we provide tools
to analyze such interconnections in view of ISS in the next chapter.



Chapter 4

ISS for time-delay systems

In this chapter, we state two main results, an ISS-Lyapunov-Razumikhin and an ISS-Lyapu-
nov-Krasovskii small-gain theorem for general networks with time-delays. They provide tools
how to check, whether a network possesses the ISS property. As an application, a scenario of
a production network with transportations is analyzed in view of ISS.

Considering systems of the form (1.1) described by ODEs, the future state of the system
is independent of the past states. However, in applications the future state of a system
can depend on past values of the state, see [44]. The systems that include such kind of
delays are called time-delay systems (TDS) and they have applications in many areas such as
biology, economics, mechanics, physics and social sciences [5, 65], for example. In production
networks, the time needed for transportation of parts from one location to another can be
considered as time-delay, for example. According to [44, 48], the dynamics of TDS can be
modeled using retarded functionals differential equations of the form

ẋ(t) = f(xt, u(t)), t ∈ R+,

x0(τ) = ξ(τ), τ ∈ [−θ, 0] ,
(4.1)

where x ∈ R
N , u ∈ L∞(R+,R

m) and “·” represents the right-hand side derivative. θ is the
maximum involved delay and f : C

(
[−θ, 0] ;RN

)×R
m → R

N is locally Lipschitz continuous
on any bounded set. This guarantees that the system (4.1) admits a unique solution on
a maximal interval [−θ, b), 0 < b ≤ +∞, which is locally absolutely continuous, see [44],
Section 2.6. We denote the solution by x(t; ξ, u) or x(t) for short, satisfying the initial
condition x0 ≡ ξ for any ξ ∈ C([−θ, 0],RN ).

During the last fifty years, many interesting mathematical problems according to TDS
were investigated and in particular a lot of results according to stability of TDS were obtained,
see for example [44, 65, 42, 82]. A common tool for the stability analysis of TDS are Lyapunov
functionals, introduced by Krasovskii in [67], which are a natural generalization of a Lyapunov
function for systems without time-delays. The construction of such a functional is more
challenging in contrast to the usage of a Lyapunov function. Therefore, another approach to
investigate TDS in view of stability is a Lyapunov-Razumikhin function, see [44], Chapter
5.4.
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Overviews of existing stability results for TDS can be found in [44, 42]. Investigating
stability and the problem of stabilization of linear time-delay systems, one can find the existing
results in [82]. Considering nonlinear continuous-time TDS with external inputs and the
notion of ISS, it was shown in [121] that the existence of an ISS-Lyapunov-Razumikhin
function is sufficient for the ISS property under the assumption that the internal Lyapunov
gain is less than the identity function. For discrete-time TDS such type of a theorem was
proved in [75]. Using Lyapunov-Krasovskii functionals, a theorem, which implies ISS for
continuous-time TDS under the existence of an ISS-Lyapunov-Krasovskii functional, was
proved in [87]. However, the necessity of the existence of such a Lyapunov function or
functional for the ISS property is not proved yet.

Note that a TDS can be unstable even if the according delay-free system is 0-GAS or ISS,
for example. To demonstrate this, we consider the following example:

Example 4.0.5. Consider the system

ẋ(t) = −x(t− τ),
x0(s) = ξ(s), s ∈ [−τ, 0],

where x ∈ R, τ > 0 is the delay and ξ : [−τ, 0]→ R is the initial (continuous) function of the
system. Obviously, the delay-free system ẋ = −x is 0-GAS for any initial value x0 ∈ R. Also,
for time-delays τ ≤ 1.5 the system is 0-GAS as shown in Figure 4.1 with ξ ≡ 10. If τ = 2

and ξ ≡ 10 are chosen, then the system becomes unstable as it is displayed in Figure 4.2.

Figure 4.1: Systems behavior with τ = 1.5. Figure 4.2: Systems behavior with τ = 2.

We are interested in the ISS property for interconnections of systems with time-delays.
In this chapter, we utilize on the one hand ISS-Lyapunov-Razumikhin functions and on the
other hand ISS-Lyapunov-Krasovskii functionals to prove that a network of ISS systems with
time-delays has the ISS property under a small-gain condition, provided that each subsys-
tem has an ISS-Lyapunov-Razumikhin function or an ISS-Lyapunov-Krasovskii functional,
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respectively. To prove this, we construct the ISS-Lyapunov-Razumikhin function and ISS-
Lyapunov-Razumikhin functional, respectively, and the corresponding gains of the whole
system.
This chapter is organized as follows: In Section 4.1, we investigate the (L)ISS property

of TDS and prove an ISS-Lyapunov-Razumikhin theorem. The ISS small-gain theorems
for interconnected time-delay systems can be found in Section 4.2, where Subsection 4.2.1
contains the ISS-Lyapunov-Razumikhin type theorem and Subsection 4.2.2 the ISS-Lyapunov-
Krasovskii type theorem. In Section 4.3, we apply the mentioned results to logistic systems,
namely production networks. Finally, Section 7.3 concludes the chapter with a summary and
an outlook.

4.1 ISS for single time-delay systems

The notion of ISS for TDS reads as follows:

Definition 4.1.1 ((L)ISS for TDS). The system (4.1) is called LISS in maximum formula-
tion, if there exist ρ > 0, ρu > 0, β ∈ KL and γ ∈ K such that for all initial functions ξ
satisfying ‖ξ‖[−θ,0] ≤ ρ and all inputs u satisfying ‖u‖ ≤ ρu it holds

|x(t)| ≤ max
{
β(‖ξ‖[−θ,0] , t), γ(‖u‖)

}
(4.2)

for all t ∈ R+. If we replace (4.2) by

|x(t)| ≤ β(‖ξ‖[−θ,0] , t) + γ(‖u‖),

then the system (4.1) is called ISS in summation formulation. If ρ = ρu =∞, then the system
(4.1) is called ISS (in maximum or summation formulation).

To check, whether a TDS possesses the ISS property, we define (L)ISS-Lyapunov-Razu-
mikhin functions, introduced in [121].

Definition 4.1.2 ((L)ISS-Lyapunov-Razumikhin function). A locally Lipschitz continuous
function V : D → R+, with D ⊂ R

N open, is called a LISS-Lyapunov-Razumikhin function
of the system (4.1), if there exist ρ > 0, ρu > 0, ψ1, ψ2 ∈ K∞, χd, χu, α ∈ K such that
B(0, ρ) ⊂ D and the following conditions hold:

ψ1(|φ(0)|) ≤ V (φ(0)) ≤ ψ2(|φ(0)|), ∀φ(0) ∈ D, (4.3)

V (φ(0)) ≥ χd
(∥∥V d(φ)

∥∥
[−θ,0]

)
+ χu(|u|) ⇒ D+V (φ(0)) ≤ −α(V (φ(0))) (4.4)

for all ‖φ‖[−θ,0] ≤ ρ, φ ∈ C
(
[−θ, 0] ;RN

)
and all |u| ≤ ρu, where V d : C

(
[−θ, 0] ;RN

) →
C ([−θ, 0] ;R+) with V d(xt)(τ) := V (x(t + τ)), τ ∈ [−θ, 0]. D+V (x(t)) denotes the upper
right-hand side derivative of V along the solution x(t), which is defined as

D+V (x(t)) := lim sup
h→0+

V (x(t+h))−V (x(t))
h .

If ρ = ρu =∞, then the function V is called an ISS-Lyapunov-Razumikhin function.
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Note that we get an equivalent definition of a (L)ISS-Lyapunov-Razumikhin function, if
we replace (4.4) by

V (φ(0)) ≥ max
{
χ̃d

(∥∥∥V d(φ)
∥∥∥

[−θ,0]

)
, χ̃u(|u|)

}
⇒ D+V (φ(0)) ≤ −α̃(V (φ(0))), (4.5)

where χ̃d, χ̃u, α̃ ∈ K and χd, χu, α are different, in general. With this definition we state that
the existence of a LISS-Lyapunov-Razumikhin function implies LISS:

Theorem 4.1.3. If there exists a LISS-Lyapunov-Razumikhin function V for system (4.1)
and χd(s) < s, s ∈ R+, s > 0, then the system (4.1) is LISS in summation formulation. If
an LISS-Lyapunov-Razumikhin function with (4.5) and χ̃d(s) < s, s ∈ R+, s > 0 is used,
then the system (4.1) is LISS in maximum formulation.

Proof. We use (4.5) and prove the LISS property in maximum formulation. The proof using
the summation formulation follows similarly. We use the idea of the proof of Theorem 1 in
[121] with according changes to the LISS property.

Using a standard comparison principle (see [74], Lemma 4.4 or [121], Lemma 1), we
obtain from (4.5) that it holds

V (x(t)) ≤ max
{
β̃(V (x0), t), χ̃d

(
sup
s≤t

∥∥∥V d(xs)
∥∥∥

[−θ,0]

)
, χ̃u(‖u‖)

}
, (4.6)

β̃ ∈ KL. It holds

sup
s≤t

∥∥∥V d(xs)
∥∥∥

[−θ,0]
≤ max

{
β̃

(∥∥∥V d(x0)
∥∥∥

[−θ,0]
, 0
)
, sup

s≤t
V (x(s))

}
, (4.7)

taking the supremum over [0, t] in (4.6) and inserting it into (4.7), we obtain, using χ̃d(s) <

s, s ∈ R+ and the fact that for all b1, b2 > 0 from b1 ≤ max{b2, χ̃d(b1)} it follows b1 ≤ b2:

sup
s≤t

∥∥∥V d(xs)
∥∥∥

[−θ,0]
≤ max

{
β̃

(∥∥∥V d(x0)
∥∥∥

[−θ,0]
, 0
)
, χ̃d

(
sup
s≤t

∥∥∥V d(xs)
∥∥∥

[−θ,0]

)
, χ̃u(‖u‖)

}
and therefore

|x(t)| ≤ max
{
ψ−1

1 (β̃(ψ2(‖ξ‖[−θ,0]), 0)), ψ
−1
1 (χ̃u(‖u‖))

}
, ∀t ≥ 0,

for all ‖ξ‖[−θ,0] ≤ ρ, ξ ∈ C
(
[−θ, 0] ;RN

)
and all ‖u‖ ≤ ρu. Given ε > 0 and define

κ := max{β̃(ψ2(ρ), 0), χ̃u(ρu)}. Note that it holds supt≥s

∥∥V d(xs)
∥∥

[−θ,0]
≤ κ, which im-

plies ‖V d(x0)‖[−θ,0] ≤ κ. Let δ2 > 0 be such that β̃(κ, δ2) ≤ ψ1(ε) and let δ1 > θ. Then, by
the estimate (4.6) we have

sup
t≥s≥δ1+δ2

∥∥∥V d(xs)
∥∥∥

[−θ,0]
≤ sup

t≥s+δ2

V (x(s))

≤ max

{
ψ1(ε), χ̃d

(
sup

s∈[0,t]

∥∥∥V d(xs)
∥∥∥

[−θ,0]

)
, χ̃u(‖u‖)

}
.
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It follows

sup
t≥s≥2(δ1+δ2)

∥∥∥V d(xs)
∥∥∥

[−θ,0]
≤ max

{
ψ1(ε), χ̃d

(
sup

s∈[δ1+δ2,t]

∥∥∥V d(xs)
∥∥∥

[−θ,0]

)
, χ̃u(‖u‖)

}

≤ max

{
ψ1(ε), (χ̃d)2

(
sup

s∈[0,t]

∥∥∥V d(xs)
∥∥∥

[−θ,0]

)
, χ̃u(‖u‖)

}
.

Since χ̃d < id, there exists a number ñ ∈ N, which depends on κ and ε such that

(χ̃d)ñ(κ) ≤ max {ψ1(ε), χ̃u(‖u‖)} .

By induction we conclude that

sup
t≥s≥ñ(δ1+δ2)

∥∥∥V d(xs)
∥∥∥

[−θ,0]
≤ max {ψ1(ε), χ̃uγu(‖u‖)}

and finally we obtain

|x(t)| ≤ max
{
ε, ψ−1

1 (χ̃u(‖u‖))} , ∀t ≥ ñ(δ1 + δ2) (4.8)

for all ‖ξ‖[−θ,0] ≤ ρ, ξ ∈ C (
[−θ, 0] ;RN

)
and all ‖u‖ ≤ ρu.

Using the same technique for the construction of β as in the proof of Lemma 3.10 in [17],
we obtain

|x(t)| ≤ max
{
β(‖ξ‖[−θ,0], t), γ(‖u‖)

}
,

for all ‖ξ‖[−θ,0] ≤ ρ, and all ‖u‖ ≤ ρu, where γ(r) := ψ−1
1 (χ̃u(r)), r ≥ 0.

Note that in [121] a similar theorem as Theorem 4.1.3 for the ISS property was proved, but
the ISS property defined in [121] differs from that in Definition 4.1.1. For systems without
time-delays these definitions are equivalent, see [120]. Until now, it is an open problem
whether these definitions are equivalent for time-delay systems. A crucial step needed for
the proof is that the combination of global stability and the asymptotic gain property is
equivalent to ISS, which is not proved yet, see [123, 122]. Nevertheless, the mentioned result
in [121] is also valid using the ISS property in Definition 4.1.1.

Theorem 4.1.4. If there exists an ISS-Lyapunov-Razumikhin function V for system (4.1)
and χd(s) < s, s ∈ R+, s > 0, then the system (4.1) is ISS in summation formulation.
If an ISS-Lyapunov-Razumikhin function with (4.5) is used, then the system (4.1) is ISS in
maximum formulation, if χ̃d(s) < s, s ∈ R+, s > 0.

The proof can be found in [121] with changes according to the construction of the KL-
function β as in the proof of Theorem 4.1.3 and the proof of Lemma 3.10 in [17].

Another approach to check, whether a system of the form (4.1) has the ISS property was
introduced in [87]. There, ISS-Lyapunov-Krasovskii functionals are used. Given a locally Lip-
schitz continuous functional V : C

(
[−θ, 0] ;RN

)→ R+, the upper right-hand side derivative



60 4.1. ISS for single time-delay systems

D+V of the functional V along the solution x(t; ξ, u) is defined according to [44], Chapter
5.2:

D+V (φ, u) := lim sup
h→0+

1
h

(
V
(
xt+h

)
− V (φ)

)
, (4.9)

where xt+h ∈ C (
[−θ, 0] ;RN

)
is generated by the solution x(t;φ, u) of ẋ(t) = f(xt, u(t)), t ∈

(t0, t0 + h) with xt0 := φ ∈ C (
[−θ, 0] ;RN

)
.

Remark 4.1.5. Note that in contrast to (4.9), the definition of D+V in [87] is slightly
different, since the functional is assumed to be only continuous and in this case, D+V can
take infinite values. Nevertheless, the results in [87] also hold true, if the functional is chosen
to be locally Lipschitz continuous, according to the results in [85], [86] and using (4.9).

By ‖·‖a, we indicate any norm in C
(
[−θ, 0] ;RN

)
such that for some positive reals c1, c2

the following inequalities hold

c1 |φ(0)| ≤ ‖φ‖a ≤ c2 ‖φ‖[−θ,0] , ∀φ ∈ C
(
[−θ, 0] ;RN

)
.

Definition 4.1.6 (ISS-Lyapunov-Krasovskii functional). A locally Lipschitz continuous func-
tional V : C

(
[−θ, 0] ;RN

) → R+ is called an ISS-Lyapunov-Krasovskii functional for the
system (4.1), if there exist functions ψ1, ψ2 ∈ K∞ and functions χ, α ∈ K such that

ψ1 (|φ(0)|) ≤ V (φ) ≤ ψ2 (‖φ‖a) , (4.10)

V (φ) ≥ χ (|u|) ⇒ D+V (φ, u) ≤ −α (V (φ)) , (4.11)

for all φ ∈ C (
[−θ, 0] ;RN

)
, u ∈ L∞(R+,R

m).

The next theorem is a counterpart to Theorem 4.1.4 with according changes to Lyapunov-
Krasovskii functionals.

Theorem 4.1.7. If there exists an ISS-Lyapunov-Krasovskii functional V for the system
(4.1), then the system (4.1) has the ISS property.

Proof. This follows by Theorem 3.1 in [87] with functions ρ and α3 used there defining
ρ := ψ−1

2 ◦ χ and

D+V (φ, u) ≤ −α3(||φ||a) ≤ −α(V (φ)),

where α := α3 ◦ ψ−1
2 and the functional is chosen locally Lipschitz continuous according to

the results in [85], [86].

Remark 4.1.8. We conjecture that an LISS version of Theorem 4.1.7 can be stated. The
proof will follow the lines of the one of Theorem 3.1 in [87] with according changes to the
LISS property. We skip the formulation of the theorem and its proof.



Chapter 4. ISS for time-delay systems 61

Remark 4.1.9. By an ISS-Lyapunov-Razumikhin function and an ISS Lyapunov-Krasovskii
functional, there exists two tools to check, whether a TDS has the ISS property. For some
systems, the usage of a Lyapunov-Krasovskii functional is more challenging in contrast to the
usage of a Lyapunov-Razumikhin function, because the construction of such a functional is
not always an easy task. An approach to construct Lyapunov-Krasovskii functionals based on
decomposition of a TDS can be found in [51]. More examples can be found in [87, 44].

In the next section, we consider interconnected TDS and develop tools to check, whether
a network of TDS has the ISS property.

4.2 ISS for interconnected time-delay systems

In this section, we provide ISS small-gain theorems for interconnected TDS using ISS-
Lyapunov-Razumikhin functions and ISS-Lyapunov-Krasovskii functionals.

We consider n ∈ N interconnected TDS of the form

ẋi(t) = fi

(
xt

1, . . . , x
t
n, u(t)

)
, i = 1, . . . , n, (4.12)

where xt
i ∈ C

(
[−θ, 0] ;RNi

)
, xt

i(τ) := xi(t+ τ), τ ∈ [−θ, 0] , xi ∈ R
Ni and u ∈ L∞(R+,R

m).
θ denotes the maximal involved delay and xt

j , j 
= i can be interpreted as internal inputs of the
ith subsystem. The functionals fi : C

(
[−θ, 0] ;RN1

)× . . .×C (
[−θ, 0] ;RNn

)×R
m → R

Ni are
locally Lipschitz continuous on any bounded set. We denote the solution of a subsystem by
xi(t; ξi, u) or xi(t) for short, satisfying the initial condition x0

i ≡ ξi for any ξi ∈ C([−θ, 0],RNi).

The (L)ISS property for a subsystem of (4.12) reads as follows: The i-th subsystem
of (4.12) is LISS, if there exist βi ∈ KL, γd

ij , γ
u
i ∈ K∞ ∪ {0} , j = 1, . . . , n, j 
= i and

ρj
i > 0, ρu

i > 0, j = 1, . . . , n such that for all ‖ξi‖[−θ,0] ≤ ρi
i, ‖xj‖[−θ,∞) ≤ ρj

i , j 
= i, ‖u‖ ≤ ρu
i

and for all t ∈ R+ it holds

|xi(t)| ≤ max
{
βi(‖ξi‖[−θ,0] , t),max

j,j �=i
γd

ij(‖xj‖[−θ,t]), γ
u
i (‖u‖)

}
. (4.13)

If ρj
i = ρu

i =∞, then the i-th subsystem of (4.12) is called ISS. This is referred to (L)ISS in
maximum formulation. We get an equivalent formulation, if we replace (4.13) by

|xi(t)| ≤ βi(‖ξi‖[−θ,0] , t) +
∑
j,j �=i

γd
ij(‖xj‖[−θ,t]) + γu

i (‖u‖),

where we use the same function βi and same gains for simplicity.

