25 research outputs found

    Approches générales de résolution pour les problèmes multi-attributs de tournées de véhicules et confection d'horaires

    Full text link
    Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de TroyesLe problème de tournées de véhicules (VRP) implique de planifier les itinéraires d'une flotte de véhicules afin de desservir un ensemble de clients à moindre coût. Ce problème d'optimisation combinatoire NP-difficile apparait dans de nombreux domaines d'application, notamment en logistique, télécommunications, robotique ou gestion de crise dans des contextes militaires et humanitaires. Ces applications amènent différents contraintes, objectifs et décisions supplémentaires ; des "attributs" qui viennent compléter les formulations classiques du problème. Les nombreux VRP Multi-Attributs (MAVRP) qui s'ensuivent sont le support d'une littérature considérable, mais qui manque de méthodes généralistes capables de traiter efficacement un éventail significatif de variantes. Par ailleurs, la résolution de problèmes "riches", combinant de nombreux attributs, pose d'importantes difficultés méthodologiques. Cette thèse contribue à relever ces défis par le biais d'analyses structurelles des problèmes, de développements de stratégies métaheuristiques, et de méthodes unifiées. Nous présentons tout d'abord une étude transversale des concepts à succès de 64 méta-heuristiques pour 15 MAVRP afin d'en cerner les "stratégies gagnantes". Puis, nous analysons les problèmes et algorithmes d'ajustement d'horaires en présence d'une séquence de tâches fixée, appelés problèmes de "timing". Ces méthodes, développées indépendamment dans différents domaines de recherche liés au transport, ordonnancement, allocation de ressource et même régression isotonique, sont unifiés dans une revue multidisciplinaire. Un algorithme génétique hybride efficace est ensuite proposé, combinant l'exploration large des méthodes évolutionnaires, les capacités d'amélioration agressive des métaheuristiques à voisinage, et une évaluation bi-critère des solutions considérant coût et contribution à la diversité de la population. Les meilleures solutions connues de la littérature sont retrouvées ou améliorées pour le VRP classique ainsi que des variantes avec multiples dépôts et périodes. La méthode est étendue aux VRP avec contraintes de fenêtres de temps, durée de route, et horaires de conducteurs. Ces applications mettent en jeu de nouvelles méthodes d'évaluation efficaces de contraintes temporelles relaxées, des phases de décomposition, et des recherches arborescentes pour l'insertion des pauses des conducteurs. Un algorithme de gestion implicite du placement des dépôts au cours de recherches locales, par programmation dynamique, est aussi proposé. Des études expérimentales approfondies démontrent la contribution notable des nouvelles stratégies au sein de plusieurs cadres méta-heuristiques. Afin de traiter la variété des attributs, un cadre de résolution heuristique modulaire est présenté ainsi qu'un algorithme génétique hybride unifié (UHGS). Les attributs sont gérés par des composants élémentaires adaptatifs. Des expérimentations sur 26 variantes du VRP et 39 groupes d'instances démontrent la performance remarquable de UHGS qui, avec une unique implémentation et paramétrage, égalise ou surpasse les nombreux algorithmes dédiés, issus de plus de 180 articles, révélant ainsi que la généralité ne s'obtient pas forcément aux dépends de l'efficacité pour cette classe de problèmes. Enfin, pour traiter les problèmes riches, UHGS est étendu au sein d'un cadre de résolution parallèle coopératif à base de décomposition, d'intégration de solutions partielles, et de recherche guidée. L'ensemble de ces travaux permet de jeter un nouveau regard sur les MAVRP et les problèmes de timing, leur résolution par des méthodes méta-heuristiques, ainsi que les méthodes généralistes pour l'optimisation combinatoire.The Vehicle Routing Problem (VRP) involves designing least cost delivery routes to service a geographically-dispersed set of customers while taking into account vehicle-capacity constraints. This NP-hard combinatorial optimization problem is linked with multiple applications in logistics, telecommunications, robotics, crisis management in military and humanitarian frameworks, among others. Practical routing applications are usually quite distinct from the academic cases, encompassing additional sets of specific constraints, objectives and decisions which breed further new problem variants. The resulting "Multi-Attribute" Vehicle Routing Problems (MAVRP) are the support of a vast literature which, however, lacks unified methods capable of addressing multiple MAVRP. In addition, some "rich" VRPs, i.e. those that involve several attributes, may be difficult to address because of the wide array of combined and possibly antagonistic decisions they require. This thesis contributes to address these challenges by means of problem structure analysis, new metaheuristics and unified method developments. The "winning strategies" of 64 state-of-the-art algorithms for 15 different MAVRP are scrutinized in a unifying review. Another analysis is targeted on "timing" problems and algorithms for adjusting the execution dates of a given sequence of tasks. Such methods, independently studied in different research domains related to routing, scheduling, resource allocation, and even isotonic regression are here surveyed in a multidisciplinary review. A Hybrid Genetic Search with Advanced Diversity Control (HGSADC) is then introduced, which combines the exploration breadth of population-based evolutionary search, the aggressive-improvement capabilities of neighborhood-based metaheuristics, and a bi-criteria evaluation of solutions based on cost and diversity measures. Results of remarkable quality are achieved on classic benchmark instances of the capacitated VRP, the multi-depot VRP, and the periodic VRP. Further extensions of the method to VRP variants with constraints on time windows, limited route duration, and truck drivers' statutory pauses are also proposed. New route and neighborhood evaluation procedures are introduced to manage penalized infeasible solutions w.r.t. to time-window and duration constraints. Tree-search procedures are used for drivers' rest scheduling, as well as advanced search limitation strategies, memories and decomposition phases. A dynamic programming-based neighborhood search is introduced to optimally select the depot, vehicle type, and first customer visited in the route during local searches. The notable contribution of these new methodological elements is assessed within two different metaheuristic frameworks. To further advance general-purpose MAVRP methods, we introduce a new component-based heuristic resolution framework and a Unified Hybrid Genetic Search (UHGS), which relies on modular self-adaptive components for addressing problem specifics. Computational experiments demonstrate the groundbreaking performance of UHGS. With a single implementation, unique parameter setting and termination criterion, this algorithm matches or outperforms all current problem-tailored methods from more than 180 articles, on 26 vehicle routing variants and 39 benchmark sets. To address rich problems, UHGS was included in a new parallel cooperative solution framework called "Integrative Cooperative Search (ICS)", based on problem decompositions, partial solutions integration, and global search guidance. This compendium of results provides a novel view on a wide range of MAVRP and timing problems, on efficient heuristic searches, and on general-purpose solution methods for combinatorial optimization problems

