104,494 research outputs found

    Game Based Learning for Safety and Security Education

    Full text link
    Safety and security education are important part of technology related education, because of recent number of increase in safety and security related incidents. Game based learning is an emerging and rapidly advancing forms of computer-assisted instruction. Game based learning for safety and security education enables students to learn concepts and skills without the risk of physical injury and security breach. In this paper, a pedestal grinder safety game and physical security game have been developed using industrial standard modeling and game development software. The average score of the knowledge test of grinder safety game was 82%, which is higher than traditional lecture only instruction method. In addition, the survey of physical security game shows 84% average satisfaction ratio from high school students who played the game during the summer camp. The results of these studies indicated that game based learning method can enhance students' learning without potential harm to the students

    A sweetspot for innovation:developing games with purpose through student-staff collaboration

    Get PDF
    Within industry as well as academia, developing games that have wider impact on society has been of particular interest in the last decade. The increasing use of terms such as ‘games with purpose’, ‘serious games’ and gamification’ has been mirrored in a flurry of activity in games research. Broader applications of games beyond entertainment are now well-understood and accepted, with universities and companies excelling in creating games to serve particular needs. However, it is not explicitly clear how undergraduates of game design and development courses can be directly involved in serious game creation. With most undergraduates inspired by commercial games development, and the games industry requiring that universities teach specific technical skills in their courses, balancing the research aspirations of academics with the educational requirements of an appropriate undergraduate course can be a difficult balancing act. In this paper, the authors present three case studies of games with purpose developed through collaboration between undergraduate students and academic staff. In all cases, the educational value of the projects for the students is considered in relation to the research value for the academics, who face increasing demands to develop research outcomes despite a necessity to provide a first-rate learning experience and nurture future game developers

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    Digital communities: context for leading learning into the future?

    Get PDF
    In 2011, a robust, on-campus, three-element Community of Practice model consisting of growing community, sharing of practice and building domain knowledge was piloted in a digital learning environment. An interim evaluation of the pilot study revealed that the three-element framework, when used in a digital environment, required a fourth element. This element, which appears to happen incidentally in the face-to-face context, is that of reflecting, reporting and revising. This paper outlines the extension of the pilot study to the national tertiary education context in order to explore the implications for the design, leadership roles, and selection of appropriate technologies to support and sustain digital communities using the four-element model

    Pirate plunder: game-based computational thinking using scratch blocks

    Get PDF
    Policy makers worldwide argue that children should be taught how technology works, and that the ‘computational thinking’ skills developed through programming are useful in a wider context. This is causing an increased focus on computer science in primary and secondary education. Block-based programming tools, like Scratch, have become ubiquitous in primary education (5 to 11-years-old) throughout the UK. However, Scratch users often struggle to detect and correct ‘code smells’ (bad programming practices) such as duplicated blocks and large scripts, which can lead to programs that are difficult to understand. These ‘smells’ are caused by a lack of abstraction and decomposition in programs; skills that play a key role in computational thinking. In Scratch, repeats (loops), custom blocks (procedures) and clones (instances) can be used to correct these smells. Yet, custom blocks and clones are rarely taught to children under 11-years-old. We describe the design of a novel educational block-based programming game, Pirate Plunder, which aims to teach these skills to children aged 9-11. Players use Scratch blocks to navigate around a grid, collect items and interact with obstacles. Blocks are explained in ‘tutorials’; the player then completes a series of ‘challenges’ before attempting the next tutorial. A set of Scratch blocks, including repeats, custom blocks and clones, are introduced in a linear difficulty progression. There are two versions of Pirate Plunder; one that uses a debugging-first approach, where the player is given a program that is incomplete or incorrect, and one where each level begins with an empty program. The game design has been developed through iterative playtesting. The observations made during this process have influenced key design decisions such as Scratch integration, difficulty progression and reward system. In future, we will evaluate Pirate Plunder against a traditional Scratch curriculum and compare the debugging-first and non-debugging versions in a series of studies

    Do business games foster skills? A cross-cultural study from learners’ views

    Get PDF
    Purpose: This study seeks to analyse students’ perception of the effectiveness of business games as an e-learning method in management training. This analysis of games’ effectiveness is centred in the generic and managerial skills acquired, through the comparison of students’ opinions in different cultural contexts within Europe. Design/methodology: The analysis focuses on 120 management students at postgraduate level who use the same business game at different universities in five European countries: Spain, Ireland, Portugal, Italy and Germany. Findings: The results indicate that students positively assessed the generic and specific managerial skills fostered by the business game. The generic skills most valued were information and decision-making, and leadership. Regarding the specific skills, the most valued were management skills and the least valued, skills related to planning and the acquisition of theoretical knowledge. However, significant differences were found between students in different cultural contexts and education systems in the case of certain specific managerial skills. Practical implications: This finding suggests that the students’ perception of how a business game helps them acquire specific managerial skills is influenced by cultural aspects and previous exposure to experiential learning, which determine that the teachers’ role and the teaching process should be adapted to the students’ learning model. Originality/value: With this study, a better knowledge about the students’ perception of this e-learning method is obtained, not just considering a specific educational environment, but comparing opinions of students from different cultural contexts, which adds value to the analyses developed.Peer Reviewe

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    • 

    corecore