If we define N :=
∑
Ni, x := (xT

1 , . . . , x
T
n )

T and f := (fT
1 , . . . , f

T
n )

T , then (4.12) can be
written as a system of the form (4.1), which we call the whole system. We investigate under
which conditions the whole system has the ISS property and utilize Lyapunov-Razumikhin
functions as well as Lyapunov-Krasovskii functionals.
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4.2.1 Lyapunov-Razumikhin approach

A locally Lipschitz continuous function Vi : Di → R+, with Di ⊂ R
Ni open, is an LISS-

Lyapunov-Razumikhin function for the i-th subsystem of (4.12), if there exist functions
Vj , j = 1, . . . , n, which are continuous, positive definite and locally Lipschitz continuous on
R

Nj ⊃ Dj\{0}, ρj
i > 0, ρu

i > 0, functions ψ1i, ψ2i ∈ K∞, χ̃u
i ∈ K ∪ {0}, χ̃d

ij ∈ K∞ ∪ {0},
α̃i ∈ K, j = 1, . . . , n, such that B(0, ρi

i) ⊂ Di and the following conditions hold:

ψ1i(|φi(0)|) ≤ Vi(φi(0)) ≤ ψ2i(|φi(0)|), ∀φi(0) ∈ Di, (4.14)

Vi(φi(0)) ≥ max
{
max

j
χ̃d

ij

(∥∥∥V d
j (φj)

∥∥∥
[−θ,0]

)
, χ̃u

i (|u|)
}

⇒ D+Vi(φi(0)) ≤ −α̃i(Vi(φi(0))),
(4.15)

for all ‖φj‖[−θ,0] ≤ ρj
i , φj ∈ C

(
[−θ, 0] ;RNj

)
, j = 1, . . . , n and all |u| ≤ ρu

i . (4.15) can be
replaced by

Vi(φi(0)) ≥
∑

j

χd
ij

(∥∥∥V d
j (φj)

∥∥∥
[−θ,0]

)
+ χu

i (|u|) ⇒ D+Vi(φi(0)) ≤ −αi(Vi(φi(0))), (4.16)

where χd
ij , χ

u
i , αi ∈ K and χ̃d

ij , χ̃
u
i , α̃i are different, in general. Without loss of generality, we

use χd
ij and χ

u
i for the summation and maximum formulation. If ρ

j
i = ρu

i = ∞, then Vi is
called an ISS-Lyapunov-Razumikhin function for the i-th subsystem of (4.12). We collect all
the gains in a gain-matrix Γ := (χd

ij)n×n, i, j = 1, . . . , n, which defines a map Γ : R
n
+ → R

n
+

by

Γ(s) =
(
max

j
χd

1j(sj), . . . ,max
j
χd

nj(sj)
)T

, s ∈ R
n
+

using (4.15) and considering (4.16) by

Γ(s) =

⎛⎝∑
j

χd
1j(sj), . . . ,

∑
j

χd
nj(sj)

⎞⎠T

, s ∈ R
n
+. (4.17)

Recall that we get for v, w ∈ R
n
+: v ≥ w ⇒ Γ(v) ≥ Γ(w). In contrast to interconnected

delay-free systems the gain-matrix Γ using the Razumikhin approach has not necessarily zero
entries on the main diagonal.
To check, whether a network of TDS possesses the ISS property, we state the following

theorem. It provides a tool utilizing ISS-Lyapunov-Razumikhin functions to verify ISS of a
network under a small-gain condition.

Theorem 4.2.1. (ISS-Lyapunov-Razumikhin theorem for general networks with time-delays)
Consider the interconnected system (4.12). Each subsystem has an ISS-Lyapunov-Razumikhin
function Vi with summation formulation (4.16). If the corresponding gain-matrix Γ, given by
(4.17), satisfies the small-gain condition (1.16), then the function

V (x) = max
i
{σ−1

i (Vi(xi))}
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is the ISS-Lyapunov-Razumikhin function for the whole system of the form (4.1), which is
ISS in summation formulation, where σ = (σ1, . . . , σn)T is an Ω-path as in Definition 1.2.2.
The gains are given by

χd(r) := max
ij

σ−1
j ((χd

ij)
−1((Id+	

2 )
−1)(χd

ij(σj(r)))),

χu(r) := max
i
λ−1(χu

i (r))

for r ≥ 0, where λ(r) := mink λk(r), λk(r) := 	
2 (
∑
χd

kj(σk(r))).

Remark 4.2.2. If we consider in Theorem 4.2.1 ISS-Lyapunov-Razumikhin functions Vi with
maximum formulation (4.15) and Γ satisfies the SGC (1.15), then the whole system is ISS in
maximum formulation and the Lyapunov gains are given by

χd(r) := max
i,j

σ−1
i (χd

ij(σj(r))),

χu(r) := max
i
σ−1

i (χu
i (r)).

Proof. All subsystems of (4.12) have an ISS-Lyapunov-Razumikhin function Vi, i = 1, . . . , n,
i.e., Vi satisfies (4.14) and (4.16). From the small-gain condition (1.16) for Γ, given by
(4.17), it follows that there exists an Ω-path σ = (σ1, . . . , σn)T as in Definition 1.2.2 and
Proposition 1.2.3. Note that σ−1

i ∈ K∞, i = 1, . . . , n. Let 0 
= x = (xT
1 , . . . , x

T
n )

T . We define

V (x) := max
i
{σ−1

i (Vi(xi))}

as the ISS-Lyapunov-Razumikhin function candidate for the overall system. Note that V is
locally Lipschitz continuous. V satisfies (4.3), which can be easily checked defining ψ1(r) :=

mini σ
−1
i (ψ1i( r√

n
)), ψ2(r) := maxi σ

−1
i (ψ2i(r)), r > 0 and using the condition (4.14).

Let I := {i ∈ {1, . . . , n}| V (x) = σ−1
i (Vi(xi)) ≥ maxj,j �=i{σ−1

j (Vj(xj))}}. Fix an i ∈ I.
We define χd(r) := maxij σ

−1
j ((χd

ij)
−1((Id+	

2 )
−1)(χd

ij(σj(r)))), χu(r) := maxi λ
−1(χu

i (r)),
r > 0, where λ(r) := mink λk(r), λk(r) := 	

2 (
∑
χd

kj(σk(r))) and assume

V (x(t)) ≥ χd

(∥∥∥V d(xt)
∥∥∥

[−θ,0]

)
+ χu(|u(t)|).

Note that χd(r) < r. It follows from
(
Γ ◦D) (σ(r)) < σ(r), ∀r > 0 that it holds

Vi(xi(t)) = σi(V (x(t))) > (Id+)
n∑

j=1

χd
ij(σj(V (x(t))))

≥
n∑

j=1

χd
ij

(∥∥∥V d
j (x

t
j)
∥∥∥

[−θ,0]

)
+ χu

i (|u(t)|).

From (4.16) we obtain

D+V (x(t)) = D+σ−1
i (Vi(xi(t))) = (σ−1

i )′(Vi(xi(t)))D+Vi(xi(t))

≤ −(σ−1
i )′(Vi(xi(t)))αi(Vi(xi(t))) = −ᾱi(V (x(t))),
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where ᾱi(r) := (σ−1
i )′(σi(r))αi(σi(r)), r > 0. By definition of α := mini ᾱi, the function

V satisfies (4.4). All conditions of Definition 4.1.2 are satisfied and V is the ISS-Lyapunov-
Razumikhin function of the whole system of the form (4.1). By Theorem 4.1.4, the whole
system is ISS in summation formulation. Using the maximum formulation in (4.15), (4.5) and
of the ISS property, the proof follows the same steps as for the summation formulation.

For many applications, an LISS small-gain theorem for TDS using Lyapunov-Razumikhin
functions will be beneficial due to restrictions on the initial value or the input function in
practice. This is provided in the next corollary.

Corollary 4.2.3. Consider the interconnected system (4.12) and assume that each subsystem
has a LISS-Lyapunov-Razumikhin function Vi(xi) in summation or maximum formulation, for
all ‖φj‖[−θ,0] ≤ ρj

i , φj ∈ C
(
[−θ, 0] ;RNj

)
with φj(0) = xj, j = 1, . . . , n and all |u| ≤ ρu

i . If
the corresponding gain-matrix Γ satisfies the LSGC (1.14), then the function V as defined
in Theorem 4.2.1 is the LISS-Lyapunov-Razumikhin function for the whole system with φ =
(φ1, . . . , φn)T , ‖φi‖[−θ,0] ≤ ρ̃i, φi ∈ C

(
[−θ, 0] ;RNi

)
, where ρ̃i := min{w∗i , ψ−1

i2 (w
∗
i ),minj ρ

j
i}

such that ρ := min ρ̃i and ρu := min ρu
i . Furthermore, the whole system is LISS in summation

or maximum formulation, respectively.

Proof. Since Γ satisfies the LSGC (1.14), we know that there exists a strictly increasing path
σ : [0, 1]→ [0, w∗], which satisfies Γ(σ(r)) < σ(r), ∀r ∈ (0, 1] and σ(0) = 0, σ(1) = w∗. The
LISS-Lyapunov-Razumikhin function candidate V (x) := maxi{σ−1

i (Vi(xi))} is well defined,
because ‖φi‖[−θ,0] ≤ ψ−1

i2 (w
∗
i ), φi ∈ C

(
[−θ, 0] ;RNi

)
with φi(0) = xi implies Vi(xi) ≤ w∗i .

Following the same steps as in the proof of Theorem 4.2.1, we conclude that V (x) is the
LISS-Lyapunov-Razumikhin function for the whole system.

In the next subsection, we prove a small-gain theorem using Lyapunov-Krasovskii func-
tionals for subsystems to check, whether a network of TDS possesses the ISS property.

4.2.2 Lyapunov-Krasovskii approach

The Krasovskii functionals for subsystems are as follows:
A locally Lipschitz continuous functional Vi : C([−θ, 0];RNi) → R+ is an ISS-Lyapunov-

Krasovskii functional of the i-th subsystem of (4.12), if there exist functionals Vj , j = 1, . . . , n,
which are positive definite and locally Lipschitz continuous on C([−θ, 0];RNj ), functions
ψ1i, ψ2i ∈ K∞, χ̃ij , χ̃i ∈ K ∪ {0}, α̃i ∈ K, j = 1, . . . , n, i 
= j such that

ψ1i (|φi(0)|) ≤ Vi(φi) ≤ ψ2i (‖φi‖a) , ∀φi ∈ C
(
[−θ, 0] ,RNi

)
(4.18)

Vi (φi) ≥ max {maxj,j �=i χ̃ij(Vj(φj)), χ̃i (|u|)} ⇒ D+Vi (φi, u) ≤ −α̃i (Vi (φi)) , (4.19)

for all φi ∈ C
(
[−θ, 0] ,RNi

)
, u ∈ L∞(R+,R

m), i = 1, . . . , n. We get an equivalent formulation,
if we replace (4.19) by

Vi (φi) ≥
∑
j,j �=i

χij(Vj(φj)) + χi (|u|) ⇒ D+Vi (φi, u) ≤ −αi (Vi (φi)) , (4.20)
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where the gains are different in general. Without loss of generality, we use χij and χi for
the summation and maximum formulation. The gain-matrix is defined by Γ := (χij)n×n,
χii ≡ 0, i = 1, . . . , n and the map Γ : R

n
+ → R

n
+ is defined by (1.12) using (4.19) and

considering (4.20) it is defined by (1.13).
The next theorem is the second main result of this chapter. It is a counterpart of The-

orem 4.2.1 and it provides a tool how to verify the ISS property for networks of TDS using
ISS-Lyapunov-Krasovskii functionals.

Theorem 4.2.4. (ISS-Lyapunov-Krasovskii theorem for general networks with time-delays)
Consider an interconnected system of the form (4.12). Assume that each subsystem has
an ISS-Lyapunov-Krasovskii functional Vi, which satisfies the conditions (4.18) and (4.20),
i = 1, . . . , n. If the corresponding gain-matrix Γ satisfies the small-gain condition (1.16), then

V (φ) := max
i
{σ−1

i (Vi(φi))}

is the ISS-Lyapunov-Krasovskii functional for the whole system of the form (4.1), which is ISS
in summation formulation, where σ = (σ1, . . . , σn)T is an Ω-path as in Definition 1.2.2 and
φ = (φi, . . . , φn)T ∈ C([−θ, 0];RN ). The Lyapunov gain is given by χ(r) := maxi λ

−1(χi(r))

with λ := mink=1,...,n λk, λk(r) := (
∑n

j=1,k �=j χkj(σj(r))).

Remark 4.2.5. If we consider in Theorem 4.2.4 ISS-Lyapunov-Krasovskii functionals Vi

with maximum formulation (4.19) and Γ satisfies the SGC (1.15), then the whole system is
ISS in maximum formulation and the Lyapunov gain is given by χ(r) := maxi σ

−1
i (χi(r)).

Proof. All subsystems of (4.12) have an ISS-Lyapunov-Krasovskii functional Vi, i = 1, . . . , n,
i.e., Vi satisfies (4.18) and (4.20). From the small-gain condition (1.16) for Γ, there exists an
Ω-path σ = (σ1, . . . , σn)T . Let 0 
= xt = ((xt

1)
T , . . . , (xt

n)
T )T ∈ C([−θ, 0];RN ). We define

V (xt) := max
i
{σ−1

i (Vi(xt
i))}

as the ISS-Lyapunov-Krasovskii functional candidate of the whole system. Note that V is
locally Lipschitz. V satisfies (4.10), by definition of ψ1(r) := mini σ

−1
i (ψ1i( r√

n
)), ψ2(r) :=

maxi σ
−1
i (ψ2i(r)), r > 0 and using (4.18).

Let I := {i ∈ {1, . . . , n}| V (xt) =
{
σ−1

i

(
Vi(xt

i)
)} ≥ maxj,j �=i{σ−1

j (Vj(xt
j))}}. Fix an

i ∈ I. From (Γ ◦D) (σ(r)) < σ(r), for all r > 0 we get

σi(r) > (Id+)

⎛⎝∑
j,j �=i

χij(σj(r))

⎞⎠
⇔ σi(r)−

∑
j,j �=i

χij(σj(r)) > 

⎛⎝ n∑
j=1,i�=j

χij(σj(r))

⎞⎠ =: λi(r).

Define λ := mini λi and assume V (xt) ≥ λ−1(χi(|u|)). Then, it follows

λ(V (xt)) ≥ χi(|u|) ⇒ σi(V (xt))−
∑
j,j �=i

χij(σj(V (xt))) > χi(|u|)
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and we get

Vi(xt
i) = σi(V (xt)) > χi(|u|) +

∑
j,j �=i

χij(σj(V (xt))) = χi(|u|) +
∑
j,j �=i

χij(Vj(xt
j)).

From (4.20) we obtain

D+V (xt, u) = (σ−1
i )′(Vi(xt

i))D
+Vi(xt

i, u) ≤ −(σ−1
i )′(Vi(xt

i))αi(Vi(xt
i)) = −ᾱi(V (xt)),

where ᾱi(r) := (σ−1
i )′(σi(r))αi(σi(r)), r ≥ 0. By definition of χ := maxi λ

−1χi and α :=

mini α̃i, the function V satisfies (4.11). All conditions of Definition 4.1.6 are satisfied and
V is the ISS-Lyapunov-Krasovskii functional of the whole system of the form (4.1). By
Theorem 4.1.7 the whole system is ISS in summation formulation. The case in the maximum
formulations follows the same steps as for the summation formulation.

4.3 Applications in logistics

In this section, we present an application of the Lyapunov-Razumikhin approach, namely the
application of Theorem 4.2.1, for the investigation of LISS of logistics networks.
A typical example of a logistic network is a production network. Such an interconnected

system describes a company or cross-company owned network with geographically dispersed
plants [126], which are connected by transport routes. By an increasing number of plants and
logistic objects, a central control of the network becomes challenging. Autonomous control
can help to handle such complex networks, see [104, 107, 106, 105], for example. Autonomous
control policies allow objects of a network, such as vehicles, containers or machines, for
example, to decide and to execute their own decisions based on some given rules and available
local information to route themselves through a network. It can be seen as a paradigm shift
from centralized to decentralized control in logistics.
Due to economic circumstances, such as high inventory costs, for example, an unbounded

growth of the number of logistic objects such as parts or orders, is undesired in logistic
networks. The stability analysis of logistic networks allows to get knowledge of the dynamical
properties of a network and to design stable networks to avoid negative economic outcomes.
For production networks without taking transportations into account, there exist modeling

approaches and the corresponding stability analysis for certain scenarios, see [15, 103, 12, 13],
for example. In [103], a dual approach for the identification of stability regions of production
networks was presented: based on the mathematical stability analysis, the identified stability
regions were refined by an engineering simulation approach. The benefit of the dual approach
is that it saves much time in contrast to a pure simulation approach.
Considering production networks with transportations, the modeling was performed in

[16, 12, 102, 14], for example, which we use in the next subsection. Transportations can be
modeled using TDS. In the next subsection, we provide a modeling approach to describe a
certain scenario of a production network. We show, how a stability analysis can be performed
using Theorem 4.2.1. The autonomous control method, which we use in the next subsection,
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was modeled in [12, 13, 102]. The impact of the presence of delays and autonomous control
methods was investigated in [13], where also breakdowns of machines or plants were considered
and analyzed in view of stability.

4.3.1 A certain scenario

Consider a production network that processes iron ore and that consists of four plants: one
iron ore mine, one iron steel manufacturer, one car manufacturer and one tool manufacturer.
xi ∈ R+ is measured as the amount of iron ore within the ith location, i.e., for one car a
certain amount of iron ore is needed.
The mine, location 1, produces iron ore and sends it to the steel manufacturer, location

2. The produced steel is send to the car or tool manufacturer, locations 3 and 4, according
to an autonomous control method. From there, one third each of the production of cars and
tools are send to the mine, which need them for production. The reflux of cars and tools can
be interpreted as a model for a recycling process. All plants can send and get some material
to/from plants or customers outside the network. The input of each location is denoted by
ui. The scenario is displayed in Figure 4.3.

Figure 4.3: Scenario of a production network.

