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1 
 

Abstract 

The current cumulative PhD thesis consists of six papers published in/submitted to scientific journals. 

The focus of the thesis is to develop new solution approaches for scheduling problems encountering in 

manufacturing as well as in logistics. The thesis is divided into two parts: “machine scheduling in pro-

duction” and “scheduling problems in logistics” each of them consisting three papers.  

To have most comprehensive overview of the topic of machine scheduling, the first part of the thesis 

starts with two systematic review papers, which were conducted on tertiary level (i.e., reviewing litera-

ture reviews). Both of these papers analyze a sample of around 130 literature reviews on machine sched-

uling problems. The first paper use a subjective quantitative approach to evaluate the sample, while the 

second papers uses content analysis which is an objective quantitative approach to extract meaningful 

information from massive data. Based on the analysis, main attributes of scheduling problems in pro-

duction are identified and are classified into several categories. Although the focus of both these papers 

are set to review scheduling problems in manufacturing, the results are not restricted to machine sched-

uling problem and the results can be extended to the second part of the thesis. General drawbacks of 

literature reviews are identified and several suggestions for future researches are also provided in both 

papers.  

The third paper in the first part of the thesis presents the results of 105 new heuristic algorithms devel-

oped to minimize total flow time of a set of jobs in a flowshop manufacturing environment. The com-

putational experiments confirm that the best heuristic proposed in this paper improves the average error 

of best existing algorithm by around 25 percent. 

The first paper in second part is focused on minimizing number of electric tow-trains responsible to 

deliver spare parts from warehouse to the production lines. Together with minimizing number of these 

electric vehicles the paper is also focused to maximize the work load balance among the drivers of the 

vehicles. For this problem, after analyzing the complexity of the problem, an opening heuristic, a mixed 

integer linear programing (MILP) model and a taboo-search neighborhood search approach are pro-

posed. Several managerial insights, such as the effect of battery capacity on the number of required 

vehicles, are also discussed.  

The second paper of the second part addresses the problem of preparing unit loaded devices (ULDs) at 

air cargos to be loaded latter on in planes. The objective of this problem is to minimize number of 

workers required in a way that all existing flight departure times are met and number of available places 

for building ULDs is not violated. For this problem, first, a MILP model is proposed and then it is 

boosted with a couple of heuristics which enabled the model to find near optimum solutions in a matter 

of 10 seconds. The paper also investigates the inherent tradeoff between labor and space utilization as 

well as the uncertainty about the volume of cargo to be processed. 

The last paper of the second part proposes an integrated model to improve both ergonomic and economic 

performance of manual order picking process by rotating pallets in the warehouse. For the problem 

under consideration in this paper, we first present and MILP model and then propose a neighborhood 

search based on simulated annealing. The results of numerical experiment indicate that selectively ro-

tating pallets may reduce both order picking time as well as the load on order picker, which leads to a 

quicker and less risky order picking process. 
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Zusammenfassung 

Die vorliegende kumulative Doktorarbeit besteht aus sechs Artikeln, die in wissenschaftlichen Zeit-

schriften veröffentlicht wurden. Der Schwerpunkt dieser Doktorarbeit liegt in der Entwicklung neuer 

Lösungsansätze für die Planungsprobleme, die in der Fertigung und in der Logistik auftreten. Die Arbeit 

gliedert sich in zwei Teile: „Maschinenplanung in der Produktion“ und „Planungsprobleme in der Lo-

gistikplanung“, die jeweils aus drei Artikeln bestehen. 

Um einen möglichst umfassenden Überblick über das Thema Maschinenplanung zu erhalten, beginnt 

der erste Teil der Arbeit mit zwei systematischen Literaturüberblickarbeiten, die im Tertiärstudie durch-

geführt wurden (d.h. Überblick von Literaturüberblicke). In beiden diese arbeiten wird eine Stichprobe 

von rund 130 Literaturüberblicken zu Problemen in Bereich der Maschinenplanung analysiert. Der erste 

Artikel verwendet einen subjektiven quantitativen Ansatz zur Bewertung der Stichprobe, während der 

zweite Artikel die sogenannte Inhaltsanalyse (Content Analyse, CA) verwendet. Dies ist ein objektiver 

quantitativer Ansatz, um aussagekräftige Informationen aus massiven Daten zu extrahieren. Basierend 

auf der Analyse werden die Attribute von Planungsproblemen in der Produktion identifiziert und in 

verschiedene Kategorien klassifiziert. Obwohl liegt der Fokus dieser beiden Arbeiten auf der Überprü-

fung von Planungsproblemen in der Fertigung, die Ergebnisse beschränken sich jedoch nicht auf das 

Maschinenplanungsproblem, und die Ergebnisse können auf den zweiten Teil der Doktorarbeit ausge-

dehnt werden. Allgemeine Nachteile als auch Hindernisse von Literaturüberblickarbeiten werden iden-

tifiziert, und in beiden Artikeln werden auch einige Vorschläge für zukünftige Forschungen gegeben. 

Der dritte Artikel im ersten Teil der Arbeit stellt die Ergebnisse von 105 neuen heuristischen Algorith-

men vor, die entwickelt wurden, um die Gesamtauslaufzeit einer Reihe von Jobs in einer Fertigungsum-

gebung eines Flowshops zu minimieren. Die rechnerischen Experimente bestätigen, dass die in diesem 

Artikel vorgeschlagene beste Heuristik den durchschnittlichen Fehler des besten vorhandenen Algorith-

mus um etwa 25 Prozent verbessert. 

Der erste Artikel im zweiten Teil konzentriert sich auf die Minimierung der Anzahl elektrischer Schlepp-

züge, die für die Lieferung von Ersatzteilen vom Lager an die Produktionslinien verantwortlich sind. 

Zusammen mit der Minimierung der Anzahl dieser Elektrofahrzeuge ist das Papier auch darauf ausge-

richtet, die Arbeitslast unter den Fahrern der Fahrzeuge abzugleichen. Für dieses Problem werden nach 

Analyse der Komplexität des Problems eine Öffnungsheuristik, ein MILP-Modell (Mixed Integer Linear 

Programing) und ein Nachbarschaftssuchansatz mit hilfe die so genante Tabu-Search meta-heuristik-

vorgeschlagen. Darüber hinaus werden einige Erkenntnisse aus dem Management diskutiert, beispiels-

weise der Einfluss der Batteriekapazität auf die Anzahl der benötigten Fahrzeuge. 

Der zweite Artikel des zweiten Teils befasst sich mit dem Problem der Vorbereitung von Unit-Loaded 

Devices (ULDs) an Luftfrachtgütern, die in Ebenen geladen werden sollen. Das Ziel dieses Problems 

besteht darin, die Anzahl der erforderlichen Arbeitskräfte so zu minimieren, dass alle bestehenden Ab-

flugzeiten eingehalten werden und die Anzahl der verfügbaren Plätze für die Ladung von ULDs nicht 

gestört wird. Für dieses Problem wird zunächst ein MILP-Modell vorgeschlagen und anschließend mit 

einigen Heuristiken verstärkt, wodurch das Modell innerhalb von 10 Sekunden nahezu optimale Lösun-

gen finden konnte. Der Artikel untersucht auch den inhärenten Kompromiss zwischen Arbeits- und 

Raumnutzung sowie die Ungewissheit über das zu verarbeitende Frachtvolumen. 
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Der letzte Artikel des zweiten Teils schlägt ein integriertes Modell vor, um die Ergonomie und die Wirt-

schaftlichkeit des manuellen Kommissionierprozesses durch rotierende Paletten im Lager zu verbessern. 

Für das in dieser Arbeit behandelte Problem stellen wir zuerst ein MILP-Modell vor und schlagen dann 

eine Nachbarschaftssuche vor, die auf so genannte Simuliertem Anealing meta-heuristik basiert ist. Die 

Ergebnisse des numerischen Experiments zeigen, dass selektiv rotierende Paletten sowohl die Kommis-

sionierzeit als auch die Belastung des Kommissionierers reduzieren können, was zu einem schnelleren 

und weniger riskanten Kommissionierprozess führt.  
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Introduction 

Scheduling is a decision-making process to determine the allocation of restricted resources to accom-

plish a set of tasks, and its goal is to optimize given (and sometime conflicting) objectives subject to the 

considered constraints (Pinedo, 2008). This definition of scheduling makes it relevant to almost all plan-

ning activities, from planning personal daily activities to sophisticated production planning in the man-

ufacturing of semiconductor circuits, for example. Depending on the area where the schedule needs to 

be prepared, resources, tasks, objectives and constraints can be of different forms. Table 1 illustrates 

some examples for these different forms in four different industrial disciplines in which scheduling is 

relevant: I) machine scheduling in production (which is covered in the first part of this thesis); II) sched-

uling problems in logistics (which is the subject of the second part of this thesis); III) project scheduling; 

and IV) scheduling in software development. 

This broad applicability of scheduling made it popular among practitioners and simultaneously attractive 

for academics. The scientific literature on scheduling is extensive and, as Gorman (2016) stated, sched-

uling is the second most frequently studied optimization problem in the Operations Research and Man-

agement Science literature. 

This cumulative dissertation consists of six papers either published in or submitted to different scientific 

journals (see Table 2 for more information). All six papers are concerned with scheduling problems. 

Due to differing foci of the papers, this dissertation is divided into two parts. Part A includes Papers 1 

to 3 and contributes to a research stream that investigates scheduling problems in production, which are 

also known as machine scheduling problems. Part B features Papers 4 to 6 and investigates scheduling 

problems encountered in planning intra-plant logistics activities. Aside from the differing foci, the six 

papers also vary in the methodologies employed. The first two papers present systematic literature re-

views on the state-of-research of machine scheduling problems in production. These literature reviews 

are conducted on a tertiary level, which means they analyze a literature sample consisting exclusively 

of literature review papers. As the topic of machine scheduling is very general and not restricted to a 

specific industry, and as there are some similarities between scheduling problems in production and in 

logistics, these two literature reviews also cover some studies that focus on the application of scheduling 

in logistics (e.g., the scheduling of automated guided vehicles (AGVs) is discussed in both papers). The 

remaining four papers develop mathematical models for supporting production/logistics planning deci-

sions. Papers 3 develops a set of constructive heuristic algorithms to minimize total throughput time in 

a basic production system. Papers 4 to 6 first present mixed-integer programing (MIP) models for the 

problems under consideration and then propose different heuristic and meta-heuristic algorithms, which 

are all able to obtain near-optimal solutions for their respective problems with reasonable runtime. The 

following provides an introduction to the research areas that the papers contribute to and explains the 

research gaps they are looking to fill. 

A regular literature review (which is frequently also referred to as a secondary study) aims to analyze 

primary works published in a specific research area (Garousi & Mäntylä, 2016; Hochrein et al., 2015).  
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However, the massive body of literature in some research streams, such as machine scheduling, prohibits 

a regular secondary review that covers the entire available literature. Tertiary studies (i.e., reviews of 

literature reviews) may support structuring and synthesizing a particular research area in such cases 

(Kache & Seuring, 2014; Seuring & Gold, 2012). According to Paper 1, the contributions of a tertiary 

study is manifold: (I) giving an aggregated overview of a research domain; (II) analyzing research trends 

in the domain of interest; (III) evaluating the methodological rigor of literature reviews in the domain; 

and (IV) identifying research gaps (on the secondary and, if possible, also on the primary level). Papers 

1 and 2 present the results of tertiary studies conducted on the domain of machine scheduling problems 

in production (MSPP). The comprehensive samples of both papers, containing around 130 literature 

reviews, have been generated in a systematic way to make the results reproducible and reliable.  

As describing the review methodology employed is necessary for making the generation of the sample 

reproducible and more reliable, Paper 1 first describes the review methodology used by outlining both 

the literature search strategy as well as inclusion/exclusion criteria employed. It then proposes a con-

ceptual framework that considers the main attributes of MSPP in 7 categories and 75 sub-categories. 

After a descriptive analysis of the sampled papers that gives insight into publication patterns for MSPP, 

a quantitative analysis of the sampled review papers is carried out based on the proposed framework. A 

synthesis of research findings describes the state-of-knowledge and unveils general deficiencies of lit-

erature reviews on MSPP. In addition, the paper provides a comprehensive overview of MSPP, which 

supports researchers in positioning their own work in the literature and in finding potential innovative 

research areas. Based on a discussion of the statistical findings, opportunities for future research on 

MSPP are proposed. 

Paper 2 presents the results of a content analysis (CA) on a comprehensive sample generated in a similar 

way as in Paper 1. Paper 2 starts with a short description of the CA, which is an objective and quantitative 

approach to extract worthwhile information from massive data (Neuendorf, 2002). The objective of a 

CA is to make replicable and valid inferences from texts or other meaningful matters to the context of 

their use (Krippendorff, 2012). Among four different types of CAs that have been discussed in the liter-

ature (i.e., descriptive, inferential, psychometric, and predictive CA), Paper 2 employs a descriptive 

approach, whose conclusions are limited to the content under study. As recording units, the paper selects 

words (e.g., “makespan”), abbreviations (e.g., “HFS”, which stands for “hybrid flow shop”) and symbols 

(e.g., “Cmax”, which stands for maximum completion time). The appearance frequency of the recording 

units in the sample are set as the objects of the analysis. At the end of the search phase of the CA, the 

recording units that are used more frequently in the sample are rated as more important. To ensure that 

the process of categorizing recording units is exclusive and exhaustive, both inductive and deductive 

categorization approaches are employed (more information on categorization approaches in the CA can 

be found in Neuendorf (2002) and Krippendorff (2012)), which results in an identification of a total of 

179 main attributes of machine scheduling problems in production that can be allocated to 7 groups and 

48 subgroups. The reliability of the results of the content analysis is then examined in a sensitivity 

analysis. Finally, a close analysis of the results unveils several research gaps in the literature and enables 

us to propose promising avenues for future research. 



Introduction 

 

  

  
  

  

7 
    

  
 

P
a
p

er
#

 
F

o
c
u

s 
o

f 
th

e 
p

a
p

e
r
 

A
u

th
o

rs
 

T
it

le
 

J
o

u
r
n

a
l 

S
ta

tu
s 

1
 

S
ch

ed
u

li
n
g
 
in

 
P

ro
-

d
u
ct

io
n
 (

P
a
rt

 A
) 

H
. 

A
b

ed
in

n
ia

 
C

. 
H

. 
G

lo
ck

 

E
. 

H
. 

G
ro

ss
e 

M
. 

S
ch

n
ei

d
er

 

M
a
ch

in
e 

sc
h
ed

u
li

n
g
 p

ro
b

le
m

s 
in

 p
ro

d
u
ct

io
n
: 

A
 t

er
ti

a
ry

 s
tu

d
y

 
C

o
m

p
u

te
rs

 &
 I

n
d
u

st
ri

a
l 

E
n
-

g
in

ee
ri

n
g

 
P

u
b

li
sh

ed
 

 
 

 
 

 

2
 

H
. 

A
b
ed

in
n
ia

 

C
. 
H

. 
G

lo
ck

 
M

. 
S

ch
n

ei
d

er
 

 M
a
ch

in
e 

sc
h
ed

u
li

n
g
 i

n
 p

ro
d
u

ct
io

n
: 

A
 c

o
n
te

n
t 

a
n
a
ly

si
s 

A
p
p

li
ed

 M
a
th

em
a
ti

ca
l 

M
o
d
-

el
li

n
g

 
P

u
b

li
sh

ed
 

 
 

 
 

 

3
 

H
. 

A
b

ed
in

n
ia

 

C
. 
H

. 
G

lo
ck

 
A

. 
B

ri
ll

 

N
ew

 s
im

p
le

 c
o
n
st

ru
ct

iv
e 

h
eu

ri
st

ic
 a

lg
o
ri

th
m

s 
fo

r 
m

in
im

iz
in

g
 

to
ta

l 
fl

o
w

-t
im

e 
in

 t
h

e 
p

er
m

u
ta

ti
o

n
 f

lo
w

 s
h

o
p

 s
ch

ed
u

li
n

g
 p

ro
b
-

le
m

 

C
o

m
p

u
te

rs
 

&
 

O
p

er
a
ti

o
n
s 

R
es

ea
rc

h
 

P
u
b
li

sh
ed

 

 
 

 
 

 

 
 

 
 

 

4
 

S
ch

ed
u

li
n
g
 

in
 

L
o
-

g
is

ti
cs

 (
P

a
rt

 B
) 

S
. 
E

m
d

e 
H

. 
A

b
ed

in
n

ia
 

C
. 
H

. 
G

lo
ck

 

S
ch

ed
u

li
n

g
 e

le
ct

ri
c 

v
eh

ic
le

s 
m

a
k

in
g
 m

il
k

-r
u

n
s 

fo
r 

ju
st

-i
n
-t

im
e
 

D
el

iv
er

y
 

II
E

 T
ra

n
sa

ct
io

n
s 

A
c
c
ep

te
d

 

 
 

 
 

 

5
 

S
. 
E

m
d

e 

H
. 

A
b
ed

in
n
ia

 

A
. 

L
an

g
e
 

C
. 
H

. 
G

lo
ck

 

S
ch

ed
u

li
n
g
 p

er
so

n
n
el

 f
o
r 

th
e 

b
u
il

d
-u

p
 o

f 

u
n

it
 l

o
a
d
 d

ev
ic

es
 a

t 
a
n
 a

ir
 c

ar
g
o
 t

er
m

in
a
l 

w
it

h
 l

im
it

ed
 s

p
a
ce

 
O

R
-S

p
ec

tr
u

m
 

U
n
d
er

 r
ev

ie
w

 

 
 

 
 

 

6
 

C
. 
H

. 
G

lo
ck

 

E
. 

H
. 

G
ro

ss
e 

H
. 

