619 research outputs found

    Control design of Modular Multilevel Converters in normal and AC fault conditions for HVDC grids

    Get PDF
    This paper describes a control design strategy of Modular Multilevel Converters (MMC) for High Voltage Direct Current (HVDC) applications to operate during normal and AC fault conditions. First, a steady state analysis of the converter is performed to identify the uses of the current components within the control strategy. Based on the initial stationary study, a complete converter control structure is proposed, which enables full control of the MMC internal energy during normal and AC fault conditions. A detailed design procedure is included for the current and energy regulators, in order to be able to ensure a dynamic response under any grid condition. Finally, theoretical developments are validated through simulation results by means of a detailed model in normal operation and during an AC voltage sag

    Contributions to Modulation and Control Algorithms for Multilevel Converters

    Get PDF
    Las actuales tendencias de la red eléctrica han lanzado a la industria a la búsqueda de sistemas de generación, distribución y consumo de energía eléctrica más eficientes. Generación distribuida, reducción de componentes pasivos, líneas DC de alta tensión son, entre otras, las posibles líneas de investigación que están actualmente siendo consideradas como el futuro de la red eléctrica. Sin embargo, nada de esto sería posible si no fuera por los avances alcanzados en el campo de la electrónica de potencia. El trabajo aquí presentado comienza con una breve introducción a la electrónica de potencia, concretamente a los convertidores de potencia conectados a red, sus estrategias de control más comunes y enfoques ante redes desbalanceadas. A continuación, las contribuciones del autor sobre el control y modulación de una topología particular de convertidores, conocidos como convertidores multinivel, se presentan como el principal contenido de este trabajo. Este tipo de convertidores mejoran la eficiencia y ciertas prestaciones, en comparación con convertidores más tradicionales, a costa de una mayor complejidad en el control al incrementar la cantidad de los componentes hardware. A pesar de que existen numerosas topologías de convertidores multinivel y algunas de ellas son brevemente expuestas en este trabajo, la mayoría de las aportaciones están enfocadas para convertidores del tipo diode-clamped converter. Adicionalmente, se incluye una aportación para convertidores del tipo multinivel modular, y otra para convertidores en cascada. Se espera que el contenido de la introducción de este trabajo, junto a las contribuciones particulares para convertidores multinivel sirva de inspiración para futuros investigadores del campo

    Recurrent Neural Network with Human Simulator Based Virtual Reality

    Get PDF

    Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers

    Get PDF
    Conventional dual active bridge topologies provide galvanic isolation and soft-switching over a reasonable operating range without dedicated resonant circuits. However, scaling the two-level dual active bridge to higher dc voltage levels is impeded by several challenges among which the high dv/dt stress on the coupling transformer insulation. Gating and thermal characteristics of series switch arrays add to the limitations. To avoid the use of standard bulky modular multilevel bridges, this paper analyzes an alternative modulation technique where staircase approximated trapezoidal voltage waveforms are produced; thus alleviating developed dv/dt stresses. Modular design is realized by the utilization of half-bridge chopper cells. Therefore, the analyzed converter is a modular multi-level converter operated in a new mode with no common-mode dc arm currents as well as reduced capacitor size, hence reduced cell footprint. Suitable switching patterns are developed and various design and operation aspects are studied. Soft switching characteristics will be shown to be comparable to those of the two-level dual active bridge. Experimental results from a scaled test rig validate the presented concept

    Optimized Modulation and Thermal Management for Modular Power Converters

    Get PDF
    The transition to a more and more decentralized power generation based on renewable energy generation is accompanied by high challenges. Modular power converters play a central role in facing these challenges, not only for grid integration but also to provide flexible services, highly efficient power transmission and safe storage integration. These goals are the key elements in becoming independent from fossil and nuclear power plants in near future. Even if the costs for renewable energy power plants like wind or photovoltaic systems are already competitive to conventional solutions, more flexible operation and further reduction in costs are required for faster global transformation towards sustainable energy systems. The further optimization of modular power converters can be seen as an ideal way to achieve these ambitious goals. It is therefore chosen as the focus of this work

    A Review of Multilevel Converters With Parallel Connectivity

    Get PDF

    Integrated orbital servicing study for low-cost payload programs. Volume 2: Technical and cost analysis

    Get PDF
    Orbital maintenance concepts were examined in an effort to determine a cost effective orbital maintenance system compatible with the space transportation system. An on-orbit servicer maintenance system is recommended as the most cost effective system. A pivoting arm on-orbit servicer was selected and a preliminary design was prepared. It is indicated that orbital maintenance does not have any significant impact on the space transportation system

    Advanced Integrated Power and Attitude Control System (IPACS) study

    Get PDF
    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission

    Designing a Passively Damped Quasi-Two-Level-Operated Modular Multilevel Converter for Drive Applications

    Get PDF
    This paper concentrates on the simplest quasi-two-level PWM operation mode for modular multilevel converters, where the internal currents within the converter are not controlled. The model of the converter is derived and the properties of the inherent resonance circuit within the converter are discussed. The paper proposes an optimized design approach for the converter parameters and shows several challenges in the practical design. The main problem of the studied converter operation mode is the dependency of the converter behavior on many parasitic parameters that can significantly vary in the converter production. Moreover, the paper shows that when the converter losses are low, the optimized converter inductances are below the values expected for realistic converter construction. Consequently, the module capacitances have to be significantly increased or the converter internal currents reach exceedingly high values. Furthermore, a comparison is drawn to the quasi-two-level PWM operation mode in which the leg currents and branch energies are controlled, showing several crucial disadvantages of the studied passively damped operation mode. The utilized models and the basic concepts are validated experimentally on a downscaled converter prototype

    Modular multilevel converter based HVDC transmission system for offshore wind farms

    Get PDF
    This doctoral thesis falls within the scope of electronic power converters oriented to high voltage transmission applications, in particular the power generated in remote offshore wind farms by means of HVDC subsea cables. This research is focused on the Modular Multilevel Converter (MMC) with two level submodules but also with multilevel topology submodules such as 3L-FC (three level flying capacitors) and 3L-NPC (three level neutral point capacitors). The main contribution of this thesis is the developed PWM based modulation strategy which allows the balancing of the total amount of submodules capacitors. It is applicable to the aforementioned submodule topologies under different working conditions as evidenced by experimental results
    corecore