354 research outputs found

    A Framework for the Performance Analysis and Simulation of RF-Mesh Advanced Metering Infrastructures for Smart Grid Applications

    Get PDF
    RÉSUMÉ L’Infrastructure de Mesurage Avancée (IMA), conçue à l’origine pour lire à distance des compteurs intelligents, est actuellement considérée comme une composante essentielle dans le domaine des Smart Grid. Le but principal des IMAs est de connecter le grand nombre de compteurs intelligents installés chez les clients au le centre de contrôle de données de l’entreprise d’électricité et viceversa. Cette communication bidirectionnelle est une caractéristique recherchée par un grand nombre d’applications, qui visent à utiliser ces infrastructures comme support à la transmission de leurs données dans le réseau électrique, comme par exemple la gestion de la charge et la demande-réponse. Un grand nombre de technologies et de protocoles de communication sont actuellement utilisés dans les IMAs : parmi les solutions disponibles, le RF-Mesh est une des plus populaires, surtout grâce au bas coût pour l’installation et les équipements. Toutefois, le débit nominal des communications RF-Mesh est très bas, de l’ordre des dizaines de kbps, et la littérature qui traite leur performance est très limitée. Ceci pourrait en limiter l’utilisation pour des applications autres que la lecture à distance des compteurs intelligents. Ce travail de thèse vise à développer un système de modèles et outils pour évaluer la performance des réseaux RF-Mesh et encourager leur utilisation pour un grand nombre d’applications dans le domaine des Smart Grid. Le système d’évaluation de performance proposé est constitué (i) de modèles analytiques, pour calculer la probabilité de collision entre les paquets transmis, (ii) d’un simulateur de réseau, pour recréer le fonctionnement des réseaux RF-Mesh dans un environnement virtuel, (iii) d’un générateur de topologie, pour créer des cas réalistes en se basant sur des données géographiques et (iv) des méthodes pour l’analyse de la performance. Trois différents modèles analytiques ont été implémentés. Dans les deux premiers, une nouvelle formule analytique a été utilisée pour calculer la probabilité de collision entre paquets. La probabilité de collision est ensuite utilisée pour estimer le délai moyen de/vers chaque compteur intelligent dans l’IMA analysée. Par la suite, des indices de performance, basés sur le délai moyen, sont utilisés pour faire des analyses de performance : études de faisabilité pour les applications de Smart Grid, l’identification de noeuds critiques et d’éventuels goulots d’étranglement. Dans le troisième modèle analytique, la théorie de Markov-Modulated System est utilisée pour prendre en considération d’importants détails d’implémentation, comme la probabilité de retransmission et la taille des mémoires tampons des noeuds, qui n’avaient pas été inclus dans la modélisations précédente.----------ABSTRACT Advanced Metering Infrastructure (AMI), originally conceived to replace the old Automated Meter Reading (AMR) infrastructures, have now become a key element in the Smart Grid context and might be used for applications other than remote meter reading. The main driver to their widespread installation is that they provide power utilities with a bidirectional connectivity with the smart meters. A wide variety of communication networks are currently proposed to support the implementation of AMIs, and, among them, the RF-Mesh technology seems to be very popular. The main reasons for its adoption are the proprietary infrastructure and the modest cost for the installation and the equipment. However, RF-Mesh systems are characterized by poor achievable data-rates in the order of 10 kbps, and their performance is not well studied in the literature. The lack of tools and methods for the performance evaluation might be a roadblock to their widespread adoption. This thesis aims at filling this gap and increase the knowledge of large-scale RF-Mesh systems to foster their use for a wide variety of applications. We propose a comprehensive framework for the performance evaluation of large-scale AMIs adopting the RF-Mesh technology. The framework includes (i) a geo-based topology generator that uses geographic data to produce realistic AMI cases, (ii) analytic models for the computation of packet collision probability and delay, (iii) a network simulator to recreate the behavior of large-scale RF-Mesh systems, and (iv) methods to evaluate the performance. Three different analytic models are included in the framework. The first two provide a novel analytic formulation of the packet collision probability in a mesh network with timeslotted ALOHA and the Frequency Hopping Spread Spectrum (FHSS) protocol : the collision probability is then used to estimate the average delay in the network, and to define and evaluate performance indexes (e.g., critical nodes and survival function). In the third model, a complex Markov-Modulated System (MMS) is used to take into consideration important implementation details, such as the retransmission probability and the buffer size, that were not considered in the two previous models. This model also provides a more accurate computation of the packet collision probability. A Poisson distribution is used to represent the traffic coming from potential Smart Grid applications. The framework also includes an RFMesh network simulator, written in Java and Python. The tool provides additional enhanced features with respect to the analytic models, such as a dynamic routing protocol or different traffic distributions

