346 research outputs found

    Inferring nucleosome positions with their histone mark annotation from ChIP data

    Get PDF
    MOTIVATION: The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. RESULTS: We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. AVAILABILITY: The software is available at http://epigen.molgen.mpg.de/nuchunter/. CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Impact of Methylation on the Physical Properties of DNA

    Get PDF
    AbstractThere is increasing evidence for the presence of an alternative code imprinted in the genome that might contribute to gene expression regulation through an indirect reading mechanism. In mammals, components of this coarse-grained regulatory mechanism include chromatin structure and epigenetic signatures, where d(CpG) nucleotide steps are key players. We report a comprehensive experimental and theoretical study of d(CpG) steps that provides a detailed description of their physical characteristics and the impact of cytosine methylation on these properties. We observed that methylation changes the physical properties of d(CpG) steps, having a dramatic effect on enriched CpG segments, such as CpG islands. We demonstrate that methylation reduces the affinity of DNA to assemble into nucleosomes, and can affect nucleosome positioning around transcription start sites. Overall, our results suggest a mechanism by which the basic physical properties of the DNA fiber can explain parts of the cellular epigenetic regulatory mechanisms

    MiOS, an integrated imaging and computational strategy to model gene folding with nucleosome resolution

    Full text link
    The linear sequence of DNA provides invaluable information about genes and their regulatory elements along chromosomes. However, to fully understand gene function and regulation, we need to dissect how genes physically fold in the three-dimensional nuclear space. Here we describe immuno-OligoSTORM, an imaging strategy that reveals the distribution of nucleosomes within specific genes in super-resolution, through the simultaneous visualization of DNA and histones. We combine immuno-OligoSTORM with restraint-based and coarse-grained modeling approaches to integrate super-resolution imaging data with Hi-C contact frequencies and deconvoluted micrococcal nuclease-sequencing information. The resulting method, called Modeling immuno-OligoSTORM, allows quantitative modeling of genes with nucleosome resolution and provides information about chromatin accessibility for regulatory factors, such as RNA polymerase II. With Modeling immuno-OligoSTORM, we explore intercellular variability, transcriptional-dependent gene conformation, and folding of housekeeping and pluripotency-related genes in human pluripotent and differentiated cells, thereby obtaining the highest degree of data integration achieved so far to our knowledge

    ChIPseqR: analysis of ChIP-seq experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of high-throughput sequencing in combination with chromatin immunoprecipitation (ChIP-seq) has enabled the study of genome-wide protein binding at high resolution. While the amount of data generated from such experiments is steadily increasing, the methods available for their analysis remain limited. Although several algorithms for the analysis of ChIP-seq data have been published they focus almost exclusively on transcription factor studies and are usually not well suited for the analysis of other types of experiments.</p> <p>Results</p> <p>Here we present ChIPseqR, an algorithm for the analysis of nucleosome positioning and histone modification ChIP-seq experiments. The performance of this novel method is studied on short read sequencing data of <it>Arabidopsis thaliana </it>mononucleosomes as well as on simulated data.</p> <p>Conclusions</p> <p>ChIPseqR is shown to improve sensitivity and spatial resolution over existing methods while maintaining high specificity. Further analysis of predicted nucleosomes reveals characteristic patterns in nucleosome sequences and placement.</p

    Consequences of local and global chromatin mechanics to adaption and genome stability in the budding yeast Saccharomyces cerevisiae