The production rates pi(xi) ∈ K of the locations are chosen as pi(xi) = αi
√
xi, αi ∈

R+, which means in practice that the plants can increase their production arbitrarily. The
processed material is send to other subsystems of the network with the rate cij(x(t))pi(xi(t)),
where cij(x) ∈ R+, i 
= j are some positive distribution coefficients, or to customers outside
the network.
We interpret the constant distribution coefficients as central planning and variable distri-

bution coefficients can be used for some autonomous control method, e.g., the queue length
estimator (QLE), see [106], for example. The QLE policy enables parts in a production system
to estimate the waiting and processing times of different alternative processing resources. It
uses exclusively local information to evaluate the states of the alternatives. The distribution
rates representing the QLE are given by

cji(x(t− τji)) :=
1

xi(t−τji)+ε∑
k

1
xk(t−τji)+ε

,
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where k is the index of the subsystems which get material from subsystem j. It holds 0 ≤
cji ≤ 1. ε > 0 is inserted to let the fractions be well-defined. The interpretation of cji is the
following: if the queue length of the ith subsystem is small, then more material will be send
to subsystem i in contrast to the case where xi is large and cji is small.
The time needed for the transportation of material from the jth to the ith location is

denoted by τji ∈ R+. Then, the dynamics of the ith subsystem can be described by retarded
differential equations (4.12) as

ẋ1(t) = 1
3α3

√
x3(t− τ31) + 1

3α4

√
x4(t− τ41) + u1(t)− α1

√
x1(t),

ẋ2(t) = 6
10α1

√
x1(t− τ12) + u2(t)− α2

√
x2(t),

ẋ3(t) =
1

x3(t−τ23)+ε
1

x3(t−τ23)+x4(t−τ23)+ε

6
10α2

√
x2(t− τ23) + u3(t)− α3

√
x3(t),

ẋ4(t) =
1

x4(t−τ24)+ε
1

x3(t−τ24)+x4(t−τ24)+ε

6
10α2

√
x2(t− τ24) + u4(t)− α4

√
x4(t),

where xi(τ) ∈ R+, τ ∈ [−θ, 0], θ := max{τ31, τ12, τ23, τ24} are given.
To apply Theorem 4.2.1, we have to find LISS-Lyapunov-Razumikhin functions and to

check, whether the small-gain condition is satisfied.
We choose Vi(xi) = |xi| = xi as a LISS-Lyapunov-Razumikhin function candidate for the

ith subsystem. Obviously, Vi(xi) satisfies the condition (4.14). To prove that the condition
(4.15) holds, we choose the functions χ̃d

ij and χ̃
u
i as

χ̃d
1j(s) :=

(
αj

α1(1−ε1)

)2
s, j = 3, 4,

χ̃d
kl(s) :=

(
9αl

10αk(1−εk)

)2
s, kl ∈ {21, 32, 42},

χ̃u
i (s) :=

(
1
3

αi(1−εi)

s

)2

, i = 1, 2, 3, 4,

with 0 < εi < 1. We investigate the first subsystem and it holds

x1 ≥ χ̃d
1j

(
||V d

j (x
t
j)||[−θ,0]

)
⇒ 1

3αj

√
||V d

j (x
t
j)||[−θ,0] ≤ 1

3α1(1− ε1)√x1,

x1 ≥ χ̃u
1 (|u1|) ⇒ |u1| ≤ 1

3α1(1− ε1)√x1.

Using 0 ≤ cji ≤ 1 it follows

V1(x1(t)) ≥ max{maxj χ̃
d
1j(||V d

j (x
t
j)||[−θ,0]), χ̃u

1(|u1(t)|)} ⇒
D+V1(x1(t)) = 1

3α3

√
x3(t− τ31) + 1

3α4

√
x4(t− τ41) + u1(t)− α1

√
x1(t)

≤ − ε1α1

√
x1(t) =: −α̃1(V1(x1(t))).

We conclude that V1 is the LISS-Lyapunov-Razumikhin function for the first subsystem. By
similar calculations, we conclude that Vi are the LISS-Lyapunov-Razumikhin functions for
the subsystems. To verify whether the small-gain condition is satisfied, we use the cycle
condition (see Remark 1.2.1) and it holds with the choice εi = 1

100

χ̃d
21(χ̃

d
32(χ̃

d
13(s))) = ( 9α1

10α2(1−ε2))
2( 9α2

10α3(1−ε3))
2( α3

α1(1−ε1))
2s < s,
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and χ̃d
21(χ̃

d
42(χ̃

d
14(s))) < s by similar calculations. Thus, the cycle condition is satisfied and

the small gain condition also. By Theorem 4.2.1, the whole network is LISS for all xi(τ) ∈
R+, τ ∈ [−θ, 0] and all inputs ui ∈ R+.
In the next chapter, we transfer the tools of this chapter to impulsive systems with time-

delays and their interconnection.
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Chapter 5

ISS for impulsive systems with
time-delays

Another type of systems are impulsive systems. They combine continuous and discontinuous
dynamics in one system, see [3, 43], for example. The continuous dynamics is typically
described by differential equations and the discontinuous behavior consists of instantaneous
state jumps that occur at given time instants, also referred to as impulses. Impulsive systems
are closely related to hybrid systems [43] and switched systems [113] and have a wide range
of applications in network control, engineering, biological or economical systems, see [3, 124,
43, 113], for example.
An impulsive system is of the form

ẋ(t) = f(x(t), u(t)), t 
= tk, k ∈ N,

x(t) = g(x−(t), u−(t)), t = tk, k ∈ N,
(5.1)

where t0 ≤ t ∈ R+, x ∈ R
N , u ∈ L∞(R+,R

m) and {t1, t2, t3, . . .} is a strictly increasing
sequence of impulse times in (t0,∞) for some initial time t0 < t1. The impulse times are
independent from the state of the system. The generalization that includes state-dependent
resetting of the systems state is known as hybrid systems, see for example [43, 100, 34, 66].
Impulsive systems can be viewed as a subclass of hybrid systems as proposed in [100].
The set of impulse times is assumed to be either finite or infinite and unbounded, and

impulse times tk have no finite accumulation point. Given a sequence {tk} and a pair of times
s, t satisfying t0 ≤ s < t, N(t, s) denotes the number of impulse times tk in the semi-open
interval (s, t].
Furthermore, f : R

N ×R
m → R

N , g : R
N ×R

m → R
N , where we assume that f is locally

Lipschitz. All signals (x and inputs u) are assumed to be right-continuous and to have left
limits at all times and we denote x− := lims↗t x(s).
These requirements assure that a unique solution of the impulsive system (5.1) exists,

which is absolutely continuous between impulses, see [43], Chapter 2.2. We denote the solution
by x(t;x0, u) or x(t) for short for any initial value x(t0) = x0.
Investigating the stability of impulsive systems, it turns out that a condition on the
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frequency of the impulse times is helpful, if one of the continuous or discrete dynamics desta-
bilizes the system. To clarify this, we provide the following example.

Example 5.0.1. We consider the system

ẋ(t) = −2
5x(t), t 
= tk, k ∈ N,

x(t) = 2x−(t), t = tk, k ∈ N,

x ∈ R and choose x(0) = 1. Note that the continuous dynamics is 0-GAS, but the discrete
dynamics destabilizes the system. Let the impulse times be given by tk = 2k, k = 1, 2, . . ..
Then, we observe the stable behavior of the system displayed in Figure 5.1. If the impulse
times occur more frequently, for example tk = k, k = 1, 2, . . ., then the trajectory tends to
infinity, as shown in Figure 5.2.

Figure 5.1: Systems behavior with tk = 2k. Figure 5.2: Systems behavior with tk = k.

An example with unstable continuous dynamics and stable discrete dynamics can be
formulated similarly. The example illustrates the importance of the frequency of the impulse
times and motivates the introduction of a dwell-time condition to check, whether a system is
stable, as in [46, 45, 10], for example.
In this chapter, we study the ISS property of impulsive systems with time-delays and their

interconnections using exponential ISS-Lyapunov-Razumikhin functions and exponential ISS-
Lyapunov-Krasovskii functionals. The ISS property and the iISS property for single systems
without time-delays were studied in [45] and in [10, 76] for single non-autonomous time-delay
systems. There, sufficient conditions, which assure ISS and iISS of an impulsive system,
were derived using exponential ISS-Lyapunov(-Razumikhin) functions, where in [76] multiple
Krasovskii functionals are used. A recent paper investigates the ISS property of discrete-time
impulsive systems with time-delays using a Razumikhin approach, see [128].
In [45], the average dwell-time condition was used, whereas in [10] a fixed dwell-time

condition was utilized. The average dwell-time condition was introduced in [46] for switched
systems. This condition considers the average of impulses over an interval, whereas the fixed
dwell-time condition considers the (minimal or maximal) interval between two impulses.
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We provide a Lyapunov-Krasovskii type theorem and a Lyapunov-Razumikhin type ISS
theorem using the average dwell-time condition for single impulsive systems with time-delays.
The proofs use the idea of the proof of [45], [121] and [120]. For the Razumikhin type ISS
theorem we require as an additional condition that the Lyapunov gain fulfills a small-gain
condition. In contrast to the Razumikhin type theorem from [10], we consider autonomous
time-delay systems and the average dwell-time condition. Our theorem allows to verify the
ISS property for larger classes of impulse time sequences, however, we have used an additional
technical condition on the Lyapunov gain in our proofs.
Considering interconnected impulsive systems, our main goal is to find sufficient conditions

which assure ISS of such interconnections without time-delays. To this end, we use the
approach used for continuous networks. We prove that under a small-gain condition with
linear gains and a dwell-time condition a network of impulsive subsystems possesses the
ISS property. We construct the exponential ISS-Lyapunov-Razumikhin and ISS-Lyapunov-
Krasovskii function(al)s and the corresponding gains of the whole system.
In Section 5.1, single impulsive systems with time-delays are considered. Subsection 5.1.2

presents the Lyapunov-Krasovskii approach and Subsection 5.1.1 presents the Lyapunov-
Razumikhin approach. The ISS property for interconnections of impulsive systems with
time-delays is investigated in Section 5.2. The tools to check whether a network possesses the
ISS property can be found in Subsection 5.2.1 for the Lyapunov-Razumikhin approach and in
Subsection 5.2.2 for the Lyapunov-Krasovskii approach. An example is given in Section 5.3.

5.1 Single impulsive systems with time-delays

We consider single impulsive system with time-delays of the form

ẋ(t) = f(xt, u(t)), t 
= tk, k ∈ N,

x(t) = g((xt)−, u−(t)), t = tk, k ∈ N,
(5.2)

where we make the same assumptions as in the delay-free case, where f : PC
(
[−θ, 0] ;RN

)×
R

m → R
N is locally Lipschitz, g : PC

(
[−θ, 0] ;RN

) × R
m → R

N and we denote (xt)− :=

lims↗t x
s.

We assume that the regularity conditions (see e.g., [4]) for the existence and uniqueness of
a solution of system (5.2) are satisfied. We denote the solution by x(t; ξ, u) or x(t) for short
for any ξ ∈ PC([−θ, 0],RN ) that exists in a maximal interval [−θ, b), 0 < b ≤ +∞, satisfying
the initial condition xt0 = ξ. The solution is piecewise right-continuous for all t ≥ t0 and it
is continuous at each t 
= tk, t ≥ t0.
The ISS property is redefined with respect to impulsive systems with time-delays, see [10]:

Definition 5.1.1 (ISS for impulsive systems with time-delays). Suppose that a sequence {tk}
is given. We call the system (5.2) or (5.19) ISS, if there exist functions β ∈ KL, γu ∈ K∞,
such that for every initial condition ξ ∈ PC([−θ, 0],RN ) and every input u it holds

|x(t)| ≤ max{β(‖ξ‖[−θ,0], t− t0), γu(‖u‖[t0,t])}, ∀t ≥ t0. (5.3)
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The impulsive system (5.2) or (5.19) is uniformly ISS over a given class S of admissible
sequences of impulse times, if (5.3) holds for every sequence in S, with functions β and γu,
which are independent on the choice of the sequence.

Remark 5.1.2. Note that we get an equivalent definition of ISS, if we use the summation
formulation instead of the maximum formulation in Definition 5.1.1. In the following, we
only use the maximum formulation. The results using the summation formulation follow
equivalently.

We use the tools, introduced in Chapter 4, namely Lyapunov-Krasovskii functionals and
Lyapunov-Razumikhin functions, to check whether an impulsive time-delay system has the
ISS property.

5.1.1 The Lyapunov-Razumikhin methodology

At first, we give the definition of an exponential ISS-Lyapunov-Razumikhin function:

Definition 5.1.3 (Exponential ISS-Lyapunov-Razumikhin functions). A function V : R
N →

R+ is called an exponential ISS-Lyapunov-Razumikhin function for the system (5.2) with
rate coefficients c, d ∈ R, if V is locally Lipschitz continuous and there exist functions ψ1, ψ2,
γd, γu ∈ K∞ such that

ψ1(|φ(0)|) ≤ V (φ(0)) ≤ ψ2(|φ(0)|), ∀φ(0) ∈ R
N

and whenever V (φ(0)) ≥ max{γd(‖V d(φ)‖[−θ,0]), γu(|u|)} holds, it follows

D+V (φ(0)) ≤ −cV (φ(0)) and (5.4)

V (g(φ, u)) ≤ e−dV (φ(0)), (5.5)

for all φ ∈ PC (
[−θ, 0] ;RN

)
and u ∈ R

m, where V d : PC
(
[−θ, 0] ;RN

) → PC ([−θ, 0] ;R+)

is defined by V d(xt)(τ) := V (x(t+ τ)), τ ∈ [−θ, 0].
Roughly speaking, the condition (5.4) states that if c is positive, then the function V

decreases along the solution x(t) at t. On the other hand, if c < 0 then the function V can
increase along the solution x(t) at t. Condition (5.5) states that if d is positive, then the
jump (impulse) decreases the magnitude of V . On the other hand, if d < 0 then the jump
(impulse) increase the magnitude of V .

Remark 5.1.4. Note that in [10] the conditions (5.4) and (5.5) are in the dissipative form.
By Proposition 2.6 in [8], the conditions in dissipative form are equivalent to the conditions in
implication form, used in Definition 5.1.3, where the coefficients c, d are different in general.

For the main result of this subsection, we need the following:

Definition 5.1.5. Assume that a sequence {tk} is given. We call the system (5.2) or (5.19)
globally stable (GS), if there exist functions ϕ, γ ∈ K∞ such that for all ξ ∈ PC([−θ, 0],RN )

and all u it holds

|x(t)| ≤ max{ϕ(‖ξ‖[−θ,0]), γ(‖u‖[t0,t])}, ∀t ≥ t0. (5.6)
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The impulsive system (5.2) or (5.19) is uniformly GS over a given class S of admissible
sequences of impulse times, if (5.6) holds for every sequence in S, with functions ϕ and γu,
which are independent on the choice of the sequence.

To prove a Razumikhin type theorem for the verification of ISS for impulsive time-delay
systems, we need the following characterization of the uniform ISS property:

Lemma 5.1.6. The system (5.2) or (5.19) is uniformly ISS over S, if and only if it is

• uniformly GS over S and

• there exists γ ∈ K such that for each ε > 0, ηx ∈ R+, ηu ∈ R+ there exists T ≥ 0

(which does not depend on the choice of the impulse time sequence from S) such that
‖ξ‖[−θ,0] ≤ ηx and ‖u‖[t0,∞) ≤ ηu imply |x(t)| ≤ max{ε, γ(‖u‖[t0,t])}, for all t ≥ T + t0.

The proof can be found in [17]. Now, we prove as a main result of this section the
following theorem. It provides a tool to check whether a single impulsive system with time-
delays possesses the ISS property using exponential Lyapunov-Razumikhin functions.

Theorem 5.1.7 (Lyapunov-Razumikhin type theorem). Let V be an exponential ISS-
Lyapunov-Razumikhin function for the system (5.2) with c, d ∈ R, d 
= 0. For arbitrary
constants μ, λ > 0, let S[μ, λ] denote the class of impulse time sequences {tk} satisfying the
average dwell-time condition

−dN(t, s)− (c− λ)(t− s) ≤ μ, ∀t ≥ s ≥ t0. (5.7)

If γd satisfies γd(r) < e−μ−|d|r, r > 0, then the system (5.2) is uniformly ISS over S[μ, λ].

For d = 0 the jumps do not influence the stability of the system and the system will be ISS,
if the corresponding continuous dynamics has the ISS property. This case was investigated
more detailed in [45], Section 6.
Note that the condition (5.7) guarantees stability of an impulsive system even if the

continuous or discontinuous behavior is unstable. For example, if the continuous behavior is
unstable, which means c < 0, then this condition assumes that the discontinuous behavior
has to stabilize the system (d > 0) and the jumps have to occur often enough. Conversely, if
the discontinuous behavior is unstable (d < 0) and the continuous behavior is stable (c > 0)

then the jumps have to occur rarely, which stabilizes the system.

Proof. From (5.4) we have for any two consecutive impulses tk−1, tk, for all t ∈ (tk−1, tk)

V (x(t)) ≥ max{γd(‖V d(xt)‖[−θ,0]), γu(|u(t)|)} ⇒ D+V (x(t)) ≤ −cV (x(t)) (5.8)

and similarly with (5.5) for every impulse time tk

V (x(tk)) ≥ max{γd(‖V d((xtk)−)‖[−θ,0]), γu(|u−(tk)|)}
⇒ V (g((xtk)−, u−(tk))) ≤ e−dV (x(tk)).

(5.9)
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Because of the right-continuity of x and u, there exists a sequence of times t0 := t̃0 < t̄1 <

t̃1 < t̄2 < t̃2 < . . . such that for i = 0, 1, . . . we have

V (x(t)) ≥ max

{
γd

(
sup

r∈[t0,t]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

)
, γu(‖u‖[t0,t])

}
, ∀t ∈ [t̃i, t̄i+1) (5.10)

and for all i = 1, 2, . . . it holds

V (x(t)) ≤ max

{
γd

(
sup

r∈[t0,t]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

)
, γu(‖u‖[t0,t])

}
, ∀t ∈ [t̄i, t̃i), (5.11)

where this sequence breaks the interval [t0,∞) into a disjoint union of subintervals. Suppose
t0 < t̄1, so that [t0, t̄1) is nonempty. Otherwise we can continue the proof in the line below
(5.13). Between any two consecutive impulses tk−1, tk ∈ [t0, t̄1] from (5.10) and (5.8) we have
D+V (x(t))) ≤ −cV (x(t)), for all t ∈ (tk−1, tk) and therefore

V (x−(tk)) ≤ e−c(tk−tk−1)V (x(tk−1)).

From (5.9) and (5.10), we have V (x(tk)) ≤ e−dV (x−(tk)). Combining this, it follows

V (x(tk)) ≤ e−d−c(tk−tk−1)V (x(tk−1))

and by the iteration over the N(t, t0) impulses on [t0, t], we obtain the bound

V (x(t)) ≤ e−dN(t,t0)−c(t−t0)V (x(t0)), ∀t ∈ [t0, t̄1]. (5.12)

Using the dwell-time condition (5.7), we get

V (x(t)) ≤ eμ−λ(t−t0)V (x(t0)), ∀t ∈ [t0, t̄1]. (5.13)

For any subinterval of the form [t̄i, t̃i), i = 1, 2, . . ., we have (5.11) as a bound for V (x(t)).
Now, consider two cases.
Let t̃i be not an impulse time, then (5.11) is a bound for t = t̃i. Consider the subinterval

[t̃i, t̄i+1). Repeating the argument used to establish (5.13), with t̃i in place of t0 and using
(5.11) with t = t̃i we get for all t ∈ (t̃i, t̄i+1]

V (x(t)) ≤ eμ−λ(t−t̃i)V (x(t̃i)) ≤ eμmax

⎧⎨⎩γd

⎛⎝ sup
r∈[t0,t̃i]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

⎞⎠ , γu(‖u‖[t0,t̃i]
)

⎫⎬⎭ .

