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Samenvatting

Dutch summary

Golfenergie uit windgolven in de oceaan of in de zee wordt geabsorbeerd door mid-
del van golfenergieconvertoren (GECs). In dit onderzoek worden drijvende “point
absorber” GECs, ofwel boeien die drijven op het wateroppervlak, bestudeerd. Deze
drijvende “point absorber” GECs die zich in de oceaan of in de zee bevinden, reage-
ren op invallende golven en beginnen te bewegen in zes vrijheidsgraden. De GECs
absorberen energie uit de golven door middel van een PTO (“power take-off")
systeem dat de GEC-beweging omzet in elektriciteit. Om een aanzienlijke hoeveel-
heid golfenergie te absorberen op een kostenefficiénte manier, worden een aantal
GECs bij elkaar geplaatst op een bepaalde locatie. De individuele GECs worden
gerangschikt in een array lay-out (of een matrix of park) met een welbepaalde geo-
metrische configuratie. Als de individuele GECs dicht bij elkaar geplaatst worden,
zullen ze niet enkel elkaar maar ook de totale elektriciteitsproductie van de GEC
array beinvioeden (“near-field” effecten). Ten eerste verstoort de aanwezigheid
van een GEC het invallende golfveld door zowel golfreflectie als golfdiffractie. Ten
tweede leidt de beweging van een GEC tot het genereren van golven, die geradi-
eerde golven worden genoemd. Het golfveld rond een GEC wordt dus verstoord
door een combinatie van invallende, gereflecteerde, gediffracteerde en geradieerde
golven. Dit leidt tot zones met hogere of lagere golfhoogtes in vergelijking met het
inkomende golfveld. Het geval waarin één GEC wordt gepositioneerd in het zog-
gebied van een andere GEC waar lagere golfhoogtes worden waargenomen, moet
vermeden worden. Door de individuele GECs in de zones met hogere golfhoogtes te
plaatsen, neemt de totale energie absorptie en elektriciteitsproductie van de GEC
array aanzienlijk toe. Naast deze “near-field" effecten heeft een GEC array ook
een invloed op het golfklimaat over een grotere afstand (“far-field" effecten). De
afname in golfhoogtes achter een GEC array heeft gevolgen voor andere gebruikers
in de zee, het milieu of zelfs de kustlijn.

In dit onderzoek worden enkel de “near-field” effecten behandeld. De GECs
worden getest in een driedimensionale (3D) niet-lineaire viskeuze numerieke golf-
tank (NGT). De NGT is geimplementeerd in een model gebaseerd op numerieke
stromingsmechanica (CFD), OpenFOAM, en bestaat uit twee fluidumfasen: water
met lucht erbovenop. De 3D onsamendrukbare Navier-Stokes vergelijkingen, die
de fysica met een zeer hoge nauwkeurigheid beschrijven, worden opgelost op een
rooster in een numeriek domein. De positie van het vrij water oppervlak wordt
bepaald door het oplossen van een advectie vergelijking voor de volumefractie van
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water, geformuleerd volgens de “volume of fluid” (VoF) methode. Traditioneel
wordt voor GEC modellering gebruik gemaakt van lineaire modellen gebaseerd op
de randelementenmethode (“boundary element method”, BEM) voor het oplossen
van de potentiaalstroming. Maar toch is CFD noodzakelijk om simulaties te kunnen
uitvoeren betreffende de overlevingskansen van GECs die onderworpen worden aan
brekende golven. CFD is ook vereist wanneer regelmethoden worden toegepast.
Hierbij gaan de GEC bewegingen in resonantie waarbij significante niet-lineaire en
viskeuze effecten in combinatie met grote GEC bewegingen zich voordoen. Dit
onderzoek richt zich op het verkleinen van twee kennishiaten betreffende een NGT.
Het eerste heeft te maken met verbeterde turbulentiemodellering voor NGTs die
gebruik maken van een tweefasig stromingsmodel. Dit is bovendien toepasbaar
voor een breed gamma van kustwaterbouwkundige en offshore processen zoals golf-
structuur interactie, golf-stroming interactie, golfbreking, sedimenttransport, enz.
Het tweede hiaat vindt men terug bij fluidum-structuur interactie simulaties van een
drijvend object. Hierbij kunnen zich instabiliteiten voordoen tussen het stromings-
model en het bewegingsmodel ten gevolge van “added mass" effecten. Tijdens dit
onderzoek zijn verbeterde voorspellingsmethoden ontwikkeld voor turbulentiemo-
dellering en efficiénte fluidum-structuur interactie simulaties in een NGT. Al deze
ontwikkelde methoden worden gekoppeld en gevalideerd door gebruik te maken van
experimentele gegevens die verkregen zijn door metingen in een fysieke golfgoot of
golfbassin.

Het eerste deel van het proefschrift behandelt een verbeterde turbulentiemo-
dellering tijdens golfvoortplanting, golf-structuur interactie en golfbreking. De
simulaties gebeuren in een NGT met behulp van het tweefasig stromingsmodel
interFoam beschikbaar in OpenFOAM. Heel wat auteurs van wetenschappelijke
publicaties geven aanbevelingen voor het modelleren van turbulentie. Maar in het
algemeen leiden deze turbulentiemodellen tot golfdemping over de lengte van de
NGT. Bovendien voorspellen deze een overschatting van de turbulente kinetische
energie (TKE) in het hydrodynamische stromingsveld. Deze twee specifieke pro-
blemen worden aangepakt door gebruik te maken van RANS turbulentiemodellen,
aangepast voor een variabele dichtheid. Deze aanpassing betreft niet alleen het
expliciet opnemen van de dichtheid in de turbulentie transportvergelijkingen maar
ook het impliciet toevoegen van een densiteitsbronterm in de TKE-vergelijking.
Ten eerste is een laminaire oplossing voldoende nauwkeurig in het stromingsveld
tijdens propagatie van de golven voorafgaand aan golfbreking. In dat geval dwingt
de densiteitsbronterm de oplossing van het stromingsveld nabij het vrij wateropper-
vlak naar een laminaire oplossing. Ten tweede, in de branding waar golven breken,
worden significante turbulentieniveaus verwacht. In deze zone wordt de densiteits-
bronterm gelijk aan nul en wordt een volledig turbulent stromingsveld opgelost door
het numerieke model. Twee RANS-modellen aangepast voor een variabele dicht-
heid, kK —wen k —w SST, zijn getest en gevalideerd met behulp van experimentele
gegevens die beschikbaar zijn in de literatuur. De invloed van de densiteitsbron-
term in het k — w SST model wordt aangetoond door regelmatige golven te laten
propageren. Dit levert als resultaat dat overmatige golfdemping voor niet-brekende
golven met een hoge steilheid wordt vermeden. Verder zijn de numerieke resultaten
van golfoploop rond een offshore paalfundering onder regelmatige golven in goede
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overeenstemming met experimentele metingen in een fysieke golfgoot. Tijdens
simulaties van brekende golven en in vergelijking met traditionele turbulentiemo-
dellen, voorspellen de turbulentiemodellen aangepast voor een variabele dichtheid,
k—wenk—w SST, resultaten die het best overeenstemmen met de experimen-
tele metingen voor de golfverheffingen, snelheidsprofielen en TKE-niveaus. In het
algemeen resulteert een turbulentiemodel aangepast voor een variabele dichtheid
niet alleen in een stabiel golfvoortplantingsmodel zonder golfdemping ten gevolge
van RANS turbulentiemodellering. Maar het voorspelt ook nauwkeuriger het tur-
bulentieniveau in het stromingsveld van de branding waar golven breken. In het
bijzonder verminderen de turbulentiemodellen aangepast voor een variabele dicht-
heid aanzienlijk de overschatting van TKE in het tweefasig stromingsgebied, dat
gewoonlijk in de literatuur wordt beschreven.

In het tweede deel van het proefschrift wordt het tweefasig stromingsmodel
met beweegbare roosterpunten, interDyMFoam, gekoppeld aan een bewegingsmo-
del om de beweging van starre objecten te simuleren. Enkel de dominante beweging
van de dompende “point absorber” GEC, de op- en neerwaartse beweging, wordt
beschouwd. Deze veronderstelling maakt een vermindering mogelijk van zes vrij-
heidsgraden naar één vrijheidsgraad voor het bewegingsmodel. Een tweede orde
nauwkeurig Crank-Nicolson tijdsintegratieschema wordt aangewend om de snel-
heid en de positie van de GEC uit te rekenen, gebaseerd op zijn versnelling. Een
koppelingsalgoritme is nodig om een geconvergeerde oplossing te bereiken tussen
het hydrodynamische stromingsveld rond het drijvende object en de kinematische
beweging van het drijvende object tijdens elke tijdstap in de tijdsafhankelijke simu-
latie. Het koppelingsalgoritme wordt gestabiliseerd door middel van een impliciete
koppeling in de sub iteraties tijdens elke tijdstap. Een snelle convergentie van het
gekoppelde stromings—bewegingsmodel wordt bereikt wanneer de “added mass”
met een goede nauwkeurigheid gekend is. In dit werk wordt de waarde van de
“added mass” geschat door een Jacobiaan te berekenen. Dit is gebaseerd op be-
schikbare oplossingen van de versnelling van het drijvende object en de daarop
werkende kracht uit vorige sub iteraties. Dit resulteert in efficiénte numerieke si-
mulaties met een minimale CPU-tijd. Het gekoppelde stromings—bewegingsmodel
wordt eerst gevalideerd met experimentele data voor één enkele GEC tijdens een
vrije responstest en testen waarbij de GEC onderworpen wordt aan regelmatige
golven. De experimentele metingen zijn uitgevoerd in de grote golfgoot van de
afdeling civiele techniek aan de Universiteit Gent. Een goede overeenkomst wordt
gevonden tussen de numerieke en de experimentele metingen, niet alleen voor de
dompbeweging van de GEC, maar ook voor het verstoorde golfveld rond de GEC.
Vervolgens wordt een meer uitdagende simulatie van een impact test van een vrij
vallende wig op het wateroppervlak uitgevoerd en gevalideerd met experimentele
metingen van de dompbeweging en de verticale snelheid die beschikbaar zijn in de
literatuur. De noodzaak voor een niet-lineair viskeus stromingsmodel, zoals een
CFD NGT, wordt aangetoond door middel van een “proof of concept” studie dat
de overlevingskansen van een GEC inschat en zo het ontwerp van een GEC bepaalt.
Brekende golven worden gegenereerd en deze slaan in op de GEC om zo de GEC
beweging en de krachten op de GEC te begroten. Tot slot worden de numerieke si-
mulaties van één enkele dompende GEC uitgebreid tot een aantal dompende GECs
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die in een array configuratie zijn geplaatst. Hiervoor worden er in het numerieke
model glijdende roosterpunten rond de individuele GECs geimplementeerd om on-
afhankelijke bewegingen van dicht bij elkaar geplaatste GECs mogelijk te maken.
Deze methodologie verhindert ongewenste roostervervormingen aan het vrij water
oppervlak om de nauwkeurigheid van de numerieke oplossing te verbeteren. Als
een wereldwijd baanbrekend resultaat worden numerieke simulaties getoond van
een array bestaande uit twee, vijf en negen GECs geinstalleerd in een CFD NGT.
De numerieke resultaten worden gevalideerd met experimentele gegevens uit de
database van WECwakes, gegenereerd in het golfbassin van DHI (Denemarken).
Als resultaat worden er goede overeenkomsten gevonden voor de dompbewegingen
van de GECs, de horizontale krachten op de GECs en het verstoorde golfveld rond
de GECs. Dit onderzoek betreffende fluidum-structuur interactie simulaties met
behulp van het ontwikkelde gekoppelde stromings—bewegingsmodel in een NGT,
opent de mogelijkheden voor numerieke simulaties in een NGT van een willekeu-
rige drijvende structuur of structuren geinstalleerd in een willekeurig golfklimaat.

In dit werk is fundamenteel onderzoek verricht om meer nauwkeurige voorspel-
lingsmethoden in NGTs te ontwikkelen en op die manier de huidige kennishiaten te
verkleinen. Bovendien worden complexe fysische processen, zoals golfbreking, tur-
bulente effecten en resonante niet-lineaire GEC bewegingen gedempt door viskeuze
krachten, nauwkeurig berekent in een CFD NGT. Dit in tegenstelling tot traditio-
nele BEM modellen waarin deze processen niet, of sterk vereenvoudigd, in rekening
worden gebracht. Al deze bijdragen versterken de haalbaarheid om simulaties van
kustwaterbouwkundige en offshore processen of toepassingen in een CFD NGT uit
te voeren als aanvulling op experimentele kleinschalige modelproeven in een fysieke
golfgoot of golfbassin.
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Summary

Wave energy from wind-generated waves in the ocean or sea is absorbed by wave
energy converters (WECs). In this research, floating point absorber (FPA) WECs
are studied which are floating devices on the water surface. FPA WECs installed
in the ocean or sea respond to the incoming waves and start moving in six degrees
of freedom. The WECs extract energy from the waves by using a power take-off
(PTO) system which converts the WEC's motion into electricity. In order to ab-
sorb a considerable amount of wave energy at a location in a cost-effective way,
a number of WECs are arranged in an array layout using a particular geometrical
configuration. If the individual WECs are installed close to each other, they will
interact with each other, affecting the overall electricity production of the array
(near-field effects). Firstly, the presence of a WEC unit disturbs the incoming wave
field by both wave reflection and wave diffraction. Secondly, the WEC's motion
leads to the generation of waves, called radiated waves. The wave field around
a WEC is thus perturbed by a combination of incoming, reflected, diffracted and
radiated waves. This results in zones with higher or lower wave heights compared
to the incident wave field. The case where one WEC is positioned in the wake
region of another WEC where lower wave heights are observed must be avoided.
By positioning the individual WECs in the zones with higher wave heights, the
total energy extraction of the WEC array is significantly improved, increasing the
electricity production. In addition to these near-field effects, a WEC array also
influences the wave climate further away (far-field effects). The wave height re-
duction behind an entire WEC array affects other users in the sea, the environment
or even the coastline.

In this research, only the near-field effects are considered. The WECs are tested
in a three-dimensional (3D) non-linear viscous numerical wave tank (NWT). The
NWT is implemented in the computational fluid dynamics (CFD) toolbox Open-
FOAM and consists of two fluid phases: water with air on top. The 3D incom-
pressible Navier-Stokes equations, which represent the physics with a very high
accuracy, are solved on a mesh in a computational domain. The interface between
water and air is resolved by a conservation equation formulated by the volume of
fluid (VoF) method. Compared to traditional linear potential flow solvers based on
a boundary element method (BEM), CFD is necessary to resolve complex physical
processes. Examples are survivability simulations of WECs subjected to break-
ing waves and WECs operating in resonance mode by applying control methods
resulting in significant non-linear and viscous effects combined with large WEC mo-



tions. The present research focusses on filling two knowledge gaps for a NWT. The
first one is related to enhanced turbulence modelling for NWTs using a two-phase
fluid solver and therefore applicable for a wide range of coastal and offshore pro-
cesses such as wave-structure interaction, wave-current interaction, wave breaking,
sediment transport, etc. The second gap is related to fluid-structure interaction
simulations of a floating body. Instabilities between the fluid solver and the motion
solver might happen due to added mass effects. During this research, enhanced
prediction tools for turbulence modelling and efficient fluid-structure interaction
simulations in a NWT have been developed. All these developed methods are cou-
pled and validated by using experimental data obtained in a physical wave flume
or basin.

The first part of the thesis deals with enhanced turbulence modelling for wave
propagation, wave-structure interaction and wave breaking. The simulations are
performed in a NWT using the two-phase fluid solver interFoam available in Open-
FOAM. Many authors give recommendations for turbulence modelling, but in gen-
eral, these suffer from wave damping along the length of the NWT and these over-
predict the turbulent kinetic energy (TKE) in the hydrodynamic flow field. These
two specific problems are addressed by applying buoyancy-modified RANS turbu-
lence models in which the density is included explicitly in the turbulence transport
equations and a buoyancy source term is added implicitly to the TKE-equation.
Firstly, in the flow field prior to wave breaking (i.e. during wave propagation), a
laminar solution is sufficiently accurate. In that case, the buoyancy term forces
the solution of the flow field near the free water surface to a laminar solution.
Secondly, in the surf zone where waves break, significant turbulence levels are ex-
pected. For this zone, the buoyancy term goes to zero and a fully turbulent flow
field is resolved by the numerical model. Two buoyancy-modified RANS models,
k—w and k —w SST, are tested and validated using experimental data avail-
able in literature. The influence of the buoyancy source term in the k —w SST
model is demonstrated for the simulation of propagating regular waves. As a result,
excessive wave damping for non-breaking high-steepness waves is prevented. Fur-
thermore, the simulation results of wave run-up around a monopile under regular
waves are in a good agreement with experimentally obtained data in a physical
wave flume. For wave breaking simulations, the results predicted by the buoyancy-
modified turbulence models, k —w and k —w SST, have the best agreement with
the experimental measurements for the surface elevations, undertow profiles and
TKE levels compared to traditional turbulence models. In general, a buoyancy-
modified turbulence model not only results in a stable wave propagation model
without wave damping due to RANS turbulence modelling but it also predicts the
turbulence level inside the flow field more accurately in the surf zone where waves
break. In particular, the buoyancy-modified turbulence models significantly reduce
the overestimation of TKE in the two-phase flow field, commonly presented in
literature.

In the second part of the thesis, the two-phase fluid solver with dynamic mesh
handling, interDyMFoam, is coupled with a motion solver in order to simulate rigid
body motions. Only the governing motion of the FPA WEC's behaviour is consid-
ered, the heave motion (i.e. up- and downward motion). This assumption allows a



reduction from a six to a one degree of freedom motion. A second order accurate
Crank-Nicolson time integration scheme is used to derive the velocity and the po-
sition of the WEC from its acceleration. A coupling algorithm is needed to have a
converged solution between the hydrodynamic flow field around the floating body
and the kinematic motion of the floating body during every time step in the tran-
sient simulation. The coupling algorithm is stabilised by using implicit coupling in
the sub iterations during every time step. Rapid convergence of the coupled fluid—
motion solver is achieved if the added mass is known to a good accuracy. In this
work, the added mass is estimated by calculating a Jacobian, based on the available
solutions of previous sub iterations for the acceleration of the floating body and
the force acting on it. This results in computationally efficient simulations with a
minimal CPU time. Firstly, the coupled fluid—-motion solver is validated for a single
WEC unit during a free decay test and tests where the WEC is subjected to regular
waves. The experimental data is obtained in the large wave flume of the depart-
ment of civil engineering at Ghent University. A good agreement is found between
the numerical and the experimental measurements, not only for the WEC's heave
motion but also for the perturbed wave field around the WEC. Subsequently, a
more challenging simulation of a free falling wedge impacting on the water surface
is performed and validated with experimental measurements for the heave motion
and vertical velocity available in literature. In order to demonstrate the need for a
non-linear viscous fluid solver, such as a CFD NWT, a proof of concept study is pre-
sented for the design of a WEC unit under survivability conditions. Breaking waves
are generated which are impacting on the WEC in order to quantify the WEC's
motion and the forces acting on the WEC. Finally, the numerical simulations of a
single floating WEC are extended to a number of heaving WECs installed in an ar-
ray configuration. Therefore, sliding meshes are implemented around the individual
WECs to allow for independent motion of closely-spaced WECs. This methodology
prevents undesirable mesh deformation around the air-water interface to enhance
the accuracy of the numerical solution. As a worldwide pioneering result, numerical
simulations of an array consisting of two, five and nine WECs installed in a CFD
NWT are presented. The numerical results are validated with experimental data
from the WECwakes database conducted in the wave basin at DHI (Denmark). As
a result, good agreements are found for the WECs' heave motions, horizontal surge
forces on the WECs and the perturbed wave field around the WECs. This research
on fluid-structure interaction simulations using the developed coupled fluid—-motion
solver in a NWT opens up the possibilities for numerical simulations of any kind
of floating structure(s) installed in any sea state using a NWT.

In this work, fundamental research has been carried out to develop enhanced
prediction tools for NWTs in order to reduce the present knowledge gaps. Further-
more, complex physical processes are accurately simulated in a CFD NWT, such as
breaking waves, turbulent effects and resonant non-linear WEC motions damped
by viscous forces. These effects are however not captured, or strongly simplified,
by the widely used BEM models. All these achievements increase the feasibility
to perform simulations of coastal and offshore processes or applications in a CFD
NWT, complementary to experimental small-scale model tests in a physical wave
flume or wave basin.

XXiii






Chapter 1

Introduction

1.1 Background and motivation

Historically, climate has been changing slowly but now it is accelerating leading to
warmer summers and colder winters as reported by the Intergovernmental Panel
on Climate Change (IPCC, 2014). Also sea level rise and super storms are con-
sequences we are facing more often during the last decades. Governments are
changing policies on an international level to address the origins of climate change
such as the Paris Agreement made in 2015 (UNFCCC, 2015). One measure is to
invest in renewable energy resources of which solar and wind energy are widely
known (IPCC, 2012). Wind energy has moved from onshore to offshore up to
innovative floating wind turbines such as the DeepCwind floating semi-submersible
wind system for example (Robertson et al., 2017). Over the last years, coastal and
offshore structures became more complex to withstand the increasing wave loading
due to climate change, as reported in Mori et al. (2014) and Bitner-Gregersen and
Gramstad (2016). The fact that waves exert a large load on structures triggered
the question: can we extract energy from waves in the ocean or sea to produce
electricity? This question strengthened the research into wave energy as a part of
marine renewable energy production.

Wind waves in the ocean and sea are generated by the wind blowing over the
water surface. These waves have a unique feature: they are able to transport
energy without significant losses over large distances. The energy from waves can
be absorbed by wave energy converters (WECs) to generate electricity, as already
described in the 1970s by Salter (1974). There are numerous device types available
and the choice is based on the location, geometry, mooring type and operating
method. An overview of different WEC types, along with other marine renewable
energy devices such as tidal and wind turbines, is presented in Day et al. (2015). In
this research, floating point absorber (FPA) WECs are selected. These FPA WECs
are floating devices on the water surface producing energy by their motion under
wave loading. An artist impression of a FPA WEC type is visualised in Figure 1.1.
The WEC body is floating, connected to the seabed by a mooring line and a power
take-off (PTO) system is required to convert the WEC's motion under wave loading



2 1. Introduction

Figure 1.1: Artist impression of the FlanSea WEC (FlanSea, 2013)

into electricity (e.g. electrical generator or hydraulic cylinder). In addition, FPA
WECs have some advantages over other WEC types. Firstly, the direction of the
incoming waves is not important with respect to the energy extraction. Secondly,
due to the antenna effect, wave energy can be captured over a width larger than
the physical width of a FPA WEC, resulting in a theoretical maximum absorption
efficiency larger than 100 % (Babarit, 2017). Lastly and most importantly for this
research, FPA WECs have a simple operating principle and device geometry which
facilitates the design and the experimental or numerical testing.

In order to absorb a considerable amount of wave energy at a location in a
cost-effective way, multiple WECs are arranged in arrays using a particular geomet-
rical configuration. Interactions between the individual WECs affect the overall
electricity production of the array (near-field effects). A WEC responds to incident
waves and starts moving in six degrees of freedom. The WEC's motion leads to the
generation of waves, called radiated waves. Furthermore, the presence of a WEC
disturbs the incoming waves by wave reflection and wave diffraction. The perturbed
wave field around a WEC is thus a combination of incoming, radiated, reflected and
diffracted waves. This results in zones with higher or lower wave heights compared
to the incident wave field. The situation where one WEC is positioned in the wake
region of another WEC, where lower wave heights are observed, must be avoided.
By arranging the individual WECs positioned in zones with higher wave heights,
the total energy extraction of the WEC array is significantly improved. In addition
to these near-field effects, a WEC array also influences the wave field further away
(far-field effects). The wave height reduction behind an entire WEC array affects
other users in the sea, the environment or even the coastline. If such a WEC array
is installed close to the shoreline, it could act as a coastal defence system by re-
ducing the wave loading on beaches for example (Mendoza et al., 2014; Abanades
et al., 2015).
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In general, the installation of a WEC array changes the incident wave field sig-
nificantly and affects both the hydrodynamic response and the energy absorption
of the individual WECs based on the local, perturbed, wave field. Therefore, WEC
array design is key to maximise the total electricity production of the complete
WEC array. Detailed methods are required to quantify the complex wave field
modifications and to find the optimal layout to position the individual WEC units.
In order to answer those fundamental questions on WEC array design, various ap-
proaches are followed: physical modelling, numerical modelling or a combination of
both. The first approach is performing traditional physical model tests. A WEC on
a smaller scale is constructed and installed in an artificial environment representing
the sea or ocean: a wave flume or a wave basin. Experimental model tests are
performed under controllable circumstances and therefore the hydrodynamic pa-
rameters of the flow field and the WEC's kinematic motions are easier to measure
compared to field tests in open sea such as the EMEC (European Marine Energy
Centre) test facility in Orkney (Scotland, UK). During physical model tests, the
effect of the smaller scale requires attention because the properties of water and air
cannot be downscaled. Scale effects are mainly important for wave impact forces
on structures (Bullock et al., 2001) such as during a survivability simulation of a
WEC for example. A general outline of physical modelling of WECs is included in
Pecher and Kofoed (2017). A number of model tests for single WEC units and
WEC arrays are available in scientific literature, however the most extensive dataset
for WEC arrays was generated in 2013 during the WECwakes project funded by
the EU FP7 Hydralab IV program (Stratigaki et al., 2014, 2015). Model tests
were conducted in the shallow water wave basin of the Danish Hydraulic Institute
(DHI; Hgrsholm, Denmark). Up to 25 WECs units have been installed in the wave
basin using different geometrical configurations and subjected to all kind of wave
conditions. A photograph made during a test with 25 WECs is shown in Figure
1.2. This large and unique database is publicly available for researchers under the
Hydralab rules. In this research, the experimental WECwakes dataset is used to
validate the developed numerical model. Complementary to physical modelling,
numerical modelling is often applied for WEC array design. Computers are used
to solve a set of equations inside a computational domain with suitable boundary
conditions on the borders in order to replicate the sea or ocean. The obtained
numerical results are only as good as the physics involved in the equations being
solved. Therefore, physical wave flumes or wave basins are always needed to gen-
erate experimental data for the validation of these numerical models. Numerical
models are deployed on both small and large scale set-ups and do not suffer from
scale effects. Depending on the complexity of the model, the CPU time needed to
obtain results might be long.

Nowadays, the use of numerical methods for WEC modelling is growing due to
the increasing available computational power. However, the complex flow features
around WECs and WEC arrays, require a continuous development and optimisation
of these numerical models. The aim of the research presented in this thesis is the
development of enhanced numerical tools for the simulation of water waves and
wave-structure interaction problems, in particular for WEC arrays. Therefore, in
the next section 1.2, an overview of the available state of the art numerical models
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Figure 1.2: A 5 x5 WEC array subjected to irregular long-crested waves in the DHI wave
basin during the WECwakes project. Adopted from Stratigaki et al. (2014).

for WECs is reported and the knowledge gaps are defined.

1.2 State of the art

This section frames the research conducted within the thesis by presenting a concise
overview of state of the art techniques for numerical modelling of WECs and WEC
arrays. As described later in the outline, section 1.4, an in-depth literature review
is included in every chapter focussing on one particular research topic.

1.2.1 Numerical modelling of WECs

There exist a large variety of numerical models to study the interaction between
waves and WECs. These models have one aspect in common: they all calculate the
hydrodynamic flow field around a WEC and the WEC's response under wave action.
The choice for a particular model is based on a trade off between the accuracy of
the results and the computing time needed. The higher the complexity of a model,
the higher the accuracy but the longer the simulation takes in terms of CPU time.
Furthermore, the choice for a model also depends on the physics which need to be
resolved. For example, there are models specialised in calculating the hydrodynamic
flow field around and the response of the WECs (near-field zone) while other models
are better suited for studying the impact of WEC arrays at a larger distance (far-
field zone) (Folley et al., 2012). Most recently, different numerical models are
combined to perform numerical simulations of both the near-field and far-field
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zone. Those coupled models use the advantage of each individual model to perform
efficient simulations in terms of CPU time depending on the physics to be resolved.
Examples are presented in Troch and Stratigaki (2016), Verbrugghe et al. (2017b)
and Verbrugghe et al. (2018) where a wave propagation model is coupled with a
wave-structure interaction solver. The wave propagation solver is able to calculate
the wave field in a large domain (far-field zone) with minimal CPU effort. The
wave-structure interaction solver resolves the hydrodynamic flow field around a
WEC and its response in a relatively small domain (near-field zone) to minimise
the overall CPU time.

An overview of all the available state of the art numerical models for single
WECs and WEC arrays is extensively reported in the book: Numerical modelling
of wave energy converters: state-of-the-art techniques for single devices and arrays
edited by Folley (2016a). Specifically for point absorber WECs, a review of various
numerical methods is presented in Li and Yu (2012). In this thesis, only near-field
effects are studied in a limited area around the WECs. The following paragraphs
give an overview of possible numerical tools to study these effects.

At first, numerical models based on semi-analytical techniques were used for
modelling simple WEC geometries. Pioneering research on point absorber WEC
arrays was carried out by Budal (1977), Evans (1980) and Falnes (1980), which
resulted in analytical expressions for the maximum power absorption of the array,
often referred to as the point absorber method. This method assumes that the
WEC's diameter is small compared to the wave length and to the WEC-WEC spac-
ing (no interactions between the WECs). A detailed overview of all the available
semi-analytical techniques is reported in Child (2016). Due to the limited com-
putational power at that time, the derivations were restricted to a linear theory.
The computational power has been increased significantly over the past decades,
enabling the use of complex methods for WEC modelling, reducing the model as-
sumptions. Nowadays, semi-analytical models are still used to perform preliminary
simulations of large WEC arrays or to optimise the array layout because they have
a minimised computational cost.

Still assuming potential flow theory, more advanced techniques based on linear
hydrodynamic theory were developed to model complex WEC geometries. The
most frequently used models are based on the boundary element method (BEM)
which is a panel method to estimate the hydrodynamic coefficients which describe
added mass, damping, wave diffraction and wave excitation forces. Examples
of software packages are Aquaplus (Delhommeau, 1987), ANSYS Aqwa (2018),
WAMIT (2016) and Nemoh (Babarit and Delhommeau, 2015). They all calcu-
late the hydrodynamic response of WECs to an incident wave field in frequency
domain. In Alves (2016), an overview of frequency domain models for WECs is
published. Next to semi-analytical techniques, frequency domains are also used to
perform simulations of large WEC arrays or to optimise an array layout because
the computational power has been increased significantly over the past years. An
alternative to frequency domain modelling is time domain modelling, as presented
in Ricci (2016). These models are necessary to take into account realistic PTO
systems and mooring forces which are often non-linear. This makes time-domain
modelling extremely powerful (Folley et al., 2012), but compared to frequency do-
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main models, they require more computational effort. Apart from deterministic
models (frequency domain and time domain), probabilistic models are also used
for WECs, such as spectral domain models. These spectral domain models use
a statistical representation of the sea state and predict the WEC's response by a
transformation function, more information is available in Folley (2016b). All these
frequency, time and spectral domain models are however restricted to linear prob-
lems and thus limited to small amplitude waves and small motions of the WECs.
Note that time domain models allow the implementation of non-linear terms such
as hydrodynamic forces (non-linear buoyancy forces) and external forces (non-linear
PTO forces).

Over the past years, the available computational power has been increased sig-
nificantly and more advanced, non-linear, models became also suitable for WEC
modelling. A review of all non-linear methods for WEC modelling is reported in
Penalba et al. (2017). Examples are fully non-linear potential flow (FNPF) models
and computational fluid dynamics (CFD) models. FNPF models are computational
more efficient in terms of CPU time than CFD models. FNPF models are assuming
an inviscid flow and they are able to model steep waves and large device motions for
non-breaking wave conditions, as summarised by Fitzgerald (2016). FNPF mod-
els cannot capture overturning and breaking waves, wave slamming, green water
events, air entrainment, water exit or entry problems and turbulence. Furthermore,
for point absorber WECs, viscous damping forces are important to predict realistic
WEC motions and accurate energy absorption, especially near resonance (Li and
Yu, 2012). In addition, it is yet unclear how important non-linear potential flow ef-
fects are relative to viscous flow effects, particularly at full scale (Fitzgerald, 2016;
Penalba et al., 2017). The most complete WEC models are using a non-linear
viscous fluid solver developed within a computational fluid dynamics (CFD) tool-
box. CFD solves the Navier-Stokes equations, representing the physics with a very
high accuracy. Compared to the widely used BEM solvers based on potential flow
theory, CFD is necessary to model complex physical processes for WEC modelling.
For example, wave breaking events need to be resolved accurately to perform sur-
vivability simulations of WECs subjected to extreme wave conditions. By applying
intelligent and precise control strategies to maximise the WEC's power output
(Davidson et al., 2018), the WEC's motion goes into resonance for which viscosity
and non-linear effects play a major role. Moreover, if non-linear viscous effects
cause flow separation and vortex shedding, turbulent effects need to be incorpo-
rated. These processes are only resolved within a CFD model by performing a direct
numerical simulation (DNS, turbulence is resolved), large eddy simulation (LES,
turbulence is partially resolved by the mesh and partially modelled) or a Reynolds-
averaged Navier-Stokes (RANS, turbulence is modelled) simulation. In Wolgamot
and Fitzgerald (2015), the use of CFD for WECs is reviewed and a good agree-
ment between CFD and experimental results has been reported for various studies,
demonstrating the feasibility of CFD simulations for wave energy applications. As
mentioned in Mingham et al. (2016), CFD models are categorised in two classes:
Eulerian and Lagrangian methods. The first class discretises the computational
domain in a finite set of points, a mesh, on which the numerical equations are
solved by using a finite difference method or a finite volume method. Most of
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the CFD methods used for WEC modelling are based on a two-phase fluid solver
which resolves the water as well as the air phase to cope with air entrainment
during wave breaking for example. Both incompressible and compressible mod-
els are available but for WEC modelling, incompressible models are mostly used.
However, compressibility might become important during survivability simulations
with breaking waves due to air entrainment and pressure fluctuations. The second
class, Lagrangian methods, are all mesh-less methods and uses particles which are
moving inside the computational domain. For WEC modelling, smoothed particle
hydrodynamics (SPH) methods are popular of which a feasibility study is reported
in Verbrugghe et al. (2017a). The advantages as well as the drawbacks of CFD
models for WEC applications are briefly outlined in Schmitt et al. (2012). Note
that all CFD models are still suffering from long computing times, even for small
domains. They also involve numerical errors by approximating algorithms and dis-
cretisation schemes (both spatial and temporal). Validation of CFD models, both
on small and full scale, is required to check whether all the physics involved in
the hydrodynamic flow field are included and captured correctly within the CFD
model. In general, CFD models are very similar to experimental model tests in
a wave flume or basin. CFD has the advantage that the WEC's geometry can
be changed easily, a higher resolution of data can be extracted and scale effects
are absent. A study of scale effects is reported in Schmitt and ElsdBer (2017)
for an oscillating wave surge converter. By performing RANS simulations, they
investigated whether Froude scaling is adequate to extrapolate small scale physical
model tests to full scale. They demonstrated that some differences in flow patterns
are observed between small and full scale simulations. Another advantage of CFD
is the repeatability of the generated wave field compared to experimental model
tests. For example, in O'Boyle et al. (2011, 2017) and Lamont-Kane et al. (2013),
it is reported that there is a strong dependency of the wave tank homogeneity and
wave making quality on the assessment of WEC array interactions for example.
Therefore over the last years, numerical wave tanks (NWTs) have been developed
within CFD software. A NWT is the equivalent of a physical wave basin and they
share the same objective: reproducing the physics as observed in the ocean or in
the sea in a controllable environment to study physical processes in detail or to
check design criteria. A review of wave makers for CFD NWTs is presented in
Schmitt and Elsaesser (2015a) and two main categories are defined: direct sim-
ulation of a wave maker by a moving mesh (Higuera et al., 2015; Vanneste and
Troch, 2015) or using numerical methods to generate the desired hydrodynamic
wave-induced flow field. The latter category is mostly used and is further divided
into four subcategories (Schmitt and Elsaesser, 2015a):

1. Relaxation method: relaxation of theoretical results to the variables in the
NWT by a smooth blending function. This method requires additional relax-
ation zones increasing the size of the computational domain (Mayer et al.,
1998; Jacobsen et al., 2012);

2. Mass source function: adding a source term to the continuity equation which
adds or removes water in the NWT (Lin and Liu, 1999);
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3. Impulse source function: adding a source term to the momentum equation
which generates velocities at the boundaries (Choi and Yoon, 2009);

4. Boundary method: customised boundary conditions to generate and absorb
the waves. This method only acts on the boundaries of the computational
domain. Applications of boundary wave generation are found in (Troch and
De Rouck, 1999; del Jesus et al., 2012; Higuera et al., 2013a,b) for example.