    JUST IN TIME PARA OPTIMIZAR LA PRODUCTIVIDAD EN LAS EMPRESAS

    Get PDF
    La revisión de literatura fue realizada a artículos publicados entre los años 2018 y 2023, sobre los sistemas JIT, en ese sentido tuvo como objetivos:  conocer los sistemas JIT, determinar los beneficios de un sistema JIT y finalmente establecer los riesgos del JIT en las organizaciones.  Se trató de un enfoque sistemático que incluía una búsqueda literaria de estudios previos.  Se seleccionaron Scopus, Scielo, y Redalyc como bases de datos para la búsqueda bibliográfica.  En ese sentido, conforma un aporte al campo del conocimiento entendiendo los sistemas JIT, sus beneficios y sus riesgos al ser usados en las organizaciones

    Cross-Docking: A Proven LTL Technique to Help Suppliers Minimize Products\u27 Unit Costs Delivered to the Final Customers

    Get PDF
    This study aims at proposing a decision-support tool to reduce the total supply chain costs (TSCC) consisting of two separate and independent objective functions including total transportation costs (TTC) and total cross-docking operating cost (TCDC). The full-truckload (FT) transportation mode is assumed to handle supplier→customer product transportation; otherwise, a cross-docking terminal as an intermediate transshipment node is hired to handle the less-than-truckload (LTL) product transportation between the suppliers and customers. TTC model helps minimize the total transportation costs by maximization of the number of FT transportation and reduction of the total number of LTL. TCDC model tries to minimize total operating costs within a cross-docking terminal. Both sub-objective functions are formulated as binary mathematical programming models. The first objective function is a binary-linear programming model, and the second one is a binary-quadratic assignment problem (QAP) model. QAP is an NP-hard problem, and therefore, besides a complement enumeration method using ILOG CPLEX software, the Tabu search (TS) algorithm with four diversification methods is employed to solve larger size problems. The efficiency of the model is examined from two perspectives by comparing the output of two scenarios including; i.e., 1) when cross-docking is included in the supply chain and 2) when it is excluded. The first perspective is to compare the two scenarios’ outcomes from the total supply chain costs standpoint, and the second perspective is the comparison of the scenarios’ outcomes from the total supply chain costs standpoint. By addressing a numerical example, the results confirm that the present of cross-docking within a supply chain can significantly reduce total supply chain costs and total transportation costs