Now, let t̃i be an impulse time. Then, we have

V (x(t̃i)) ≤ e−dmax

⎧⎨⎩γd

⎛⎝ sup
r∈[t0,t̃i]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

⎞⎠ , γu(‖u‖[t0,t̃i]
)

⎫⎬⎭ (5.14)

and in either case

V (x(t)) ≤ e|d|max

{
γd

(
sup

r∈[t0,t]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

)
, γu(‖u‖[t0,t])

}
, ∀t ∈ [t̄i, t̃i]. (5.15)
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Repeating the argument used to establish (5.13), with t̃i in place of t0 and using (5.15)
with t = t̃i we get

V (x(t)) ≤ eμ−λ(t−t̃i)V (x(t̃i)) ≤ eμ+|d|max

⎧⎨⎩γd

⎛⎝ sup
r∈[t0,t̃i]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

⎞⎠ , γu(‖u‖[t0,t̃i]
)

⎫⎬⎭ ,

for all t ∈ (t̃i, t̄i+1], i ≥ 1. Overall, we obtain for all t ≥ t0

V (x(t)) ≤ max

{
eμ−λ(t−t0)V (x(t0)), eμ+|d|γd

(
sup

r∈[t0,t]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

)
, eμ+|d|γu(‖u‖[t0,t])

}
.

(5.16)

Now, it holds

sup
t≥s≥t0

∥∥∥V d(xs)
∥∥∥

[−θ,0]
≤ max

{∥∥∥V d(xt0)
∥∥∥

[−θ,0]
, sup
t≥s≥t0

V (x(s))
}
. (5.17)

We take the supremum over [t0, t] in (5.16) and insert it into (5.17). Then, using γd(r) <

e−μ−|d|r and the fact that for all b1, b2 > 0 from b1 ≤ max{b2, eμ+|d|γd(b1)} it follows b1 ≤ b2,
we obtain

sup
t≥s≥t0

‖V d(xs)‖[−θ,0] ≤ max
{
eμ+|d|ψ2(‖ξ‖[−θ,0]), e

μ+|d|γu(‖u‖[t0,t])
}

and therefore

|x(t)| ≤ max
{
ψ−1

1 (eμ+|d|ψ2(‖ξ‖[−θ,0])), ψ
−1
1 (eμ+|d|γu(‖u‖[t0,t]))

}
, ∀t ≥ t0,

which means that the system (5.2) is uniformly GS over S[μ, λ].
Note that ϕ̃(·) := ψ−1

1 (eμ+|d|ψ2(·)) is a K∞-function. Now, for given ε, ηx, ηu > 0 such
that ‖ξ‖[−θ,0] ≤ ηx, ‖u‖[t0,∞) ≤ ηu let κ := max

{
eμ+|d|ψ2(ηx), eμ+|d|γu(ηu)

}
. It holds

supt≥s≥t0 ‖V d(xs)‖[−θ,0] ≤ κ. Let ρ2 > 0 be such that e−λρ2κ ≤ ψ1(ε) and let ρ1 > θ.
Then, by the estimate (5.16) we have

sup
t≥s≥t0+ρ1+ρ2

‖V d(xs)‖[−θ,0] ≤ sup
t≥s≥t0+ρ2

V (x(s))

≤ max

{
ψ1(ε), eμ+|d|γd

(
sup

r∈[t0,t]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

)
, eμ+|d|γu(‖u‖[t0,t])

}
.

Replacing t0 by t0 + ρ1 + ρ2 in the previous inequality we obtain

sup
t≥s≥t0+2(ρ1+ρ2)

‖V d(xs)‖[−θ,0]

≤ max

{
ψ1(ε), eμ+|d|γd

(
sup

r∈[t0+ρ1+ρ2,t]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

)
, eμ+|d|γu(‖u‖[t0+ρ1+ρ2,t])

}

≤ max

{
ψ1(ε), (eμ+|d|γd)2

(
sup

r∈[t0,t]

∥∥∥V d(xr)
∥∥∥

[−θ,0]

)
, eμ+|d|γu(‖u‖[t0,t])

}
.
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Since eμ+|d|γd < Id, there exists a number ñ ∈ N, which depends on κ and ε such that

(eμ+|d|γd)ñ(κ) := (eμ+|d|γd) ◦ . . . ◦ (eμ+|d|γd)︸ ︷︷ ︸
ñ times

(κ) ≤ max
{
ψ1(ε), eμ+|d|γu(‖u‖[t0,t])

}
.

By induction, we conclude that

sup
t≥s≥t0+ñ(ρ1+ρ2)

‖V d(xs)‖[−θ,0] ≤ max
{
ψ1(ε), eμ+|d|γu(‖u‖[t0,t])

}
,

and finally, we obtain

|x(t)| ≤ max
{
ε, ψ−1

1 (eμ+|d|γu(‖u‖[t0,t]))
}
, ∀t ≥ t0 + ñ(ρ1 + ρ2). (5.18)

Thus, the system (5.2) satisfies the second property from Lemma 5.1.6, which implies that a
system of the form (5.2) is uniformly ISS over S[μ, λ].

Note that the condition γd(r) < e−μ−|d|r, r > 0 means that the gain is connected with
the average dwell-time condition (5.7). As we will see, this is also the case for interconnected
impulsive time-delay systems. Also note that the condition γd(r) < e−μ−|d|r, r > 0 leads to
some kind of conservativeness in contrast to the condition γd(r) < r, r > 0 for time-delay
systems without impulses. To relax this condition, one can get rid of the term e−|d| in the
previous condition, which we quote in the following theorem.

Theorem 5.1.8. Consider all assumptions from Theorem 5.1.7, with γd satisfying γd(r) <

e−μr, r > 0. Then, the system (5.2) is uniformly ISS over S[μ, λ].

The proof with the technique to get rid of the term e−|d| can be found in [17]. The idea
is that in the proof of Theorem 5.1.7, namely in equation (5.14), the set of time sequences
S∗[μ, λ] is considered for which the average dwell-time condition holds with the number of
jumps in the compact interval [s, t], defined by N∗(t, s), instead of the number of jumps
N(t, s) in the interval (s,t]. It can be shown that S∗[μ, λ] = S[μ, λ] and that the estimations
around (5.14) hold true with an additional multiplier ed in (5.14), such that ede−d = 1 and
the term e−|d| is not necessary in the estimations of the proof of Theorem 5.1.7.

Remark 5.1.9. Another Razumikhin type theorem (for non-autonomous systems) has been
proposed in [10]. There, a so-called fixed dwell-time condition was used to characterize the
class of impulse time sequences, over which the system is uniformly ISS. In contrast to The-
orems 1 and 2 from [10], we prove the Razumikhin type theorem (Theorem 5.1.7) over the
class of sequences, which satisfy the average dwell-time condition. This class is larger than
the class of sequences, which satisfy the fixed dwell-time condition. However, the small-gain
condition, that we have used in this thesis, γd(r) < e−μr, r > 0 or γd(r) < e−μ−|d|r, r > 0,
respectively, is stronger than that from [10].

In the next subsection, we give a counterpart to Theorem 5.1.7 or Theorem 5.1.8, respec-
tively, using exponential Lyapunov-Krasovskii functionals.
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5.1.2 The Lyapunov-Krasovskii methodology

We consider another type of impulsive systems with time-delays of the form

ẋ(t) = f(xt, u(t)), t 
= tk, k ∈ N,

xt = g((xt)−, u(t)), t = tk, k ∈ N,
(5.19)

where we make the same assumptions as before and the functional g is now a map from
PC

(
[−θ, 0] ;RN

)× R
m into PC

(
[−θ, 0] ;RN

)
.

According to [48], Section 2, the initial state and the input together determine the evolu-
tion of a system according to the right-hand side of the differential equation. Therefore, for
time-delay systems, we denote the state by the function xt ∈ PC([−θ, 0],RN ) and we change
the discontinuous behavior in (5.19): in contrast to the system (5.2), at an impulse time tk
not only the point x(tk) “jumps”, but all the states xt in the interval (tk − θ, tk]. Due to this
change, the Lyapunov-Razumikhin approach cannot be applied. In this case, we propose to
use Lyapunov-Krasovskii functionals for the stability analysis of systems of the form (5.19).
Another approach using Lyapunov functionals can be found in [109]. There, Lyapunov

functionals for systems of the form (5.2) with zero input are used for stabilization results
of impulsive systems, where the definition of such a functional is different to the approach
presented here according to impulse times.

Definition 5.1.10 (Exponential ISS-Lyapunov-Krasovskii functionals). A functional V :

PC
(
[−θ, 0] ;RN

) → R+ is called an exponential ISS-Lyapunov-Krasovskii functional with
rate coefficients c, d ∈ R for the system (5.19), if V is locally Lipschitz continuous, there exist
ψ1, ψ2 ∈ K∞ such that

ψ1(|φ(0)|) ≤ V (φ) ≤ ψ2(|φ|a), ∀φ ∈ PC
(
[−θ, 0] ;RN

)
(5.20)

and there exists a function γ ∈ K such that whenever V (φ) ≥ γ(|u|) holds, it follows

D+V (φ, u) ≤ −cV (φ) and (5.21)

V (g(φ, u)) ≤ e−dV (φ), (5.22)

for all φ ∈ PC (
[−θ, 0] ;RN

)
and u ∈ R

m.

Note that the rate coefficients c, d are not required to be non-negative. The following
result is a counterpart of Theorem 1 in [45] and Theorems 1 and 2 in [10] for impulsive
systems with time-delays using the Lyapunov-Krasovskii approach.

Theorem 5.1.11 (Lyapunov-Krasovskii type theorem). Let V be an exponential ISS-
Lyapunov-Krasovskii functional for the system (5.19) with c, d ∈ R, d 
= 0. For arbitrary
constants μ, λ ∈ R+, let S[μ, λ] denote the class of impulse time sequences {tk} satisfying
the dwell-time condition (5.7). Then, the system (5.19) is uniformly ISS over S[μ, λ].

Proof. From (5.21) we have for any two consecutive impulses tk−1, tk, for all t ∈ (tk−1, tk)

V (xt) ≥ γ(|u(t)|)⇒ D+V (xt, u(t)) ≤ −cV (xt) (5.23)
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and similarly with (5.22) for every impulse time tk

V (xtk) ≥ γ(|u−(tk)|)⇒ V (g((xtk)−, u−(tk))) ≤ e−dV (xtk). (5.24)

Because of the right-continuity of x and u there exists a sequence of times t0 := t̃0 < t̄1 <

t̃1 < t̄2 < t̃2 < . . . such that we have

V (xt) ≥ γ(‖u‖[t0,t]), ∀t ∈ [t̃i, t̄i+1), i = 0, 1, . . . , (5.25)

V (xt) ≤ γ(‖u‖[t0,t]), ∀t ∈ [t̄i, t̃i), i = 1, 2, . . . , (5.26)

where this sequence breaks the interval [t0,∞) into a disjoint union of subintervals. Suppose
t0 < t̄1, so that [t0, t̄1) is nonempty. Otherwise we can continue the proof in the line below
(5.27). Between any two consecutive impulses tk−1, tk ∈ (t0, t̄1] with (5.25) and (5.23) we
have D+V (xt, u(t)) ≤ −cV (xt), for all t ∈ (tk−1, tk) and therefore

V ((xtk)−) ≤ e−c(tk−tk−1)V (xtk−1).

From (5.24) and (5.25) we have V (xtk) ≤ e−dV ((xtk)−). Combining this, it follows

V (xtk) ≤ e−de−c(tk−tk−1)V (xtk−1)

and by iteration over the N(t, t0) impulses on (t0, t] we obtain the bound

V (xt) ≤ e−dN(t,t0)−c(t−t0)V (ξ), ∀t ∈ (t0, t̄1].
Using the dwell-time condition (5.7), we get

V (xt) ≤ eμ−λ(t−t0)V (ξ), ∀t ∈ (t0, t̄1]. (5.27)

Now, on any subinterval of the form [t̄i, t̃i), we already have (5.26) as a bound. If t̃i is not an
impulse time, then (5.26) is a bound for t = t̃i. If t̃i is an impulse time, then we have

V (xt̃i) ≤ e−dγ(‖u‖[t0,t̃i]
)

and in either case

V (xt) ≤ e|d|γ(‖u‖[t0,t]), ∀t ∈ [t̄i, t̃i], i ≥ 1, (5.28)

where this bound holds for all t ≥ t̄i, if t̃i = ∞. Now, consider any subinterval of the form
[t̃i, t̄i+1), i ≥ 1. Repeating the argument used to establish (5.27) with t̃i in place of t0 and
using (5.28) with t = t̃i, we get

V (xt) ≤ eμ−λ(t−t̃i)V (xt̃i) ≤ eμ+|d|γ(‖u‖[t0,t̃i]
)

for all t ∈ (t̃i, t̄i+1], i ≥ 1. Combining this with (5.27) and (5.28), we obtain

V (xt) ≤ max{eμ−λ(t−t0)V (ξ), eμ+|d|γ(‖u‖[t0,t])}, ∀t ≥ t0.

By definition of β(r, t−t0) := ψ−1
1 (eμ−λ(t−t0)ψ2(c̃r)) and γu(r) := ψ−1

1 (eμ+|d|γ(r)) the uniform
ISS property follows from (5.20). Note that β and γu do not depend on the particular choice
of the time sequence and therefore uniformity is clear.

In the next section, we investigate interconnected impulsive time-delay systems in view
of stability.
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5.2 Networks of impulsive systems with time-delays

We consider n interconnected impulsive systems with time-delays of the form

ẋi(t) = fi(xt
1, . . . , x

t
n, ui(t)), t 
= tk,

xi(t) = gi((xt
1)
−, . . . , (xt

n)
−, u−i (t)), t = tk,

(5.29)

where the same assumptions on the system as in the delay-free case are considered with the
following differences: We denote xt

i(τ) := xi(t+ τ), τ ∈ [−θ, 0] and (xt
i)
−(τ) := x−i (t+ τ) :=

lims↗t xi(s + τ), τ ∈ [−θ, 0]. Furthermore, fi : PC([−θ, 0],RN1) × . . . × PC([−θ, 0],RNn) ×
R

Mi → R
Ni , and gi : PC([−θ, 0],RN1) × . . . × PC([−θ, 0],RNn) × R

Mi → R
Ni , where we

assume that fi, i = 1, . . . , n are locally Lipschitz.
If we define N :=

∑
iNi, m :=

∑
iMi, x = (xT

1 , . . . , x
T
n )

T , u = (uT
1 , . . . , u

T
n )

T , f =

(fT
1 , . . . , f

T
n )

T and g = (gT
1 , . . . , g

T
n )

T , then (5.29) becomes a system of the form (5.2). The
ISS property for systems with several inputs and time-delays is as follows:
Suppose that a sequence {tk} is given. The ith subsystem of (5.29) is ISS, if there exist

βi ∈ KL, γij , γ
u
i ∈ K∞ ∪ {0} such that for every initial condition ξi and every input ui it

holds

|xi(t)| ≤ max{βi(‖ξi‖[−θ,0], t− t0),max
j,j �=i

γij(‖xj‖[t0−θ,t]), γ
u
i (‖ui‖[t0,t])} (5.30)

for all t ≥ t0. The ith subsystem of (5.29) is uniformly ISS over a given class S of admissible
sequences of impulse times, if (5.30) holds for every sequence in S, with functions βi, γij and
γu

i that are independent of the choice of the sequence.
In the following, we present tools to analyze systems of the form (5.29) in view of ISS:

exponential ISS-Lyapunov-Razumikhin functions and exponential ISS-Lyapunov-Krasovskii
functionals for the subsystems.

5.2.1 The Lyapunov-Razumikhin approach

Assume that for each subsystem of the interconnected system (5.29) there is a given func-
tion Vi : R

Ni → R+, which is continuous, positive definite and locally Lipschitz continuous
on R

Ni\{0}. For i = 1, . . . , n the function Vi is an exponential ISS-Lyapunov-Razumikhin
function of the ith subsystem of (5.29), if there exist ψ1i, ψ2i ∈ K∞, γu

i ∈ K ∪ {0}, γij ∈
K∞ ∪ {0}, j = 1, . . . , n and scalars ci, di ∈ R, such that

ψ1i(|φi(0)|) ≤ Vi(φi(0)) ≤ ψ2i(|φi(0)|), ∀φi(0) ∈ R
Ni (5.31)

and whenever Vi(φi(0)) ≥ max{maxj γij(‖V d
j (φj)‖[−θ,0]), γu

i (|ui|)} holds, it follows

D+Vi(φi(0)) ≤ −ciVi(φi(0)) (5.32)

for all φ = (φT
1 , . . . , φ

T
n )

T ∈ PC([−θ, 0],RN ) and ui ∈ R
Mi , where V d

j : PC
(
[−θ, 0] ;RNj

)→
PC ([−θ, 0] ;R+) with V d

j (x
t
j)(τ) := Vj(xj(t+ τ)), τ ∈ [−θ, 0] and it holds

Vi(gi(φ1, . . . , φn, ui)) ≤ max{e−diVi(φi(0)),max
j
γij(‖V d

j (φj)‖[−θ,0]), γ
u
i (|ui|)}, (5.33)
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for all φ ∈ PC([−θ, 0],RN ) and ui ∈ R
Mi . Another formulation can be obtained by replacing

(5.33) by

Vi(φi(0)) ≥ max{max
j
γ̃ij(‖V d

j (φj)‖[−θ,0]), γ̃
u
i (|ui|)} ⇒ Vi(gi(φ, ui)) ≤ e−diVi(φi(0)),

where γ̃ij , γ̃
u
i ∈ K∞.

In the following, we assume that the gains γij are linear and we denote throughout the
chapter γij(r) = γijr, γij , r ≥ 0. All the gains are collected in a matrix Γ := (γij)n×n,
i, j = 1, . . . , n, which defines a map as in (1.12).
Since the gains are linear, the small-gain condition (1.15) is equivalent to

Δ(Γ) < 1, (5.34)

where Δ is the spectral radius of Γ, see [24, 98]. Note that Δ(Γ) < 1 implies that there exists
a vector s ∈ R

n, s > 0 such that

Γ(s) < s. (5.35)

Now, we state one of the main results: the ISS small-gain theorem for interconnected
impulsive systems with time-delays and linear gains. We construct the Lyapunov-Razumikhin
function and the gain of the overall system under a small-gain condition, which is here of the
form

Γ(s) 
≥ min{e−μ, e−d−μ}s,∀s ∈ R
n
+\ {0} ⇔ ∃s ∈ R

n
+\ {0} : Γ(s) < min{e−μ, e−d−μ}s,

(5.36)

where μ is from the dwell-time condition (5.7) and d := mini di.

Theorem 5.2.1. Assume that each subsystem of (5.29) has an exponential ISS-Lyapunov-
Razumikhin function with ci, di ∈ R, di 
= 0 and gains γu

i , γij, where γij are linear. Define
c := mini ci and d := mini di. If for some μ > 0 the operator Γ satisfies the small-gain
condition (5.36), then for all λ > 0 the whole system (5.2) is uniformly ISS over S[μ, λ] and
the exponential ISS-Lyapunov-Razumikhin function is given by

V (x) := max
i
{ 1

si
Vi(xi)}, (5.37)

where s = (s1, . . . , sn)T is from (5.36). The gains are given by

γd(r) := max{ed, 1}max
k,j

1
sk
γkjsjr,

γu(r) := max{ed, 1}max
i

1
si
γu

i (r).

