
An agent composition framework for the J-Park
Simulator - a knowledge graph for the process industry

Xiaochi Zhoua, Andreas Eibecka, Mei Qi Lima, Nenad B. Krdzavaca, Markus
Krafta,b,c,∗

aCambridge Centre for Advanced Research and Education in Singapore (CARES),
CREATE Tower, 1 Create Way, Singapore, 138602

bDepartment of Chemical Engineering and Biotechnology, University of Cambridge,
Philippa Fawcett Drive, West Site, CB3 0AS Cambridge, UK

cNanyang Technological University, School of Chemical and Biomedical Engineering,62
Nanyang Drive, Singapore, 637459

Abstract

Digital twins, Industry 4.0 and Industrial Internet of Things are becoming ever

more important in the process industry. The Semantic Web, linked data, knowl-

edge graphs and web services/agents are key technologies for implementing the

above concepts. In this paper, we present a comprehensive semantic agent com-

position framework. It enables automatic agent discovery and composition to

generate cross-domain applications. This framework is based on a light-weight

agent ontology, OntoAgent, which is an adaptation of the Minimal Service Model

(MSM) ontology. The MSM ontology was extended with grounding components

to support the execution of an agent while keeping the compatibility with other

existing web service description standards and extensibility. We illustrate how

the comprehensive agent composition framework can be integrated into the J-

Park Simulator (JPS) knowledge graph, for the automatic creation of a compos-

ite agent that simulates the dispersion of the emissions of a power plant within

a selected spatial area.

Highlights

• The light-weight ontology, OntoAgent, has been developed based on MSM

∗Corresponding author
Email address: mk306@cam.ac.uk (Markus Kraft)

Preprint submitted to Computers and Chemical Engineering September 11, 2019



ontology.

• An agent composition framework based on OntoAgent has been developed.

• A cross-domain air pollution scenario is used to illustrate the agent com-

position framework.

Keywords: Semantic Web, Semantic Web Service Composition, Agent,

Cross-domain, Linked Data, Knowledge Graph

1. Introduction

An eco-industrial park (EIP) [1] aims for industrial symbiosis that promises

improvement of improved energy and resource efficiency as well as reduction of

reduced environmental impact. Numerous studies have been carried out fo-

cusing on resource networks within a single domain such as water [2, 3, 4],5

energy [5, 6, 7], and material [8, 9, 10]. However, in an EIP, symbiotic relation-

ships do not only exist within a single domain network as resource networks and

entities across domains are intertwined and affect each other. In order to achieve

Pareto optimality among different domains, all domains need to be taken into

consideration simultaneously. Consequently, tools to simulate, analyse, opti-10

mise, and coordinate heterogeneous components across multiple domains (e.g.

to simulate a chemical plant’s material production and consumption, and anal-

yse its effect on the energy network) are necessary. The establishment of such

tools clearly requires the integration of data and software tools from relevant

domains. However, this the integration is challenging due to the friction of15

communication between different domains. For example, the term “vessel” in

the chemical engineering domain usually means pressurized container and yet

refers to a large boat in the transportation domain. Besides the communica-

tion friction, due to the heterogeneity of data formats and conventions across

domains, there is also a lack of uniform access to data.20

The concept of a cross-domain knowledge graph has been identified as one

of the solutions to alleviate the communication friction and to provide uniform

2



data access. The knowledge graph is essentially an interconnected collection of

terminologies and statements across domains [11]. It stores and connects data

semantically, i.e. each distinct class, individual, and relation is denoted by a25

unique Uniform Resource Identifier (URI)1 (e.g. ontocape:Vessel2 for pressur-

ized container and dbr:Vessel (boat)3 for boat). The unique mappings from

URIs to classes or individuals leads to explicitness and disambiguation of infor-

mation. A collection of explicit declaration declarations of classes is referred to

as an ontology [12], and the set of tools and methods to process and utilize such30

semantic data is regarded as semantic technology. The disambiguation makes

the information in the knowledge graph formal, i.e machine-readable. There-

fore, the semantic knowledge graph could avoid the friction of cross-domain

communication with the unambiguity of information. Meanwhile, the formality

of data enables uniform access to them through queries constructed in query35

languages such as SPARQL4. We have already implemented the J-Park Sim-

ulator (JPS), a cross-domain knowledge graph for the process industry, which

includes ontologies in domains such as chemical process engineering, chemical

kinetics, internal combustion engines, etc.[11].

The dynamic nature of an eco-industrial park requires the knowledge graph40

describing such entities to cope with this aspect. Consequently, the knowledge

graph must rely on components that reflect and/or effect changes in the graph

over time, e.g. constantly update data and maintain the knowledge graph struc-

ture. In this paper, we refer to these components as agents. We also define the

term “agent” in this paper to refer to applications and web services that utilize45

semantic technologies and are accessible on the World Wide Web. Currently,

there are is a number of agents updating the JPS knowledge graph. For a cross-

domain knowledge graph where the contributors typically come from diverse

1https://www.w3.org/Addressing/URL/uri-spec.html
2http://www.theworldavatar.com/ontology/ontocape/chemical_process_system/CPS_

realization/plant_equipment/apparatus.owl#Vessel
3http://dbpedia.org/resource/Vessel_(boat)
4https://www.w3.org/TR/sparql11-query/

3

https://www.w3.org/Addressing/URL/uri-spec.html
http://www.theworldavatar.com/ontology/ontocape/chemical_process_system/CPS_realization/plant_equipment/apparatus.owl#Vessel
http://www.theworldavatar.com/ontology/ontocape/chemical_process_system/CPS_realization/plant_equipment/apparatus.owl#Vessel
http://dbpedia.org/resource/Vessel_(boat)
https://www.w3.org/TR/sparql11-query/


professional backgrounds, it is a good strategy to lower the barrier for creating

new agents in order to encourage its adoption and curb its investment cost.50

Furthermore, in cross-domain scenarios, there will be simulation or opti-

mization tasks that require the consecutive execution of multiple agents. For

example, the output of an agent that simulates engine emissions is used as the

input of an agent that models the dispersion profile of the emission stream.

In order to fulfill complex objectives such as control and optimization, agents55

must be able to communicate and hence coordinate with each other. Before the

implementation of the JPS agent composition framework, the coordination be-

tween the agents for the JPS knowledge graph is hard-coded by developers. The

hard-coded coordination is time-consuming to implement and lacks flexibility

in a dynamic environment. Semantic technologies have long been applied for60

automatic coordination between agents [13]; such coordination is also known as

semantic-based agent5 composition. Semantic-based agent composition could

automatically interpret the functions and interfaces of agents, and plan their

coordination for achieving complex goals on top of the machine-readable agent

descriptions. Moreover, a complete automated agent composition process also65

includes an execution phase to put the coordination plan in use [13].

The semantic description of agents is necessary for semantic-based agent

discovery, composition, and automated execution. Meanwhile, with the seman-

tic descriptions, the agents could be also represented in the knowledge graph so

that the knowledge graph it has uniform management for both data and agents.70

To model the descriptions, an agent ontology is necessary. There exists a num-

ber of agent ontologies; however, they are not suitable for describing the agents

within the knowledge graph for various reasons. Section 2 will introduce them

in detail.

Two most prevailing agent ontologies are Web Service Modeling Ontology75

(WSMO) [14] and OWL-S [15]. However, they are not favored by the knowl-

5“agent” here refers to “web service”; however, in this paper, the two terms are inter-

changeable. For the consistency, “web service” is replaced by “agent”

4



edge graph due to their heavy weight. Clearly, an increased model complexity

increases the cost for developers to adopt.

The semantic community has created some lightweight solutions. For exam-

ple, the agent description of Semantic Annotations for WSDL and XML Schema80

(SAWSDL) [16], WSMO-lite [17], and hRESTs [18] are minimal. Nevertheless,

they are restricted to specific communication standards.