    Latency Optimization in Smart Meter Networks

    Get PDF
    In this thesis, we consider the problem of smart meter networks with data collection to a central point within acceptable delay and least consumed energy. In smart metering applications, transferring and collecting data within delay constraints is crucial. IoT devices are usually resource-constrained and need reliable and energy-efficient routing protocol. Furthermore, meters deployed in lossy networks often lead to packet loss and congestion. In smart grid communication, low latency and low energy consumption are usually the main system targets. Considering these constraints, we propose an enhancement in RPL to ensure link reliability and low latency. The proposed new additive composite metric is Delay-Aware RPL (DA-RPL). Moreover, we propose a repeaters’ placement algorithm to meet the latency requirements. The performance of a realistic RF network is simulated and evaluated. On top of the routing solution, new asynchronous ordered transmission algorithms of UDP data packets are proposed to further enhance the overall network latency performance and mitigate the whole system congestion and interference. Experimental results show that the performance of DA-RPL is promising in terms of end-to-end delay and energy consumption. Furthermore, the ordered asynchronous transmission of data packets resulted in significant latency reduction using just a single routing metric

    Smart Metering Technology and Services

    Get PDF
    Global energy context has become more and more complex in the last decades; the raising prices of fuels together with economic crisis, new international environmental and energy policies that are forcing companies. Nowadays, as we approach the problem of global warming and climate changes, smart metering technology has an effective use and is crucial for reaching the 2020 energy efficiency and renewable energy targets as a future for smart grids. The environmental targets are modifying the shape of the electricity sectors in the next century. The smart technologies and demand side management are the key features of the future of the electricity sectors. The target challenges are coupling the innovative smart metering services with the smart meters technologies, and the consumers' behaviour should interact with new technologies and polices. The book looks for the future of the electricity demand and the challenges posed by climate changes by using the smart meters technologies and smart meters services. The book is written by leaders from academia and industry experts who are handling the smart meters technologies, infrastructure, protocols, economics, policies and regulations. It provides a promising aspect of the future of the electricity demand. This book is intended for academics and engineers who are working in universities, research institutes, utilities and industry sectors wishing to enhance their idea and get new information about the smart meters