Proof. Let 0 
= x = (xT
1 , . . . , x

T
n )

T . We define V (x) as in (5.37) and show that V is the
exponential ISS-Lyapunov-Razumikhin function for the overall system. Note that V is lo-
cally Lipschitz continuous and satisfies (5.31), which can be easily checked. Let I := {i ∈
{1, . . . , n}| V (x) = 1

si
Vi(xi) ≥ maxj,j �=i{ 1

sj
(Vj(xj))}}. Fix an i ∈ I.
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We define the gains γ̄d(r) := maxk,j
1
sk
γkjsjr, γ̄u(r) := maxi

1
si
γu

i (r), r > 0 and assume
V (x(t)) ≥ max{γ̄d(‖V d(xt)‖[−θ,0]), γ̄u(|u(t)|)}. It follows

Vi(xi(t)) ≥ simax{max
k,j

1
sk
γkjsj‖V d(xt)‖[−θ,0],max

i

1
si
γu

i (|u(t)|)}

≥ max{max
j
γij‖V d

j (x
t
j)‖[−θ,0], γ

u
i (|ui(t)|)}.

Then, from (5.32) we obtain

D+V (x(t)) = D+ 1
si
Vi(xi(t)) ≤ − 1

si
ciVi(xi(t)) = −ciV (x(t)).

We have shown that for c = mini ci the function V satisfies (4.5) with γ̄d, γ̄u.
Defining d := mini di and using (5.33) it holds

V (g(xt, u(t))) =max
i
{ 1

si
Vi(gi(xt

1, . . . , x
t
n, ui(t)))}

≤max
i
{ 1

si
max{e−diVi(xi(t)),max

j
γij‖V d

j (x
t
j)‖[−θ,0], γ

u
i (|ui(t)|)}}

≤ max
i,j j �=i

{ 1
si
e−disiV (x(t)), 1

si
γijsj‖V d(xt)‖[−θ,0],

1
si
γu

i (|ui(t)|)}

≤max{e−dV (x(t)), γ̄d(‖V d(xt)‖[−θ,0]), γ̄u(|u(t)|)}.

Defining γ̃d(r) := edγ̄d(r), γ̃u(r) := edγ̄u(r) and assuming that it holds V (x(t)) ≥
max{γ̃d(‖V d(xt)‖[−θ,0]), γ̃u(|u(t)|)}, it follows

V (g(xt, u(t))) ≤ max{e−dV (x(t)), γ̄d(‖V d(xt)‖[−θ,0]), γ̄u(|u(t)|)}
= max{e−dV (x(t)), e−dγ̃d(‖V d(xt)‖[−θ,0]), e

−dγ̃u(|u(t)|)}
≤ e−dV (x(t)),

i.e., V satisfies the condition (5.5) with γ̃d, γ̃u. Now, define γd(r) := max{γ̄d(r), γ̃d(r)} and
γu(r) := max{γ̄u(r), γ̃u(r)}. Then, V satisfies (4.5) and (5.5) with γd, γu.
By (5.36) it holds

γd(r) = max{γ̄d(r), edγ̄d(r)} < max{min{e−μ, e−d−μ},min{ed−μ, e−μ}}r = e−μr.

All conditions of Definition 5.1.3 are satisfied and V is the exponential ISS-Lyapunov-
Razumikhin function of the whole system of the form (5.2). We can apply Theorem 5.1.8 and
the whole system is uniformly ISS over S[μ, λ].

5.2.2 The Lyapunov-Krasovskii approach

Let us consider n interconnected impulsive subsystems of the form

ẋi(t) = fi(xt
1, . . . , x

t
n, ui(t)), t 
= tk,

xt
i = gi((xt

1)
−, . . . , (xt

n)
−, u−i (t)), t = tk,

(5.38)

k ∈ N, i = 1, . . . , n, where we make the same assumptions as in the previous subsections and
the functionals gi are now maps from PC

(
[−θ, 0] ;RN1

)× . . .×PC (
[−θ, 0] ;RNn

)×R
Mi into

PC
(
[−θ, 0] ;RNi

)
.
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Note that the ISS property for systems of the form (5.38) is the same as in (5.30). If we
define N, m, x, u, f and g as before, then (5.38) becomes a system of the form (5.19). Ex-
ponential ISS-Lyapunov-Krasovskii functionals of systems with several inputs are as follows:
Assume that for each subsystem of the interconnected system (5.38) there is a given

functional Vi : PC
(
[−θ, 0] ;RNi

) → R+, which is locally Lipschitz continuous and positive
definite. For i = 1, . . . , n the functional Vi is an exponential ISS-Lyapunov-Krasovskii func-
tional of the ith subsystem of (5.38), if there exist ψ1i, ψ2i ∈ K∞, γi ∈ K ∪ {0}, γij ∈
K∞ ∪ {0}, γii ≡ 0, i, j = 1, . . . , n and scalars ci, di ∈ R such that

ψ1i(|φi(0)|) ≤ Vi(φi) ≤ ψ2i(|φi|a), ∀φi ∈ PC
(
[−θ, 0] ;RNi

)
and whenever Vi(φi) ≥ max{maxj,j �=i γij(Vj(φj)), γi(|ui|)} holds, it follows

D+Vi(φi, ui) ≤ −ciVi(φi) (5.39)

and

Vi(gi(φ, ui)) ≤ max{e−diVi(φi),max
j,j �=i

γij(Vj(φj)), γi(|ui|)}, (5.40)

for all φi ∈ PC
(
[−θ, 0] ;RNi

)
, φ = (φT

1 , . . . , φ
T
n )

T and ui ∈ R
Mi . A different formulation can

be obtained by replacing (5.40) by

Vi(φi) ≥ max{max
j,j �=i

γ̃ij(Vj(φj)), γ̃i(|ui|)} ⇒ Vi(gi(φ, ui)) ≤ e−diVi(φi),

where γ̃ij , γ̃i ∈ K∞.
Furthermore, we define the gain-matrix Γ = (γij)n×n with γii ≡ 0.
The next result is an ISS small-gain theorem for impulsive systems with time-delays using

the Lyapunov-Krasovskii methodology. This theorem allows to construct an exponential ISS-
Lyapunov-Krasovskii functional and the corresponding gain for the whole interconnection
under a dwell-time and a small-gain condition.

Theorem 5.2.2. Assume that each subsystem of (5.38) has an exponential ISS-Lyapunov-
Krasovskii functional Vi with corresponding gains γi, γij, where γij are linear, and rate coef-
ficients ci, di, di 
= 0. Define c := min

i
ci and d := min

i,j, j �=i
{di,− ln( sj

si
γij)}. If Γ satisfies the

small-gain condition (1.15), then the impulsive system (5.19) is uniformly ISS over S[μ, λ],
μ, λ > 0 and the exponential ISS-Lyapunov-Krasovskii functional is given by

V (φ) := max
i
{ 1

si
Vi(φi)}, (5.41)

where s = (s1, . . . , sn)T is from (5.35), φ ∈ PC (
[−θ, 0] ;RN

)
. The gain is given by γ(r) :=

max{ed, 1}maxi
1
si
γi(r).

Proof. Let 0 
= xt = ((xt
1)

T , . . . , (xt
n)

T )T and let V be defined by V (xt) := maxi{ 1
si
(Vi(xt

i))}.
Define the index set I := {i ∈ {1, . . . , n}| 1

si
Vi(φi) ≥ maxj,j �=i{ 1

sj
(Vj(φj))}}, where φi ∈

PC
(
[−θ, 0] ;RNi

)
, φ = (φT

1 , . . . , φ
T
n )

T . Fix an i ∈ I.
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It can be easily checked that the condition (5.20) is satisfied.
We define γ̄(r) := maxi

1
si
γi(r), r > 0 and assume V (xt) ≥ γ̄(|u(t)|). It follows from

(5.35) that it holds

Vi(xt
i) = siV (xt) ≥ max{max

j
γijsjV (xt), siγ̄(|u(t)|)}

≥ max{max
j
γijVj(xt

j), γi(|ui(t)|)}.

Then, from (5.39) we obtain

D+V (xt, u(t)) = 1
si
D+Vi(xt

i, ui(t)) ≤ − 1
si
ciVi(xt

i) = −ciV (xt).

By definition of c = mini ci, the function V satisfies (5.21) with γ̄.
With d := mini,j, j �=i{di,− ln( sj

si
γij)} and using (5.40) it holds

V (g(xt, u(t))) =max
i
{ 1

si
Vi(gi(xt

1, . . . , x
t
n, ui(t)))}

≤max
i
{ 1

si
max{e−diVi(xt

i),max
j,j �=i

γijVj(xt
j), γi(|ui(t)|)}}

≤ max
i,j j �=i

{ 1
si
e−disiV (xt), 1

si
γijsjV (xt), 1

si
γi(|ui(t)|)}

≤max{e−dV (xt), γ̄(|u(t)|)}.

Define γ̃(r) := edγ̄(r). If it holds V (xt) ≥ γ̃(|u(t)|), it follows

V (g(xt, u(t))) ≤ max{e−dV (xt), γ̄(|u(t)|)} = max{e−dV (xt), e−dγ̃(|u(t)|)} ≤ e−dV (xt)

for all xt and u and V satisfies (5.22) with γ̃. Define γ(r) := max{ed, 1}maxi
1
si
γi(r), then we

conclude that V is an exponential ISS-Lyapunov-Krasovskii functional for the overall system
of the form (5.19) with rate coefficients c, d and gain γ. We can apply Theorem 5.1.11 and
the overall system is uniformly ISS over S[μ, λ], μ, λ > 0.

In the next section, we give an example of a networked control system and we apply
Theorem 5.2.1 to check whether the system has the ISS property.

5.3 Example

Networked control systems (NCS) are spatially distributed systems, where sensors, actuators
and controllers communicate through a shared band-limited digital communication network.
They are applied in mobile sensor networks, remote surgery, haptics collaboration over the
Internet or automated highway systems and unmanned vehicles, see [47] and the references
therein.
Stability analysis for such kinds of networks were performed in [125], [83] and [45], for

example. Here, we consider a class of NCS given by an interconnection of linear systems with
time-delays. The ith subsystem is described as follows:

ẋi(t) = −aixi(t) +
∑

j,j �=i

aijxj(t− τij) + biνi(t),

yi(t) = xi(t) + μi(t),
(5.42)
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where xi ∈ R, i = 1, . . . , n, τij ∈ [0, θ] is a time-delay of the input from the other subsystems
with maximum involved delay θ > 0 and νi ∈ L∞(R+,R) is an input disturbance. yi ∈ R is the
measurement of the system, disturbed by μi and aij , ai, bi > 0 are some parameters to describe
the interconnection. {t1, t2, . . .} is a sequence of time instances at which measurements of xi

are sent. It is allowed to send only one measurement per each time instant. Between the
sending of new measurements the estimate x̂i of xi is given by

˙̂xi(t) = −aix̂i(t) +
∑

j,j �=i

aij x̂j(t− τij), t 
∈ {t1, t2, . . .}. (5.43)

At time tk the node ik gets access to the measurement yik of xik and all other nodes stay
unchanged:

x̂i(tk) =

{
y−ik(tk), i = ik,

x̂−i (tk), i 
= ik.

The estimation error of the ith subsystem is defined as in Section 3.2 by ei := x̂i − xi. The
dynamics of ei can be then given by the following impulsive system:

ėi(t) = −aiei(t) +
∑

j,j �=i

aijej(t− τij)− biνi(t), t 
= tk, k ∈ N, (5.44)

ei(tk) =

{
μ−ik(tk), i = ik,

e−i (tk), i 
= ik.
(5.45)

The decision which measurement of a subsystem will be sent, is performed using some pro-
tocol, see [83], for example.
To verify that the error dynamics of the whole interconnected system (5.44), (5.45) has the

uniformly ISS property, we show that there exists an exponential ISS-Lyapunov-Razumikhin
function for each subsystem and that the small-gain condition (5.36) and the dwell-time
condition (5.7) are satisfied.
At first, we will define an ISS-Lyapunov-Razumikhin function candidate for each sub-

system. Consider the function Vi(ei) := |ei|. If t = tk, then Vi(gi(ei)) ≤ max{|ei|, |μi|} =
max{e−diVi(ei), |μi|} with di = 0. Consider now the case t 
= tk. If

|ei| ≥ max
{
max
j,j �=i

n
aij

ai − εi max
t−θ≤s≤t

Vj(ej(s)), n
bi|νi|
ai − εi

}
, εi ∈ [0, ai),

then we have

D+Vi(ei) =(−aiei +
∑
j,j �=i

aijej(t− τij)− biνi) · sign ei

≤− ai|ei|+
∑
j,j �=i

aij |ej(t− τij)|+ bi|νi| ≤ −ai|ei|+ (ai − εi)|ei|

=− εi|ei| = −εiVi(ei) =: −ciVi(ei)

Thus, the function Vi(ei) = |ei| is an exponential ISS-Lyapunov-Razumikhin function for the
ith subsystem with ci = εi, di = 0, γij(r) = n

|aij |
ai−εi

r and γi(r) = max{1, n |bi|
ai−εi

}r.
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To prove ISS of the whole error system, we need to check the dwell-time condition (5.7)
and the small-gain condition (5.36), see Theorem 5.2.1. Let us check condition (5.7). We have
d = min

i
di = 0, c = min

i
ci = min

i
εi > 0. Taking 0 < λ ≤ c and any μ > 0, the dwell-time

condition is satisfied for any t ≥ s ≥ 0 and time sequence {tk}:

−dN(t, s)− (c− λ)(t− s) = −(c− λ)(t− s) ≤ 0 < μ.

The fulfillment of the small gain condition (5.36) can be checked by slightly modifying the
cycle condition: for all (k1, ..., kp) ∈ {1, ..., n}p, where k1 = kp, it holds

γk1k2 ◦ γk2k3 ◦ ... ◦ γkp−1kp < e−μ Id,

where in this example we can choose μ arbitrarily small. Let us check this condition for the
following parameters: n = 3, bi = 1, νi ≡ 2, εi = 0.1, i = 1, 2, 3; τij = 0.03, i, j = 1, 2, 3,
i 
= j; e(s) = (0.9; 0.3; 0.6)T , s ∈ [−θ, 0]; a1 = 1, a2 = 2, a3 = 0.5,

A := (aij)3×3 =

⎛⎜⎜⎝
0 0.25 0.25

0.7 0 0.65

0.15 0.1 0

⎞⎟⎟⎠ .

The system uses a TOD-like protocol [83] and it sends measurements at time instants tk =
0.1k, k ∈ N.
The gain matrix Γ is then given by

Γ := (γij)3×3 =

⎛⎜⎜⎝
0 0.8333 0.8333

1.1053 0 1.0263

1.1250 0.7500 0

⎞⎟⎟⎠ .

It is easy to check that all the cycles are less than the identity function multiplied by eμ,
because μ can be chosen arbitrarily small. Thus, the cycle condition is satisfied and by
application of Theorem 5.2.1 the error system (5.44), (5.45) is uniformly ISS. The trajectory
of the Euclidean norm of the error is given in Figure 5.3.
It remains as an open research topic, not analyzed in this thesis, to investigate the influence

of the input disturbances to the error systems in more detail as well as to investigate the
influence to the error system of the usage of different protocols (see [83]).
In the next chapter, we investigate on the one hand the ISDS property of MPC for single

and interconnected systems, and on the other hand we analyze the ISS property of MPC for
single and interconnected TDS. The tools, presented in Chapter 2 and Chapter 4 are used
for MPC.
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Figure 5.3: The trajectory of the Euclidean norm of the error of the networked control system.



Chapter 6

Model predictive control

In this chapter, we introduce the ISDS property for MPC of single and interconnected systems
and we introduce the ISS property for MPC of single and interconnected TDS. We derive
conditions which assure ISDS and ISS, respectively, for such systems using an MPC scheme
and using the results of Chapter 2 and Chapter 4, respectively.

The approach of MPC started in the late 1970s and spread out in the 1990s by an in-
creasing usage of automation processes in the industry. It has a wide range of applications,
see the survey papers [89, 90].

The aim of MPC is to control a system to follow a certain trajectory or to steer the
solution of a system into an equilibrium point under constraints and unknown disturbances.
Additionally, the control should be optimal in view of defined goals, e.g., optimal regarding
time or effort. We consider systems of the form (1.1) with disturbances,

ẋ(t) = f(x(t), w(t), u(t)), (6.1)

where w ∈ W ⊆ L∞(R+,R
P ) is the unknown disturbance andW is a compact and convex set

containing the origin. The input u is a measurable and essentially bounded control subject
to input constraints u ∈ U , where U ⊆ R

m is a compact and convex set containing the origin
in its interior. The function f has to satisfy the same conditions as in Chapter 1 to assure
that a unique solution exists, which is denoted by x(t;x0, w, u) or x(t) in short.

Note that the majority of the works regarding MPC consider discrete-time systems. One
can derive a discrete-time system from a continuous-time system using sampled-data systems,
see [84], for example.

