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A well-balanced finite volume scheme for 1D

hemodynamic simulations∗

Olivier Delestre†,†‡and Pierre-Yves Lagrée§

January 10, 2012

Abstract

English version: We are interested in simulating blood flow in arter-

ies with variable elasticity with a one dimensional model. We present a

well-balanced finite volume scheme based on the recent developments in

shallow water equations context. We thus get a mass conservative scheme

which also preserves equilibria of Q = 0. This numerical method is tested

on analytical tests.

Version Française : Nous nous intéressons à la simulation d’écoulements

sanguins dans des artères dont les parois sont à élasticité variable. Ceci

est modélisé à l’aide d’un modèle unidimensionnel. Nous présentons un

schéma ”volume fini équilibré” basé sur les développements récents ef-

fectués pour la résolution du système de Saint-Venant. Ainsi, nous obtenons

un schéma qui préserve le volume de fluide ainsi que les équilibres au repos:

Q = 0. Le schéma introduit est testé sur des solutions analytiques.

Introduction

We consider the following system of mass and momentum conservation with non
dimensionless parameters and variables, which is the 1D model of blood flow in
an artery or a vessel with non uniform elasticity (it is rewritten in a conservative
form compared to what we usually find in litterature)







∂tA+ ∂xQ = 0

∂tQ+ ∂x

[

Q2

A
+

1

3
√
πρ

kA3/2

]

=
A√
πρ

(

∂xA0 −
2

3

√
A∂xk

)

− Cf
Q

A

, (1)

with A0 = k
√
A0 and where A(x, t) is the cross-section area (A = πR2 with R

the radius of the arteria), Q(x, t) = A(x, t)u(x, t) the flow rate or the discharge,
u(t, x) the mean flow velocity, ρ the blood density, A0(x) the cross section at
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†CNRS & UPMC Université Paris 06, UMR 7190, 4 place Jussieu, Institut Jean le Rond

d’Alembert, Bôıte 162, F-75005 Paris, France ; delestre@ida.upmc.fr
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d’Alembert, Bôıte 162, F-75005 Paris, France ; pierre-yves.lagree@upmc.fr

1



rest and k(x) the stiffness of the artery. System (1) is into the form of the Saint-
Venant problem with variable pressure presented in [3]. We have to mention that
arterial pulse wavelengths are long enough to justify the use of a 1D model rather
than a 3D model when a global simulation of blood flow in the cardiovascular
system is needed.

1 Numerical method

Since [2, 8], it is well known (in the shallow water community) that the scheme
should be well-balanced for good source term treatment, i.e. the scheme should
preserve at least some steady states. For system (1), we should preserve at least
the ”man at eternal rest” or ”dead man equilibrium” [6] (without artifacts such
as [10]), it writes







u = 0
1√
πρ

A3/2k − A√
πρ

A0 = Cst
, (2)

this means that steady states at rest are preserved (this is the analogous of the
”lake at rest” equilibrium). Thus we use the scheme proposed in [3, p.93-94] for
that kind of model. This is a finite volume scheme with a modification of the
hydrostatic reconstruction (introduced in [1, 3] for the shallow water model).

1.1 Convective step

For the homogeneous system

∂tU + ∂xF (U,Z) = 0, (3)

which is (1) with:

U =

(

A
Q

)

, Z =

(

A0

k

)

and F (U, k) =

(

Q

Q2/A+ kA3/2/(3
√
πρ)

)

,

an explicit first order conservative scheme writes

Un+1
i − Un

i

∆t
+

Fn
i+1/2 − Fn

i−1/2

∆x
= 0, (4)

where Un
i is an approximation of U

Un
i ≃ 1

∆x

∫ xi+1/2

xi−1/2

U(x, tn)dx.

i refers to the cell Ci = (xi−1/2, xi+1/2) = (xi−1/2, xi−1/2 +∆x) and n to time
tn with tn+1 − tn = ∆t.
The two points numerical flux

Fn
i+1/2 = F(Un

i , U
n
i+1, k

∗
i+1/2),

with k∗i+1/2 = max(ki, ki+1), is an approximation of the flux function F (U,Z)

at the cell interface i + 1/2. This numerical flux will be detailled in subsection
1.3.
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1.2 Source terms treatment