Minimal Service Model (MSM) is an agent ontology that is not specific

for any communication standards. MSM [19] only captures the common com-

ponents of the mainstream models above-mentioned; this ontology could be85

extended with other ontologies for additional description, e.g. including the

information for invocation. The purpose of this design is to maintain the com-

patibility with existing standards such as WSDL, WSMO, and OWL-S. How-

ever, MSM’s grounding mechanisms do not fit the agents which have adopted

the lightweight communication standard. Therefore, a lightweight agent ontol-90

ogy suitable for describing agents in the above-mentioned knowledge graph is

currently absent.

An agent composition framework is required for implementing the agent

composition and discovery. However, most of the existing agent composition

frameworks are designed for heavy agent ontologies such as WSMO and OWL-S,95

which will be discussed in Section 2. To the best of our knowledge, Rodriguez-

Mier et al. [20] have developed the only known composition framework based

on a lightweight ontology (MSM). However, this framework does not include

the execution function, which is vital for completing the composition process.

Therefore, a complete agent composition framework with the execution function100

and compatible with a lightweight agent ontology is currently absent as well.

The purpose of this paper is to introduce and describe the implementa-

tion of a comprehensive agent composition framework that leverages semantic

technologies for automatic agent discovery and composition to generate cross-

domain application. The paper includes the following:105

• The introduction and description of OntoAgent, an ontology for describing

5



agents, which is an extension of MSM. With its light weight, OntoAgent

lowers the cost of creating agent individuals in the cross-domain knowledge

graph.

• The introduction and description of the agent composition framework110

which is based on OntoAgent, and consists of agent composition, discovery,

and execution functionalities. Such a framework enables the knowledge

graph to coordinate agents and execute them automatically. To the best

of our knowledge, this is the first agent composition framework working

with a lightweight agent ontology that supports execution functionality.115

• The illustration of the unique agent composition framework in the context

of the JPS along with a cross-domain air pollution scenario.

The remaining parts are structured as follows. Section 3 gives an overview

of the JPS, which is the research platform for implementing the agent composi-

tion framework. Section 4 describes the development of OntoAgent. Section 5120

presents the implementation of the unique agent composition framework. Sec-

tion 6 illustrates how the agent composition framework can operate in the JPS

for the automatic creation of a cross-domain composite agent that simulates the

dispersion profile for a power plant within a selected area. Section 7 discusses

the limitation of the current work and provides suggestions for improvement.125

Section 8 outlines the conclusions for this paper.

2. Existing technologies

WSMO and OWL-S are well-established and expressive agent ontologies, coming with

that come with software tools for agent discovery, composition, and execution.

WSMO describes an agent’s capability, non-functional properties, interface, and130

goal. OWL-S, which is built on the Web Ontology Language (OWL), contains

components including profile, processes, and groundings. In the context of agent

ontologies, grounding is the linking link between semantic and syntactic infor-

mation. Typically, the serialization of an HTTP request follows a certain syn-

6



tactic format; therefore, mapping is needed to convert the semantic data into135

such a syntactic format. Such mapping is an example of the grounding. These

two models could comprehensively describe agents and their goals but this also

entails their heavy weight.

For the agent ontologies of light weight, SAWSDL is minimal i.e. it does not

directly define how agents are described, and only annotates components in a140

Web Services Description Language (WSDL) description. WSDL is an XML-

based interface description language to describe agents on a syntactic level5.

In other words, SAWSDL depends on WSDL for execution hence the commu-

nication is standard specific. WSMO-lite is another minimized agent ontology

to annotate WSDL descriptions. Compared to SAWSDL, WSMO-lite provides145

richer information outside the WSDL but its grounding is still restricted to

WSDL. Another lightweight agent ontology is hRESTs, which describes REST-

ful agents, i.e. agents that follow the Representational State Transfer (REST)

architecture style [21].

There are also a number of existing agent composition frameworks estab-150

lished on top of Semantic Web technologies. For example, SOA4All [22] pro-

posed a framework for working with DAML-S, which was later superseded by

OWL-S. Sirin et al. [23] developed a framework with the hierarchical task net-

work (HTN) planner SHOP2 [24]. It works with agents described by OWL-S.

The composition framework OWLS-XPlan [25] also works with OWL-S. Fujii and Suda155

[26] introduced a framework that uses Component service Model with Semantics

(CosMoS) as an agent model, which is also not considered lightweight.

3. J-Park Simulator

The JPS is a platform where components across domains share a common

ground for data management and semantic interoperability between each other.160

Ontologies play pivotal roles in the JPS project. Ontologies from different

5https://www.w3.org/TR/2001/NOTE-wsdl-20010315

7

https://www.w3.org/TR/2001/NOTE-wsdl-20010315


domains offer formal definition of classes and relations in a certain field; the

JPS project has been developing and integrating the ontologies systematically.

For example, OntoCAPE [27] is a large-scale ontology for chemical process en-

gineering and the starting ontology for JPS. OntoCAPE is then extended into165

OntoEIP [28], describing the eco-industrial parks and their networks. Mean-

while OntoCityGML, which is a semantic upgrade of CityGML [29], is inte-

grated to describe 3D models and other properties of buildings and landscapes.

OntoKin [30] is an ontology developed for chemical kinetics and provides spec-

ification for chemical species and mechanisms. OntoEngine6 specializes in de-170

scribing the operation of internal combustion engines. It specifies fuel used by

the engine as well as the corresponding combustion chemistry model.

The JPS builds a cross-domain knowledge graph following the linked data

principle, so that it could be deployed in a distributed fashion across the Web.

Each host in this distributed structure stores a part of the knowledge graph and175

works as an independent authority to control its own data. Moreover, agents

update the structure and data of the knowledge graph to reflect the dynamic

nature of systems such as eco-industrial parks or smart grids.

Before we successfully implemented the framework in the JPS, the agents in

the JPS were simply software tools represented as agents. To lower the barrier180

for creating agents, the JPS agents use a lightweight communication standard

that constructs HTTP requests with JSON objects in key-value pairs. Due to

the absence of semantic description, the agents were not part of the knowl-

edge graph and the coordination between agents was hard-coded by developers.

Figure 1 illustrates the components of the JPS so far.185

This paper extends the JPS by integrating agent ontology to describe agents

as well as implementing the composition framework to automate the coordina-

tion between them.

6http://www.theworldavatar.com/ontology/ontoengine/OntoEngine.owl

8

http://www.theworldavatar.com/ontology/ontoengine/OntoEngine.owl


Figure 1: The JPS knowledge graph and agents: the original status of the JPS is that the

knowledge graph (green layer) contains the terminologies (blue boxes) and individuals (light

green nodes) of domain ontologies. On the agent layer (red layer), the agents (red triangles)

read data from the knowledge graph and update it (dotted arrows). The agents cooperate

with each other as well (solid arrows).

4. OntoAgent

To better fit the specific requirements for the agent ontology in the context190

of a knowledge graph, we customized the MSM ontology into OntoAgent. The

role of OntoAgent is to provide machine-readable descriptions of agents for their

automated operation, including agent discovery, composition, and execution on

top of an underlying cross-domain knowledge graph.

OntoAgent utilizes the skeleton of the MSM ontology and adds OWL classes195

and properties for grounding to support the invocation of the agents as part of an

agent composition framework. The extensions and their purposes are described

in Table 1 while Figure 2 illustrates the structure of OntoAgent. Appendix A.4

9



Table 1: Extension made upon the MSM agent ontology and their descriptions

OWL Class Description

ontoagent:Invocation To be the container of the invocation information.

OntoAgent may integrate more information

for invocation, this class provides clear separation

of such information.

OWL Properties Description

ontoagent:hasInvocation To connect the invocation information to the operations.

ontoagent:hasHttpUrl To define the HTTP address for invoking a

certain service of an agent.

ontoagent:hasKey To define the name of the key in the key-value pair

that contains the input JSON Object in the HTTP

requests

ontoagent:isArray To declare whether the I/O parameter

is an array of class defined by ontoagent:hasType.

ontoagent:hasType To directly connect the I/O parameters

with ontology classes.

provides detailed information on the property restrictions of OntoAgent.