A
b

ed
in

n
ia

 

S
. 
E

m
d

e 

A
n
 i

n
te

g
ra

te
d
 m

o
d
el

 t
o
 i

m
p
ro

v
e 

er
g
o
n
o
m

ic
 a

n
d
 e

c
o
n
o
m

ic
 p

er
-

fo
rm

a
n
c
e 

in
 o

rd
er

 p
ic

k
in

g
 b

y
 r

o
ta

ti
n
g
 p

a
ll

et
s 

 

 

E
u
ro

p
ea

n
 J

o
u
rn

a
l 

o
f 

O
p

er
a
-

ti
o

n
a
l 

R
es

ea
rc

h
 

U
n

d
er

 r
ev

ie
w

 

T
ab

le
 2

: 
O

v
er

v
ie

w
 o

f 
th

e 
p
a
p

er
s 

in
c
lu

d
ed

 i
n
 t

h
is

 c
u

m
u

la
ti

v
e 

d
is

se
rt

a
ti

o
n

 

 



Introduction 

 

  

  
  

  

8 
    

Paper 3 develops a set of new simple constructive heuristic algorithms to minimize total flow-time, i.e., 

the summation of completion times of all jobs, for an n-jobs x m-machines permutation flowshop sched-

uling problem. A flowshop production system is commonly defined as a production system in which a 

set of 𝑛 jobs undergoes a series of operations in the same order (Pinedo, 2008). Flowshop scheduling 

problems are in most cases proven to belong to the class of NP-hard problems. This is even the case for 

permutation flowshop scheduling problems, i.e. for flowshop scheduling problems with the same job 

order on all machines. The heuristic algorithms proposed in this paper are based on the popular simple 

heuristic presented by Nawaz et al. (1983), which is known as NEH in the literature. The NEH heuristic 

consists of two phases, namely (I) the sorting (prioritizing) phase and (II) the insertion phase. In the 

sorting phase, the jobs are sorted in descending order of their total processing time. This sorted list is 

then used in the insertion phase to determine the sequence in which jobs are added to an existing partial 

sequence. Based on a considered decision criterion, in each iteration, the best partial sequence will be 

selected for the next iteration. In Paper 3, we first propose a modification for the insertion phase of NEH 

(which is actually a smart neighborhood search) and then integrate new indicator variables for weighting 

jobs into this algorithm. We also propose new decision criteria to select the best partial sequence in each 

iteration of our algorithm. A comprehensive numerical experiment reveals that our modifications and 

extensions improve the effectiveness of the best existing simple heuristic without affecting its compu-

tational efficiency by 24%. 

In Paper 4, we modeled the problem of assigning a set of timetabled milk-run trips to a fleet of electric 

vehicles such that battery capacities are not exceeded, the fleet size is minimal, and fairness, which is 

measured by calculating the difference of workload on the most and least busy driver, is maximal. Bat-

tery-operated electric vehicles are frequently used in in-plant logistics systems to feed parts from a cen-

tral depot to work cells on the shop floor. These vehicles, often so-called tow trains, make many milk-

run trips during a typical day, with the delivery timetable depending on the production schedule. To 

operate such a milk-run delivery system efficiently, not only do the timetabled trips need to be assigned 

to vehicles, it is also important to take the limited battery capacity into consideration. Moreover, since 

most tow trains in use today are still operated by human drivers, fairness aspects with respect to the 

division of the workload also need to be considered. In this context, we tackle the following problem 

that we encountered at a large manufacturer of engines for trucks and buses in Germany. Given a fixed 

schedule of milk-runs (round trips) to be performed during a planning horizon and a fleet of homogene-

ous electric vehicles stationed at a depot, which vehicle should set out on which milk-run and when 

should recharging breaks be scheduled, such that all runs can be completed with the minimum number 

of vehicles and ensuring all vehicles are approximately equally busy? The computational complexity of 

this problem, as well as the complexity of some important sub-problems (such as the case in which 

battery restriction is relaxed), are investigated in Paper 4. A constructive heuristic algorithm has been 

proposed, which can solve the problem in pseudo-polynomial time. Although this heuristic is quite fast 

(it solves large instances in split seconds), the solution quality, especially with regard to fairness, is 

suboptimal. To overcome this issue, Paper 4 also suggests a solution approach based on taboo search, 

which is capable of solving realistic instances to near-optimality in less than two minutes. Comprehen-

sive computational experiments conducted in this paper enabled us, first, to examine the effectiveness 

as well as the efficiency of the solution approaches proposed, and then, to offer some insight into how 

battery technology influences vehicle utilization. 
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Paper 5 investigates a problem we encountered at a terminal of a major German airfreight carrier and 

addresses the preparation of unit load devices (ULD), which later have to be loaded onto aircrafts. This 

process is difficult to plan for many airlines, which face the challenge of assigning a limited number of 

workers to a limited number of workspaces available for preparing the ULD, while respecting the re-

quirements imposed by an existing flight schedule. While preparing ULD, the objectives are to comply 

with the flight schedule, not to exceed the available space at the terminal, and to minimize the maximum 

workforce employed over time. To support airlines in realizing efficient ULD preparation processes, 

this paper proposes a mixed-integer programming model as well as a generalized set partitioning refor-

mulation of this problem. Based on the latter formulation, we develop different heuristic strategies, some 

of which are shown to solve this NP-hard problem to near-optimality (using the right parameter settings 

for the proposed heuristic, our heuristic performs very well, delivering optimality gaps well below 1% 

on average) in a matter of merely 10 seconds. (Near-)optimal schedules as obtained by our heuristics 

are significantly better at avoiding large peak workloads than the simple rule of thumb we encountered 

in practice. On average, the required peak workforce could be more than halved. We also investigate the 

inherent tradeoff between labor and space utilization as well as the effect of uncertainty about the volume 

of the cargo to be shipped. 

Paper 6 studies manual order picking activities in a U-shaped warehouse where items are stored on 

pallets in two rows one above the other, inspired by a situation observed in practice. Picking products 

directly from pallets renders order picking a high-risk environment for developing musculoskeletal dis-

orders due to the required handling of heavy loads and continuous bending, stretching and lifting. The 

challenge that arises for warehouse managers in this case is to organize the order picking process as 

efficiently as possible, simultaneously keeping in mind health and safety issues. The first aspect can be 

addressed by planning short order picking routes and implementing storage assignment methods that 

allocate frequently required items close to the depot of the warehouse. Worker well-being, in turn, can 

be improved by searching for opportunities to reduce the load on the warehouse worker. Our observa-

tions revealed that, in many cases, picking an item from the back side of a pallet led to excessive load 

on the order picker compared to picking the same item from the front side of the pallet. Therefore, Paper 

6 investigated the case where the company has the opportunity to rotate pallets once their front part has 

been depleted, which helps to reduce the extent of bending and stretching required on the part of the 

order picker, and therefore the load on the worker’s spine. In this way, a biomechanical model was 

developed to measure the peak L4/L5 spinal compression that acts on the order picker during the picking 

of items as an ergonomic objective. In addition, as an economic objective, the total order picking time 

was considered. A mathematical model was also proposed for sequencing orders, routing the order 

picker through the warehouse, and scheduling pallet rotation tours. The developed model allows study-

ing the impact of rotating pallets on two different measures: order picking time and peak spinal load on 

the order picker. The results of a numerical experiment indicate that selectively rotating pallets may both 

reduce order picking time as well as the load on the order picker, leading to a quicker and less risky 

order picking process. The model proposed in this paper supports the decision of which pallet to rotate 

(and which not to rotate) against the company’s cost objectives and its strive for worker well-being. 

Several managerial insights, limitations of our study, as well as several suggestions for further research 

are also discussed. 
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Overall, this thesis adds to the literature two systematic literature reviews on the state-of-research of 

machine scheduling problem in production (Paper 1 and Paper 2), one decision support model to se-

quence jobs in a classic production system (Papers 3), and three effective algorithms to support decision 

making in scheduling problems encountered in planning intra-plant logistics activities (Paper 4 to 6). 

Despite the scientific character of the papers, the literature synthesis and the comprehensive computa-

tional experiments conducted clearly underscore the practical applicability of the reviewed and devel-

oped decision support models and hence their relevance for practitioners. Detailed managerial insights 

together with limitations of the chosen research approaches and future research opportunitiesm can be 

found in the final section of each paper. 
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Abstract 

This paper presents the results of a comprehensive and systematic review of 129 litera-

ture reviews on machine scheduling problems in production (MSPP). The paper first 

proposes a conceptual framework that considers the main attributes of MSPP in 7 cate-

gories and 75 sub-categories. After a descriptive analysis of the sampled papers that 

give insights into publication patterns for MSPP, a quantitative analysis of the sampled 

review papers is carried out based on the proposed framework. A synthesis of research 

findings describes the state of knowledge and unveils general deficiencies of literature 

reviews on MSPP. In addition, the paper provides a comprehensive overview of MSPP, 

which supports researchers in positioning their own work in the literature and in finding 

potential innovative research areas. Based on a discussion upon the statistical findings, 

opportunities for future research on MSPP are proposed. 

Keywords: systematic literature review, review of reviews, scheduling in production, machine schedul-

ing 
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1 Introduction 

1.1. Machine scheduling problems in production 

Scheduling can generally be defined as the process of assigning restricted resources to a set of tasks that 

need to be accomplished. Scheduling is a relevant problem in many different areas, e.g. in project man-

agement (Leyman & Vanhoucke, 2015; Nkasu & Leung, 1997), software optimization (Li, Singhoff, 

Rubini, & Bourdellès, 2016), and personnel management (Cochran, Chu, & Chu, 1997; Prot, Lapègue, 

& Bellenguez-Morineau, 2015). Among the most prominent and important research fields in scheduling 

are production systems (Pinedo, 2008), which is also the focus of the paper at hand. In many production 

systems, jobs (that represent tasks) need to be processed on machines (that represent resources). The 

aim of machine scheduling problems in production (MSPP) is to find a sequence of jobs to be processed 

on machines in a way that optimizes a set of objective(s) without violating any of the constraints (Graves, 

1981; Sen & Gupta, 1984). Even in modern production systems, such as in semiconductor manufactur-

ing plants, scheduling techniques play an important role in reducing idle times, speeding up the produc-

tion process and reducing cost by improving operational processes (Mönch, Fowler, Dauzère-Pé rès, 

Mason, & Rose, 2011). 

As MSPP need to be solved in almost any production system to plan operational activities, related solu-

tion approaches are broadly applicable in practice (Tuncel & Bayhan, 2007). Solving MSPP is challeng-

ing in most cases, however, as modifying one simple assumption often leads to a new problem that 

requires new solution approaches. This fact renders MSPP not only a challenging problem for practi-

tioners, but also a popular research topic for academia. It is thus not surprising that MSPP belong to the 

most frequently studied optimization problems in management and engineering. Simple database 

searches may illustrate the scope of this research stream: The keyword combination ‘‘scheduling” and 

‘‘production”, for example, leads to about 1,750,000 hits in Google Scholar and 48,000 hits in Business 

Source Premier1, which gives an impression of the high number of publications in this area. 

The continuous high publication output on MSPP makes it necessary to regularly synthesize and con-

solidate research topics and findings to give researchers and practitioners an overview of the existing 

state-of-knowledge and to identify research gaps that could be addressed in future research efforts. This 

general understanding already inspired many researchers to review specific sub-domains of this research 

field (see, for example, the metasurvey of Gorman (2016) on literature reviews in operations research 

and management science). Specific MSPP literature reviews help researchers to gain insights into the 

topic covered by the review, but they may also contribute to a loss of overview of the research domain 

itself (here: MSPP), whose state-ofknowledge may be scattered over a large number of specific review 

papers. As the high number of published works on MSPP prohibitsa single review that covers the entire 

(primary) literature, one established way to synthesize research in this area is to conduct a tertiary study 

on a comprehensive sample of review papers (secondary works) on MSPP. The next section gives an 

overview of tertiary studies and their contribution to the literature and outlines the contribution of the 

present paper to the literature on MSPP. Section 1.3 then outlines the organization of this paper. 

                                                   
1 Numbers effective March 2017 
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1.2. Tertiary study 

Research streams that enjoyed a high publication output in the past often suffer from the fact that the 

high amount of published research makes it very difficult (if not impossible) to maintain an overview of 

the entire domain. For the same reason, reviewing the entire domain in a single literature review is often 

prohibitive. Tertiary studies (i.e., reviews of literature reviews) may support structuring and synthesizing 

a research area in this case, as their object of analysis are (fewer) literature reviews instead of a prohib-

itively large number of primary research papers. The primary objective of tertiary studies is to investi-

gate core themes that have been studied in a particular research area by reviewing and analyzing sec-

ondary works (i.e., literature reviews). The aims of tertiary studies are to (I) give an aggregated overview 

of a research domain, to (II) analyze research trends in the domain of interest, to (III) evaluate the meth-

odological rigor of literature reviews in the domain, and to (IV) identify research gaps (on the secondary 

and, if possible, also on the primary level). Tertiary studies usually apply a systematic literature review 

to a sample of literature reviews, and they are an established research methodology in many different 

areas including operations and production management (e.g., Bushuev, Guiffrida, Jaber, & Khan, 2015; 

Glock, Grosse, & Ries, 2014), supply chain management (e.g., Hochrein & Glock, 2012; Hochrein, 

Glock, Bogaschewsky, & Heider, 2015; Kache & Seuring, 2014; Seuring & Gold, 2012), or software 

engineering (e.g., Garousi & Mäntylä, 2016). Tertiary studies provide a compact and comprehensive 

overview of the state-of-knowledge in a specific research area, and unveil general deficiencies of pub-

lished literature reviews on the subject under consideration. Tertiary studies are thus valuable sources 

for finding potential areas for future research. 

In the area of MSPP, a prohibitively large number of primary works and a high as well as an increasing 

number of secondary research motivated the tertiary study at hand. The tertiary study enables us to 

analyze the entire domain of MSPP, which would not be possible in a regular literature review that 

analyzes primary works (Garousi & Mäntylä, 2016; Hochrein et al., 2015). The contribution of an easy-

to-understand but comprehensive overview of the vast research field of MSPP provided by our tertiary 

study is manifold. First, our paper gives a broad overview of the research field of MSPP and synthesizes 

findings that were obtained in literature surveys covered in our sample. As a review of the MSPP on the 

primary level is not possible due to the massive number of papers that have been published on this topic, 

only a tertiary study is able to review this research stream in such a broad manner. To the best of our 

knowledge, our paper is the first and only work that applies a systematic tertiary analysis to MSPP, so 

it is the only paper that gives such a broad overview of research on MSPP. Secondly, we develop a 

content-related and technical classification framework for MSPP based on an in-depth analysis of the 

sampled review papers. This framework for classifying MSPP (Section 3) can be seen as a synthesis of 

the different classification schemes for MSPP applied or derived in the sampled literature reviews. 

Thirdly, the content-related analysis (Section 4.3.2) illustrates major topics and applications that were 

discussed in the sampled review papers, which helps readers in gaining insights into the topics that were 

emphasized by prior research (and, in return, into topics that did not receive much attention so far). This, 

in turn, assists readers in identifying possible avenues for future research or positioning their own work 

in the existing literature. For readers interested in conducting a secondary study on their own, this tertiary 

study helps to identify areas where a new or an initial literature review is required. The latter aspect is 

supported in detail in our content discussion that identifies topics where secondary studies are required 

in the future. Finally, this tertiary study could also serve as a guideline for the application of systematic 
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review techniques in the area of MSPP, which is an aspect that is of increasing relevance in the scientific 

literature. 

1.3. Organization of the paper 

To accomplish the objectives outlined in Section 1.2, this paper, first, generates a sample of literature 

reviews on MSPP in a systematic search of the literature (Section 2). Subsequently, the paper proposes 

a comprehensive conceptual framework that reflects the main characteristics of MSPP in seven catego-

ries and 75 subcategories (Section 3). The framework is used to evaluate literature reviews in this area. 

The methodology of the tertiary study is explained in detail in Section 4.1. After a descriptive analysis 

of the sample that gives insights into publication patterns (Section 4.2), a quantitative and content-re-

lated analysis of the sampled review papers is carried out (Section 4.3). This step contains an evaluation 

of the review methodology as well as a content examination of the sampled review papers based on the 

proposed framework to identify the most popular streams of research on MSPP. Finally, the study iden-

tifies methodological drawbacks of existing literature reviews on MSPP and highlights areas where fu-

ture research might be promising (Section 5). Section 6 concludes the paper. Fig. 1 illustrates the steps 

of the tertiary study. 

 

Figure 1 Methodology of the tertiary study 

2 Review methodology 

2.1. Literature search strategy 

Tertiary studies require a rigorously developed literature sample to ensure that readers are able to repro-

duce sample generation and evaluation. As a result, tertiary studies require a systematic, well-structured 

and documented search of the literature (Hochrein et al., 2015). In the following, we describe the search 
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strategy that was used to identify literature reviews on MSPP in detail. The literature search was con-

ducted in November 2016. In a first step, keywords were defined that were later used to identify relevant 

works in the literature. The final keyword list was generated using three groups of keywords, where 

group A contained keywords related to scheduling (‘‘scheduling” and ‘‘sequencing”), group B keywords 

that limited the search to MSPP (‘‘machine”, ‘‘shop”, ‘‘manufacturing”, ‘‘production”, ‘‘process”, 

‘‘flow shop”, ‘‘job shop”, and ‘‘open shop”), and group C keywords related to literature reviews (‘‘sur-

vey”, ‘‘review”, ‘‘overview”, ‘‘taxonomy”, and ‘‘trends”). The keyword ‘‘shop” was included in group 

B to ensure that different spellings of shop-related production systems are covered (e.g., ‘‘flow shop” is 

often also referred to as ‘‘flowshop” or ‘‘flow-shop”). The final keyword list was generated by combin-

ing all keywords from the three initial lists. The database Scopus was then searched for works that 

contain keywords from the final keyword list either in their title, abstract or list of keywords. In this 

step, 7253 papers were identified. The database search was complemented by a forward and backward 

snowball search, where the references of papers contained in the sample were checked, and where works 

that cited papers contained in the sample were evaluated for possible relevance (Hochrein & Glock, 

2012). In this step of the literature search, 28 additional articles were added to the sample. 

2.2. Selection criteria 

After an initial sample had been generated based on the database and snowball searches, all pre-selected 

works were independently checked for relevance by three researchers. Works were included in the final 

sample based on the following requirements: 

• The language was limited to English. 

• Only works that appeared in peer-reviewed, high-quality journals were considered, and book 

chapters and conference papers were excluded from the analysis. To assess the quality and rep-

utation of a journal, the SNIP and the SJR metrics were used, and only works published in 

journals with SNIP≥0.87 and SJR≥0.51 were considered relevant (see also González-Pereira, 

Guerrero-Bote, & Moya-Anegón, 2010; Moed, 2010). Two journals, for which the SNIP and 

SJR metrics were not available, were manually added to the list of relevant journals (i.e. Annals 

of Discrete Mathematics and Production and Inventory Management). 