1.2.2 A numerical wave tank in OpenFOAM

In this research, the NWT is implemented in the open source CFD software Open-
FOAM (Weller et al., 1998). Over the past years, three main branches are de-
veloped and made available by respectively the OpenFOAM Foundation (2018),
OpenCFD (2018) and the foam-extend community (Foam-extend, 2016). In this
work, OpenFOAM-2.2.2 (2013) and OpenFOAM-3.0.1 (2015a) provided by the
OpenFOAM Foundation (2018) are deployed.

The NWT used in this research is a two-phase fluid solver with suitable bound-
ary conditions to generate and absorb waves. The fluid solver uses the three-
dimensional (3D) incompressible Navier-Stokes equations to calculate the hydro-
dynamics (i.e. pressure and velocity) in the water as well as in the air phase. The
volume of fluid (VoF) method is applied by solving a conservation equation for the
volume fraction to determine the position of the free water surface in the NWT.
A good description of the VoF method implemented in the OpenFOAM versions
used in this thesis is provided in Berberovi¢ et al. (2009). OpenFOAM uses the
finite volume method to solve the governing equations, see Versteeg and Malalasek-
era (2007) for example. Boundary conditions for wave generation and absorption
are mostly adopted from external toolboxes such as waves2foam (Jacobsen et al.,
2012), IHFOAM (Higuera et al., 2013a,b) or olaFlow (OlaFlow CFD, 2018). The
former toolbox is based on the relaxation technique while the two latter toolboxes
are a set of customised boundary conditions (see previous section 1.2.1). In ad-
dition, these wave generation and absorption toolboxes are able to simulate the
flow through porous media such as breakwaters for example. Also currents, with
or without waves, are generated in NWTs in order to enhance the reproduction of
the physics observed in reality. For the research presented in this thesis, the IH-
FOAM toolbox (Higuera et al., 2013a,b) is used to generate and absorb waves by
customised boundary conditions since no additional space is required for relaxation
zones in the computational domain. Different wave theories are implemented for
both regular and irregular wave generation, as well as uni-directional and multi-
directional wave generation are available. The wave absorption methodology in
IHFOAM is assuming shallow water conditions, which is however not always the
case. As mentioned in Higuera et al. (2013a), the absorption function works rela-
tively well outside its range of applicability.

1.2.3 Knowledge gaps

At this moment, the wave energy sector has not demonstrated economic viability
(Penalba et al., 2017). For example, maximising the power output over the com-
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plete range of possible sea states for operational conditions has not been achieved
yet. Another bottleneck is the survivability of WECs during storm conditions to
avoid structural and mechanical failure (Ransley et al., 2017a). Therefore, accurate
and detailed numerical methods, such as a CFD NWT, are necessary to reproduce
and understand the behaviour of WECs to all possible environmental loads under
both operational and survivability conditions. NWTs implemented in a CFD tool-
box are only recently used for traditional offshore applications for which, in general,
large motions are not desired (e.g. offshore oil and gas platforms or ships). On
the contrary, for wave energy applications, large WEC motions are one of the key
objectives in order to maximise the energy extraction. All this makes a CFD NWT
a promising tool for WEC testing but more research is required before applying it
for practical problems.

In the present state of the art techniques for wave modelling and wave-structure
interaction simulations of WECs using a CFD NWT, the following knowledge gaps
exist. Note that only the relevant gaps are presented related to the research carried
out within this PhD thesis. Firstly, it is clear that no standard RANS turbulence
model exists for simulating propagating waves and breaking waves in a NWT using
CFD. Moreover, it is generally known that none of the traditional turbulence models
(e.g. k—¢, k—w and k —w SST) are developed for two-phase flow simulations
but for an incompressible single phase flow. For example, the k& —w model is
originally developed for aerodynamic and aerospace applications (Wilcox, 1998)
while the k —e by Launder and Spalding (1974) is still the most widely used
turbulence model for industrial applications. Secondly, fluid-structure interaction
simulations require a stable coupling algorithm between a fluid solver and a motion
solver. In particular for a two-phase fluid solver, Devolder et al. (2015) discovered
stability issues due to added mass effects for rigid body simulations using the
interDyMFoam solver implemented in OpenFOAM. Thirdly, mesh motion for rigid
body simulations requires attention by using a two-phase fluid solver using VoF.
Different methodologies are available such as mesh distortion or re-meshing of
the computational domain, see Schmitt and Elsaesser (2015b). A robust and
efficient approach for the unstructured finite volume method is to solve a diffusive
Laplace equation in order to determine the mesh deformation, as developed by
Jasak and Tukovi¢ (2006). This method might become unstable for large motions
of independently heaving FPA WECs closely installed in an array configuration.
Lastly, all developed numerical tools need thorough verification and validation by
using reliable experimental measurements. For example, CFD simulations of a WEC
array are scarce and have only been reported by a few researchers, e.g. Agamloh
et al. (2008) and Mccallum (2017).

1.3 Objectives and methodology

In this work, fundamental research is performed to fill the knowledge gaps defined
in section 1.2.3. Therefore, the following objectives are tackled within this thesis:

1. Enhanced turbulence modelling in a NWT;
Significant wave damping over the length of a NWT based on traditional
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RANS turbulence modelling during wave propagation must be avoided for
NWTs using a two-phase fluid solver. In addition, more accurate predictions
for the turbulent quantities in the flow field are required.

2. Accelerated coupling between a CFD fluid solver and a motion solver;
For transient simulations of floating bodies, stabilisation of the coupling algo-
rithm between the two-phase fluid solver and the motion solver during every
time step must be achieved. In addition, the coupling algorithm needs to
be accelerated in order to reduce the number of sub iterations during every
time step and to achieve efficient simulations of the hydrodynamic flow field
around a floating body along with its kinematic motion.

3. Mesh motion in a NWT for fluid-structure interaction (FSI) simulations;
For simulations of a WEC, and specifically for closely-spaced WECs in an
array layout, modelled in a CFD NWT, mesh motion is extremely important
in obtaining good accuracy of the numerical results. The influence of mesh
motion on the free water surface must be limited for two-phase fluid solvers
using a VoF method.

4. Validation of the NWT using experimental data.
Numerical methods need validation by using experimental data to check
whether the governing physical processes are included and resolved correctly
with a certain degree of accuracy. Experimental data is obtained by perform-
ing model tests in a physical wave flume or wave basin.

To achieve the objectives, a methodology is followed in which a NWT imple-
mented in OpenFOAM is deployed. The first part of the thesis focusses on en-
hanced turbulence modelling for wave propagation and wave breaking simulations
in a NWT using the two-phase fluid solver interFoam available in OpenFOAM.
In general most of the RANS turbulence models are overpredicting the turbulent
kinetic energy (TKE) in the hydrodynamic flow field. In this thesis, that specific
problem is addressed by applying buoyancy-modified RANS turbulence models in
which the density is included explicitly in the turbulence transport equations and
a buoyancy source term is added implicitly to the TKE-equation. Two buoyancy-
modified RANS models, £ —w and &k — w SST, are tested and validated for wave
propagation, wave run-up around a monopile structure and wave breaking on a
sloping beach. In the second part of the thesis, the two-phase fluid solver with dy-
namic mesh handling, interDyMFoam, is coupled with a motion solver in order to
simulate rigid body motions. A coupling algorithm is needed to have a converged
solution between the hydrodynamic flow field around and the kinematic motion
of the floating body during every time step in the transient simulation. The cou-
pling algorithm derived in this thesis is stabilised and accelerated so that only few
sub iterations during every time step are needed to have a converged fluid—motion
coupling. Validation studies are presented for a free decay test of a single WEC
unit, an impact test of a free falling wedge on the water surface and the response
of a single WEC unit and WEC arrays under incident regular waves. Finally, a
proof of concept study is performed to outline the application of a CFD NWT for
survivability simulations of a WEC subjected to breaking waves.
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1.4 Outline

This thesis is organised in seven chapters, each highlighting one research topic
which has been published in or is under review for publication in a journal or
conference proceedings.

Part | of this thesis focusses on enhanced RANS turbulence modelling for sim-
ulating waves using a two-phase fluid solver as a NWT. Chapter 2 investigates
turbulence modelling with respect to wave propagation and wave-structure inter-
action of a fixed monopile. Subsequently in Chapter 3, the performance of various
turbulence models is analysed for wave breaking simulations.

Fluid-structure interaction (FSI) simulations are the main topic in Part Il of
this thesis. In Chapter 4, the coupling between a motion solver and a fluid solver
is investigated, optimised and validated by using experimental data. Subsequently,
the coupled fluid—motion solver is applied to study WECs in a NWT. Chapter 5
reports the validation study for a single WEC unit in operational conditions by
using experimental data followed by a survivability simulation of a single WEC
unit subjected to breaking waves. In the next Chapter 6, a number of WECs are
arranged in an array configuration to study the interactions between the individual
WECs and the wave field modification around the WECs. The numerically obtained
results are validated by using the experimental WECwakes database.

In Chapter 7, a summary of the key findings is presented and some recommen-
dations for future research are made.

Appendix A presents an in-depth analysis of the turbulent kinetic energy in the
flow field during wave breaking events, as an extension to Chapter 3.
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Turbulence modelling for a
numerical wave tank
implemented in OpenFOAM
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Chapter 2

Wave propagation and
wave-structure interaction
simulations

In this chapter, wave propagation and wave interaction with a fixed monopile struc-
ture in a numerical wave tank are studied for the case of non-breaking waves. RANS
turbulence modelling is applied by using a £k —w SST model and wave damping
over the length of the computational domain is observed for high steepness waves.
This specific issue is addressed by using a buoyancy-modified k —w SST model
which avoids wave damping and enhances significantly the predictive skills of a
numerical wave tank in terms of surface elevations. Finally, the buoyancy-modified
k —w SST model is validated by using experimental data of wave run-up mea-
surements around a monopile subjected to regular waves (De Vos et al., 2007).

This chapter is originally published as:

Devolder, B., Rauwoens, P., and Troch, P. (2017). Application of a buoyancy-
modified kK — w SST turbulence model to simulate wave run-up around a monopile
subjected to regular waves using OpenFOAM® . Coastal Engineering, 125:81-94.
doi:10.1016/j.coastaleng.2017.04.004.
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Application of a buoyancy-modified k — w SST
turbulence model to simulate wave run-up around a
monopile subjected to regular waves using OpenFOAM®

Brecht Devolder, Pieter Rauwoens, Peter Troch

Abstract

The objective of the present work is to investigate wave run-up around a monopile
subjected to regular waves inside a numerical wave flume using the Computational
Fluid Dynamics (CFD) toolbox OpenFOAM® . Reynolds-Averaged Navier-Stokes
(RANS) turbulence modelling is performed by applying the k —w SST model.
Boundary conditions for wave generation and absorption are adopted from the IH-
FOAM toolbox. Simulations of propagating water waves show sometimes excessive
wave damping (i.e. a significant decrease in wave height over the length of the
numerical wave flume) based on RANS turbulence modelling. This anomaly is pre-
vented by implementing a buoyancy term in the turbulent kinetic energy equation.
The additional term suppresses the turbulence level at the interface between water
and air. The proposed buoyancy-modified k —w SST turbulence model results in
an overall stable wave propagation model without significant wave damping over
the length of the flume. Firstly, the necessity of a buoyancy-modified &k — w SST
turbulence model is demonstrated for the case of propagating water waves in an
empty wave flume. Secondly, numerical results of wave run-up around a monopile
under regular waves using the buoyancy-modified k — w SST turbulence model are
validated by using experimental data measured in a wave flume by De Vos et al.
(2007). Furthermore, time-dependent high spatial resolutions of the numerically
obtained wave run-up around the monopile are presented. These results are in line
with the experimental data and available analytical formulations.

Keywords: CFD; OpenFOAM® /IHFOAM; Buoyancy-modified turbulence model;
Monopile; Wave run-up
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2.1 Introduction

Numerous offshore wind farms have already been installed or are under construc-
tion. Wind turbines are mounted on large foundations in the seabed, such as
vertical cylinders, called monopiles. The design of such a monopile is mainly de-
pendent on the total force acting on it. However, some smaller pieces are attached
to that monopile (e.g. boat landing facility, J-tube, ladder, platform and door). In
order to design these smaller parts, wave run-up around the monopile caused by
incident waves should be assessed accurately. Therefore, both experimental and
numerical research have already been conducted.

Experimental research has been performed in order to define the wave run-up
pattern around a monopile. For example, De Vos et al. (2007) described small
scale model tests in which wave run-up was measured around a monopile placed
in relatively deep water conditions using different regular and irregular wave trains.
Moreover, analytical formulations are proposed to determine the maximum wave
run-up for both regular and irregular waves. Kazeminezhad and Etemad-Shahidi
(2015) have recently re-analysed several datasets and presented alternative formu-
lations in which pre-calculation of the wave kinematics is not necessary to assess
the maximum wave run-up.

Numerical modelling of wave run-up around a monopile is also reported in lit-
erature. Christensen et al. (2005) described a study of the forces acting on a
monopile caused by extreme waves propagating over a sloping bed. Numerical
results were compared with analytical solutions and experiments and a good agree-
ment was found. A numerical study with a 3-D ComFLOW model performed by
Peng et al. (2012) reproduced experimental data measured by De Vos et al. (2007).
A grid sensitivity study showed that a minimum grid size of D /10 was needed in
the zones of interest (i.e. around the still water level and near the monopile with
diameter D) to obtain a grid independent solution. The Courant-Friedrichs-Lewy
(CFL) condition controlled the time step which may not exceed T'/100 for accuracy
purposes (where T is the wave period). The paper presented only absolute values
of wave run-up and no comparisons with regard to time series were provided. The
authors also mentioned that for large wave run-up, the numerical model slightly
underestimates the measured run-up. Lara et al. (2013) presented a numerical
simulation of a pile group subjected to waves using the IHFOAM toolbox. Only
numerical results were presented which indicated that IHFOAM is a capable tool-
box for analysing wave run-up around and wave-induced forces on offshore piles.
Ransley et al. (2013) compared numerical results with experimental data for ex-
treme wave impacts on a fixed truncated circular cylinder. The numerical solution
was obtained without turbulence modelling but the authors expect that it plays
an important role in (extreme) wave-structure interaction. El Safti et al. (2014)
presented a hybrid 2D-3D CFD model to investigate wave forces on piled struc-
tures. In this study, turbulent effects were incorporated by using a one-equation
eddy-viscosity Sub-Grid Scale (SGS) Large Eddy Simulation (LES) model. The
authors' motivation to use LES was to include the effects of air compressibility
during breaking wave impact on structures. Paulsen et al. (2014) analysed strong
nonlinear forces caused by steep or breaking waves and ringing loads due to steep
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nonlinear waves. Turbulence modelling was excluded because the forces acting on
the monopile were mainly inertia dominated. A fair agreement was found between
numerical and experimental data. Chen et al. (2014) investigated nonlinear wave
interactions with offshore structures for different wave conditions. They concluded
that OpenFOAM is suitable for accurate modelling of nonlinear wave interactions
with monopiles. The time step was initially 0.01 s and changed automatically to
satisfy a maximum Courant number of 0.5. Grid convergence was reached for a
horizontal and vertical resolution of respectively L/70 and H/8 (with a refinement
factor of 2 around the still water level and the monopile; where L is the wave
length and H is the wave height).

More recently, Kamath et al. (2015a,b) reported CFD results of wave interac-
tion with multiple vertical cylinders. They performed simulations using a k£ —w
turbulence model and observed unphysical wave damping based on RANS turbu-
lence modelling. Therefore, both eddy viscosity limiters and free surface turbulence
damping at the interface were applied. This unphysical wave damping caused
by RANS turbulence modelling is not only observed during CFD simulations of
monopiles. Several other authors also reported wave damping when using CFD for
wave modelling: Mayer and Madsen (2000), Jacobsen et al. (2012), Vanneste and
Troch (2015) and Elhanafi et al. (2017).

In general, the majority of literature presents wave-induced forces acting on a
monopile rather than wave run-up phenomena. Therefore, turbulence modelling
was omitted and no indication of the influence of turbulence on wave run-up was
given. However, some authors reported the necessity of using a turbulence model.
For example Higuera et al. (2013a,b) applied both k¥ — e and k — w SST turbulence
models since they are widely used. Furthermore, turbulence modelling is needed in
the case of significant vortex shedding or when wave breaking occurs around the
monopile due to even steeper waves. This can happen when irregular waves are
generated, then energy is transferred between the different frequencies increasing
the wave height at a particular time instant and at a certain location. If that
location is close to the monopile, waves can break and prominent vortex shedding
can occur. This paper will tackle the implementation of a suitable turbulence
model in order to simulate properly wave propagation in a numerical wave flume
and wave run-up around a monopile. In general, non-breaking waves induce a
very low level of turbulence. However, when the wave-induced flow encounters
an object, a monopile in this case, the flow is disturbed and becomes turbulent.
For the waves studied in this research, the Reynolds (Re) number and Keulegan-
Carpenter (KC) number vary from 4.65 x 10* to 5.84 x 10* and from 4.26 to
5.17 respectively. According to Sumer and Fredsge (1997), a pair of asymmetric
vortices will develop resulting in a turbulent flow around the monopile. Moreover,
even if the KC numbers are small for the waves studied, the boundary layer around
the monopile may be turbulent.

We present a study of wave run-up around a monopile subjected to regular waves
using the Computational Fluid Dynamics (CFD) toolbox OpenFOAM® (2013).
Reynolds-Averaged Navier-Stokes (RANS) turbulence modelling is performed by
applying the k — w SST model. Sometimes, this RANS approach causes excessive
wave damping (i.e. a significant decrease in wave height over the length of the
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numerical wave flume). Therefore, a buoyancy term is implemented in the turbulent
kinetic energy (TKE) equation of the k —w SST model. The idea of adding a
buoyancy term is taken from Van Maele and Merci (2006a) who modify the k — ¢
model to simulate buoyant plumes. These fire-induced flows are characterised by
continuous density variations. For water waves, the density is discontinuous at
the free water surface resulting in an infinite density gradient. However, when a
Volume of Fluid (VoF) method is applied for wave modelling, the density gradient
is smeared out over several cells leading to a continuous change in density around
the air-water interface. Consequently, the change in density around the interface
between water and air is similar to the change in density observed in fire flows.
As a result of implementing a buoyancy term, an overall stable wave propagation
model without significant wave damping over the length of the flume is obtained.
Numerical simulations are performed and compared with two different sets of wave
parameters described in the laboratory study of De Vos et al. (2007).

The remainder of this paper is organised as follows. Firstly, in section 2.2,
the previous experimental study by De Vos et al. (2007) is introduced. In section
2.3, the governing equations for the numerical model are presented, followed by
a description of the computational domain, the boundary conditions applied and
the solver settings. Subsequently in sections 2.4 and 2.5, the numerical model is
used to perform several simulations while in section 2.6 the obtained results are
discussed in detail. Finally, the conclusions and future work are drawn in section
2.7.

2.2 Previous experimental study

In this research, data is reused from a laboratory study by De Vos et al. (2007)
conducted in a wave flume at Aalborg University, Denmark. The flume has a length
of 30 m, a width of 1.5 m and a height of 1 m. The pile diameter was 0.12 m
whereas a constant water depth of 0.50 m was maintained during regular wave
tests. The offshore slope was held constant at 1 : 100 and will be neglected in the
present numerical study because shoaling effects are negligible.

A definition sketch of the wave gauges' position to measure wave run-up around
the monopile is given in Figure 2.1. Herein, nine wave gauges are installed 2 mm
away from the monopile's surface. The position of the wave gauges is an important
parameter to determine wave run-up. Therefore, the position of the numerical wave
gauges is the same as the ones installed in the experimental flume. The nine wave
gauges are characterised by their angle with respect to the incoming waves of
respectively 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5° and 180°, as depicted
in Figure 2.1.

2.3 Numerical model
The numerical simulations presented are achieved using OpenFOAM® (2013), ver-

sion 2.2.2. Firstly, the flow equations are introduced with emphasis on the turbu-
lence model. Subsequently, the computational domain is presented together with
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90°
67.5° 112.5°

22.5° 157.5°

- 0° 180°

Incoming waves

45° 135°

Figure 2.1: Position of the nine wave gauges (two dots per gauge) around the monopile
where each wave gauge is characterised by its angle with respect to the direction of the
incoming waves. The wave gauges are installed 2 mm away from the monopile's surface
(adapted from De Vos et al. (2007)).

the grid characteristics. The last two parts of this section are dedicated to explain
the different boundary conditions and solver settings.

2.3.1 Flow equations

The numerical model uses the incompressible RANS equations to express the mo-
tion of a fluid consisting of a mass conservation equation (2.1) and a momentum
conservation equation (2.2) written in Einstein summation notation as:

aui

90, =0 (2.1)

Opu;  Opuju, 0 ou; dp*
ot oz,  og [“eff axj] = " og; TIbi T o (22)
in which u; (i = z,y,z) are the Cartesian components of the fluid velocity, p is
the fluid density, p.sy is the effective dynamic viscosity, p* is the pressure in excess
of the hydrostatic, F} is an external body force (including gravity) and f, is the
surface tension tensor term which will be neglected. Note that the mean values for
the variables considered are written in terms of Favre-averaging (density weighted)
due to the varying density.
The interface between water and air is obtained by the Volume of Fluid (VoF)
method (Hirt and Nichols, 1981). The method is based on a volume fraction «
which is 0 for a completely dry cell and 1 for a completely wet cell and in between
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0 and 1 for an interface cell containing both water and air. The volume fraction is
solved by an advection equation (2.3):

da  Ouja  Oucia(l—a)
+

The last term on the left-hand side is an artificial compression term where
Ue,; = minfeq|u;|, max(|u;])]. In the present study, the default value of ¢, equal
to 1 is applied. If a larger value is used, the compression of the interface increases,
leading to larger detrimental velocity gradients around that interface.

The density of the fluid p within a computational cell is calculated by a weighted
value based on the volume fraction a. The effective dynamic viscosity picys is
obtained by the sum of a weighted value based on the volume faction « and an
additional turbulent dynamic viscosity pv;:

P = Qpyater + (1 - a)pair (24)

Heff = Ofbwater + (1 — &) pair + pri (2.5)

In a post processing step, the position of the free water surface is determined
by a discrete integration of the volume fraction a over a vertical line (Z-direction)
divided in n equal parts:

n—1

Zwater level = Z ai(zi+1 - Zi) (26)
=0

2.3.2 Turbulence modelling

Turbulent effects are incorporated in the RANS equations (2.1) and (2.2) by solv-
ing one or more additional transport equations to yield a value for the turbulent
kinematic viscosity v;. The k — w SST turbulence model is applied in all the simu-
lations presented. k — w SST has shown good results in literature to simulate the
flow around circular cylinders and two-phase flows. For example, Rahman et al.
(2008) mentioned that the k —w SST turbulence model is much more recom-
mendable for high Reynolds numbers in a uniform free stream flow passing a 2D
cylinder. Moreover, it has an adequate boundary layer treatment. Brown et al.
(2014) evaluated different RANS turbulence models for spilling breakers and con-
cluded that the £k — w SST model performs best for wave elevation predictions.

The incompressible £ — w SST model for a single fluid is a two-equation model
(Menter et al., 2003) and is formulated in OpenFOAM as:

Ok Dk 9
ot 8%‘]' 8Ij

{(u +ow) ;ﬂ = P, — Bwk (2.7)

i
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Table 2.1: Default values for ¢1 and ¢2 used in equation (2.10) to calculate ok, 0w, B
and ~y for the k — w SST turbulence model.

¢ Ok Ow B Y
¢1  0.85034 0.5 0.075  0.5532
¢2 1.0 0.85616  0.0828 0.4403
%+aujw,i (V+O—V)87w
ot = dx;  Oxj W O (28)
¥ 9 Ow2 Ok Ow ’
=—G - 2(1-F) ———
VtG P +2( D w Ox; Oz,
P, = min(G, 105" kw)
E)ui E)ui 8’U,j
G o Vt(?Tj (81‘] * 8:1:,) (29)
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"= max(ajw, SFs)

where k is the turbulent kinetic energy, Py is the production term of k, v is
the kinematic viscosity, v; is the turbulent kinematic viscosity, w is the specific
dissipation rate, .S is the mean rate of strain of the flow, 8* = 0.09, a; = 0.31, F}
and F5 are blending functions. The values of o, o, 8 and - are blended using
equation (2.10) in which ¢; and ¢2 are given in Table 2.1.

¢=Fi¢1+ (1 — F1)o2 (2.10)

Alternative turbulence models, such as kK — ¢ and k£ — w, were also tested in
this study but they caused more wave damping over the length of the wave flume
compared to kK —w SST. Furthermore, application of LES obliges very fine grids
in order to resolve 80 % of the turbulence resulting in longer simulation times.
Therefore, RANS modelling with the £ — w SST model is selected.

However, for high steepness waves, even the original k — w S ST model causes
significant wave damping. This damping is triggered by an increase in turbulent
viscosity around the interface between water and air. This increase is induced by
the large production of turbulent kinetic energy, k, in that zone. The production
of k is linked to the velocity gradient which is large around the interface between
water and air due to the large density ratio (1000/1). Two important insights are
made according to the original k —w SST model implemented in OpenFOAM,
equations (2.7) and (2.8):

1. The first one is already reported by Brown et al. (2014). None of the in-
compressible solvers implemented in OpenFOAM, including two-phase flow,
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explicitly comprise the density. Only the turbulent kinematic viscosity v, is
modelled rather than the dynamic viscosity p; = prg. In a two-phase flow,
the density varies around the interface between water and air which should
therefore be included in the turbulence equations.

2. As mentioned in Van Maele and Merci (2006a), a buoyancy term is needed
in order to take the varying density around the air-water interface into ac-
count. The buoyancy term is only included in the turbulent kinetic en-
ergy (TKE) equation based on the Standard Gradient Diffusion Hypothesis
(SGDH) where the density ratio is neglected. This density ratio is 1000/1
for water and air and could lead to instabilities in the solution method of this
study. Moreover, Van Maele and Merci (2006a) reported that the influence
of buoyancy on the e-equation (cfr. w-equation) is negligible if the SGDH
is used. However, neglecting buoyancy in the TKE-equation is influencing
the results significantly. The more advanced Generalized Gradient Diffusion
Hypothesis (GGDH) leads to failing simulations during this research due to
an instability in the TKE-equation.

Based on those two insights, a modified £ — w SST model is implemented in
OpenFOAM® (2013) to prevent significant wave damping over the length of the
wave flume. Firstly, the density p is explicitly implemented in both equations (2.11)
and (2.12) of the k —w SST turbulence model to take its variability around the
air-water interface into account. Secondly, a buoyancy term G described by the
SGDH, equation (2.13), is added to the TKE-equation (2.11). The final equations
for this buoyancy-modified k£ — w SST turbulence model are formulated as follow:

J
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o 0z J
in which the buoyancy term G, is treated implicitly, the scalar o, = 0.85 and
vector g =[0; 0; —9.81] m/s?. The value of o, decides how much buoyancy is
modelled and is kept constant during all the simulations presented. It is beyond the
scope of this research to find the optimal value of o; to return the most accurate
results. The purpose of including a buoyancy term in this study is to suppress
the turbulence level at the free water surface, i.e. in the zone where a vertical
density gradient exists. Because of the implicit treatment of the buoyancy term G},
in the TKE-equation, the very large vertical density gradient near the free water
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surface drives the turbulent viscosity v; to zero. This is demonstrated in Figure
2.5 and Figure 2.7 later in this paper. As a result, in case of propagating waves,
the model switches to the laminar regime near the free water surface, preventing
excessive wave damping. Please note that in the zone of e.g. breaking waves with
a more horizontal density gradient, the original turbulence model will be recovered,
as G = 0.

2.3.3 Computational domain

Because the geometry of the experimental wave flume is symmetrical around its
length axis, only one half of the wave flume is modelled in the numerical model.
As mentioned in Section 2.1, a pair of asymmetric vortices will develop but no
vortex shedding is expected. Therefore, preliminary simulations are performed
without the symmetry plane, by modelling the full domain. As a result, no differ-
ences in the wave run-up pattern around the monopile are observed. Moreover,
Saghafian et al. (2003) reported small lift forces when the KC number is smaller
than 6 for a Reynolds number of 11 240. Furthermore, vortex shedding become
prominent if KC > 7. Consequently, only simulations using a symmetry plane are
presented. Figure 2.2 shows a plan view of the computational domain together
with the boundary conditions types which are listed in the next Section 2.3.4. As
mentioned before, the bottom of the numerical domain is flat. The height of the
numerical wave flume is 0.80 m in the Z-direction. The initial condition consists
of a water depth of 0.50 m for which the volume fraction « equal to 1 and on top
0.30 m air for which « is equal to 0.

It is important to stress that the length of the numerical flume (L = 20 m)
is reduced compared to the length of the experimental flume (L = 30 m). More-
over, the pile was not placed in the centre of the experimental wave flume (in
longitudinal direction) whereas in the numerical setup, the pile is placed centrally
in the computational domain. The length of the numerical wave flume is chosen
to allow a few wave lengths inside the flume to assess the quality of propagating
water waves using the buoyancy-modified k — w SST turbulence model.

After discretisation, the largest size of a cell in the vertical Z-direction Az is
0.04 m (H/3) for the coarsest mesh. Thereafter, the mesh is locally refined in
all directions in a zone where the free water surface will be located, resulting in
Az = 0.02 m (H/6). Next, the zone close to the monopile is refined, but only
in the vertical direction, leading to Az = 0.01 m (H/12). The sizes of each cell
in X- and Y-direction are based on a maximum aspect ratio (i.e. ratio of largest
dimension of a cell over the smallest dimension) of about 2.5. The final grid is
presented in Figure 2.3, which is the coarsest grid for all the simulations performed
(case 1) and consists of 397 484 cells. Additionally, two more simulations are
performed: all cells of case 1 are refined in all directions resulting in case 2 and all
cells of case 2 are refined again leading to case 3. During such a refinement, one
cell is split up in eight equal cells. A summary of the three cases is given in Table
2.2. The consecutives lines for each case in column two and three give the cell size
for the coarsest part, the zone in which the free water surface will be located and
the zone around the monopile respectively.
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Figure 2.2: Definition sketch of the geometry of the computational domain in plan view
(XY-direction). The dashed lines inside the geometry indicate the internal grid structure
whereas the black words characterise the boundary condition type. wg2 (z = 10.08 m,
y = 0.43 m) is a wave gauge used for checking the incoming wave field.
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Figure 2.3: (a) Detail of the longitudinal cross section parallel to the X Z-plane through
the centre of the monopile. (b) Detailed plan view (XY -direction) around the monopile.

Table 2.2: Grid characteristics of the three different cases used. For each case, the first
line indicates the overall discretisation. The second line shows the additional refinement
in a zone where the free water surface will be located. Finally, the third line shows the
final discretisation around the monopile.

case maxAx and maxAy maxAz cells

1 0.10 m 0.04 m (H/3) 397 484
0.05 m 0.02 m (H/6)
0.05 m 0.01 m (H/12)

2 0.05 m 0.02 m (H/6) 3179 872
0.025 m 0.01 m (H/12)
0.025 m 0.005 m (H/24)

3 0.025 m 0.01 m (H/12) 25 418 496
0.0125 m 0.005 m (H/24)

0.0125 m 0.0025 m (H/48)
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2.3.4 Boundary conditions

The types of boundary conditions in a horizontal plane are given in Figure 2.2:
inlet on the left, outlet on the right, symmetry plane for the side wall and fixed
wall for the monopile. The top of the computational domain is represented by an
atmospheric condition while the bottom is a fixed wall.

Two solid walls are modelled, the bottom and the monopile’s surface. On
both walls, wall functions are activated for k£ and w according to the k —w SST
turbulence model. A continuous wall function based on Spalding's law (Spalding,
1961) switching between low- and high-Reynolds numbers is implemented for the
turbulent viscosity. By using this particular scalable wall function, the dimensionless
wall distance y* should be between 1 and 300. On the walls, a Dirichlet boundary
condition is set for the velocity (0 m/s in the three directions) while the pressure
and volume fraction are set to a Neumann condition. The atmospheric conditions
at the top of the numerical domain are set to a mixed Dirichlet-Neumann boundary
condition for the velocity, pressure and volume fraction. The side wall of the wave
flume is implemented as a symmetry plane and not as a physical wall to avoid
the use of wall functions. This approximation is justified because the ratio of the
flume width to the pile diameter (W/D) is 12.5, which is larger than 6 to avoid
side-effects of that wall (Whitehouse, 1998).

At the inlet and outlet, special boundary conditions are needed to generate
and absorb waves. Therefore, IHFOAM (Higuera et al., 2013a,b) is deployed as
an external toolbox for those boundary conditions. At the inlet, wave generation
together with active wave absorption is activated whereas only wave absorption
is implemented at the outlet. The implemented wave absorption in IHFOAM is
developed by assuming shallow water conditions. However, the waves studied
in the present work are close to deep water waves. As mentioned in Higuera
et al. (2013a), the absorption function works relatively well outside its range of
applicability. Moreover, the reflection coefficient is not below 10 % in experimental
laboratories as reported by Cruz (2008). Therefore, it is difficult to compare results
when the reflection coefficient is not equal between experimental and numerical
setups. The difference between experimental and numerical wave reflection has to
be taken into account during the discussion of the results.

During the regular wave tests in the laboratory, wave heights between 0.01 m
and 0.26 m were generated, with a wave period between 0.40 s and 2.78 s resulting
in a minimum and maximum wave steepness s of 0.03 and 0.07 respectively. Two
regular wave trains with a wave steepness of 0.04 and 0.07 are selected to perform
numerical simulations. The wave parameters consist of a fixed wave height H
equal to 0.12 m and a wave period T equal to 1.60 s and 1.05 s for wave train
1 and 2 respectively. The water depth d is fixed to 0.50 m. According to Le
Méhauté (1969), a 5th order Stokes theory is sufficiently accurate for all the test
cases presented.
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2.3.5 Solver settings

For all the simulations presented, the following solver settings are used: central
discretisation for the pressure gradient and the diffusion terms; TVD (total variation
diminishing) schemes with a van Leer limiter (van Leer, 1974) for the divergence
operators; backward Euler time discretisation; a maximum Courant number of 0.75.

2.4 Results empty wave flume

Preliminary simulations are performed in an empty wave flume (i.e. without mono-
pile) in order to assess the quality of the undisturbed propagating wave field over
the length of the flume. Therefore, regular waves are generated at the inlet fea-
turing the same wave height and period as the waves used for the study of wave
run-up around a monopile.

The two-dimensional (X Z-plane) computational domain is discretised accord-
ing to the values presented in Table 2.2. Only the vertical refinement around the
monopile is excluded for the empty wave flume simulations (third line for every
case). The total number of cells is equal to 9 400, 37 600 and 150 400 for case 1,
case 2 and case 3 respectively. For each case, three simulations are performed
using the original turbulence model, the buoyancy-modified turbulence model and
a laminar model applying the same numerical settings. The laminar result is used
as a reference solution because no turbulence is assumed during wave propagation.
Moreover, the laminar result will show that numerical damping based on RANS
turbulence modelling is dominating over possible damping due to the VoF method
applied or integration of the RANS equations.