In system (1), the terms A(∂xA0 − 2
√
A∂xk/3)/(

√
πρ) are involved in steady

states preservation, they need a well-balanced treatment: the variables are re-
constructed locally thanks to a variant of the hydrostatic reconstruction [3,
p.93-94]















√

Ai+1/2L = max(ki
√
Ai +min(∆A0i+1/2, 0), 0)/k

∗
i+1/2

Ui+1/2L = (Ai+1/2L, Ai+1/2L.ui)
t

√

Ai+1/2R = max(ki+1

√

Ai+1 −max(∆A0i+1/2, 0), 0)/k
∗
i+1/2

Ui+1/2R = (Ai+1/2R, Ai+1/2R.ui+1)
t

, (5)

with ∆A0i+1/2 = A0i+1−A0i = ki+1

√

A0i+1−ki
√
A0i and k∗i+1/2 = max(ki, ki+1).

For consistency, the scheme (4) is modified as follows

Un+1
i = Un

i − ∆t

∆x

(

Fn
i+1/2L − Fn

i+1/2R

)

, (6)

where
Fn
i+1/2L = Fn

i+1/2 + Si+1/2L

Fn
i−1/2R = Fn

i−1/2 + Si−1/2R
,

with

Fn
i+1/2 = F

(

Ui+1/2L, Ui+1/2R, k
∗
i+1/2

)

Si+1/2L =

(

0
P(An

i , ki)− P(An
i+1/2L, k

∗
i+1/2)

)

Si−1/2R =

(

0
P(An

i , ki)− P(An
i−1/2R, k

∗
i−1/2)

)

and P(A, k) = kA3/2/(3ρ
√
π). Thus the variation of the radius and the varying

elasticity are treated under a well-balanced way. In system (1), the friction term
−CfQ/A is treated semi-implicitly. This treatment is classical in shallow water
simulations [4, 11] and had shown to be efficient in blood flow simulation as well
[6]. This treatment does not break the ”dead man” equilibrium. It consists in
using first (6) as a prediction step without friction, i.e.:

U∗
i = Un

i − ∆t

∆x

(

Fn
i+1/2L − Fn

i−1/2R

)

,

then we apply a semi-implicit friction correction on the predicted values (U∗
i ):

A∗
i

(

un+1
i − u∗

i

∆t

)

= −Cfu
n+1
i .

Thus we get the corrected velocity un+1
i and we have An+1

i = A∗
i .

1.3 HLL numerical flux

As presented in [6], several numerical fluxes might be used (Rusanov, HLL,
VFRoe-ncv and kinetic fluxes). In this work we will use the HLL flux (Harten
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Figure 1: No spurious flows (right) are generated by a change of elasticity (left).

Lax and van Leer [9]) because it is the best compromise between accuracy and
CPU time consuming (see [5, chapter 2]). It writes:

F(UL, UR, k
∗) =















F (UL, k
∗) if 0 ≤ c1

c2F (UL, k
∗)− c1F (UR, k

∗)

c2 − c1
+

c1c2
c2 − c1

(UR − UL) if c1 < 0 < c2

F (UR, k
∗) if c2 ≤ 0

,

with

c1 = inf
U=UL,UR

( inf
j∈{1,2}

λj(U, k
∗)) and c2 = sup

U=UL,UR

( sup
j∈{1,2}

λj(U, k
∗)),

where λ1(U, k
∗) and λ2(U, k

∗) are the eigenvalues of the system and k∗ =
max(kL, kR).

To prevent blow up of the numerical values, we impose the following CFL
(Courant, Friedrichs, Levy) condition

∆t ≤ nCFL
∆x

max
i

(|ui|+ ci)
,

where ci =
√

ki
√
Ai/(2ρ

√
π) and nCFL = 1.

2 Some numerical results

2.1 ”The stented man at eternal rest”

In this test, we consider a configuration with no flow and with a change of artery
elasticity k(x), this is the case for a dead man with a stented artery (see Figure
1 left). The section of the artery is constant R0(x) = 4.0 10−3m and the velocity
is u(x, t) = 0m/s. We use the following numerical values: J = 50 cells, Cf = 0,
ρ = 1060m3, L = 0.14m, Tend = 5s. As initial conditions, we take a fluid at rest
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Q(x, 0) = 0m3/s and

k(x) =































k0 if x ∈ [0 : x1] ∪ [x4 : L]

k0 +
∆k

2

(

sin

(

x− x1

x2 − x1
π − π/2

)

+ 1

)

if x ∈]x1 : x2[

k0 +∆k if x ∈ [x2 : x3]

k0 +
∆k

2

(

cos

(

x− x3

x4 − x3
π

)

+ 1

)

if x ∈]x3 : x4[

,

with k0 = 1.0 108Pa/m, ∆k = 6.0 107Pa/m, x1 = 1.0 10−2m, x2 = 3.05 10−2m,
x3 = 4.95 10−2m and x4 = 7.0 10−2m.