• Only works that review the literature on MSPP (secondary studies) were considered. Works that 

compare methods for a specific scheduling problem or that propose models or solution proce-

dures (even if they contain a section on reviewing the literature) were excluded from the sample. 

• To keep the tertiary study focused on MSPP, we excluded works on project scheduling, person-

nel scheduling, timetabling, scheduling in agriculture, and computer scheduling. 

Applying the defined inclusion and exclusion criteria to the initial sample based on an analysis of title 

and abstract reduced the size of the sample from 7281 to 230 articles. In a final step, all papers that 

remained in the sample were completely read to assess their relevance in light of the defined criteria. 

This step led to a final sample of 129 relevant review papers. 

3 MSPP: a framework 

This section proposes a conceptual framework to categorize the literature on MSPP. The framework can 

be seen as an extension of the 3-field notation of Graham, Lawler, Lenstra, and Kan (1979), which 

characterizes scheduling problems according to machine environment, constraints and objectives. To 

capture all characteristics of MSPP, an inductive approach was used where all sampled papers were 
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carefully read to identify important characteristics of MSPP. Based on this analysis, a comprehensive 

framework containing 75 different attributes of MSPP (referred to as subcategories hereafter) divided 

into seven categories was developed. The proposed framework facilitates the analysis of literature re-

views on MSPP and allows a structured and rigorous examination of this research field. In the following, 

we briefly introduce each category of the framework (see also Table 1 in Section 4.3.2, which contains 

a list of all categories and sub-categories). 

Type of problem 

To classify scheduling problems, Nagar, Haddock, and Heragu (1995) proposed the type of problem as 

a categorization criterion that summarizes structural properties of the problem at hand. We use the cat-

egory type of problem to classify problems as stochastic or deterministic, static or dynamic, and offline 

or online. Note that prior research has often used the terms static/offline and dynamic/online inter-

changeably; however, as some authors see a difference in this terminology (e.g., Lee, Leung, & Pinedo, 

2010), our framework considers them separately. 

Theory of complexity 

The category theory of complexity is used to evaluate if reviewed papers explicitly report complexity 

results for the considered problem or not. 

Practical application of scheduling 

Many researchers pointed out a gap between the theory of scheduling and its application in practice 

(e.g., MacCarthy & Liu, 1993). As Sabuncuoglu (1998) noted, the ‘‘well established and rich body of 

scheduling theory has scarcely been used in practice”. Thus, our framework evaluates if the sampled 

papers focus on exploring and bridging the gap between scheduling in theory and in practice. In addition, 

we also examine the application of MSPP in modern manufacturing systems, such as flexible manufac-

turing systems (FMS), robotic and semiconductor manufacturing, and wafer fabrication. 

Solution approaches 

The category solution approaches summarizes the methods used to solve specific MSPP, and it is a 

classification criterion that has frequently been used in the past (e.g., Reza Hejazi & Saghafian, 2005). 

In the following, we distinguish between exact, approximation (i.e., worst-case ratios), heuristic and 

metaheuristic algorithms as well as algorithms based on artificial intelligence (AI) and simulation. We 

note that some researchers categorize AI-algorithms (such as expert systems or artificial neural net-

works) as metaheuristics (e.g., Reza Hejazi & Saghafian, 2005), while others distinguish between these 

two (e.g., Ouelhadj & Petrovic, 2009). To be compatible with both interpretations, our framework con-

siders them separately. 

Constraints 

The constraints considered in MSPP influence the applicability and the complexity of the corresponding 

models, and they have frequently been used as classification criteria in surveys on MSPP (e.g., Dileepan 

& Sen, 1988). This category considers all constraints used for MSPP, such as setup (or change-over), 

machine breakdown, pre-emption and precedence constraints.  
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Objectives (performance criteria)  

The objective of MSPP models is usually to find a sequence of jobs to be processed on machines that 

optimizes either a single or a set of performance criteria. In addition, the objective of some problems is 

to determine due dates for jobs, which are commonly referred to as due date assignment problems (see 

e.g., Gordon, Proth, & Chu, 2002). Performance criteria, which measure the quality of the solutions, can 

be cost-based (e.g., total setup cost, total inventory cost, total resource cost), penalty-based (e.g., total 

tardiness/earliness, number of tardy jobs, maximum lateness), or based on throughput time (Kiran & 

Smith, 1984). We split up the performance criterion throughput time into makespan (defined as com-

pletion time of the last job) and flow time (defined as the difference between completion time and the 

release time of the jobs). 

Machine configuration (flow pattern) 

The machine configuration (or flow pattern) describes how jobs are routed through the production sys-

tem as well as the configuration of the machines on the shop floor (Graham et al., 1979). This category 

evaluates if a single- or a multi-stage production system is considered and how many machines are 

available on each stage (single machine vs. parallel machine problems). For multi-stage problems, the 

machine configuration distinguishes between several options for routing jobs through the system, 

namely (a) flow shops (routing is predetermined and identical for all jobs), (b) job shops (predetermined, 

but individual routings for each job), and (c) open shops (no limitation on routing; a job can be processed 

in any sequence). For more details on different machine configurations for MSPP, see for example 

Pinedo (2008). Early research on scheduling problems often used on a discrete-time formulation that 

divides the time horizon into a number of intervals of equal duration (Li & Ierapetritou, 2008). The 

category machine configuration therefore also captures if the continuous- or discrete-time formulation 

is used for the problem (process scheduling). It further determines if inventory-related costs are consid-

ered in the problem (such problems are commonly referred to as lot-streaming problems), and if the 

problem under consideration contains a cyclic production system or not. 

4 Tertiary analysis 

4.1. Methodology 

The methodology of our tertiary analysis consists of three steps. First, descriptive statistics of the sample 

including article count per year, per journal and per author are presented (Section 4.2). Secondly, the 

sample is evaluated with respect to type of literature review and the methodology employed (Section 

4.3.1). Thirdly, a quantitative and content-related analysis is conducted to classify each sampled litera-

ture review according to the developed framework (Section 4.3.2). 

The literature generally differentiates between three types of literature reviews: (a) narrative reviews, 

(b) systematic reviews, and (c) meta-analyses (Cooper, 2010; Hochrein & Glock, 2012; Hochrein et al., 

2015). Narrative reviews usually do not describe how the sample was developed and/or do not document 

the literature search process in a systematic way. The lack of transparency in the literature search and 

selection phase makes it difficult or even impossible to reproduce the findings of narrative literature 

reviews, and it also makes it difficult to assess if the results of the review hold for the research field per 

se, or only for a selection of papers reviewed from this field. Systematic reviews, in contrast, employ a 

reliable and reproducible methodology to generate the literature sample. Meta analyses extract data from 
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a literature sample that was systematically developed and analyze the sample using statistical techniques. 

In Section 4.3.1, we analyze our sample in light of the type of literature review and examine if the 

keywords used in retrieving the sample, sample size (i.e., number of papers reviewed), and coverage 

(i.e., the time period considered) are reported in the sampled papers. This approach enables us to evaluate 

the methodological quality of the literature reviews, as clearly documenting the literature search is vital 

to ensuring transparency, reproducibility and rigor. 

As was stated before, the sample analyzed in this tertiary study consists of 129 literature reviews. Given 

that each of the sampled literature reviews on its part analyzes samples of primary studies that were in 

several cases quite comprehensive, discussing all 129 literature reviews in the work at hand is prohibi-

tive. Instead, we decided to analyze the sample on a meta level using a quantitative analysis that provides 

compact results and that enables us to keep the length of the paper at hand within reasonable limits 

(results are presented in Section 4.3.2). A second challenge we faced when classifying the sampled 

papers was that many papers covered more than a single sub-category, with the extent of coverage var-

ying from sub-category to sub-category. To correctly reflect the content of the sampled papers in the 

assignment of the papers to our framework, we considered four ‘degrees of coverage’ for each sub-

category in classifying papers, namely a) clearly focused (3), b) relatively focused (2), c) covered with-

out special focus (1), and d) not mentioned (0). We used the scores given in brackets to code the cover-

age. All sampled review papers were categorized by each author of this paper individually to ensure 

intercoder reliability. Only a few papers were categorized differently in the first step. These papers were 

discussed in detail within the research team to arrive at a consensus. The four degrees of coverage can 

be explained as follows: 

• Papers are classified as clearly focused on a specific sub-category if the sub-category is men-

tioned in the title of the paper, or if it becomes apparent from the title, abstract, list of keywords 

or introduction that the review in question is dedicated to the respective sub-category. 

• A paper was classified as relatively focused on a specific sub-category if special attention is 

given to the respective sub-category in the entire paper, but if no clear focus on the sub-category 

could be identified. This includes reviews that use the sub-category in question to classify the 

primary works discussed in the review, or reviews that are clearly focused on another sub-cate-

gory, but that also devote a single or a few section(s) to the sub-category in question. 

• If a specific sub-category is only mentioned in the review without discussing primary works on 

this sub-category in a separate section, the paper is labelled as covered without special focus. 

• The sub-categories that are not covered in the paper are labelled as not mentioned. 

Our quantification procedure is illustrated for the review of Baker and Scudder (1990) in the following: 

First, it becomes apparent from the title that the main focus of the paper is on reviewing penalty-based 

objectives. Thus, we assign the score 3 to the subcategory ‘‘penalty-based objectives” from the category 

‘‘objective”. Baker and Scudder (1990) also reviews both dynamic and static studies. As a consequence, 

we assign the score 3 to the subcategories ‘‘dynamic” and ‘‘static” from the category ‘‘type of problem”. 

The authors further divided the sampled papers into ‘‘single machine” and ‘‘parallel machine” prob-

lems, which concurs with our definition of relatively focused reviews. As a result, the subcategories 

‘‘single machine” and ‘‘parallel machines” of the category ‘‘machine configuration” are weighted with 

2. Although the main focus of the exemplary review is on studies with penalty-based objectives, some 

multi-objective studies, which consider objectives based on flow time, are included as well. Thus, for 
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the category ‘‘objective”, we assign the score 1 to the sub-categories ‘‘multi-objective” and ‘‘flow time”. 

Other sub-categories that are not considered in Baker and Scudder (1990), such as setup or buffer space 

constraints, are labelled as not mentioned and their score in the framework is 0. 

An overview of all categorized reviews in our sample according to this methodology is given in Tables 

2a–2e in Section 4.3.2. 

4.2. Descriptive results 

This section presents a descriptive analysis of the sample with respect to the number of sampled reviews 

per year, per journal and per author (see for a similar analysis Gorman, 2016). 

4.2.1. Article count by year 

The 129 articles contained in the final sample were published between 1959 and November 2016 in 42 

different scientific journals (a comprehensive list of papers included in the sample can be found in Ap-

pendix A, where each paper is labelled with a number to facilitate referencing). The number of sampled 

papers published over time is presented in Fig. 2. As can be seen, reviewing the literature on MSPP has 

attracted a continuously increasing attention over the last decades, where 53 of the sampled surveys (i.e., 

around 41% of the whole sample) were published during the last ten years. These results clearly under-

line the ongoing significance of MSPP in academic research. 

 

Figure 2 Number of surveys published on MSPP over time 

4.2.2. Article count by journal 

Fig. 3 summarizes the distribution of survey papers across the ten scientific journals that published the 

highest number of literature reviews on MSPP. These 10 journals published more than 66% (i.e., 86 

surveys) of the sampled papers. The European Journal of Operational Research (23), the International 

Journal of Production Research (10), Operations Research (9), and Omega (9) were the four most pop-

ular outlets for literature reviews on MSPP, and together they published around 40% of the sampled 

papers. 
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Figure 3 Number of published surveys on MSPP per journal 

4.2.3. Article count by author 

The analysis of the sample shows that 226 different authors contributed to the publication of the 129 

sampled review papers. Fig. 4 ranks all authors who published three or more literature reviews on MSPP 

according to the number of reviews they have authored. 

 

Figure 4 Authors that published at least three of the sampled literature reviews on MSPP 

4.3. Data evaluation 

This section presents a quantitative analysis of the sampled papers. We first examine the type of litera-

ture review by evaluating their research methodology and then evaluate the content of the review papers 

quantitatively according to the developed framework in Section 3. 
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4.3.1. Type of literature review 

Our analysis shows that the majority of the sampled literature reviews on MSPP are narrative (non-

systematic) reviews according to the definition provided in Section 4.1. The first systematic literature 

review on MSPP appeared as late as 2013. Only four literature reviews contained in the sample can be 

classified as systematic ([113], [122], [127] and [129], see Appendix A), and only a single meta-analysis 

exists [44]. Only 25 reviews in our sample reported the sample size (which is 105.24 primary works on 

average in these reviews). The coverage, i.e. the timeframe of the primary studies included in the review 

paper was also reported in only 27 of the sampled papers. Only three reviews ([122], [127] and [129]) 

reported the keywords used in retrieving their sample and, finally, only 12 papers analyzed it statisti-

cally. Further implications of the results regarding the type of literature review are discussed in Section 

5. 

4.3.2. Quantitative analysis 

The total score obtained for each category after assigning weights to the sub-categories according to the 

methodology outlined in Section 4.1 and the relative coverage of each category in the sample (i.e., the 

percentage of sampled reviews that has at least weight 1 for each category) are presented in Table 1. 

Due to the high number of sub-categories (in total 75, see Table 1), a comprehensive definition and 

discussion of each single sub-category is not within the scope of this paper. The reader is instead referred 

to the reviews tagged as clearly focused and relatively focused in Tables 2a–2e that contain comprehen-

sive discussions of the respective sub-categories. Tables 2a–2e also summarize the total score obtained 

and reports the overall rank of each sub-category among all 75 sub-categories. As can be seen, the ten 

sub-categories that obtained the highest scores belong to the categories ‘‘flow pattern” (i.e., single ma-

chine, flow shop, parallel machines, and job shop), ‘‘objective” (i.e., penalty, makespan and flow time), 

‘‘solution approaches” (i.e., heuristic algorithms & dispatching rules, and exact algorithms) and ‘‘type 

of problem” (i.e., deterministic). 
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Category Sub-categories 

Total num-

ber of sub-

categories 

Total 

score 

Coverage in 

the sample 

1) Type of 

problem 

dynamic, static, deterministic, stochastic, online, of-

fline 
6 321 65.11% 

2) Theory of 

complexity 
theory of complexity 1 89 50.38% 

3) Practical 

application of 

scheduling 

lack of application in scheduling theory, industrial 

applications of scheduling theory, modern produc-

tion systems (FMS, semiconductor manufacturing, 

wafer fabrication, robotic manufacturing) 

6 159 62.01% 

4) Solution ap-

proaches 

exact algorithms, heuristic algorithms & dispatching 

rules, metaheuristic algorithms, artificial intelligence, 

simulation, approximation algorithms, specific solu-

tion approach (hyper heuristics, robust scheduling, 

petri nets, decomposition-based algorithms, artificial 

neural networks, TSP-based approaches, mixed-inte-

ger programming models, tabu search, Johnson’s 

rule, expert systems) 

16 566 84.49% 

5) Constraints 

dual resource operations, ordered operations, 1-job-

m-machine problems, human factors, time-dependent 

processing time, inserted idle-time, interval schedul-

ing problems, fixed number of jobs with various 

number of operations, learning effects, processing set 

restrictions, machine eligibility constraints, distrib-

uted scheduling, equal processing times, positional 

effects, remanufacturing scheduling, group schedul-

ing, batch machines, scheduling with job rejection, 

transportation lags, rescheduling, machine break-

down, common due-dates, precedence constrains, 

preemptive scheduling, buffer space constraints, no-

wait operations, setup 

27 574 92.24% 

6) Objectives 

cost, penalty, objectives based on throughput time 

(makespan, flow time), multi-objective problems, 

due-date assignment, minimum number of machines 

7 536 91.47% 

7) Flow pat-

tern 

single machine, parallel machines, flow shop, job 

shop, open shop, mixed shop, hybrid flow shop, hy-

brid job shop, dedicated machines, cyclic production, 

process scheduling, lot streaming 

12 526 94.57% 

 total 75 2771  

Table 1: Framework with categories, sub-categories, total score obtained and coverage  
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Category Sub-category Cleary focuced literature reviews 
Relatively focuced litera-

ture reviews 

Total 

score 

Percentage 

of the respec-

tive catego-

ry's total 

score % 

Rank in the 

respective 

sub-cate-

gory 

Overall rank 

among all 75 

sub-catego-

ries 

1) Type of prob-
lem 

deterministic 

[2], [5], [10], [25], [29], [33], [35], 
[37], [39], [42], [48], [49], [52], 
[56], [57], [59], [61], [62], [88], 

[99], [104], [114], [115] 

[1], [17], [68], [76], [80], 
[94], [107], [117], [123] 

113 35.20% 1 6 

static 
[16], [17], [19], [25], [29], [55], 

[56], [61], [62], [65], [75] 
[4], [20], [76], [107], [117], 

[123], [129] 
71 22.12% 2 16 

stochastic 
[27], [54], [71], [93], [116], [125], 

[126] 
[17], [39], [68], [94], [117], 

[123] 
57 17.76% 3 18 

dynamic [14], [27], [32], [67], [95], [126] 
[4], [20], [22], [78], [117], 

[123], [129] 
53 16.51% 4 20 

online [64], [97] [80], [86], [92] 18 5.61% 5 38 

offline   [92] 9 2.80% 6 46 

2) Theory of 
complexity 

    
[6], [10], [29], [43], [60], [85], [88], 

[98] 
[39], [40], [41], [59], [67], 

[99], [103], [112] 
89 100.00% 1 13 

3) Practical ap-
plication of 
scheduling 

industrial applications of scheduling theory [11], [42], [78], [81] 
[9], [18], [27], [39], [41], 
[44], [63], [73], [80], [82], 