The intention of adding grounding elements to MSM is not to create yet200

another grounding standard but to capture the most common and fundamental

elements of grounding shared by the mainstream standards. Such a design will

enable the OntoAgent to support the execution of agents in the JPS cross-

domain knowledge graph while keeping the extensibility and flexibility of MSM.

One key question for a minimal agent ontology is whether it provides suffi-205

cient and necessary information to support each phase of the agent composition

process, including agent discovery, composition, and execution. OntoAgent has

inherited the IO (Input and Output) model from MSM instead of the IOPE (In-

put, Output, Precondition, and Effect) model used by ontologies such as OWL-

10



Figure 2: The design of OntoAgent: the ovals denote the classes and the arrows with annota-

tion denote properties, of OntoAgent. The components within the dotted box are the native

MSM classes and relations, while those outside the box, with the name-space ontoagent are

newly defined in OntoAgent.

S [15], i.e. OntoAgent represents agents with their I/O signature by connecting210

the I/O parameters to classes of domain ontologies and also defines the restric-

tions on the I/O data. At the moment, the only restriction property is whether

the data is a single individual or a set of individuals (OntoAgent:isArray).

However, in our context, the majority of tasks focuses on simulations and

optimization, which are data-centric, in the sense that whether an agent meets215

its invocation requirement depends on the inputs it receives. In a data-centric

scenario, the input/output (I/O) parameters of an agent are sufficient to define

the function of an agent hence support function-based discovery and composition

in most of the cases. The outcome from Rodriguez-Mier et al. [20] also supports

this argument.220

It is evident that the description of I/O data types could not differentiate

agents such as the division agent and the multiplication agent which have the

11



same data flow (e.g. both agents have xsd:float as input and output) but differ-

ent purposes. Nevertheless, in a cross-domain environment where the tasks for

agents are very specific (e.g. to calculate the emission of an internal combustion225

engine), agents with identical data-flow are rare as data types involved such

as “EmissionRate” are more specific and hence could make the agents more

distinguishable. Therefore, class specifications of finer granularity (i.e. finer

subdivision of classes) could alleviate the problem in future.

For the execution of an agent, the basic grounding information provides the230

most essential information for invocation: where to send the HTTP request and

how to structure the input. Such a grounding enables the implementation of

an execution agent that is standard neutral but potentially compatible with

mainstream standards, in the context of the cross-domain knowledge graph.

The detail of the invocation mechanism will be discussed in Section 5.2.235

5. The agent composition framework

The purpose of implementing an agent composition framework is to fulfill

tasks that require the consecutive execution of more than one agent, without

hard-coded coordination. An agent composition framework creates plans for

agent coordination in an automated and dynamic fashion, increasing the effi-240

ciency and flexibility of coordinating agents.

The composition framework we designed contains two agents: the compo-

sition agent and the execution agent. The composition agent takes the user

requirement and creates the composite agents. The other component of the

composition framework, the execution agent takes the description of the com-245

posite agent and concrete input values as inputs and executes the agents consti-

tuting the composite in sequence. Figure 3 demonstrates the complete process

of agent composition including the execution of the composite agent. This sec-

tion will introduce the implementation details of the composition agent and the

execution agent respectively.250

12



Figure 3: The process of the agent composition implemented: each blue panel denotes a phase

in the composition process. Solid arrows represent the process sequence and the dotted ones

are the iterative sequence. The panels containing agents (red nodes) represent composition

results: 1© is the composition result with multiple solutions; 2© is the optimised composite

agent. The composition process starts from defining the requirements for the composite agent,

and ends with the execution of the composite agent. The execution will be triggered when an

agent provides the input values.

5.1. The composition agent

The composition process starts from defining the requirements for the com-

posite agent by specifying the types of the I/O parameters in the form of URIs7.

The definition could come from either a human user or an agent (for demon-

stration purpose in the use case, some extra components are implemented to255

support human users). The discovery module within the composition agent

locates agents within the knowledge graph that meet the I/O requirements

via a SPARQL query and reasoning (reasoning is not yet implemented in the

proof-of-concept prototype). The composition module works with the discovery

7https://www.w3.org/Addressing/URL/uri-spec.html

13

https://www.w3.org/Addressing/URL/uri-spec.html


Figure 4: Knowledge graph integrated with OntoAgent and the composition agent: the knowl-

edge graph is populated with the OntoAgent ontology and its individuals (red nodes). Agents

in action are represented by red triangles. The agents layer (red layer) demonstrates the com-

position agent creating composite agents out of atomic agents. The dotted arrow denotes the

composition agent adding the new composite agent to the knowledge graph. The solid arrows

denote the connection between agent individuals in the knowledge graph and the agents in

action on the agent layer.

module iteratively to come up with the composition plan. In order to better260

work with agents described by OntoAgent, the composition agent adopts a com-

mon graph-based composition approach which utilizes the matching of semantic

input-output parameters to arrange sequences of agents. Such an approach has

been widely applied for agent composition [31, 32, 33, 34, 35, 36, 37, 38, 39].

The essence of graph-based composition is to append agents which fulfill the265

input requirements provided either by initial inputs or outputs of other agents

already appended to the composition result. The graph-based composition algo-

14



rithm repeats the process of appending new eligible agents until all the initially

required outputs for the composite agent are achieved. When all the required

outputs are achieved or the process takes longer than the preset time-out value,270

the process of composition composition process terminates. Figure 4 illustrates

how the composition agent creates a composite agent on top of the knowledge

graph and algorithm 1 in the Appendix A.1 introduces the composition algo-

rithm in detail. In this algorithm, function discover agent discovers all the

agents that are eligible for the composition. In other words, it returns agents275

of which all inputs could be fulfilled by the inputs collected so far. Appendix

A.2 shows the simplified Java implementation of the function discover agent

while Appendix A.5 illustrates the implementation with a flowchart.

The iterative phases of agent discovery and composition yield one or more

plans for the agent coordination. Due to the existence of alternative solutions,280

the framework will need to select the optimal one. Therefore the process pro-

ceeds to the optimization phase. The optimization module essentially eliminates

the redundant agents when multiple ones are providing the same data. In this

implementation, the optimization is based on Quality-of-Service (QoS), which

reflects the performance of an agent. For now, the scores are set by the devel-285

oper. After the optimization, the optimal composition result will be created.

The result will be serialized in JSON format and stored. After that, whenever

an execution is triggered by either a human user or an agent, the composition

process proceeds to the execution phase.

5.2. The execution agent290

The execution agent is a part of the agent composition framework. It takes

composition result as input, executes each atomic agent and feeds their outputs

to the downstream agents, according to the execution sequence stored in the

composition result. It could execute a single atomic agents as well.

The execution agent supports the invocation of agents described by OntoA-295

gent but remains potentially compatible with other standards. This is one of the

major distinction of our agent composition framework. As shown in Figure 5,

15



Figure 5: The execution of a composite agent: the solid arrows mark the connection between

the descriptions of the agents (red nodes) in the knowledge graph and the implementation

of agents in action (red triangles). The upward dotted arrows denote the reading from the

knowledge graph while the downward one depicts the writing to the knowledge graph.

Figure 6: The execution agent’s invocation of an agent with OntoAgent description: step

1© utilizes ontoagent:isArray, msm:hasName, and ontoagent:hasType to construct a

JSON object containing all the input data for invoking the agent. Step 2© builds the full

HTTP Request containing the input JSON object, based on ontoagent:hasHttpUrl and

ontoagent:hasKey, and sends the concrete request to the agent.

16



the execution phase works closely with the knowledge graph. In this phase,

the execution agent reads the semantic descriptions of agents within the seri-

alized composition result, from the knowledge graph. Appendix A.3 shows the300

simplified Java source code for the execution agent and Appendix A.6 demon-

strates the execution process with a flowchart. During the execution of an

atomic agent, the agent takes data from the knowledge graph and updates the

knowledge graph with the new data produced.