The steady state at rest is perfectly preserved in time, we do not notice any
spurious oscillation (see Figure 1 right).

2.2 Wave reflection-transmission in a stented artery

We now observe the reflexion and transmission of a pulse through a sudden
change of artery elasticity (from kR to kL with kL > kR) in an elastic tube of
constant radius (see Figure 2 left). We take the following numerical values: J =
1500 cells, Cf = 0, kL = 1.6 108Pa/m, kR = 1. 108Pa/m, ∆k = 6. 107Pa/m, ρ =

1060m3, R0 = 4.0 10−3m, L = 0.16m, Tend = 8.0 10−3s, cL =
√

kLR/(2ρ) ≃
17.37m/s and cR =

√

kRR/(2ρ) ≃ 13.74m/s. We take a decreasing elasticity
on a rather small scale:

k(x) =















kR +∆k if x ∈ [0 : x1]

kR +
∆k

2

[

1 + cos

(

x− x1

x2 − x1
π

)]

if x ∈]x1 : x2]

kR else

,

with x1 = 19L/40 and x2 = L/2. As initial conditions, we consider a fluid at
rest Q(x, 0) = 0m3/s and the following perturbation of radius:

R(x, 0) =







R0(x)

[

1 + ǫ sin

(

100

20L
π

(

x− 65L

100

))]

if x ∈ [65L/100 : 85L/100]

R0(x) else
,

with ǫ = 1.0 10−2. The expression for the pressure is

p(x, t) = p0(x) + k(x)(R(x, t) −R0(x)),

where p0 is the external pressure.
The numerical results perfectly match with the predictions for a linearized

flow. We get the predicted amplitudes both for the transmitted and the reflected
waves (see Figure 2 right).

2.3 Wave ”damping”

In this case, the elasticity is constant in space. We consider the viscous term in
the linearized momentum equation. A periodic signal is imposed at inflow as a
perturbation of a steady state (R0 = Cst, u0 = 0) with a constant section at
rest. We take R = R0+ǫR1 and u = 0+ǫu1, where (R1,u1) is the perturbation of
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Figure 2: Across a discontinuity of k (left), an initial pulse evolves (right) ; it
is transmitted and reflected.

the steady state. Looking for progressive waves (i.e. under the form ei(ωt−Kx)),
we take for the imposed incoming discharge

Qb(t) = Q(t, x = 0) = Qamp sin(ωt) m
3/s.

Thus, we have a damping wave in the domain

Q(t, x) =

{

0 if krx > ωt
Qamp sin(ωt− krx)e

kix if krx ≤ ωt
,

with ω = 2π/Tpulse, Tpulse the time length of a pulse and K = kr+ iki the wave
vector.

We use the following numerical values: J = 750 cells, ρ = 1060m3, L = 3m,
k = 1.108Pa/m, R0 = 4.10−3m and Tend = 5s. We consider both Cf = 0 and
Cf = 0.005053. As initial conditions, we take a fluid at rest Q(x, 0) = 0m3/s
and as input boundary condition

Qb(t) = Qamp sin(ωt),

with ω = 2π/Tpulse = 2π/0.5s and Qamp = 3.45 10−7m3/s. The output is an
outgoing wave.

The results are closed to the analytical solution (see Figure 3). We notice a
small numerical diffusion for Cf = 0.005053.

3 Conclusion

In this work, we have considered the 1D model of flow in an artery with varying
elasticity and constant section. We have presented a well-balanced finite volume
scheme. Thus we get a mass conservative scheme. Moreover, the well-balanced
property allows to have a good treatment of the source, i.e. we do not get
numerical artifacts. This numerical method gave good results on numerical
tests. In future works, we will have to add some extra source terms in order
to get a more realistic model. These extra terms will require to develop a low
diffusive high order scheme in the spirit of [7]. Moreover, this will improve the
accuracy of the scheme. And we will also have to test more complex cases such
as bifurcations and networks.
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