In the following two subsections, time series are provided at particular locations
along the flume: c=1m, c=3m, 2 =5m, 2 =10m,x=15m,z=1Tm
and x = 19 m. The vertical axis denotes the surface elevation 7 with respect to the
bottom (z = 0 m) and the horizontal axis denotes the time for three wave periods
after the warming-up phase. Additionally, the turbulent viscosity v; is visualised
for both the original and buoyancy-modified turbulence model. Only the results of
case 2 (see Table 2.2) are presented since they are already grid independent.

2.4.1 Wave train 1

This first subsection presents the results of the empty wave flume using the first
regular wave train (H = 0.12 m, T = 1.60 s, d = 0.50 m). The wave steepness
s is 0.04 and those waves are classified as rather low steepness waves. Figure
2.4 depicts surface elevations in the empty wave flume for a laminar solution, the
original and buoyancy-modified turbulence model. All three simulations return
the same time signal at the start of the flume (z = 1 m). Moving towards the
end of the flume, small discrepancies in the surface elevation are visible between
the original turbulence model and both the laminar model and buoyancy-modified
turbulence model. Only a phase shift is observed but the wave height remains
constant. As a conclusion, Figure 2.4 clearly indicates that there is no significant
wave damping over the length of the flume based on RANS turbulence modelling
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for the case of low steepness waves.
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Figure 2.4: Time series of the surface elevation 7 with respect to the bottom (z = 0 m)
from the start (x = 1 m) towards the end (x = 19 m) of the empty wave flume (case 2)
for a laminar solution and solutions without and with buoyancy using regular waves:
H=012m, T =1.60 s, d = 0.50 m.

The turbulent viscosity v; for one wave length at the start of the flume is
depicted in Figure 2.5 for both the original and buoyancy-modified turbulence model
respectively. The white solid line visualises the location of the free water surface.
It is clearly observed that the turbulent viscosity around the free water surface is a
few orders of magnitudes larger for the original turbulence model compared to the
buoyancy-modified one. However in the case of low steepness waves, this increased
viscosity at the free water surface is not affecting the wave height along the length
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of the wave flume (see Figure 2.4).

1076 107° 1074 1073 1072

0.0 0.5 10 15 20 25 3.0
X [m]

Figure 2.5: Contour plot of the turbulent kinematic viscosity v; [m?/s] for one wave
length (low steepness waves) at the start of the wave flume (x = 0 m) using a logarithmic
scale (t = 22 s): buoyancy term excluded (top panel) and buoyancy included in the TKE-
equation (bottom panel). The white solid line indicates the free water surface.

2.4.2 Wave train 2

This second subsection gives the results of the empty wave flume for the second
regular wave train (H = 0.12 m, T = 1.05 s, d = 0.50 m). The wave steepness s
is now equal to 0.07 and those waves are classified as high steepness waves. Figure
2.6 depicts surface elevations in the empty wave flume for a laminar solution, the
original and buoyancy-modified turbulence model. Close to the wave generation
boundary (x = 1 m), the time signal is identical for all the simulations. However,
along the length of the flume, a significant decrease of the wave height is observed
in case buoyancy is excluded. This damping is not caused by the VoF method since
the laminar solution does not show any wave damping. When the buoyancy term is
activated, the amplitudes of the surface elevation are close to the laminar solution
and do not show any decrease in wave height along the flume. As a conclusion,
Figure 2.6 strongly proves that including a buoyancy term is necessary in order to
simulate properly propagating high steepness water waves.

The turbulent viscosity v; for one wave length at the start of the flume is
shown in Figure 2.7 for both the original and buoyancy-modified turbulence model
respectively. It is clearly observed that the turbulent viscosity around the free
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Figure 2.6: Time series of the surface elevation 7 with respect to the bottom (z = 0 m)
from the start (z = 1 m) towards the end (z = 19 m) of the empty wave flume (case 2)
for a laminar solution and solutions without and with buoyancy using regular waves:
H=012m, T =1.05s, d=0.50 m.

water surface (white solid line) is a few orders of magnitudes larger for the original
turbulence model compared to the buoyancy-modified one. As a result for the high
steepness waves, the increased viscosity at the free water surface has a significant
influence on the wave height along the wave flume (see Figure 2.6). This increase
in turbulent viscosity is the main reason for the observed wave damping. However,
this wave damping is not observed in case the buoyancy term is included. As
mentioned before, the buoyancy term drives the turbulent viscosity around the
free water surface to zero and the model switches locally to the laminar regime,
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preventing excessive wave damping.

10°° 107" 107" 10°* 107%
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Figure 2.7: Contour plot of the turbulent kinematic viscosity v; [m?/s] for one wave
length (high steepness waves) at the start of the wave flume (z = 0 m) using a logarithmic
scale (t = 22 s): buoyancy term excluded (top panel) and buoyancy included in the TKE-
equation (bottom panel). The white solid line indicates the free water surface.

2.5 Results wave run-up around a monopile

In this section, the numerical obtained wave run-up around a monopile is validated
by using laboratory measurements from De Vos et al. (2007). Thereafter, a grid
refinement study using the three cases as outlined in Table 2.2 is reported in order
to verify the numerical results. Additionally, numerical results are tested against
analytical formulations. Each numerical simulation ran for 20 seconds after the
warming-up phase. For every simulation, the quality of the incoming wave field is
checked against the experimental data at the location of wg2, see Figure 2.2. As
a result, a very similar incoming wave field is observed between the numerical and
experimental data.

In the following two subsections, time series of the wave run-up pattern around



32 2. Wave propagation and wave-structure interaction simulations

a monopile are provided in which the vertical axis denotes the surface elevation
n with respect to the bottom (z = 0 m). In all the graphs, the horizontal axis
denotes the time for three wave periods.

2.5.1 Wave train 1

This first subsection presents the results of wave run-up around a monopile using
the first regular wave train (H = 0.12 m, T' = 1.60 s, d = 0.50 m). As reported
in section 2.4.1, no significant wave damping over the length of the flume based
on RANS turbulence modelling for the case of low steepness waves (s = 0.04) is
expected. Therefore, the wave run-up pattern around a monopile is presented in
the following two paragraphs for respectively excluding and including the buoyancy
term.

2.5.1.1 Buoyancy term not included in the TKE-equation

The set of nine graphs displayed in Figure 2.8 shows the experimental and numerical
wave run-up pattern around the monopile without including the buoyancy term in
the TKE-equation. The maximum achieved y™ on the monopile varies from 170
(case 1), 103 (case 2) down to 65 (case 3). Firstly, in general, the same trends
in wave run-up are observed for the numerical and experimental data. However,
the experimental signal at 112.5° is not reliable while the numerical model at that
location returns plausible results. No reason is found or reported by De Vos et al.
(2007) regarding this specific discrepancy. Moreover, Figure 2.8 clearly indicates
that both the shape of the time signal and the local secondary peak in the surface
elevation obtained with the numerical model are comparable to the experimental
records. Secondly, the numerical solutions seem to be grid independent because the
first two grids, case 1 and case 2, are presenting similar results. Interestingly, the
numerical results of case 3, show larger discrepancies in the wave run-up pattern
compared to case 1 and case 2. These differences are more significant in front
of the monopile (angle wave gauge < 90°). It is also remarkable that the largest
differences between cases 1 and 2 and case 3 are situated around the wave crest
and not around the wave trough.

2.5.1.2 Buoyancy term included in the TKE-equation

In contrast to the previous paragraph, turbulence modelling is now applied by
including the buoyancy term in the TKE-equation as formulated in section 2.3.2.
The maximum value of y* on the monopile varies from 240 (case 1), 102 (case 2)
down to 45 (case 3). Figure 2.9 presents the wave run-up pattern around the
monopile for both the experimental and numerical model. In general, the numerical
model captures the main effects of wave run-up relatively well. However, the time
series indicate clearly that the peak values of the wave run-up are significantly
larger in the numerical model compared to the experimental data. Although this
difference, the shape, the secondary peak and the surface elevations around the
trough are comparable to the experimental time series. Moreover, the solution
seems to be grid independent because the three cases are presenting similar results.
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Figure 2.8: Time series of the wave run-up pattern around the monopile for the ex-
perimental data and cases 1, 2 and 3 for different angles of the gauge with respect to
the incoming waves. The vertical axis expresses the position of the surface elevation n
with respect to the bottom (z = 0 m) for regular waves: H = 0.12 m, T = 1.60 s,
d = 0.50 m, in which the buoyancy term is not included in the TKE-equation.
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This means that case 3 is not leading to deflected results as observed in the previous
paragraph where buoyancy was not included in the TKE-equation.

2.5.2 Wave train 2

This second subsection gives the results of wave run-up around a monopile for
the second regular wave train (H = 0.12 m, T = 1.05 s, d = 0.50 m). As
concluded in section 2.4.2, the buoyancy term is needed in the TKE-equation
because excessive wave damping over the length of the flume is expected for the
case of high steepness waves (s = 0.07). Because the incident wave heights are
too small close to the monopile in case buoyancy is not activated, only numerical
results including buoyancy are presented.

The set of nine graphs given in Figure 2.10 shows the experimental and nu-
merical wave run-up around the monopile if the buoyancy term is included in the
TKE-equation. y™ on the monopile varies from maximal 300 (case 1), 130 (case 2)
down to 70 (case 3). In general, the three numerical cases converge towards a grid
independent solution and deliver a comparable output to the experimental results.
For example, the local secondary peak in the surface elevation is observed in both
numerical and experimental data. However, the peak values of the wave run-up
in front of the monopile are sometimes overestimated by the numerical model.
Furthermore, the experimental time signal at 90° is significantly different than the
numerically obtained time signals. Several reason can be dedicated for this discrep-
ancy as reported later on in section 2.6. Moreover, there are some contradictions
between experimental and numerical records around the rear part of the monopile.

2.5.3 Grid refinement study

A grid refinement study using the three cases as outlined in Table 2.2 is per-
formed. A summary is given in Table 2.3 for the low steepness waves (both original
and buoyancy-modified turbulence model) and high steepness waves (buoyancy-
modified turbulence model) respectively. The variable used for this analysis is the
time-integral of the absolute value of the force on the monopile in X-direction
over one wave period. This integration is performed when the first wave reaches
the outlet boundary. This is needed because wave reflection is strongly depen-
dent on the grid refinement of the mesh (cfr. reflection coefficients reported
in section 2.6). The extrapolated values are computed with Richardson's ex-
trapolation method: Feyira. = Fease 2 + (Fease 3 — Fease 2)/(1 — 27%) with
a = ln((Fcase 1= Fcase 2)/(Fcase 2 = Fcase 3))/111(2) Fe:}ctra‘ can be Fegal’ded
as the value calculated from the exact solution. As follows from Table 2.3, the
solutions converge monotonically towards the exact solution.

2.5.4 Spatial resolution of wave run-up

In this subsection, high spatial resolutions of the wave run-up pattern around the
monopile over one wave period obtained using the numerical model are presented
together with the nine discrete experimental measurements and two analytical
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Figure 2.9: Time series of the wave run-up pattern around the monopile for the ex-
perimental data and cases 1, 2 and 3 for different angles of the gauge with respect to
the incoming waves. The vertical axis expresses the position of the surface elevation n
with respect to the bottom (z = 0 m) for regular waves: H = 0.12 m, T = 1.60 s,
d = 0.50 m, in which the buoyancy term is included in the TKE-equation.
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Figure 2.10: Time series of the wave run-up pattern around the monopile for the ex-
perimental data and cases 1, 2 and 3 for different angles of the gauge with respect to
the incoming waves. The vertical axis expresses the position of the surface elevation n
with respect to the bottom (z = 0 m) for regular waves: H = 0.12 m, T = 1.05 s,
d = 0.50 m, in which the buoyancy term is included in the TKE equation.
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Table 2.3: Grid refinement study for the low steepness waves using both the original and
buoyancy-modified turbulence model and the high steepness waves using the buoyancy-

modified turbulence model.

N is the number of cells in vertical direction next to the

cylinder. F'is the time-integral of the absolute value of the force on the monopile in X-
direction over one wave period when the first wave reaches the outlet boundary. Feyirq.

is the exact solution.

Steepness Low High

Buoyancy No Yes Yes

case N, | F[Ns] error F [Ns] error F [Ns] error

1 80 | 4.921  359% 4917 507 % | 4016  9.94 %
2 160 | 5.048 1.10 % 5.108 1.38 % | 4.448 0.25 %
3 320 | 5.087 0.34 % 5.160 0.38 % | 4.459 0.01 %
Fertra. 5.104 5.179 4.459
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formulations. For the experimental dataset, only the maximum wave run-up at the
wave gauge's locations over one wave period are shown.

The first analytical expression is reported by De Vos et al. (2007) and is used to
calculate the maximum wave run-up around a monopile in case of regular waves:

U2

Ry = Nmax o 2.14
Thmax M (2.14)

in which m is equal to 1, g is the gravitational constant (9.81 m/s?), Nmax is
the maximum surface elevation and U is the horizontal particle velocity at the
wave crest. 7q: and U are both based on the 2nd order Stokes wave theory.
Secondly, Kazeminezhad and Etemad-Shahidi (2015) have recently re-analysed a
few experimental datasets and came up with an alternative formulation for the
maximum wave run-up level in case of regular waves:

H 0.15 H —0.055 H
H (0.76(d> (Lo> ) for "l <041
—0.055
H (0.65(5)) ) (2.15)

H 0.15 / gy ~15 H
-3 - - -
+H (3.2 x 10 < 7 0.41) <L0) for 7 > 0.41

in which H is the wave height, d is the water depth and L the deep water wave
length.

The two formulations (2.14) and (2.15) lead respectively to a wave run-up level
of 0.08 m and 0.09 m with respect to the still water level or an absolute value
of 0.58 m and 0.59 with respect to the bottom (z = 0 m) for the first regular
wave train (H = 0.12 m, T = 1.60 s, d = 0.50 m). Figure 2.11 shows the
wave run-up pattern around the monopile using the numerical model (case 2), the
experimental obtained wave run-up (dots) and two analytical solutions (horizontal
lines). In Figure 2.11a, the buoyancy term is not included whereas in Figure 2.11b
that term is implemented in the TKE-equation. The output of the numerical model
is represented by a series of grey lines, each characterising a specific point in time.
The time step between two consecutive lines is 0.02 s. As Figure 2.11a suggests,
the two analytical results are in line with the maximum surface elevation in front
of the pile if the buoyancy term is excluded in the numerical model. Moreover, the
numerical model shows a significant decrease in the peak value of the wave run-up
around 135°. Including buoyancy (Figure 2.11b) shows that the obtained wave
run-up is in general higher but it is considerably higher in front of the monopile.

R,

R,
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Figure 2.11: Spatial variance of the wave run-up around the monopile for y > 0 over
one wave period in function of the angle with respect to the incoming waves (wave
train 1, case 2): (a) buoyancy term not included and (b) buoyancy term included in the
TKE-equation.
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Figure 2.12: Spatial variance of the wave run-up around the monopile for y > 0 over
one wave period in function of the angle with respect to the incoming waves (wave
train 2, case 2): (a) buoyancy term not included and (b) buoyancy term included in the
TKE-equation.

In case of the second regular wave train (H = 0.12m, T = 1.05 s, d = 0.50 m),
the run-up levels are 0.08 m and 0.09 m for equation (2.14) and (2.15) respectively.
This results in absolute values with respect to the bottom (z = 0 m) of 0.58 m and
0.59 m respectively. Figure 2.12 shows the wave run-up around the monopile for the
numerical model (case 2), experimental tests (dots) and two analytical formulae
(horizontal lines). Again, each grey line represents numerical data at a certain
point in time every 0.02 s. Numerical results are obtained by excluding (Figure
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2.12a) and including the buoyancy term in the TKE-equation (Figure 2.12b). If
the buoyancy term is excluded (Figure 2.12a), wave run-up around the monopile
is significant smaller than the experimental data and analytical solutions. This
phenomenon is addressed to excessive wave damping over the length of the wave
flume, as already discussed in Section 2.5.2. However, if the buoyancy term is
modelled (Figure 2.12b), the two analytical solutions are in line with the maximum
wave run-up in front of the pile. Again, the numerical model shows a significant
decrease in the peak value of the wave run-up around 135°.

2.6 Discussion

Two types of differences in the results are observed. The first one is the difference
in numerical results by excluding or including the buoyancy term. For the case of
low steepness waves, it is shown that the buoyancy term has only a small effect
on the surface elevation over the length of the wave flume. However, there are
some larger differences in wave run-up around the monopile between excluding
or including the buoyancy term in the TKE-equation. For example, the surface
elevations are larger in front of the monopile if buoyancy is taken into account.
This observation is related to slightly less damping of the incident waves close to
the monopile if buoyancy is modelled. For the case of high steepness waves, the
buoyancy term is needed in order to avoid non-physical wave damping over the
length of the flume.

The second type of differences is related to the deviations in surface elevations
around the monopile between numerical and experimental data. Those deviations
are largely assigned to the difference in reflection between the laboratory flume
(with an absorbing beach) and the numerical wave flume (with a shallow water
absorbing boundary condition). However, De Vos et al. (2007) did not report a
value for the reflection coefficient of the absorbing beach in the experimental flume.
In this study, the numerical reflection coefficient at the outlet is determined using
four wave gauges (at positions 1 = 155 m ; x9 = 15.808 m ; z3 = 16.3 m
i ©4 = 16.5 m ; all in the centre of the flume) (Lin and Huang, 2004). For
the first wave train without modelling the buoyancy term, the obtained reflection
coefficients are 6.4 %, 5.9 % and 16 % for case 1, case 2 and case 3 respectively.
In case buoyancy is activated for the first wave train, the reflection coefficients
increase to 15 %, 13 % and 11 % for case 1, case 2 and case 3 respectively.
These latter values are higher, compared to those where buoyancy is neglected. By
including buoyancy in the TKE-equation, less wave damping is observed along the
flume, resulting in slightly higher waves reaching the outlet boundary. Because the
absorbing correction velocity is directly related to the measured surface elevation
at the outlet (Higuera et al., 2013a), the reflected waves are also larger. For the
high steepness waves, the obtained reflection coefficients are 23 %, 22 % and
26 % for case 1, case 2 and case 3 respectively (with buoyancy modelled). The
reflection coefficients of this second wave train are significantly higher compared
to the first wave train. These high steepness waves are even further away from the
shallow water region compared to the low steepness waves, resulting in an inferior
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performance of the shallow water absorbing boundary condition at the outlet.

In addition, there is also reflection at the inlet boundary of the computational
domain from both the reflected waves from the monopile and the outlet. Therefore,
active wave absorption (also based on shallow water theory) is activated at the
inlet to prevent this re-reflection. Hence, the front part of the monopile is more
susceptible for this type of reflected waves. However, no qualitative method is used
to assess this re-reflection from the inlet boundary.

A minor source of deviations between numerical and experimental results is
the measurement technique for the wave run-up level. However, De Vos et al.
(2007) reported no details about the accuracy of the experimental wave run-up
measurements. The experimental measurements may be influenced by the presence
of the wave gauges (two cylindrical rods) near the pile, while in the numerical
model the wave gauges are not modelled (wave run-up is measured at that same
location however). This effect is considered marginal in contrast to the difference
in reflection between experimental and numerical models.

Despite the observed inaccuracies, in general the numerical results are in good
agreement with the experimentally obtained wave run-up levels. It may be expected
that the inaccuracies related to the experimental measurements also contribute to
the achieved level of agreement. In contrast to the experimental data, which are
only available at nine discrete locations, the numerical model yields a much higher
spatial resolution of the wave run-up levels around the monopile. As a result, the
wave run-up phenomenon features are much easier to identify using the numerical
toolbox.

2.7 Conclusions and future work

In this paper, we presented a buoyancy-modified &k —w SST turbulence model
that prevents an excessive decrease in wave height over the length of the numerical
wave flume based on RANS turbulence modelling. Therefore, a buoyancy term has
been implemented in the TKE-equation in order to develop an overall stable wave
propagation model without significant wave damping over the length of the flume.
The influence of that buoyancy term was demonstrated by performing wave prop-
agation simulations in an empty wave flume using OpenFOAM® . Subsequently,
we validated this buoyancy-modified turbulence model by simulating wave run-up
around a monopile subjected to regular waves. Therefore, two regular wave trains
were generated, each with a different wave steepness. The obtained numerical
results of the wave run-up pattern around the monopile show a fair agreement
with experimental data and two analytical formulations. The outcome of this pa-
per proves the successful capability of a buoyancy-modified turbulence model in
order to simulate offshore and coastal engineering processes. Future work includes
the validation of wave breaking processes using the buoyancy-modified k — w SST
turbulence model. The buoyancy term will not only result in a stable wave prop-
agation model without significant wave damping over the length of the flume but
it will also predict the turbulence level in the flow field more accurately at the
locations where wave breaking occurs.






Chapter 3

Wave breaking simulations

This chapter is a continuation of the work on turbulence modelling in a numerical
wave tank presented in the previous chapter, Chapter 2. Now, the focus is on
wave breaking simulations under regular waves on a sloping beach. RANS turbu-
lence modelling is performed by applying the original and the buoyancy-modified
k —w and k —w SST models. The performance of the buoyancy-modified mod-
els is analysed by validating the numerically obtained results with the widely used
benchmark data set of Ting and Kirby (1994). An in-depth analysis of the tur-
bulent kinetic energy in the flow field during wave breaking events is reported in
Appendix A. Note that all the figures are included in the last section at the end of
this chapter, section 3.6.

Submitted for publication as:

Devolder, B., Troch, P., and Rauwoens, P. (2018). Performance of a buoyancy-
modified kK —w and k —w SST turbulence model for simulating wave break-
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Performance of a buoyancy-modified £ — w and
k —w SST turbulence model for simulating wave
breaking under regular waves using OpenFOAM®

Brecht Devolder, Peter Troch, Pieter Rauwoens

Abstract

In this work, the performance of a buoyancy-modified turbulence model is shown for
simulating wave breaking in a numerical wave flume. Reynolds-Averaged Navier-
Stokes (RANS) modelling is performed by applying botha k —w and a k —w SST
turbulence model using the Computational Fluid Dynamics (CFD) toolbox Open-
FOAM. In previous work of the authors (Devolder et al., 2017), the observed
significant decrease in wave height over the length of the numerical wave flume
based on RANS turbulence modelling for the case of propagating waves has been
avoided by developing a buoyancy-modified k& —w SST model in which (i) the
density is explicitly included in the turbulence transport equations and (ii) a buoy-
ancy term is added to the turbulent kinetic energy (TKE) equation. In this paper,
two buoyancy-modified turbulence models are applied for the case of wave break-
ing simulations: k¥ —w and k — w SST. Numerical results of wave breaking under
regular waves are validated with experimental data measured in a wave flume by
Ting and Kirby (1994). The numerical results show a good agreement with the
experimental measurements for the surface elevations, undertow profiles of the
horizontal velocity and turbulent kinetic energy profiles. Moreover, the underlying
motivations for the concept of a buoyancy-modified turbulence model are demon-
strated by the numerical results and confirmed by the experimental observations.
Firstly, the buoyancy term forces the solution of the flow field near the free water
surface to a laminar solution in case of wave propagation. Secondly in the surf zone
where waves break, the buoyancy term goes to zero and a fully turbulent solution
of the flow field is calculated. Finally and most importantly, the buoyancy-modified
turbulence models significantly reduce the common overestimation of TKE in the
flow field.

Keywords: CFD; OpenFOAM/IHFOAM; Buoyancy-modified turbulence model;
Wave breaking
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3.1 Introduction

Wave breaking is seen as one of the last and most complex life events of a wave.
When waves propagate from offshore towards the shoreline, shoaling occurs due to a
decreasing water depth. In the surf zone, the wave steepness increases significantly
and the waves break. Wave breaking is characterised by several parameters such as
the wave height H, the wave length L and the bathymetry of the seabed. Therefore,
Galvin (1968) reported four different breaker types: spilling, plunging, surging and
collapsing. During wave breaking, turbulence generation is one of the governing
processes. However, it is very challenging to quantify wave breaking turbulence
based on field observations. Therefore, a large number of experimental flume tests
have been performed in a repeatable and controlled environment studying both
regular and irregular wave breaking, e.g. Ting and Kirby (1994), Boers (1996), Cox
and Kobayashi (2000), Ting (2001) ,Ting (2002) ,Ting (2006), Ting (2008), Huang
et al. (2010), Ting and Nelson (2011), Sumer et al. (2011), Ting (2013) and van der
A et al. (2017). Those flume tests revealed that wave breaking is the primary source
of turbulence generation and is responsible for the dissipation of wave energy. In
particular, wave breaking events increase the turbulent intensity in the vicinity of
the seabed, which plays an important role in near shore sediment transport. Next
to experimental modelling, numerical simulations provide additional insights since
a lot of difficulties for measuring wave breaking characteristics exist during field
measurements or small-scale experimental tests. In particular, the disturbance
effect of measurement devices on the hydrodynamic flow field and the influence of
entrapped air on measuring surface elevations and velocity profiles are the main
contributions to the overall error in the experimentally obtained results.

The focus of the present numerical study is solely put on wave breaking in-
duced turbulence modelling using a Navier-Stokes solver and not on sediment
transport. Numerical studies regarding sediment transport under breaking wave
conditions have been reported in Jacobsen et al. (2014), Jacobsen and Fredsoe
(2014), Fernandez-Mora et al. (2017) and Zhou et al. (2017) for example. Further-
more, long duration tests using irregular waves are not considered in this numerical
validation study in order to minimise the computational effort. In this paper, Ting
and Kirby (1994) is selected as the experimental validation dataset since a rigid
seabed was used and regular waves were generated. The experimental dataset
contains measurements of both surface elevations and undertow profiles for spilling
and plunging breakers respectively. Several authors reported numerical results us-
ing that experimental dataset, such as Lin and Liu (1998), Bradford (2000), Mayer
and Madsen (2000), Christensen (2006), Hieu et al. (2004), Jacobsen et al. (2012),
Xie (2013), Alagan Chella et al. (2015, 2016) and Brown et al. (2016). All the
numerical studies have one aspect in common: they all use a turbulence model in
their Navier-Stokes solver. The need for using a turbulence model is motivated by
e.g. Thornton (1979): wave breaking is a paramount source of turbulence gen-
eration. Over the past decades, a large number of turbulence models have been
derived and modified in order to enhance the predictive skills of numerical meth-
ods for turbulent fluid flows. Simulating surf zone turbulence specifically requires
attention to the choice of a turbulence model. For the first numerical studies
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simulating wave breaking, Reynolds-Averaged Navier-Stokes (RANS) models and
in particular k — £ models were popular (Lin and Liu, 1998; Bradford, 2000). Lin
and Liu (1998) developed a RANS model using an algebraic Reynolds stress k — ¢
model in combination with a Volume of Fluid (VoF) method to capture the free
water surface. Their model was able to simulate the turbulence levels and the
mean flow field in the surf zone away from the breaking point very well, even
though their simulation did not reach the quasi-steady state. However, the authors
found that the turbulence levels near the breaking point were significantly overes-
timated compared to the experimental data. As a consequence, energy dissipation
was responsible for the smaller observed breaking wave height. Bradford (2000)
performed RANS simulations using the commercial software Flow-3D by applying
different one- and two-equation turbulence models: k-model, £k — ¢ model, RNG
model. The results obtained using the one-equation k-model were insufficiently ac-
curate, while the performance of the RNG model was lower than the & — & model
for predicting turbulence levels. In general, Bradford (2000) concluded that the
turbulent kinetic energy (TKE) in the wave crest prior to breaking is overpredicted
using a k — & model, resulting in an underprediction of the breaking wave height.
Therefore, Bradford (2000) advises to use a k —w model instead, as presented
by Mayer and Madsen (2000). However, Mayer and Madsen (2000) modified the
k — w model in order to overcome the generation of TKE in the potential flow re-
gion (i.e. wave propagation zone outside the surf zone) and to avoid wave damping
over the length of the flume. Therefore, they implemented an ad-hoc modification
of the production of TKE using the vorticity of the mean flow rather than the lo-
cal mean velocity gradient. As a result, this modification eliminated the excessive
generation of TKE outside the surf zone when using a kK — w model and enhanced
significantly the predictive skills of the numerical model for simulating breaking
waves. Their research also triggered the discussion on the fundamental problems
of applying RANS models for wave modelling. An alternative approach to RANS
models are large eddy simulations (LES). In LES, the large scale turbulent struc-
tures are computed directly while the small scale (sub-grid scale) structures are
modelled using a turbulence model. Pope (2000) formulated that at least 80 %
of the turbulence needs to be resolved by the computational grid for LES. As a
consequence, very fine grids are needed, increasing the computational time signif-
icantly. Hieu et al. (2004) presented two-dimensional (2D) LES calculations using
a two-phase flow solver for simulating breaking waves and satisfactory results were
obtained for a limited simulation time. In their model, not only the water phase but
also the air phase was modelled. They noted that the effects of air entrainment on
the wave energy dissipation were not negligible. Furthermore, they reported that
surface tension might be necessary for better simulations of air bubbles entrained in
the water. Thereafter, Christensen (2006) presented three-dimensional (3D) LES
calculations for modelling both spilling and plunging breakers. In his model the air
phase was not considered at all in order to take the air-water mixture into account
in the surf zone. In general, a fair agreement was found between numerical and
experimental surface elevations in the inner part of the surf zone. However, the
exact breaking point was not captured accurately and the breaking wave height
was overestimated by the LES model. Also the undertow profiles showed discrep-
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ancies between experimental and numerical results. Christensen (2006) concluded
that the differences between numerical and experimental results were mainly due
to the coarse resolution of the 3D mesh. Note that not only Christensen (2006)
but also Lin and Liu (1998), Bradford (2000) and Mayer and Madsen (2000) used
a single-phase fluid solver. However, single-phase solvers are not able to repro-
duce the energy dissipation caused by entrained air, as reported in Jacobsen et al.
(2014), Christensen (2006) and Hieu et al. (2004), resulting in an overprediction of
TKE (Lin and Liu, 1998; Bradford, 2000; Mayer and Madsen, 2000; Christensen,
2006). More recently, Jacobsen et al. (2012) presented a wave generation toolbox
for the two-phase flow solver implemented in OpenFOAM and performed validation
tests for breaking waves using the modified £ —w model proposed by Mayer and
Madsen (2000). The results presented are averaged over 50 wave periods after the
warming-up phase of 80 wave periods in order to avoid the apparent lack of mass
conservation. Furthermore, Jacobsen et al. (2012) demonstrated the importance
of the aspect ratio on the numerical results. In general, the numerical results for
the surface elevations and undertow profiles obtained with an aspect ratio equal
to 1 were significantly better compared to an aspect ratio equal to 2. Xie (2013)
used a two-phase flow solver with a k — ¢ model but only a limited number of
waves were simulated. In general, their results showed a good agreement with
the experimental data. The numerically obtained breaking wave height was under
estimated by the numerical model while good results were obtained for the TKE
levels. As an alternative to the VoF method, Alagan Chella et al. (2015, 2016)
applied a Level Set Method (LSM) to track the free water surface in combination
with a £ — w model implemented in the two-phase flow solver REEF3D. At the in-
terface between water and air, a turbulence damping scheme was applied to avoid
unphysical turbulence production. Their model predicted shoaling wave heights
very well, however discrepancies were observed for the surface elevations in the
surf zone. In contrast to all other numerical studies, their model underpredicted
the TKE levels in the surf zone. Presumably, this was caused by applying a tur-
bulence damping scheme everywhere near the free water surface, not only in the
wave propagation zone but also in the surf zone. Consequently, the wave breaking
induced turbulence generation was severely restricted. Very recently, Brown et al.
(2016) reported an overview of using various turbulence models in OpenFOAM to
simulate both spilling and plunging breakers. Moreover, the authors addressed the
necessity of including the density explicitly in the turbulence transport equations.
After implementing the density explicitly in the turbulence transport equations,
Brown et al. (2016) concluded that the overall best model is the nonlinear k — ¢
model but the £ — w model showed improvements for all the results compared to
a solution without turbulence model.

Based on a review of those previous studies, two knowledge gaps are defined.
Firstly, it is clear that no standard turbulence model exists for simulating breaking
waves. In this study, we propose to test a widely-known Reynolds-Averaged Navier-
Stokes (RANS) turbulence model to evaluate its performance during wave breaking
simulations using a two-phase Navier-Stokes solver. Regarding the k — & model, it
is known that the transport equation for € becomes singular near the wall when it
is integrated through the viscous sublayer. This singularity is treated with damping
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functions but they feature stability issues (Menter, 1993). A robust alternative
formulation is the k —w model of Wilcox (1998). It has the advantage of an
accurate near wall treatment without employing damping functions. The numerical
stability is improved due to straightforward Dirichlet boundary conditions near the
wall. Consequently, those two advantages have a direct impact on choosing a
k — w model to simulate breaking waves on a sloping beach because the bottom
will have an influence on the wave breaking process. However, it is reported by
Menter (1992) that the results obtained with a & — w model strongly depend on
the freestream values of w outside the boundary layer in case of free shear layers.
Therefore, Menter (1993) developed a k — w shear stress transport (SST) model
in order to overcome the freestream dependency of k — w. In that model, blending
functions are applied in order to activate the k£ — w model in the inner region of
the boundary layer and the & — & model in the outer and free shear region. In
this paper, both the k — w and k — w SST models are applied for the numerical
simulations presented. Secondly, the review of previous studies emphasises the need
for enhanced prediction tools to simulate accurately the turbulence levels in the
flow field of surf zone and in particular near the breaking point. Many researchers,
such as Jacobsen et al. (2014), Fernandez-Mora et al. (2017), Zhou et al. (2017),
Christensen (2006), Xie (2013) and Brown et al. (2016), reported that the TKE
in flow field is numerically overpredicted, except for Alagan Chella et al. (2016)
who observed underpredictions. Moreover, it is generally known that none of the
traditional turbulence models (e.g. k — &, k —w and k — w SST) are developed for
two-phase flow simulations (such as wave breaking) but for an incompressible single
phase flow. For example, the k — w model is originally developed for aerodynamic
and aerospace applications. Therefore, these traditional models have to be modified
to account for the effect of density variations in the numerical wave flume. In
general for a two-phase flow solver, the density should be included in the turbulence
transport equations. For the & — w model in particular, Jacobsen et al. (2012) also
applied a revised production term for the TKE in order to enhance its prediction in
the flow field. However, Mayer and Madsen (2000) did not advise this modification
as generally valid and recommended fundamental analysis and developments.

In general for wave breaking simulations in a numerical wave flume, two zones
are distinguished: the wave propagation zone (no turbulence model needed) and
the surf zone (turbulence model needed). Consequently, the numerical wave flume
needs to be split up and separate (coupled) simulations have to be performed.
However in this paper, we propose a unified model that can handle both regions
at the same time. Therefore, we not only include the density in the turbulence
transport equations but we also account for the effect caused by density variations
in a two-phase flow. The latter is realised by adding a buoyancy source term in
the TKE-equation as introduced in Devolder et al. (2017a). Note that Lin and
Liu (1998), Bradford (2000), Mayer and Madsen (2000) and Christensen (2006)
all used a single-phase fluid solver and consequently, they did not need a buoyancy
correction in the TKE-equation to account for density variations in the numerical
wave flume. However, as stated before, single-phase fluid solvers overpredict TKE.
For a two-phase fluid solver, the buoyancy term is not an ad-hoc modification but
appears when the transport equation for the TKE is fundamentally derived from
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the Favre-averaged (density weighted) low Mach number equations, as reported
in Van Maele and Merci (2006a,b). The similarity in terms of a varying density
between our research and the fire flows studied in Van Maele and Merci (2006a,b)
was already clarified in our previous work Devolder et al. (2017a). Furthermore as
reported in Devolder et al. (2017a), the RANS approach using a two-phase flow
solver might cause a significant decrease in wave height over the length of the
numerical wave flume for wave propagation simulations. Moreover, we pointed
out the need for a buoyancy-modified turbulence model to simulate both low and
high steepness propagating waves in non-breaking conditions. Therefore, a buoy-
ancy term was implemented in the turbulent kinetic energy (TKE) equation of the
k —w SST model inducing a laminar result near the free water surface. This new
implementation resulted in an overall stable wave propagation model without a
significant decrease in wave height over the length of the flume.