The execution agent is customized to work with grounding information pro-305

vided by OntoAgent. Figure 6 explains how the execution agent utilizes the

grounding information for invocation. Firstly, with DataType properties ontoa-

gent:isArray, msm:hasName, and ontoagent:hasType alongside with the intrinsic

mapping between the name and type, the execution agent converts the output

of the upstream agent into a JSON object that the downstream agent accepts.310

Secondly, based on the properties ontoagent:hasHttpUrl and ontoagent:hasKey,

the execution agent constructs the HTTP request with a key-value pair.

6. Use case

The OntoAgent ontology and the comprehensive agent composition frame-

work are integrated into the JPS. In this section, we illustrate how the agent315

composition framework automates the creation of a cross-domain composite

agent that simulates the dispersion profile of the emission from a power plant

within a selected area. This scenario considers multiple domains such as urban

landscape, meteorology, and chemical kinetic reaction mechanisms. It serves as

an example of an integrated analytical application that is based on the integra-320

tion of data and software tools from various domains. This composition agent

could potentially be used to assist in evaluating the suitability of proposed loca-

tion for a new power plant installation, with regard to the potential air pollution

impact it could have on the proximity.

6.1. Agents in the JPS knowledge graph325

17



In this use case, eight relevant agent individuals are integrated into the

JPS knowledge graph together with the domain ontologies. Although there

are currently only connections between the agent individuals and the classes of

domain ontologies, there could be connection between the agents and domain

ontologies on the individual level In in the future (e.g. to store constants330

used by the agent in the agent description and connect them to the values in

domain ontologies.). Therefore, it is reasonable to integrate the agents into

the JPS knowledge graph as well due to the potential intertwinement between

agents and domain knowledge. Moreover, a Knowledge Graph with both agents

and domain ontologies could operate independently, which could enable fully335

functional local copies of the Knowledge Graph within sandboxes.

• City query agent: This agent returns the URI8 in DBpedia ontology in

a selected region. In the background, the agent requests Google Geocod-

ing API9 and gets the city name e.g. “Berlin”, then through DBpedia

Ontology Lookup service10, it retrieves the URI based on the city name.340

• Plant query agent: This agent has the same input as the city query agent.

It queries the JPS knowledge base and returns the URIs of all the power

plants, described by the “PowerPlant” class11 from OntoCAPE.

• Weather agent: There are three different weather agents for real-time

weather data of a selected city in order to demonstrate the optimization345

phase. The three weather agents use Accuweather, YahooWeather, and

OpenWeatherMap respectively. The output weather condition is described

by the WeatherOntology12.

8e.g. http://dbpedia.org/resource/Berlin for Berlin
9https://developers.google.com/maps/documentation/geocoding/start

10https://wiki.dbpedia.org/lookup
11http://www.theworldavatar.com/ontology/ontocape/chemical_process_system/CPS_

realization/plant.owl#Plant
12https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.

owl

18

http://dbpedia.org/resource/Berlin
https://developers.google.com/maps/documentation/geocoding/start
https://wiki.dbpedia.org/lookup
http://www.theworldavatar.com/ontology/ontocape/chemical_process_system/CPS_realization/plant.owl#Plant
http://www.theworldavatar.com/ontology/ontocape/chemical_process_system/CPS_realization/plant.owl#Plant
https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl
https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl


• Building query agent: This agent takes both city and region as input

and returns URIs of building individuals of OntoCityGML ontology by350

querying the JPS knowledge graph.

• SRM agent: This agent wraps up SRM Engine Suite, a commercial soft-

ware for the simulation of exhaust emission from internal combustion en-

gines (ICE), as an agent. It takes the URI of reaction mechanism indi-

vidual of OntoKin and the URI of engine individual under OntoEngine as355

inputs and produces individuals of OntoCAPE “NonReusableWastePro-

duce” class.

• ADMS Agent: Atmospheric Dispersion Modelling System (ADMS)13 is

another commercial software integrated into the JPS platform as an agent.

This agent simulates the dispersion of the pollutant given the weather360

condition, the dimensions of surrounding buildings, and the details of the

emission stream. Currently, there is an absence of specific ontological

vocabulary to describe the dispersion; therefore, we use class “Table14” to

annotate the dispersion grid that is in the tabular form.

6.2. Demonstration365

This subsection demonstrates how the above-mentioned composite agent is

created through the agent composition framework implemented in the JPS. A

series of screen-shots will illustrate the steps of the composition process from

defining the composite agent to its execution15.

As shown in Figure 7, the framework provides a graphical user interface370

(GUI) for users to define a composite agent following the OntoAgent model,

which includes components such as operation, message content, and message

parts. The user could add components to the composite agent using the plus

buttons on each component. When a user presses the plus button on a message

13http://www.cerc.co.uk/environmental-software/ADMS-model.html
14https://www.w3.org/ns/csvw#Table
15accessible via http://www.theworldavatar.com/JPS_COMPOSITION/

19

http://www.cerc.co.uk/environmental-software/ADMS-model.html
https://www.w3.org/ns/csvw#Table
http://www.theworldavatar.com/JPS_COMPOSITION/


part box (highlighted by the red rectangle), an Ontology Lookup Interface (OLI)375

shown in Figure 8 will pop up for the user to define the ontology class connected

to this message part.

Figure 7: GUI for defining a composite agent: the hierarchical structure reflects the OntoAgent

agent model and the boxes denote the components of OntoAgent such as service, operation,

message part, and message content. The plus buttons on each component allow users to

add more next-level components and hence to adjust the number of inputs and outputs.

Meanwhile, by selecting any box and pressing delete, the user could also delete a component.

In this use case, the composite agent defined has two inputs and one output. For simplicity,

hasInputFault and hasOutputFault properties are removed. If the plus button on the message

part box is clicked, an Ontology Lookup Interface (OLI) will pop up and allow the user to

define the ontology classes of inputs and outputs. After defining the classes of all inputs and

outputs, the user could use the compose button to trigger the composition process.

Due to the difficulty for human users to type URIs, an OLI is implemented to

search for URIs of ontology classes. The OLI loads a mapping between the natu-

ral language label of an ontology class and its URI16 into an Apache Solr17 sup-380

ported text search engine, so that searching the term “plant” or “power plant”

will return a series of URIs including the URI for the ontology class power plant.

For this use case, the inputs are defined as “OntoKin:ReactionMechanism” and

“OntoCityGML:EnvelopeType” and the output to be “csvw:Table”.

After defining the ontology classes of each message part, the user could press385

16e.g. The class “http://www.theworldavatar.com/OntoEIP/OntoEN/power_plant.owl#

PowerPlant” has a property “rdfs:label”, of which value is the text string “power plant”
17https://lucene.apache.org/solr/

20

http://www.theworldavatar.com/OntoEIP/OntoEN/power_plant.owl#PowerPlant
http://www.theworldavatar.com/OntoEIP/OntoEN/power_plant.owl#PowerPlant
https://lucene.apache.org/solr/


Figure 8: Ontology lookup service: this GUI allows the users to define the composition

requirements by converting natural language terms into ontology classes.

the compose button in Figure 7 to start the composition process, which is sup-

ported by the algorithm demonstrated in Appendix A.1. When the composition

framework comes up with the composition result, it shows the visualization of

the composition result illustrated by Figure 9. When the user presses the “Select

Optimal Path” button, the framework will optimise this composition result by390

eliminating agents with a lower score. The framework then presents the optimal

composition result as shown in Figure 10. By pressing the “Send to executor”

button, the user could proceed to the execution of the composite agent. The

implementation of agent execution is demonstrated in Appendix A.3.

For the execution phase, the framework provides an integrated GUI for data395

input and output visualization. Figure 11 demonstrates the execution of the

use case composite agent. When the user finishes entering all the inputs, the

framework will execute the composite agent and then visualize the execution

result in the same GUI.