[106], [111] 
95 59.75% 1 11 

lack of application in scheduling theory [29], [31], [45] [5], [44] 17 10.69% 2 39 

modern production 
systems 

FMS [28], [51], [66] [31] 16 10.06% 4 41 

robotic manufacturing [42], [47], [57] [98] 17 10.69% 2 39 

semiconductor manu-
facturing 

[78], [81], [104]  11 6.92% 5 43 

wafer fabrication [105]   3 1.89% 6 56 

Table 2 a: Focused and relatively focused reviews for each sub-category including their total score and overall rank 
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Category Sub-category 
Cleary focuced liter-

ature reviews 

Relatively focuced literature re-

views 

To-

tal 

score 

Percentage of 

the respective 

category's total 

score % 

Rank in the 

respective 

sub-category 

Overall rank 

among all 75 

sub-categories 

4) Solution 
approaches 

heuristic algorithms & dispatching rules 
[7], [12], [22], [35], 
[79], [105], [109], 

[128] 

[3], [4], [5], [8], [31], [76], [78], 
[87], [89], [95], [96], [100], [101], 
[112], [116], [120], [123], [127] 

144 27.38% 1 1 

exact algorithms [46], [72], [75] 

[3], [5], [20], [31], [35], [36], [63], 
[65], [74], [76], [78], [87], [89], 
[96], [100], [101], [112], [116], 

[120], [123], [127] 

123 23.38% 2 3 

metaheuristic algorithms 
[30], [34], [40], [42], 

[73], [116], [119] 

[31], [35], [76], [78], [89], [95], 

[101], [112], [120], [127] 
91 17.30% 3 12 

approximation algorithms [23], [79] [10], [26], [92], [96], [97], [112] 50 9.51% 4 22 

simulation [14], [27], [66], [123] [4], [20] 42 7.98% 5 25 

artificial intelligence [122] [45], [66], [78], [95] 37 7.03% 6 29 

specific solution approach 

robust scheduling  [71], [93], [95] 7 1.33% 7 47 

decomposition-based 
algorithms 

 [78], [87] 6 1.14% 8 48 

artificial neural net-
works 

[47], [84]  6 1.14% 8 48 

petri nets [89]  3 0.57% 10 56 

expert systems [18]  3 0.57% 10 56 

TSP-based approaches [77]  3 0.57% 10 56 

mixed integer program-
ming models 

[72]  3 0.57% 10 56 

taboo search [30]  3 0.57% 10 56 

hyper heuristics [126]  3 0.57% 10 56 

Johnson’s rule   [29] 2 0.38% 16 72 

Table 2 b: Focused and relatively focused reviews for each sub-category including their total score and overall rank 
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Category Sub-category 
Cleary focuced litera-

ture reviews 
Relatively focuced litera-

ture reviews 
Total 

score 
Percentage of the respective 

category's total score % 

Rank in the re-

spective sub-cate-

gory 

Overall rank 

among all 75 

sub-categories 

5) Con-
straints 

setup 
[43], [50], [54], [55], [56], 

[83], [90], [109], [121] 
[17], [46], [68], [117], [129] 86 15.19% 1 15 

dual resource operations [24], [38], [88], [112] 
[27], [33], [74], [80], [82], 

[86], [108] 
65 11.48% 2 17 

precedence constrains  [17], [82], [108], [117] 54 9.54% 3 19 

machine breakdown [48], [59], [99] [42], [64], [71], [108], [110] 50 8.83% 4 22 

buffer space [39] [42], [57], [70], [77] 44 7.77% 5 24 

preemptive scheduling  [10], [48], [85], [92], [99], 
[103] 

42 7.42% 6 25 

batch machines [37], [68], [81], [82] 
[50], [72], [87], [88], [90], 

[105], [117] 
40 7.07% 7 27 

rescheduling problems [64], [71], [95] [68], [82], [93] 35 6.18% 8 31 

no-wait operations [39], [128] [10], [77], [90] 33 5.83% 9 32 

transportation lags [123]  26 4.59% 10 34 

common due-dates [70] [110] 23 4.06% 11 35 

ordered operations [114]  10 1.77% 12 44 

learning effects [91] [108] 10 1.77% 12 44 

interval scheduling problems [80], [86]  6 1.06% 14 48 

distributed scheduling [102], [118]  6 1.06% 14 48 

positional effects [110], [113]  6 1.06% 14 48 

time-dependent processing time [67] [49] 5 0.88% 17 53 

fixed number of jobs with vari-
ous number of operations 

[85]  3 0.53% 18 56 

processing set restrictions [92]  3 0.53% 18 56 

machine eligibility constraints [97]  3 0.53% 18 56 

equal processing times [103],   3 0.53% 18 56 

remanufacturing scheduling [113]  3 0.53% 18 56 

scheduling with job rejection [115]  3 0.53% 18 56 

inserted idle-time [58]  3 0.53% 18 56 

group scheduling [129]  3 0.53% 18 56 

1-job-m-machine problems  [42] 2 0.35% 26 72 

human factors   [45] 2 0.35% 26 72 

Table 2 c: Focused and relatively focused reviews for each sub-category including their total score and overall rank 
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Category Sub-category 
Cleary focuced literature re-

views 
Relatively focuced literature re-

views 
Total 

score 

Percentage of 

the respective 

category's total 

score % 

Rank in 

the respec-

tive sub-

category 

Overall rank 

among all 75 

sub-catego-

ries 

6) Objective 

penalty 
[16], [25], [35], [61], [62], 

[65], [70], [96], [106], [117], 
[124] 

[13], [17], [26], [27], [36], [37], 
[43], [48], [49], [74], [88], [110], 

[115] 
134 25.00% 1 2 

objectives based 
on throughput 

time 

makespan 
[52], [60], [69], [75], [76], 

[79], [97] 
[17], [27], [39], [43], [49], [67], 

[87], [110], [115] 
119 22.20% 2 4 

flow time [3], [75] 
[26], [27], [36], [37], [39], [43], 

[48], [49], [110], [115] 
106 19.78% 3 8 

multi objective problems 
[19], [21], [28], [36], [74], 

[88], [94], [107], [115], [119], 
[120] 

[17], [23], [64], [66] 89 16.60% 4 13 

cost [54], [63], [88] [27], [43], [51], [55] 52 9.70% 5 21 

due-date assignment [20], [61], [62], [108] [12], [13], [88], [110] 31 5.78% 6 33 

minimum number of machines [80] [86] 5 0.93% 7 53 

Table 2 d: Focused and relatively focused reviews for each sub-category including their total score and overall rank 
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Category Sub-category 
Cleary focuced literature re-

views 
Relatively focuced literature re-

views 
Total 

score 

Percentage of 

the respective 

category's total 

score % 

Rank in the 

respective 

sub-cate-

gory 

Overall rank 

among all 75 

sub-catego-

ries 

7) Flow pat-
tern 

single machine 
[10], [17], [19], [21], [35], [37], 

[49], [96], [117] 

[1], [4], [11], [12], [16], [25], [30], 
[36], [43], [48], [50], [55], [58], 
[59], [61], [62], [65], [67], [74], 
[83], [88], [90], [94], [99], [106], 
[110], [115], [118], [121], [125] 

117 20.38% 1 5 

flow shop 
[10], [29], [44], [56], [57], [69], 

[76], [77], [79], [107], [114], 
[120], [128], [129] 

[11], [35], [39], [48], [50], [55], 
[59], [73], [74], [83], [88], [90], 

[94], [98], [99], [111], [118], 
[121], [124], [125] 

113 19.69% 2 6 

parallel machines 
[10], [26], [35], [92], [97], 

[103], [112] 

[11], [16], [25], [33], [43], [48], 
[50], [55], [59], [62], [70], [74], 

[83], [88], [90], [94], [99], [106], 
[110], [111], [115], [118], [121], 

[124], [125] 

104 18.12% 3 9 

job shop 
[10], [22], [27], [38], [40], [52], 
[64], [78], [116], [122], [123] 

[9], [11], [35], [50], [55], [73], 

[83], [85], [88], [90], [94], [99], 
[111], [118], [121], [124], [125] 

98 17.07% 4 10 

hybrid flow shop 
[53], [75], [76], [87], [100], 

[101] 
[39], [85], [111], [121], [129] 40 6.97% 5 27 

open shop [10] 
[74], [85], [88], [90], [99], [111], 

[118], [121], [124], [125] 
37 6.45% 6 29 

process scheduling [46], [63], [68], [72], [82], [93] [41] 21 3.66% 7 36 

lot streaming [8], [54], [111] [2], [83], [84], [113] 21 3.66% 7 36 

cyclic production [57], [98]  13 2.26% 9 42 

mixed shop [60] [85] 5 0.87% 10 53 

hybrid job shop [127]  3 0.52% 11 56 

dedicated machines   [106] 2 0.35% 12 72 

Table 2 e: Focused and relatively focused reviews for each sub-category including their total score and overall rank 
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5 Discussion 

One important finding of this tertiary analysis concerns the research methodology employed in the sam-

pled literature reviews. As our evaluation of the sample shows that most of the sampled literature re-

views are narrative ones and only four of them are classified as systematic, which corresponds to only 

3% of the sampled papers (see Section 2 for the drawbacks of narrative literature reviews). This clearly 

points to a lack of scientific rigor in reviewing the literature on MSPP, as systematic literature reviews 

are today state-of-the-art in other research disciplines (e.g., da Silva et al., 2011; Hochrein and Glock, 

2012). The results further call for future secondary research on MSPP that employs established literature 

review methodologies that are structured and evidence-based using a robust auditable and repeatable 

scientific procedure (Denyer and Tranfield, 2009). Thus, future reviews on MSPP should clearly docu-

ment and report selection criteria as well as sample generation and sample characteristics to generate 

results the reader can reproduce and validate. Thus, it can be concluded that a clear weakness of most 

literature reviews on MSPP is that they do not contain either information about the methodology of 

generating the literature sample, or present any statistical report (such as the sample size, the coverage 

of the sample, or most contributed outlets). 

With respect to the results of our framework analysis, we note that the category “type of problem” was 

neglected in many sampled papers (see, e.g., [74], [77] and [79]). Although the related sub-categories 

describe important attributes of the considered scenario, such as parameter uncertainty or a dynamic 

behaviour of the system that strongly influence both the applicability of a model and computational 

complexity, it is surprising that around 35% of the sampled review papers did not report information 

about the type of MSPP.  

In the category “constraints”, our analysis reveals that setup has attracted more attention in the MSPP 

literature reviews than any other constraint. As a basic assumption in the literature on MSPP, setups are 

either integrated in the processing time of jobs, or they are neglected. Setups in MSPP can be classified 

as “family and non-family” or as “sequence-dependent and sequence-independent” setups. Our tertiary 

analysis shows that “sequence-dependent setups” (total score: 60) were investigated in greater detail 

than family-based setups (total score: 30). Apart from setups, the constraints buffer space (also denoted 

as intermediate storage in process operations) and dual resource operations (also denoted as constrained 

resources or controllable processing times) were investigated in many secondary studies. In contrast, 

other constraints such as human factors, remanufacturing and manufacturing with rejection, which have 

attracted much attention in other areas of management science and operation management, are clearly 

underrepresented in secondary studies on MSPP. This implies the necessity of further primary and sec-

ondary research considering these constraints in MSPP.  

With respect to the category “objectives”, the sub-category penalty-based objectives has attracted the 

most attention by literature reviews on MSPP in the past. Makespan and flow time, both belonging to 

the throughput time-based objectives, are the next most discussed sub-categories in this category. As 

penalty-based objectives are usually set according to conformance to prescribed deadlines of the cus-

tomers (MacCarthy and Liu, 1993), and as objectives based on throughput time aim on optimizing the 

facility’s utilization ratio by increasing production speed (Hall and Sriskandarajah, 1996), the popularity 

of penalty-based objectives compared to throughput timed-based objectives in secondary studies on 

MSPP might reflect that researchers on MSPP realized the importance of customer-centric production 

systems for the success of companies in today’s markets with intense competition.  

It is also worth highlighting that some literature reviews on MSPP are clearly focused on specific solu-

tion approaches. Looking at metaheuristic solution approaches, this tertiary analysis identified only one 
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dedicated review on tabu search [30]. For all other metaheuristics, there is no clearly focused literature 

review available that is devoted only to a single metaheuristic. Future secondary research might focus 

on reviewing the performance of other metaheuristics (in particular genetic algorithms, simulated an-

nealing, or particle swarm optimization, which are especially popular in this field) to MSPP. This also 

includes pointing out different research opportunities for applying metaheuristics in MSPP in future 

primary works.  

Finally, to identify the development of sub-categories over time and highlight recent popular sub-cate-

gories in MSPP, a sensitivity evaluation was conducted by limiting the sample to literature reviews 

published between 2007 and 2016. The total score for each sub-category in the reduced sample (2007-

2016) was then compared to the original scores presented in Table 2. The sub-categories belonging to 

both groups, together with their respective categories, are shown in Table 3. Part A reports sub-catego-

ries that were not mentioned in literature reviews in the last 10 years, whereas part B highlights sub-

categories that were first mentioned in literature reviews since year 2007. The categories in part A may 

imply a need for an update of secondary research considering the respective sub-categories, while the 

sub-categories in part B may point towards emerging research topics. 

A. sub-categories that were not discussed in litera-

ture reviews in the last 10 years 
 B. Sub-categories that were first discussed in litera-

ture reviews within the last 10 years  

Category Sub-category  Category Sub-category 

practical applica-
tion of scheduling 

lack of application in scheduling 
theory 

 practical application 
of scheduling 

wafer fabrication 

constraints 

1-job-m-machine problems  

constraints 

fixed number of jobs with vari-

ous number of operations 

human factors  learning effects 

time-dependent processing time  processing set restrictions 

inserted idle-time  machine eligibility constraints 

remanufacturing scheduling  distributed scheduling 

solution ap-
proaches 

expert systems  equal processing times 

TSP-based approaches  scheduling with job rejection 

mixed integer programming mod-
els 

 group scheduling 

taboo search  

flow pattern 

hybrid job shop 

Johnson’s rule  dedicated machines 

   
solution approaches 

petri nets 

   hyper heuristics 

Table 3: Results of the sensitivity evaluation 
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6 Conclusion 

This paper reported the results of a tertiary study on machine scheduling problems in production 

(MSPP). The paper employed a state-of-the-art methodology for systematically reviewing and evaluat-

ing literature reviews that appeared in this area. Applying a rigorous methodology for searching relevant 

review papers, a literature sample containing 129 literature reviews was generated. A comprehensive 

conceptual framework that includes all dimensions and characteristics of MSPP was then developed. 

The framework was used to categorize each literature review included in the sample according to its 

focus. 

This work contributes to the literature in various ways. To the best of our knowledge, no comprehensive 

review of literature reviews on MSPP exists to date. The paper therefore extends the existing literature 

on MSPP by giving a broad overview of the research field and synthesizing findings of reviews in this 

area, which is valuable for researchers in getting a broad overview of MSPP in general as well as in 

finding specific key areas of MSPP. In addition, the developed framework classifies the respective re-

views and synthesizes their findings, which allows readers to identify major achievements and research 

streams in MSPP as well as research gaps. This paper further supports researchers in positioning their 

own work in the literature and in finding starting points for future research directions, and it also en-

courages future secondary research by showing in which areas updates on existing literature reviews or 

new literature reviews might be promising. With the use of the summarizing tables, it is easy to identify 

relevant literature reviews for a specific MSPP of interest. Finally, this paper also made suggestions for 

improving the methodological quality of future literature reviews on MSPP and called for more system-

atic, robust auditable and repeatable research in this area. In addition, this tertiary study highlighted 

literature reviews focusing on the practical application of MSPP in industry (see category 3 in Table 

2a), which can be of decision support for managers. 

This work has limitations. First, to ensure methodical rigor and scientific quality, we limited our sample 

to review papers that were published in high-quality peer-reviewed journals excluding conference pa-

pers and book chapters, which might have biased the sample by neglecting possible literature reviews 

on MSPP that were not published in peer-reviewed journals, but that could also contain interesting in-

sights. Secondly, due to the large number of sampled reviews (129), it was not possible to discuss the 

findings of each literature review in detail, which made it necessary to synthesize the sample on an 

aggregated level, which ruled out an in-depth analyses of all characteristics of MSPP. Thirdly, the results 

of this tertiary study depend on the defined keywords and the database Scopus. Future works could thus 

use alternative search engines or keywords to evaluate the validity of our results. Fourthly, we excluded 

other scheduling topics that are not included in MSPP, which might be interesting to examine in future 

research. 
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Abstract 

 
This paper presents the results of a content analysis on a comprehensive and systemati-

cally generated sample of 132 literature surveys on machine scheduling problems in 

production (MSPP). The paper identifies the main attributes of MSPP by analyzing 

these surveys and proposes a classification scheme for MSPP consisting of seven main 

groups with several subgroups. The reliability of the results of the content analysis is 

examined in a sensitivity analysis. A close analysis of the results unveils several re-

search gaps in the literature and enables us to propose promising avenues for future 

research. 
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1 Introduction 

Scheduling problems arise whenever restricted resources have to be assigned to task elements for ac-

complishing these tasks over time. Scheduling is relevant in different disciplines such as project man-

agement [1], aerospace industry [2], computer science [3,4], and personnel management [5]. The focus 

of the paper at hand is on the scheduling of production activities, where a set of jobs needs to be pro-

cessed on a set of machines (we refer to this type of problems as “machine scheduling problems in 

production” (MSPP) in the following). The aim of MSPP is to plan the work flow through the ma- chines 

in a way that optimizes a set of specific objectives. 

A massive body of research on MSPP exists because of its applicability in different production industries 

(see, e.g., [6,7]). The keyword combination “scheduling” and “production” leads to 1,770,000 hits in 

Google Scholar and 425,013 hits in Scopus, which roughly illustrates the scope of this research stream1. 

The substantial amount of research on this subject is also witnessed by a high number of survey articles 

on MSPP. These survey papers aim at structuring the literature by identifying main research streams, 

synthesizing research findings and highlighting interesting future research opportunities. The literature 

on MSPP distinguishes between different problem variants, and for many problem variants, one or even 

several surveys have been published in the past, e.g., on static and dynamic problems [8–10], on deter-

ministic and stochastic problems [11,12], on single-objective and multi-objective problems [13,14], or 

on specific flow patterns of jobs between machines [15–17]. 