In order to fill the knowledge gaps, the focus of this paper is put on the per-
formance of our buoyancy-modified kK — w and k — w SST models for wave break-
ing processes. The first question which will be addressed for the case of wave
breaking simulations is whether the zone specifically requiring a turbulence model
(i.e. the surf zone) is still well predicted with a buoyancy-modified turbulence
model? In other words: is a fully turbulent flow field resolved at the locations
where wave breaking is happening? Secondly by using a buoyancy-modified tur-
bulence model, can we solve the issue of overpredicting the TKE in the two-phase
flow field? Therefore in this paper, we present a study on the performance of
buoyancy-modified turbulence models for simulating wave breaking under regu-
lar waves using the Computational Fluid Dynamics (CFD) toolbox OpenFOAM®
(2013). Numerical simulations are performed and compared with the experimen-
tal dataset of Ting and Kirby (1994) for both spilling and plunging breakers on a
plane slope (1 : 35). RANS turbulence modelling is performed by applying both
the original and buoyancy-modified k — w and & — w SST models.

The remainder of this paper is organised as follows. Firstly, in section 3.2, the
governing equations for the numerical model are presented, followed by a descrip-
tion of the computational domain, the boundary conditions applied and the solver
settings. Subsequently in section 3.3, the numerical model is used to perform
wave breaking simulations and the numerical results are compared to experimental
measurements while in section 3.4 the obtained numerical results are discussed in
detail. Finally, the conclusions are drawn in section 3.5.

3.2 Numerical model

The numerical simulations presented are achieved using OpenFOAM® (2013), ver-
sion 2.2.2. Firstly, the flow equations are introduced, followed by a description of
turbulence modelling. Subsequently, the computational domain is presented to-
gether with the grid characteristics. The last two parts of this section are dedicated
to explain the different boundary conditions and solver settings.
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3.2.1 Flow equations

The numerical model uses the incompressible RANS equations to express the mo-
tion of a fluid consisting of a mass conservation equation (3.1) and a momentum
conservation equation (3.2) written in Einstein summation notation as:

aui o

o = 0 (3.1)
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in which t is the time, u; (i = x,y, 2) are the Cartesian components of the fluid
velocity, p is the fluid density, pc¢s is the effective dynamic viscosity, p* is the
pressure in excess of the hydrostatic. Fp is an external body force (including
gravity) and f, is the surface tension tensor term which are respectively defined
as:

0
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in which vector G = [0 ; 0; —9.81] m/s?, 7 is the Cartesian coordinate vector

(z,y,2), o is the surface tension coefficient, & is the mean curvature of the in-
terface and « is the volume fraction. Note that the mean values for the variables
considered are written in terms of Favre-averaging (density weighted) due to the
varying density.

The interface between water and air is obtained by the VoF method as docu-
mented in Berberovi¢ et al. (2009). This enhanced formulation using a compression
term reduces the dissipative nature of the interface compared to the VoF method
of Hirt and Nichols (1981). The method is based on a volume fraction o which is
0 for a completely dry cell and 1 for a completely wet cell and in between 0 and 1
for an interface cell containing both water and air. The volume fraction is solved
by an advection equation (3.5):

Ja  Oujae  Oueia(l —a)

The last term on the left-hand side is an artificial compression term where
Ue,; = min|cq|u;|, max(|u;|)]. In the present study, the default value of ¢, equal
to 1 is applied. If a larger value is used, the compression of the interface increases,
leading to larger detrimental velocity gradients around that interface.
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The density of the fluid p within a computational cell is calculated by a weighted
value based on the volume fraction a. The effective dynamic viscosity picys is
obtained by the sum of a weighted value based on the volume faction « and an
additional turbulent dynamic viscosity pv;:

P = QPyater + (1 - a)pair (36)

Heff = Olbywater + (1 - O‘),umlr + PV (37)

In a post processing step, the position of the free water surface is determined
by a discrete integration of the volume fraction a over a vertical line (Z-direction)
divided in n equal parts:

n—1

Zwater level = Z ai(zi+l - Zi) (38)
1=0

3.2.2 Turbulence modelling

Turbulent effects are incorporated in the RANS equations (3.1) and (3.2) by solv-
ing one or more additional transport equations to yield a value for the turbulent

kinematic viscosity v;. Once the turbulent viscosity is known, the Reynolds stress
tensor can be calculated in OpenFOAM® (2013) as:

2 Ou;  Ou;
Tij = gkéw ez (8xj + 81'1) (39)

where k is the turbulent kinetic energy, d;; is the Kronecker delta and 14 is the
turbulent kinematic viscosity.

In the present study, a k —w and a k —w SST model are tested regarding
their performance for wave breaking simulations. The results obtained with the
original implemented versions of both turbulence models in OpenFOAM® (2013)
and their buoyancy-modified versions are compared with the experimental dataset.

3.2.2.1 Incompressible k£ — w model

The incompressible & — w model for a single fluid is a two-equation model (Wilcox,
1998) and is formulated in OpenFOAM® (2013) as:

ok  ouk 0 ok .
Ow  Oujw 0 ow] w 9
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P, = Vt% (an + auj)

Vg = —
w

where k is the turbulent kinetic energy, Pi is the production term of k, v is
the kinematic viscosity, v is the turbulent kinematic viscosity, w is the specific
dissipation rate, o = o, = 0.5, 8* = 0.09, 8 = 0.072 and v = 0.52.

3.2.2.2 Incompressible k£ — w SST model

The incompressible & — w SST model for a single fluid is a two-equation model
(Menter et al., 2003) and is formulated in OpenFOAM® (2013) as:
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where k is the turbulent kinetic energy, Pi is the production term of k, v is
the kinematic viscosity, v is the turbulent kinematic viscosity, w is the specific
dissipation rate, S is the mean rate of strain of the flow, 5* = 0.09 and a; = 0.31.
Fy and F; are blending functions. Fj is designed to be one in the near wall region
(activating k — w) and zero away from the wall (activating k — £). The values of
Ok, 0w, B and v are blended using equation (3.16) in which ¢; and ¢2 are given
in Table 3.1.

¢ =Fi¢1+ (1 —F1)os (3.16)

3.2.2.3 Buoyancy-modified k¥ —w and k£ — w SST models

As reported in Devolder et al. (2017a), the original k —w SST model causes
significant wave damping for non-breaking propagating high steepness waves. This
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Table 3.1: Default values for ¢1 and ¢2 used in equation (3.16) to calculate ok, 0w, 8
and ~y for the k — w SST turbulence model.

¢ Ok Ow B B
¢1 0.85034 0.5 0.075 0.5532
¢ 1.0 0.85616 0.0828 0.4403

damping is triggered by an increase in turbulent viscosity around the interface
between water and air. This increase is induced by the large production of turbulent
kinetic energy (TKE), k, in that zone. The production of TKE is linked to the
velocity gradient which is large around the interface between water and air due
to spurious air velocities. Those spurious air velocities arise due to the pressure-
density coupling resolved in the conditionally averaged momentum equation using
segregated solution algorithms (Vukeevi¢ et al., 2017). Consequently, a natural
imbalance exists between the pressure gradient and the large density gradient at
the free water surface due to the large density ratio (1000/1). A recent paper
addressing the spurious velocities is e.g. VukZevi¢ et al. (2017). In this study
however, both a buoyancy-modified k£ — w and k — w SST model are implemented
in OpenFOAM by:

1. including the density p explicitly in the equations (3.10) (3.11) (3.13) (3.14);

2. adding a buoyancy term G in the TKE-equations (3.10) and (3.13). The
term is not included in the equation for w since not much influence is expected
on the results (Devolder et al., 2017a).

The buoyancy-modified k — w model is defined as:
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The buoyancy-modified k& — w SST model is defined as:
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The buoyancy term G, is defined as:

R op

Gy = (3.21)

o Oz 9
in which the scalar o, = 0.85 (Devolder et al., 2017a). The buoyancy term G} is
treated implicitly in the TKE-equation because v, is equal to k/w, see equations
(3.12) and (3.15).

The purpose of including a buoyancy term in this study is twofold. The first
objective is to suppress the turbulence level at the free water surface, i.e. in the
zone where the governing direction of the density gradient is vertical (predominantly
horizontal free water surface). More specific, this is the zone near the interface
where non-breaking waves are propagating. Because of the implicit treatment of
the buoyancy term G, in the TKE-equation, the very large vertical density gradient
near the free water surface drives the turbulent viscosity v; to zero. As a result,
in case of propagating waves, the model switches to a laminar regime near the
free water surface, preventing excessive wave damping. This has already been
demonstrated in Devolder et al. (2017a). The second objective is to obtain a fully
turbulent solution of the flow field in the surf zone, i.e. in the zone where the density
gradient consists of an important horizontal component. At the breaking point,
this condition is obtained when shoaling waves are reaching their limiting wave
height. In the limit of a vertical wave front, Gy is equal to 0 and consequently the
original turbulence model formulation (including the density but without buoyancy
modification) is regained.

3.2.3 Computational domain

For this study a two-dimensional simulation in a vertical plane (2DV) is performed.
Although wave breaking is a three-dimensional process, a 2DV model is able to
simulate the governing wave breaking characteristics with a reasonable accuracy
as shown by several other 2DV numerical studies in literature (Lin and Liu, 1998;
Bradford, 2000; Mayer and Madsen, 2000; Hieu et al., 2004; Jacobsen et al., 2012;
Xie, 2013; Alagan Chella et al., 2015, 2016; Brown et al., 2016). In particular,
Zhou et al. (2017) reported a comparison between 2DV and 3D results. They
concluded that wave breaking starts form 2D horizontal rollers and subsequently
evolves into full 3D hairpin-shaded turbulent structures causing cross-sectional vari-
ability in the flow field. As a result, discrepancies between 2DV and 3D models are
mainly observed in the inner surf zone (Zhou et al., 2017). Figure 3.1 shows the
computational domain together with the boundary condition types which are listed
in the next section 3.2.4. The waves are generated at the inlet in a water depth of
0.40 m and propagate first over a horizontal bed (1.3 m long) and subsequently
over a uniform slope of 1 : 35 in order to replicate the experimental tests.

After uniform discretisation, the largest size of a cell in both the horizontal X-
direction (Ax) and vertical Z-direction (Az) is 0.01 m. Subsequently, the mesh
is locally refined in horizontal and vertical direction in a zone where the free water
surface will be located, resulting in Ax = Az = 0.005 m. In general, the aspect
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ratio (i.e. ratio of largest dimension of a cell over the smallest dimension) is 1
as suggested by Jacobsen et al. (2012). However, additional layers with Az =
0.005 m are added next to the bottom boundary in order to resolve the boundary
layer properly, locally increasing the aspect ratio up to 8. These cell sizes are
sufficiently small based on the mesh refinement study of Brown et al. (2016). The
final grid consists of 329 946 cells and 360 594 cells for the spilling and plunging
breakers respectively.

3.2.4 Boundary conditions

The types of boundary conditions for this 2DV simulation are given in Figure 3.1:
bottom, atmosphere on the top, inlet on the left and outlet on the right. The
bottom is modelled as a smooth solid wall on which wall functions are activated
for k and w. A continuous wall function based on Spalding's law (Spalding, 1961)
switching between low- and high-Reynolds numbers is implemented for the tur-
bulent viscosity 4. By using this scalable wall function, the dimensionless wall
distance y* should be between 1 and 300. The initial values for k and w in the
computational domain are set to 1 x 1075 m?/s? and 1.0 s~ ! respectively. Further-
more on the bottom, a Dirichlet boundary condition is set for the velocity (0 m/s
in the two directions) while the pressure and volume fraction are set to a Neumann
condition. The atmospheric conditions at the top of the numerical domain are set
to a mixed Dirichlet-Neumann boundary condition for the velocity, pressure and
volume fraction. At the inlet, a special boundary condition is needed to generate
the incoming and absorb the reflected waves. IHFOAM (Higuera et al., 2013a,b)
is deployed as an external toolbox for that boundary condition. Both wave gen-
eration and active wave absorption are activated at the inlet. Wave reflection is
not observed at the outlet because no water will reach that boundary. Therefore,
a fixed wall boundary condition is implemented at the outlet boundary, similar to
the bottom boundary.

In case of spilling breakers, a wave height H = 0.125 m is generated with a wave
period T = 2 s resulting in a breaker parameter &y = m/(Hy/Lo)/? = 0.20 based
on deep water conditions for H and L, and m is the bottom slope (1 : 35) (Ting and
Kirby, 1994). In case of plunging breakers, the wave height H = 0.127 m and the
wave period T'= 5 s resulting in a breaker parameter £y = m/(HO/Lo)l/2 =0.60
(Ting and Kirby, 1994). For both cases, the water depth d at the wave generating
boundary is fixed to 0.40 m. Stream function theory is used for the generation of
both spilling and plunging breakers in the numerical wave flume, and the Stokes
velocity is set to zero (i.e. no mass transported in a closed wave flume).

3.2.5 Solver settings

For all the simulations presented, the following solver settings are used: central
discretisation for the pressure gradient and the diffusion terms; TVD (total variation
diminishing) schemes with a van Leer limiter (van Leer, 1974) for the divergence
operators; backward Euler time discretisation; a maximum Courant number equal
to 0.20 (spilling breakers) and 0.10 (plunging breakers) (Brown et al., 2016).
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Table 3.2: y* values on the bottom of the numerical wave flume for both spilling and
plunging breakers using the six different turbulence models.

yt original density only buoyancy-modified
k—w k—wSST |k—w k—wS8SST | k—w k—wSST

spilling 36 41 34 31 34 41

plunging | 30 45 61 41 48 36

3.3 Results

In the following two subsections, the numerically obtained surface elevations, under-
tow profiles and TKE profiles are presented and compared to experimental mea-
surements from Ting and Kirby (1994) for both spilling and plunging breakers
respectively. Each numerical simulation ran for 50 wave periods to obtain a suffi-
ciently long dataset after the warming-up phase. All the results presented in this
section are phase averaged using the last 20 waves of the 50 waves simulated.

Five simulations are performed using no turbulence model, the original k¥ — w
and k —w SST models and the buoyancy-modified k — w and k — w SST mod-
els. Additionally, numerical results of the surface elevations using the £k — w and
k —w SST models in which only the density is included are also provided. Those
results are obtained by switching off the buoyancy term: Gy, = 0 in equations (3.17)
and (3.19). The result without turbulence model is included to address the need
of turbulence modelling for the case of breaking waves. The maximum achieved
yT values on the bottom of the numerical wave flume are summarised in Table 3.2
for both spilling and plunging breakers using the six different turbulence models.
Those y™ values are within the application range reported in section 3.2.4.

3.3.1 Spilling breakers

In this subsection, both the experimental (Ting and Kirby, 1994) and numerical
results are reported for the case of spilling breakers. Firstly, surface elevations are
presented followed by velocities and TKE along several vertical profiles. Lastly, the
turbulent behaviour of the flow using different RANS turbulence models is shown.

3.3.1.1 Surface elevations

The graphs displayed in Figure 3.2 include the surface elevations along the wave
flume for the seven simulations. In each graph, the vertical axis denotes the phase
averaged surface elevation 7 with respect to the bottom before the slope (z =
0 m). On the horizontal axis, x = —2 m corresponds to the inlet boundary while
x = —0.7 m indicates the start of the slope. The solid blue lines represent the
numerical results for the maximum, average and minimum phase averaged surface
elevations. The blue shaded bands indicate one standard deviation on both sides of
the maximum and minimum surface elevations which represent about 68 % of all
the values in case of a normal distribution. The root mean square error (RMSE),
denoted by F, is calculated with respect to the experimental data (indicated by red
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dots in Figure 3.2) for the maximum (E,.x), average (E,.y) and minimum (Eynin)
surface elevations respectively. Note that RMSE values are not dimensionless and
therefore they are only used to compare in a qualitative way the performance of the
various turbulence models. The vertical dashed black lines indicate the position
where the vertical profiles are extracted, see section 3.3.1.2.

In general, Figure 3.2 addresses the need of using a turbulence model for sim-
ulating wave breaking processes. It is clearly observed that the solution without
turbulence model gives significantly deviating results for the surface elevations com-
pared to the experimental data. In particular, the numerically obtained breaking
point is far away from the experimental one, as is the case for both the average
and minimum surface elevations. In general, the results where a turbulence model
is used, except for the original kK —w model and the k — w model with only the
density included, are in a good agreement with the experimental data both for
the location of the breaking point and the surface elevations. This is shown by
the smaller RMSE values for the maximum, average and minimum surface eleva-
tions using the buoyancy-modified & — w model and all the k —w SST models,
compared to RMSE values for the solution without turbulence model, the original
k — w model and the k — w model with only the density included. In contrast to
the solution without applying a turbulence model, turbulence modelling enhances
the capability of the numerical model to obtain repeatable waves over consecutive
wave periods characterised with low standard deviations (see blue shaded bands in
Figure 3.2). Remarkably, discrepancies between numerical and experimental results
are only observed for the maximum surface elevations and not for the average and
minimum ones.

Furthermore, a major difference in the performance between the original k — w
and k —w SST model is observed. It is clearly shown in Figure 3.2 that significant
wave damping is observed over the length of the flume in case of the original k — w
model while this is not simulated by the original kK —w SST model. This is ex-
plained by the limiter inside the production term of TKE: Py, see equation (3.15).
The motivation to use a limiter was to avoid excessive generation of turbulent
viscosity in the vicinity of stagnation points around an airfoil (Menter, 1993). As
a result in the present study, the production of TKE is limited and hence reducing
the turbulent viscosity, avoiding wave damping. Although the original k — w SST
model slightly underpredicts the maximum surface elevation at the breaking point,
the surface elevations after wave breaking are in a good agreement with the experi-
mental data. If the density is included explicitly in the £ — w model, wave damping
is still observed but not as strong as the original k¥ — w model. Surprisingly, Brown
et al. (2016) did not observe wave damping for the spilling breakers using a k — w
model in which only the density is included. As expected, a major improvement in
surface elevations is observed for the buoyancy-modified & — w model. Now, the
surface elevations are very similar to the experimental data and they all have small
standard deviations. Regarding the £ —w SST model including only the density
and the buoyancy-modified & — w SST model, the maximum surface elevations are
slightly better predicted at the breaking point compared to the original k — w SST
model. However, smaller and less smooth maximum surface elevations are observed
after the waves broke. The small differences in the maximum surface elevations
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obtained by the three k —w SST models are also explained by the limiter inside
the production term of TKE. As a result, the buoyancy-modified £ — w model has
the best performance in terms of surface elevations for the case of spilling breakers.
Moreover, it is also shown that the inclusion of the buoyancy term is essential for
a k — w model in order to avoid wave damping.

3.3.1.2 Undertow profiles

Figure 3.3 presents both measured and simulated undertow profiles at locations
x = —1.260 m, x = 5945 m, x = 6.665 m, x = 7.275 m, x = 7.885 m,
x =8.495 m, x = 9.110 m and = = 9.725 m (see vertical dashed lines in Figure
3.2). Along those vertical profiles, the calculated time averaged horizontal velocity
% and time averaged turbulent kinetic energy (TKE) k are analysed. Note that in
this work, only the mean value for TKE, k, is studied. Jacobsen (2011) presented
an analysis of the mean turbulence from the resolved flow field to the total TKE
and observed that the modelled TKE by a RANS turbulence model was of larger
importance. A similar analysis was performed in this study and a similar conclusion
is obtained. Consequently, only the mean value for TKE, k, modelled by a RANS
turbulence model is presented in the remainder of this study. Numerical results
are shown in solid blue lines whereas the discrete experimental data are indicated
by red dots. On top of each curve, the RMSE FE is reported with respect to the
experimental results. Numerical results using no turbulence model and the original
k — w model are excluded because the surface elevations shown in Figure 3.2a and
Figure 3.2b are inaccurate.

In general, all three simulations presented in Figure 3.3 predict a good qualita-
tive behaviour of the undertow: i.e. negative values for @ over the largest part of the
water column and @ becomes positive near the free water surface. Furthermore,
the transition from positive to negative is captured correctly for all the profiles
compared to the experimental data. However, near the bottom, deviations become
visible among the turbulence models for the profiles located at x > 7.275 m. A
comparison of the original k£ —w SST model and its buoyancy-modified version
reveals that a better agreement with experimental data is obtained for the original
model. In case of a buoyancy-modified k — w SST model, larger values for @ near
the bottom are observed after wave breaking (z > 7.275 m). Based on the RMSE
values, the buoyancy-modified & — w model gives the best comparison with the
experimental measurements, in particular for x > 7.275 m.

A common issue when applying RANS turbulence modelling is the overpredic-
tion of TKE inside the flow domain (see section 3.1). This is confirmed by the pro-
files presenting k for the original k — w SST model (see Figure 3.3). For each pro-
file, large deviations are visually observed and a significant RMSE is calculated be-
tween numerical and experimental data compared to the buoyancy-modified mod-
els. For the first three sampling locations however, no experimental data is available
because no turbulence was expected (Brown et al., 2016). This is confirmed by the
results using the buoyancy-modified k — w SST model showing very small values
of k along the water column. Remarkably, the buoyancy-modified k& — w model
returns only small values for k at the first sampling location (z = —1.265 m). If
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the buoyancy term is implemented in the TKE-equation, the numerically predicted
k approaches the experimental determined values for 2 > 7.275 m. In particular
for the buoyancy-modified k — w SST model, excellent predictions are obtained
similar to the experimental measurements. Strangely, the better predictions for k
do not result in better profiles for w, on the contrary.

3.3.1.3 Turbulent behaviour

In order to identify the behaviour of the different RANS turbulence models around
the breaking point, contour plots of the turbulent kinematic viscosity v; at different
time phases are depicted in Figure 3.4 using a logarithmic scale. In case no buoy-
ancy term is implemented in the TKE-equation, the turbulent kinematic viscosity in
every computational cell is several orders of magnitudes larger than the kinematic
viscosity of water (107% m?/s). However, if the density is explicitly included in the
turbulence transport equations and a buoyancy term is added to the TKE-equation,
two observations are made. Firstly, prior to wave breaking, i.e. wave propagation,
the turbulent kinematic viscosity around the free water surface goes to zero. Sec-
ondly, around the breaking point, the turbulent kinematic viscosity around the free
water surface is several orders of magnitudes larger than the kinematic viscosity
of water. This means that there is a strong turbulent flow field at the free water
surface where wave breaking occurs. A comparison between the buoyancy-modified
k —w and k — w SST model shows some significant differences. For example, v
in the water column is predicted larger for the buoyancy-modified & — w model
compared to the buoyancy-modified k — w SST model. This is again explained by
the limiter inside the production term of TKE for the k —w SST model.

Furthermore, Figure 3.4 depicts contour plots of the magnitude of the Reynolds
stress tensor (equation (3.9)) using a linear scale for cells with a volume fraction «
between 0.5 and 1 (i.e. cells below the free water surface). The magnitude of the
Reynolds stress tensor is a good indicator to show where turbulence is present in the
flow field. In general, a different spatial variation of the magnitude of the Reynolds
stress tensor in the flow field is predicted by the three turbulence models. However
for each model, turbulence is generated in the crest when the waves are breaking.
The largest magnitudes are observed for the original k& — w SST model while the
buoyancy-modified k — w model predicts slightly larger magnitudes compared to the
buoyancy-modified k — w SST model. Moreover, turbulence is only observed in the
upper part of the water column and spreads out slowly downwards. Interestingly,
a large amount of entrapped air just below the free water surface is only observed
for the buoyancy-modified k — w SST model. Clearly, the smaller values of k have
their effect on the more vivid (less damping) breaking process simulated involving
bursts, splashes and more entrapped air.

3.3.2 Plunging breakers

In this subsection, tests are performed in case of plunging breakers. Similar graphs
are reported as shown in section 3.3.1 for the case of spilling breakers. Again,
surface elevations along the wave flume, time averaged horizontal velocities and
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TKE along several vertical profiles and the turbulent behaviour of the flow using
different RANS turbulence models are presented.

3.3.2.1 Surface elevations

Surface elevations along the wave flume are depicted in Figure 3.5 for the different
numerical simulations performed. Remarkably, at first sight, the solution without
turbulence model provides the best fit with the experimental data: the breaking
point is correctly predicted and the breaking wave height is overestimated at the
same level as the turbulent solutions. However, this solution should be avoided for
two reasons. Firstly, there is a large standard deviation along the complete length
of the wave flume, putting a burden on the wave-by-wave repeatability of the re-
sult. Secondly, as was the case for the spilling breakers, the average and minimum
surface elevations are clearly underpredicted. In general, better results are obtained
if a RANS turbulence model is applied. For example, the standard deviation de-
creases significantly over the length of the flume, except for the buoyancy-modified
k —w SST model after the waves broke. However, the breaking wave height is
still overpredicted and also the numerically obtained breaking point is before the
experimental observation. Similar to spilling breakers, deviations between numeri-
cal and experimental results are only observed for the maximum surface elevations
and not for the average and minimum ones. These observations are not valid
for the original k — w model which shows again wave damping over the length of
the flume. In contrast to the observations made for spilling breakers, the k — w
model including only the density is not showing significant wave damping. Prob-
ably, the lower wave steepness of the plunging breakers in the part with constant
water depth (H/L = 0.0128) is not triggering wave damping as observed for the
spilling breakers (steepness H/L = 0.0388) (cfr. wave propagation simulations for
non-breaking waves in Devolder et al. (2017a)). In general, the buoyancy-modified
k — w model has again the best performance for the surface elevations in case of
plunging breakers despite its slightly larger RMSE value for the maximum surface
elevations F\,,, compared to the other models.

3.3.2.2 Undertow profiles

Figure 3.6 shows both the measured and simulated vertical profiles (i.e. time
averaged horizontal velocity @ and time averaged turbulent kinetic energy (TKE)
k) at locations z = 7.295 m, x = 7.795 m, x = 8345 m, * = 8.795 m,
x=9.295 m, x = 9.795 m and x = 10.395 m (see vertical dashed lines in Figure
3.5). Again, the numerical results using no turbulence model and the original k — w
model are excluded because the predicted surface elevations included in Figure 3.5a
and Figure 3.5b are inaccurate.

Along the different profiles, the sign of w is predicted correctly by all three
turbulent simulations. Again, the largest deviations between experimental and nu-
merical results are found in the vicinity of the bottom, especially for x > 8.345 m.
In particular for the buoyancy-modified k — w SST model, significantly overesti-
mated values for @ are calculated. This is also observed for the spilling breakers
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reported in section 3.3.1.2. As a result, the performance of the buoyancy-modified
k — w model for @ is substantially better compared to the other turbulence models
based on the RMSE values.

Also for plunging breakers, an overprediction of TKE inside the flow domain is
observed in case the original £ — w SST model is applied. This is revealed by the
overpredicted values of k along the different vertical profiles. The RMSE values
decrease significantly in case a buoyancy-modified turbulence model is used. In
particular, the performance of the buoyancy-modified £ — w SST model is better
than the buoyancy-modified k — w model regarding the values of k along the dif-
ferent profiles. Interestingly, this better behaviour is more pronounced at the first
four sampling locations shown in Figure 3.6 (see < 8.795 m). Again, better
predictions for k are not reflected in the velocity field.

3.3.2.3 Turbulent behaviour

The behaviour of the different RANS turbulence models under plunging breakers
is examined by Figure 3.7 in which contour plots of the turbulent kinematic vis-
cosity 14 are visualised using a logarithmic scale at different time phases around
the breaking point. Similar observations are made as reported in section 3.1.3 for
the spilling breakers. A buoyancy term is needed in order to force the turbulent
kinematic viscosity around the free water surface to zero in case of wave propaga-
tion. If the wave breaks, the turbulent kinematic viscosity around the free water
surface is several orders of magnitudes larger than the kinematic viscosity of water
(107% m?2/s), indicating a strong turbulent flow field. Moreover, it is again ob-
served that v; in the water column is predicted larger for the buoyancy-modified
k — w model compared to the buoyancy-modified £ —w SST model.
Subsequently, the Reynolds stress tensor is calculated by equation (3.9) and its
magnitude is visualised in Figure 3.7 by contour plots using a linear scale for cells
with a volume fraction a between 0.5 and 1. Similar to spilling breakers, the spatial
variation of the magnitude of the Reynolds stress tensor in the flow field differs
between the three turbulence models. Each buoyancy-modified turbulence model
indicates that turbulence is generated by the impact of the overturning volume of
water on the free water surface resulting in splash. This is also observed for the
original kK —w SST model, but turbulence is already present before wave breaking.
Again, the original k — w SST model predicts the largest magnitudes followed by
the buoyancy-modified k¥ — w model and the buoyancy-modified & — w SST model.
More importantly, turbulence is observed in a large part of the water column, even
near the bottom. In case of plunging breakers, significantly more air is entrapped
and for the buoyancy-modified k — w SST model even observed near the bottom
of the numerical wave flume.

3.4 Discussion

In general, the numerical results are in a very good agreement with the experimental
data and with similar numerical studies for both spilling and plunging breakers, not
only for the surface elevations along the wave flume but also for the undertow
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profiles. Most importantly, enhanced predictions are obtained for the TKE in the
flow field compared to other numerical studies. Furthermore, the behaviour of the
flow field in the present numerical study is correctly predicted in the way reported
by Ting and Kirby (1994):

— The turbulence levels are much higher in case of plunging breakers compared
to spilling breakers;

— The variations of % and k in the vertical profiles are smaller for plunging
breakers compared to spilling breakers;

— TKE in the surf zone decreases towards the bottom.

The most important observation lies in the influence of the buoyancy modifi-
cation. The results show indeed that the improved turbulence models behave as
expected. Observations of the turbulent kinematic viscosity are in line with the
initial assumptions of the performance of the buoyancy term implemented in the
TKE-equation:

— The buoyancy term G}, avoids wave damping in the wave propagation zone
by inducing a laminar solution of the flow field near the free water surface
(see Devolder et al. (2017a));

— The buoyancy term G} goes to zero in the wave breaking zone and the
original turbulence model (including the density) is regained near the free
water surface;

— Furthermore, the buoyancy term Gj, is not the direct cause of better predic-
tions for TKE. However, it is observed that better predictions are obtained,
in particular for TKE, with the buoyancy-modified turbulence models. In
fact, the buoyancy term will only limit the build-up of TKE around the free
water surface in the wave propagation zone (since a laminar solution is in-
duced around the free water surface). This results in a lower and thus better
prediction of TKE in the surf zone.

— Moreover, the influence of Gy on the results of TKE is much smaller for
the k —w SST model than for the £ — w model due to the limiter in the
production term P, of TKE for the k —w SST model. That limiter is in
general reducing the build-up of TKE independent of the inclusion of the
buoyancy term.

Despite the improvements, the solution is still not perfect and small discrep-
ancies are observed between the numerically obtained surface elevations and the
experimental measurements. Firstly as mentioned in section 3.1, a lot of mea-
surement difficulties exist in small-scale experimental tests. Secondly, numerical
models involves discretisation and interpolation errors. Thirdly, post processing of
the numerically obtained data also contributes to the interpolation error (e.g. eval-
uation of the surface elevations). For both spilling and plunging breakers, larger
differences of the maximum surface elevations along the wave flume have been
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noticed compared to the average and minimum ones. This may be related to air
entrainment in the upper parts of the water column caused by the wave breaking
process. It is also observed that more air is entrapped, even down to the bottom
region, for the plunging breakers (see Figure 3.4 and Figure 3.7). The amount of
entrapped air has a direct influence on the determination of the surface elevations
due to a discrete integration of the volume fraction. Possibly, this explains why
larger differences for the maximum surface elevations are observed compared to the
experimental data for the plunging breakers. Moreover, a number of discrepancies
between experimental and numerical data are observed for the undertow profiles
for 7 and vertical profiles for k. This is possibly correlated to a slightly different
breaking point shifting the correspondent profile towards a slightly different loca-
tion. Furthermore, it is expected that the inaccuracies related to the experimental
measurements also contribute to the achieved level of agreement.

Lastly, the turbulence models themselves are not designed for the highly tran-
sient two-phase flow during wave breaking. Redesigning the turbulence models
would require more validation data (TKE, but also Reynolds stresses, dissipation
rate, etc.), which is scarce. Nevertheless, the discrepancies found are in line with
other reported numerical results and we explicitly refer to the recent paper by Brown
et al. (2016). In general, the results of our study using the buoyancy-modified tur-
bulence models and the results using the same models reported by Brown et al.
are fairly similar. More specifically regarding the surface elevations, the results are
almost identical. For example, the breaking point is similar for the two numerical
studies. Recall that Brown et al. (2016) also included the density in the turbulence
transport equations, but did not introduce the buoyancy term. We notice that by
comparing our results using the buoyancy term with Brown's results without (fig-
ures 5, 6, 8 and 9 in Brown et al. (2016)), a major improvement is found for the
time averaged horizontal velocities @ and time averaged turbulent kinetic energy k.
An accurate prediction of the latter is necessary to correctly calculate the turbulent
viscosity. In particular, the turbulent viscosity will be of extreme importance once
a movable bed is considered involving sediment transport under the action of wave
induced bed shear stresses.

3.5 Conclusions

In this paper, we evaluated the performance of both a buoyancy-modified k — w
and a kK —w SST model for simulating breaking waves using OpenFOAM. The
obtained numerical results of the surface elevations, undertow profiles and TKE
levels show a good agreement with the experimental data for both spilling and
plunging breakers. Moreover, the benefits of modifying existing turbulence models
for buoyancy effects have been revealed. Firstly, in the flow field prior to wave
breaking (i.e. during wave propagation), low turbulence levels are observed and
a laminar solution is desirable. We demonstrated that the buoyancy term forces
the solution of the flow field near the free water surface to a laminar solution in
case of wave propagation. This also avoids wave damping over the length of the
flume due to RANS turbulence modelling. Secondly in the surf zone where waves
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break, significant turbulence levels are noticed. For this zone, the buoyancy term
goes to zero and a fully turbulent flow field is resolved by the numerical model.
For all the simulations presented, we conclude that the results predicted by the
buoyancy-modified turbulence models agree the best with the experimental mea-
surements. In particular, the buoyancy-modified turbulence models significantly
reduce the common overestimation of TKE in the flow field. Furthermore, we
also conclude that the best performance for simulating breaking waves is obtained
with the buoyancy-modified & — w model compared to the other models tested in
this paper. Moreover, we demonstrated that the inclusion of the buoyancy term is
essential for a £ — w model.