7. Limitations and outlook400

The present implementation of OntoAgent and the agent composition frame-

work have some shortcomings. Firstly, as mentioned, OntoAgent only captures

21



Figure 9: Visualization of composition result for the use case: this use case requires a compos-

ite agent that takes reaction mechanism and region as inputs and produces an air dispersion

simulation result (temporarily represented by Table class). Each blue and white box denotes

an agent, the annotation on its sides are short terms for the I/O types. Arrows represent data

flow between the agents. This composition result gives three alternatives for weather data.

The weather agents connected with dotted arrows are to be eliminated due to their lower

performance scores (scores are currently defined by the developer).

the inputs and outputs of an agent. Such a design limits the range of applica-

tion for OntoAgent as it does not describe activities such as booking a ticket.

However, such a limitation is acceptable for the current status of the knowl-405

edge graph, where the number of agents is limited and the function of agents

focuses on tasks such as optimization and simulation. In the long run, when

more tasks for the agent description emerge, one could easily extend the func-

tionality of OntoAgent with its extensibility. We trust such extensions will not

bloat OntoAgent, as the extensions they could be designed in a modular way.410

Those who have the need to extend OntoAgent only need to learn the module

of interest. For example, OntoAgent is not able to describe a composite agent.

Consequently, the composite agents created are not yet written into the knowl-

22



Figure 10: Visualization of optimised composition result for the use case: the two weather

agents with a lower QoS score have been removed from the composition result and hence the

composition result is optimised.

Figure 11: Visualization of execution result: on the left is the sub-screen for inputs, including

the drop-down list for specifying the reaction mechanism and the map for selecting the region.

On the right is the visualization for the output, which is the air dispersion grid.

23



edge graph. In future, we will extend OntoAgent to describe composite agents

in a modularized fashion.415

Secondly, this paper only introduces the proof-of-concept implementation of

the agent composition framework prototype. The evaluation of performance on

phases such as discovery, composition, and execution is left aside. However,

the purpose of this paper is to present a proof-of-concept design where agent

composition framework is integrated with a knowledge graph, increasing the420

robustness and scalability of this system will be a major focus in the future.

Lastly, the current QoS-based optimization is built upon arbitrary agent

performance scores. We are now experimenting with the application of emerging

technologies such as blockchain-based smart contracts for agent performance

evaluation and record management. Consequently, with the help of blockchains425

and blockchain-based smart contracts, there will be a secure and economical

way to store dynamic yet sensitive data such as the price, performance scores,

and rankings of the agents.

8. Conclusion

This paper presents the lightweight agent ontology OntoAgent that keeps the430

extensibility and flexibility of MSM but supports grounding for execution which

captures the fundamental elements for agent invocation. Its lightweight clearly

decreases the cost of creating an agent individual in the knowledge graph. We

have also demonstrated that this agent ontology efficiently facilitates the phase

of agent composition and execution in the scenario of a cross-domain knowledge435

graph.

Also, the paper illustrates the implementation of a comprehensive agent

composition framework integrated with the execution agent, which works with

the lightweight agent ontology OntoAgent. The agent composition framework

provides a solution to create and execute composite agents to fulfill complex440

tasks on top of a cross-domain semantic knowledge graph.

Lastly, the paper demonstrates the integration of OntoAgent and the agent

24



composition framework into the JPS and how the agent ontology and the frame-

work work together upon the JPS knowledge graph and creates a composite

agent for the analysis of the air pollution impact from power plants in a selected445

urban area. In future, we will use the same framework for other implemented

use cases, including simulation, optimization, and control tasks, for example

waste heat network agent that optimises a small inter-plant waste heat recovery

network to maximize its overall energy efficiency18 [40], world power plant CO2

calculation agent that estimates the CO2 emission from power plants all over450

the world using surrogate model19, and the agent for building management of

laboratories20 that monitors and predicts activities in chemical laboratories.

9. Acknowledgements

This project is supported by the National Research Foundation (NRF),

Prime Minister’s Office, Singapore under its Campus for Research Excellence455

and Technological Enterprise (CREATE) programme. Markus Kraft acknowl-

edges the support of the Alexander von Humboldt foundation.

18Accessible via http://www.theworldavatar.com:82/hw
19Accessible via http://www.theworldavatar.com/JPS_CO2EMISSIONS/
20Accessible via http://www.theworldavatar.com:83/BMSIndoor/

25

http://www.theworldavatar.com:82/hw
http://www.theworldavatar.com/JPS_CO2EMISSIONS/
http://www.theworldavatar.com:83/BMSIndoor/


Appendix A. Appendices

Appendix A.1. Graph-based agent composition algorithm

Algorithm 1 Composition Algorithm

1: function Composition(I0, O0) . I and O denote the user defined I/O

parameters

2: G← ∅ . G: the final composition result

3: C ← ∅ . C: the set of all agents discovered

4: Dcollected ← I0

5: repeat

6: i← i + 1

7: Li ← ∅ . denotes one layer of agents

8: A← ∅ . A: a temporal set for agents discovered in this iteration

9: A←discover agent(Dcollected)

10: for all a = {Ia, Oa} ∈ A do

11: if a /∈ C then

12: Li ← Li ∪ {a} . Push an agent in one layer

13: Dcollected ← Dcollected ∪ {Oa}

14: end if

15: end for

16: C ← C ∪A

17: G← G ∪ {Li} . The final result G is an ordered array of layers

18: until (O0 ⊂ Dcollected) or time out

19: end function

Appendix A.2. Agent discovery function implementation in Java460

1 public class AgentDiscovery {

2

3 public static ArrayList<String> discover_agent(ArrayList<String> inputs) {

4 ArrayList<String> agent_iris = new ArrayList<String>();

5 // Query the SPARQL Endpoint and generate a mapping

6 // between agents and their input types

26



7 Map<String, ArrayList<String>>

8 agents_and_inputs_mapping = query_sparql_endpoint();

9

10 for (Map.Entry<String, ArrayList<String>> entry :

11 agents_and_inputs_mapping.entrySet()) {

12 if (inputs.containsAll(entry.getValue())) {

13 /* if the agent's inputs is a subset of the inputs required,

14 this agent is considered eligible */

15 agent_iris.add(entry.getKey());

16 }

17 }

18 return agent_iris;

19 }

20

21 public static Map<String, ArrayList<String>> query_sparql_endpoint() {

22

23 Map<String, ArrayList<String>> agents_and_inputs_mapping =

24 new HashMap<String, ArrayList<String>>();

25

26 String agent_query_string =

27 "PREFIX msm:<http://www.theworldavatar.com/ontology/ontoagent/MSM.owl#> " +

28 "PREFIX ontoagent:<http://www.theworldavatar.com/ontology/OntoAgent.owl#> " +

29 "SELECT DISTINCT ?agent ?inputType" +

30 "WHERE " +

31 " { " +

32 " ?agent msm:hasOperation ?operation ." +

33 " ?operation msm:hasInput ?messageContentsForInput ." +

34 " ?messageContentsForInput msm:hasMandatoryPart ?mandatoryPart ." +

35 " ?mandatoryPart ontoagent:hasType ?inputType ." +

36 " }";

37

38 // The SPARQL query to retrieve the input types of agents

39 QueryExecution qe = QueryExecutionFactory.sparqlService(

40 "http://www.theworldavatar.com/damecoolquestion/agents/query",

41 agent_query_string);

42 ResultSet results = qe.execSelect();

43

44 // Fire the SPARQL query

27



45 while (results.hasNext()) {

46 QuerySolution result = results.next();

47 String agent = result.get("agent").toString();

48 String inputType = result.get("inputType").toString();

49

50 if(agents_and_inputs_mapping.containsKey(agent)) {

51 agents_and_inputs_mapping.get(agent).add(inputType);

52 }

53 else {

54 agents_and_inputs_mapping.put(agent, new ArrayList<String>());

55 }

56 }

57

58 return agents_and_inputs_mapping;

59 }

60 }

Appendix A.3. Agent execution function implementation in Java

1 public class ExecutionAgent {

2 /*

3 * The method receives the URIs of two consecutive agents and the output

4 * for the upstream agent, converts the output of the precedent agent

5 * to the format that the subsequent receives as input, and executes

6 * the subsequent agent with the formatted input.