The principle of MPC is the following: at sampling time t = kΔ, k ∈ N, Δ > 0, the
current state of a system of the form (6.1) is measured, which is x(t). This is used as an
initial value to predict the trajectory of the system until the time t+ T , where T > 0 is the
finite prediction horizon, with an arbitrary control u. Let us first assume w ≡ 0. Then, the
cost function defined by

J(x(t), u; t, T ) :=
∫ t+T

t
l(x(t′), u(t′))dt′ (6.2)

89
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will be minimized with respect to the control u subject to constraints x ∈ X , u ∈ U , where
X ⊆ R

N is a compact and convex set containing the origin in its interior. The function
l : R

N × R
m → R+ is the stage cost and it is a penalty of the distance of the state from the

equilibrium point f(0, 0, 0) = 0 and a penalty of the control effort. A popular choice of the
stage cost is l(x, u) = |x|2 + cq|u|2, for example, where cq > 0 is a weighting coefficient of the
control. This control strategy is referred to as open-loop MPC [79, 92, 84].
A suitable approach to stabilize a system with implemented control obtained by an MPC

scheme is that the terminal predicted state of the system should satisfy a terminal constraint,
namely x(t + T ) ∈ Ω, where Ω ∈ R

N is the terminal region. Then, we add the additional
term Vf (x(t+ T )) to the cost function of the MPC scheme, where Vf : Ω→ R+.
The solution of this optimization problem is a control in feedback form u∗(t) := π(t, x(t))

and u∗(t′), t′ ∈ [t, t + Δ] is applied to the system. We assume that the feedback π ∈ Π is
essentially bounded, locally Lipschitz in x and measurable in t. The set Π ⊆ R

m is assumed
to be compact and convex containing the origin in its interior. At the sampling time t+Δ,
the state of the system will be measured and the procedure starts again moving the prediction
horizon T . Overall, an optimal control u∗(t) for t ∈ R

+ is obtained.
A control law in feedback form or closed-loop control is a function π : R+×R

N → Π and
it is applied to the system by u(·) = π(·, x(·)).
Illustrations and more details of this procedure as well as an overview about MPC can be

found in the books [78, 9, 38] and the PhD theses [92, 84, 68], for example.
We are interested in stability of MPC. It was shown in [91] that the application of the

control obtained by an MPC scheme to a system does not guarantee that a system without
disturbances is asymptotically stable. For stability of a system in applications it is desired
to analyze under which conditions stability of a system can be achieved using an MPC
scheme. An overview about existing results regarding stability and MPC for systems without
disturbances can be found in [81] and recent results are included in [92, 84, 68, 38]. To design
stabilizing MPC controllers for nonlinear systems, a general framework can be found in [31].
On the one hand, to assure stability, there exist MPC schemes with stabilizing constraints,

see [78, 31, 9, 92, 68], for example. On the other hand conditions were derived in [37, 39, 41]
to assure asymptotic stability of unconstrained nonlinear MPC schemes.
Taking the unknown disturbance w ∈ W into account, MPC schemes which guarantee

ISS were developed. First results can be found in [80] regarding ISS for MPC of nonlinear
discrete-time systems. Furthermore, results using the ISS property with initial states from
a compact set, namely regional-ISS, are given in [79, 92]. In [73, 69], an MPC scheme
which guarantees ISS using the so-called min-max approach was given. The approach uses a
closed-loop formulation of the optimization problem to compensate the effect of the unknown
disturbance. It takes the worst case into account, i.e., it minimizes the cost function with
respect to the control law π and maximizes the cost function with respect to the disturbance
w:

min
π
max

w
J(x(t), π, w; t, T ) := min

π
max

w

∫ t+T

t
(l(x(t′), π(t′, x(t′)), w(t′)))dt′.
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The usage of this approach is motivated by the circumstance that the solution of the open-
loop MPC strategy can be extremely conservative and it can provide a small robust output
admissible set (see [93], Definition 11, for example).
Stable MPC schemes for interconnected systems were investigated in [93, 92, 41], where in

[93, 92] conditions to assure ISS of the whole system were derived and in [41] asymptotically
stable MPC schemes without terminal constraints were provided. Note that in [41], the
subsystems are not directly connected, but they exchange information over the network to
control themselves according to state constraints.
However, for networks there exist several approaches for MPC schemes due to the in-

terconnected structure of the system. This means that large-scale systems can be difficult
to control with a centralized control structure, due to computational complexity or due to
communication bandwidth limitations, for example, see [101]. A review of architectures for
distributed and hierarchical MPC can be found in [101].
Considering TDS and MPC, recent results for asymptotically stable MPC schemes of

single systems can be found in [29, 96, 95]. In these works, continuous-time TDS were
investigated and conditions were derived, which guarantee asymptotic stability of a TDS
using a Lyapunov-Krasovskii approach. Moreover, with the help of Lyapunov-Razumikhin
arguments it was shown, how to determine the terminal cost and terminal region, and to
compute a locally stabilizing controller.
For the implementation of MPC schemes in applications, numerical algorithms were de-

veloped, see [84, 68, 38] for example.
This chapter provides two new directions in MPC: at first, we combine the ISDS property

with MPC for single and interconnected systems. Then, ISS of MPC for TDS is investigated.
Conditions are derived such that single systems and whole networks with an optimal control
obtained by an MPC scheme have the ISDS or ISS property, respectively. The result of
Chapter 2, the ISDS small-gain theorem for networks, Theorem 2.2.2, is applied as well as
the result of Chapter 4, namely Theorem 4.2.4.
The ISS property for MPC schemes of TDS has not been investigated so far as well as

MPC for interconnected TDS. The approach of ISS for TDS provides the calculation of an
optimal control for TDS with unknown disturbances, which was not done before. We use the
min-max closed-loop MPC strategy and Lyapunov-Krasovskii arguments.
The advantage of the usage of ISDS over ISS for MPC is that the ISDS estimation takes

only recent values of the disturbance into account due to the memory fading effect, see
Chapter 2. In particular, if the disturbance tends to zero, then the ISDS estimation tends to
zero. Moreover, the decay rate can be derived using ISDS-Lyapunov functions.
This information can be useful for applications of MPC. For example, consider two air-

planes which are flying to each other. To avoid a collision at a certain time T̃ we use MPC to
calculate optimal controls for both planes under constraints and unknown disturbances. The
disturbances are turbulences caused by winds, which influence the altitude of both planes.
The constraint is that the altitude of the planes at time T̃ are not equal taking the dis-
turbances into account. Therefore, the ISDS or ISS estimation are used for checking the
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constraint. Assume that at the time t̃, where t̃ is a time before the time T̃ , the disturbances,
i.e., the winds, are large. Closer to T̃ we assume that the disturbances tend to zero. In
practice, the information about this circumstance can be obtained from the weather forecast.
Then, the following observations can be made:

The ISS estimation takes the supremum of the disturbances into account and for large
disturbances the estimation is also large. Hence, the control taking into account the collision
constraint using the ISS estimation, is conservative and more effort for the control is used
than it is needed. In contrast to this, the control calculated by an MPC scheme under the
collision constraint using the ISDS estimation does not need so much effort as the control
using the ISS estimation, because we assume that the disturbances tend to zero. By the
control with less effort, jet fuel could be saved, for example.

This chapter is organized as follows: Section 6.1 introduces the ISDS property for MPC
of nonlinear systems. A result with respect to ISDS for MPC of single systems is provided
in Subsection 6.1.1 and a result for interconnected systems is included in Subsection 6.1.2.
In Section 6.2, time-delay systems and ISS for MPC are considered, where Subsection 6.2.1
investigates the ISS property for MPC of single systems and Subsection 6.2.2 analyzes ISS
for MPC of networks.

6.1 ISDS and MPC

In this section, we combine ISDS and MPC for nonlinear single and interconnected systems.
Conditions are derived, which assure ISDS of a system obtained by application of the control
to the system (6.1), calculated by an MPC scheme.

6.1.1 Single systems

We consider systems of the form (6.1) and we use the min-max approach to calculate an
optimal control: to compensate the effect of the disturbance w, we apply a feedback control
law π(t, x(t)) to the system. An optimal control law is obtained by solving the finite horizon
optimal control problem (FHOCP), which consists of minimization of the cost function J with
respect to π(t, x(t)) and maximization of the cost function J with respect to the disturbance
w:

Definition 6.1.1 (Finite horizon optimal control problem (FHOCP)). Let 1 > ε > 0 be
given. Let T > 0 be the prediction horizon and u(t) = π(t, x(t)) be a feedback control law.
The finite horizon optimal control problem for a system of the form (6.1) is formulated as

min
π
max

w
J(x̄0, π, w; t, T )

:= min
π
max

w
(1− ε)

∫ t+T

t
(l(x(t′), π(t′, x(t′)))− lw(w(t′)))dt′ + Vf (x(t+ T ))
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subject to

ẋ(t′) = f(x(t′), w(t′), u(t′)), x(t) = x̄0, t
′ ∈ [t, t+ T ],

x ∈ X ,
w ∈ W,

π ∈ Π,
x(t+ T ) ∈ Ω ⊆ R

N ,

where x̄0 ∈ R
N is the initial value of the system at time t, the terminal region Ω is a compact

and convex set with the origin in its interior and π(t, x(t)) is essentially bounded, locally
Lipschitz in x and measurable in t. l− lw is the stage cost, where l : R

N ×R
m → R+ penalizes

the distance of the state from the equilibrium point 0 of the system and it penalizes the control
effort. lw : R

P → R+ penalizes the disturbance, which influences the systems behavior. l

and lw are locally Lipschitz continuous with l(0, 0) = 0, lw(0) = 0, and Vf : Ω → R+ is the
terminal penalty.

The FHOCP will be solved at the sampling instants t = kΔ, k ∈ N, Δ ∈ R+. The
optimal solution is denoted by π∗(t′, x(t′); t, T ) and w∗(t′), t′ ∈ [t, t + T ]. The optimal cost
function is denoted by J∗(x̄0, π

∗, w∗; t, T ). The control input to the system (6.1) is defined
in the usual receding horizon fashion as

u(t′) = π∗(t′, x(t′); t, T ), t′ ∈ [t, t+Δ].

In the following, we need some definitions:

Definition 6.1.2. • A feedback control π is called a feasible solution of the FHOCP at
time t, if for a given initial value x̄0 at time t the feedback π(t′, x(t′)), t′ ∈ [t, t + T ]

controls the state of the system (6.1) into Ω at time t + T , i.e., x(t + T ) ∈ Ω, for all
w ∈ W.

• A set Ω ⊆ R
N is called positively invariant, if for all x0 ∈ Ω a feedback control π keeps

the trajectory of the system (6.1) in Ω, i.e.,

x(t;x0, w, π) ∈ Ω, ∀t ∈ (0,∞),

for all w ∈ W.

To prove that the system (6.1) with the control obtained by solving the FHOCP has the
ISDS property, we need the following:

Assumption 6.1.3. 1. There exist functions αl, αw ∈ K∞, where αl is locally Lipschitz
continuous such that

l(x, π) ≥ αl(|x|), x ∈ X , π ∈ Π,
lw(w) ≤ αw(|w|), w ∈ W.
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2. The FHOCP in Definition 6.1.1 admits a feasible solution at the initial time t = 0.

3. There exists a controller u(t) = π(t, x(t)) such that the system (6.1) has the ISDS
property.

4. For each 1 > ε > 0 there exists a locally Lipschitz continuous function Vf (x) such that
the terminal region Ω is a positively invariant set and we have

Vf (x) ≤ η(|x|), ∀x ∈ Ω, (6.3)

V̇f (x) ≤ −(1− ε)l(x, π) + (1− ε)lw(w), f.a.a. x ∈ Ω, (6.4)

where η ∈ K∞, w ∈ W and V̇f denotes the derivative of Vf along the solution of system
(6.1) with the control u ≡ π from point 3. of this assumption.

5. For each sufficiently small ε > 0 it holds

(1− ε)
∫ t+T

t
l(x(t′), π(t′, x(t′)))dt′ ≥ |x(t)|

1+ε . (6.5)

6. The optimal cost function J∗(x̄0, π
∗, w∗; t, T ) is locally Lipschitz continuous.

Remark 6.1.4. In [92], it is discussed that a different stage cost, for example by the definition
of ls := l− lw, can be used for the FHOCP. In view of stability, the stage cost ls has to fulfill
some additional assumptions, see [92], Chapter 3.4.

Remark 6.1.5. The assumption (6.5) is needed to assure that the cost function satisfies the
lower estimation in (2.2). However, we did not investigated whether this condition is restric-
tive or not. In case of discrete-time systems and the according cost function, the assumption
(6.5) is not necessary, see the proofs in [80, 79, 92, 73, 69].

The following theorem establishes ISDS of the system (6.1), using the optimal control
input u ≡ π∗ obtained from solving the FHOCP.

Theorem 6.1.6. Consider a system of the form (6.1). Under Assumption 6.1.3, the system
resulting from the application of the predictive control strategy to the system, namely ẋ(t) =
f(x(t), w(t), π∗(t, x(t))), t ∈ R+, x(0) = x0, possesses the ISDS property.

Remark 6.1.7. Note that the gains and the decay rate of the definition of the ISDS property,
Definition 2.1.2, can be calculated using Assumption 6.1.3, as it is partially displayed in the
following proof.

Proof. We show that the optimal cost function J∗(x̄0, π
∗, w∗; t, T ) =: V (x̄0) is an ISDS-

Lyapunov function, following the steps:

• the control problem admits a feasible solution π for all times t > 0,

• J∗(x̄0, π
∗, w∗; t, T ) satisfies the conditions (2.2) and (2.3).
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Then, by application of Theorem 2.1.6, the ISDS property follows.
Let us proof feasibility: we suppose that a feasible solution π̃(t′, x(t′)), t′ ∈ [t, t + T ] at

time t exists. For Δ > 0, we construct a control by

π̂(t′, x(t′)) =

{
π̃(t′, x(t′)), t′ ∈ [t+Δ, t+ T ],

π(t′, x(t′)), t′ ∈ (t+ T, t+ T +Δ],
(6.6)

where π is the controller from Assumption 6.1.3, point 3. Since π̃ controls x(t + Δ) into
x(t + T ) ∈ Ω and Ω is a positively invariant set, π(t′, x(t′)) keeps the systems trajectory in
Ω for t + T < t′ ≤ t + T + Δ under the constraints of the FHOCP. This means that from
the existence of a feasible solution for the time t, we have a feasible solution for the time
t + Δ. Since, we assume that a feasible solution for the FHOCP at the time t = 0 exists
(Assumption 6.1.3, point 2.), it follows that a feasible solution exists for every t > 0.
We replace π̃ in (6.6) by π∗. Then, it follows from (6.4) that it holds

J∗(x̄0, π
∗, w∗; t, T +Δ)

≤ J(x̄0, π̂, w
∗; t, T +Δ)

= (1− ε)
∫ t+T

t
(l(x(t′), π∗(t′, x(t′); t, T ))− lw(w∗(t′)))dt′

+ (1− ε)
∫ t+T+Δ

t+T
(l(x(t′), π(t′, x(t′)))− lw(w∗(t′)))dt′

+ Vf (x(t+ T +Δ))

= J∗(x̄0, π
∗, w∗; t, T )− Vf (x(t+ T )) + Vf (x(t+ T +Δ))

+ (1− ε)
∫ t+T+Δ

t+T
(l(x(t′), π(t′, x(t′)))− lw(w∗(t′)))dt′

≤ J∗(x̄0, π
∗, w∗; t, T ).

From this and with (6.3) it holds

J∗(x̄0, π
∗, w∗; t, T ) ≤ J∗(x̄0, π

∗, w∗; t, 0) = Vf (x̄0) ≤ η(|x̄0|).

Now, with Assumption 6.1.3, point 5., we have

V (x̄0) ≥ J(x̄0, π
∗, 0; t, T ) ≥ (1− ε)

∫ t+T

t
l(x(t′), π∗(t′, x(t′)))dt′ ≥ |x̄0|

1+ε .

This shows that J∗ satisfies (2.2). Now, denote x̃0 := x(t+ h). From J∗(x̄0, π
∗, w∗; t, T +

Δ) ≤ J∗(x̄0, π
∗, w∗; t, T ) we get

(1− ε)
∫ t+h

t
(l(x(t′), π∗(t′, x(t′); t, T ))− lw(w∗(t′)))dt′ + J∗(x̃0, π

∗, w∗; t+ h, T +Δ− h)

≤ (1− ε)
∫ t+h

t
(l(x(t′), π∗(t′, x(t′); t, T ))− lw(w∗(t′)))dt′ + J∗(x̃0, π

∗, w∗; t+ h, T − h),

and therefore

J∗(x̃0, π
∗, w∗; t+ h, T +Δ− h) ≤ J∗(x̃0, π

∗, w∗; t+ h, T − h). (6.7)
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Now, we show that J∗ satisfies the condition (2.3). Note that by Assumption 6.1.3, point
6., J∗ is locally Lipschitz continuous. With (6.7) it holds

J∗(x̄0, π
∗, w∗; t, T )

= (1− ε)
∫ t+h

t
(l(x(t′), π∗(t′, x(t′); t, T ))− lw(w∗(t′)))dt′ + J∗(x̃0, π

∗, w∗; t+ h, T − h)

≥ (1− ε)
∫ t+h

t
(l(x(t′), π∗(t′, x(t′); t, T ))− lw(w∗(t′)))dt′ + J∗(x̃0, π

∗, w∗; t+ h, T ).

This leads to

J∗(x̃0, π
∗, w∗; t+ h, T )− J∗(x̄0, π

∗, w∗; t, T )
h

≤ − 1
h
(1− ε)

∫ t+h

t
(l(x(t′), π∗(t′, x(t′); t, T ))− lw(w∗(t′)))dt′.

For h→ 0 and using the first point of Assumption 6.1.3 we obtain

V̇ (x̄0) ≤ −(1− ε)αl(|x̄0|) + (1− ε)αw(|w∗|), f.a.a. x̄0 ∈ X , ∀w ∈ W.

By definition of γ(r) := η(α−1
l (2αw(r))) and g(r) := 1

2αl(η−1(r)), r ≥ 0 this implies

V (x̄0) > γ(|w∗|) ⇒ V̇ (x̄0) ≤ −(1− ε)g(V (x̄0)),

where the function g is locally Lipschitz continuous. We conclude that J∗ is an ISDS-
Lyapunov function for the system

ẋ(t) = f(x(t), w(t), π∗(t, x(t)))

and by application of Theorem 2.1.6 the system has the ISDS property.

In the next subsection, we transform the analysis of ISDS for MPC of single systems to
interconnected systems.

6.1.2 Interconnected systems

We consider interconnected systems with disturbances of the form

ẋi(t) = fi(x1(t), . . . , xn(t), wi(t), ui(t)), i = 1, . . . , n, (6.8)

where ui ∈ R
Mi , measurable and essentially bounded, are the control inputs and wi ∈ R

Pi

are the unknown disturbances. We assume that the states, disturbances and inputs fulfill the
constraints

xi ∈ Xi, wi ∈ Wi, ui ∈ Ui, i = 1, . . . , n,

where Xi ⊆ R
Ni , Wi ⊆ L∞(R+,R

Pi) and Ui ⊆ R
Mi are compact and convex sets containing

the origin in their interior.
Now, we are going to determine an MPC scheme for interconnected systems. An overview

of existing distributed and hierarchical MPC schemes can be found in [101]. The used scheme
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in this thesis is inspired by the min-max approach for single systems as in Definition 6.1.1,
see [73, 69].
At first, we determine the cost function of the ith subsystem by

Ji(x̄0
i , (xj)j �=i, πi, wi; t, T )

:= (1− εi)
∫ t+T

t
(li(xi(t′), πi(t′, x(t′)))− (lw)i(wi(t′))−

∑
j �=i

lij(xj(t′)))dt′ + (Vf )i(xi(t+ T )),

where 1 > εi > 0, x̄0
i ∈ Xi is the initial value of the ith subsystem at time t and πi ∈ Πi is a

feedback, essentially bounded, locally Lipschitz in x and measurable in t, where Πi ⊆ R
Mi is a

compact and convex set containing the origin in its interior. li−(lw)i−
∑
lij is the stage cost,

where li : R
Ni × R

Mi → R+. (lw)i : R
Pi → R+ penalizes the disturbance and lij : R

Nj → R+

penalizes the internal input for all j = 1, . . . , n, j 
= i. li, (lw)i and lij are locally Lipschitz
continuous functions with li(0, 0) = 0, (lw)i(0) = 0, lij(0) = 0, and (Vf )i : Ωi → R+ is the
terminal penalty of the ith subsystem, Ωi ⊆ R

Ni .
In contrast to single systems we add the terms lij(xj), j 
= i to the cost function due to

the interconnected structure of the subsystems. Here, two problems arise: the formulation
of an optimal control problem for each subsystem and the calculation/determination of the
internal inputs xj , j 
= i.
We conserve the minimization of Ji with respect to πi and the maximization of Ji with

respect to wi as in Definition 6.1.1 for single systems. In the spirit of ISS/ISDS, which
treat the internal inputs as “disturbances”, we maximize the cost function with respect to
xj , j 
= i (worst-case approach). Since we assume that xj ∈ Xj , we get an optimal solution
π∗i , w

∗
i , x

∗
j , j 
= i of the control problem.