The outcome of this study jointly with Devolder et al. (2017a), proves the
successful capability of buoyancy-modified turbulence models to simulate offshore
and coastal engineering processes. The buoyancy-modified turbulence models not
only result in a stable wave propagation model without wave damping but also
their predicted turbulence levels inside the flow field are in a better agreement with
the experimental measurements in the surf zone.
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3.6 Figures

atmosphere

outlet

1.30m 17.5m

0.40 m

Figure 3.1: Definition sketch of the 2DV computational domain (in the X Z-plane). The
thin horizontal line indicates the still water level (SWL), with water depth d = 0.40 m
at the inlet, whereas the black words characterise the boundary condition type. The grey
arrows denote the key distances (at distorted scale).
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Figure 3.2: Numerically obtained surface elevations averaged over 20 wave periods along
the wave flume for the case of spilling breakers using (a) no turbulence model (b) the
original k — w (c) k — w including only the density (d) the buoyancy-modified k — w (e)
the original k —w SST (f) k —w SST including only the density (g) the buoyancy-
modified kK —w SST model. The solid blue lines depict the maximum, average and
minimum phase averaged surface elevations. On both sides of the maximum and minimum
surface elevations, one standard deviation is visualised by a blue shaded band. RMSE
values, E [m], are calculated for the maximum, average and minimum surface elevations
with respect to the experimental data (Ting and Kirby, 1994), represented by the red
dots. The vertical dashed black lines indicate the position where the undertow profiles
are extracted, see section 3.3.1.2.
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Continued on next page.
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Figure 3.3: Numerically obtained undertows for the time averaged horizontal veloc-
ity @ and time averaged TKE k (blue lines) averaged over 20 wave periods using the
(a) buoyancy-modified k — w (b) original £ —w SST (c) buoyancy-modified k —w SST
model. The red dots represent the experimental data (Ting and Kirby, 1994) for the case
of spilling breakers. On top of each curve, RMSE values are denoted by E ([m/s] for u
and [m?/s?] for k).
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Figure 3.5: Numerically obtained surface elevations averaged over 20 wave periods along
the wave flume for the case of plunging breakers using (a) no turbulence model (b)
the original k — w (c) k — w including only the density (d) the buoyancy-modified k — w
(e) the original k —w SST (f) k — w SST including only the density (g) the buoyancy-
modified kK —w SST model. The solid blue lines depict the maximum, average and
minimum phase averaged surface elevations. On both sides of the maximum and minimum
surface elevations, one standard deviation is visualised by a blue shaded band. RMSE
values, E [m], are calculated for the maximum, average and minimum surface elevations
with respect to the experimental data (Ting and Kirby, 1994), represented by the red
dots. The vertical dashed black lines indicate the position where the undertow profiles
are extracted, see section 3.3.2.2.
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Figure 3.6: Numerically obtained undertows for the time averaged horizontal veloc-
ity @ and time averaged TKE k (blue lines) averaged over 20 wave periods using the
(a) buoyancy-modified k — w (b) original k —w SST (c) buoyancy-modified k —w SST
model. The red dots represent the experimental data (Ting and Kirby, 1994) for the case
of plunging breakers. On top of each curve, RMSE values are denoted by E ([m/s] for u
and [m?/s?] for k).
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Figure 3.7: Numerically obtained snapshots around the breaking point of the turbulent
kinematic viscosity v; [m?/s] and the magnitude of the Reynolds stress tensor (equation
(3.9)) at different time phases for the case of plunging breakers using the (a) original
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Chapter 4

Accelerated coupling
algorithm for simulating a
heaving floating body

In this first chapter of the second part of the thesis, a two-phase fluid solver with
dynamic mesh handling is coupled with a motion solver to perform fluid-structure
interaction simulations in a numerical wave tank. Fundamental research is per-
formed to stabilise the fluid—motion coupling and an accelerated coupling algo-
rithm is derived to efficiently simulate heaving floating bodies with a minimised
computational cost.

Submitted for publication as:

Devolder, B., Troch, P., and Rauwoens, P. (2018). Accelerated numerical simula-
tions of a heaving floating body by coupling a motion solver with a two-phase fluid
solver. under review for Computers & Mathematics with Applications.
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Accelerated numerical simulations of a heaving floating
body by coupling a motion solver with a two-phase fluid
solver

Brecht Devolder, Peter Troch, Pieter Rauwoens

Abstract

This paper presents a study on the coupling between a fluid solver and a motion
solver to perform fluid-structure interaction (FSI) simulations of floating bodies
such as point absorber wave energy converters heaving under wave loading. The
two-phase fluid solver with dynamic mesh handling, interDyMFoam, is a part of
the Computational Fluid Dynamics (CFD) toolbox OpenFOAM. The incompress-
ible Navier-Stokes (NS) equations are solved together with a conservation equation
for the Volume of Fluid (VoF). The motion solver is computing the kinematic body
motion induced by the fluid flow. A coupling algorithm is needed between the fluid
solver and the motion solver to obtain a converged solution between the hydrody-
namic flow field around and the kinematic motion of the body during each time
step in the transient simulation. For body geometries with a significant added
mass effect, simple coupling algorithms show slow convergence or even instabili-
ties. In this paper, we identify the mechanism for the numerical instability and
we derive an accelerated coupling algorithm (based on a Jacobian) to enhance the
convergence speed between the fluid and motion solver. Secondly, we illustrate
the coupling algorithm by presenting a free decay test of a heaving wave energy
converter. Thirdly and most challenging, a water impact test of a free falling wedge
with a significant added mass effect is successfully simulated. For both test cases,
the numerical results obtained by using the accelerated coupling algorithm are in
a very good agreement with the experimental measurements.

Keywords: CFD; Fluid-structure interaction; Two-phase flow, Rigid body heave
motion; Accelerated coupling algorithm
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4.1 Introduction

Nowadays, floating bodies are observed everywhere in seas and oceans such as ves-
sels, navigation buoys, berths, floating offshore wind turbines, etc. In particular,
we focus on floating devices for marine renewable energy production. For example,
wave energy converters (WECs) are used to capture wave energy from ocean waves
and convert it into electrical power. In this study, WECs of the floating point ab-
sorber (FPA) type are selected of which an example is schematically visualised in
Figure 4.1. The WEC is moored to the seabed and heaving under wave loading. A
power take-off (PTO) system is required to convert the heave motion into electric-
ity. In order to quantify and optimise the WEC's power output, the hydrodynamic
flow field around and the kinematic motion of a WEC need to be resolved. There-
fore, fluid-structure interaction (FSI) simulations are performed inside a numerical
wave tank (NWT) using a partitioned approach, i.e. flow and motion equations
are solved separately and a coupling algorithm is applied. The FSI simulations
presented are carried out within the Computational Fluid Dynamics (CFD) tool-
box OpenFOAM. CFD is able to include viscous, turbulent and non-linear effects
which are absent in simplified radiation-diffraction models such as potential flow
solvers based on boundary element methods (Davidson et al., 2015b; Wolgamot
and Fitzgerald, 2015). Those effects are not only important during survivability
conditions, such as extreme waves (Ransley et al., 2017a), but also when control
strategies are applied to maximise the power output by driving the WEC's motion
into resonance (Davidson et al., 2018).

heaving

free surface

[pro]

mooring

seabed

Figure 4.1: Definition sketch of a floating point absorber wave energy converter. The
motion of the WEC is restricted to heave only. The WEC is moored to the seabed and a
power take-off (PTO) system is required for electricity production.



84 4. Accelerated coupling algorithm for simulating a heaving floating body

FSI studies have been extensively reported in literature for a wide range of
applications, see Degroote (2013) and references therein. In this paper, we limit our
review to a few fundamental studies and specific applications of floating bodies. An
important question for FSI simulations is "How to integrate free motions of solids in
fluids?'. This fundamental question was studied and answered by Séding (2001). It
was reported that for bodies in a fluid of substantial density, such as water, the force
acting on it strongly depends on its acceleration. This dependency originates from
the inertia of the water particles surrounding the body, which are also accelerated
when the body accelerates, as their motion is determined by the motion of the body
through the boundary condition on the wetted surface of that body. The mass of
the surrounding fluid (i.e. water) moving along with an accelerating or decelerating
body is also called the added mass. For a floating body installed in a sea or ocean,
the added mass is not only depending on the geometry but also on the incoming
wave conditions (Babarit and Delhommeau, 2015). Due to added mass effects,
explicit fluid—motion coupling (also known as loosely or weakly coupled techniques)
is only conditionally stable. The stability is significantly enhanced by using implicit
(or strongly coupled) techniques but multiple sub iterations are needed during every
time step to obtain convergence between the fluid and motion solver, increasing the
computational time significantly (Leroyer and Visonneau, 2005). Vierendeels et al.
(2005) performed simulations of a rigid body moving in one degree of freedom in
an incompressible fluid (single phase) with a density significantly larger than the
density of the body. They demonstrated that both a standard explicit coupling
scheme and an implicit procedure with explicit coupling in the sub iterations show
stability issues. They suggested a procedure with implicit coupling in the sub
iterations by using numerically computed derivatives (i.e. a Jacobian). For some
applications, the assumption of a rigid body is not valid (e.g. inflatable storm
surge barriers) and deformation of the fluid-structure interface is calculated by a
structural solver. Degroote (2013) presented a complete overview on partitioned
simulation techniques using two black-box solvers (fluid and structural solver) for
strongly coupled FSI problems. Different partitioned simulation techniques were
formulated, reviewed and compared to each other in terms of implementation and
performance (e.g. number of sub iterations during every time step). They reported
that the Gauss-Seidel iteration scheme was accelerated by using dynamic Aitken’s
relaxation (Kuttler and Wall, 2008). Even larger accelerations were found by using
more advanced state-of-the-art coupling algorithms such as IQN-ILS and IBQN-LS.
More recently, Dunbar et al. (2015), Chow and Ng (2016), Kamath et al. (2017)
and Gatin et al. (2017) presented FSI simulations using a coupled two-phase fluid
solver with a rigid body motion solver. Dunbar et al. (2015) developed a strongly
coupled model using sub iterations and dynamic Aitken’'s relaxation to take the
added mass effect into account. They also reported a verification and validation
study of a two dimensional (2D) heaving cylinder indicating promising results.
In addition, Chow and Ng (2016) showed a reduction in simulation times varying
between 70 % up to 80 % for using Aitken's relaxation compared to fixed relaxation.
They also observed that Aitken's relaxation converged much faster during the first
10 — 20 sub iterations compared to fixed relaxation. Their motion solver was based
on a second order Adams-Bashforth-Moulton explicit-implicit scheme. Kamath
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et al. (2017) studied the water impact and entry of a free falling wedge using
the CFD toolbox REEF3D. They found a good agreement between numerical and
experimental results for the vertical position and velocity of the wedge. The motion
of the wedge was represented by the level set method in order to avoid mesh
motion or overset meshes. Gatin et al. (2017) implemented a fifth-order Cash-
Karp embedded Runge-Kutta scheme with error control and adaptive time-step
size. The motion solver was called after every solution of the pressure equation
in order to enhance the convergence of the coupled fluid—motion solver. In every
sub iteration, the change of the body's velocity was directly incorporated in the
pressure equation by means of a source term but the mesh was only moved once
per time step. Their method resulted in an acceleration of a factor two and more
for the CPU time to perform seakeeping simulations of a container ship.

For the application of floating bodies, two facts must be considered. Firstly,
water impact tests and wave-induced body motions cause a temporal variation of
the added mass. Secondly, if the added mass is larger than the physical mass, the
fluid—motion coupling features stability issues. Based on a review of those previous
studies, different algorithms exist to stabilise partitioned FSI simulations. Most of
them are derived for coupling two black-box solvers which are inaccessible, i.e. a
fluid solver and a structural solver. In our case of a rigid body, the structural solver
is simplified to a motion solver which is merely an integration of Newton's second
law. In this manuscript, we show that a stability issue in the coupling between
the fluid solver and the motion solver can be resolved on the condition that a
good estimate for the added mass is obtained, as suggested in Soding (2001).
We compute the added mass using an accelerated coupling algorithm based on
Vierendeels et al. (2005), i.e. implicit coupling in the sub iterations by calculating
a Jacobian.

This paper presents a study on the coupling between a fluid solver and a motion
solver for simulating a floating body in a NWT. We are using the two-phase fluid
solver with dynamic mesh handling, interDyMFoam, which is a part of the CFD
toolbox OpenFOAM. Only the dominant motion of a WEC is considered, the heave
motion, which allows a reduction from a six to a one degree of freedom motion. We
derive an accelerated coupling algorithm for cases with a significant added mass
effect to stabilise the fluid—motion coupling. Both stabilisation and acceleration
are achieved by applying implicit coupling in the sub iterations and by calculating
a Jacobian. The performance of the coupled fluid-motion solver is validated by
using two test cases involving floating bodies: a free decay test of a WEC and a
water impact test of a free falling wedge with a significant added mass effect.

The remainder of this paper is organised as follows. Firstly in section 4.2, the
governing equations for both the fluid and motion solver are presented. In section
4.3, the accelerated coupling algorithm between a fluid and motion solver is derived.
Subsequently in section 4.4, the coupled fluid—motion solver is applied to perform
FSI simulations of a free decay test of a heaving WEC and a water impact test of
a free falling wedge. Finally, the conclusions are drawn in section 4.5.
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4.2 Numerical model

In this section, the numerical methods used to study FSI problems in OpenFOAM®
(2015a), version 3.0.1 are summarised. Both, the governing equations for the fluid
and motion solver are formulated respectively followed by the kinematic condition
at the fluid-structure interface.

4.2.1 Fluid solver

The two-phase fluid solver uses the three dimensional (3D) incompressible Reynolds-
Averaged Navier-Stokes (RANS) equations to express the motion of the two fluids
(i.e. water and air). The RANS equations consist of a mass conservation equation
(4.1) and a momentum conservation equation (4.2) written in Einstein summation
notation as:

8'LLZ'
833i

=0 (4.1)

Opu; ~ Opuju; 0 ou; dp*
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in which ¢t is the time, u; (i = ,y, z) are the Cartesian components of the fluid

velocity, p is the fluid density, peys is the effective dynamic viscosity, p* is the

pressure in excess of the hydrostatic, Fy, is an external body force (including gravity)
which is defined as:

Ip
bi = —Gilig - (4.3)
in which the gravitational acceleration vector § = [0 ; 0 ; —9.81] m/s? and ¥

is the Cartesian coordinate vector (x,y,z). f, is the surface tension tensor term
which is neglected in the present study. Note that the mean values for the variables
considered are written in terms of Favre-averaging (density weighted) due to the
varying density in the NWT.

The interface between water and air is obtained by the Volume of Fluid (VoF)
method using a compression term as documented in Berberovi¢ et al. (2009). The
method is based on a volume fraction a which is 0 for a completely dry cell and
1 for a completely wet cell and in between 0 and 1 for an interface cell containing
both water and air. The volume fraction is solved by an advection equation (4.4):

da  Ou;a  Oueza(l —a)
- + + .
ot 8:52 al'l

The last term on the left-hand side is an artificial compression term where

Ue,; = minfeq|u;|, max(|u;])]. In the present study, the default value of ¢, equal
to 1 is applied.

=0 (4.4)
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The density of the fluid p within a computational cell is calculated by a weighted
value based on the volume fraction a. The effective dynamic viscosity picys is
obtained by the sum of a weighted value based on the volume faction « and an
additional turbulent dynamic viscosity pv;:

P = QPyater (1 - a)pair (45)

feff = Cftwater + (1 = @)pair + prs (4.6)

If a laminar solution is sufficiently accurate, the turbulent kinematic viscosity v,
is equal to zero. In the other case, turbulent effects are incorporated in the RANS
equations (4.1) and (4.2) by solving one or more additional transport equations
to yield a value for the turbulent kinematic viscosity v;. In the present study,
a buoyancy-modified k — w SST model is applied which has been developed in
previous works of the authors (Devolder et al., 2017a, 2018b). A buoyancy-modified
turbulence model not only results in a stable wave propagation model without wave
damping (Devolder et al., 2017a) but it also predict the turbulence level inside the
flow field more accurately in the surf zone where waves break (Devolder et al.,
2018b). The buoyancy-modified k — w SST model is defined as:
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ot Oz Oz p(v+orm) oz, pPi. + Gy — pp*wk (4.7)
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where k is the turbulent kinetic energy, Py is the production term of k, v is
the kinematic viscosity, 14 is the turbulent kinematic viscosity, w is the specific
dissipation rate, S is the mean rate of strain of the flow, 5* = 0.09 and a; = 0.31.
Fy and F; are blending functions. F7 is designed to be one in the near wall region
(activating k — w) and zero away from the wall (activating k — €) (Menter et al.,
2003). The values of oy, o, B and  are blended using equation (4.10) in which
¢1 and ¢ are given in Table 4.1.

¢=Fig1+(1—F1)¢2 (4.10)
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Table 4.1: Default values for ¢1 and ¢2 used in equation (4.10) to calculate ok, 0w, B
and ~y for the k — w SST turbulence model.

¢ Ok Ow B B
¢1 0.85034 0.5 0.075 0.5532
¢2 1.0 0.85616 0.0828 0.4403

The buoyancy term G} is treated implicitly and the scalar o; = 0.85 (Devolder
et al., 2017a):

noe

Gy = (4.11)

o ox; 93

4.2.2 Motion solver

In this study, the motion solver is restricted to one degree of freedom, only the
heave motion is allowed (Z-direction). The motion solver calculates the vertical
position of the body by applying Newton's second law at the current time n + 1:

Ftl = mgnt? (4.12)

in which F"*! is the overall vertical force (including gravity) obtained with the
fluid solver by integrating the pressure and shear forces acting the body’s surface
and a™t! is the vertical acceleration of the body. Once the acceleration a™*! is
known, the vertical velocity v™*! and the vertical position 2”*! during the same
time n + 1 are calculated by an integration scheme:

"t =" 4 (1 - 0)a" AT + 0a™ AT (4.13)

2 =" (1= 0" AT + " AT (4.14)

in which n is the previous time, n+1 is the current time, AT is the time step and 6
is a blending parameter. For 8 = 0, the forward Euler method arises which is explicit
in time. In case # = 1, the backward Euler method pops up which is fully implicit
in time. Both methods are only first order accurate leading to additional numerical
damping. In order to improve the accuracy of the body’'s motion, a second order
accurate Crank-Nicolson scheme is applied for the FSI studies presented by using
0 = 0.5. An additional asset of the Crank-Nicolson scheme is that it preserves the
total amount of energy, i.e. the sum of kinetic and potential energy.

The new position of the body z"t! serves as a boundary condition for the
mesh motion operation which is organised that only the highest and lowest row
of cells is distorted (compressed or expanded). An example is demonstrated in
Figure 4.8 and Figure 4.18 later in this paper. This methodology is implemented
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to prevent undesirable mesh deformation (i.e. high non-orthogonality and skewness
of the grid cells) around the air-water interface, reducing the discretisation error
for the applied finite volume method. This also results in accurate simulations of a
floating body using the coupled fluid—motion solver based on the VoF method. The
drawback of our approach is that high aspect ratios are obtained for the distorted
cells. However since those cells are not inside the zones of interest, it will not affect
the accuracy of the simulations.

4.2.3 Kinematic condition

In order to have convergence between the fluid and motion solver, the following
kinematic condition needs to be fulfilled at the interface between the fluid and the
body:

Uy =V (4.15)

in which u, and v are the vertical fluid velocity and the vertical body’s velocity
respectively. As such, this velocity is used in the moving wall boundary condition
at the body's interface. Note that the fluid velocities u, and w,, are equal to 0 m/s
at the fluid-structure interface because only heave motion of the body is allowed.

4.3 Accelerated coupling algorithm

This section presents the accelerated coupling algorithm between a two-phase fluid
solver (section 4.2.1) and a one degree of freedom (heave) motion solver (section
4.2.2). For the sake of clarity, the complexity of the fluid solver is gradually in-
creased. Firstly, the motion solver is tested against a mock-up fluid solver which
is an analytical expression describing the fluid dynamics. Secondly, an acceleration
in convergence between the CFD fluid solver and the motion solver is developed
to speed up the simulations in terms of CPU time.

4.3.1 Mock-up fluid solver

The coupling between a fluid and a motion solver in rigid body simulations is done
by interchanging the total force acting on the body calculated by the fluid solver.
For a CFD fluid solver, the force (vector notation) is calculated as the discrete sum
of the pressure forces, viscous forces and the downward weight of the body:

body body
Frt =3 0yt Ag) + 3 (i1 Ay) = mg (4.16)
j

J

p; is the pressure acting on each boundary face around the body, 7;] is the shear
stress tensor acting on each boundary face around the body, 71} is a unit vector
normal to the area A; of boundary face j and m is the dry mass of the body.
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In this subsection, the CFD fluid solver is simplified to a mock-up fluid solver:
an analytical expression which calculates the total vertical force F™*! on the body.
The main advantage of the mock-up fluid solver is to avoid the time consuming
CFD fluid solver when acquiring quick insights in the coupling algorithm. The
floating body is represented by a two dimensional rectangular body in a vertical
plane (2DV) which is 4 m wide, 1 m high and has a mass m equal to 2000 kg/m
(see Figure 4.2). z°? is the fixed Z-coordinate of the equilibrium position of the
body’s Centre of Mass (CoM). In order to bring the body out of equilibrium, the
position of the CoM during the initial condition is 2™ < z°¢ | see Figure 4.2. As
a result, the water exerts an upward force on the body and the body starts to
oscillate until all the forces on the body are again in equilibrium.

Figure 4.2: A definition sketch showing the geometry of the floating 2D rectangular body
(X Z-direction, 4 m wide by 1 m high) with mass m equal to 2000 kg/m.

4.3.1.1 Hydrostatic force

The initial mock-up fluid solver takes only the upward hydrostatic force and the
body’s weight into account. The total vertical force on the 2D rectangular body is
calculated as:

Fn+l - pwVwetg —mg

= A (27 — 2°) (4.17)
in which p,, is the density of water (1000 kg/m?), Vit is the underwater volume
of the body, A, is the horizontal water plane area and z"™ — 2¢7 is the distance
between the CoM at the previous time n and the CoM in equilibrium (see Figure
4.2). Note that equation (4.17) is explicit: we use the body's position from the
previous time, z", to calculate the force during the current time, F™*!. Newton's
second law, equation (4.12), is applied to derive the body's acceleration during the
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current time n + 1 by using the mock-up fluid solver (equation (4.17)):

an-i—l _ Fn+1
m
— W (2" — 2°0) (4.18)
k
__ M _ eq
(" =2

in which k is the restoring spring coefficient due to buoyancy and equal to
39 240 kg/s? for the 2D rectangular body. The mock-up fluid solver (equation
(4.18)) is coupled to the motion solver (equations (4.13) and (4.14) with = 0.5
and a fixed time step AT = 0.005 s). An initial displacement of —0.25 m is given
to the body in order to bring it out of equilibrium (2° = 4.75 m and 2¢¢ = 5.0 m).
Equations (4.18), (4.13) and (4.14) are solved consecutively and only once dur-
ing every time step due to the explicit nature of the fluid—-motion coupling. The
resulting vertical acceleration, equation (4.18), as a function of time is shown in
Figure 4.3. The progress of the acceleration matches the expectations, starting at
a maximum value and reducing monotonically without any issues regarding stability
or convergence.
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Figure 4.3: Vertical acceleration of the floating 2D rectangular body as a function of
time for a fixed time step of 0.005 s.

4.3.1.2 Added mass effect

In a second step, the added mass effect is also considered in the explicit mock-up
fluid solver:

ma™t = —mga" — k(2" — 2%9) (4.19)

in which m, is the added mass and a” is the acceleration at the previous time
n. This is a better approximation to the physics because all the fluid dynamics
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are incorporated, except for the viscous forces (damping forces). Subsequently,
equation (4.19) is rewritten to:

antt= Tagn 8 n sea (4.20)

The extended mock-up fluid solver (equation (4.20)) is again coupled to the
motion solver (equations (4.13) and (4.14) with # = 0.5 and a fixed time step
AT = 0.005 s) and solved once during every time step. Three different numerical
simulations are performed with m,/m = 0.5, 1.0 and 1.5. Figure 4.4 shows the
numerical results for the acceleration, equation (4.20), as a function of time. In case
mg < m, the oscillation in acceleration damps out. For m, = m, the oscillation
remains constant. For m, > m, the oscillation increases and the simulation fails.
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Figure 4.4: Vertical acceleration of the floating 2D rectangular body as a function of
time for m,/m = 0.5 (a), 1.0 (b) and 1.5 (c).

To stabilise the acceleration, equation (4.20) must be solved implicitly by using
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multiple sub iterations during every time step:

~n+1 _ mq n+1 k n+1

e Al C ) (4.21)
in which &?jll is the intermediate value of the acceleration at the current sub
iteration i 4 1 of time n + 1, a?** and 2" are respectively the acceleration and

position of the CoM from the previous sub iteration ¢ during the same time n+ 1.
Note that equation (4.21) is using explicit coupling in the sub iterations: all the
variables in the right hand side are obtained during the previous sub iteration i.
Additionally, relaxation of acceleration is required for a stable solution:

a?j‘ll = ad?fll + (1 —a)altt (4.22)
in which « is the relaxation factor. In order to know the stability region of the

coupling scheme, a linear stability analysis is performed for the equations (4.21)
and (4.22):

n+1l __ ~n—+1 n+1
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(4.23)

k
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in which G is defined as the amplification factor. In order to have a stable solution,
the absolute value of G must be smaller than one:

Gl<1

2
G- <1 (4.24)
2
(1 —a—a%) <1
m

which results in a stability criterion for o and an optimal value, ®optimai, for which
G is equal to O:

2
< 4.25
= T ma/m (4.25)

1 m

optimal — = 4.26
Goptimal 1+me/m m+m, ( )
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The stability region |G| <1 as a function of the added mass coefficient m,/m
and « is depicted in Figure 4.5 as an unshaded area whereas the unstable region is
shaded in grey. The contour lines indicate the value of the amplification factor |G]|.
The closer the relaxation factor is to its optimal value, the closer the amplification
factor to zero and the lesser sub iterations are needed between the fluid and motion
solver to converge. More importantly, a low number of sub iterations speeds up
the simulation significantly in terms of CPU time.
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Figure 4.5: Contour plot of the amplification factor |G| for the equations (4.21) and
(4.22) as a function of the added mass coefficient mq/m and the relaxation factor a.
The grey shaded area is unstable whereas the decreasing values of the amplification factor
are leading to faster simulation times.

The mock-up fluid solver (equation (4.22) with m, = 3m) is coupled to the
motion solver (equations (4.13) and (4.14) with 6§ = 0.5 and a fixed time step
AT = 0.005 s) and now 20 sub iterations per time step are performed. Figure
4.6 depicts the acceleration, equation (4.22), as a function of the number of sub
iterations. In Figure 4.6, the red line represents the coupling scheme using a
relaxation factor equal to 0.25, which is exact aoptimar = m/(m + mg) (equation
(4.26)). Only one iteration is needed to reach convergence in the acceleration.
In case the relaxation factor is 0.45 (green line in Figure 4.6), convergence is
reached with oscillations. With a relaxation factor of 0.05 (blue line in Figure 4.6),
convergence is reached monotonically. The converged value of the acceleration
during every time step is the same for the three different relaxation factors but
the convergence speed is different. In order to obtain efficient simulations with a
minimal number of sub iterations for cases with a significant added mass effect
(mq > m), the relaxation factor must not deviate too much from its optimal value
(see equation (4.26)).
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Figure 4.6: Vertical acceleration of the floating 2D rectangular body as a function of the
number of sub iterations for different values of o and eq. (4.26). During each time step,
20 iterations are performed (m,/m = 3.0).

4.3.2 CFD fluid solver

In the previous section 4.3.1, we have demonstrated a significant acceleration in
convergence between a mock-up fluid solver and a motion solver. In case the value
of the added mass is known, the optimal value for the relaxation factor is calculated
by equation (4.26). In this section, we go one step further from the mock-up fluid
solver to a CFD fluid solver where the value of the added mass is unknown.

4.3.2.1 Estimation of the added mass

In order to achieve an acceleration in convergence between a CFD fluid solver
and a motion solver, we apply the method reported in Vierendeels et al. (2005):
calculating a Jacobian. Therefore, Newton's second law in its fully implicit state,
equation (4.27), is linearized to equation (4.28), resulting in equation (4.29).

FI&5 = malf] (4.27)
dF n+1
Fi”+1 + (da) (a?_:rll — a?“) ~ ma?jll (4.28)

Fn+1 dF 7L+1an+1
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Note that equation (4.27) is using implicit coupling in the sub iterations: the

variables on both left and right hand side are considered on the same sub iteration

i 4+ 1. The total derivative (%)Z "*lis estimated by the difference quotient:

- 1 (4.30)
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In order to know the physical meaning of (%)ﬁ“, a mass-spring-damper

K3
system is assumed and the total force Fi”+1 is decomposed in an added mass
force, a hydrodynamic damping force, a hydrostatic restoring force (i.e. buoyancy)

and the sum of all other external forces:
FP = —mga ™ — ool — k(2P = 22+ Flguk (4.31)
k

in which m, is the added mass, b is the hydrodynamic damping coefficient and
k is the restoring spring coefficient (see also section 4.3.1.1). 2°7 is a fixed value
representing the equilibrium position of floating body. Fi.; . is an external force
independent of the kinematic motion of the body, such as the exiting wave force
or a PTO force for the case of WECs. By substituting equations (4.13) and (4.14)

with # = 0.5 in equation (4.31), (‘é—i)?“ is equal to:

£n+1_ ajn+1@+ajn+1@+8jn+l%
dai_aaida ov /), da 0z ), da

dv dz (4.32)

1 1 )
—mMg — ibAT — Zk(AT)

Soding (2001) reported that a significant part of the force depends on the ac-
celeration for fluids of substantial density such as water. If this assumption is valid,
m is the dominating component and b% or %bAT and k% or ik:(AT)2 are small

values in equation (4.32). The assumption is checked later in this paper for the

. . +1
applications presented (see section 4.4). Consequently, (%)j

by:

is approximated

drF\"t!
i X —myg 4.33
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This demonstrates a strong relation between (4£)
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In order to estimate the added mass by calculating a Jacobian, we need at least
three sub iterations during every time step:

— a""!: the acceleration during the first sub iteration (i = 0);

- F1”+1: the force resulting from the hydrodynamic flow field during the first
sub iteration (i = 0);
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- Fi”H: the force resulting from the hydrodynamic flow field during the second
or higher sub iteration (i > 1). Note that due to the numerical implementa-
tion, the force F"*1 is only called in sub iteration i + 1 by the motion solver
(see the flowchart in Figure 4.7 later in this paper).

4.3.2.2 Numerical implementation

The numerical implementation of the accelerated coupling algorithm is shown in
Figure 4.7. At the start of a FSI simulation, all the variables are initialised, such
as the pressure, velocity, etc. For each time step, there are i 4+ 1 sub iterations
needed to reach convergence between the fluid and motion solver. Acceleration in
convergence is obtained by computing (%)jﬂ to estimate the added mass m,
for which we need at least three sub iterations (see the previous section 4.3.2.1):

1. During the first sub iteration (¢ = 0), the body’s position is calculated based
on the final acceleration during the previous time step a™ increased with a
small constant value ¢ (Vierendeels et al., 2005):

a;:i-ll —aq" 4 5 (435)

The value of § is a few orders of magnitude lower (2 or 3) than the maximum
acceleration and is therefore application dependent and user defined. As
reported by Vierendeels et al. (2005), the hydrodynamic flow field and the
kinematic motion during every time step are not sensitive to the value of 4.

2. In the second sub iteration (i = 1), relaxation of acceleration is performed:

aify = a"afll +(1—a")a"
Fntl (4.36)

=a" ZTn + (1 _ a")a?Jrl

in which a]'t! is the acceleration from the first sub iteration and is equal to

a™ + §. During the first time step, the relaxation factor o™ is user defined.
In all the other time steps, the relaxation factor is updated based on the
estimated value of m, (equation (4.34)) during the previous time step:

m m
n _ N - 4.37
S S e () (3

By following this methodology during the second sub iteration, we only need
two sub iterations to have a convergence between the fluid and motion solver
for two scenario’s: (i) if the added mass is significantly smaller than the mass
or (ii) if the added mass is not varying significantly between two consecutive
time steps.
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, L . +1
3. In all the following sub iterations (i > 1), (4£)""" and a}}} are calculated

by equations (4.30) and (4.29) respectively. To avoid overshoots in the cou-
pling algorithm, the estimated value of the added mass is bounded between
0 and 10m. This assumption is valid since the added mass of a floating body
cannot be negative nor exceed the value of 10m for practical applications in
unrestricted water.

Once the acceleration is calculated in a specific sub iteration, the vertical ve-
locity and position of the body are computed by equations (4.13) and (4.14) re-
spectively. Subsequently, the body is moved, the mesh motion is performed and
the flow equations (4.1), (4.2), (4.4), (4.7) and (4.8) are solved to obtain the hy-
drodynamics flow field. This iterative procedure stops until convergence between
the fluid and motion solver (i.e. Newton's second law, equation (4.27)) is achieved
within a certain time step. During every sub iteration (¢ > 1), the normalised

residual 7’,;”'1 is calculated as:
F7L+1 _ m&’r_H—l‘
n+1l __ 7 7
it = 7 (4.38)
max

in which Fi,,.x is a representative value for the maximum force during a simulation.
The convergence criterion is formulated such that the normalised residual must be
lower than a threshold, 0.001 for example (Vierendeels et al., 2005; Chow and Ng,
2016).
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Figure 4.7: Flowchart of the coupled fluid-motion solver using an accelerated coupling
algorithm. n is the time and ¢ indicates the sub iteration.

4.4 Applications

In this section two test cases are presented using the accelerated coupling algorithm
for the fluid—motion solver elaborated in section 4.3.2. For all simulations the
following settings are used in the fluid solver: second order linear discretisation
for the gradient and the Laplacian; first/second order bounded Van Leer scheme
for the divergence operators; second order, bounded, implicit time discretisation.
For every time step, maximum 50 sub iterations are performed depending on the
residual calculated with equation (4.38).

4.4.1 Free decay test of a WEC

For the first application, a 3D WEC is modelled and a free decay test is performed.
Numerical results are compared with experimental data which are described in
previous work of the authors (Devolder et al., 2016). The same numerical method
is used as reported in Devolder et al. (2016) but instead of applying a fixed relation
factor for the acceleration, the accelerated coupling algorithm is used. In this study,
a maximum Courant number of 0.3 and a vertical grid size Az equal to 0.02 m
are used (see verification study in Devolder et al. (2016) for a fixed time step).
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4.4.1.1 Computational domain

The numerical wave flume is represented by a structured grid consisting of only
hexahedral cells (139 058 cells). An overview of the numerical domain around the
WEC during a free decay test is depicted in Figure 4.8. In panels (a) & (b), the
initial condition is shown, where blue is water, red is air and green represents 50 %
water and 50 % air. In panel (c), the maximum displacement of the mesh points
during the numerical simulation is visualized (¢ = 0.55 s).

4.4.1.2 Boundary conditions

Two symmetry planes are used to reduce the amount of grid cells, see Devolder
et al. (2016). The bottom and side wall of the numerical wave flume are modelled as
a solid wall: a Dirichlet boundary condition is set for the velocity (0 m/s in the two
directions) while the pressure and volume fraction are set to a Neumann condition.
At the outlet, wave absorption is implemented using the IHFOAM toolbox (Higuera
et al., 2013a,b). On all the boundary faces of the WEC, the velocity vector is set
to a moving wall condition (see equation (4.15)) and the pressure and volume
fraction are set to a Neumann condition. The atmospheric conditions at the top
of the numerical domain are set to a mixed Dirichlet-Neumann boundary condition
for the velocity, pressure and volume fraction. Finally, the value for § in equation
(4.35) is equal to 1.0 m/s2.

Turbulent effects are not expected since no water impact events will happen
nor separation of the flow behind the WEC will occur (low Keulegan-Carpenter
number). Therefore in the first instance, only laminar solutions are generated. As
shown later on, the main features of the WEC's motion and radiated wave field
are already captured by using a laminar solution only.

4.4.1.3 Results

Firstly, Figure 4.9 presents the vertical position of the WEC during a free decay
test with an initial displacement 2 = —0.124 m relative to its equilibrium position.
The continuous blue line represents the numerical result while the dashed red line
shows the experimental data. The dashed-dotted black line depicts the analytical
envelope (Devolder et al., 2016). In general, Figure 4.9 shows that the numerical
result is in a very good agreement with the experimental decaying motion. After
13 s, some small discrepancies in the phase of the signal are observed between
CFD and the experiment. This is caused by the different absorption methodology
used in the numerical and experimental wave flume (Devolder et al., 2016).
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Figure 4.8: (a) 2D view, initial condition (blue = water, red = air). (b) 3D cut out,
initial condition (blue = water, red = air). (c) 3D view of the maximum displacement of
the mesh points during the simulation, t = 0.55 s (blue = 0.231 m, red = 0 m).

Figure 4.9: Vertical position of the WEC during a free decay test with respect to its
equilibrium position (2°¢ = 0 m) obtained with CFD (continuous blue line) compared to
the experimental decaying motion (dashed red line) and the analytical envelope (dashed-
dotted black line).