7 */

8 public static JSONObject execute_an_agent(String upstream_agent_uri,

9 String downstream_agent_uri, JSONObject inputJSON) {

10

11 Map<String, String> name_mapping = generateNameMapping(

12 upstream_agent_uri, downstream_agent_uri);

13 JSONObject input_json = mapJSONObject(inputJSON, name_mapping);

14 return executeAgent(input_json, downstream_agent_uri);

15 }

16

17 // Generate a mapping between the potentially different keys between the two

18 // consecutive agents.

19 public static Map<String, String> generateNameMapping(

20 String upstream_agent_uri, String downstream_agent_uri) {

28



21

22 String query_for_downstream_agent_template =

23 "PREFIX msm:<http://www.theworldavatar.com/ontology/MSM.owl#> "

24 + "PREFIX ontoagent:<http://www.theworldavatar.com/ontology/OntoAgent.owl#> "

25 + "SELECT ?type ?key " +

26 + "WHERE "

27 + " { "

28 + " <%s> msm:hasOperation ?operation ."

29 + " ?operation msm:hasInput ?messageContentsForInput ."

30 + " ?messageContentsForInput msm:hasMandatoryPart ?mandatoryPart ."

31 + " ?mandatoryPart msm:hasType ?type ."

32 + " ?mandatoryPart msm:hasName ?key ."

33 + " }";

34

35 String query_for_upstream_agent_template =

36 "PREFIX msm:<http://www.theworldavatar.com/ontology/MSM.owl#> "

37 + "PREFIX ontoagent:<http://www.theworldavatar.com/ontology/OntoAgent.owl#> "

38 + "SELECT ?type ?key " +

39 + "WHERE "

40 + " { "

41 + " <%s> msm:hasOperation ?operation ."

42 + " ?operation msm:hasOutput ?messageCotentsForOutput ."

43 + " ?messageCotentsForOutput msm:hasMandatoryPart ?mandatoryPart ."

44 + " ?mandatoryPart msm:hasType ?type ."

45 + " ?mandatoryPart msm:hasName ?key ."

46 + " }";

47

48 QueryExecution qe_up = QueryExecutionFactory.sparqlService(

49 "http://www.theworldavatar.com/damecoolquestion/agents/query",

50 String.format(query_for_upstream_agent_template,

51 upstream_agent_uri));

52 ResultSet results_upstream = qe_up.execSelect();

53

54 QueryExecution qe_down = QueryExecutionFactory.sparqlService(

55 "http://www.theworldavatar.com/damecoolquestion/agents/query",

56 String.format(query_for_downstream_agent_template,

57 downstream_agent_uri));

58 ResultSet results_downstream = qe_down.execSelect();

29



59 return process_query_result_for_mapping(results_upstream,

60 results_downstream);

61 }

62

63 public static JSONObject mapJSONObject(

64 JSONObject output_from_upstream_agent,

65 Map<String, String> name_mapping) {

66

67 JSONObject input_for_downstream_agent = new JSONObject();

68 Iterator<String> keys = output_from_upstream_agent.keys();

69 while (keys.hasNext()) {

70 String key = keys.next();

71 String new_key = name_mapping.get(key);

72 input_for_downstream_agent.put(new_key,

73 output_from_upstream_agent.get(key));

74 }

75

76 return output_from_upstream_agent;

77 }

78

79 // Construct an HTTP request based on the input JSON Object and the grounding

80 // information of the agent

81 public static JSONObject executeAgent(JSONObject input_JSON_object,

82 String agent_uri) {

83

84 String key = "";

85 String url = "";

86 String query =

87 "PREFIX msm:<http://www.theworldavatar.com/ontology/MSM.owl#> "

88 + "PREFIX ontoagent: <http://www.theworldavatar.com/ontology.owl#>"

89 + "SELECT ?key ?HttpUrl " + "WHERE " + "{ "

90 + " <%s> msm:hasOperation ?operation ."

91 + " ?operation ontoagent:hasInvocation ?invocationContainer ."

92 + " ?invocationContainer ontoagent:hasKey ?key ."

93 + " ?invocationContainer ontoagent:hasKey ?HttpUrl ."

94 + "}";

95

96 // Make SPARQL query to retrieve grounding information for agent invocation

30



97 QueryExecution qe_up = QueryExecutionFactory.sparqlService(

98 "http://www.theworldavatar.com/damecoolquestion/agents/query",

99 String.format(query, agent_uri));

100

101 ResultSet invocation_info = qe_up.execSelect();

102 while (invocation_info.hasNext()) {

103 QuerySolution result = invocation_info.next();

104 key = result.get("key").toString();

105 url = result.get("HttpUrl").toString();

106 }

107 // Construct the HTTP request with information retreived from the semantic

108 // description of the agent.

109 URIBuilder builder = new URIBuilder().setScheme("http")

110 .setPath(url)

111 .setParameter(key, input_JSON_object.toString());

112

113 return executeGet(builder);

114 }

115

116 public static Map<String, String> process_query_result_for_mapping(

117 ResultSet results_upstream, ResultSet results_downstream) {

118 Map<String, String[]> type_name_mapping = new HashMap<String, String[]>();

119 Map<String, String> name_mapping = new HashMap<String, String>();

120 while (results_upstream.hasNext()) {

121 QuerySolution result = results_upstream.next();

122 String type = result.get("type").toString();

123 String name = result.get("key").toString();

124 String[] temp = new String[2];

125 temp[0] = name;

126 type_name_mapping.put(type, temp);

127 }

128

129 while (results_downstream.hasNext()) {

130 QuerySolution result = results_downstream.next();

131 String type = result.get("type").toString();

132 String name = result.get("key").toString();

133 type_name_mapping.get(type)[1] = name;

134 }

31



135

136 for (Map.Entry<String, String[]> entry : type_name_mapping

137 .entrySet()) {

138 String[] keys = entry.getValue();

139 name_mapping.put(keys[0], keys[1]);

140 }

141 return name_mapping;

142 }

143

144 // Carry out the HTTP request

145 public static JSONObject executeGet(URIBuilder builder) {

146

147 try {

148 URI uri = builder.build();

149 HttpGet request = new HttpGet(uri);

150 request.setHeader(HttpHeaders.ACCEPT, "application/json");

151 HttpResponse httpResponse = HttpClientBuilder.create().build()

152 .execute(request);

153 return new JSONObject(

154 EntityUtils.toString(httpResponse.getEntity()));

155 } catch (Exception e) {

156 }

157 return null;

158 }

159 }

32



Appendix A.4. Domain and range restrictions on new roles of OntoAgent

Role names Domain restrictions

hasInvocation ∃ ontoagent:hasInvocation.> v msm:Operation

hasHttpUrl ∃ ontoagent:hasHttpUrl.> v msm:Invocation

hasKey ∃ ontoagent:hasKey.> v msm:Invocation

isArray ∃ ontoagent:isArray.> v msm:MessagePart

hasType ∃ ontoagent:hasType.> v msm:MessagePart

Role names Role restrictions

hasInvocation > v ∀ ontoagent:hasInvocation.ontoagent:Invocation

hasHttpUrl > v ∀ ontoagent:hasHttpUrl.xsd:anyURI

hasKey > v ∀ ontoagent:hasKey.Datatypestring

isArray > v ∀ ontoagent:isArray.Datatypeboolean

hasType > v ∀ ontoagent:hasType.xsd:anyURI

33



Appendix A.5. Flowchart of agent discovery

34



Appendix A.6. Flowchart of agent execution

35



References465

[1] M. Pan, J. Sikorski, C. A. Kastner, J. Akroyd, S. Mosbach, R. Lau,

M. Kraft, Applying Industry 4.0 to the Jurong Island Eco-industrial Park,

Energy Procedia 75 (2015) 1536 – 1541, doi:10.1016/j.egypro.2015.07.313.

