14,598 research outputs found

    A "well-balanced" finite volume scheme for blood flow simulation

    Get PDF
    We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simple finite volume scheme. We focus on conservation properties of this scheme which were not previously considered. To emphasize the necessity of this scheme, we present how a too simple numerical scheme may induce spurious flows when the basic static shape of the radius changes. On contrary, the proposed scheme is "well-balanced": it preserves equilibria of Q = 0. Then examples of analytical or linearized solutions with and without viscous damping are presented to validate the calculations. The influence of abrupt change of basic radius is emphasized in the case of an aneurism.Comment: 36 page

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state

    Get PDF
    Unsteady flow in collapsible tubes has been widely studied for a number of different physiological applications; the principal motivation for the work of this paper is the study of blood flow in the jugular vein of an upright, long-necked subject (a giraffe). The one-dimensional equations governing gravity- or pressure-driven flow in collapsible tubes have been solved in the past using finite-difference (MacCormack) methods. Such schemes, however, produce numerical artifacts near discontinuities such as elastic jumps. This paper describes a numerical scheme developed to solve the one-dimensional equations using a more accurate upwind finite volume (Godunov) scheme that has been used successfully in gas dynamics and shallow water wave problems. The adapatation of the Godunov method to the present application is non-trivial due to the highly nonlinear nature of the pressure–area relation for collapsible tubes. The code is tested by comparing both unsteady and converged solutions with analytical solutions where available. Further tests include comparison with solutions obtained from MacCormack methods which illustrate the accuracy of the present method. Finally the possibility of roll waves occurring in collapsible tubes is also considered, both as a test case for the scheme and as an interesting phenomenon in its own right, arising out of the similarity of the collapsible tube equations to those governing shallow water flow

    A well-balanced finite volume scheme for 1D hemodynamic simulations

    Get PDF
    We are interested in simulating blood flow in arteries with variable elasticity with a one dimensional model. We present a well-balanced finite volume scheme based on the recent developments in shallow water equations context. We thus get a mass conservative scheme which also preserves equilibria of Q=0. This numerical method is tested on analytical tests.Comment: 6 pages. R\'esum\'e en fran\c{c}ais : Nous nous int\'eressons \`a la simulation d'\'ecoulements sanguins dans des art\`eres dont les parois sont \`a \'elasticit\'e variable. Ceci est mod\'elis\'e \`a l'aide d'un mod\`ele unidimensionnel. Nous pr\'esentons un sch\'ema "volume fini \'equilibr\'e" bas\'e sur les d\'eveloppements r\'ecents effectu\'es pour la r\'esolution du syst\`eme de Saint-Venant. Ainsi, nous obtenons un sch\'ema qui pr\'eserve le volume de fluide ainsi que les \'equilibres au repos: Q=0. Le sch\'ema introduit est test\'e sur des solutions analytique

    Prognosis of the state of health of a person under spaceflight conditions

    Get PDF
    Methods of predicting the state of health and human efficiency during space flight are discussed. Diversity of reactions to the same conditions, development of extrapolation methods of prediction, and isolation of informative physiological indexes are among the factors considered

    Swirling fluid flow in flexible, expandable elastic tubes: variational approach, reductions and integrability

    Get PDF
    Many engineering and physiological applications deal with situations when a fluid is moving in flexible tubes with elastic walls. In the real-life applications like blood flow, there is often an additional complexity of vorticity being present in the fluid. We present a theory for the dynamics of interaction of fluids and structures. The equations are derived using the variational principle, with the incompressibility constraint of the fluid giving rise to a pressure-like term. In order to connect this work with the previous literature, we consider the case of inextensible and unshearable tube with a straight centerline. In the absence of vorticity, our model reduces to previous models considered in the literature, yielding the equations of conservation of fluid momentum, wall momentum and the fluid volume. We show that even when the vorticity is present, but is kept at a constant value, the case of an inextensible, unshearable and straight tube with elastics walls carrying a fluid allows an alternative formulation, reducing to a single compact equation for the back-to-labels map instead of three conservation equations. That single equation shows interesting instability in solutions when the vorticity exceeds a certain threshold. Furthermore, the equation in stable regime can be reduced to Boussinesq-type, KdV and Monge-Amp\`ere equations equations in several appropriate limits, namely, the first two in the limit of long time and length scales and the third one in the additional limit of the small cross-sectional area. For the unstable regime, we numerical solutions demonstrate the spontaneous appearance of large oscillations in the cross-sectional area.Comment: 57 pages, 11 figures. arXiv admin note: text overlap with arXiv:1805.1102
    corecore