As the high number of published works on MSPP prohibits a review that covers the entire literature, we 

apply a content analysis (CA)—a methodology that helps to evaluate large amounts of data in a struc-

tured and systematic way—on a comprehensive sample of survey papers on MSPP. The intention of 

analyzing literature reviews (i.e., so-called secondary studies) in a CA is that a tertiary study enables us 

to analyze the entire domain of MSPP, which would not be possible in a regular secondary literature 

review that analyzes primary works [18,19]. The comprehensive overview provided by our study is 

useful for researchers who wish to inform themselves about the state-of-research of the MSPP discipline, 

who wish to position their own work in the existing literature, or who intend to conduct a literature 

review on an MSPP problem on their own. In addition, the classification scheme derived in the survey 

at hand can be used to guide future research in this area. Therefore, the objective of the CA at hand is to 

provide an overview of the overall development and the state-of-the-art of MSPP research and thus to 

support researchers and practitioners in accessing this research field. 

More precisely, we:  

• provide an overview of the literature on MSPP by analyzing secondary-level works (i.e., survey 

papers). 

• investigate publication patterns of surveys on MSPP. 

• highlight which dimensions of the problem attracted the most attention from researchers on the 

secondary level, and which areas have not been studied to an adequate degree and might thus 

offer potential for further research. As dimensions of the problem, we consider (i) the main 

                                                   
1 Numbers effective March 2017. 
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research topics studied in secondary works, (ii) the most important assumptions made, (iii) the 

most frequently investigated constraints, (iv) the solution approaches used, and (v) the objec-

tives employed. 

• develop a structured framework for classifying studies on MSPP. This framework supports re-

searchers in positioning their works in the literature and in identifying promising areas for future 

research. 

A related work is Reisman et al. [20], which is the only paper we are aware of that applied a CA in the 

context of MSPP. In contrast to our paper, Reisman et al. [20] restricted themselves to flow shop sched-

uling problems, which allowed them to focus on primary studies. We adopt a more comprehensive per-

spective, and our object of analysis are MSPP in general. Therefore, we have to focus on secondary 

works. 

The rest of the paper is organized as follows. Section 2 introduces the CA employed in the paper. First, 

we explain our approach to retrieve a reproducible sample of survey papers on MSPP and present de-

scriptive results of the literature search. Secondly, we discuss the employed recording and coding units 

and show how these units can be categorized. Section 2 concludes with presenting the results obtained 

during the CA. Section 3 reports the results of a sensitivity analysis con- ducted to validate the reliability 

of the CA results, and it provides some suggestions for improving the reliability of the CA. Section 4 

concludes the paper. 

2 Methodology and results of the study 

A CA is a systematic, objective and quantitative approach to extract worthwhile information from mas-

sive data [21]. The objective of a CA is to make replicable and valid inferences from texts or other 

meaningful matters to the context of their use [22]. The history of CA was reviewed by Krippendorff 

[22], who saw World War II as a driver for the popularity of CA, where it was used for extracting 

information from propaganda. The method was originally used in communication science, journalism 

and sociology before it was adopted by other disciplines, e.g. physics [23], education [24], or production 

planning and logistics [25,26]. 

Detailed guidelines for conducting a CA can be found in Weber [27], Neuendorf [21], Krippendorff 

[22], and Babbie [28]. Neuendorf [21] distinguished between four different types of CAs, namely de-

scriptive, inferential, psychometric, and predictive CAs. The approach selected for the paper at hand is 

a descriptive CA, whose conclusions are limited to the content under study. Although the generic stages 

of the approach are largely fixed (see [25]), the detailed steps of each stage need to be tailored towards 

the nature of the research project. In the following, we explain the steps of the CA applied in this paper, 

which were designed according to the methodology described in Neuendorf [21] and Krippendorff [22]. 

The CA starts with formulating research questions (Section 1) and then gathers the relevant material 

(sample) the CA is applied to (Section 2.1). In Steps 3 and 4, recording and coding units are developed 

for the sample (Section 2.2), and then the recorded material is categorized (Section 2.3). Step 5 summa-

rizes the results (Section 2.4) for the final step: the interpretation of results (Section 3). 
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2.1. Sampling 

After the formulation of a research question, sampling is the second key step of a CA. Krippendorff [22] 

stated that the “universe of available texts is too large to be examined as a whole, so content analysts 

need to limit their research to a manageable body of text”. As explained in the introduction, the number 

of primary works on MSPP is enormous, which makes it impossible to analyze the entire literature on 

MSPP in a single paper. Secondary research works are representative of this immense body of primary 

literature, but their number is much smaller. To gain a broad picture of the literature on MSPP, the paper 

at hand therefore focuses on the tertiary level and analyses literature surveys in a CA. In tertiary studies, 

a particular field of research is analyzed by studying secondary research works to identify research 

streams and research patterns. Such studies are valuable for both primary and secondary researchers, 

and they are becoming more and more popular in operations management and operations research 

[29,30] because: 

• secondary researchers can identify research streams in the literature that require an initial or 

updated survey article. 

• primary researchers can better position their own work in the literature, and they can find proper 

starting points for conducting research in a new direction.  

To generate the sample for our CA, a systematic search of the literature was conducted to identify all 

literature surveys on MSPP that have been published in high-quality international journals. One ad-

vantage of such a systematic literature search is that it ensures a transparent and reproducible generation 

of the sample (see [31] for a detailed description of the advantages of a systematic literature search). In 

the following, Section 2.1.1 describes the methodology of the literature search, and Section 2.1.2 pro-

vides a descriptive analysis of the final sample. 

2.1.1. Methodology of the literature search 

To search the literature, we follow the methodology advocated by Tranfield et al. [31], Cooper [32], 

Glock and Hochrein [33], and Hochrein and Glock [34] to identify relevant papers in a multi-step search 

approach, which can be summarized as follows: 

1. Initial search: In the first step, keywords were defined that were then used to search the data-

base Scopus (http://www.scopus.com) for works that contain a word from the set of keywords 

either in their title, abstract, or list of keywords. To generate the final set of keywords, three 

initial groups of keywords were defined. Group A aimed at retrieving scheduling-related works 

and contained “scheduling” and “sequencing”. Group B intended to limit the search to schedul-

ing problems in manufacturing and contained “machine”, “shop”, “manufacturing”, “produc-

tion”, “process”, “flow shop”, “job shop”, and “open shop”. The keyword “shop” was included 

to ensure that different spellings of shop-related production systems are covered (e.g., “flow 

shops” are often also referred to as “flowshops” or “flow-shops”). The keywords in Group C 

were defined to ensure that only survey papers are included in the final sample, and the group 

contained “survey”, “review”, “overview”, “taxonomy”, and “trends”. The final keyword list 

was generated by combining all keywords from the three groups. Thus, the search string used 
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in the database search is [(“Scheduling” ˅ “Sequencing”) ˄ (“Machine” ˅ “Shop” ˅ “Manufac-

turing” ˅ “Production” ˅ “Process” ˅ “Flow shop” ˅ “Job shop” ˅ “Open shop”) ˄ (“Survey” 

˅ “Review” ˅ “Overview” ˅ “Taxonomy” ˅ “Trends”)] in (Title ˅ Abstract ˅ Keywords). In 

Step 1 of our literature search, 7643 papers were identified. 

2. First refinement: First, papers found in Step 1 that do not have an English title and/or abstract 

were removed. For the remaining papers, the titles and abstracts were read, and irrelevant works 

were excluded. The size of the literature sample was reduced to 523 papers in this step. 

3. Second refinement: The following exclusion criteria were applied to the literature sample ob-

tained in Step 2:  

a) The language of the full papers (not only the titles and abstracts) was restricted to 

English. 

b) Only papers published in peer-reviewed journals were considered relevant, and so-

called grey literature (e.g., book chapters or conference papers) was excluded. 

c) Only works with a focus on reviewing the literature on MSPP were considered relevant. 

Works that contain a literature review (e.g., to clarify a research question) but whose 

focus is on something else (e.g., developing a model or algorithm) were excluded from 

the sample. This also includes papers that compare a set of methods for a particular 

scheduling problem. 

d) To keep the size of the sample manageable and to make sure that only works that ap-

peared in high-quality journals were considered relevant, the sample was limited to pa-

pers published in journals with SNIP ≥ 0.87 and SJR ≥ 0.51. The SNIP and SJR are 

metrics to evaluate the reputation of journals and are described in detail in [35] and [36]. 

In addition, we manually added two journals to the list of relevant journals because we 

believe them to be relevant journals in the field of operations research and management 

science: Annals of Discrete Mathematics and Production and Inventory Management. 

For these two journals, the SNIP and SJR metrics were not available. 

The size of the sample was reduced to 210 articles in this step. 

4. Snowball search: In Step 4, a backward and a forward snowball search were carried out by 

checking the references of the papers contained in the current sample and by evaluating articles 

citing the sampled papers for relevance. In this way, 28 additional articles were added to the 

sample. 

5. Final assessment: In this step, all papers contained in the current sample were completely read 

to assess their relevance in light of the exclusion criteria defined above. Although scheduling 

problems in all fields are similar to some extent, we excluded works on project scheduling, 

personnel scheduling, timetabling, scheduling in agriculture, and computer scheduling. The 

sample was reduced to a size of 132 papers at the end of this step. 

2.1.2. Descriptive analysis of the sample 

The articles contained in the final sample were published between 1959 and 2016 in 41 different scien-

tific journals. Figure 1 shows the distribution of the publication year of the sampled papers. As can be 

seen, reviewing the literature on MSPP attracted attention of researchers with an increasing trend over 

the years. This is in line with the findings of several secondary works on the subject of operations re-
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search and management science (e.g., [37,38]), which observed that the number of primary works pub-

lished in the field has increased over time. 48 of the surveys (i.e., around 36% of the whole sample) 

were published during the last 10 years, which underlines the ongoing significance of the topic. Figure 

2 summarizes the distribution of survey papers across scientific journals. The European Journal of Op-

erational Research, Omega, the International Journal of Production Research, and Operations Re-

search were the four most popular outlets for literature surveys on MSPP, and together they published 

more than 40% of the sampled papers. 

 

Figure 5: Number of published surveys per year. 

 

Figure 6: Number of published surveys per journal. 
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2.2. Recording and coding units 

After the literature sample has been generated, it needs to be coded. Coding is defined as the process 

where raw data is transformed into standardized form suitable for machine processing and analysis. The 

literature differentiates between coding of manifest content (objective) and latent content (subjective) 

[28]. Manifest coding relies on the objective appearance of keywords in the sample, and it can thus 

easily be performed using computer software. Latent coding, in turn, is based on the researchers’ inter-

pretation and is therefore difficult to automate. 

To ensure that the results of this analysis can be reproduced, we applied a manifest coding procedure to 

our sample. As recording units, we selected words (e.g., “makespan”), abbreviations (e.g., “HFS”, which 

stands for “hybrid flow shop”) and symbols (e.g., “Cmax”, which stands for maximum completion time) 

for our analysis. According to Cullinane and Toy [25], this set of recoding units is the most widely 

applied one for analysing manifest content (Other types of recording units, such as characters and para-

graphs, are described in Frankfort-Nachmias et al. [39]). The appearance frequency of the recording 

units in the sample are the objects of our analysis. At the end of the search phase of the CA, the recording 

units that are used more frequently in the sample are rated as more important. 

2.3. Categorization 

In a CA, the analytic categories used for classifying the coded material are derived either deductively or 

inductively [40]. In the deductive approach, categories (in the case of this paper: keywords, and the 

groups and subgroups that these keywords are assigned to) are defined before conducting the CA. The 

sample is then analyzed to see how pervasive and thus appropriate the categories are and to gain insights 

into the relative importance of each category. In the inductive approach, in contrast, the categories are 

derived directly from the analysis of the sample.  

In this paper, the categories were identified through both inductive and deductive approaches to ensure 

that the categories are reliable, exclusive and exhaustive as proposed by Cullinane and Toy [25]. In the 

following subsections, the categories obtained are described in detail. 

2.3.1. Categories obtained through the deductive approach 

Each paper contained in the sample was carefully examined to identify the focus and methodology of 

the paper. In this way, 118 keywords were derived as representatives of the main attributes of MSPP. 

The occurrences of the keywords in the sample were then determined using the software MAXQDA 11 

(a software for analyzing structured and unstructured data such as books, audio recordings and videos). 

Subsequently, the keywords were arranged into seven groups with the following labels: 

• Type of problem: comprises keywords describing fundamental characteristics of a particular 

MSPP, such as whether the problem is deterministic or stochastic, static or dynamic, offline or 

online, or periodic or non-periodic. 

• Flow pattern: contains keywords that describe the way jobs are routed through the production 

system. 
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• Objectives: contains keywords that refer to the objective(s) of MSPP. A particular MSPP is 

concerned with the optimization of either one or a set of objectives, and, generally, the objec-

tives are either cost-based, penalty-based, or based on throughput time. 

• Job and machine characteristics: consists of keywords dealing with job- or machine-related 

assumptions. Examples include “pre-emption” or “machine breakdowns”. 

• Solution approaches: summarizes keywords on the solution method used to address the MSPP. 

Exact algorithms, simple heuristics, and metaheuristic approaches are examples of frequently-
used solution methods.  

• Scheduling in practice: keywords summarized in this group are related to the application of 

scheduling models to real-life problems. 

• Pure theory: consists of keywords exclusively related to theoretical/mathematical aspects of 

MSPP (e.g., keywords related to the computational complexity of a problem). The name of this 

group is taken from Reisman et al. [20]. 

To facilitate interpreting the results obtained by the CA, the groups of keywords discussed above are 

further divided into a total of 34 subgroups with the intention of identifying additional concepts within 

the groups. Subgroups are defined in such a way that keywords contained in a subgroup refer to a similar 

concept. For instance, the keywords “makespan”, “flow time”, and “completion-time” belonging to the 

category “objectives” were categorized into a subgroup “throughput-time- based objectives”. Where 

necessary, the subgroups defined in this step were refined during the inductive approach. 

2.3.2. Categories obtained through the inductive approach 

The inductive approach was carried out by counting all words, abbreviations, and symbols (which will 

henceforth be referred to as “words” for the sake of simplicity) in the sampled papers using the software 

MAXQDA 11. All function words, i.e., conjunctions, prepositions, pronouns, and single letters were 

excluded using a filter option provided by the software. 

About 83,000 different words were found by the software during the screening of the sampled papers. 

All identified words were then examined and re-examined in several sessions by the authors of this 

paper to filter out words related to MSPP. These words were then added to the list of keywords (and 

thus to the groups and subgroups) defined in the deductive step. Some of the newly found keywords 

made it necessary to extend or refine the subgroups formulated in Section 2.3.1 (e.g., keywords related 

to learning effects were not matched perfectly with any of the subgroups obtained by the deductive 

approach and were therefore summarized in a new subgroup in the inductive step). New subgroups that 

were defined in this step were created using the same method as in the deductive step. In addition, a 

number of keywords and subgroups defined in the deductive approach were removed because the in-

ductive approach did not confirm their frequent usage in the sampled papers (For example, “random 

search” as a solution approach was not discussed in the sampled texts at all, and therefore the corre-

sponding keywords were removed). During the inductive approach, the number of keywords strongly 

increased to 610 and the number of subgroups to 48. 

It is worth mentioning here that examining each word identified in the inductive approach individually 

enabled us to evaluate which “general” words have a specific meaning in scheduling. For instance, the 

word “identical”, which was identified during the screening of the sampled papers, at first glance appears 
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to be a general word without a specific meaning in scheduling, so one might tend not to consider it 

further in defining subgroups. Yet, this word has a specific meaning in the scheduling context because 

it is used to describe the machine-related assumptions of specific parallel machines problems. Therefore, 

we decided to replace the word “identical” by more scheduling-related words, such as “identical-ma-

chine”, “identical-processor” and “identical-server” (we also added other spelling options for these new 

keywords, e.g. for “identical-machine” we also checked “identical machine”, “identical_machine”, and 

also the plural of the keywords) to ensure that only words used in a scheduling context are classified as 

keywords. 

During the screening of the sampled papers, certain keywords had been identified in different spellings. 

Therefore, we summarized words with an identical meaning (but different spellings) in a single keyword 

and thus reduced the total number of keywords to 179. 

2.4. Results of the CA 

During the deductive and inductive stages of the CA, a total number of 179 keywords related to MSPP 

were found that were allocated to 7 groups and 48 subgroups. The comprehensive list of keywords and 

subgroups is presented in the Appendix. The subgroups are not mutually exclusive but instead reflect 

the general structure of MSPP. For example, a three- machine problem can be a job shop or a flow shop 

problem. The identified keywords appeared a total of 78,701 times in the sampled papers. Fig. 3 sum-

marizes the share of each group of keywords in the sampled papers in the total keyword count. 

 

Figure 7: Shares of the keyword groups in the total keyword count of the sampled papers. 

Fig. 3 illustrates that most keyword hits were obtained for the groups “solution approaches“, “flow pat-

tern”, “objectives”, and “job/machine characteristics”, which together accounted for around 80% of the 

total keyword hits. We can infer from these numbers that prior secondary publications on MSPP had a 

strong focus on these four groups, as compared, for example, to the application of scheduling in practice, 

which accounted only for 5.23% of the total keyword hits. Given the large number of surveys contained 
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in our sample, the share each keyword has in the total number of keyword hits may indicate the relative 

importance researchers attributed to the different dimensions of MSPP. The results for each keyword 

group will be presented in detail in the following subsections. 

Table 1 presents another look at the sample by giving an overview of the six most-discussed subgroups. 

As can be seen, these six subgroups generated 46.27% of the total hits in the sample. The remaining 

53.73% of the keyword hits are distributed over the other 43 subgroups. This could imply that the sub-

groups displayed in Table 1 were seen as particularly important by researchers in the past. 

Subgroup Contained in group % of total hits in sample 

Simple heuristics Solution approaches 10.06 

Penalty-based objectives Objectives 8.35 

Metaheuristics Solution approaches 8.31 

Theory of complexity Pure theory 7.57 

throughput-time-based objec-

tives 

Objectives 6.27 

Setup time Jobs/machine characteristics 5.70 

Total  46.27 

Table 1: Most discussed subgroups in the sampled papers and the groups they belong to. 

