49,409 research outputs found

    Service-Oriented Middleware for the Mobile Internet of Things: A Scalable Solution

    Get PDF
    International audienceThe Internet of Things (IoT) is characterized by a wide penetration in the regular user's life through an increasing number of mobile Things, such as mobile phones hosting sensors and actuators. However, the shift to the mobile IoT does not come without challenges, as many already existing issues remain unresolved and are amplified by the IoT scale and the mobility of its Things. The most challenging issues are handling the abundance of users and Things, providing interoperability across the heterogeneous Things, and overcoming the unknown dynamic environment due to the mobility of Things. This paper addresses the above challenges as we revisit the commonly used Service-Oriented Architecture (SOA). This leads to the design, implementation and evaluation of MobIoT, a new service-oriented middleware. MobIoT modifies standard SOA functionalities, namely service discovery, composition and access, to better address the challenges posed by the IoT, especially its scale. Specifically, MobIoT adopts probabilistic methods to decrease the number of involved devices, while building on semantic knowledge to support interoperability and fulfill users' queries for Thing-based measurements/actions

    On the application of contextual IoT service discovery in Information Centric Networks

    Get PDF
    The continuous flow of technological developments in communications and electronic industries has led to the growing expansion of the Internet of Things (IoT). By leveraging the capabilities of smart networked devices and integrating them into existing industrial, leisure and communication applications, the IoT is expected to positively impact both economy and society, reducing the gap between the physical and digital worlds. Therefore, several efforts have been dedicated to the development of networking solutions addressing the diversity of challenges associated with such a vision. In this context, the integration of Information Centric Networking (ICN) concepts into the core of IoT is a research area gaining momentum and involving both research and industry actors. The massive amount of heterogeneous devices, as well as the data they produce, is a significant challenge for a wide-scale adoption of the IoT. In this paper we propose a service discovery mechanism, based on Named Data Networking (NDN), that leverages the use of a semantic matching mechanism for achieving a flexible discovery process. The development of appropriate service discovery mechanisms enriched with semantic capabilities for understanding and processing context information is a key feature for turning raw data into useful knowledge and ensuring the interoperability among different devices and applications. We assessed the performance of our solution through the implementation and deployment of a proof-of-concept prototype. Obtained results illustrate the potential of integrating semantic and ICN mechanisms to enable a flexible service discovery in IoT scenarios

    Semantic smart contracts for blockchain-based services in the Internet of Things

    Get PDF
    International audienceThe emerging Blockchain (BC) and Distributed Ledger technologies have come to impact a variety of domains, from capital market sectors to digital asset management in the Internet of Things (IoT). As a result, more and more BC-based decentralized applications for numerous cross-domain services have been developed. These applications implement specialized decentralized computer programs called Smart Contracts (SCs) which are deployed into BC frameworks. Although these SCs are open ato public, it is challenging to discover and utilize such SCs for a wide range of usages from both systems and end-users because such SCs are already compiled in form of byte-codes without any associated meta-data. This motivates us to propose a solution called Semantic SC (SSC) which integrates RESTful semantic web technologies in SCs, deployed on the Ethereum Blockchain platform, for indexing, browsing and annotating such SCs. The solution also exposes the relevant distributed ledgers as Linked Data for enhancing the discovery capability. To achieve this goal, the OWLS service ontology is extended by incorporating some domain specific terminologies, which are used in the development of the proposed SSCs. As a result, SSC can be utilized to enrich queries for a domain-specific terms across multiple distributed ledgers, which greatly increases the discovery capability of decentralized IoT applications and services. Contribution in standardization is also discussed. We believe that our research work takes the first steps towards connecting BC-based decentralized services with semantic web services in order to provide better IoT ecosystems

    Trustable service discovery for highly dynamic decentralized workflows

    Get PDF
    The quantity and capabilities of smart devices and sensors deployed as part of the Internet of Things (IoT) and accessible via remote microservices is set to rise dramatically as the provision of interactive data streaming increases. This introduces opportunities to rapidly construct new applications by interconnecting these microservices in different workflow configurations. The challenge is to discover the required microservices, including those from trusted partners and the wider community, whilst being able to operate robustly under diverse networking conditions. This paper outlines a workflow approach that provides decentralized discovery and orchestration of verifiably trustable services in support of multi-party operations. The approach is based on adoption of patterns from self-sovereign identity research, notably Verifiable Credentials, to share information amongst peers based on attestations of service descriptions and prior service usage in a privacy preserving and secure manner. This provides a dynamic, trust-based framework for ratifying and evaluating the qualities of different services. Collating these new service descriptions and integrating with existing decentralized workflow research based on vector symbolic architecture (VSA) provides an enhanced semantic search space for efficient and trusted service discovery that is necessary to support a diverse range of emerging edge-computing environments. An architecture for a dynamic decentralized service discovery system, is designed, and described through application to a scenario which uses trusted peers’ reported experiences of an anomaly detection service to determine service selection

    A framework for deriving semantic web services

    Get PDF
    Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This ‘ignored’ aspect is the representation of the semantics underlying the services themselves as well as the ‘things’ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario

    Semantic Gateway as a Service architecture for IoT Interoperability

    Get PDF
    The Internet of Things (IoT) is set to occupy a substantial component of future Internet. The IoT connects sensors and devices that record physical observations to applications and services of the Internet. As a successor to technologies such as RFID and Wireless Sensor Networks (WSN), the IoT has stumbled into vertical silos of proprietary systems, providing little or no interoperability with similar systems. As the IoT represents future state of the Internet, an intelligent and scalable architecture is required to provide connectivity between these silos, enabling discovery of physical sensors and interpretation of messages between things. This paper proposes a gateway and Semantic Web enabled IoT architecture to provide interoperability between systems using established communication and data standards. The Semantic Gateway as Service (SGS) allows translation between messaging protocols such as XMPP, CoAP and MQTT via a multi-protocol proxy architecture. Utilization of broadly accepted specifications such as W3C's Semantic Sensor Network (SSN) ontology for semantic annotations of sensor data provide semantic interoperability between messages and support semantic reasoning to obtain higher-level actionable knowledge from low-level sensor data.Comment: 16 page
    • …
    corecore