    Full text link
    Le génome de la levure de boulanger Saccharomyces cerevisiae a évolué à partir d'un ancêtre chez lequel une profonde décompaction du génome s'est produite à la suite de la perte de la méthylation de la lysine 9 de l'histone H3, il y a environ 300 millions d'années. Il a été proposé que cette décompaction du génome a entraîné une capacité accrue des levures à évoluer par des mécanismes impliquant des taux de recombinaison méiotique et de mutation exceptionnellement élevés. La capacité à évoluer accrue qui en résulte pourrait avoir permis des adaptations uniques, qui en ont fait un eucaryote modèle idéal et un outil biotechnologique. Dans cette thèse, je présenterai deux exemples de la façon dont les adaptations locales et globales du génome se reflètent dans les changements des propriétés mécaniques de la chromatine qui, à leur tour, indiquent un phénomène de séparation de phase causée par les modifications post-traductionnelles des histones et des changements dans les taux d'échange des histones. Dans un premier manuscrit, je présente des preuves d'un mécanisme par lequel la relocalisation du locus INO1, gène actif répondant à la déplétion en inositol, du nucléoplasme vers l'enveloppe nucléaire, augmente la vitesse d'adaptation et la robustesse métabolique aux ressources fluctuantes, en augmentant le transport des ARNm vers le cytosol et leur traduction. La répartition d'INO1 vers l'enveloppe nucléaire est déterminée par une augmentation locale des taux d'échange d'histones, ce qui entraîne sa séparation de phase du nucléoplasme en une phase de faible densité plus proche de la périphérie nucléaire. J'ai quantifié les propriétés mécaniques de la chromatine du locus du gène dans les états réprimé et actif en analysant le déplacement de 128 sites LacO fusionnés au gène liant LacI-GFP en calculant diffèrent paramètres tel que la constante de ressort effective et le rayons de confinement du locus. De plus, j'ai mesuré l'amplitude et le taux d'expansion en fonction du temps du réseau LacO et j'ai observé une diminution significative du locus à l'état actif, ce qui est cohérent avec le comportement de ressort entropique de la chromatine décompactée. J'ai montré que les séquences d'éléments en cis dans le promoteur du locus, essentielles à la séparation de phase, sont des sites de liaison pour les complexes de remodelage de la chromatine effectuant l'acétylation des histones. Ces modifications de la chromatine entraînent une augmentation des taux d'échanges des sous-unités des complexes d'histones, et une séparation de phase locale de la chromatine. Enfin, je présente l’analyse de simulations in silico qui montrent que la séparation de phase locale de la chromatine peut être prédite à partir d'un modèle de formation/disruption des interactions multivalentes protéine-protéine et protéine-ADN qui entraîne une diminution de la dynamique de l'ADN. Ces résultats suggèrent un mécanisme général permettant de contrôler la formation rapide des domaines de la chromatine, bien que les processus spécifiques contribuant à la diminution de la dynamique de l'ADN restent à étudier. Dans un second manuscrit, je décris comment nous avons induit la « retro-évolution » de la levure en réintroduisant la méthylation de la lysine 9 de l'histone H3 par l'expression de deux gènes de la levure Schizosaccaromyces pombe Spswi6 et Spclr4. Le mutant résultant présente une augmentation de la compaction de la chromatine, ce qui entraîne une réduction remarquable des taux de mutation et de recombinaison. Ces résultats suggèrent que la perte de la méthylation de la lysine 9 de l'histone H3 pourrait avoir augmenté la capacité à l'évoluer. La stabilité inhabituelle du génome conférée par ces mutations pourrait être utile pour l'ingénierie métabolique de S. cerevisiae, dans laquelle il est difficile de maintenir des gènes exogènes intégrés pour les applications de nombreux processus biotechnologiques courants tels que la production de vin, de bière, de pain et de biocarburants. Ces résultats soulignent l'influence des propriétés physiques d'un génome sur son architecture et sa fonction globales.The genome of the budding yeast Saccharomyces cerevisiae evolved from an ancestor in which a profound genome decompaction occurred as the result of the loss of histone H3 lysine 9 methylation, approximately 300 million years ago. This decompaction may have resulted in an increased capacity of yeasts to evolve by mechanisms that include unusually high meiotic recombination and mutation rates. Resultant increased evolvability may have enabled unique adaptations, which have made it an ideal model eukaryote and biotechnological tool. In this thesis I will present two examples of how local and global genome adaptations are reflected in changes in the mechanical properties of chromatin. In a first manuscript, I present evidence for a mechanism by which partitioning of the active inositol depletion-responsive gene locus INO1 from nucleoplasm to the nuclear envelope increases the speed of adaptation and metabolic robustness to fluctuating resources, by increasing mRNA transport to the cytosol and their translation. Partitioning of INO1 to the nuclear envelope is driven by a local increase in histone exchange rates, resulting in its phase separation from the nucleoplasm into a low-density phase closer to the nuclear periphery. I quantified the mechanical properties of the gene locus chromatin in repressed and active states by monitoring mean-squared displacement of an array of 128 LacO sites fused to the gene binding LacI-GFP and calculating effective spring constants and radii of confinement of the array. Furthermore, I measured amplitude and rate of time-dependent expansion of the LacO array, and observed a significant decrease for the active-state locus which is consistent with entropic spring behavior of decompacted chromatin. I showed that cis element sequences in the promoter and upstream of the locus that are essential to phase separation are binding sites for chromatin remodeling complexes that perform histone acetylation among other modifications that result in increased histone complex exchange rates, and consequent local chromatin phase separation. Finally, I present analytical simulations that show that local phase separation of chromatin can be predicted from a model of formation/disruption of multivalent protein-protein and protein-DNA interactions that results in decreased DNA dynamics. These results suggest a general mechanism to control rapid formation of chromatin domains, although the specific processes contributing to the decreased DNA dynamics remain to be investigated. In a second manuscript, I describe how we retro-evolutionarily engineered yeast by reintroducing histone H3 lysine 9 methylation through the expression of two genes from the yeast Schizosaccaromyces pombe Spswi6 and Spclr4. This mutant shows an increase in compaction, resulting in remarkable reduced mutation and recombination rates. These results suggest that loss of histone H3 lysine 9 methylation may have increased evolvability. The unusual genome stability imparted by these mutations could be of value to metabolically engineering S. cerevisiae, in which it is difficult to maintain integrated exogenous genes for applications for many common biotechnological processes such as wine, beer, bread, and biofuels production. These results highlight the influence of the physical properties of a genome on its overall architecture and function

    Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development

    Get PDF
    During differentiation of embryonic stem cells, chromatin reorganizes to establish cell type-specific expression programs. Here, we have dissected the linkages between DNA methylation (5mC), hydroxymethylation (5hmC), nucleosome repositioning, and binding of the transcription factor CTCF during this process. By integrating MNase-seq and ChIP-seq experiments in mouse embryonic stem cells (ESC) and their differentiated counterparts with biophysical modeling, we found that the interplay between these factors depends on their genomic context. The mostly unmethylated CpG islands have reduced nucleosome occupancy and are enriched in cell type-independent binding sites for CTCF. The few remaining methylated CpG dinucleotides are preferentially associated with nucleosomes. In contrast, outside of CpG islands most CpGs are methylated, and the average methylation density oscillates so that it is highest in the linker region between nucleosomes. Outside CpG islands, binding of TET1, an enzyme that converts 5mC to 5hmC, is associated with labile, MNase-sensitive nucleosomes. Such nucleosomes are poised for eviction in ESCs and become stably bound in differentiated cells where the TET1 and 5hmC levels go down. This process regulates a class of CTCF binding sites outside CpG islands that are occupied by CTCF in ESCs but lose the protein during differentiation. We rationalize this cell type-dependent targeting of CTCF with a quantitative biophysical model of competitive binding with the histone octamer, depending on the TET1, 5hmC, and 5mC state
    corecore