The drawbacks of this approach are that, on the one hand, we do not use the systems
equations (6.8) to predict xj , j 
= i and, on the other hand, the computation of the optimal
solution could be numerically inefficient, especially if the number of subsystems n is “huge”
or/and the sets Xi are “large”. Moreover, taking into account the worst-case approach, the
maximization over xj , the obtained optimal control π∗i for each subsystem could be extremely
conservative, which leads to extremely conservative ISS or ISDS estimations.
To avoid these drawbacks of the maximization of Ji with respect to xj , j 
= i, one could

use the systems equations (6.8) to predict xj , j 
= i instead.
A numerically efficient way to calculate the optimal solutions π∗i , w

∗
i of the subsystems is

a parallel calculation. Due to interconnected structure of the system the information about
systems states of the subsystems should be exchanged. But this exchange of information
causes that an optimal solution π∗i , w

∗
i could not be calculated. To the best of our knowledge,

no theorem is proved that provides the existence of an optimal solution of the optimal control
problem using such a parallel strategy. We conclude that a parallel calculation can not help
in our case.
Another approach of an MPC scheme for networks is inspired by the hierarchical MPC

scheme in [97]. One could use the predictions of the internal inputs xj , j 
= i as follows: at
sampling time t = kΔ, k ∈ N, Δ > 0 all subsystems calculate the optimal solution iteratively.
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This means that for the calculation the optimal solution for the ith subsystem, the currently
“optimized” trajectories of the subsystems 1, . . . , i− 1 will be used, denoted by xopt,kΔ

p , p =

1, . . . , i− 1, and the “optimal” trajectories of the subsystems i+ 1, . . . , n of the optimization
at sampling time t = (k − 1)Δ will be used, denoted by xopt,(k−1)Δ

p , p = i+ 1, . . . , n.
The advantage of this approach would be that the optimal solution is not that much

conservative as the min-max approach and the calculation of the optimal solution could be
performed in a numerically efficient way, due to the usage of the model to predict the “optimal”
trajectories and that the maximization over xj , j 
= i will be avoided. The drawback is that
the optimal cost function of each subsystem depends on the trajectories xopt,·

j , j 
= i using
this hierarchical approach. Then, to the best of our knowledge, it is not possible to show that
the optimal cost functions are ISDS-Lyapunov functions of the subsystems, which is a crucial
step for proving ISDS of a subsystem or the whole network, because no helpful estimations
for the Lyapunov function properties can be performed due to the dependence of the optimal
cost functions of the trajectories xopt,·

j , j 
= i.
The FHOCP for the ith subsystem reads as follows:

min
πi

max
wi

max
(xj)j �=i

Ji(x̄0
i , (xj)j �=i, πi, wi; t, T )

subject to

ẋi(t′) = fi(x1(t′), . . . , xn(t′), wi(t′), ui(t′)), t′ ∈ [t, t+ T ],

xi(t) = x̄0
i ,

xj ∈ Xj , j = 1, . . . , n,

wi ∈ Wi,

πi ∈ Πi,

xi(t+ T ) ∈ Ωi ⊆ R
Ni ,

where the terminal region Ωi is a compact and convex set with the origin in its interior.
The resulting optimal control of each subsystem is a feedback control law, i.e., u∗i (t) =

π∗i (t, x(t)), where x = (xT
1 , . . . , x

T
n )

T ∈ R
N , N =

∑
iNi and π∗i (t, x

∗i(t)) is essentially
bounded, locally Lipschitz in x and measurable in t, for all i = 1, . . . , n.
To show that each subsystem and the whole system have the ISDS property using the

mentioned distributed MPC scheme, we suppose for the ith subsystem of (6.8):

Assumption 6.1.8. 1. There exist functions αl
i, α

w
i , αij ∈ K∞, j = 1, . . . , n, j 
= i such

that

li(xi, πi) ≥ αl
i(|xi|), xi ∈ Xi, πi ∈ Πi,

(lw)i(wi) ≤ αw
i (|wi|), wi ∈ Wi,

lij(xj) ≤ αij(Vj(xj)), xj ∈ Xj , j = 1, . . . , n, j 
= i.

2. The FHOCP admits a feasible solution at the initial time t = 0.
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3. There exists a controller ui(t) = πi(t, x(t)) such that the ith subsystem of (6.8) has the
ISDS property.

4. For each 1 > εi > 0 there exists a locally Lipschitz continuous function (Vf )i(xi) such
that the terminal region Ωi is a positively invariant set and we have

(Vf )i(xi) ≤ ηi(|xi|), ∀xi ∈ Ωi,

(V̇f )i(xi) ≤ −(1− εi)li(xi, πi) + (1− εi)(lw)i(wi) + (1− εi)
∑

j �=i lij(xj),

for almost all xi ∈ Ωi, where ηi ∈ K∞, wi ∈ Wi and (V̇f )i denotes the derivative of
(Vf )i along the solution of the ith subsystem of (6.8) with the control ui ≡ πi from point
3. of this assumption.

5. For each sufficiently small εi > 0 it holds

(1− εi)
∫ t+T

t
li(xi(t′), π∗i (t

′, x(t′)))−
∑
j �=i

lij(xj(t′))dt′ ≥ |x(t)|
1+εi

(6.9)

6. The optimal cost function J∗i (x̄
0
i , (xj)∗j �=i, π

∗
i , w

∗
i ; t, T ) is locally Lipschitz continuous.

Now, we can state that each subsystem possesses the ISDS property using the mentioned
MPC scheme.

Theorem 6.1.9. Consider an interconnected system of the form (6.8). Let Assumption 6.1.8
be satisfied for each subsystem. Then, each subsystem resulting from the application of the
control obtained by the FHOCP for each subsystem to the system, namely

ẋi(t) = fi(x1(t), . . . , xn(t), wi(t), π∗i (t, x(t))), t ∈ R+, x
0
i = xi(0),

possesses the ISDS property.

Proof. Consider the ith subsystem. We show that the optimal cost function Vi(x̄0
i ) :=

J∗i (x̄
0
i , (xj)∗j �=i, π

∗
i , w

∗
i ; t, T ) is an ISDS-Lyapunov function for the ith subsystem. We ab-

breviate xj = (xj)∗j �=i.
By following the steps of the proof of Theorem 6.1.6, we conclude that there exists a

feasible solution for all times t > 0 and that by (6.9) the functional Vi(x̄0
i ) satisfies the

condition

|x̄0
i |

(1+εi)
≤ Vi(x̄0

i ) ≤ ηi(|x̄0
i |),

using |x̄0| ≥ |x̄0
i |. Note that by Assumption 6.1.8, point 6., J∗i is locally Lipschitz continuous.

We have that it holds

V̇i(x̄0
i ) ≤ −(1− εi)αl

i(η
−1
i (Vi(x̄0

i ))) + (1− εi)αw
i (|w∗i |) + (1− εi)

∑
j �=i

αij(Vj((x̄0
j )))

and equivalently

V̇i(x̄0
i ) ≤ −(1− εi)αl

i(η
−1
i (Vi(x̄0

i ))) + (1− εi)max{nαw
i (|w∗i |),max

j �=i
nαij(Vj((x̄0

j )))},



100 6.2. ISS and MPC of time-delay systems

which implies

Vi(x̄0
i ) > max{γi(|w∗i |),max

j �=i
γij(Vj((x̄0

i )))} ⇒ V̇i(x̄0
i ) ≤ −(1− εi)gi(Vi(x̄0

i )),

for almost all x̄0
i ∈ Xi and all w∗i ∈ Wi, where γi(r) := ηi((αl

i)
−1(2nαw

i (r))), γij(r) :=

ηi((αl
i)
−1(2nαij(r))) and gi(r) := 1

2α
l
i(η

−1
i (r)), where gi is locally Lipschitz continuous.

Since, i can be chosen arbitrarily, we conclude that each subsystem has an ISDS-Lyapunov
function. It follows that each subsystem has the ISDS property.

To investigate whether the whole system has the ISDS property, we collect all functions
γij in a matrix Γ := (γij)n×n, γii ≡ 0, which defines a map as in (1.12).
Using the small-gain condition for Γ, the ISDS property for the whole system can be

guaranteed:

Corollary 6.1.10. Consider an interconnected system of the form (6.8). Let Assump-
tion 6.1.8 be satisfied for each subsystem. If Γ satisfies the small-gain condition (1.15), then
the whole system possesses the ISDS property.

Proof. Each subsystem has an ISDS-Lyapunov function with gains γij . This follows from
Theorem 6.1.9. The matrix Γ satisfies the SGC and all assumptions of Theorem 2.2.2 are
satisfied. It follows that with x = (xT

1 , . . . , x
T
n )

T , w = (wT
1 , . . . , w

T
n )

T and π∗(·, x(·)) =
((π∗1(·, x(·)))T , . . . , (π∗n(·, x(·)))T )T , the whole system of the form

ẋ(t) = f(x(t), w(t), π∗(t, x(t)))

has the ISDS property.

In the next section, we investigate the ISS property for MPC of TDS.

6.2 ISS and MPC of time-delay systems

Now, we introduce the ISS property for MPC of TDS. We derive conditions to assure that
a single system, a subsystem of a network and the whole system possess the ISS property
applying the control obtained by an MPC scheme for TDS.

6.2.1 Single systems

We consider systems of the form (4.1) with disturbances,

ẋ(t) = f(xt, w(t), u(t)), t ∈ R+,

x0(τ) = ξ(τ), τ ∈ [−θ, 0] ,
(6.10)

where w ∈ W ⊆ L∞(R+,R
P ) is the unknown disturbance andW is a compact and convex set

containing the origin. The input u is an essentially bounded and measurable control subject
to input constraints u ∈ U , where U ⊆ R

 is a compact and convex set containing the origin
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in its interior. The function f has to satisfy the same conditions as in Chapter 4 to assure
that a unique solution exists, which is denoted by x(t; ξ, w, u) or x(t) in short.

The aim is to find an (optimal) control u such that the system (6.10) has the ISS property.

Due to the presence of disturbances, we apply a feedback control structure, which com-
pensates the effect of the disturbance. This means that we apply a feedback control law
π(t, xt) to the system. In the rest of this section, we assume that π(t, xt) ∈ Π is essentially
bounded, locally Lipschitz in xt and measurable in t. The set Π ⊆ R

m is assumed to be
compact and convex containing the origin in its interior. We obtain an MPC control law by
solving the control problem:

Definition 6.2.1 (Finite horizon optimal control problem with time-delays (FHOCPTD)).
Let T be the prediction horizon and π(t, xt) be a feedback control law. The finite horizon
optimal control problem with time-delays for a system of the form (6.10) is formulated as

min
π
max

w
J(ξ̄, π, w; t, T ) := min

π
max

w

∫ t+T

t
(l(x(t′), π(t′, xt′))− lw(w(t′)))dt′ + Vf (xt+T )

subject to

ẋ(t′) = f(xt′ , w(t′), u(t′)), t′ ∈ [t, t+ T ],

x(t+ τ) = ξ̄(τ), τ ∈ [−θ, 0],
xt′ ∈ X ,
w ∈ W,

π ∈ Π,
xt+T ∈ Ω ⊆ C([−θ, 0],RN ),

where ξ̄ ∈ C([−θ, 0],RN ) is the initial function of the system at time t, the terminal region Ω

and the state constraint set X ⊆ C([−θ, 0],RN ) are compact and convex sets with the origin
in their interior. l − lw is the stage cost, where l : R

N × R
m → R+ and lw : R

P → R+ are
locally Lipschitz continuous with l(0, 0) = 0, lw(0) = 0, and Vf : Ω → R+ is the terminal
penalty.

The control problem will be solved at the sampling instants t = kΔ, k ∈ N, Δ ∈ R+.
The optimal solution is denoted by π∗(t′, xt′ ; t, T ) and w∗(t′), t′ ∈ [t, t+ T ] and the optimal
cost functional is denoted by J∗(ξ̄, π∗, w∗; t, T ). The control input to the system (6.10) is
defined in the usual receding horizon fashion as

u(t′) = π∗(t′, xt′ ; t, T ), t′ ∈ [t, t+Δ].

Definition 6.2.2. • A feedback control π is called a feasible solution of the FHOCPTD
at time t, if for a given initial function ξ̄ at time t the feedback π(t′, xt′), t′ ∈ [t, t+ T ]

controls the state of the system (6.10) into Ω at time t + T , i.e., xt+T ∈ Ω, for all
w ∈ W.
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• A set Ω ⊆ C([−θ, 0],RN ) is called positively invariant, if for all initial functions ξ̄ ∈ Ω
a feedback control π keeps the trajectory of the system (6.10) in Ω, i.e.,

xt ∈ Ω, ∀t ∈ (0,∞),

for all w ∈ W.

For the goal of this section, establishing ISS of TDS with the help of MPC, we need the
following:

Assumption 6.2.3. 1. There exist functions αl, αw ∈ K∞ such that

l(φ(0), π) ≥ αl(|φ|a), φ ∈ X , π ∈ Π,
lw(w) ≤ αw(|w|), w ∈ W.

2. The FHOCPTD in Definition 6.2.1 admits a feasible solution at the initial time t = 0.

3. There exists a controller u(t) = π(t, xt) such that the system (6.10) has the ISS property.

4. There exists a locally Lipschitz continuous functional Vf (φ) such that the terminal region
Ω is a positively invariant set and for all φ ∈ Ω we have

Vf (φ) ≤ ψ2(|φ|a), (6.11)

D+Vf (φ,w) ≤ −l(φ(0), π) + lw(w), (6.12)

where ψ2 ∈ K∞, w ∈ W and D+Vf denotes the upper right-hand side derivate of the
functional V along the solution of (6.10) with the control u ≡ π from point 3. of this
assumption.

5. There exists a K∞ function ψ1 such that for all t > 0 it holds∫ t+T

t
l(x(t′), π(t′, xt′))dt′ ≥ ψ1(|ξ̄(0)|), ξ̄(0) = x(t). (6.13)

6. The optimal cost functional J∗(ξ̄, π∗, w∗; t, T ) is locally Lipschitz continuous.

Now, we can state a theorem that assures ISS of MPC for a single time-delay system with
disturbances.

Theorem 6.2.4. Let Assumption 6.2.3 be satisfied. Then, the system resulting from the
application of the predictive control strategy to the system, namely ẋ(t) = f(xt, w(t), π∗(t, xt)),
t ∈ R+, x0(τ) = ξ(τ), τ ∈ [−θ, 0] , possesses the ISS property.

Proof. The proof goes along the lines of the proof of Theorem 6.1.6 with according changes
to time-delays and functionals, i.e., we show that the optimal cost functional V (ξ̄) :=

J∗(ξ̄, π∗, w∗; t, T ) is an ISS-Lyapunov-Krasovskii functional.
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For a feasible solution for all times t > 0, we suppose that a feasible solution π(t′, xt′), t′ ∈
[t, t+ T ] at time t exists. We construct a control by

π̂(t′, xt′) =

{
π̃(t′, xt′), t′ ∈ [t+Δ, t+ T ],

π(t′, xt′), t′ ∈ (t+ T, t+ T +Δ],
(6.14)

where π is the controller from Assumption 6.2.3, point 3, and Δ > 0. π̃ steers xt+Δ into
xt+T ∈ Ω and Ω is a positively invariant set. This means that π(t′, xt′) keeps the system
trajectory in Ω for t + T < t′ ≤ t + T + Δ under the constraints of the FHOCPTD. This
implies that from the existence of a feasible solution for the time t, we have a feasible solution
for the time t +Δ. From Assumption 6.2.3, point 2., there exists a feasible solution for the
FHOCPTD at the time t = 0 and it follows that a feasible solution exists for every t > 0.

Replacing π̃ in (6.14) by π∗, it follows from (6.12) that it holds

J∗(ξ̄, π∗, w∗; t, T +Δ)

≤ J(ξ̄, π̂, w∗; t, T +Δ)

=
∫ t+T

t
(l(x(t′), π∗(t′, xt′ ; t, T ))− lw(w∗(t′)))dt′ +

∫ t+T+Δ

t+T
(l(x(t′), π(t′, xt′))− lw(w∗(t′)))dt′

+ Vf (xt+T+Δ)

= J∗(ξ̄, π∗, w∗; t, T )− Vf (xt+T ) + Vf (xt+T+Δ) +
∫ t+T+Δ

t+T
(l(x(t′), π(t′, xt′))− lw(w∗(t′)))dt′

≤ J∗(ξ̄, π∗, w∗; t, T )

and with (6.11) this implies

J∗(ξ̄, π∗, w∗; t, T ) ≤ J∗(ξ̄, π∗, w∗; t, 0) = Vf (ξ̄) ≤ ψ2(|ξ̄|a).

For the lower bound, it holds

V (ξ̄) ≥ J(ξ̄, π∗, 0; t, T ) ≥
∫ t+T

t
l(x(t′), π∗(t′, xt′))dt′

and by (6.13) we have V (ξ̄) ≥ ψ1(|ξ̄(0)|). This shows that J∗ satisfies (4.10).
Now, we use the notation xt(τ) := ξ̄(τ), τ ∈ [−θ + t, t]. With J∗(xt, π∗, w∗; t, T +Δ) ≤

J∗(xt, π∗, w∗; t, T ) we have∫ t+h

t
(l(x(t′), π∗(t′, xt′ ; t, T ))− lw(w∗(t′)))dt′ + J∗(xt+h, π∗, w∗; t+ h, T +Δ− h)

≤
∫ t+h

t
(l(x(t′), π∗(t′, xt′ ; t, T ))− lw(w∗(t′)))dt′ + J∗(xt+h, π∗, w∗; t+ h, T − h).

This implies

J∗(xt+h, π∗, w∗; t+ h, T +Δ− h) ≤ J∗(xt+h, π∗, w∗; t+ h, T − h). (6.15)
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Note that by Assumption 6.2.3, point 6., J∗ is locally Lipschitz continuous. With (6.15)
it holds

J∗(xt, π∗, w∗; t, T )

=
∫ t+h

t
(l(x(t′), π∗(t′, xt′ ; t, T ))− lw(w∗(t′)))dt′ + J∗(xt+h, π∗, w∗; t+ h, T − h)

≥
∫ t+h

t
(l(x(t′), π∗(t′, xt′ ; t, T ))− lw(w∗(t′)))dt′ + J∗(xt+h, π∗, w∗; t+ h, T ),

which leads to

J∗(xt+h, π∗, w∗; t+ h, T )− J∗(xt, π∗, w∗; t, T )
h

≤ − 1
h

∫ t+h

t
(l(x(t′), π∗(t′, xt′ ; t, T ))− lw(w∗(t′)))dt′.

Let h→ 0+ and using the first point of Assumption 6.2.3 we get

D+V (xt, w∗) ≤ −αl(|xt|a) + αw(|w∗|).

By definition of χ(r) := ψ2(α−1
l (2αw(r))) and α(r) := 1

2αl(ψ−1
2 (r)), r ≥ 0 this implies

V (xt) ≥ χ(|w∗|) ⇒ D+V (xt, w∗) ≤ −α(V (xt)),

i.e., J∗ satisfies the condition (4.11).
We conclude that J∗ is an ISS-Lyapunov-Krasovskii functional for the system

ẋ(t) = f(xt, w(t), π∗(t, xt))

and by application of Theorem 4.1.7 the system has the ISS property.

Now, we consider interconnections of TDS and provide conditions such that the whole
network with an optimal control obtained from an MPC scheme has the ISS property.