[2] Z. W. Liao, J. T. Wu, B. B. Jiang, J. D. Wang, Y. R. Yang, Design Method-

ology for Flexible Multiple Plant Water Networks, Industrial & Engineering470

Chemistry Research 46 (14) (2007) 4954–4963, doi:10.1021/ie061299i.

[3] Y. T. Leong, J.-Y. Lee, R. R. Tan, J. J. Foo, I. M. L. Chew, Multi-objective

optimization for resource network synthesis in eco-industrial parks using an

integrated analytic hierarchy process, Journal of Cleaner Production 143

(2017) 1268–1283, doi:10.1016/j.jclepro.2016.11.147.475

[4] B. T. C. Tiu, D. E. Cruz, An MILP model for optimizing water exchanges

in eco-industrial parks considering water quality, Resources, Conservation

and Recycling 119 (2017) 89–96, doi:10.1016/j.resconrec.2016.06.005.

[5] S. K. Nair, Y. Guo, U. Mukherjee, I. Karimi, A. Elkamel, Shared and

practical approach to conserve utilities in eco-industrial parks, Computers480

& Chemical Engineering 93 (2016) 221–233, doi:10.1016/j.compchemeng.

2016.05.003.

[6] H. Afshari, R. Farel, Q. Peng, Improving the Resilience of Energy Flow Ex-

changes in Eco-Industrial Parks: Optimization Under Uncertainty, ASCE-

ASME Journal of Risk and Uncertainty in Engineering Systems, Part B:485

Mechanical Engineering 3 (2) (2017) 021002, doi:10.1115/1.4035729.

[7] C. Zhang, L. Zhou, P. Chhabra, S. S. Garud, K. Aditya, A. Romagnoli,

G. Comodi, F. D. Magro, A. Meneghetti, M. Kraft, A novel methodology

for the design of waste heat recovery network in eco-industrial park using

techno-economic analysis and multi-objective optimization, Applied Energy490

184 (2016) 88–102, doi:10.1016/j.apenergy.2016.10.016.

36

http://dx.doi.org/10.1016/j.egypro.2015.07.313
http://dx.doi.org/10.1021/ie061299i
http://dx.doi.org/10.1016/j.jclepro.2016.11.147
http://dx.doi.org/10.1016/j.resconrec.2016.06.005
http://dx.doi.org/10.1016/j.compchemeng.2016.05.003
http://dx.doi.org/10.1016/j.compchemeng.2016.05.003
http://dx.doi.org/10.1016/j.compchemeng.2016.05.003
http://dx.doi.org/10.1115/1.4035729
http://dx.doi.org/10.1016/j.apenergy.2016.10.016


[8] R. R. Tan, K. B. Aviso, An Inverse Optimization Approach to Inducing Re-

source Conservation in Eco-Industrial Parks, in: Computer Aided Chemical

Engineering, Elsevier, 775–779, doi:10.1016/b978-0-444-59507-2.50147-5,

2012.495

[9] H. Haslenda, M. Jamaludin, Industry to Industry By-products Exchange

Network towards zero waste in palm oil refining processes, Resources, Con-

servation and Recycling 55 (7) (2011) 713–718, doi:10.1016/j.resconrec.

2011.02.004.

[10] E. Cimren, J. Fiksel, M. E. Posner, K. Sikdar, Material Flow Optimiza-500

tion in By-product Synergy Networks, Journal of Industrial Ecology 15 (2)

(2011) 315–332, doi:10.1111/j.1530-9290.2010.00310.x.

[11] A. Eibeck, M. Q. Lim, M. Kraft, J-Park Simulator: An ontology-based

platform for cross-domain scenarios in process industry, URL https://

como.ceb.cam.ac.uk/preprints/222/, submitted for publication, 2019.505

[12] Thomas R Gruber, A translation approach to portable ontology specifica-

tions, Knowledge Acquisition 5 (2) (1993) 199–220, doi:10.1006/knac.1993.

1008.

[13] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, X. Xu, Web ser-

vices composition: A decade’s overview., Information Sciences 280 (2014)510

218 – 238, doi:10.1016/j.ins.2014.04.054.

[14] D. Fensel, F. M. Facca, E. Simperl, I. Toma, Web Service Modeling On-

tology, in: Semantic Web Services, Springer Berlin Heidelberg, 107–129,

doi:10.1007/978-3-642-19193-0 7, 2011.

[15] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,515

S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan,

K. Sycara, OWL-S: Semantic markup for web services, http://www.ai.

sri.com/~daml/services/owl-s/1.2/overview/, last accessed: 2019-03-

11, 2004.

37

http://dx.doi.org/10.1016/b978-0-444-59507-2.50147-5
http://dx.doi.org/10.1016/j.resconrec.2011.02.004
http://dx.doi.org/10.1016/j.resconrec.2011.02.004
http://dx.doi.org/10.1016/j.resconrec.2011.02.004
http://dx.doi.org/10.1111/j.1530-9290.2010.00310.x
https://como.ceb.cam.ac.uk/preprints/222/
https://como.ceb.cam.ac.uk/preprints/222/
https://como.ceb.cam.ac.uk/preprints/222/
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1016/j.ins.2014.04.054
http://dx.doi.org/10.1007/978-3-642-19193-0_7
http://www.ai.sri.com/~daml/services/owl-s/1.2/overview/
http://www.ai.sri.com/~daml/services/owl-s/1.2/overview/
http://www.ai.sri.com/~daml/services/owl-s/1.2/overview/


[16] J. Kopeckỳ, T. Vitvar, C. Bournez, J. Farrell, Semantic Annotations520

for WSDL and XML Schema, https://www.w3.org/TR/sawsdl/, last ac-

cessed: 2019-03-11, 2007.

[17] J. Kopeckỳ, T. Vitvar, WSMO-Lite: Lowering the Semantic Web Ser-

vices Barrier with Modular and Light-Weight Annotations, in: 2008

IEEE International Conference on Semantic Computing, 238–244, doi:525

10.1109/ICSC.2008.54, 2008.

[18] J. Kopeckỳ, K. Gomadam, T. Vitvar, hRESTS: An HTML Microformat

for Describing RESTful Web Services, in: 2008 IEEE/WIC/ACM Interna-

tional Conference on Web Intelligence and Intelligent Agent Technology,

vol. 1, 619–625, doi:10.1109/wiiat.2008.379, 2008.530

[19] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopeckỳ,

J. Domingue, iServe: a linked services publishing platform, in: Ontology

Repositories and Editors for the Semantic Web Workshop at The 7th Ex-

tended Semantic Web, vol. 596, URL http://oro.open.ac.uk/23093/,

last accessed: 2019-4-12, 2010.535

[20] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, M. Mucientes, An integrated

semantic web service discovery and composition framework, IEEE Trans-

actions on Services Computing 9 (4) (2016) 537–550, doi:10.1109/tsc.2015.

2402679.

[21] R. T. Fielding, R. N. Taylor, Architectural styles and the design540

of network-based software architectures, https://www.ics.uci.edu/

~fielding/pubs/dissertation/fielding_dissertation.pdf, last ac-

cessed: 2019-04-13, 2000.

[22] S. McIlraith, T. C. Son, Adapting golog for composition of semantic

web services, in: Proceedings of the Eights International Conference on545

Principles of Knowledge Representation and Reasoning, vol. 2, 482–493,

URL http://semanticweb2002.aifb.uni-karlsruhe.de/proceedings/

Position/sheila.pdf, 2002.