    Hydrodynamic modelling of wave energy converter arrays

    Get PDF
    Wave energy from wind-generated waves in the ocean or sea is absorbed by wave energy converters (WECs). In this research, floating point absorber (FPA) WECs are studied which are floating devices on the water surface. FPA WECs installed in the ocean or sea respond to the incoming waves and start moving in six degrees of freedom. The WECs extract energy from the waves by using a power take-off (PTO) system which converts the WEC's motion into electricity. In order to absorb a considerable amount of wave energy at a location in a cost-effective way, a number of WECs are arranged in an array layout using a particular geometrical configuration. If the individual WECs are installed close to each other, they will interact with each other, affecting the overall electricity production of the array (near-field effects). Firstly, the presence of a WEC unit disturbs the incoming wave field by both wave reflection and wave diffraction. Secondly, the WEC's motion leads to the generation of waves, called radiated waves. The wave field around a WEC is thus perturbed by a combination of incoming, reflected, diffracted and radiated waves. This results in zones with higher or lower wave heights compared to the incident wave field. The case where one WEC is positioned in the wake region of another WEC where lower wave heights are observed must be avoided. By positioning the individual WECs in the zones with higher wave heights, the total energy extraction of the WEC array is significantly improved, increasing the electricity production. In addition to these near-field effects, a WEC array also influences the wave climate further away (far-field effects). The wave height reduction behind an entire WEC array affects other users in the sea, the environment or even the coastline. In this research, only the near-field effects are considered. The WECs are tested in a three-dimensional (3D) non-linear viscous numerical wave tank (NWT). The NWT is implemented in the computational fluid dynamics (CFD) toolbox OpenFOAM and consists of two fluid phases: water with air on top. The 3D incompressible Navier-Stokes equations, which represent the physics with a very high accuracy, are solved on a mesh in a computational domain. The interface between water and air is resolved by a conservation equation formulated by the volume of fluid (VoF) method. Compared to traditional linear potential flow solvers based on a boundary element method (BEM), CFD is necessary to resolve complex physical processes. Examples are survivability simulations of WECs subjected to breaking waves and WECs operating in resonance mode by applying control methods resulting in significant non-linear and viscous effects combined with large WEC motions. The present research focusses on filling two knowledge gaps for a NWT. The first one is related to enhanced turbulence modelling for NWTs using a two-phase fluid solver and therefore applicable for a wide range of coastal and offshore processes such as wave-structure interaction, wave-current interaction, wave breaking, sediment transport, etc. The second gap is related to fluid-structure interaction simulations of a floating body. Instabilities between the fluid solver and the motion solver might happen due to added mass effects. During this research, enhanced prediction tools for turbulence modelling and efficient fluid-structure interaction simulations in a NWT have been developed. All these developed methods are coupled and validated by using experimental data obtained in a physical wave flume or basin.status: publishe

    Computational Modeling of Nonlinear Behavior in Orthopaedics

    Get PDF
    Total knee replacement (TKR) is one of the most common orthopaedic procedures performed in the USA and is projected to exceed 4.3 million by 2030. Although TKR surgery has a success rate of 95% at 10 years for most TKR designs, revision surgery still occurs approximately once for every ten primary TKR surgeries. Failure modes in TKR involve the interplay between implant mechanical performance and surrounding biological tissues. The orthopaedic community has turned to computational modeling as an effective tool to analyze these complex interactions and improve patient outcomes. The objective of these studies was to utilize a combined computational and experimental approach to investigate modes of TKR failure where material nonlinearity plays a significant role in the biomechanics under investigation. A finite element (FE) model of a modular TKR taper junction was developed in order to investigate the stress environment in relation to corrosive behavior under in vivo loading conditions. Linear elastic and elastoplastic material models were defined and angular mismatch parametrically varied in order to determine the sensitivity of model predicted stresses to material model selection and taper junction geometry. It was determined that positive angle mismatches cause plastic deformation and overestimated stresses in linear elastic analyses compared to elastoplastic analyses. Calculated stresses were also strongly correlated with angle mismatch when varied ±0.25o. Model stress distributions agreed with corrosion patterns evident on retrieved modular TKR components and magnitudes corresponding with corrosive behavior in vitro. Additionally, a series of passive FE TKR models were developed in order to investigate the intrinsic relationship between TKR component alignment, ligament tensions, and knee kinematics during intraoperative assessments. A kinematically-driven model was developed and validated with an open source dataset, and was able to discriminate clinical outcomes based on calculated ligament tensions when input in vivo kinematics. Patient-specific simulations found greater tension in lateral ligaments for poor outcome patients compared to good outcome patients, and statistically significant differences in tensions for the POL, PFL, DMCL, and ALS ligaments during mid-flexion. A force-driven model was also developed and validated with in vitro cadaver testing, and found that variation in tibial component alignment of ±15o influence intraoperative ligament tensions. However, definitive trends between TKR component alignment and ligament tension were not discerned. Nonetheless, both modeling approaches were found to be sensitive to subclinical abnormalities. These findings suggest mechanical stress is a key contributor to taper junction corrosion and that ligament tensions are the mechanism leading to abnormal function in the passive TKR knee. These studies contributed innovative computational models that provide a foundation to advance the understanding of these complex relationships, and modeling frameworks that exemplify sound verification and validation practices