2.4.1. Type of problem 

The group “type of problem” consists of 11 keywords divided into 7 subgroups, and it is one of the 

groups that received the least attention in the sample with only 7.34% of the total keyword hits. Because 

this group contains keywords that describe fundamental assumptions of MSPP, one could have expected 

that it would have received more attention in the sampled papers. However, analyzing the sampled pa-

pers in more detail revealed that in most cases, such assumptions were only briefly explained or even 

only listed in early sections of the papers without a detailed discussion. One possible reason is that the 

assumptions determining the type of the problem have been discussed comprehensively in early papers, 

such that later works saw no need to discuss them in detail again. 
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Figure 8: Subgroups of the group “Type of problem” and their shares in the keyword count. 

Fig. 4 gives an overview of the subgroups of “type of problem” that emerged from the sample. As can 

be seen, our results indicate that dynamic and stochastic scheduling problems received more attention 

than static and deterministic problems in the sampled survey papers. Thus, our results do not confirm 

the general opinion expressed in the literature that the majority of scheduling models are deterministic 

and static (see, e.g., [9,41]). There are some possible reasons for this result. One could be that determin-

istic and static MSPP models can easily be described with the help of standard assumptions and terms, 

such that researchers would only use keywords on the “type of problem” in case standard assumptions 

are violated (i.e., when the parameters are stochastic and/or dynamic). The second reason could be that 

dynamic and stochastic scheduling problems form a larger part of the literature on MSPP than assumed 

by many researchers, which has led to a significant number of surveys on this topic. 

Offline and periodic scheduling problems did not receive much attention in survey papers on MSPP, 

which could point to research opportunities in this area. 

2.4.2. Flow pattern 

The group “flow pattern” contains 38 keywords that were divided into 11 subgroups. The flow pattern 

describes the way jobs are routed through the production system [42], and it can regulate 

• the type of jobs and machines in the production system. It determines, for example, if the prob-

lem deals with continuous jobs (known as process scheduling, which is common in chemical 

and metal industries), whether or not machines are able to process more than one job at a time 

(known as batch machine scheduling, which is common in metal casting and machinery indus-

tries), or if the products are being manufactured and delivered in lots (known as lot scheduling). 

• the configuration of machines in production systems, e.g., whether the production system is 

composed of a single machine or whether there are multiple machines in use. In the case of 

multiple machines, the flow pattern determines if these machines perform the same task (such 
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systems are referred to as parallel machines production systems) or not. When the machines 

process different tasks, there are several possibilities to route jobs through the system, such as 

routing them according to one of the following flow patterns: flow shops are production systems 

in which the routing is predetermined and identical for all jobs; job shops are systems with 

predetermined but individual routings for each job; and open shops set no limitation on the 

routing such that the operations of a job can be processed in any sequence (for more details on 

different machine configurations for MSPP, see Pinedo [43]). 

Fig. 5 gives an overview of the subgroups of the group “flow pattern”. As can be seen, five flow patterns 

received a particularly high attention in the sampled texts, namely batch machine, flow shop, job shop, 

single machine, and parallel machines problems. These five subgroups accounted for around 75% of the 

total keyword hits obtained for this category. 

 

Figure 9: Subgroups of the group “flow pattern” and their shares in the keyword count. 

The “single machine” problem is the most basic MSPP, and the literature describes it as a building block 

for modelling and solving more general and complicated problems. Thus, one could have expected that 

this problem received the most attention in MSPP surveys. Surprisingly, in the sampled texts, it received 

fewer keyword hits than three other flow patterns, namely batch machines, flow shop and job shop. One 

possible explanation for this result is that the single machine MSPP is well-researched and nowadays 

primarily used to develop more general problems, such that researchers tend not to dedicate entire sur-

veys or long sections of surveys to discussing the state-of-the-art of this problem. Another explanation 

could be that in early works, no strict standard terminology for flow patterns of MSPP had been devel-

oped yet. For example, the word “job shop” was in use to address different types of flow patterns for 

many years before the terminology for MSPP became more specific: Sisson [44] used the term “job 

shop” to refer to a parallel machines problem, and some models discussed in Baker [45] as “job shop” 

problems are single machine problems. 

Most flow shop problems consist of multiple stages with each stage containing only a single machine 

for processing jobs. To increase the flexibility of the production system or to balance the capacity of the 
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stages, hybrid flow shops (HFS) consider multiple machines at several stages [46]. In the sample, only 

9.17% of the keyword hits belonging to the flow shop subgroup refer to HFS. This could indicate that 

HFS might be an interesting candidate for future literature reviews. 

The subgroup “parallel machines” consists of four different clusters of keywords: general terms related 

to parallel ma- chines problems, identical machines, uniform machines, and unrelated machines. The 

last three clusters refer to parallel machines problems with specific machine characteristics (for a de-

tailed description of different parallel machines scheduling problems, see Cheng and Sin [47]). As Fig. 

6 shows, the identical machines problem, which is the most basic type of a parallel machines scheduling 

problem, is responsible for 12.69% of the hits and thus has been discussed more frequently than uniform 

machines and unrelated machines problems. One possible reason for the popularity of identical ma-

chines scheduling problems in the sampled papers is that some algorithms that were developed for iden-

tical machines problems can be extended to or at least can give some insights into developing effective 

algorithms for more complicated scenarios considering uniform/unrelated parallel machines. 

 

Figure 10: Different clusters of keywords for the subgroup “parallel machines” and their shares in the 

keyword count. 

2.4.3. Objectives 

Another important dimension of MSPP are the objectives considered in the model formulation. For this 

group, we found 20 keywords in the sample and assigned them to five subgroups (see Fig. 7). In general, 

the objectives of MSPP are either cost-based, penalty-based, based on throughput-time, or a combination 

of—usually conflicting—objectives leading to a multi- objective problem. 

More than 40% of the hits of objective-related keywords were obtained for penalty-based objectives 

such as minimizing tardiness, lateness, or earliness of jobs. As Table 1 shows, penalty-based objective 

is the second most discussed subgroup in the sample, which highlights its popularity in secondary re-

searches. One interesting observation is that among all keywords related to penalty-based objectives, 
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“earliness” received the least attention in the sampled surveys. One possible reason for this may be that 

the earliness of jobs is not a critical objective in many practical problem settings, which could have led 

to infrequent discussions in primary studies and, in turn, to less attention in secondary works. 

Objectives based on the throughput-time of jobs can be further divided into “flow time” and 

“makespan”. Flow time is defined as the time each job needs to be completed, and in MSPP in most 

cases the total flow time (i.e., the sum of the flow times of all jobs) is considered as an objective. 

Makespan, in turn, is the completion time of the last job. In case all jobs are ready to be processed at 

time zero, the makespan is identical to the maximum flow time. As Fig. 7 indicates, makespan has been 

discussed much more often than flow time in the sampled papers.  

 

Figure 11: Subgroups of the group “objectives” and their shares in the keyword count. 

In most real-life problems, the decision maker follows more than a single objective. Thus, it is surprising 

that only 10.13% of the keywords found in the group “objectives” refer to multi-objective problems.  

Summarizing, the keywords pertaining to earliness and flow time do not appear as frequently as other 

keywords in their corresponding subgroups (i.e., “throughput time-based” and “penalty-based objec-

tive”, respectively) in the sample. A similar observation was made regarding multi-objective problems, 

which is a subgroup that has received less attention than other subgroups in the group “objectives”. 

These findings could imply three potential research gaps either on the primary or on the secondary level. 

2.4.4. Job and machine characteristics 

This group consists of 37 keywords distributed over 14 subgroups. 43% of the keyword hits of this group 

were obtained for the seven subgroups that belong to job-related characteristics, while the remaining 

57% of the keyword hits were obtained for the other seven subgroups that comprise machine-related 
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characteristics. The job/machine-related characteristics determine the complexity and often influence 

the practical applicability of the considered problem variant. For example, considering limited buffer 

space, which is a realistic assumption in most cases, can increase the complexity of a problem dramati-

cally and at the same time make it more applicable to real-world problems. Fig. 8 presents the results 

for this group divided into job- and machine-related characteristics. 

Setup time is defined as the time required to prepare machines for processing jobs, e.g., the time needed 

for loading/unloading machines. Although we assigned setup time to the subgroup “machine-related 

characteristics”, it is worth noting that setup time may also be job-related. Our findings show that setup 

time-related keywords are the most frequently discussed machine-related characteristic, and they are the 

sixth most discussed subgroup in the sample (see Table 1). It is also worth noting that the keyword 

“setup” is the most frequently used keyword in the entire sample, and this keyword alone (out of the 

total 78,701 keyword hits recorded) generated 5.67% of the total keyword count. 

 

Figure 12: Subgroups of the group “Job and machine characteristics” and their shares in the keyword 

count. 

Another interesting point is that some of the subgroups of both job- and machine-related assumptions 

can be interdependent. For example, considering “learning effects” may change the rate of “machine 

breakdowns” or the length of “setup times”, and considering “job families” can create “sequence de-

pendencies” as well as “precedence constraints”. Fig. 9 schematically presents some more examples for 

interdependencies that may arise between job- and machine-related assumptions. One opportunity for 

future research might be to conduct a survey on MSPP studies to explore the effect of different job-

/machine-related assumptions on each other by investigating the interdependencies mentioned above. 

Another possibility might be to conduct surveys devoted to the job- and machine-related characteristics 

that were discussed only infrequently in our sample (for example, transportation lags or dual-resource 

operations). 
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Figure 13: Examples of interdependencies that may arise between job- and machine-related assump-

tions. 

2.4.5. Solution approaches 

Another important dimension of research on MSPP is the approaches used for solving the problem. The 

keyword group “solution approaches”, which contains 50 keywords building seven subgroups, is not 

only the category with the highest number of keywords, but it is also the group that received the most 

keyword hits in the sample (see Fig. 3). As Table 1 shows, “solution approaches” is one of the groups 

of keywords that contains two of the top six most discussed subgroups. Fig. 10 illustrates that simple 

heuristic algorithms, metaheuristics and exact algorithms triggered around 85% of the keyword hits of 

the group “solution approaches”. 

 

Figure 14: Subgroups of the group “solution approaches” and their shares in the keyword count. 
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For the subgroup “exact algorithms”, we distinguished between five clusters of keywords. As Fig. 11 

illustrates, keywords related to branch-and-bound methods build the most frequently used cluster in the 

sample. 

 

Figure 15: Distribution of keyword counts of the subgroup “exact algorithms”. 

Simple heuristics are the most frequently used type of solution approach for scheduling jobs in MSPP. 

They are simple to implement, easy to understand and require a low computational effort [48]. Accord-

ing to the CA conducted in this paper, such algorithms have not only been discussed more than any other 

solution approach in the sampled review papers, but they also represent the most discussed subgroup as 

illustrated in Table 1. The subgroup “simple heuristics” is divided into “general terms” and “specific 

simple heuristics”. The first category includes general keywords related to simple heuristics that do not 

refer to a particular heuristic (such as “heuristic” or “priority rules”). The latter category includes spe-

cific keywords that refer to a particular heuristic (such as “Johnson’s rule” or “FIFO”). Around 76% of 

the total keyword hits belong to “general terms”, while the rest are related to “specific simple heuristics”. 

13 different specific simple heuristics were identified in the sampled text, among them “shortest pro-

cessing time” (SPT), “first come first served” (FCFS), “shortest imminent” (SI), “total work-content” 

(TWK), and “constant” (CON). As Fig. 12 demonstrates, the SPT and “Johnson’s rule” were discussed 

more frequently than any other simple heuristic in the sampled review papers (for a detailed explanation 

of the heuristics displayed in Fig. 12, see Blackstone et al. [49] and Haupt [50]). 
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Figure 16: Share of specific simple heuristic algorithms in the keyword count of the subgroup “simple 

heuristics”. 

Similarly, to the subgroup “simple heuristics”, the subgroup “metaheuristics” can also be divided further 

into “general terms” and “specific metaheuristics”. “General terms” includes 33% of the keywords hits 

obtained for the subgroup “meta- heuristics”, and the rest of the keywords belong to “specific metaheu-

ristics”. The keyword hits for specific metaheuristics could be assigned to ten different metaheuristic 

algorithms. According to Fig. 13, genetic algorithm (GA) is the most dis- cussed metaheuristic in sur-

veys on MSPP with more than 50% of the total keyword count in this subgroup. Tabu search (TS), 

simulated annealing (SA), particle swarm optimization (PSO), ant colony optimization (ACO), and var-

iable neighborhood search (VNS) are the next most discussed metaheuristics in the sampled texts with 

a total of about 40% of the keyword hits. The rest of the keyword hits (with a share of less than 6%) 

were obtained for “memetic”, “scatter search” (SS), “GRASP”, “guided local search” (GLS), “iterated 

local search” (ILS), and “adaptive memory programming” (AMP). 

 

Figure 17: Share of specific metaheuristics in the keyword count of the subgroup “metaheuristics”. 
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2.4.6. Scheduling in practice 

16 keywords referring to the application of scheduling in practice were assigned to this group, and as 

Fig. 3 shows, this is the least-discussed group in the sample. The keywords for “scheduling in practice” 

were divided into two subgroups. The first subgroup contains general application-related terms (e.g., 

“real-life”, “real-world” and “industry”), and they accounted for around 25% of the total number of 

keyword hits obtained for this group. The second subgroup was termed “industrial application of sched-

uling” and contained keywords such as “time-tabling”, “chemical”, “textile”, or “automobile industry”. 

The other 75% of hits were obtained for the second subgroup (see Fig. 14 for an overview). 

 

Figure 18: Distribution of the keyword count of the subgroup “scheduling in practice”. 

One important finding is that the application of MSPP in a real industrial context has not received much 

attention in the sampled papers as compared to other aspects of MSPP, which confirms the results of 

several review papers on MSPP that hypothesized that more application-oriented research is necessary 

(see, for example, McCarthy and Liu [51]). These results could imply that reviewing the primary liter-

ature with a specific focus on the application of scheduling models to real-life problems might be prom-

ising and that more application-oriented research is possibly needed also on the primary level.  

Another interesting finding is that the scheduling of robotic manufacturing received more attention than 

any other sub-group. It is worth noting that problems with automated guided vehicles (AGVs) are often 

also treated as robotic manufacturing problems; however, we separated them from robotic manufactur-

ing to highlight their role in the literature on MSPP. 

2.4.7. Pure theory 

This group includes only seven keywords (which makes it the smallest group with respect to the number 

of keywords) building two subgroups, namely “general theory” with keywords such as “theory” and 

“theorem”, and “complexity theory” (e.g., “complexity”, “NP-hard”, and “NP-complete”). 21% of the 

keywords counted in the group “pure theory” belong to the subgroup “general theory”, while the rest 
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belongs to the subgroup “complexity theory”. As Table 1 shows, an interesting finding is that the key-

words related to “complexity theory” with 7.57% of the total keyword hits build the fourth most dis-

cussed subgroup in the sampled papers. This reflects the relative popularity of the theory of complexity 

in survey papers on MSPP as compared to the industrial applications of scheduling models, for example. 

3 Discussion 

This section presents the results of a sensitivity analysis conducted to examine the reliability of the CA 

results. It also discusses some limitations observed in the sampled papers together with some general 

limitations of CAs. 

3.1. Sensitivity analysis 

Content analyses have often been criticized with respect to the reliability of results (see, for example, 

Neuendorf [21]). To validate the results obtained in this paper and to gain insights into the extent to 

which individual papers may bias the results obtained, a sensitivity analysis is conducted based on the 

method proposed by Grosse et al. [26]. The idea of the sensitivity analysis is to identify papers that use 

specific terms very frequently, which may lead to an overrepresentation and incorrect interpretation of 

individual recording units. To assess the validity of results, Grosse et al. [26] selected a set of papers 

with a specific focus on recording units that had frequently been found in their sample, removed these 

papers from the sample and conducted the CA again to isolate the influence of these papers on the results 

of the CA. In contrast to Grosse et al. [26], in this study, a specific set of papers was selected for every 

single subgroup. Because the resulting sets consisted of papers with a specific focus on the respective 

subgroup, these papers could have introduced biases into our earlier analyses. For example, our sample 

contains a single survey with a focus on ordered operations in scheduling studies. This survey produced 

so many keyword hits related to ordered operations that it may have introduced biases into the results 

of the CA. 

To identify whether a survey is dedicated to a specific subgroup, the title of each of the sampled papers 

was checked for subgroup keywords. For example, the paper entitled “Parallel machine scheduling with 

additional resources: Notation, classification, models and solution methods” was allocated to the “par-

allel machines” and “dual resource operations” sub-groups because the title contains keywords from 

both subgroups. Table 2 presents subgroups with more than five dedicated papers in the sample (in the 

tables that follow, # indicates the number of dedicated papers). Four of the subgroups in Table 2 belong 

to the group “flow pattern”, which is the group that has the highest number of dedicated papers (41 out 

of 132 papers in the sample). 
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Group Subgroup #  Group Subgroup # 

Flow pattern Flowshop 17 
 job & machine char-

acteristics 
Setup time 8 

Flow pattern Jobshop 13 
 

Flow pattern Single machine 6 

Objectives 
Penalty-base ob-

jectives 
12 

 
Pure theory Pure theory 5 

Objectives Multi-objective 11 

 

nature of problem Deterministic 5 

Scheduling in prac-

tice 

Scheduling in 

practice 
9 

 
nature of problem Stochastic 5 

Solution approaches Simple heuristics 9  flow pattern lot-scheduling 5 

Table 2: Subgroups with more than five dedicated papers. 

In the next step, to evaluate how the results of the CA were influenced by the dedicated papers, we 

counted the keyword frequency of each subgroup in the corresponding dedicated papers. Table 3 illus-

trates the ten subgroups for which the strongest dependency on their dedicated papers could be observed.  

According to Table 4, the subgroup “flowshop” with around 64–70% has the highest dependency on its 

dedicated papers. The percentage for the subgroup “ordered operation” is approximately 40.84%. How-

ever, as shown in Table 3, there are 17 dedicated papers for the former subgroup and only one paper for 

the latter. As a result, the numbers in Table 4 might be misleading. To remedy this drawback, the average 

dependency of subgroups on their dedicated papers was calculated by dividing the percentage depend-

ency on dedicated papers of each subgroup by the number of dedicated papers of this subgroup. Table 

4 summarizes the ten subgroups with the highest average dependency (AVE). 