38

https://www.w3.org/TR/sawsdl/
http://dx.doi.org/10.1109/ICSC.2008.54
http://dx.doi.org/10.1109/ICSC.2008.54
http://dx.doi.org/10.1109/ICSC.2008.54
http://dx.doi.org/10.1109/wiiat.2008.379
http://oro.open.ac.uk/23093/
http://dx.doi.org/10.1109/tsc.2015.2402679
http://dx.doi.org/10.1109/tsc.2015.2402679
http://dx.doi.org/10.1109/tsc.2015.2402679
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://semanticweb2002.aifb.uni-karlsruhe.de/proceedings/Position/sheila.pdf
http://semanticweb2002.aifb.uni-karlsruhe.de/proceedings/Position/sheila.pdf
http://semanticweb2002.aifb.uni-karlsruhe.de/proceedings/Position/sheila.pdf


[23] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau, HTN planning for

Web Service composition using SHOP2, Web Semantics: Science, Ser-550

vices and Agents on the World Wide Web 1 (4) (2004) 377–396, doi:

10.1016/j.websem.2004.06.005.

[24] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, F. Ya-

man, SHOP2: An HTN planning system, Journal of Artificial Intelligence

Research 20 (2003) 379–404, doi:10.1613/jair.1141.555

[25] M. Klusch, A. Gerber, M. Schmidt, Semantic web service compo-

sition planning with OWLS-XPlan, in: Proceedings of the 1st Int.

AAAI Fall Symposium on Agents and the Semantic Web, sn, 55–62,

URL https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-01/

FS05-01-008.pdf, 2005.560

[26] K. Fujii, T. Suda, Semantics-based Context-aware Dynamic Service Com-

position, ACM Transactions on Autonomous and Adaptive Systems 4 (2)

(2009) 12:1–12:31, doi:10.1145/1516533.1516536.

[27] J. Morbach, A. Wiesner, W. Marquardt, OntoCAPE: A (re) usable ontol-

ogy for computer-aided process engineering, Computers & Chemical Engi-565

neering 33 (10) (2009) 1546–1556, doi:10.1016/j.compchemeng.2009.01.019.

[28] L. Zhou, C. Zhang, I. A. Karimi, M. Kraft, An ontology framework towards

decentralized information management for eco-industrial parks, Computers

& Chemical Engineering 118 (2018) 49–63, doi:10.1016/j.compchemeng.

2018.07.010.570

[29] G. Gröger, L. Plümer, CityGML - Interoperable semantic 3D city models,

ISPRS Journal of Photogrammetry and Remote Sensing 71 (2012) 12 – 33,

doi:10.1016/j.isprsjprs.2012.04.004.

[30] F. Farazi, J. Akroyd, S. Mosbach, P. Buerger, D. Nurkowski, M. Kraft,

OntoKin: An Ontology for Chemical Kinetic Reaction Mechanisms, URL575

39

http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1613/jair.1141
https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-01/FS05-01-008.pdf
https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-01/FS05-01-008.pdf
https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-01/FS05-01-008.pdf
http://dx.doi.org/10.1145/1516533.1516536
http://dx.doi.org/10.1016/j.compchemeng.2009.01.019
http://dx.doi.org/10.1016/j.compchemeng.2018.07.010
http://dx.doi.org/10.1016/j.compchemeng.2018.07.010
http://dx.doi.org/10.1016/j.compchemeng.2018.07.010
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.004


https://como.ceb.cam.ac.uk/preprints/218/, submitted for publica-

tion., 2019.

[31] S. Kona, A. Bansal, M. B. Blake, G. Gupta, Generalized Semantics-Based

Service Composition, in: 2008 IEEE International Conference on Web Ser-

vices, IEEE, doi:10.1109/icws.2008.118, 2008.580

[32] A. M. Omer, A. Schill, Dependency Based Automatic Service Composi-

tion Using Directed Graph, in: 2009 Fifth International Conference on

Next Generation Web Services Practices, IEEE, doi:10.1109/nwesp.2009.

20, 2009.

[33] Y. Yan, B. Xu, Z. Gu, Automatic Service Composition Using AND/OR585

Graph, in: 2008 10th IEEE Conference on E-Commerce Technology and

the Fifth IEEE Conference on Enterprise Computing, E-Commerce and

E-Services, IEEE, doi:10.1109/cecandeee.2008.124, 2008.

[34] M. Aiello, N. van Benthem, E. el Khoury, Visualizing Compositions of

Services from Large Repositories, in: 2008 10th IEEE Conference on E-590

Commerce Technology and the Fifth IEEE Conference on Enterprise Com-

puting, E-Commerce and E-Services, IEEE, doi:10.1109/cecandeee.2008.

149, 2008.

[35] W. Nam, H. Kil, D. Lee, Type-Aware Web Service Composition Us-

ing Boolean Satisfiability Solver, in: 2008 10th IEEE Conference on E-595

Commerce Technology and the Fifth IEEE Conference on Enterprise Com-

puting, E-Commerce and E-Services, IEEE, doi:10.1109/cecandeee.2008.

108, 2008.

[36] K. Raman, Y. Zhang, M. Panahi, K.-J. Lin, Customizable Business Process

Composition with Query Optimization, in: 2008 10th IEEE Conference on600

E-Commerce Technology and the Fifth IEEE Conference on Enterprise

Computing, E-Commerce and E-Services, IEEE, doi:10.1109/cecandeee.

2008.152, 2008.

40

https://como.ceb.cam.ac.uk/preprints/218/
http://dx.doi.org/10.1109/icws.2008.118
http://dx.doi.org/10.1109/nwesp.2009.20
http://dx.doi.org/10.1109/nwesp.2009.20
http://dx.doi.org/10.1109/nwesp.2009.20
http://dx.doi.org/10.1109/cecandeee.2008.124
http://dx.doi.org/10.1109/cecandeee.2008.149
http://dx.doi.org/10.1109/cecandeee.2008.149
http://dx.doi.org/10.1109/cecandeee.2008.149
http://dx.doi.org/10.1109/cecandeee.2008.108
http://dx.doi.org/10.1109/cecandeee.2008.108
http://dx.doi.org/10.1109/cecandeee.2008.108
http://dx.doi.org/10.1109/cecandeee.2008.152
http://dx.doi.org/10.1109/cecandeee.2008.152
http://dx.doi.org/10.1109/cecandeee.2008.152


[37] M. M. Shiaa, J. O. Fladmark, B. Thiell, An Incremental Graph-based Ap-

proach to Automatic Service Composition, in: 2008 IEEE International605

Conference on Services Computing, IEEE, doi:10.1109/scc.2008.141, 2008.

[38] P. Hennig, W.-T. Balke, Highly Scalable Web Service Composition Using

Binary Tree-Based Parallelization, in: 2010 IEEE International Conference

on Web Services, IEEE, doi:10.1109/icws.2010.45, 2010.

[39] S.-C. Oh, D. Lee, S. R. Kumara, Web Service Planner (WSPR), In-610

ternational Journal of Web Services Research 4 (1) (2007) 1–22, doi:

10.4018/jwsr.2007010101.

[40] C. Zhang, L. Zhou, P. Chhabra, S. S. Garud, K. Aditya, A. Romagnoli,

G. Comodi, F. D. Magro, A. Meneghetti, M. Kraft, A novel methodology

for the design of waste heat recovery network in eco-industrial park using615

techno-economic analysis and multi-objective optimization, Applied Energy

184 (2016) 88 – 102, doi:10.1016/j.apenergy.2016.10.016.

41

http://dx.doi.org/10.1109/scc.2008.141
http://dx.doi.org/10.1109/icws.2010.45
http://dx.doi.org/10.4018/jwsr.2007010101
http://dx.doi.org/10.4018/jwsr.2007010101
http://dx.doi.org/10.4018/jwsr.2007010101
http://dx.doi.org/10.1016/j.apenergy.2016.10.016

	Introduction
	blackExisting technologies
	J-Park Simulator
	OntoAgent
	The agent composition framework
	The composition agent
	The execution agent

	Use case
	Agents in the JPS knowledge graph
	Demonstration

	Limitations and outlook
	Conclusion
	Acknowledgements
	Appendices
	Graph-based agent composition algorithm
	Agent discovery function implementation in Java
	Agent execution function implementation in Java
	Domain and range restrictions on new roles of OntoAgent
	Flowchart of agent discovery
	Flowchart of agent execution