    Design, implementation and verification of CubeSat systems for Earth Observation

    Get PDF
    In recent years, Earth Observation (EO) technologies have surged in an attempt to better understand the world we live in, and exploit the vast amount of data that can be collected to improve our lives. The field of EO encompasses a broad array of technologies capable of extracting information remotely, in a process called Remote Sensing (RS). CubeSats are causing a revolution in the RS field, and are becoming a really important contribution to it. The lack of testing and preparation are common in CubeSat EO missions due to the low budgets they usually suffer from. A successful CubeSat EO mission must supply the lack of size or funding with properly tested components and environments. In this document, emphasis will be given to preemptive approaches such as studying the performance of Commercial Off-The-Shelf (COTS) Global Positioning System (GPS) receivers and the development of simulators for highly dynamic environments This topic will be expanded upon by introducing the problematic of simulating such signals for testing, and the possible countermeasures to Radio-Frequency Interference (RFI) that threatens the success of the mission. Finally, a new S-Band Ground Station will be built to provide access to this band for future CubeSat missions. All of the above will provide a holistic view on some of the hot challenges that EO faces, and multiple future research paths that open with the recent rise of New Space technologies

    Brain and Human Body Modeling 2020

    Get PDF
    ​This open access book describes modern applications of computational human modeling in an effort to advance neurology, cancer treatment, and radio-frequency studies including regulatory, safety, and wireless communication fields. Readers working on any application that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest models and techniques available to assess a given technology’s safety and efficacy in a timely and efficient manner. Describes computational human body phantom construction and application; Explains new practices in computational human body modeling for electromagnetic safety and exposure evaluations; Includes a survey of modern applications for which computational human phantoms are critical

    Study the effect of topology on the performance of an advanced metering infrastructure network.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.A smart grid operates based on the integration of various renewable energy sources, distributed generators and storage units in order to deliver an uninterrupted energy supply to consumers. Such a complex grid requires a network of intelligent sensors and an effective communication infrastructure to provide bi-directional flows of information between different grid entities for monitoring and control purposes. A crucial part of the smart grid communication network is the advanced metering infrastructure connecting a utility company to end-users to support telemetry and remote-control applications. Although different technologies and standards for smart metering systems exist, the G3-PLC standard, which uses the power-line communication (PLC) technology, is the accepted standard in South Africa for connecting smart meters to data concentrators. Studying the topology of an AMI network can help improve the network’s Quality-of-Service to support more advanced applications. The analytical analysis is usually considered a viable method for studying the topological effect on the performance of PLC-based AMI networks, as physically altering such networks can become very costly. Therefore, in this research, such methods have been used to investigate the effect of topology on the performance of the G3-PLC AMI network. To better understand the system, an overview of the G3-PLC standard for smart metering application has been covered. This includes covering the DLMS/COSEM protocol at the application layer and its relation to the G3-PLC. This follows by providing the mathematical model for the G3-PLC AMI network to study the effect of topology on its performance. Based on the provided method, first, the distances between data concentrators and smart meters are identified. Then the graph theory has been used to calculate the transfer function between every node in the system for obtaining the system’s total capacity. It was shown that the performance of the system decreases as longer branches are added to the network

    Thermal modelling and evaluation of planar spiral inductors

    Get PDF
    • …
    corecore