 

Subgroup # 
% dependency on 

dedicated papers 
 Subgroup # 

% dependency on 

dedicated papers 

Flowshop 17 64.07  Stochastic 5 53.69 

Multi-objective 11 62.89  
Dual resource op-

erations 
4 46.61 

Lot-scheduling 5 60.60  ordered operations 1 40.84 

Artificial Intel-

ligence 
3 56.51  learning effect 2 36.91 

Setup time 8 54.43  process scheduling 4 36.59 

Table 3: Ten subgroups with the highest percentage dependency on their dedicated papers. 
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The average dependency measure facilitates the interpretation of the results of the CA. For example, the 

subgroups “artificial intelligence” and “dynamic” are responsible for 1.29% and 1.4% of the total key-

word hits obtained in the sample. Yet, while the average dependency of the first subgroup on its dedi-

cated papers is 18.84%, the AVE for the second subgroup is only 4.75% This might be interpreted as 

follows: Although both subgroups occurred with a similar frequency in the sample, the “dynamic” sub-

group occurred more evenly distributed across the sample as compared to the subgroup “artificial intel-

ligence”. The list of all subgroups with the number of their dedicated papers as well as the percentage 

of their dependency on dedicated papers and the average dependency can be found in the Appendix. 

Subgroup # AVE  Subgroup # AVE 

Ordered operations 1 40.84  Common due-dates 2 13.74 

Online 1 22.18  Approximation algorithms 2 12.70 

Artificial Intelligence 3 18.84  Lot-scheduling 5 12.12 

Learning effect 2 18.46  Dual resource operations 4 11.65 

Job families 1 15.29  No-wait processes 2 11.26 

Table 4: Ten subgroups with the highest average percentage dependency on their dedicated papers. 

3.2. Limitations of the sample 

3.2.1. Lack of application in scheduling studies 

Reisman et al. [20] revealed an interesting fact about 50 years of literature on flow shop scheduling: 

“Over its lifetime, which is now in its fifth decade, the entire literature of FSS (flow shop scheduling/se-

quencing) has recorded only five articles (3% of the total) that were judged to be true applications .”Alt-

hough the scope of the paper at hand is much broader than that of Reisman et al. [20] , the results of this 

CA also strongly indicate that the literature suffers from a lack of application: only 5.23% of the sampled 

papers investigated the application of scheduling in reality. Based on the results of our CA, the following 

research opportunities may contribute to increasing the applicability of MSPP studies: 

• develop methods for multi-objective problems to take account of the fact that decisions in prac-

tice are often based on multiple objectives (only 1.98% of the total hits in our sample are related 

to multi-objective problems). 

• focus on more realistic constraints for MSPP. Transportation lags and dual/multi-resource op-

erations are two examples of such constraints (they accounted for only 0.52% and 0.28% of the 

total hits in our sample, respectively). 

• develop models that tackle specific industry-related problems. For example, we found that 

MSPP have been studied in the automobile and textile industries, but that the application of 

MSPP to these industries accounted for only 0.03% of total hits in the sample. 
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• study the use of MSPP models in practice and report how the use of such models influences the 

production processes. 

3.2.2. Missing metaheuristics 

As was mentioned in Section 2.4.5, some well-known metaheuristics for addressing combinatorial op-

timization problems (such as scatter search, guided local search, iterated local search, and adaptive 

memory programming) collectively appeared only 147 times (i.e., 0.18% of total hits) in the sampled 

papers. Furthermore, there are some other well-known metaheuristics (such as large neighborhood 

search) that did not appear in the sample at all. This could be interpreted in two ways: either these 

algorithms are not well suited for solving MSPP, or they are underrepresented in solving it, which could 

indicate that further research in this area is promising. 

3.3. Limitations of the CA 

Conducting a CA on a sample consisting of secondary studies enables researchers to obtain a general 

overview of the subject under consideration. The results are also helpful for developing a framework to 

classify the literature. This framework, in turn, can help researchers to position their own works in the 

literature. However, one drawback is that the results obtained cannot necessarily be extended to the 

primary level. To illustrate this aspect, consider an example from the results of the paper at hand. As 

discussed in Section 2.4.4, transportation lags have not been discussed in the sampled papers very fre-

quently. However, despite the correlations that usually exist between research at the primary and the 

secondary level, we cannot reliably infer from these results that transportation lags have not been inves-

tigated on the primary level. The only valid conclusion is that this particular assumption has been re-

viewed less intensively than other machine-related characteristics in the literature. Another disadvantage 

of conducting a CA on the secondary level is that surveys are not published on a regular basis and with 

delays regarding the initial publication of the primary works. Therefore, it is difficult to draw conclu-

sions concerning the development of different subjects over time from the results. 

Using a “manifest coding” approach ensures that the results of a CA are reproducible. However, in order 

to make the results of a CA that uses “manifest coding” reliable, a standard terminology for the entire 

sample is required. In the case of our sample, a standard terminology was not available for all subgroups. 

For example, as explained in Section 2.4.2, in some of the sampled papers, the term “job shop” has been 

used for describing a “single machine” flow pattern. Such violations bias the results, especially if they 

occur frequently. Using “latent coding” is one effective way to overcome this drawback and to make the 

results of a CA more reliable for samples in which the standard terminology is often violated. In our 

CA, a low level of violations was observed, which is why the manifest coding scheme was used. 

Another way to improve the reliability of the results could be to assign different weights to different 

subgroups found in the sampled papers. In this case, keywords that appear in the titles of the sampled 

papers could receive higher weights than the keywords that appeared in the main text of the papers, for 

example to correctly reflect the fact that a key- word mentioned in the title may reflect the overall im-

portance of the keyword somewhat stronger than a keyword that appears in the regular text. The chal-

lenge here clearly would be to assign reasonable weights to the different places of occurrence. 
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4 Summary and future research 

The paper at hand analyzed secondary works on MSPP by conducting a CA on a comprehensive and 

systematically generated sample consisting of 132 surveys. The manifest coding technique was used to 

identify the keywords. To ensure that the process of categorizing recording units is exclusive and ex-

haustive, both inductive and deductive categorization approaches were employed. As a result, 179 key-

words were identified in the sample, which were allocated to 7 groups and 48 subgroups. These groups 

and subgroups establish a framework that helps to classify the literature on MSPP. The results of the 

CA revealed that the most discussed attributes of MSPP are the solution approaches, objectives, and 

flow patterns. The results also indicate a lack of practical applications in the sampled papers. To verify 

the reliability of the results, a sensitivity analysis was conducted to identify surveys that may have in-

troduced biases into our results. The limitations of the CA conducted in this paper together with some 

suggestions to remedy these drawbacks were also discussed. 

In the discussion of the results of our CA, several opportunities for future research were identified. 

Another interesting opportunity might be to apply the CA procedure proposed in the paper at hand to a 

sample of primary studies on MSPP published in flagship journals over a certain timespan. Such a study 

could compare the results obtained for primary works with those obtained for secondary works in the 

paper at hand. It could also be used to check whether the framework to classify MSPP studies developed 

in this paper is comprehensive. Another opportunity for future research could be to conduct a tertiary 

study on the sample studied in the paper at hand. This might help to gain further insights into the state-

of-the-art of MSPP. 
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Appendix 

The following table gives an overview of the groups and subgroups obtained in the work at hand. The table shows the recording units (keywords) belonging 

to each subgroup, together with their detailed results and the results of the sensitivity analysis. 

Group Subgroup Subclass Recording unit 

Number of 

hits in the 

sample 

Percent-

age of hits 

in sample 

No. of 

dedicated 

papers 

Percentage 

of depend-

ency on 

dedicated 

papers 

Average 

percentage 

of depend-

ency on 

dedicated 

papers 

Type of the problem 

Dynamic   Dynamic (Dynamic programming is excluded) 1101 1.41 3 14.26 4.75 

Static   Static 401 0.51 3 7.48 2.49 

Stochastic   Stochastic, probabilistic, Fuzzy 2371 3.03 5 53.69 10.74 

Deterministic   Deterministic 628 0.80 5 22.13 4.43 

Online   Online, real-time 1046 1.34 1 22.18 22.18 

Offline   Offline 73 0.09 1 8.22 8.22 

Periodic   Periodic 158 0.20 0 --- --- 

Flow pattern 

Batch machines   Batch machines 2211 2.83 2 18.23 9.11 

Flow shop 
General flow shop 

Flow shop (excluding hybrid flow shop), FSP, 
PFSP 2627 3.36 17 64.07 3.77 

Hybrid flow shop Hybrid flow shop, HFS, HFSP 

Job shop   Job shop 2628 3.36 13 34.21 2.63 

Single machine   
Single machine, single server, single processor, 

single stage, one machine, one processor 
2082 2.66 6 13.93 2.32 

Parallel machines 

General terms 
Parallel machine, parallel server, parallel pro-

cessor 

1734 2.22 3 13.38 4.46 
Identical machines Identical machine, identical processor 

Uniform machines Uniform machines, uniform processor 

Irrelevant ma-
chines 

Irrelevant machines, irrelevant processor 

Two machines   Two machine, two processor 1371 1.75 0 --- --- 

m machines   m machine, multi-machine, multi-processor 938 1.20 4 6.72 1.68 

Lot scheduling   Lot scheduling, lot-sizing, lot-streaming 599 0.77 5 60.60 12.12 

Three machines   Three machine, three processor 264 0.34 0 --- --- 
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Open shop   Open shop 305 0.39 0 --- --- 

Process schedul-

ing 
  Process scheduling 123 0.16 4 36.59 9.15 

Objectives 

Penalty-based ob-

jectives 
  

Penalty, delay, due-date (excluding common 
due-date), earliness, lateness, tardiness, earli-

ness-tardiness 
6532 8.35 12 25.05 2.09 

throughput-time-
based objectives 

Flow time Flow time, FT, TFT, total completion time 

4908 6.27 4 11.59 2.90 

Makespan 
Makespan, Cmax, Max completion time, maxi-

mum completion time 

Cost-based objec-
tives 

  Cost, cost-based 2357 3.01 1 3.65 3.65 

Multi-objective 
problems 

  Multi-objective, bi-criteria, multi-criteria, pareto 1555 1.99 11 62.89 5.72 

Job and machine 
characteristics 

Job families   Family, family-based 1236 1.58 1 15.29 15.29 

No-wait pro-
cesses 

  no-wait, deterioration 1110 1.42 2 22.52 11.26 

Sequence depend-
ency 

  sequence dependent 1174 1.50 1 7.50 7.50 

Precedence con-
straints 

  Precedence 772 0.99 0 --- --- 

Preemption   Preemption, preemptive 724 0.93 0 --- --- 

Common due-
dates 

  Common due-date 342 0.44 2 27.49 13.74 

Ordered opera-
tions 

  Ordered, semi-ordered 262 0.33 1 40.84 40.84 

Setup time   Setup, changeover, loading 4461 5.70 8 54.43 6.80 

Machine break-
down 

  
Breakdown, stability, machine availability, 

maintenance, disturbance, repair, machine relia-
bility 

912 1.17 3 4.50 1.50 

Learning effect   Learning, forgetting 764 0.98 2 36.91 18.46 

Rescheduling 
problems 

  rescheduling, resequencing 367 0.47 0 --- --- 

Transportation 
lags 

  Transportation, delivery, shipment 412 0.53 0 --- --- 
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Buffer space   Buffer 266 0.34 0 --- --- 

Dual resource op-
erations 

  
Dual resource, dual-constrained, multi-resource, 
resource-constrained, resource-dependent, two-

resource, controllable processing time 
221 0.28 4 46.61 11.65 

Solution approaches 

Simple heuristics 
General terms Priority rule, dispatching rule, dispatch rule 

7869 10.06 9 17.58 1.95 
Specific heuristics 

SPT, Johnson, EDD, SI, TWK, LR, NOP, RAN, 
CON, SLACK, FIFO, SR, FCFS 

Metaheuristics 

General terms 
Local search, neighbourhood, population, me-

taheuristic, EA, evolutionary 

6502 8.31 4 14.40 3.60 
Specific metaheu-

ristics 

GA, genetic, chromosome, tabu-search, tabu, ta-
boo, annealing, ant, PSO, swarm, GRASP, 

guided local search, GLS, iterated local search, 
ILS, memetic, adaptive memory, AM, SS, scat-

ter search, variable neighbourhood search, VNS 

Exact algorithms 

General terms Exact algorithm 

2577 3.29 2 4.81 2.41 

Branch & bound Branch and bound, branching, lomnicki 

Linear program-
ming 

Linear programming, LP, ILP, integer program-
ming, mixed-integer 

Dynamic program-
ming 

Dynamic programming 

Enumeration Enumeration, enumerate 
Simulation   Simulation 1075 1.37 4 14.23 3.56 

Artificial intelli-
gence 

  Artificial intelligence, ANN, ANNs, AN, neural 1014 1.30 3 56.51 18.84 

Approximation 
algorithms 

  
Worst-case analysis, performance guarantee, 

performance ratio 
122 0.16 2 25.41 12.70 

Scheduling in prac-
tice 

General terms   Practice,  real life, real world, realistic, industry 

4116 5.26 9 32.90 3.66 Specific industrial 
applications 

  

AGV, AGNs, assembly, automated, automobile, 
chemical, FMS, flexible manufacturing, robotic, 
robots, semiconductor, textile, timetabling, wa-

fer 

Pure theory 
General terms   Theory, Theorem, theoretical 

5925 7.57 5 8.64 1.73 Complexity the-

ory 
  Complexity, NP-hard, NP-complete, polynomial 
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Abstract 

This paper develops a set of new simple constructive heuristic algorithms to minimize 

total flow-time for an n-jobs x m-machines permutation flowshop scheduling problem. 

We first propose a new iterative algorithm based on the best existing simple heuristic 

algorithm, and then integrate new indicator variables for weighting jobs into this algo-

rithm. We also propose new decision criteria to select the best partial sequence in each 

iteration of our algorithm. A comprehensive numerical experiment reveals that our mod-

ifications and extensions improve the effectiveness of the best existing simple heuristic 

without affecting its computational efficiency. 

Keywords: Flowshop scheduling problem, Permutation flowshop, Total flow-time, Heuristics 
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1 Introduction 

A flowshop production system is commonly defined as a production system in which a set of 𝑛 jobs 

undergoes a series of operations in the same order [23]. Determining optimal job sequences for flowshop 

scheduling problems can be based on various objectives; minimizing makespan and minimizing total 

flow-time have, however, most often been considered as objectives for flowshop scheduling problems 

in the past. The first objective refers to the minimization of the last job’s completion time, while the 

second one aims on minimizing the total in-process time, which reduces work-in-progress inventory [6]. 

For makespan minimization, problems with more than two machines have been shown to be strongly 

NP hard [23]; this is even the case for Permutation Flowshop Scheduling Problems, i.e. for flowshop 

scheduling problems with the same job order on all machines. Garey et al. [11] showed that the problem 

of minimizing total flow-time with more than one machine belongs to the category of NP complete 

problems. Accordingly, for large-size problems, heuristic procedures have to be used to find solutions 

in reasonable computational time. A comprehensive review of research on flowshop scheduling that 

appeared during the last 50 years is the one of Gupta and Stafford [14]. A review of scheduling problems 

that aim on minimizing makespan can be found in Ruiz and Maroto [28] and Gupta et al. [13]. The 

Permutation Flowshop Scheduling Problem with the objective of flow-time minimization was reviewed 

by Pan and Ruiz [22] and Framinan et al. [8], where the latter also reviewed works that consider 

makespan minimization. Mutlu and Yagmahan [18] recently reviewed multi-objective flowshop sched-

uling problems. 

Framinan et al. [10] provided a framework to categorize heuristic algorithms for the Permutation Flow-

shop Scheduling Problem (PFSP) according to their structure. This framework distinguished between 

the phases of (a) index development, (b) solution construction, and (c) solution improvement. Framinan 

et al. [9] categorized existing heuristics, which can address one or more of these phases, into two classes: 

simple and composite heuristics. An algorithm was categorized as a simple heuristic if it does not include 

another heuristic. Composite heuristics are heuristics that contain at least one simple heuristic for con-

ducting one or more of the three above-mentioned phases. Pan and Ruiz [22] showed that composite 

heuristics outperform simple heuristics in minimizing flow-time. Yet, as simple heuristics are the basic 

building blocks of composite heuristics, improving their performance is still of interest for the research 

community, as this improvement can boost the performance of composite heuristics as well. The aim of 

this paper is to propose a set of new simple heuristics to improve the performance of the best existing 

simple heuristic algorithm for minimizing total flow-time in the PFSP. 

A popular simple heuristic for minimizing makespan in the general PFSP was presented by Nawaz et 

al. [19] (we refer to this heuristic as NEH in the following), which outperformed other algorithms de-

veloped earlier, such as the heuristics of Palmer [20], Gupta [12], or Campbell et al. [2]. Despite its good 

performance for makespan-related PFSPs, another advantage of NEH is that it leads to good solutions 

for other objectives as well, such as minimizing total flow-time (as was shown, for example, by Allah-

verdi and Aldowaisan [1]). The NEH heuristic consists of two phases, namely (I) the sorting (prioritiz-

ing) phase and (II) the insertion phase. In the sorting phase, jobs are sorted in descending order of their 

total processing time. This sorted list is used in the insertion phase to determine the sequence in which 

jobs are added to an existing partial sequence. For an 𝑛-job PFSP, the insertion phase consists of 𝑛 

iterations. In step 𝑘 (1 ≤ 𝑘 ≤ 𝑛) of the insertion phase, the 𝑘th job on the sorted list is successively 
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assigned to the 𝑘 possible slots in the current partial sequence that was obtained in the previous iteration, 

which consists of 𝑘 − 1 jobs. The partial sequence that leads to the best value for the objective function 

(minimum partial makespan) is used as the current 𝑘-jobs partial sequence for the next iteration. 

Since 1983, many researchers have tried to improve NEH for different objective functions by modifying 

either its sorting or its insertion phase. One example is the work of Framinan et al. [7], which tried to 

improve the performance of NEH for three objectives (i.e. makespan, idle time and total flow-time min-

imization) by applying 177 new ordering policies to the sorting phase of NEH. These policies are com-

binations of different indicator values and sorting criteria. Most extensions of NEH are more effective 

than the original version (i.e., they lead to better solutions), but they are usually less efficient (i.e., they 

are usually more complex and require more computational time than the original NEH). 

