237 research outputs found

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    Expanding FLew with a Boolean connective

    Full text link
    We expand FLew with a unary connective whose algebraic counterpart is the operation that gives the greatest complemented element below a given argument. We prove that the expanded logic is conservative and has the Finite Model Property. We also prove that the corresponding expansion of the class of residuated lattices is an equational class.Comment: 15 pages, 4 figures in Soft Computing, published online 23 July 201

    Conjuntos construibles en modelos valuados en retículos

    Get PDF
    We investigate different set-theoretic constructions in Residuated Logic based on Fitting’s work on Intuitionistic Kripke models of Set Theory. Firstly, we consider constructable sets within valued models of Set Theory. We present two distinct constructions of the constructable universe: L B and L B , and prove that the they are isomorphic to V (von Neumann universe) and L (Gödel’s constructible universe), respectively. Secondly, we generalize Fitting’s work on Intuitionistic Kripke models of Set Theory using Ono and Komori’s Residuated Kripke models. Based on these models, we provide a general- ization of the von Neumann hierarchy in the context of Modal Residuated Logic and prove a translation of formulas between it and a suited Heyting valued model. We also propose a notion of universe of constructable sets in Modal Residuated Logic and discuss some aspects of it.Investigamos diferentes construcciones de la teoría de conjuntos en Lógica Residual basados en el trabajo de Fitting sobre los modelos intuicionistas de Kripke de la Teoría de Conjuntos. En primer lugar, consideramos conjuntos construibles dentro de modelos valuados de la Teoría de Conjuntos. Presentamos dos construcciones distintas del universo construible: L B y L B , y demostramos que son isomorfos a V (universo von Neumann) y L (universo construible de Gödel), respectivamente. En segundo lugar, generalizamos el trabajo de Fitting sobre los modelos intuicionistas de Kripke de la teoría de conjuntos utilizando los modelos residuados de Kripke de Ono y Komori. Con base en estos modelos, proporcionamos una generalización de la jerarquía de von Neumann en el contexto de la Lógica Modal Residuada y demostramos una traducción de fórmulas entre ella y un modelo Heyting valuado adecuado. También proponemos una noción de universo de conjuntos construibles en Lógica Modal Residuada y discutimos algunos aspectos de la misma. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - MatemáticasLógica matemática, teoría de conjunto

    A note on drastic product logic

    Full text link
    The drastic product D*_D is known to be the smallest tt-norm, since xDy=0x *_D y = 0 whenever x,y<1x, y < 1. This tt-norm is not left-continuous, and hence it does not admit a residuum. So, there are no drastic product tt-norm based many-valued logics, in the sense of [EG01]. However, if we renounce standard completeness, we can study the logic whose semantics is provided by those MTL chains whose monoidal operation is the drastic product. This logic is called S3MTL{\rm S}_{3}{\rm MTL} in [NOG06]. In this note we justify the study of this logic, which we rechristen DP (for drastic product), by means of some interesting properties relating DP and its algebraic semantics to a weakened law of excluded middle, to the Δ\Delta projection operator and to discriminator varieties. We shall show that the category of finite DP-algebras is dually equivalent to a category whose objects are multisets of finite chains. This duality allows us to classify all axiomatic extensions of DP, and to compute the free finitely generated DP-algebras.Comment: 11 pages, 3 figure

    Propositional calculus for adjointness lattices

    Get PDF
    Recently, Morsi has developed a complete syntax for the class of all adjointness algebras (L,,A,K,H)\left( L,\leq ,A,K,H\right) . There, (L,)\left( L,\leq \right) is a partially ordered set with top element 11, KK is a conjunction on (L,)\left( L,\leq \right) for which 11 is a left identity element, and the two implication-like binary operations AA and HH on LL are adjoints of KK. In this paper, we extend that formal system to one for the class ADJLADJL of all 9-tuples (L,,1,0,A,K,H,,)\left( L,\leq ,1,0,A,K,H,\wedge ,\vee \right) , called \emph{% adjointness lattices}; in each of which (L,,1,0,,)\left( L,\leq ,1,0,\wedge ,\vee \right) is a bounded lattice, and (L,,A,K,H)\left( L,\leq ,A,K,H\right) is an adjointness algebra. We call it \emph{Propositional Calculus for Adjointness Lattices}, abbreviated AdjLPCAdjLPC. Our axiom scheme for AdjLPCAdjLPC features four inference rules and thirteen axioms. We deduce enough theorems and inferences in AdjLPCAdjLPC to establish its completeness for ADJLADJL; by means of a quotient-algebra structure (a Lindenbaum type of algebra). We study two negation-like unary operations in an adjointness lattice, defined by means of 00 together with AA and HH. We end by developing complete syntax for all adjointness lattices whose implications are SS-type implications
    corecore