333 research outputs found

    Key Management Systems for Smart Grid Advanced Metering Infrastructure: A Survey

    Full text link
    Smart Grids are evolving as the next generation power systems that involve changes in the traditional ways of generation, transmission and distribution of power. Advanced Metering Infrastructure (AMI) is one of the key components in smart grids. An AMI comprises of systems and networks, that collects and analyzes data received from smart meters. In addition, AMI also provides intelligent management of various power-related applications and services based on the data collected from smart meters. Thus, AMI plays a significant role in the smooth functioning of smart grids. AMI is a privileged target for security attacks as it is made up of systems that are highly vulnerable to such attacks. Providing security to AMI is necessary as adversaries can cause potential damage against infrastructures and privacy in smart grid. One of the most effective and challenging topic's identified, is the Key Management System (KMS), for sustaining the security concerns in AMI. Therefore, KMS seeks to be a promising research area for future development of AMI. This survey work highlights the key security issues of advanced metering infrastructures and focuses on how key management techniques can be utilized for safeguarding AMI. First of all, we explore the main features of advanced metering infrastructures and identify the relationship between smart grid and AMI. Then, we introduce the security issues and challenges of AMI. We also provide a classification of the existing works in literature that deal with secure key management system in AMI. Finally, we identify possible future research directions of KMS in AMI

    Authentication techniques in smart grid: a systematic review

    Get PDF
    Smart Grid (SG) provides enhancement to existing grids with two-way communication between the utility, sensors, and consumers, by deploying smart sensors to monitor and manage power consumption. However due to the vulnerability of SG, secure component authenticity necessitates robust authentication approaches relative to limited resource availability (i.e. in terms of memory and computational power). SG communication entails optimum efficiency of authentication approaches to avoid any extraneous burden. This systematic review analyses 27 papers on SG authentication techniques and their effectiveness in mitigating certain attacks. This provides a basis for the design and use of optimized SG authentication approaches

    Efficient Location Privacy In Mobile Applications

    Full text link
    Location awareness is an essential part of today\u27s mobile devices. It is a well-established technology that offers significant benefits to mobile users. While location awareness has triggered the exponential growth of mobile computing, it has also introduced new privacy threats due to frequent location disclosures. Movement patterns could be used to identify individuals and also leak sensitive information about them, such as health condition, lifestyle, political/religious affiliations, etc. In this dissertation we address location privacy in the context of mobile applications. First we look into location privacy in the context of Dynamic Spectrum Access (DSA) technology. DSA is a promising framework for mitigating the spectrum shortage caused by fixed spectrum allocation policies. In particular, DSA allows license-exempt users to access the licensed spectrum bands when not in use by their respective owners. Here, we focus on the database-driven DSA model, where mobile users issue location-based queries to a white-space database in order to identify idle channels in their area. We present a number of efficient protocols that allow users to retrieve channel availability information from the white-space database while maintaining their location secret. In the second part of the dissertation we look into location privacy in the context of location-aware mobile advertising. Location-aware mobile advertising is expanding very rapidly and is forecast to grow much faster than any other industry in the digital era. Unfortunately, with the rise and expansion of online behavioral advertising, consumers have grown very skeptical of the vast amount of data that is extracted and mined from advertisers today. As a result, the consensus has shifted towards stricter privacy requirements. Clearly, there exists an innate conflict between privacy and advertisement, yet existing advertising practices rely heavily on non-disclosure agreements and policy enforcement rather than computational privacy guarantees. In the second half of this dissertation, we present a novel privacy-preserving location-aware mobile advertisement framework that is built with privacy in mind from the ground up. The framework consists of several methods which ease the tension that exists between privacy and advertising by guaranteeing, through cryptographic constructions, that (i) mobile users receive advertisements relative to their location and interests in a privacy-preserving manner, and (ii) the advertisement network can only compute aggregate statistics of ad impressions and click-through-rates. Through extensive experimentation, we show that our methods are efficient in terms of both computational and communication cost, especially at the client side

    Privacy-Friendly Load Scheduling of Deferrable and Interruptible Domestic Appliances in Smart Grids

    Get PDF
    The massive integration of renewable energy sources in the power grid ecosystem with the aim of reducing carbon emissions must cope with their intrinsically intermittent and unpredictable nature. Therefore, the grid must improve its capability of controlling the energy demand by adapting the power consumption curve to match the trend of green energy generation. This could be done by scheduling the activities of deferrable and/or interruptible electrical appliances. However, communicating the users' needs about the usage of their appliances also leaks sensitive information about their habits and lifestyles, thus arising privacy concerns. This paper proposes a framework to allow the coordination of energy consumption without compromising the privacy of the users: the service requests generated by the domestic appliances are divided into crypto-shares using Shamir Secret Sharing scheme and collected through an anonymous routing protocol by a set of schedulers, which schedule the requests by directly operating on the shares. We discuss the security guarantees provided by our proposed infrastructure and evaluate its performance, comparing it with the optimal scheduling obtained by means of an Integer Linear Programming formulation