    A Hybrid Tabu/Scatter Search Algorithm for Simulation-Based Optimization of Multi-Objective Runway Operations Scheduling

    Get PDF
    As air traffic continues to increase, air traffic flow management is becoming more challenging to effectively and efficiently utilize airport capacity without compromising safety, environmental and economic requirements. Since runways are often the primary limiting factor in airport capacity, runway operations scheduling emerge as an important problem to be solved to alleviate flight delays and air traffic congestion while reducing unnecessary fuel consumption and negative environmental impacts. However, even a moderately sized real-life runway operations scheduling problem tends to be too complex to be solved by analytical methods, where all mathematical models for this problem belong to the complexity class of NP-Hard in a strong sense due to combinatorial nature of the problem. Therefore, it is only possible to solve practical runway operations scheduling problem by making a large number of simplifications and assumptions in a deterministic context. As a result, most analytical models proposed in the literature suffer from too much abstraction, avoid uncertainties and, in turn, have little applicability in practice. On the other hand, simulation-based methods have the capability to characterize complex and stochastic real-life runway operations in detail, and to cope with several constraints and stakeholders’ preferences, which are commonly considered as important factors in practice. This dissertation proposes a simulation-based optimization (SbO) approach for multi-objective runway operations scheduling problem. The SbO approach utilizes a discrete-event simulation model for accounting for uncertain conditions, and an optimization component for finding the best known Pareto set of solutions. This approach explicitly considers uncertainty to decrease the real operational cost of the runway operations as well as fairness among aircraft as part of the optimization process. Due to the problem’s large, complex and unstructured search space, a hybrid Tabu/Scatter Search algorithm is developed to find solutions by using an elitist strategy to preserve non-dominated solutions, a dynamic update mechanism to produce high-quality solutions and a rebuilding strategy to promote solution diversity. The proposed algorithm is applied to bi-objective (i.e., maximizing runway utilization and fairness) runway operations schedule optimization as the optimization component of the SbO framework, where the developed simulation model acts as an external function evaluator. To the best of our knowledge, this is the first SbO approach that explicitly considers uncertainties in the development of schedules for runway operations as well as considers fairness as a secondary objective. In addition, computational experiments are conducted using real-life datasets for a major US airport to demonstrate that the proposed approach is effective and computationally tractable in a practical sense. In the experimental design, statistical design of experiments method is employed to analyze the impacts of parameters on the simulation as well as on the optimization component’s performance, and to identify the appropriate parameter levels. The results show that the implementation of the proposed SbO approach provides operational benefits when compared to First-Come-First-Served (FCFS) and deterministic approaches without compromising schedule fairness. It is also shown that proposed algorithm is capable of generating a set of solutions that represent the inherent trade-offs between the objectives that are considered. The proposed decision-making algorithm might be used as part of decision support tools to aid air traffic controllers in solving the real-life runway operations scheduling problem

    A study on flexible flow shop and job shop scheduling using meta-heuristic approaches

    Get PDF
    Scheduling aims at allocation of resources to perform a group of tasks over a period of time in such a manner that some performance goals such as flow time, tardiness, lateness, and makespan can be minimized. Today, manufacturers face the challenges in terms of shorter product life cycles, customized products and changing demand pattern of customers. Due to intense competition in the market place, effective scheduling has now become an important issue for the growth and survival of manufacturing firms. To sustain in the current competitive environment, it is essential for the manufacturing firms to improve the schedule based on simultaneous optimization of performance measures such as makespan, flow time and tardiness. Since all the scheduling criteria are important from business operation point of view, it is vital to optimize all the objectives simultaneously instead of a single objective. It is also essentially important for the manufacturing firms to improve the performance of production scheduling systems that can address internal uncertainties such as machine breakdown, tool failure and change in processing times. The schedules must meet the deadline committed to customers because failure to do so may result in a significant loss of goodwill. Often, it is necessary to reschedule an existing plan due to uncertainty event like machine breakdowns. The problem of finding robust schedules (schedule performance does not deteriorate in disruption situation) or flexible schedules (schedules expected to perform well after some degree of modification when uncertain condition is encountered) is of utmost importance for real world applications as they operate in dynamic environments