Secondly, the radiated wave field generated by the decaying motion of the WEC
in calm water is captured by five wave gauges as indicated in the plan view of the
wave flume in Figure 4.10. The first gauge is installed closest to the absorbing
boundary and its result is represented by the surface elevation 7;. The numerically
obtained surface elevations are based on the volume fraction « in each compu-
tational cell. In a post processing step, the position of the free water surface is
determined by a discrete integration of the volume fraction « over a vertical line
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(Z-direction) divided in n equal parts:

n—1
Zwater level = Z Q; (Zi+1 - Zi) (439)
=0
5 4 3 2 1 n
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Figure 4.10: Plan view of the five wave gauges inside the numerical wave flume. The
WEC's centre (x = 0 m ; y = 0 m) is located at the upper left corner and the absorbing
wave boundary condition is located at the right side of the domain (z = 4.95 m).

Figure 4.11 shows the numerical and experimental results of the surface ele-
vations. During the first 10 seconds, the amplitude as well as the phase of the
radiated wave field is modelled very similar to the experimental data. Thereafter,
some deviations between both results are observed. Again this observation is par-
tially caused by the different absorption methodology used in the numerical and
experimental wave flume (Devolder et al., 2016).

As mentioned in section 4.3.2.1, the accelerated coupling algorithm assumes a
dominant contribution of the added mass in equation (4.32). The methodology
described in Devolder et al. (2016) gives values for k = 745 kg/s?, b = 6.19 kg/s
and m, = 3.74 kg by using the time series of the WEC's decaying motion (Figure
4.9). Figure 4.12 shows the order of magnitude of each term in equation (4.32)
as a function of AT on a log-log scale. It is demonstrated that the added mass
(horizontal black line) is dominating for AT smaller than 0.13 s, which is always
the case for this CFD simulation using a VoF method with a maximum Courant
number of 0.3.

Figure 4.13 depicts both the added mass coefficient m,/m based on equation
(4.34) and the relaxation factor « as a function of time. It is observed that the
value of the added mass coefficient is always smaller than one. Strictly speaking,
the accelerated coupling algorithm is not needed to stabilise the fluid—motion cou-
pling for this test case. However, an efficient simulation is still achieved since the
number of sub iterations during every time step is mostly two or maximum three,
as demonstrated in Figure 4.14. This indicates the feasibility of the accelerated
coupling algorithm for floating bodies with a small added mass effect.
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Figure 4.11: The radiated wave field between the WEC including a linear damper and
the wave paddle represented by the surface elevation 7; as a function of time t.
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Figure 4.12: Order of magnitudes of the terms in equation (4.32) as a function of AT
for the free decay test of a WEC (k = 745 kg/s*, b= 6.19 kg/s and m, = 3.74 kg).
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Figure 4.13: Added mass coefficient m,/m (in blue) and relaxation parameter « (in red)
as a function of time during the free decay test of a WEC.
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Figure 4.14: The number of sub iterations for every time step during the free decay test
of a WEC.

4.4.2 Free falling wedge

The second and most challenging test case comprises a numerical verification and
validation study of a free falling wedge with a significant added mass effect. Experi-
mental data are available in Yettou et al. (2006). A definition sketch of the wedge's
geometry is depicted in Figure 4.15. The wedge, with a mass of 78.33 kg/m, is
dropped 1.0 m above the water level. During the impact of the wedge with the
water surface, turbulent effects are expected and a buoyancy-modified k — w SST
model is applied.

m = 78.33 kg/m

Figure 4.15: Cross section of the wedge's geometry used during the experiments per-
formed by Yettou et al. (2006).

4.4.2.1 Computational domain

Figure 4.16 shows the computational domain of the 2DV simulation together with
the boundary conditions types which are listed in the next paragraph 4.4.2.2. In
order to speed up the simulations, a symmetry plane is used through the centre
axis of the wedge simulating only half of the 30 m long domain. The total height
of the domain is 3.59 m in the Z-direction and the water depth is equal to 1.0 m
(Yettou et al., 2006). The initial state of the wedge is shown in Figure 4.16 where
the drop height above the water level is equal to 1.0 m.

After discretisation, the maximum size of a cell in both the horizontal X-
direction Az and vertical Z-direction Az is equal to 0.04 m for the coarsest grid
(grid 1, 18 000 cells). This results in an aspect ratio (i.e. the ratio of the cell
size in horizontal to the vertical direction) equal to 1. The cells around the wedge
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are skewed as visualised in Figure 4.17. Additionally, two more simulations are
performed reducing Az and the maximum of Az to 0.02 m and 0.01 m respectively,
resulting in 72 000 cells (medium grid) and 285 000 cells (fine grid). A summary
of the three meshes is provided in Table 4.2.

A
atmosphere
symmetry plane
wedge
1im outlet
bm bottom X
15m

Figure 4.16: A definition sketch showing the cross-section (X Z-direction) of the com-
putational domain. The black words characterise the boundary condition type while the
grey distances indicate the key sizes.

Figure 4.17: A detail of the grid around the wedge.

4.4.2.2 Boundary conditions

The types of boundary conditions in a vertical plane are given in Figure 4.16:
symmetry plane on the left, outlet on the right, bottom, atmosphere and wedge.
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Table 4.2: Mesh characteristics of the three different grids used.

grid Az and max(Az) cells
coarse 0.04 m 18 000
medium  0.02 m 72 000
fine 0.01 m 285 000

The bottom is modelled as a solid wall on which wall functions are activated for
k and w. A continuous wall function based on Spalding’s law (Spalding, 1961)
switching between low- and high-Reynolds numbers is implemented for the turbu-
lent viscosity v;. The initial values for k£ and w in the computational domain are
set to 1 x 1071 m?/s? and 1.0 s~! respectively. Furthermore on the bottom, a
Dirichlet boundary condition is set for the velocity (0 m/s in the two directions)
while the pressure and volume fraction are set to a Neumann condition. The outlet
is implemented as a fully reflective wall by using identical boundary conditions as
the bottom boundary. On all the boundary faces of the wedge, similar conditions
are used as the bottom boundary except for the velocity vector which is set to a
moving wall condition (see equation (4.15)). The atmospheric conditions at the
top of the numerical domain are set to a mixed Dirichlet-Neumann boundary con-
dition for the velocity, pressure and volume fraction. Finally, the value for § in
equation (4.35) is equal to 1.0 m/s?.

4.4.2.3 Results

In this section, the numerical results of the free falling wedge are verified and
validated by using experimental data obtained by Yettou et al. (2006). Both, a
mesh convergence study and temporal sensitivity study are performed followed by
a discussion on the accelerated coupling algorithm. All the numerical simulations
presented ran for 5 seconds. During the first 0.4 s, only air is present in the com-
putational domain and consequently a single-phase flow simulation is performed.
After 0.4 s, water is added to the domain and the two-phase flow simulation is
started. This methodology is visualised in Figure 4.18 and is needed to add the
correct amount of water in the domain. Due to the large drop height, the cells in
the lowest row have a height Az equal to 1.7 m while the water depth during the
experiment was only 1.0 m. Based on a preliminary simulation, Az for the cells in
the lowest row become smaller than 1.0 m for t > 0.4 s.

4.4.2.3a Mesh convergence study For the mesh convergence study in this
first subsection, three numerical simulations are presented using the grids men-
tioned in Table 4.2. A maximum Courant number of 0.3 is applied as discussed
in the next subsection 4.4.2.3b. Figure 4.19, Figure 4.20 and Figure 4.21 depict
respectively the vertical position, velocity and acceleration of the wedge as a func-
tion of time. The experimental data is shown using a dashed black line for the
vertical position and velocity only. The numerical results are visualised by a blue,
green and red line for the coarse, medium and fine grid respectively. In general,
only very small differences are visually observed between the three numerical sim-
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Figure 4.18: Mesh motion for the free falling wedge simulation, air is shown in blue and
water is shown in red. At ¢t = 0 s, only air is present while for ¢ > 0.4 s, also water is
included in the computational domain.

ulations. The three numerical simulations are in a very good agreement with the
experimental data for the vertical position and the velocity. For the vertical veloc-
ity, discrepancies between numerical and experimental results are visible between
t =14 s and t = 2 s. This is presumably caused by small friction forces due
to the sliding mechanism in the experimental model which are neglected in the
numerical setup. In Figure 4.20, the abrupt change in velocity is due to the impact
of the wedge on the water surface. It is observed that the impact is modelled in
a very good agreement with the experimental measurements for the velocity of
the wedge. Figure 4.21 only presents numerical simulations for the vertical accel-
eration of the wedge as a function of time. At ¢ = 0.40 s, a spike is observed
in the wedge's acceleration. This is an artefact due to the addition of water in
the computational domain as explained before and visualised in Figure 4.18 but
has no further impact on the results. In general, no significant differences are
observed among the three numerical simulations, except for the peak values of
the acceleration at the moment of impact (see detailed view in Figure 4.22). The
mesh convergence study is provided in Table 4.3 based on the peak value of the
acceleration during the impact of the wedge on the water surface (see Figure 4.22
around t = 0.53 s). The extrapolated values are computed with Richardson’s
extrapolation method: @Gegira. = Gmedium + (Afine — Gmedium)/(1 — 27%) with
a = ln((acoarse - amedium)/(amedium - afine))/ln(2)- Gextra. Can be regarded
as the value calculated from the exact solution. As follows from Table 4.3, the
solutions converge monotonically towards the exact solution and the medium grid
returns an acceptable solution with an error of 3 %.
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Figure 4.19: Vertical position of the wedge as a function of time obtained numerically
for three meshes (see Table 4.2) with a maximum Courant number of 0.3 (blue, green
and red lines) and compared to experimental data (Yettou et al., 2006) (dashed black
line).
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Figure 4.20: Vertical velocity of the wedge as a function of time obtained numerically for
three meshes (see Table 4.2) with a maximum Courant number of 0.3 (blue, green and
red lines) and compared to experimental data (Yettou et al., 2006) (dashed black line).
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Figure 4.21: Vertical acceleration of the wedge as a function of time obtained numerically
for three meshes (see Table 4.2) with a maximum Courant number of 0.3 (blue, green
and red lines).
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Figure 4.22: Vertical acceleration of the wedge during the impact between ¢ = 0.45 s
and t = 0.65 s obtained numerically for three meshes (see Table 4.2) with a maximum
Courant number of 0.3 (blue, green and red lines).
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Table 4.3: Grid refinement study for the acceleration of the wedge. N, is the number
of cells in vertical direction. a is the maximum value of the acceleration during the water
impact. Gegztrq. IS the exact solution.

grid N, a[m?/s] error
coarse 46  121.464 13.26 %
medium | 94  135.814 3.01 %
fine 188 139.074 0.68 %
Qeztra. 140.032

4.4.2.3b Temporal sensitivity study In this second subsection, three numer-
ical simulations are presented using a maximum Courant number of 0.5, 0.3 and
0.1 respectively. Only the medium grid is considered since an error of 3 % for the
peak value of the acceleration during the water impact is found (see Table 4.2).
Figure 4.23, Figure 4.24 and Figure 4.25 visualise again time series of respectively
the vertical position, velocity and acceleration of the wedge. The experimental
data is shown using a dashed black line while the numerical results are depicted
in blue, green and red for a maximum Courant number of 0.5, 0.3 and 0.1 re-
spectively. The same observations are made as reported in the previous subsection
4.4.2.3a: the three numerical simulations are very similar and are in a very good
agreement with the experimental data for the vertical position and velocity of the
wedge. Also for the acceleration, no differences are visually observed between the
three numerical simulations provided in Figure 4.25. Moreover as shown in Figure
4.26, the peak value of the acceleration during the impact is not sensitive to the
maximum Courant number. Based on our experience of using the VoF method for
FSI simulations, we recommend a maximum Courant number of 0.3.

4.4.2.3c Acceleration of the coupling scheme The achieved acceleration
for the fluid—-motion coupling is discussed using the medium grid with a maximum
Courant number of 0.3. Firstly as mentioned in section 4.3.2.1, the accelerated
coupling algorithm requires a dominant contribution of the added mass in equation
(4.32). Values for k, b and m, are computed by using the time series of the
wedge's motion. Only approximated values are calculated since they depend on
the displaced volume of water which varies over time for the case of a wedge
geometry:

— For k, the value at the moment of water entry is considered: k =
4019 kg/s?/m;

— For b, the methodology described in Devolder et al. (2016) leads approxi-
mately to: b =400 kg/s/m,;

— For mg, a minimum value is the most severe condition and the methodology
described in Devolder et al. (2016) gives approximately: m, = 72 kg/m.

Figure 4.27 indicates that the added mass (black line) is dominating for AT smaller
than 0.18 s, which is again always the case for this simulation.
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Figure 4.23: Vertical position of the wedge as a function of time obtained numerically
for the medium grid (see Table 4.2) with a maximum Courant number of 0.5, 0.3 and
0.1 (blue, green and red lines) and compared to experimental data (Yettou et al., 2006)
(dashed black line).
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Figure 4.24: Vertical velocity of the wedge as a function of time obtained numerically
for the medium grid (see Table 4.2) with a maximum Courant number of 0.5, 0.3 and
0.1 (blue, green and red lines) and compared to experimental data (Yettou et al., 2006)
(dashed black line).
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Figure 4.25: Vertical acceleration of the wedge as a function of time obtained numerically

for the medium grid (see Table 4.2) with a maximum Courant number of 0.5, 0.3 and
0.1 (blue, green and red lines).
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Figure 4.26: Vertical acceleration of the wedge during the impact between ¢t = 0.45 s
and t = 0.65 s obtained numerically for the medium grid (see Table 4.2) with a maximum
Courant number of 0.5, 0.3 and 0.1 (blue, green and red lines).
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Figure 4.28 presents both the added mass coefficient m,/m estimated by equa-
tion (4.34) and the relaxation factor « as a function of time. Figure 4.29 depicts
the number of sub iterations for every time step. Between 0 s and 0.5 s, the wedge
is freely falling towards the water surface and is surrounded by air only. Due to the
low density of air, the added mass is very small and only two sub iterations during
every time step are needed to reach convergence between the fluid and motion
solver. Around 0.5 s, the wedge is impacting on the water surface and the added
mass coefficient increases up to four times the mass of the wedge. As a result
of our accelerated coupling algorithm, the relaxation factor lowers to reduce the
number of sub iterations. Based on Figure 4.29, only a large number of sub iter-
ations is simulated at the moment when the wedge is touching the water surface.
Thereafter, the motion of the wedge is decaying and the added mass is changing
over time and therefore only two, occasionally three, sub iterations are needed to
obtain convergence between the fluid and motion solver.
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Figure 4.27: Order of magnitudes of the terms in equation (4.32) as a function of AT
for the 2D free falling wedge (k = 4019 kg/s*/m, b = 400 kg/s/m and m, = 72 kg/m).
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Figure 4.28: Added mass coefficient m,/m (in blue) and relaxation parameter « (in red)
as a function of time using the medium grid (see Table 4.2) with a maximum Courant
number of 0.3.
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Figure 4.29: The number of sub iterations for every time step using the medium grid
(see Table 4.2) with a maximum Courant number of 0.3. Top graph: maximum 50 sub
iterations on the vertical axis. Bottom graph: detail of the top graph where only 5 sub
iterations are shown on the vertical axis.

4.5 Conclusions

In this paper, we presented an accelerated coupling algorithm between a two-phase
fluid solver and a motion solver to perform FSI simulations of a floating body.
The coupling algorithm is applying multiple sub iterations during every time step
in the transient simulation to reach convergence between the fluid and motion
solver. The convergence speed is enhanced by using our accelerated coupling
algorithm by calculating a Jacobian, based on the available solutions of previous
sub iterations for the acceleration of the floating body and the force acting on it.
This method results in efficient simulations for body geometries with a significant
added mass effect. The coupled fluid—-motion solver is applied to two different
floating bodies: a free decay test of a WEC (small added mass effect) and a
free falling wedge impacting the water surface (significant added mass effect).
For both test cases, numerical results are validated by using experimental data.
Firstly, the WEC's heave motion and radiated wave field during the free decay test
are very similar to the experimental measurements. Secondly for the free falling
wedge, a good agreement between numerical and experimental data is found for the
wedge's vertical position and velocity. We demonstrated the successful capability of
the coupled fluid—-motion solver using an accelerated coupling algorithm in order to
efficiently simulate heaving floating bodies with a significant reduced computational
cost.



Chapter 5

Numerical simulations of a
point absorber wave energy
converter

In this chapter, fluid-structure interaction simulations of a single floating point ab-
sorber wave energy converter (WEC) are presented. Both free decay and regular
wave tests are performed and validated with experimentally obtained data measured
in the large wave flume of the department of civil engineering at Ghent University.
Subsequently, the numerical simulations of a single floating point absorber WEC
are extended from operational conditions to survivability conditions. A proof of
concept study is presented for the design of a WEC unit under survivability condi-
tions in order to quantify the WEC's motion and the forces acting on the WEC by
simulating breaking waves impacting on the WEC in a numerical wave tank.

Sections 5.1 to 5.5 of this chapter are originally published as:

Devolder, B., Rauwoens, P., and Troch, P. (2016). Numerical simulation of
a single Floating Point Absorber Wave Energy Converter using OpenFOAM®.
In Progress in Renewable Energies Offshore, pp. 197-205. CRC Press.
doi:10.1201/9781315229256-25.

Section 5.6 of this chapter is submitted for publication as:

Devolder, B., Troch, P., and Rauwoens, P. (2018). Survivability Simulation of
a Wave Energy Converter in a Numerical Wave Tank, abstract accepted for the
13th OpenFOAM workshop.
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Numerical simulation of a single Floating Point Absorber
Wave Energy Converter using OpenFOAM®

Brecht Devolder, Pieter Rauwoens, Peter Troch
Brecht Devolder, Peter Troch, Pieter Rauwoens

Abstract

This paper uses the CFD toolbox OpenFOAM to perform numerical simulations of
a single floating point absorber (FPA) Wave Energy Converter (WEC) unit inside
a numerical wave flume. The Navier-Stokes fluid solver is coupled with a motion
solver to simulate wave-induced rigid body motions restricted to the heave direc-
tion only. Laboratory experiments are undertaken to validate the numerical model
for a free decay test and specific regular wave trains. A general methodology is re-
ported for modelling a WEC inside a numerical wave flume taking small deviations
in geometry and friction into account. Several CFD simulations are presented with
varying time step and grid resolution. The obtained heave motion of the WEC
during a free decay test shows a good agreement with the experimental data. In
addition, the radiated wave field due to the WEC’s motion is captured very accu-
rately by the CFD solver. Even more accurate results are obtained by implementing
a linear damper to take the friction in the experimental model in consideration.
Subsequently, a WEC is subjected to two specific regular wave trains and both its
heave motion and the perturbed wave field are in very good agreement compared
to the experimental data. Finally, the numerical simulations are extended from
operational conditions to survivability conditions by simulating breaking waves im-
pacting on the WEC. OpenFOAM proofs a suitable and accurate CFD toolbox to
study wave-structure interaction of a floating body.

Keywords: Wave energy; Floating point absorber; Single unit; Coupled CFD-
motion solver; Verification and experimental validation; Survivability simulation
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5.1 Introduction

Wave energy from ocean waves is captured by Wave Energy Converters (WECs)
and converted into electrical power. In this study, WECs of the floating point
absorber (FPA) type are selected. Their geometry is represented by a cylindrical
buoy with a spherical end. The focus of this study is limited to a single WEC.
However, this is a starting point for wave farm modelling in which the interaction
between multiple closely spaced WECs will be analysed.

Prior to the analysis of farm effects, the flow field around a single WEC unit
has to be understood in detail. Therefore, a Computational Fluid Dynamics (CFD)
toolbox, OpenFOAM® (2015b), is used to solve the three dimensional flow field
around and the motion of the WEC in a numerical wave flume. CFD is able to
include viscous, turbulent and non-linear effects which may be absent in simpli-
fied radiation-diffraction models such as potential flow solvers based on boundary
element methods.

The main focus of the paper is put on the numerical simulation of a free decay
test of a heaving WEC. The WEC is initially placed out of equilibrium and released,
leading to a damped oscillatory motion until all the forces acting on that WEC are
in equilibrium. Moreover, the motion of the WEC generates radiated waves with
decreasing wave heights away from the WEC. Simulations are performed in order
to compare solely the radiated wave field and the motion of the heaving WEC with
experimental data measured in a wave flume. The purpose of the simulations is
to assess the ability and accuracy of the coupled CFD—motion solver to simulate
wave propagation of the radiated wave field. A few authors already reported free
decay tests. Stratigaki (2014) performed an experimental free decay test in a
wave flume. Davidson et al. (2015b) simulated multiple free decay tests with
OpenFOAM indicating nonlinearities. Stansby et al. (2015) reported a free decay
test of a heaving WEC using STAR CCM+ and compared this with experimental
data.

The second part of the paper is dedicated to present CFD simulations of a single
WEC unit subjected to two specific regular wave trains. Only the heave motion of
the WEC is considered and together with the perturbed wave field validated against
laboratory results. The capability of OpenFOAM to study wave-body interactions
is already reported by Davidson et al. (2015a). Wolgamot and Fitzgerald (2015)
provided an excellent description and comparison of the different numerical models
for wave energy devices. Moreover, they mentioned that good agreements have
been obtained between CFD and experimental results.

5.2 Experimental setup

An experimental model is installed in the large wave flume of the Department of
Civil Engineering at Ghent University (30 m x 1 m x 1.2 m). An overview of
the setup is shown in Figure 5.1a. The WEC is installed 4.95 m away from the
wave paddle in an uniform water depth of 0.70 m. During the free decay tests,
only active wave absorption is activated at the wave paddle to absorb the radiated
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waves. Furthermore, five wave gauges sampling at 40 Hz are installed in between
the wave paddle and the WEC. Behind the WEC, a mild-slope foreshore is installed
followed by a beach to absorb the radiated waves.

The WEC's geometry is sketched in Figure 5.1b. This WEC is characterised by
a mass m of 20.605 kg, a total height hyygc of 0.60 m, a diameter D of 0.315 m
and a draft dyy gc of 0.3232 m. A steel shaft of 4 ¢cm by 4 em with a gravity metal
base is installed through the WEC to simulate the heave motion only. Therefore,
a square shaft bearing of 4.45 c¢m by 4.45 c¢m is present inside the WEC. Friction
between the steel shaft and the WEC is limited by using PTFE-bearings at the top
and at the bottom.

Me
530
600

(b)

Figure 5.1: (a) Overview of the experimental setup: WEC, steel shaft, five wave gauges
and the wave paddle of the wave flume. (b) Design drawing of the WEC (dimensions in
mm). Cross section showing the two PTFE-bearings at the top and bottom. The steel
shaft passes through a shaft bearing along the entire length of the WEC. Adopted from
Stratigaki (2014).

During all the free decay tests reported, the WEC is placed out of equilibrium
by pushing it 12.4 ¢m down (¢o = —0.124 m). A GoPro HERO4 video camera
is used to capture the motion of the WEC with 60 frames per second. A marker
is installed on the WEC to extract that motion from the recordings in terms of a
displacement with respect to the WEC's equilibrium position. However, each frame
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of the video file is corrected to remove the lens distortion (fish-eye effect). This
post processing step results in a motion of the marker in one undistorted vertical
plane. By following this approach, very accurate results are generated from the
video files recorded.

5.3 Numerical framework

Numerical modelling is performed to study the behaviour of a single WEC unit in
a numerical wave flume. The two-phase flow solver with dynamic mesh handling,
interDyMFoam, is available in OpenFOAM to investigate the flow field around and
the response of a floating body.

Simulations of the two-phase flow field are performed by using the incompress-
ible Navier-Stokes equations. Turbulent effects are not expected since the flow
of the simulations presented is always characterised by a low Keulegan-Carpenter
number. In that case, no separation of the flow behind the WEC will occur ac-
cording to Sumer and Fredsge (1997). Therefore in the first instance, only laminar
solutions are generated. However, turbulence may become important during some
simulations and this will be included in further research. As shown later on, the
main features of the WEC's motion and perturbed wave field are already captured
by using a laminar solution only. Boundary conditions for wave generation and
absorption are adopted from the IHFOAM toolbox (Higuera et al., 2013a,b). For
all simulations the following settings are used: second order linear discretisation for
the gradient and the Laplacian; first/second order bounded Van Leer scheme for
the divergence operators; second order, bounded, implicit time discretisation.

The CFD-fluid solver is coupled with a motion solver in order to simulate rigid
body motions. Only the governing motion of the WEC's behaviour is considered,
the heave motion. This assumption allows a reduction from a six to a one degree
of freedom motion. A second order accurate Crank-Nicolson integration scheme is
used to derive the new position of the WEC from its acceleration. The acceleration
itself is based on Newton's second law: F' = ma in which the force F' is the sum
of the pressure, shear and gravity forces acting on all the boundary faces of the
WEC. Four implicit iterations are performed during every time step in order have
a converged solution between the fluid and motion solver (Devolder et al., 2015).

5.3.1 Computational domain

All the simulations presented are performed in a numerical wave flume which rep-
resents the physical wave flume as good as possible. However, some simplifications
are made in order to obtain economical simulation times. Firstly, a vertical sym-
metry plane through the centre of the WEC is implemented over the length over
the wave flume. This is justified because the WEC is installed in the middle of the
flume and no asymmetric effects are expected (low Keulegan-Carpenter numbers).
This simplification is valid for both the free decay test and the two regular wave
trains. Secondly, another vertical symmetry plane through the centre of the WEC
is modelled over the width of the wave flume. This second symmetry plane is only
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used during free decay simulations. This assumption is motivated as follows. On
the physical wave paddle, wave generation is not activated during a free decay test.
Only active wave absorption is used. On the other side of the WEC, an absorbing
beach is installed in the wave flume, which behaves similar as the active wave
absorption at the paddle. Because modelling the absorbing beach with CFD is
too complicated, a second symmetry plane is implemented in the numerical model.
This means that the absorbing beach is modelled as a wave absorption boundary.
The dimensions of the numerical wave flume including two symmetry planes are
4.95m x 0.5 m x 1.8 m.

Each boundary of the computational domain needs specific boundary condi-
tions. At the outlet, wave absorption is implemented using the IHFOAM toolbox.
The side wall of the flume is set to a no-slip condition and behaves as a fully
reflective structure. On all the boundary faces of the WEC, the velocity vector is
set to a moving wall condition.

The numerical wave flume is represented by a structured grid consisting of only
hexahedral cells. An overview of the numerical domain around the WEC during a
free decay test is depicted in Figure 5.2. In panels (a) & (b), the initial condition
is shown, where blue is water, red is air and green represents 50 % water and 50 %
air. While in panel (c), the maximum displacement of the mesh points during a
simulation is visualized (t = 0.55 s). Only the lowest and highest row of cells are
distorted. This is implemented to prevent undesirable mesh deformation around
the interface between water and air.

5.3.2 Free surface

The free surface between water and air is obtained by the Volume of Fluid (VoF)
method (Hirt and Nichols, 1981). The method is based on a volume fraction «
which is 0 for a completely dry cell and 1 for a completely wet cell and in between
0 and 1 for an interface cell containing both water and air. In a post processing
step, the position of the free water surface (sampled at 50 Hz) is determined by
a discrete integration of the volume fraction « over a vertical line (Z-direction)
divided in n equal parts:

n—1

Zwater level = Z ai(2i+1 - Zz) (51)
=0

5.3.3 Rigid body motion

During a free decay test, the WEC is placed out of equilibrium, released and a
damped oscillatory motion is started. Moreover, this motion can be described
mathematically by hydrodynamic parameters such as the damping ratio (g, nat-
ural angular frequency w,, and damped angular frequency wy. These parameters
depend on the WEC's mass m (including added mass m,) and shape. In order to
compare experimental and numerical results, an identical WEC geometry is needed.
Because of the complexity of meshing the shaft bearing inside the WEC, another
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(a) (b) (c)

Figure 5.2: (a) 2D view, initial condition (blue = water, red = air). (b) 3D view, initial
condition (blue = water, red = air). (c) 3D view of the maximum displacement of the
mesh points during the simulation, t = 0.55 s (blue = 0.231 m, red = 0 m).

methodology is formulated to obtain a grid around the WEC without that vertical
shaft (see Figure 5.2). The shaft inside the physical WEC reduces the water-plane
area A,. Interestingly, this water-plane area is an important parameter to deter-
mine the natural frequency w, of the WEC. Moreover, the natural frequency is
also dependent on the mass m and added mass m, of the WEC. Therefore a WEC
without vertical shaft but with a modified mass m,,,,, is implemented in Open-
FOAM. This is done to obtain the same natural frequency as the physical WEC,
assuming that the damping ratio {4y and added mass m,, are identical in both ex-
perimental and numerical models, see equation (5.2). The modified-mass method
can be derived starting from the expression in equation (5.2). Subsequently, the
damped frequency wy in both numerical and experimental models are rewritten
by using equations (5.3) and (5.4). Finally, this procedure returns equation (5.5)
which calculates the modified mass m.,,,,, needed in the numerical model to satisfy
equation (5.2).

Wd,num = Wd,exp (52)

wqg = wny/1— 3 (5.3)
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Wy =) ——— (5.4)

a 'A’lU num a
m ) 7 oom (55)
Mexp

Mpum = Mexp |:<1 + A
w,exp Mexp

The only way to obtain the damping ratio (4 and added mass m, for the
physical WEC including the shaft bearing is by performing a free decay test in an
experimental laboratory. A frequency analysis of the WEC's experimental decay-
ing motion returns its damped natural frequency wg, 5.53 rad/s and its damped
natural period Ty, 1.136 s. The damping ratio is determined based on methodol-
ogy mentioned in Stratigaki (2014), (4 = 0.0224. When these two parameters are
known, the added mass m,, of the WEC during the experiment can be calculated by
using equations (5.3) and (5.4): 3.74 kg. Finally equation (5.5) gives the modified
mass of the WEC equal to 21.24 kg.

5.4 Results & Discussion

This section presents the results of both the experimental and numerical models.
First the motion of the WEC is given in function of the time during a free decay test
and compared to experimental data. Different numerical simulations are presented
to show the influence of the time step and grid density. The WEC's mass imple-
mented in CFD is determined based on the methodology explained in the previous
subsection 5.3.3. Subsequently, the radiated wave field during the same free decay
test is analysed and compared to the experimental result. Finally, numerical and
experimental results of both the heave motion of and the perturbed wave field near
the WEC subjected to two specific regular wave trains are presented and discussed.

5.4.1 Motion of the WEC during a free decay test

The motion of the WEC is simulated using different fixed time steps At: 0.005 s,
0.0025 s and 0.001 s. Moreover, the influence of the grid spacing is analysed by
using two cell heights Az around the interface between water and air of 0.02 m
(139 058 cells) and 0.01 m (1 088 660 cells) respectively.

Figure 5.3 presents the vertical position of the WEC during a free decay test with
an initial displacement ¢y = —0.124 m relative to its equilibrium position (At =
0.001 s, Az = 0.02 m). The continuous blue line represents the numerical result
while the dashed red line shows the experimental data. The dashed-dotted black
line depicts the analytical envelope (see Stratigaki (2014)). In general, the figure
proves that this numerical result is extremely close to the experimental decaying
motion. After 13 s, some small discrepancies in the phase of the signal are observed
between CFD and the experiment. This is addressed to the different absorption
methodology in numerical and experimental model. Moreover, small deviations in



5.4. Results & Discussion 121

the amplitude of the WEC’s motion are visible after 13 s which are discussed in
the next paragraphs.

Figure 5.3: Vertical position of the WEC during a free decay test with respect to its
equilibrium position (zwrc = 0 m) obtained with CFD (continuous blue line, At =
0.001 s, Az = 0.02 m) compared to the experimental decaying motion (dashed red line)
and the analytical envelope (dashed-dotted black line).

+—— “AT=0.005s ; Az=0.02m —— AT=0.0025s ; Az=0.01m
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Figure 5.4: Vertical position of the WEC for various simulations during a free decay test
with respect to its equilibrium position (zwrc = 0 m) compared to experimental data
(dashed red line).

In order to compare different time steps and grid resolutions, a narrower time
window is needed to observe the differences in the motion of the WEC. Therefore,
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only the first five seconds are shown in Figure 5.4. In general, the differences
between all the numerical simulations are very small. However, when the data
is zoomed towards a peak in the position of the WEC (3.85 s — 4.10 s), differ-
ences up to almost 1 c¢m are observed between the lowest and highest peak. More
importantly, the different simulations are converging towards a grid- and time-
independent solution. The peak becomes higher when the time step decreases
or the vertical grid size becomes smaller. This means that additional numerical
damping is introduced when the time step is larger or when the grid is too coarse.
Interestingly, the result of the largest time step and coarsest mesh is the closest to
the experimental data. This phenomenon is dedicated to friction in the experimen-
tal model which is absent in the CFD model. A vertical shaft is installed through
a shaft bearing. This means that there is a motion of a viscous fluid, water, in
the underwater space between the steel shaft and the shaft bearing. This flow can
be simplified as a Couette flow between two parallel plates of which one is mov-
ing relative to the other. However, this Couette flow is not modelled numerically
because the WEC's shaft bearing is absent in the computational mesh. For exam-
ple, a smaller damping ratio is observed with CFD ({; = 0.0215, At = 0.001 s,
Az = 0.02 m) compared to the experiment (¢4 = 0.0224). However, the in-
fluence of that friction is almost negligible if the amplitudes of motion are large
enough. Nevertheless, an attempt to model the Couette flow is reported in the
next paragraph.

In order to model the Couette flow between the steel shaft and the shaft bear-
ing, the damping characteristics are adapted. This Couette flow causes a viscous
force on the WEC acting parallel to its motion. This force is dependent on the
viscosity of water, the space between the plates and the velocity. However, a sim-
plified model is assumed by only including the velocity v explicitly using a linear
damper (F = —cv) in which ¢ is the damping coefficient. As expressed in equation
(5.6), the damping ratio (4 in both numerical and experimental model is calcu-
lated and equal to the ratio of the damping coefficient b,y and the critical damping
coefficient b.. The target damping coefficient by target is calculated by equation
(5.6) using the experimental damping ratio (0.0224) and the modified mass of the
WEC (21.24 kg). Subsequently, the numerical damping coefficient by um is de-
termined following the same equation (5.6) but now using the numerical damping
ratio (0.0215). This numerical damping ratio is obtained from a CFD simulation
without linear damper. Finally, the difference between both damping coefficients
is used as the damping coefficient ¢ equal to 0.2487 kg/s of the linear damper to
account for the Couette flow, see equation (5.7).

bq bq

T b 2wy (m + myg) (59)

c= Abd = bd,target - bd,num (57)

The numerical results, including a linear damper, are shown in Figure 5.5. Only
simulations using a linear damper (LD in Figure 5.5) for At = 0.0025 s and 0.001 s
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with Az = 0.02 m are shown. In general, the differences between the numerical
simulations seem very small. However, if the data is zoomed in between t = 3.85 s
and 4.10 s, differences become visible around the peak: the linear damper reduces
the peak value of the WEC's heave motion. As indicated by Figure 5.5, the case
with At = 0.001 s, Az = 0.02 m and including a linear damper (dashed black
line) is very close to the experimental data (dashed red line). This proves that a
linear damper is able to simulate the Couette flow between the steel shaft and the
WEC's shaft bearing accurately.

~ \
— AT=5.00§$ ; Az=0.02m —_— AT=0.0®\25$ ; 4z=0.02m ; LD
—_— AT=0.002§S\;\A\2=0.02m -—-— AT=0.001\§ ; Az=0.02m ; LD
--- AT=0.001s; Az:‘ﬁ.ﬂgm - - - Experimental
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Figure 5.5: Vertical position of the WEC for various simulations during a free decay test
with respect to its equilibrium position (zwrc = 0 m) compared to experimental data
(dashed red line).

Figure 5.6 presents a simulation (At = 0.001 s, Az = 0.02 m) for a larger
time window together with the experimental data and the analytical envelope.
Comparing Figure 5.3 and Figure 5.6 reveals that using a linear damper returns
even more accurate results. For example, after 13 s, the amplitude of the numerical
data is closer to the experimental one. However, the difference in phase of both
signals is still observed after 13 s due to the different absorption strategies used in
the numerical and experimental model.