    Privacy-friendly appliance load scheduling in smart grids

    Full text link
    Abstract—The massive integration of renewable energy sources into the power grid ecosystem with the aim of reducing carbon emissions must cope with their intrinsically intermittent and unpredictable nature. Therefore, the grid must improve its capability of controlling the energy demand by adapting the power consumption curve to match the trend of green energy generation. This could be done by scheduling the activities of deferrable electrical appliances. However, communicating the users ’ needs about the usage of the electrical appliances leaks sensitive information about habits and lifestyles of the customers, thus arising privacy concerns. This paper proposes a privacy-preserving framework to allow the coordination of energy con-sumption without compromising the privacy of the users: the ser-vice requests generated by the domestic appliances are diveded in crypto-shares using Shamir Secret Sharing scheme and collected through an anonymous routing protocol based on Crowds by a set of schedulers, which schedule the requests operating directly on the shares. We discuss the security guarantees provided by our proposed infrastructure and evaluate its performance, comparing it with the optimal scheduling obtained through an Integer Linear Programming formulation. I

    A distributed key establishment scheme for wireless mesh networks using identity-based cryptography

    Get PDF
    In this paper, we propose a secure and efficient key establishment scheme designed with respect to the unique requirements of Wireless Mesh Networks. Our security model is based on Identity-based key establishment scheme without the utilization of a trusted authority for private key operations. Rather, this task is performed by a collaboration of users; a threshold number of users come together in a coalition so that they generate the private key. We performed simulative performance evaluation in order to show the effect of both the network size and the threshold value. Results show a tradeoff between resiliency and efficiency: increasing the threshold value or the number of mesh nodes also increases the resiliency but negatively effects the efficiency. For threshold values smaller than 8 and for number of mesh nodes in between 40 and 100, at least 90% of the mesh nodes can compute their private keys within at most 70 seconds. On the other hand, at threshold value 8, an increase in the number of mesh nodes from 40 to 100 results in 25% increase in the rate of successful private key generations

    ISSUES AND SOLUTIONS OF APPLYING IDENTITY-BASED CRYPTOGRAPHY TO MOBILE AD-HOC NETWORKS

    Get PDF
    Concept of Mobile Ad-hoc Networks (MANETs) was brought up a few decades ago with assumed prosperous future. Unfortunately, we do not see many practical applications of them in real life. Security of MANETs is a big concern considered by investors and industries, and hinders them from putting MANETs into application. Requirements of security, and difficulties to meet these requirements have been stated clearly already; yet solutions to these difficulties are not quite clear. Cryptographic technologies seem to be capable of satisfying most of the requirements, which has been proved in Internet or wired networks. However, most of the technologies, including symmetric and traditional asymmetric cryptography (such as Public Key Infrastructure (PKI)), are inapplicable or inconvenient to use inMANETs context. Identity-based Cryptography (IBC), as a special form of asymmetric cryptography, carries many features interesting for MANETs. IBC has been studied a lot recently by researchers of MANET security, and many applications have been proposed and claimed to address this difficult problem. However, it is still the case that most of the solutions are not sound enough to be used in a practical MANET. This thesis starts with an intensive survey on the proposals of applications of IBC in MANETs, and points out the issues, limitations and weaknesses in these proposals and also in IBC itself. The thesis proposes a novel framework with key management and secure routing scheme integrated aiming to address these issues. This scheme brings these contributions: compared to symmetric key solutions, it has more functionality derived from asymmetric keys, and is more secure due to using 1-to-m broadcasting key instead of only 1 group broadcasting key, and has less keys to store per node due to using asymmetric keys instead of pairwise symmetric keys; compared to traditional asymmetric cryptography solutions, the storage and communication requirements are lower due to IBC properties; compared to previous IBC solutions, it has no key management and secure routing interdependency cycle problem. Security of the proposed scheme is proved and performance of the scheme is simulated and analyzed in the thesis. To the end of a complete solution for an arbitraryMANET running in an arbitrary environment, the thesis proposes enhancements to counter various attacks and options to abate or eliminate limitations and weaknesses of IBC. The proposed scheme has a wide range of applicability for various MANETs with little or no administrative overhead depending on situations where it is considered

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    Get PDF
    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs
    • …
    corecore