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Classification of the Existing Knowledge Base of OR/MS Research and Practice (1990-2019) using a Proposed Classification Scheme

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOperations Research/Management Science (OR/MS) has traditionally been defined as the discipline that applies advanced analytical methods to help make better and more informed decisions. The purpose of this paper is to present an analysis of the existing knowledge base of OR/MS research and practice using a proposed keywords-based approach. A conceptual structure is necessary in order to place in context the findings of our keyword analysis. Towards this we first present a classification scheme that relies on keywords that appeared in articles published in important OR/MS journals from 1990-2019 (over 82,000 articles). Our classification scheme applies a methodological approach towards keyword selection and its systematic classification, wherein approximately 1300 most frequently used keywords (in terms of cumulative percentage, these keywords and their derivations account for more than 45% of the approx. 290,000 keyword occurrences used by the authors to represent the content of their articles) were selected and organised in a classification scheme with seven top-level categories and multiple levels of sub-categories. The scheme identified the most commonly used keywords relating to OR/MS problems, modeling techniques and applications. Next, we use this proposed scheme to present an analysis of the last 30 years, in three distinct time periods, to show the changes in OR/MS literature. The contribution of the paper is thus twofold, (a) the development of a proposed discipline-based classification of keywords (like the ACM Computer Classification System and the AMS Mathematics Subject Classification), and (b) an analysis of OR/MS research and practice using the proposed classification

    New Solution Approaches for Scheduling Problems in Production and Logistics

    Get PDF
    The current cumulative PhD thesis consists of six papers published in/submitted to scientific journals. The focus of the thesis is to develop new solution approaches for scheduling problems encountering in manufacturing as well as in logistics. The thesis is divided into two parts: “ma-chine scheduling in production” and “scheduling problems in logistics” each of them consisting three papers. To have most comprehensive overview of the topic of machine scheduling, the first part of the thesis starts with two systematic review papers, which were conducted on tertiary level (i.e., re-viewing literature reviews). Both of these papers analyze a sample of around 130 literature re-views on machine scheduling problems. The first paper use a subjective quantitative approach to evaluate the sample, while the second papers uses content analysis which is an objective quanti-tative approach to extract meaningful information from massive data. Based on the analysis, main attributes of scheduling problems in production are identified and are classified into sever-al categories. Although the focus of both these papers are set to review scheduling problems in manufacturing, the results are not restricted to machine scheduling problem and the results can be extended to the second part of the thesis. General drawbacks of literature reviews are identi-fied and several suggestions for future researches are also provided in both papers. The third paper in the first part of the thesis presents the results of 105 new heuristic algorithms developed to minimize total flow time of a set of jobs in a flowshop manufacturing environ-ment. The computational experiments confirm that the best heuristic proposed in this paper im-proves the average error of best existing algorithm by around 25 percent. The first paper in second part is focused on minimizing number of electric tow-trains responsi-ble to deliver spare parts from warehouse to the production lines. Together with minimizing number of these electric vehicles the paper is also focused to maximize the work load balance among the drivers of the vehicles. For this problem, after analyzing the complexity of the prob-lem, an opening heuristic, a mixed integer linear programing (MILP) model and a taboo-search neighborhood search approach are proposed. Several managerial insights, such as the effect of battery capacity on the number of required vehicles, are also discussed. The second paper of the second part addresses the problem of preparing unit loaded devices (ULDs) at air cargos to be loaded latter on in planes. The objective of this problem is to mini-mize number of workers required in a way that all existing flight departure times are met and number of available places for building ULDs is not violated. For this problem, first, a MILP model is proposed and then it is boosted with a couple of heuristics which enabled the model to find near optimum solutions in a matter of 10 seconds. The paper also investigates the inherent tradeoff between labor and space utilization as well as the uncertainty about the volume of cargo to be processed. The last paper of the second part proposes an integrated model to improve both ergonomic and economic performance of manual order picking process by rotating pallets in the warehouse. For the problem under consideration in this paper, we first present and MILP model and then pro-pose a neighborhood search based on simulated annealing. The results of numerical experiment indicate that selectively rotating pallets may reduce both order picking time as well as the load on order picker, which leads to a quicker and less risky order picking process

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work
    corecore