124 5. Numerical simulations of a point absorber wave energy converter

0.15
010f A
0.05
0.00

Zyec [M]

-0.05
-0.10

=0.15

Figure 5.6: Vertical position of the WEC including a linear damper during a free decay test
with respect to its equilibrium position (zwec = 0 m) obtained with CFD (continuous
blue line, At = 0.001 s, Az = 0.02 m) compared to the experimental decaying motion
(dashed red line) and the analytical envelope (dashed-dotted black line).

5.4.2 Radiated wave field near the WEC during a free decay
test

Not only the motion of the WEC is recorded during the experimental free decay
tests but also the radiated wave field is captured by five wave gauges. The same
positions of the physical wave gauges are used inside the numerical model to extract
free surface elevations using equation (5.1). The positions of those wave gauges
inside the numerical wave flume are sketched in Figure 5.7. The wave gauges are
installed in between the absorbing wave boundary (right) and the WEC (upper left
corner). The first gauge is installed closest to the right boundary and its result is
represented by the surface elevation 7;. The fifth gauge 75 is then closest to the
WEC.
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Figure 5.7: Plan view of the five wave gauges inside the numerical wave flume. The
WEC's centre (z = 0 m ; y = 0 m) is located at the upper left corner of the computational
domain. The absorbing wave boundary condition is located at the right side of the domain
(z = 4.95 m).

Figure 5.8 shows the numerical (At = 0.001 s, Az = 0.02 m) and experimental
results of those five wave gauges. Again, a linear damper is implemented to take
the Couette flow into account because the numerical WEC's motion was the closest
to the experimental data. Moreover, it is this motion which is responsible for the
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generation of those radiated waves. However, the radiated wave field is not influ-
enced significantly by using a linear damper. The maximum observed amplitude of
these radiated waves is smaller than 1 cm. Although these small-amplitude waves,
both results are very similar. In the first 10 seconds of the signals, the amplitude as
well as the phase of the radiated wave field is modelled close to the experimental
results. Thereafter, some deviations between both results are observed.
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Figure 5.8: The radiated wave field between the WEC including a linear damper and the
wave paddle represented by the surface elevation 7; in function of time ¢ (At = 0.001 s,
Az =0.02 m).

5.4.3 Motion of the WEC subjected to regular wave trains

This section focusses on simulations of a heaving WEC inside a wave flume sub-
jected to regular waves. Again, a water depth of 0.70 m is maintained while now
two regular wave trains are generated at the inlet. They are characterised by a wave
height H equal to 0.04 m and a wave period T of 1.60 s and 1.14 s respectively.
Three additional wave gauges (16, 7 and 7g) are installed to capture the surface
elevations in the wake behind the WEC.

Because longer time series are simulated, the time step is set automatically
according to a maximum Courant number of 0.3 (fastest simulation speed for a
certain level of accuracy). Moreover, only one symmetry plane is implemented
due to the different behaviour of the inlet (wave generation & absorption) and
outlet (only absorption). The dimensions of the numerical wave flume including
one symmetry plane are 9.90 m x 0.5 m x 1.6 m (Az = 0.01 m ; 251 344 cells).

Figure 5.9 visualises both the numerical and experimental result for the first
wave train (H = 0.04 m ; T = 1.60 s). The numerical model captures the WEC's
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motion very close to the experimental data. Moreover, the amplitude of the WEC's
motion is about 0.02 m which is the same as the amplitude of the waves (50 % of
the wave height). This is because the first wave train has a wave period of 1.60 s
which is significantly higher than the natural period of the WEC, 1.136 s. This
means that the WEC follows the motion of these relatively long waves without any
amplification of its motion.

Figure 5.11 shows the perturbed wave field near the WEC for both the numerical
and experimental model. In general, the results are similar to each other. However,
small discrepancies are visible which may be addressed to slightly different positions
of the wave gauges in both models. For all the wave gauges, the same wave
height is observed in general. This means that the WEC is not disturbing the flow
significantly.

Figure 5.10 gives both the numerical and experimental results for the second
wave train (H = 0.04 m ; T = 1.14 s). Again, both results are similar to each
other. However, the amplitude of the WEC’s motion is significantly larger than the
amplitude of the waves, 0.10 m versus 0.02 m. This is because the second wave
train has a wave period close to the natural period of the WEC, 1.136 s. In such a
case, resonance occurs and the viscous force contribution is important to dampen
the WEC's motion.

Figure 5.12 shows the perturbed wave field near the WEC for both the numerical
and experimental model which are again similar to each other. In contrast to the
first wave train, the wave height varies significantly near the WEC. In this case, the
WEC disturbs the flow significantly. In front of the WEC (), to 15), an extremely
perturbed wave field is observed consisting of incident waves, reflected waves and
large radiated waves. Behind the WEC (7 to 7s), a wake is present in which the
wave height is reduced from 4 c¢m to about 2 c¢m.



5.4. Results & Discussion 127

0.03 —[ [—T > N Experimental}—

Zygc [M]
(=]
o
o

-0.01r

-0.02+

-0.03 L L . I
20 22 24 26 28 30
t[s]

Figure 5.9: Vertical position of the WEC subjected to regular waves (H = 0.04 m ;
T = 1.60 s) with respect to its equilibrium position (zwec = 0 m).
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Figure 5.10: Vertical position of the WEC subjected to regular waves (H = 0.04 m ;
T = 1.14 s) with respect to its equilibrium position (zwec = 0 m).
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Figure 5.11: Perturbed wave field near the WEC subjected to regular waves (H = 0.04 m
; T'=1.60 s) represented by the surface elevation 7; in function of time ¢t (At = 0.001 s,
Az =0.02 m).
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Figure 5.12: Perturbed wave field near the WEC subjected to regular waves (H
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5.4.4 Discussion

In the previous sections, numerical results are presented together with experimental
data. In general, an excellent agreement is found between both results. However,
some limitations are faced and should be kept in mind when analysing the results:

— the accuracy of the recorded motion of the WEC with a camera and its post
processing;

— the difference in absorption methodology between the experimental and nu-
merical wave flume;

— the accuracy of the wave gauges, especially when measuring very small wave
heights;

— the accuracy of the VoF method to resolve small-amplitude waves with the
mesh sizes used;

— the Couette flow in between shaft and shaft bearing of the WEC and the
simplification made in the numerical model by using a linear damper;

— the friction between the two PTFE-bearings when the WEC is subjected to
a regular wave train due to the horizontal wave-induced force.

5.5 Research topics under investigation

The behaviour of a single WEC unit subjected to regular waves inside a wave
flume has to be analysed to the finest details. Firstly, the sensitivity of the linear
damper on the results should be tackled. For example, regular waves cause a net
horizontal force acting on the WEC inducing an additional vertical damping force.
Secondly, turbulent effects may become important for some simulations. Therefore
a well-suited RANS turbulence model (e.g. k¥ —w SST model) should be applied
in order to simulate large displacements of the WEC together with accurate wave
propagation of the incident, diffracted and radiated wave field.

Subsequently, wave farm modelling will be performed using multiple WECs.
First, largely-spaced WEC units will be simulated. Thereafter, simulations of
closely-spaced WEC units will be performed maintaining a good mesh quality
around the air-water interface.

The topics listed above will be investigated in the near future.

5.6 Survivability simulation of a point absorber wave
energy converter

Wave energy from ocean waves is captured by wave energy converters (WECs) and
converted into electrical power. WECs of the floating point absorber (FPA) type
are selected which are heaving under wave loading. In this study, the numerical
simulations of a WEC under operational wave conditions (Devolder et al., 2016)
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are extended to a survivability simulation of a WEC under extreme design load
conditions. Therefore, the WEC is subjected to breaking waves in a numerical
wave tank (NWT).

5.6.1 Numerical framework

CFD-modelling is performed to study the behaviour of a floating WEC unit in-
side a NWT implemented in OpenFOAM. The two-phase flow field is resolved by
the incompressible RANS equations together with a conservation equation for the
volume of fluid (VoF) method. RANS turbulence modelling is applied by using a
buoyancy-modified k& — w SST model developed by the authors (Devolder et al.,
2017a, 2018b). Wave generation and absorption at the boundaries of the NWT are
adopted from the IHFOAM toolbox. The CFD-fluid solver is coupled to a motion
solver in order to simulate rigid body motions. Only the governing motion of the
WEC's behaviour is considered, the heave motion, allowing a reduction from a six
to a one degree of freedom motion solver. The mesh motion is organised that
only the highest and lowest row of cells is distorted (compressed or expanded) to
prevent undesirable mesh deformations around the air-water interface. A coupling
algorithm between the fluid and the motion solver is needed to obtain a converged
solution between the hydrodynamic flow field around the WEC and the WEC's
kinematic motion during every time step in the transient simulation. The coupling
algorithm is using implicit coupling in the sub iterations by calculating a Jacobian,
based on the available solutions of previous sub iterations for the acceleration of
the floating body and the force acting on it, in order to minimise the number of
sub iterations and consequently the CPU time (Devolder et al., 2018a).

5.6.2 Results & Discussion

This section presents two numerical results obtained in the NWT. Firstly, as a pre-
liminary simulation, a two-dimensional (2D) NWT is considered without a floating
WEC unit, i.e. an empty NWT. For a survivability simulation, breaking waves on
the WEC are required. In order to trigger steepness-induced wave breaking in a
constant water depth d = 1.70 m, irregular waves are generated at the inlet by
using three wave components and the method of wave focussing is applied. The
surface elevations at the inlet (x = 0 m) are calculated by superposition assuming
linear wave theory:

3

H, 2 2
n(x,t) = Z7c0s (Lﬂ-x— ;t—&—(bi) (5.8)

=1

in which H; is the wave height, T; the wave period, L; the linear wave length and
¢; the phase of wave component i. Breaking waves are achieved by bringing the
three wave components in phase at xy = 5 m for ¢y = 10 s by calculating ¢;
of each wave component i as: ¥z — Zt; + ¢; = 0 (linear wave theory). The
numerical values for each wave component are as follows:
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- H=015m ;T =100 s — L1 =1.56 m — ¢ = 42.71;
- Hy=010m ; To =110 s — Lo = 1.89 m — ¢ = 40.49;
- H3=005m ;T3 =120s — L3 =2.25 m — ¢3 = 38.38;

Note that the wave periods are around the natural period of the WEC equal to
1.136 s, causing resonance of the WEC's heave motion. The three wave com-
ponents are non-linear and therefore linear wave theory is not applicable and a
non-linear fluid solver is required. Furthermore, waves generated with different
wave periods generate new wave components which do not satisfy the linear dis-
persion relation. This is indicated in Figure 5.13 by the surface elevations over
the length of the N\WT atz =1m, 2 =2m, 2 =3m,z=4m,z=5m
and = 6 m for both the linear wave theory (dashed blue lines), equation (5.8),
and the CFD result (solid red lines) during the first 30 seconds of the simulation.
Due to the large wave steepness, wave breaking is induced between x = 2 m
and z = 3 m. This observation stresses the need for a CFD NWT to perform
survivability simulations of a WEC subjected to breaking waves.

For the second simulation, a WEC is installed in a three-dimensional (3D)
NWT and the same irregular waves are generated. The WEC's centre is located at
x = 3 m, inside the wave breaking zone as found during the preliminary simulation
using an empty NWT. A longitudinal symmetry plane is implemented to reduce
the size of the computational domain. The NWT is 8 m long, 1.6 m high and
0.7875 m wide. The computational domain has a vertical resolution of 1 ¢m and
a horizontal resolution of maximum 2 ¢m around the free water surface. A detail
of a longitudinal cross section around the WEC is visualised in Figure 5.14. The
aspect ratio of the cells behind the WEC towards the outlet boundary on the right
increases gradually which will cause numerical wave damping. This is however
beneficial in order to avoid wave reflection from the absorbing outlet boundary. A
maximum Courant number of 0.3 is used to limit the time step.

Figure 5.15 and Figure 5.16 visualise time series for the vertical position of
the WEC z and the horizontal surge force acting on the WEC F), respectively.
Between t = 5 s and t = 10 s for example, the amplitude of the WEC's heave
motion is gradually increasing due to resonance effects and the viscous damping
force is important to predict correctly the WEC's heave motion. In Figure 5.16,
the peaks observed in the time signal of the surge force on the WEC indicate the
breaking wave impacts on the WEC. These forces obtained during a survivability
simulation are important to quantify the design loading conditions on a WEC.

Figure 5.17 depicts the number of sub iterations to achieve a converged fluid—
motion coupling during every time step. Mostly two and occasionally three or
more sub iterations are needed which indicates the successful application of the
accelerated coupling algorithm for a survivability simulation of a WEC unit.

Finally, a snapshot of a breaking wave impacting on the WEC is visualised in
Figure 5.18 at ¢t = 6.20 s. The wave starts to break in front of the WEC and the
overturning volume of water is impacting on the WEC. Those highly non-linear
and fully turbulent flows for breaking wave impact simulations are only possible by
using a CFD NWT.
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Figure 5.13: Surface elevations obtained with linear wave theory (equation (5.8), blue
dashed lines) and in the empty CFD NWT (red solid lines).
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Figure 5.14: Cross section (X Z-plane) of the 3D computational domain in which a WEC
is installed showing the initial condition for the volume fraction a at t = 0 s (o = 1:
water shown in red, a = 0: air shown in blue).
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Figure 5.15: Vertical position z of the WEC subjected to breaking waves.
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Figure 5.16: Horizontal surge force F; acting on the WEC subjected to breaking waves.

5.7 Conclusions

Sections 5.1 to 5.5 presents several cases of a numerical simulation of a heaving
WEC inside a numerical wave flume. These numerical results are validated against
experimental data for both a free decay test and two specific regular wave trains.
Regarding the free decay test, a very good agreement is obtained between nu-
merical and experimental results. Both the vertical position of the WEC and the
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Figure 5.17: The number of sub iterations for every time step to have a converged
fluid—motion coupling for the WEC subjected to breaking waves.
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Figure 5.18: A snapshot at t = 6.20 s of a breaking wave impacting on the WEC in the
NWT. Contour lines of the surface elevation [m] are depicted on the isosurface for the
volume fraction @ = 0.50. The vertical plane visualises the velocity magnitude [m/s].

radiated wave field show an excellent agreement. Furthermore, simulations of a
WEC subjected to two specific regular wave trains return promising results for its
motion and perturbed wave field. The paper shows that the combination of Open-
FOAM and IHFOAM is a robust and suitable toolbox to research fluid-structure
interaction. Moreover, OpenFOAM/IHFOAM seems capable to study the inter-
action between multiple WECs because the radiated wave field is captured very
accurately.

Based on the proof of concept study reported in section 5.6, we conclude
that a CFD NWT s necessary to resolve non-linear wave—wave interactions during
wave propagation and to simulate wave breaking events on a WEC for testing
survivability conditions. Furthermore, it has been demonstrated that our coupling
algorithm for the fluid—motion solver remains stable under extreme wave conditions
and large displacements of the WEC by using few sub iterations during every time
step. Future research is required to validate the numerical model for extreme wave
conditions by using experimental measurements. In addition, a coupling between
an accurate wave-structure interaction solver (e.g. OpenFOAM as a non-linear
viscous NWT) and a fast wave-propagation solver (e.g. OceanWave3D as a non-
linear potential flow NWT) will increase the efficiency of the numerical simulations
by reducing the time-consuming 3D CFD domain.






Chapter 6

Numerical simulations of a
wave energy converter array

The last chapter dealing with fluid-structure interaction simulations focusses on
the implementation of multiple closely-spaced wave energy converters in an array
configuration installed in a numerical wave tank. The numerically obtained results
are validated with the largest database of wave energy converter arrays available:
the WECwakes data set (Hydralab IV project, HylV-DHI-08, 2013).

This chapter is originally published as:

Devolder, B., Stratigaki, V., Troch, P., and Rauwoens, P. (2018). CFD Simulations
of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular
Waves. Energies, 11(3):641. doi:10.3390/en11030641.
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CFD Simulations of Floating Point Absorber Wave Energy
Converter Arrays Subjected to Regular Waves

Brecht Devolder, Vasiliki Stratigaki, Peter Troch, Pieter Rauwoens

Abstract

In this paper we use the Computational Fluid Dynamics (CFD) toolbox OpenFOAM
to perform numerical simulations of multiple floating point absorber Wave Energy
Converters (WECs) arranged in a geometrical array configuration inside a numeri-
cal wave tank (NWT). The two-phase Navier-Stokes fluid solver is coupled with a
motion solver to simulate the hydrodynamic flow field around the WECs and the
wave-induced rigid body heave motion of each WEC within the array. In this study,
the numerical simulations of a single WEC unit are extended to multiple WECs and
the complexity of modelling individual floating objects close to each other in an
array layout is tackled. The NWT is validated for fluid-structure interaction (FSI)
simulations by using experimental measurements for an array of two, five and up to
nine heaving WECs subjected to regular waves. The validation is achieved by using
mathematical models to include frictional forces observed during the experimental
tests. For all the simulations presented, a good agreement is found between the
numerical and the experimental results for the WECs' heave motions, the surge
forces on the WECs and the perturbed wave field around the WECs. As a result,
our coupled CFD—motion solver proves to be a suitable and accurate toolbox for
the study of fluid-structure interaction problems of WEC arrays.

Keywords: CFD; OpenFOAM® /IHFOAM; Wave energy; Array modelling; Vali-
dation study
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6.1 Introduction

Wave energy from ocean waves is captured by Wave Energy Converters (WECs)
and converted into electrical power. In this study, WECs of the floating point
absorber (FPA) type are selected. In order to extract a considerable amount of
wave power at a location in a cost-effective way, a number of WECs are arranged
in arrays or farms using a particular geometrical configuration. Firstly, interactions
between the individual WECs (near-field effects) affect the overall power production
of the array. One should avoid, for instance, that one WEC is positioned in the
wake region, with lower wave heights, of another WEC within the array. Secondly,
the wave height reduction behind one or more WEC arrays (far-field effects) affects
other users in the sea, the environment or even the coastline. In this study, fluid-
structure interaction (FSI) simulations are performed inside a numerical wave tank
(NWT) to study the near-field effects. The FSI simulations presented are carried
out within the Computational Fluid Dynamics (CFD) toolbox OpenFOAM which
solves the hydrodynamic flow field around the WECs and the kinematic motion
of each individual WEC unit within the array. CFD is able to include viscous,
turbulent and non-linear effects which are absent in simplified radiation-diffraction
models such as potential flow solvers based on the boundary element method
(BEM). These effects are not only important during survivability conditions, such
as extreme waves with wave breaking events (Ransley et al., 2017a), but also when
control strategies are applied to maximise the power output by driving the WEC's
motion into resonance (Davidson et al., 2018).

Numerical modelling of WECs has been reported extensively in the literature
and an excellent description and comparison of the different models is provided in
Wolgamot and Fitzgerald (2015). A good agreement between CFD and experimen-
tal results has been reported in Wolgamot and Fitzgerald (2015), demonstrating
the feasibility of CFD simulations for wave energy applications. CFD simulations
of a single WEC unit have been reported in previous work of the authors (Devolder
et al., 2016) but also in Davidson et al. (2015a), Stansby et al. (2015) and Ransley
et al. (2017b,a). The application of OpenFOAM is outlined in Davidson et al.
(2015a) as a NWT for testing WECs by presenting a free decay test, a forced
motion of the WEC and an irregular wave test. In Stansby et al. (2015), a CFD
NWT is used to enhance the capture width of a particular WEC: the three float line
absorber M4. They stressed that mechanical resistance in the experiments might
influence the experimentally obtained heave motions. This also explains the differ-
ences observed between the numerical results and the experimental measurements.
Thorough validation of the numerical results for a single WEC unit using experi-
mental data is performed by Ransley et al. (2017b). They modelled the Wavestar
point absorber WEC in a CFD NWT and performed diffraction tests (i.e. the
WEC is fixed at a specific draft), a freely floating WEC subjected to operational
conditions and a test with extreme wave conditions. In general, good results are
obtained for the pressure on the WEC and the WEC's response to incident waves.
The extreme wave case simulation remained stable and is further investigated in
Ransley et al. (2017a). The authors subjected both a fixed truncated circular cylin-
der and a floating WEC to extreme waves. A good comparison is found between
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numerical and experimental data for the pressure and run-up on the cylinder sur-
face as well as for the floating WEC's motion and the mooring load. In Devolder
et al. (2016), the numerically obtained viscous flow field around the WECs and
the response of a single WEC unit have been verified and validated with exper-
imental data for free decay and regular wave tests. A good agreement between
experimental and numerical data was found for the WEC's heave motion and the
wave field around the WEC. More importantly, attention is required for correctly
including frictional forces observed during the experiments in a CFD model. These
simulations were the starting point prior to model multiple WECs installed in an
array configuration inside a CFD NWT. Numerical simulations of WEC arrays using
simplified radiation-diffraction models have been published in Babarit et al. (2013),
McNatt et al. (2015), Wolgamot et al. (2016) and Troch and Stratigaki (2016) for
example. However, CFD simulations of a WEC array are scarce and have only been
reported by a few researchers, e.g. Agamloh et al. (2008) and Mccallum (2017).
In Agamloh et al. (2008), only a brief introduction regarding an array of two WECs
subjected to regular waves is reported. It is also mentioned that more simulations
are needed in order to fully quantify the interactions between multiple WECs. More
recently, Mccallum (2017) performed free decay tests of a single WEC unit and an
array of two and five WECs in a CFD NWT and compared the numerical results
with experimental data from the WECwakes project (Stratigaki et al., 2014, 2015).
However, CFD simulations modelling the WECs' response to an incident wave field
are lacking. In Mccallum (2017), it is reported that the sliding mechanism used
for the experiments (see later in Figure 6.1a) is responsible for additional frictional
forces acting on the WEC. To address this, Mccallum (2017) recommended the
use of a linear damper in the numerical simulations in first instance.

In this work we present numerical results of WEC arrays subjected to non-
breaking regular waves representing operational conditions. Validation of these
numerical results with experimental data is required prior to survivability simula-
tions of WEC arrays under extreme wave loading with breaking wave events. The
ability of our coupled fluid—motion solver to simulate multiple independently mov-
ing WECs arranged in different array configurations subjected to regular waves has
been demonstrated in Devolder et al. (2017b) and Devolder et al. (2017c). In this
paper, we extend the comparison study between the numerical results obtained
with our coupled fluid—motion solver and the experimental data obtained during
the WECwakes project (Stratigaki et al., 2014, 2015) for an array of two, five and
up to nine WECs. The geometry of an individual heaving FPA type WEC is de-
picted in Figure 6.1. Figure 6.1 also shows the supporting axis which serves as a
sliding mechanism to allow solely heave motion of the WEC. A power take-off sys-
tem is installed on the WEC by mimicking a coulomb damper using friction brakes
(composed of two PTFE blocks and four springs) between the floating WEC and
the supporting axis. The WECwakes tests focussed on recording WEC responses,
forces on WECs and wave field modifications around single WEC units and WEC
arrays of 2 up to 25 WECs. The experiments performed in the wave basin at DHI
(Denamrk) within the EU FP7 Hydralab IV program are until today the largest
experimental setup of this kind worldwide. WECwakes resulted in a comprehensive
database which is publicly available for researchers trough the Hydralab rules. Not
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only the WECs' heave motions but also the surge forces acting on the WECs and
the perturbed wave field around the different WEC arrays obtained in a CFD NWT
are validated in this paper using the WECwakes dataset.
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Figure 6.1: (a) Definition sketch of the cross section of a single WEC unit; (b) photograph
of a single WEC unit within an array installed in the DHI wave basin during the WECwakes
project. Adopted from Stratigaki et al. (2014).

The remainder of this paper is organised as follows. Firstly, in section 6.2, the
governing equations for the numerical model are presented, followed by a descrip-
tion of the computational domain, the boundary conditions applied and the solver
settings. Subsequently in section 6.3, the numerical model is used to perform sev-
eral simulations while in section 6.4 the obtained results are discussed in detail.
Finally, the conclusions are drawn in section 6.5.

6.2 Numerical model

In this section, the numerical model used for simulating WEC arrays inside a CFD
NWT is summarised. Subsequently, the computational domain is presented to-
gether with the grid characteristics. The last two parts of this section are dedicated
to explain the different boundary conditions and solver settings.

6.2.1 Coupled fluid—-motion solver

The coupled fluid-motion solver is implemented in OpenFOAM® | version 3.0.1
(2015a). The governing equations for the fluid and motion solver together with
the FSI coupling algorithm are formulated in following three subsections.
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6.2.1.1 Fluid solver

The two-phase fluid solver uses the three dimensional (3D) incompressible Reynolds-
Averaged Navier-Stokes (RANS) equations to express the motion of the two fluids
(i.e. water and air). The RANS equations consist of a mass conservation equation
(6.1) and a momentum conservation equation (6.2) written in Einstein summation
notation as:

5ui -
9. =" (6.1)

Bt [“)xj 8xj

Opu;  Opuju; o ou; dp*

+ Heff axj axl + b,i +fa,z ( )
in which t is the time, u; (i = x,y, 2) are the Cartesian components of the fluid
velocity, p is the fluid density, peys is the effective dynamic viscosity, p* is the
pressure in excess of the hydrostatic. Fjp is an external body force (including
gravity) which is defined as:

Ip
Fyi = —giz; .
b, gxaxi (6.3)

in which the gravitational acceleration vector g = [0 ; 0 ; —9.81] m/s?, ¥ is the
Cartesian coordinate vector (z, y, z), f, is the surface tension tensor term which
is neglected in the present study. Note that the mean values for the variables
considered are written in terms of Favre-averaging (density weighted) due to the
varying density in the NWT.

The interface between water and air is obtained by the Volume of Fluid (VoF)
method using a compression term as documented in Berberovi¢ et al. (2009). The
method is based on a volume fraction a which is O for a completely dry cell and
1 for a completely wet cell and in between 0 and 1 for an interface cell containing
both water and air. The volume fraction is solved by an advection equation (6.4):

Ja Oujae OQueio(l —a)
o o T o, 0 (6.4)

where u.; = min[c, |u;|, max(Ju;|)]. In the present study, the default value of ¢,
equal to 1 is applied.

In a post-processing step, the position of the free water surface is determined
by a discrete integration of the volume fraction a over a vertical line (Z-direction)
divided in n equal parts:

n—1

Zwater level = Z ai(zi+1 - Zi) (65)
1=0
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The density of the fluid p within a computational cell is calculated by a weighted
value based on the volume fraction a. The effective dynamic viscosity picys is
obtained by the sum of a weighted value based on the volume faction « and an
additional turbulent dynamic viscosity pv;:

P = QPyater + (]- - a)pair (66)

frers = Cwater + (1 — @)pair + pri (6.7)

For the waves studied in this work, the Reynolds (Re) number and the Keulegan-
Carpenter (KC) number are equal to 6.19 x 10* and 0.79 respectively. According
to Sumer and Fredsge (1997), no clear turbulent behaviour is expected around
the WECs for those Re and KC values. Therefore, in the first instance, only
laminar solutions are calculated by setting v; equal to 0. As shown later on, the
main features of the WECs' heave motions, the surge forces on the WECs and
the perturbed wave field are already captured by assuming laminar flow conditions.
However, in case turbulence plays a major role (e.g. flow separation due to a
non-streamlined WEC geometry or during wave breaking events), we refer to our
previous works (Devolder et al., 2017a, 2018b) on how to properly deal with RANS
turbulence modelling for a two-phase fluid solver by using a buoyancy-modified
k —work —w SST turbulence model. A buoyancy-modified turbulence model not
only results in a stable wave propagation model without wave damping (Devolder
et al.,, 2017a) but it also predicts the turbulence level inside the flow field more
accurately in the surf zone where waves break (Devolder et al., 2018b).

6.2.1.2 Motion solver

The kinematic motion of a rigid body is calculated by a motion solver. During the
WECwakes project, the motion of the WECs was restricted to heave only. This
allows a reduction from a six to a one degree of freedom motion solver. The motion
solver calculates the vertical position z of the body by applying Newton's second
law at the current time n + 1:

Ftt = mgnt? (6.8)

in which F"*1 is the overall vertical force (including gravity) obtained with the
fluid solver by integrating the pressure and shear forces acting on the body's surface
and a"*! is the vertical acceleration of the body. Once the acceleration a™*! is
known, the vertical velocity ¥”t! and the vertical position z"*! during the same
time n + 1 are calculated by a second order accurate Crank-Nicolson integration
scheme:

1
"t =" 4 g(a" +a" AT (6.9)
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1
Zn+1 _ Zn + §(Un 4 U"+1)AT (610)

in which n is the previous time, n+ 1 is the current time and AT is the time step.
The new position of the body serves as a boundary condition for the mesh motion
operation (see later in section 6.2.2).

In order to have a converged solution between the hydrodynamic flow field
around and the kinematic motion of a WEC, the following kinematic condition
needs to be fulfilled at the interface between the fluid and the WEC:

Uy =0 (6.11)

in which u, and v are the vertical fluid velocity and the vertical WEC's velocity
respectively. Note that the fluid velocities u, and w, are equal to 0 m/s at the
fluid-WEC interface because only heave motion of the WEC is allowed.

6.2.1.3 Coupling algorithm

The coupling between a fluid and a motion solver in rigid body simulations is done
by interchanging the total force acting on the body. In the present study, the
fluid solver returns the vertical force acting on the WEC which is calculated as the
discrete sum of the pressure forces, viscous forces, the downward weight of the
body and all the external forces acting on the WEC:

body body

Frtt — Z pin;A;) + Z —mg+ Z et k) (6.12)
J

in which p; and 7_"] are respectively the pressure and the shear stress tensor acting
on each boundary face around the WEC, nj is a unit vector normal to the area A;
of boundary face j and m is the dry mass of the WEC. F,,; is any external force
acting on the WEC such as the power take-off (PTO) system force or the frictional
force caused by the sliding mechanism used in the experimental setup (see Figure
6.1 and further in section 6.3).

In order to satisfy equation (6.8), the coupling algorithm is applying multiple
sub iterations during every time step in the transient simulation. The convergence
speed between the fluid and motion solver is enhanced by using an accelerated
coupling algorithm derived in previous work of the authors (Devolder et al., 2018a),
reducing the computational cost in terms of CPU time. For floating bodies with
a small added mass effect, such as the WECs considered in this research, a fixed
amount of three sub iterations is sufficient to reach convergence of equation (6.8)
during every time step, see Devolder et al. (2018a).

6.2.2 Computational domain

All the numerical simulations are performed in a NWT which represents the exper-
imental wave basin as well as possible. Details regarding the experimental wave
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basin at DHI have been included in previous work (Devolder et al., 2017c). A plan
view of the NWT setup is depicted in Figure 6.2 showing the WECs' and wave
gauges' (WG) positions as used during the WECwakes experiments. In summary,
the NWT is represented by a structured grid consisting of only hexahedral cells. In
order to limit the number of grid cells in the computational domain, a longitudinal
symmetry plane is used along the X-axis. As an example, a longitudinal cross
section along the X-axis of the numerical domain for the 5-WEC array is shown in
Figure 6.3. Local mesh refinements are performed in the zones of interest: around
the free water surface and around the individual WECs. The vertical grid resolution
Azis 1 em (= H/7 in which H = 0.074 m is the wave height, see later in sec-
tion 6.3) in the zones of interest, which is sufficiently according to Devolder et al.
(2016) and Devolder et al. (2017c). The horizontal cell sizes Az and Ay are equal
to 2 em (&~ L/119 in which L = 2.38 m is the wave length, see Stratigaki (2014))
and increase towards the boundaries of the NWT in order to limit the number of
cells and thus also the required computing time. The only exception is that Ax is
kept constant towards the inlet boundary in order to properly simulate wave prop-
agation towards the WEC array. Note that properly resolving the boundary layer
around the WEC units would require a very fine mesh resolution, resulting in cells
with a large aspect ratio. It is known that those type of cells are to be avoided
for a VoF-type fluid solver, as they will adversely affect the accuracy of the free
surface position. Furthermore, for the simulations presented in this work, pressure
forces acting on the WEC will dominate over viscous effects with respect to the
wave-induced WEC's heave motions.

In order to simulate multiple independently moving WECs in an array con-
figuration, arbitrary mesh interfaces (AMIs) are implemented in order to create
sliding meshes (see dashed vertical lines in Figure 6.4 for the case of two WECs).
These AMls define a zone of cells around each WEC. In each zone, only the low-
est and highest row of cells (see blue shaded boxes in Figure 6.4) are expanded
or compressed according to the motion of the WEC located in that zone. This
methodology is implemented to prevent undesirable mesh deformations around the
interface between water and air (i.e. high non-orthogonality and skewness of the
computational cells). As a disadvantage, high aspect ratios are obtained for the
distorted cells. However since those cells are not inside the zones of interest, it
does not affect the accuracy of the simulations. All the variables solved with the
fluid solver, such as velocity, pressure and volume fraction, are interpolated over
the AMls.

6.2.3 Boundary conditions

The bottom and side wall of the NWT are modelled as a solid wall: a Dirichlet
boundary condition is set for the velocity (0 m/s in the three directions) while
the pressure and volume fraction are set to a Neumann condition. At the inlet
and outlet, wave generation and absorption are implemented using the IHFOAM
toolbox (Higuera et al., 2013a,b). On all the boundary faces of each WEC, the
velocity vector is set to a moving wall condition (see equation (6.11)) and the
pressure and volume fraction are set to a Neumann condition. The atmospheric
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Figure 6.2: Plan view (XY-plane) of the NWT using one symmetry plane on the left
side and including all the WECs considered for the simulations presented. The red marks
indicate the position of all the available wave gauges (WG) installed in the DHI wave
basin.

Figure 6.3: Cross section A-A’ (X Z-plane, see Figure 6.2) of the computational domain
for the 5-WEC array (WEC1 on the left and WECS5 on the right) (blue = water, grey =
air).
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Figure 6.4: A cross section (X Z-plane) of two independently moving WECs. Only the
highest and lowest row of cells (blue shaded boxes) in a zone are distorted (expanded or
compressed) according to the heave motion of the WEC located in that zone. In between
the zones, AMIs are implemented to create sliding meshes (dashed lines).

conditions at the top of the numerical domain are set to a mixed Dirichlet-Neumann
boundary condition for the velocity, pressure and volume fraction.

6.2.4 Solver settings

For all the simulations presented, the following solver settings are used: central
discretisation for the pressure gradient and the diffusion terms; TVD (total variation
diminishing) schemes with a van Leer limiter (van Leer, 1974) for the divergence
operators; second order implicit time discretisation; a maximum Courant number
equal to 0.3 as recommended in Devolder et al. (2018a) for FSI simulations using
a VoF method.

6.3 Results

In this section, we present numerical simulations of three different WEC array
configurations subjected to regular waves. An overview of the employed benchmark
data, both numerical and experimental results, is summarised in Table 6.1. In
this study, the underlined tests and results are presented and validated using the
experimental WECwakes dataset. The other results, i.e. the free decay tests, have
been reported in previous works (Devolder et al., 2017b,c). For the 2-WEC and
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5-WEC array, a simulation with fixed WECs is also performed in which the WECs
are not moving. Subsequently, more challenging simulations are presented in which
the heave motion is allowed for a 2-WEC, 5-WEC and 9-WEC array in response to
an incident regular wave train. For each test, the waves have a height H equal to
0.074 m, a wave period T of 1.26 s and are generated in a water depth d of 0.70 m.
At the inlet of the numerical wave tank, waves are generated using a second order
Stokes theory and active wave absorption is turned on. Each numerical simulation
ran for 50 seconds to obtain a sufficiently long dataset after the warming-up phase
but only the last 10 seconds are shown. The numerical results are validated by
using experimental data for the WECs' heave motions, the surge forces on the
WECs and the surface elevations in the wave tank. The relative error between the
numerical result (num) and the experimental result (exp), in percent, is defined as:

|(Dhmax — Pinin’) — (P — Prnin)|
error = max H;l;lp max min

¢exp
max min

x 100 % (6.13)

in which ¢ is representing the heave motion, surge force or surface elevation. The
maximum and minimum values for ¢ observed in the time signals are averaged
between t = 40 s and ¢ = 50 s. The numerically computed values for the error,
equation (6.13), are presented in Table 6.2.