6.2.2 Interconnected systems

We consider interconnected systems with time-delays and disturbances of the form

ẋi(t) = f̃i

(
xt

1, . . . , x
t
n, wi(t), ui(t)

)
, i = 1, . . . , n, (6.16)

where ui ∈ R
Mi are the essentially bounded and measurable control inputs and wi ∈ R

Pi are
the unknown disturbances. We assume that the states, disturbances and inputs fulfill the
constraints

xi ∈ Xi, wi ∈ Wi, ui ∈ Ui, i = 1, . . . , n,

where Xi ⊆ C([−θ, 0],RNi), Wi ⊆ L∞(R+,R
Pi) and Ui ⊆ R

Mi are compact and convex sets
containing the origin in their interior.
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We assume the same MPC strategy for interconnected TDS as in Subsection 6.1.2. The
FHOCPTD for the ith subsystem of (6.16) reads as

min
πi

max
wi

max
(xj)j �=i

Ji(ξ̄i, (xj)j �=i, πi, wi; t, T )

:= min
πi

max
wi

max
(xj)j �=i

∫ t+T

t
(li(xi(t′), πi(t′, xt′

i ))− (lw)i(wi(t′))−
∑
j �=i

lij(xj(t′)))dt′ + (Vf )i(xt+T
i )

subject to

ẋi(t′) = fi(xt′
1 , . . . , x

t′
n , wi(t′), ui(t′)), t′ ∈ [t, t+ T ],

xi(t+ τ) = ξ̄i(τ), τ ∈ [−θ, 0],
xj ∈ Xj , j = 1, . . . , n,

wi ∈ Wi,

πi ∈ Πi,

xt+T
i ∈ Ωi ⊆ C([−θ, 0],RNi),

where ξ̄i ∈ Xi is the initial function of the ith subsystem at time t, the terminal region Ω is a
compact and convex set with the origin in its interior. πi(t, xt) is essentially bounded, locally
Lipschitz in x and measurable in t and Πi ⊆ R

Mi is a compact and convex sets containing
the origin in its interior. li − (lw)i −

∑
lij is the stage cost, where li : R

Ni × R
Mi → R+.

(lw)i : R
Pi → R+ penalizes the disturbance and lij : R

Nj → R+ penalizes the internal input
for all j = 1, . . . , n, j 
= i. li, (lw)i and lij are locally Lipschitz continuous functions with
li(0, 0) = 0, (lw)i(0) = 0, lij(0) = 0, and (Vf )i : Ωi → R+ is the terminal penalty of the ith
subsystem.

We obtain an optimal solution π∗i , (xj)∗j �=i, w
∗
i , where the control of each subsystem

is a feedback control law, which depends on the current states of the whole system, i.e.,
ui(t) = π∗i (t, x

t), where xt = ((xt
1)

T , . . . , (xt
n)

T )T ∈ C([−θ, 0],RN ), N =
∑

iNi.

For the ith subsystem of (6.16) we suppose:

Assumption 6.2.5. 1. There exist functions αl
i, α

w
i , αij ∈ K∞, j = 1, . . . , n, j 
= i such

that

li(φi(0), πi) ≥ αl
i(|φi|a), φi ∈ C([−θ, 0],RNi), πi ∈ Πi,

(lw)i(wi) ≤ αw
i (|wi|), wi ∈ Wi,

lij(φj(0)) ≤ αij(Vj(φj)), φj ∈ C([−θ, 0],RNj ), j = 1, . . . , n, j 
= i.

2. The FHOCPTD admits a feasible solution at the initial time t = 0.

3. There exists a controller ui(t) = πi(t, xt) such that the ith subsystem of (6.16) has the
ISS property.
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4. There exists a locally Lipschitz continuous functional (Vf )i(φi) such that the terminal
region Ωi is a positively invariant set and for all φi ∈ Ωi we have

(Vf )i(φi) ≤ ψ2i(|φi|a),
D+(Vf )i(φi, wi) ≤ −li(φi(0), πi) + (lw)i(wi) +

∑
j �=i lij(φj(0)),

where ψ2i ∈ K∞, φj ∈ C([−θ, 0],RNj ), j = 1, . . . , n and wi ∈ Wi. D+(Vf )i denotes
the upper right-hand side derivate of the functional (Vf )i along the solution of the ith
subsystem of (6.16) with the control ui ≡ πi from point 3. of this assumption.

5. For each i, there exists a K∞ function ψ1i such that for all t > 0 it holds∫ t+T

t
li(xi(t′), πi(t′, xt′))dt′ ≥ ψ1i(|ξ̄(0)|), ξ̄(0) = x(t). (6.17)

6. The optimal cost functional J∗i (ξ̄i, (xj)∗j �=i, π
∗
i , w

∗
i ; t, T ) is locally Lipschitz continuous.

Now, we state that each subsystem of (6.16) has the ISS property by application of the
optimal control obtained by the FHOCPTD.

Theorem 6.2.6. Consider an interconnected system of the form (6.16). Let Assumption 6.2.5
be satisfied for each subsystem. Then, each subsystem resulting from the application of the
predictive control strategy to the system, namely ẋi(t) = fi(xt

1, . . . , x
t
n, wi(t), π∗i (t, x

t)), t ∈
R+, x

0
i (τ) = ξi(τ), τ ∈ [−θ, 0] , possesses the ISS property.

Proof. Consider the ith subsystem. We show, that the optimal cost functional Vi(ξ̄i) :=

J∗i (ξ̄i, (xj)∗j �=i, π
∗
i , w

∗
i ; t, T ) is an ISS-Lyapunov-Krasovskii functional for the ith subsystem.

We abbreviate xt
j = ((xj)tj �=i)

∗.
Following the lines of the proof of Theorem 6.2.4, we have that there exists a feasible

solution of the ith subsystem for all times t > 0 and that the functional Vi(ξ̄i) satisfies the
condition

ψ1i(|ξ̄i(0)|) ≤ Vi(ξ̄i) ≤ ψ2i(|ξ̄i|a),

using (6.17) and |ξ̄(0)| ≥ |ξ̄i(0)|. Note that by Assumption 6.2.5, point 6., J∗i is locally
Lipschitz continuous. We arrive that it holds

D+Vi(xt
i, w

∗
i ) ≤ −αl

i(ψ
−1
2i (Vi(xt

i))) + αw
i (|w∗i |) +

∑
j �=i

αij(Vj(xt
j)).

This is equivalent to

D+Vi(xt
i, w

∗
i ) ≤ −αl

i(ψ
−1
2i (Vi(xt

i))) + max{nαw
i (|w∗i |),max

j �=i
nαij(Vj(xt

j))},

which implies

Vi(xt
i) ≥ max{χ̃i(|w∗i |),max

j �=i
χ̃ij(Vj(xt

j))} ⇒ D+Vi(xt
i, w

∗
i ) ≤ −ᾱl

i(Vi(xt
i)),
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where

χ̃i(r) := ψ2i((αl
i)
−1(2nαw

i (r))),

χ̃ij(r) := ψ2i((αl
i)
−1(2nαij(r))),

ᾱl
i(r) :=

1
2α

l
i(ψ

−1
2i (r)).

This can be shown for each subsystem and we conclude that each subsystem has an
ISS-Lyapunov-Krasovskii functional. It follows that the ith subsystem is ISS in maximum
formulation.

We collect all functions χ̃ij in a matrix Γ := (χ̃ij)n×n, χ̃ii ≡ 0, which defines a map as in
(1.12).
Using the small-gain condition for Γ, it follows from Theorem 6.2.6:

Corollary 6.2.7. Consider an interconnected system of the form (6.16). Let Assump-
tion 6.2.5 be satisfied for each subsystem. If Γ satisfies the small-gain condition (1.15), then
the whole system possesses the ISS property.

Proof. We know from Theorem 6.2.6 that each subsystem of (6.16) has an ISS-Lyapunov-
Krasovskii functional with gains χ̃ij . Since, the matrix Γ satisfies the SGC, all assumptions
of Theorem 4.2.4 are satisfied and by Remark 4.2.5 the whole system of the form

ẋ(t) = f(xt, w(t), π∗(t, xt))

is ISS in maximum formulation, where xt = ((xt
1)

T , . . . , (xt
n)

T )T , w = (wT
1 , . . . , w

T
n )

T and
π∗(t, xt) = ((π∗1(t, xt))T , . . . , (π∗n(t, xt))T )T .

The next chapter summarizes the thesis and open questions for future research activities
are listed.
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Chapter 7

Summary and Outlook

We have provided several tools for different kinds of systems to analyze them in view of
stability, to design observers and to control them. This thesis has extended the analysis
toolbox of nonlinear single and interconnected systems using Lyapunov methods.

The results can be used for a wide range of applications from different areas. Moreover,
the theory presented here can be seen as a starting point for further investigations.

In this chapter, we summarize all main results of this thesis and propose several topics
for future research activities as well as open questions.

7.1 ISDS

Considering networks of interconnected ISDS subsystems, we have shown that they possess
the ISDS property, if the small-gain condition (1.15) is satisfied. In this case, we have provided
explicit expressions for an ISDS-Lyapunov function and the corresponding rates and gains
of the entire interconnection, which is Theorem 2.2.2. As an application of this result, we
have investigated a system of interconnections with zero external input and we have derived
decay rates of the subsystems and the entire system, see Corollary 2.2.3. An example with
two systems taken from [36] compares the resulting estimates of the norm of a trajectory
obtained by [36] and by (2.15), see Example 2.3.1. Another example (Example 2.3.2) with n
interconnected ISDS systems has illustrated the application of our main result.

The ISDS property with its advantages over ISS is not deeply investigated and used in
applications and only few works exist in the research literature according to this topic until
now. The advantages of ISDS could be used in practice for a wide range of applications to
obtain (economic) benefits by the analysis of dynamical systems. For example, in production
networks, ISDS can help to design systems avoiding overdimensioned production lines or
warehouses.

Possible research activities regarding ISDS can be, for example: the investigation of a
local variant of ISDS (see [40]) for networks and applications to production networks, for
example. A small-gain theorem using LISDS-Lyapunov functions of the subsystems similar
to Theorem 2.1.6 can be proved and the question arises, if ρ, ρu in the definition of local ISDS
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(LISDS) according to LISS are equal to ρ, ρu using LISDS-Lyapunov functions.
Similar to iISS (see [116, 1]), an integral variant of ISDS, namely iISDS, could be investi-

gated. Since, the set of iISS systems is larger than the set of ISS systems, this is also expected
for iISDS systems in comparison to ISDS systems. The benefits of iISDS over ISDS or ISS for
applications and the characterization of iISDS by Lyapunov functions should be analyzed.
As ISS was investigated for networks of discrete-time systems in [53, 54], this could also

be done for the ISDS property and similar theorems presented here, can be adapted for such
class of systems. This can be used for MPC, for example. Furthermore, the ISDS property
can be defined for time-delay systems and the influence of the presence of delays to the decay
rate could be analyzed. Also, all the theory according to ISDS could be developed for TDS.
This would increase the range of possible applications of ISDS.
We have transfered one of the advantage of ISDS over ISS, namely the memory fading

effect, to observer design:

7.2 Observer and quantized output feedback stabilization

We have introduced the quasi-ISDS property for observers (Definition 3.1.2), which main
advantage over the quasi-ISS property is the memory fading effect due to measurement dis-
turbances. This was demonstrated in Example 3.1.3. A quasi-ISDS observer was designed
(Theorem 3.1.8) using error ISDS-Lyapunov functions. Considering networks, we have shown
how to design quasi-ISS/ISDS reduced-order observers for subsystems of interconnected sys-
tems in Theorem 3.2.2. They were used to design a quasi-ISS/ISDS reduced-order observer
for the overall system under a small-gain condition (Theorem 3.2.3).
As an application, we have shown that quantized output feedback stabilization for a sub-

system is achievable, under the assumptions that the subsystem possesses a quasi-ISS/ISDS
reduced-order observer and a state feedback controller providing ISS/ISDS with respect to
measurement errors (Proposition 3.3.3, point 1.). If this holds for all subsystems of the
large-scale system and the small-gain condition is satisfied, then quantized output feedback
stabilization is also achievable for the overall system (Proposition 3.3.3, point 2.). The ob-
tained bounds can be improved by using dynamic quantizers. We have shown that asymptotic
convergence can be achieved for each subsystem and for the overall system provided that a
small-gain condition is satisfied.
In future, it would be interesting to study the design of nonlinear output feedback control

or nonlinear observers to satisfy the small-gain condition. The application of the results
in this thesis to the design of dynamic quantized interconnected control systems could be
investigated. Also, the design of the observers introduced in this thesis for systems with
time-delays is of interest for future research activities as far as time-delays occur in many
real-world applications.
Moreover, it could be investigated, if the decay rate and the gains of the quasi-ISDS

property can be directly obtained by the usage of a different error ISDS-Lyapunov func-
tion in opposite to the one used in Assumption 3.1.4 and adapting/improving the proof of
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Theorem 3.1.8.

We have investigated another type of systems:

7.3 ISS for TDS

For networks of time-delay systems, we have proved two theorems: an (L)ISS-Lyapunov-
Razumikhin and an ISS-Lyapunov-Krasovskii small-gain theorem. They provide a tool how
to check whether a network of TDS has the (L)ISS property, using a small-gain condition
and (L)ISS-Lyapunov-Razumikhin functions or ISS-Lyapunov-Krasovskii functionals, respec-
tively. Furthermore, we have shown how to construct the (L)ISS-Lyapunov-Razumikhin func-
tion, the ISS-Lyapunov-Krasovskii functional and the corresponding gains of the whole sys-
tem, see Theorem 4.2.1 and Theorem 4.2.4.

As an application of the results, we have considered a detailed scenario of a production
network and we have analyzed it, using the presented tools in this chapter, see Section 4.3.

Further research activities could be the definition of ISDS for TDS and the investigation of
its characterization by ISDS-Lyapunov-Razumikhin functions and ISDS-Lyapunov-Krasovskii
functionals. The influence of the decay rate of the ISDS estimation by time-delays could be
analyzed. The presented results of this work can be further extended and an ISDS small-gain
theorem for networks of TDS could be proved.

For systems without time-delays, a converse ISS-Lyapunov theorem was proved in [119,
74]. This is not done yet for TDS using ISS-Lyapunov-Razumikhin functions or ISS-
Lyapunov-Krasovskii functionals, respectively, and remains as an open question. Another
topic to be analyzed is the equivalence of ISS and 0-GAS+GS, see [120] for systems without
time-delays. Considering time-delays, this is not proved yet and new techniques should be
developed for the proof. For further details, see [123, 122], for example.

In practice, considering production networks it can happen that machines within a plant
will break down, for example. Using autonomous control methods, the network is stable
despite the breakdowns. Due to the idea of autonomous control, it is not necessary to mon-
itor the production process such that breakdowns will not discovered or not discovered very
fast. By an increasing number of breakdowns, the performance of the network will decrease,
which causes economic drawbacks. To overcome these negative outcomes, one can use a fault
detection approach (see [129, 52, 2, 6], for example) to detect breakdowns in a network using
autonomous control methods. An observer-based approach for the fault detection can be used
(see [130], for example) as well as autonomous control methods. Once a fault in the network
is observed/detected, a message to the mechanics of the plant will be sent immediately such
that the breakdown could be repaired. In practice, this would help to treat autonomously
controlled networks with time-delays and breakdowns or other disturbances and would help
to avoid negative economic effects.

We have used the presented tools in this chapter for the stability analysis of impulsive
systems with time-delays:
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7.4 ISS for impulsive systems with time-delays

Considering impulsive systems with time-delays, we have introduced the Lyapunov-Krasovskii
and the Lyapunov-Razumikhin methodology for establishing ISS of single impulsive systems,
see Theorem 5.1.7 and Theorem 5.1.11. Then, we have investigated networks of impulsive
subsystems with time-delays. We have proved ISS small-gain theorems, which guarantees
that the whole network has the ISS property under a small-gain condition with linear gains
and a dwell-time condition using the Lyapunov-Razumikhin (Theorem 5.2.1) and Lyapunov-
Krasovskii (Theorem 5.2.2) approach. To prove this, we have constructed the Lyapunov
function(al)s and the corresponding gains of the whole system. These theorems provide tools
to check, whether a network of impulsive time-delay systems possesses the ISS property.

It seems that the usage of general Lyapunov functions instead of exponential Lyapunov
functions for single systems could be possible, if the dwell-time condition is formulated in a
different way. Then, for an interconnection one can also use general Lyapunov functions and
general gains instead of only linear gains. This should be investigated more detailed.

Considering interconnected impulsive systems, there is a relationship between the choice
of the gains satisfying the small-gain condition and the dwell-time condition. This is an
interesting topic for a more detailed investigation.

It could be investigated, how to develop tools for the stability analysis of interconnections,
if the impulse sequences of subsystems are different. Also, a proof with nonlinear gains instead
of linear ones could be performed.

Impulsive systems using a dynamical dwell-time condition, presented in [127] for switched
systems, could be investigated. There, the dwell-time condition is formulated using Lyapunov
functions proving asymptotic stability. This approach can be adapted to impulsive systems
and the ISS property, where the benefits of that approach could be investigated.

Since impulsive systems are closely connected to hybrid systems, time-delays could be in-
troduced to hybrid systems and such interconnections. Also, the ISDS property for impulsive
systems could be investigated. According to [45, 10], one can analyze the iISS property for
interconnected impulsive systems with and without time-delays.

The analysis of the ISDS property have motivated the investigation of ISDS for MPC of
single systems and networks. Moreover, the tool of a Lyapunov-Krasovskii functional have
been used for the analysis of ISS for MPC of single systems and networks with time-delays:

7.5 MPC

We have combined the ISDS property with MPC for nonlinear continuous-time systems with
disturbances. For single systems, we have derived conditions such that by application of
the control obtained by an MPC scheme to the system, it has the ISDS property, see Theo-
rem 6.1.6. Considering interconnected systems, we have proved that each subsystem possesses
the ISDS property using the control of the proposed MPC scheme, which is Theorem 6.1.9.
Using a small-gain condition, we have shown in Corollary 6.1.10 that the whole network has
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the ISDS property. For the proof, we have used one of the results of this thesis, namely
Theorem 2.2.2.
Considering single systems with time-delays, we have proved in Theorem 6.2.4 that a

TDS has the ISS property using the control obtained by an MPC scheme, where we have
used ISS-Lyapunov-Krasovskii functionals. For interconnected TDS, we have established a
theorem, which guarantees that each closed subsystem obtained by application of the control
obtained by a min-max MPC scheme has the ISS property, see Theorem 6.2.6. From this
result and using Theorem 4.2.4, we have shown that the whole network with time-delays has
the ISS property under a small-gain condition, see Corollary 6.2.7.
Note that the results presented here are first steps of the approaches of ISDS for MPC

and ISS for MPC of TDS. More detailed studies should be done in these directions, especially
in applications of these approaches.
An interesting topic for investigations is the usage of an MPC scheme for interconnected

systems, see the discussion in Subsection 6.1.2. It should be investigated if and how a different
MPC scheme which guarantees ISS or ISDS, respectively, can be formulated such that the
drawbacks of the proposed min-max approach will be eliminated.
Besides the proposed closed-loop MPC scheme, conditions for open-loop MPC schemes to

ISDS or ISS of TDS, respectively, could be derived. The differences of both schemes should
be analyzed and applied in practice.
Since we have focused on theoretical results regarding MPC, it remains to develop numer-

ical algorithms for the implementation of the proposed schemes, as in [84, 38], for example.
It could be analyzed, if and how other existing algorithms could be used or how they should
be adapted for implementation for the results presented in this thesis.
Finally, one can investigate networks, where the subsystems are not directly intercon-

nected but they are able to exchange information to control themselves in dependence of the
other subsystems to fulfill possible constraints. For this case, a distributed MPC scheme as
in [97, 41] should be used to calculate an optimal control for the subsystems.
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