Table 6.1: Overview of the employed benchmark data (numerical and experimental re-
sults). The arrows show the direction of the incoming waves.
(*Devolder et al. (2017b), 2Devolder et al. (2017c))

Layout Available type of tests | Available results

2 -WEC array Free decay (no PTO)! WECs' heave motion
— Free decay (PTO)? Surge force on WECs
— @ @ Fixed WECs Surface elevations
— Heaving WECs

5-WEC array Free decay (no PTO)!

— Fixed WECs

- (@B @) (5) | Heaving WECs

N

9-WEC array Heaving WECs

- WO

- OOG

- ®@
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Table 6.2: The relative error between the numerical and experimental result (equation
(6.13)) for all the simulations presented.

2-WEC array 5-WEC array | 9-WEC array

Result fixed heaving | fixed heaving heaving
ZWEC1 / / / 37 % 2 %
ZWEC?2 / / / 18 % 1 %
2ZW EC4 / 27 % / 44 % /
2WECS / 13 % / 5% /
ZWEC6 / / / / 64 %
ZWECT / / / / 16 %
2WECS / / / / 29 %
Fx wect / / 5% 9% 18 %
FXJ/VECQ / / 5 % 7 % 5 %
Fx wecs / / 7% 2% 6 %
FX,WEC4 7 % / 10 % 9 % /
Fxwgrcs 5% / 8 % 3% /
WG6 / / 3% 6 % 21 %
WGT7 / / 4 % 16 % 30 %
WG8 / / 17% 15% 11 %
WG9 4% 8 % 2% 6 % 13 %
WG10 7% 8 % 6 % 6 % /
WG11 2% 1% | 14 % 9% /
WG12 / / 8 % 5% 10 %
WG13 / / 3% 5% 5%
WG14 / / 2% 3% 11 %
WG15 / / 0% 20 % 12 %
WG17 / / / / 8 %
WG18 / / / / 1%
WG19 / / / / 20 %
WG20 / / / / 10 %

6.3.1 2-WEC array

In this first subsection, two WECs in line are modelled in the NWT (WEC4 and
WECS5 in Figure 6.2). The distance between the WECs' centre is equal to five
times their diameter (Dyw gc = 0.315 m), see Figure 6.2. Firstly, the WECs are
kept fixed in their equilibrium position and no motion is allowed. Secondly, the
WECs are allowed to heave in response to the incident waves.

6.3.1.1 Fixed 2-WEC array

If the WECs are kept fixed, the incident wave field is perturbed by wave reflection
and wave diffraction. The purpose of this particular test is to check the reproduc-
tion of the perturbed wave field in a numerical model without considering the wave
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field modification by the WECs' heave motion (i.e. radiated wave field around each
WEC).

Figure 6.5 presents the wave-induced surge (horizontal) forces acting on WEC4
and WEC5 as a function of time. The red line indicates the experimental data
while the blue line depicts the numerically obtained force by the CFD fluid solver.
Note that the noise in the time signals of the experimental force measurements has
been filtered out using a bandpass filter. An outstanding agreement is observed
between the numerical and experimental data which is also confirmed in Table 6.2
by relative errors equal to 7 % and 5 % for WEC4 and WECS5 respectively. This
achievement is a necessary requirement for the simulations with heaving WECs later
in this study because the wave-induced force acting on a floating body determines
its kinematic motion.
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Figure 6.5: Wave-induced surge force Fx wrc on WEC4 (top) and WEC5 (bottom),
both fixed, obtained with CFD (blue line) compared to the experimental measurements
(red line) after filtering out the noise.

The perturbed wave field due to reflection and diffraction is visualised in Figure
6.6 by the surface elevations at three locations in the NWT: WG9, WG10 and WG11
(see Figure 6.2). Again, the red lines indicate the experimental measurements and
the blue lines are the processed time series of the surface elevations in the NWT
(equation (6.5)). For WG9, before the 2-WEC array, and WG10, behind the 2-WEC
array, an identical signal is observed between numerical and experimental data (see
Table 6.2 for the relative errors). However, for WG11 further behind the 2-WEC
array, small discrepancies between numerical and experimental data are visible in
the maximum and minimum surface elevation (relative error of 23 %) but the wave
phase is similar. It is also observed that the wave height is the same for the three
wave gauges in the NWT and equal to 0.067 m which is slightly smaller than the
incident wave height equal to 0.074 m. It is very remarkable that this is not the
case for the experimental records, which show an increased wave height for WG11.
We expect however that due to the slender geometry of the WECs, wave diffraction
is not significant and no wave field modification is present at the position of WG10
and WG11 behind WECS. This is indicated by Figure 3.20a in Stratigaki (2014)
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Figure 6.6: Perturbed wave field using several wave gauges (see Figure 6.2) around the
2-WEC array with fixed WECs during a regular wave test (H = 0.074 m, T = 1.26 s,
d = 0.70 m) obtained with CFD (blue line) compared to the experimental data (red line).

which presents a cross section of the incident and diffracted wave fields’ amplitude
for a fixed single WEC unit obtained with the BEM solver WAMIT (2016).

6.3.1.2 Heaving 2-WEC array

In this section, the two WECs are allowed to heave in response to the incident
regular waves. The incident wave field is not only perturbed by diffracted and
reflected waves but also by radiated waves generated by the heave motion of the
WECGs. For heaving WECs, the perturbed wave field is thus a combination of
incoming, diffracted, reflected and radiated waves. The radiated wave field has
been validated separately in previous work (Devolder et al., 2017¢) by simulating a
free decay test of these WECs. It was concluded that the correspondence between
numerically and experimentally obtained surface elevations is good despite the small
wave amplitudes of the radiated wave field. However, internal friction caused by
the sliding mechanism between the WEC and the vertical supporting axis through
internal contact points during the experiments (see Figure 6.1a) requires attention
to correctly include it in a CFD model for validation studies. Therefore the following
two measures are undertaken to simulate the studied heaving WECs subjected
to regular waves. Firstly, the WEC's mass is modified and a linear damper is
needed to account for the internal friction due to the sliding mechanism used in
the experiments (cfr. viscous flow of water between the shaft and shaft bearing,
see Figure 6.1a). The method is described in Devolder et al. (2016) and is based
on tuning the WEC's heave motion to the experimental measurement for a free
decay test. The linear damper is formulated by an additional frictional force on the
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WEC:

FLD = —C’U(t) (614)

in which ¢ is the damping coefficient equal to 4.86 kg/s, as calculated in Devolder
et al. (2017c) by validating a free decay test using WEC5 and v(t) is the WEC's
vertical velocity. Secondly, the incident waves push the experimental WECs against
their sliding mechanism (cfr. a coulomb damper (Devolder et al., 2017c)), resulting
in an additional frictional force:

Fbea'r’ings,X =K |Fsu'r'ge(t)‘ SZg?’l(U(t)) (615)

in which the coefficient of friction x = 0.17 and Fjy;4¢ is the horizontal force in
the X-direction acting on the WEC.

For this test case, a PTO system is activated on both WECs to extract energy
out of the incident wave field (see Figure 6.1a). The PTO system used in the
experiments is modelled as a second coulomb damper (Devolder et al., 2017c):

Fpro = —pFspringsign(v(t)) = —pddakspringsign(v(t)) (6.16)

in which the spring compression increment dz = 30.5 mm and the spring stiffness
coefficient kspring = 0.14 N/mm.

Figure 6.7 shows the time series of the WECs' heave motions for both numerical
and experimental data and in general a good correspondence is observed. The
shape and the phase of both time signals are similar while the differences in heave
amplitudes are limited. For the experimental signals, the maximum heave amplitude
of WEC4 (0.050 m) is only slightly larger than that of WEC5 (0.045 m) while the
numerically obtained results show larger differences: 0.065 m and 0.050 m for
WEC4 and WEC5 respectively.

The time series of the surface elevations are presented in Figure 6.8. Differ-
ences between numerical and experimental signals are observed for the minimum
and mainly for the maximum surface elevations. The largest relative error is again
observed for WG11, which was also the case for the fixed WECs simulation pre-
sented in Figure 6.6 (see Table 6.2). Figure 6.9 depicts a snapshot of the perturbed
wave field at t = 50 s inside the NWT. Waves are generated and absorbed at the
right and left boundary respectively. The observed reduced wave height behind the
2-WEC array near the outlet boundary is due to the increasing aspect ratio of the
grid cells as reported in section 6.2.2. This increasing aspect ratio is responsible
for numerical wave damping. This is however beneficial in order to avoid wave
reflection from the absorbing outlet boundary. Only in a limited area around the
2-WEC array, a significantly perturbed wave field is observed in the NWT. The
wave gauges used in Figure 6.8 are however outside that zone which explains the
identical wave height in the NWT at those three locations. Due to the perturbed
wave field near the WECs, each WEC is slightly influencing the numerically pre-
dicted heave motion of the other WEC which shows the interaction between the
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two WECs. This is also illustrated in Figure 6.7 by observing a different amplitude
of the numerically obtained heave motions for both WECs.
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Figure 6.7: Vertical position of WEC4 (top) and WEC5 (bottom) obtained with CFD
(blue line) compared to the experimental heave motions (red line).
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Figure 6.8: Perturbed wave field using WG9, WG10 and WG11 (see Figure 6.2) around
the heaving 2-WEC array during a regular wave test (H = 0.074 m, T = 1.26 s, d =
0.70 m) obtained with CFD (blue line) compared to the experimental data (red line).

6.3.2 5-WEC array

In this subsection, three more WECs are added to the NWT resulting in an array
of five WECs installed in a line: WEC1 to WECS5 (see Figures 6.2 and 6.3). Again,
numerical and experimental results are presented using both fixed and heaving
WECs subjected to regular waves.
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Figure 6.9: A three dimensional snapshot of the perturbed wave field around the heaving
2-WEC array obtained with CFD at ¢ = 50 s. The arrow indicates the direction of the
incoming waves.

6.3.2.1 Fixed 5-WEC array

Figure 6.10 depicts the wave-induced surge force on the five fixed WECs as a
function of time for both numerical (blue lines) and experimental data (red lines).
Again, the numerically obtained surge forces are in a very good agreement with
the experimental data and show relative errors of maximum 10 % in Table 6.2.
The time signals also reveal that the maximum and minimum surge force on the
WECs is independent of the WEC's position in the array and wave basin. This is
also confirmed by comparing Figure 6.5 (2-WEC array) and Figure 6.10 (5-WEC
array) showing identical loading cycles on the fixed WECs.

The perturbed wave field due to the presence of fixed WECs is visualised by
using time series for the surface elevations in Figure 6.11 at different locations in
the NWT (see Figure 6.2). The numerical results are in a very good agreement
with the experimental measurements, except for WG8 and WG11 (see also the
larger relative errors in Table 6.2 compared to the other WGs). Similar to the
observation for the fixed 2-WEC array (section 6.3.1.1), a larger amplitude of the
experimentally obtained surface elevations for WG11 is observed compared to the
numerical results. For this test case, wave gauges were also installed in between the
WEGCs, see Figure 6.2. For WG6 to WG9, Figure 6.11 indicates a small perturbed
wave field due to reflection and diffraction: WG6: H = 0.086 m (reflection only),
WGT7: H = 0.070 m, WG8: H = 0.062 m and WG9: H = 0.059 m. Next to the
array (WG12, WG13, WG14 and WG15), no disturbance is observed in the time
signal of the surface elevations because those wave gauges are located outside the
zone of a significantly perturbed wave field.
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Figure 6.10: Wave-induced surge force Fx wrc on WECL (top) to WEC5 (bottom), all
fixed, obtained with CFD (blue line) compared to the experimental measurements (red
line) after filtering out the noise.

6.3.2.2 Heaving 5-WEC array

If the WECs are allowed to heave, three frictional forces (FLp, Frearings,x and
Fpro) are applied on each WEC with identical parameters as for the 2-WEC array
described in section 6.3.1.2. The heave motions of the five WECs as a function of
time are given in Figure 6.12 for both experimental and numerical data. The time
series reveal that, in general, both results are comparable. However, significant
differences in heave amplitudes are observed for WEC1 and WEC4 with relative
errors larger than 35 % (see Table 6.2). Remarkably for WEC2, the numerically
predicted heave motion shows a small phase difference with the experimental data.
Those discrepancies are discussed in the next section 6.4.
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Figure 6.11: Perturbed wave field using WG6 to WG15 (see Figure 6.2) around the
5-WEC array with fixed WECs during a regular wave test (H = 0.074 m, T = 1.26 s,
d = 0.70 m) obtained with CFD (blue line) compared to the experimental data (red line).

Figure 6.13 depicts the wave-induced surge force acting on the WECs for both
experimental and numerical data. In contrast to the discrepancies observed for the
WECs' heave motions, a better agreement between numerical and experimental
data is demonstrated for the surge forces on the WECs. However, for WECI,
the peaks and troughs in the experimental signal are deviating from the numerical
result. This is due to large spikes observed in the experimental recorded time series
before noise filtering is applied.

A good agreement is also found when comparing numerical and experimental
data for the perturbed wave field around the 5-WEC array (Figure 6.14). However,
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Figure 6.12: Vertical position of WEC1 (top) to WEC5 (bottom) obtained with CFD
(blue line) compared to the experimental heave motions (red line).
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Figure 6.13: Wave-induced surge force Fx wrc on WEC1 (top) to WEC5 (bottom),
all heaving, obtained with CFD (blue line) compared to the experimental measurements
after filtering the noise (red line).

some discrepancies are observed regarding the time series of the surface elevations
in the wave basin, in particular for the maximum and minimum surface elevations.
Figure 6.15 depicts a snapshot of the perturbed wave field at ¢t = 50 s. Similar
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to Figure 6.9, waves are generated and absorbed at the right and left boundary
respectively. Again, the reduced wave height behind the 5-WEC array near the
outlet boundary is due to the increasing aspect ratio of the grid cells leading to
numerical wave damping. In a local zone near the array, a significantly perturbed
wave field is predicted by the numerical model. Due to a perturbed wave field near
the array, the numerically predicted heave motions for the individual WECs are not
uniform (see the blue lines in Figure 6.12). Furthermore, an important reduction
in wave height is observed right behind the array.

6.3.3 9-WEC array

The last test presented in this paper uses an array consisting of nine WECs arranged
in a 3 x 3 layout. By using the symmetry plane shown in Figure 6.2, only six WECs
are modelled: WEC1 to WEC3 and WEC6 to WEC8. Again, the same frictional
forces are applied as previously defined in section 6.3.1.2 (Fpro, Frearings,x and
Frp). In addition for WEC6, WEC7 and WECS, an extra coulomb damper is
implemented in order to take into account the frictional force of the bearings on
the supporting axis (see Figure 6.1) in the Y-direction into account (cfr. equation
6.15):

Fbearingsﬁ’ =M ‘stay(t)| S’Lg?’L(U(t)) (617)

where Fqy (%) is the horizontal force in the Y-direction acting on the WEC.

The heave motions for the six WECs are depicted in Figure 6.16. For WEC6
to WECS, also the experimental signals for WEC11 to WEC13 (see Table 6.1) are
shown in red. Those two time series are very similar and indicate a symmetrical
behaviour for the experimentally obtained heave motions. For WEC1 to WECS3,
installed on the symmetry plane, an identical result is observed between the exper-
imental and the numerical model (low relative errors in Table 6.2). However for
the outer WECs (WEC6 to WECS), larger amplitudes are observed for the numer-
ical result compared to the experimental data resulting in significant relative errors
equal to 64 %, 16 % and 29 % respectively. Probably, larger frictional forces were
acting on WEC6 to WECS during the experiments.

The wave-induced surge force acting on WEC1 to WEC3, installed on the
symmetry plane, are presented in Figure 6.17 for both the experimental and the
numerical model. A good comparison is found between the results but again for
WEC1, the peaks and troughs in the experimental signal are deviating from the
numerical result due to large spikes observed in the experimental measurements
before applying a bandpass filter.

The experimentally and numerically obtained perturbed wave field around the
WECs are visualised in Figure 6.18 using several wave gauges (see Figure 6.2). Only
the wave gauges positioned close to the 9-WEC array are presented. For the wave
gauges which are not on the symmetry plane, two experimental results are shown.
Only for WG18, WG19 and WG20, a slightly asymmetrical wave field is observed
inside the experimental wave basin. In general, except for WG7, a good agreement
is obtained between both models taking into account the remarks reported in the
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Figure 6.14: Perturbed wave field using several wave gauges (see Figure 6.2) around the
heaving 5-WEC array during a regular wave test (H = 0.074 m, T =1.26 s, d = 0.70 m)
obtained with CFD (blue line) compared to the experimental data (red line).
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Figure 6.15: A three dimensional snapshot of the perturbed wave field around the 5-WEC
array obtained with CFD at ¢ = 50 s. The arrow indicates the direction of the incoming
waves.
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Figure 6.16: Vertical position of WEC1-2-3-6-7-8 obtained with CFD (blue line) com-
pared to the experimental heave motions (red line).

previous sections 6.3.1.2 and 6.3.2.2. In particular for WG18, WG19 and WG20,
the numerical result lies in-between the two experimental lines with a small phase
shift. Figure 6.19 depicts a snapshot of the perturbed wave field at t = 50 s. In
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Figure 6.17: Wave-induced surge force F'x,wrc acting on WEC1 (top) to WEC3 (bot-
tom), all heaving, obtained with CFD (blue line) compared to the experimental measure-
ments after filtering the noise (red line).

a large area around the OWEC array, a significantly perturbed wave field by the
heaving WECs is clearly visible. Due to the larger width of the array, compared to
the 2-WEC and 5-WEC array (in a line), a clear reduction in wave height is visible
behind the array, which is also observed in Figure 6.18 for WG9.

6.4 Discussion

In the previous section 6.3, two types of differences between the numerical and
experimental results are observed. The first type of differences is seen in the heave
motions of the WECs. In this work, we tried to capture as much physics as possible
in the numerical model to reproduce the experimental tests. The WEC's PTO
system and the sliding mechanism (see Figure 6.1) are included by mathematical
models to take into account their influence on the WECs' kinematic motion. During
the WECwakes experiments, the PTO system was mimicking a coulomb damper
and is thus initially implemented in the numerical model as a coulomb damper
only. The sliding mechanism was incorporated by both a linear damper (viscous
flow of water between the shaft and shaft bearing) and a coulomb damper (caused
by the wave induced horizontal force). However in our previous work (Devolder
et al., 2017c), we found that the PTO system is not only behaving as a coulomb
damper but also partially as an additional linear damper. Furthermore in reality,
friction behaves uncontrolled. For example during the WECwakes project, it is
noticed that the friction characteristics change due to fouling of the supporting
axes for the sliding mechanism. Therefore before each testing day, the supporting
axes were cleaned in order to minimise that particular model effect. This highlights
partially the unknown physical behaviour of frictional forces in the experimental
model. Furthermore, the frictional forces caused by the sliding mechanism might
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Figure 6.18: Perturbed wave field using several wave gauges (see Figure 6.2) around the
heaving 9-WEC array during a regular wave test (H = 0.074 m, T =1.26 s, d = 0.70 m)
obtained with CFD (blue line) compared to the experimental data (red line).
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Figure 6.19: A three dimensional snapshot of the perturbed wave field around the heaving
9-WEC array obtained with CFD at ¢ = 50 s. The arrow indicates the direction of the
incoming waves.

vary over the different WECs within the array. This is probably the most important
explanation for the large variation in relative errors obtained for the heave motions
over the different WECs, as indicated in Table 6.2. Note that in this study, identical
parameters are used to model the frictional forces on all the WECs based on
tuning the numerically obtained heave motion to the experimental measurement
during a free decay test using WEC5. In order to perform a validation study of
fluid-structure interaction simulations of floating heaving WECs, we recommend to
start with validating a free decay test for each individual WEC within the array by
using experimental data. This allows to estimate frictional forces due to a possible
sliding mechanism by computing the hydrodynamic parameters of the device (e.g.
the damped natural frequency and the hydrodynamic damping coefficient).

The second type of differences is found in the surface elevations of the perturbed
wave field. Those deviations are largely assigned to the difference in reflection
between the experimental wave basin (with an absorbing beach) and the numerical
wave tank (with a shallow water absorbing boundary condition). Additionally,
differences between experimental and numerical data are possibly caused by model
effects in the experimental setup and numerical errors in simulations presented. For
example, small errors in the calibration of the wave gauges contribute to the overall
error observed in the experimentally obtained surface elevations. Interestingly, the
surface elevations around the WECs, are showing smaller relative errors compared
to the heave motions (see Table 6.2). Presumable, they are less influenced by the
frictional forces acting on the WECs due to the sliding mechanism used for the
experiments.

In general, a very good comparison is found for the horizontal wave-induced
surge forces acting on the WECs, as indicated by the relative errors always smaller
than 10 %, except one, in Table 6.2. We expect that the surge force is not
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influenced by the sliding mechanism and consequently does not depend on the
frictional forces modelled by the coulomb damper and the linear damper in the
numerical model. In order to run simulations with more degrees of freedom (e.g.
surge motion), a good prediction of the surge force is required for example.

Despite the observed inaccuracies, in general, the numerical results are in good
agreement with the experimentally obtained measurements. In contrast to the
experimental data, which are only available at discrete locations, the numerical
model yields a much higher spatial resolution of the perturbed wave field inside and
around the WEC (array). During the validation of the numerically obtained surface
elevations using the experimental measurements, a significantly perturbed wave
field is not always observed at those specific locations. Snapshots of the surface
elevations inside the numerical wave tank indicate that a significantly perturbed
wave field is only observed very close to the WECs where no experimental wave
gauges were installed. As a result, the WEC array effects are much easier to identify
using the validated numerical wave tank.

6.5 Conclusions

Numerical simulations of two, five and nine heaving FPA WECs installed in a ge-
ometrical array configuration inside a numerical wave tank using CFD have been
presented. The simulation results show the capability of state of the art numer-
ical models, including stable coupled fluid—motion solvers, to accurately predict
the independent motion of closely-spaced WECs in response to an incoming wave
field. As such we are able, as a worldwide pioneering result, to simulate an array
of nine independently moving WECs in a numerical wave tank using CFD. The
numerically obtained results are validated using the WECwakes dataset. A good
agreement is demonstrated for the WEC's heave motion, the wave-induced surge
force acting on the WECs and surface elevations of the perturbed wave field at the
measured locations. While results are perfect for the WECs on the symmetry plane
of the numerical wave tank, deviations are noticed for the outer WECs, which
we attribute to inaccuracies in the estimation of the frictional forces caused by
the sliding mechanism of those particular WECs. In general, the numerical results
have shown that our coupled fluid—-motion solver is a robust and suitable toolbox
to study fluid-structure interaction of WEC arrays, making it a complementary tool
to experimental model tests. This research opens up the possibilities for numeri-
cal simulations of any kind of floating structure installed in any sea state using a
numerical wave tank.



Chapter 7

Conclusions

7.1 Summary of the key findings

In this thesis, numerical simulations of coastal and offshore processes have been
presented using a non-linear viscous numerical wave tank (NWT) implemented in
the open source CFD toolbox OpenFOAM. The NWT uses a two-phase fluid solver
based on the Navier-Stokes equations and a volume of fluid (VoF) method to track
the interface between water and air. Boundary conditions for wave generation and
absorption are adopted from the IHFOAM toolbox. In the first part of the thesis,
Reynolds-averaged Navier-Stokes (RANS) turbulence modelling applied to a two-
phase fluid solver has been investigated and enhanced for the simulation of wave
propagation and wave breaking. The second part of the thesis has been focussing
on accelerated fluid-structure interaction (FSI) simulations of floating bodies in the
framework of wave energy converter (WEC) arrays.

The application of traditional RANS turbulence models for wave modelling in
a NWT using a two-phase fluid solver are responsible for a large production of
turbulent kinetic energy (TKE) around the air-water interface. This increases the
turbulent viscosity at the free water surface significantly, resulting in excessive
wave damping along the length of the computational domain. In this thesis, two
buoyancy-modified RANS turbulence models, &k — w and k —w SST, have been
applied to perform simulations of waves in a NWT. The modification is based on
including explicitly the density in the turbulence transport equations and by adding
implicitly a buoyancy source term to the TKE-equation. The influence of the buoy-
ancy source term in the k —w SST model has been demonstrated by simulating
propagating regular waves. As a result, the buoyancy-modified k —w SST model
switches to the laminar regime near the free water surface, preventing excessive
wave damping for non-breaking high-steepness waves. Furthermore, simulations of
wave run-up around a monopile under regular waves have shown similar results for
the surface elevations around the monopile as experimentally obtained in a physical
wave flume. In case of wave breaking simulations, two zones have been defined in
the NWT: a wave propagation zone and a wave breaking zone. A unified model
that handles both regions at the same time is presented by using the buoyancy-
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modified turbulence models. The performance of both a buoyancy-modified k£ — w
and a k —w SST model for simulating breaking waves is evaluated for spilling
and plunging breakers respectively. Firstly, in the flow field prior to wave breaking
(i.e. during wave propagation), low turbulence levels are observed and a laminar
solution is desirable. Again, it has been demonstrated that the buoyancy term
forces the solution of the flow field near the free water surface to a laminar solu-
tion and wave damping is prevented. Secondly in the surf zone where waves break,
significant turbulence levels are noticed. For this zone, the buoyancy term goes to
zero and a fully turbulent flow field is resolved by the numerical model. For all
the simulations presented, it has been concluded that the results predicted by the
buoyancy-modified turbulence models agree the best with the experimental mea-
surements for the surface elevations, undertow profiles and TKE levels compared
to traditional turbulence models. In particular, the buoyancy-modified turbulence
models significantly reduce the common overestimation of TKE in the two-phase
flow field.

Fluid-structure interaction simulations of floating bodies in a NWT have shown
stability issues between the fluid solver and the motion solver. In this thesis, the
numerical instability is identified and related to the added mass effect. A stable
fluid—motion coupling is obtained by using multiple sub iterations during every
time step and by applying relaxation of acceleration of the floating body. As a
result, a converged solution between the hydrodynamic flow field around and the
kinematic motion of the floating body is achieved during every time step of the
transient simulation. In order to lower the CPU time, the convergence speed of
the fluid—motion coupling is increased by using an accelerated coupling algorithm.
Therefore, implicit coupling during the sub iterations is assumed and the added
mass is estimated by calculating a Jacobian, based on the available solutions of
previous sub iterations for the acceleration of the floating body and the force
acting on it. The coupled fluid—motion solver is firstly applied to perform FSI
simulations of two benchmark test cases: a free decay test of a single WEC unit
(small added mass effect) and a free falling wedge impacting on the water surface
(significant added mass effect). In general, maximum three sub iterations per time
step are needed to obtain a converged solution, except at the moment of water
entry during the free falling wedge simulation. For both test cases, numerical results
are validated by using experimental data. Firstly, the WEC's heave motion and
radiated wave field during the free decay test are very similar to the experimental
measurements. Secondly for the free falling wedge, a good agreement between
numerical and experimental data is found for the wedge's vertical position and
velocity. Subsequently, FSI simulations of the response of a single WEC unit to
regular waves are performed inside a NWT. The numerical results are validated
with experimental data for the WEC’s heave motion and the surface elevations of
the perturbed wave field obtained in the large wave flume of the department of
civil engineering at Ghent University. A proof of concept study of a survivability
simulation has demonstrated the need for a CFD NWT to resolve non-linear wave—
wave interactions during wave propagation and to simulate wave breaking events
on a WEC. Furthermore, it has been demonstrated that the accelerated coupling
algorithm for the fluid—motion solver remains stable under extreme wave conditions
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and large displacements of the WEC by using few sub iterations during every time
step. The numerical simulations of a single WEC unit have been extended to
simulations of a WEC array with independently heaving and closely-spaced WECs
in response to an incoming wave field. In this thesis and as a worldwide pioneering
result, numerical simulations have been performed for an array consisting of two,
five and nine WECs inside a NWT using CFD. For all the simulations presented,
numerical results are validated by using the WECwakes dataset. The pioneering
WECwakes experimental tests focussed on recording WEC responses, forces on
WECs and wave field modifications around WECs and WEC arrays of 2 up to 25
WEGs, in the framework of the EU FP7 Hydralab IV program. A good agreement
has been demonstrated between the numerical results and the experimental data
for the WEC's heave motion, the wave-induced surge force acting on the WECs
and the surface elevations of the perturbed wave field at the measured locations.

In general, the numerical results have shown that a CFD NWT is a robust and
suitable toolbox to study WECs and WEC arrays. Furthermore, complex physical
processes such as turbulent effects, wave breaking events and resonant non-linear
WEC motions damped by viscous forces are accurately simulated in a CFD NWT.
These processes are however not captured, or strongly simplified, by the widely used
linear boundary element method (BEM) models based on potential flow theory. All
this makes a CFD NWT a complementary tool to experimental model tests. In
addition, this research opens up the possibilities for numerical simulations of any
kind of floating structure(s) installed in any sea state using a CFD NWT.

7.2 Recommendations for future research

The work presented in this thesis contributes to the development of enhanced
prediction tools for NWTs using CFD. This final section gives a number of recom-
mendations for future research to further develop NWTs and to make NWTs an
equivalent alternative complementary to physical wave flumes or wave basins:

1. Validation of the buoyancy-modified turbulence models for wave-current in-
teraction simulations by using experimental measurements;
Chapter 2 has been focussing on simulating propagating waves in a NWT
and the flow field in the water phase consists only of wave-induced orbital
velocities. By superimposing a steady current on propagating waves, the flow
field will change and this will affect the velocity gradient and consequently
the production of TKE in the flow field.

2. Accurate modelling of entrained air during wave breaking simulations using
a two-phase fluid solver based on the VoF method to dissipate wave breaking
induced turbulence;

In Chapter 3, air entrainment has been observed for the wave breaking sim-
ulations using a VoF-type fluid solver. The VoF method however assumes
that the two fluids are immiscible, making the method extremely suitable
for segregated fluid flows such as propagating waves. On the contrary for
wave breaking simulations, air bubbles are not resolved correctly by the VoF



168

7. _Conclusions

method since they are dispersed in the water phase. A combination of
buoyancy-modified RANS turbulence modelling with an accurate treatment
of air bubbles in the surf zone might result in even better predictions for the
turbulent quantities in the flow field and in particular for the dissipation of
wave breaking induced turbulence by air bubbles.

Applying a realistic PTO system to control the motion of the WEC installed
in a CFD NWT and to quantify realistic power production of WECs;

The simulations of WECs and WEC arrays in Chapter 5 and Chapter 6 are
using a coulomb damper to model a simplified PTO system. In practice
and in order to maximise the WEC's energy absorption, sophisticated PTO
models are used and they apply control strategies to drive the WEC's motion
into resonance. To test these state of the art PTO models, a coupling with
a CFD NWT is required to include both viscous and non-linear effects.

. Increasing the degrees of freedom for the motion solver and implementing

mooring lines in the CFD NWT, especially for survivability simulations;
The coupled fluid—motion solver developed in Chapter 4 was restricted to a
single degree of freedom motion solver. In practice, WECs operate in multiple
degrees of freedom since they are connected to the seabed by mooring lines.
These mooring lines are designed to withstand survivability conditions and
require WEC testing in a CFD NWT including a multiple degrees of freedom
motion solver coupled with a mooring line solver.

. Extension of the experimental WEC dataset to extreme wave conditions,

including breaking waves, and closely-spaced WECs to validate the coupled
fluid—motion solver implemented in the CFD NWT;

Experimental measurements obtained in a physical wave basin for WECs and
WEC arrays are scarce. Until today, the WECwakes dataset is the largest
publicly available database for single WECs and WEC arrays. However, the
sea states tested are limited to operational conditions and the WEC-WEC
distance is minimum five WEC diameters. In order to validate a CFD NWT
thoroughly, experimental data for survivability simulations and very closely-
spaced WEGs in an array configuration are required.

. Coupling between an accurate CFD NWT and a fast wave propagation solver

to increase the efficiency in terms of CPU time for WEC array simulations
over large domains.

CFD NWTs suffer from long computation times, having a negative impact
on their feasibility for practical applications. By quantifying the relative im-
portance of viscous versus potential fluid flow and non-linear versus linear
effects, the near-field zone can be demarcated. At the interface between po-
tential and viscous or linear and non-linear fluid flow for example, a coupling
between an accurate wave-structure interaction solver (e.g. OpenFOAM as
a non-linear viscous NWT) and a fast wave-propagation solver (e.g. a lin-
ear or a non-linear potential flow NWT) might increase the efficiency of the
numerical simulations by reducing the time-consuming 3D CFD NWT.



Appendix A

Turbulent kinetic energy
levels under breaking waves

This appendix belongs to Chapter 3, dealing with wave breaking simulations in a
numerical wave tank (NWT) using buoyancy-modified RANS turbulence models.
The results presented for the turbulent kinetic energy (TKE) are the computed
values of k by the turbulence model and they are validated with experimental data.
Therefore, it is important to know how the experimentally obtained values for TKE
are calculated. Ting and Kirby (1994) used velocity measurements to quantify TKE
in the flow field:

2 5 ;
k5$P = g(uw%eacp + uz%ezp) (Al)
in which u;,ew and ulzwp are the experimentally obtained turbulent fluctuations

from the mean velocity (i.e. undertow and orbital wave motion) in both X- and
Z-direction and the tilde is an operator to take a phase average.

In Chapter 3, unsteady RANS simulations are performed for the velocity field,
i.e. the velocity components u, and wu, are ensemble averaged quantities. In
the ideal scenario, unsteady RANS simulations return the same results for e.g. the
velocity field at a specific phase during every regular wave cycle and no fluctuations
for the velocity field are expected. However, some variability in the velocity field
for a specific phase is observed during every wave cycle. An example is shown
in Figure A.1 for the spilling breakers using the profile of the horizontal velocity
component at = 7.885 m for phase 0 between ¢ = 60 s and ¢t = 100 s (20 wave
periods, T = 2 s). The red lines are the instantaneous profiles during every wave
period at phase 0 (i.e. t =60 s, t = 62 s, etc.) while the blue line represents the
averaged profile for phase 0 using 20 wave periods. It is demonstrated that for the
buoyancy-modified & — w model the variation of the horizontal velocity component
over different wave periods is much smaller compared to the k — w SST model.
This is also expected based on the surface elevations: a larger standard deviation
for the kK —w SST model is observed compared to the k — w model (see Figure
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3.2 and Figure 3.5 in Chapter 3).
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Figure A.1: Numerically obtained undertows for spilling breakers at x = 7.885 m showing
instantaneous profiles of the horizontal velocity u, for 20 wave periods at phase 0 (red
lines) and the mean value (blue line) using a buoyancy-modified k — w (left panel) and a
buoyancy-modified k —w SST model (right panel).

The questions is now, how large is the variability for u, and u, over different
wave periods because this can be seen as a supplementary value for the TKE:
ksyp. Such an analysis was reported in Jacobsen (2011). In order to estimate
the supplementary TKE, the same analysis is performed. Therefore, the values
for u, and u., are computed which are fluctuations from the ensemble averaged
quantities u, and u, resolved by the Navier-Stokes equations (3.1) and (3.1). The
contribution to the overall TKE is calculated analogue to Ting and Kirby (1994),
equation (A.1):

S+ ) (A2)

In the Figures A.2 and A.3, the results for TKE are shown for both spilling and
plunging breakers respectively at the different profiles using the buoyancy-modified
k—w and k —w SST models. The solid blue lines indicate the average value
over 20 wave periods computed by the RANS turbulence model k. The dashed
blue lines additionally include the turbulence based on the period average of the
velocity field, also averaged over 20 wave periods, k+ Esup. It is shown that k is
dominating over ks, which was also concluded in Jacobsen (2011). Consequently,
the fluctuating component of the velocity field over different wave periods is not
considered in the analysis for TKE in Chapter 3.

ksup =
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Figure A.3: Numerically obtained undertows for the time averaged TKE % (blue lines) averaged over 20 wave periods computed by the buoyancy-
modified k — w and buoyancy-modified k — w SST model. The blue dashed lines depict k + ksup also averaged over 20 wave periods. The red
dots represent the experimental data (Ting and Kirby, 1994) for the case of plunging breakers.
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