The relatively high efficiency of NEH is primarily due to the idea of keeping an established partial 

sequence of a set of jobs unchanged from one iteration until the algorithm terminates. This idea, how-

ever, also restricts the effectiveness of NEH, as it does not search for potentially better local solutions 

once a partial sequence has been established. One option to improve the insertion phase of NEH is to 

optimize partial sequences by testing alternative positions for jobs at the end of each iteration, i.e. to 

evaluate the neighborhood of each partial sequence. A similar idea was presented by Rajendran [24], 

who optimized partial sequences by exchanging adjacent jobs pairwise with the objective to minimize 

total flow-time. Framinan and Leisten [6] combined this idea with NEH and performed pairwise ex-

changes at the end of each iteration to improve partial sequences. The authors showed that their algo-

rithm (to which we refer as FL hereafter) outperformed other constructive algorithms for the total flow-

time criterion. Framinan et al. [9] evaluated different heuristic algorithms for the PFSP and concluded 

that the FL heuristic led to better solutions for the total flow-time criterion. Laha and Sarin [17] extended 

FL by allowing all jobs assigned to a partial sequence to change their respective position by checking 

all other 𝑘 − 1 slots at the end of each iteration. They showed that their algorithm (to which we refer as 

LS in the following) leads to a better performance, in terms of the quality of the solutions, and only a 

small loss in efficiency as compared to the FL heuristic. Pan and Ruiz [22] reviewed the most promising 

constructive heuristics and indicated that LS is the best existing simple heuristic to minimize total flow-

time in general PFSPs in terms of the quality of the results. Since LS is computationally complex, the 

authors developed some new composite heuristics that outperform LS and at the same time consume 

about one order of magnitude less CPU time. Recently, Fernandez-Viagas and Framinan [5] proposed a 

set of new constructive heuristics (we refer to them as FF heuristics in the following) and compared 

them with some of the heuristics considered in Pan and Ruiz [22]. Although some of their composite 

algorithms showed a better performance than the ones proposed in Pan and Ruiz [22], their proposed 

simple heuristics (all pure FF heuristics, i.e. FF(1)-FF(n)) are outperformed by LS. 

As mentioned above, having promising composite heuristics does not render efforts to improve simple 

heuristics worthless. Better simple heuristics may open the gate for the development of even better com-

posite heuristics. Based on LS, this paper proposes several new simple heuristics for the PFSP. Numer-

ical experiments illustrate that our modifications lead to a significant improvement in terms of the qual-

ity of the solutions without affecting the computational efficiency as compared to the best existing sim-

ple heuristic. 

The remaining sections of this paper are organized as follows. Section 2 outlines the heuristic of Laha 

and Sarin [17] and possible modifications for its extensions. Section 3 describes the proposed heuristics 
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in detail. A comprehensive comparison of the proposed heuristics and LS, together with a detailed eval-

uation of the effect of proposed modifications on NEH and LS, are given in Section 4, and Section 5 

concludes the paper. 

2 The heuristic of Laha and Sarin and its modifications 

Both the FL and LS heuristics optimize partial sequences at the end of each iteration of NEH’s insertion 

phase. This paper focuses on improving the LS heuristic, which outperforms all other existing simple 

heuristics for optimizing total flow-time in a permutation flowshop manufacturing system [22]. The 

pseudocode of LS is the following: 

Step 1: 𝑃𝑖 = ∑ 𝑝𝑖𝑗,𝑚
𝑗=1    𝑖 = 1,2, … , 𝑛, where 𝑃𝑖 is the indicator value of job 𝑖 and  𝑝𝑖𝑗 is the 

processing time of job 𝑖 on machine 𝑗. 

Step 2: Sort the jobs in an ascending order of their indicator values. 

Step 3: Select jobs 𝑘 = 1 and 𝑘 = 2 and keep the partial sequence (i.e. 1 − 2 or 2 − 1) that 

results in a shorter total flow-time as the current partial sequence. 

Step 4: For 𝑘 = 3, … , 𝑛, repeat the following: 

4.1.Insert the 𝑘th job in all k possible slots in the partial sequence obtained in the last 

iteration, which consists of 𝑘 − 1 jobs. 

4.2.Select the best 𝑘-job partial sequence that results in the shortest total flow-time as the 

current partial sequence. 

4.3.For 𝑖 =  1, … , 𝑘 − 1, remove job i from the current partial sequence and insert it into 

the 𝑘 − 1 positions of the remaining partial sequence. Calculate the corresponding 

total flow-time for all new combinations. 

4.4.If the best of the new 𝑘(𝑘 − 1) 𝑘-job partial sequences generated in Step 4.3 is better 

than the current partial sequence, replace it by the best partial sequence obtained in 

Step 4.3. Set 𝑘 = 𝑘 + 1. 

It is worth noting that the first three steps of LS are almost identical to those of the original NEH heu-

ristic. The only difference is that in LS, unlike in the original NEH, the jobs are sorted in ascending 

order of their weights (Step 2). Framinan et al. [8] showed that minimizing total flow-time in a PFSP by 

using a modified version of the NEH heuristic, with jobs sorted in an ascending order of their total 

processing times, performs better than the original NEH. It is also worth noting that partial sequences 

are optimized starting with Step 4 of LS. 

As LS is based on NEH, we have the same options for improving LS as for extending the NEH heuristic. 

Framinan et al. [7] named six attributes of the NEH heuristic that offer rooms for extensions: 

(1) Consider different objective functions, such as makespan, total flow-time or idle-time minimi-

zation. 

(2) Employ different indicator values in Step 1 (e.g. as by  Framinan et al. [7]). 

(3) Choose a different sorting criterion in Step 2 (e.g. as by Framinan et al. [7]). 

(4) Restrict the insertion of job 𝑘 in Step 4 to a subset of the 𝑘 possible positions (e.g. as by Rajen-

dran [24]). 
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(5) Insert multiple unscheduled jobs into a subsequence in each iteration (e.g. as by Woo and Yim 

[32]). 

(6) Keep more than a single sequence within the iterations of Step 4 (e.g. as by Jena et al. [33]). 

 

In addition to the suggestions of Framinan et al. [7], we propose the following additional options for 

extending NEH: 

(7) Optimize partial sequences, e.g. by performing a local search in the neighborhood of the partial 

sequences obtained at the end of each iteration of NEH, as in FL or LS. 

(8) Apply different tie-breaking rules in Step 2, where two or more jobs may have the same weight, 

and in Steps 4.2 and 4.4, where two or more inserting positions may result in the same value for 

the objective function. [4], for example, reviewed existing tie-breaking rules and proposed a 

new one. 

(9) Chose a different decision criterion for the selection of the best 𝑘-job partial sequence than in 

the objective function of the problem. 

The heuristics proposed in the following are based on extension options 2, 7 and 9. 

3 Proposed heuristics 

3.1. AGB (focuses on option 7 to improve LS): 

The sorted list (obtained in Step 2) is used both in the FL and LS heuristics only to determine the order 

in which jobs are inserted into the partial sequence. The heuristic proposed here uses the priority orders 

more effectively in the insertion phase. AGB uses the first three steps of LS and then continues as fol-

lows: 

Step 4: for 𝑘 = 3, … , 𝑛 repeat the following: 

4.1.Insert the 𝑘th job in all 𝑘 possible slots in the current partial sequence obtained in the 

last iteration, which consists of 𝑘 − 1 jobs. 

4.2.Select the best 𝑘-job partial sequence that results in the lowest total flow-time as the 

current partial sequence. 

4.3.𝑖 = 1 

4.4.Remove job i (i.e., the ith job in the sorted list obtained in Step 2) from the current 

partial sequence and insert it into the (𝑘 − 1) positions of the remaining partial se-

quence. Calculate the corresponding total flow time for all new combinations. 

4.5.If the best of the new (𝑘 − 1) 𝑘-job partial sequences generated in Step 4.4 is better 

than the current partial sequence, replace the current partial sequence by the best par-

tial sequence obtained in Step 4.4. 

4.6.If 𝑖 < 𝑘, then 𝑖 = 𝑖 + 1 and go to Step 4.4. Otherwise 𝑘 = 𝑘 + 1. 

One important difference between AGB and LS is Step 4.4, where we initiate our local search with the 

most important job and then proceed to the less important ones. Another difference is Step 4.5, in which 

we replace the current sequence immediately if this leads to an improvement, whereas LS replaces its 

current partial sequence only after having checked all exchanges in an iteration. The idea behind our 

modifications is that the change in the position of more important jobs has a higher impact on the final 
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solution than a change in the position of less important jobs. It is easy to show that the complexity of 

LS is 𝑂(𝑘((𝑘 − 1)2 + 𝑘)𝑘𝑚) and the complexity of AGB is 𝑂(𝑘(𝑘2 + 𝑘)𝑘𝑚). It is clear that both 

algorithms have the same complexity, namely 𝑂(𝑛4𝑚), which is identical to the complexity of FL. 

3.2. AGB/α/β (focuses on option 2 to improve AGB) 

Following the notation of Framinan et al. [7], Heuristic/α/β describes an algorithm where 𝛼 denotes the 

indicator value and 𝛽 the sorting criterion employed. AGB/α/β is a set of new heuristics to enhance the 

performance of the AGB heuristic developed in Section 3.1 by employing different criteria for sorting 

jobs (option 2). Preliminary computational experiments revealed that all algorithms proposed here show 

a better performance with an ascending rather than a descending order of jobs. Since Rajendran [24], 

Framinan et al. [8] and Laha and Sarin [17] used an ascending order of the indicator values in their 

algorithms for PFSP with total flow-time objective, we restrict our analysis to the same sorting rule. 

Thus, for all analyzed algorithms, β = A. Accordingly, the heuristics proposed in this section are the 

same as AGB with respect to their sorting criterion, but differ from AGB by using new indicator values, 

instead of the sum of processing times, for indexing jobs in Step 1 of AGB. We examine six new indi-

cators to prioritize the jobs. Although three of these indicators have been studied before (see Palmer’s, 

Gupta’s, and Rajendran’s indices), they have not yet been tested as weighting rules in the sorting phase 

of NEH. The following indicator variables are considered: 

1. 𝑃𝑖: Total processing times, i.e. 𝑃𝑖 =  ∑ 𝑝𝑖𝑗
𝑚
𝑗=1  𝑖 = 1,2, … , 𝑛. This is the original indexing policy 

of the NEH and LS heuristics, and it is used as a benchmark here. 

2. 𝑆𝐼𝑃𝑖: Slope Indices of Palmer [20]: The total weighted processing time follows the expression 

𝑆𝐼𝑃𝑖 = ∑ (2𝑗 − 𝑚 − 1) × 𝑝𝑖𝑗
𝑚
𝑗=1  for jobs 𝑖 = 1,2, … , 𝑛. We use the Palmer indices as weights 

for the jobs; thus, unlike in the original heuristic of Palmer, the indices here do not indicate the 

final sequence of jobs. 

3. 𝐴𝐵𝑆(𝑆𝐼𝑃𝑖): Absolute Slope Indices of Palmer, i.e., 𝐴𝐵𝑆(𝑆𝐼𝑃𝑖) = |𝑆𝐼𝑃𝑖|, where 𝑆𝐼𝑃𝑖  is Palmer’s 

index of job 𝑖. It is clear that Palmer’s indices can be positive or negative. According to Palmer’s 

heuristic, to reduce the chance of machines/jobs idle times, jobs are sequenced in such a way 

that the difference between the slopes of successive jobs is minimized. As was already men-

tioned, Palmers’ slopes indicate the weight (the importance) of the jobs in our algorithm. Our 

idea behind using the absolute value of Palmer’s slopes is that the absolute slopes might reflect 

the importance of jobs better, i.e. a job with a Palmer index of -6 is a more important job than a 

job with a Palmer index of 4, and it thus needs to be sequenced earlier. 

4.  𝑆𝐼𝐺𝑖: Slope Indices of Gupta [12]: Job weights follow the expression 𝑆𝐼𝐺𝑖 =
𝑒𝑖

min
1≤𝑗≤𝑚−1

{𝑝𝑖𝑗+𝑝𝑖,𝑗+1}
  

for 𝑖 = 1,2, … , 𝑛, where 𝑒𝑖 = {
      1     𝑖𝑓 𝑝𝑖1 < 𝑝𝑖𝑚

−1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. As with 𝑆𝐼𝑃𝑖, Gupta’s indices are only used 

to determine the weights of jobs in Step 1 of the algorithm, and not to determine the sequence 

of jobs. Gupta’s indices assign a higher weight to jobs that are more likely to cause bottlenecks. 

For this reason, we examined the effect of this indexing method on AGB. 

5. 𝑆𝐼𝑅𝑖 : Slope Indices of Rajendran [24]: Rajendran [24] proposed an alternative way to assign a 

higher weight to machines that are more likely to cause bottelnecks in production. The impact 

of this sorting method on AGB is investigated as well in this paper. Weighted processing times 

are calculated as 𝑆𝐼𝑅𝑖 = ∑ (𝑚 − 𝑗 + 1) × 𝑃𝑖𝑗
𝑚
𝑗=1  for 𝑖 = 1,2, … , 𝑛. Again, we use the indices 

only to determine the weights of the jobs.  
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6. 𝑀𝑇𝑊𝑃𝑇𝑖 (Machine-based Total Weighted Processing Time): For this indicator variable, we 

first assign weights to each machine, and then use these weights in calculating the total weighted 

processing time of each job. The total processing time on each machine (utilization of machines 

𝑢𝑗 , 𝑗 = 1, 2, … , 𝑚) is used as machine weight and follows the expression 𝑢𝑗 =  ∑ 𝑝𝑖𝑗
𝑛
𝑖=1 , 𝑗 =

1,2, … , 𝑚. The idea behind this weighing policy is that the processing times on more important 

machines should play a more prominent role in weighting jobs. Indicator values then follow the 

expression 𝑀𝑇𝑊𝑃𝑇𝑖 =  ∑ 𝑢𝑗 × 𝑝𝑖𝑗
𝑚
𝑗=1  for 𝑖 = 1,2, … , 𝑛.  

7. 𝑀𝐽𝑇𝑊𝑃𝑇𝑖 (Machine & Job-based Total Weighted Processing Time): This indicator assigns 

weights both to jobs and machines, and uses these weights in the calculation of the total 

weighted processing time of each job. The weight of machines and jobs are the same as their 

weights in indicators 6 and 1, respectively. The indicator values follow the expres-

sion 𝑀𝐽𝑇𝑊𝑃𝑇𝑖 = ∑ (𝑢𝑗 × 𝑃𝑖 × 𝑃𝑖𝑗)𝑚
𝑗=1 . 

3.3. AGB/α/β/γ (focuses on option 9 to improve AGB) 

AGB/α/β/γ is a set of new heuristics that try to improve AGB/α/β by employing new decision criteria 

(option 9). These heuristics are the same as AGB/α/β, with the exception that they use new decision 

criteria for selecting the best current sequence in Steps 3, 4.2 and 4.5 of AGB. Two new decision criteria 

are suggested here, which both improve the effectiveness of the algorithm. The parameter γ determines 

the selected decision criterion. We consider the following decision criteria: 

a) 𝑇𝐹𝑇: Total flow-time, i.e. 𝑇𝐹𝑇 = ∑ 𝐹𝑇𝜌
𝑘
𝜌=1 , where 𝐹𝑇𝜌 is the flow-time of the job at position 

𝜌 in the current partial sequence. It is clear that AGB/𝑃𝑖/A/TFT is the same as AGB. 

b) 𝑇𝑊𝐹𝑇: Total weighted flow-time, i.e. 𝑇𝑊𝐹𝑇 = ∑ 𝜌 × 𝐹𝑇𝜌
𝑘
𝜌=1 . The idea behind considering 

TWFT as a decision criterion is that jobs positioned at the end of the sequence have a higher 

contribution to the total flow-time than jobs scheduled early in the sequence. It is important to 

note that TWFT proposed here is different from the decision criterion used by Rajendran and 

Ziegler [25]. In our heuristic, the weights of the flow-times are only determined by the position 

of the job in the current partial sequence, while in the heuristic of Rajendran and Ziegler [25], 

it is determined by considering holding costs in addition, which are part of their problem for-

mulation. 

c) 𝑇𝑊𝐹𝑇𝑘: Uses TFT as the decision criterion in inserting the first (𝑘 − 1) jobs into the partial 

sequence, and TWFT in inserting the next jobs. It is clear that 𝑇𝑊𝐹𝑇0 = 𝑇𝑊𝐹𝑇 and 

𝑇𝑊𝐹𝑇𝑛+1 = 𝑇𝐹𝑇. In the computational experiment, the performance for 𝑘 = 8, 16, 24 is ana-

lyzed. 

Combining all improvement options presented in Sections 3.1 to 3.3 leads to 35 new simple constructive 

heuristics, which all have the same complexity as the original LS heuristic. We also integrate the im-

provement options presented in Sections 3.2 and 3.3 into the LS and NEH heuristics to examine the 

effect of these sorting policies on the performance of the heuristics. This paper thus investigates the 

performance of 103 new simple constructive heuristic algorithms. 

4 Computational experiment 

This section examines the performance of the heuristics proposed in Section 3. As mentioned before, 

Framinan et al. [8] showed that using a modified version of the NEH algorithm with jobs sorted in 

ascending order leads to better results. Therefore, we compare the results of the heuristics proposed in 
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this paper with the modified version of NEH (named hereafter NEH/𝑃𝑖/A). We also compared the per-

formance of the newly developed heuristics with the performance of the LS heuristic. In addition, we 

evaluated the effect of employing the improvement options presented in Sections 3.2 and 3.3 in the LS 

and NEH heuristics. 

The performance of any heuristic algorithm should be evaluated in two respects, namely (I) its effec-

tiveness, i.e. the quality and goodness of the solution it obtains, and (II) its efficiency, i.e. the complexity 

or computational time of the heuristic, or, in other words, the CPU-time of the heuristic. To have a 

standard data set for comparing the performance of different heuristic algorithms for the PFSP, Taillard 

[30] suggested a collection of random problems of different sizes. Using standard data set makes it easier 

to evaluate the effectiveness of different heuristics, especially since the size of the problems contained 

in the set are, according to the author, representative for real industrial problems. Taillard’s data set 

contains 120 random problems with different parameters. The number of jobs (the size of the problems) 

is either 20, 50,100, 200 or 500, while the number of machines ranges from 5 to 20. Taillard's data sets 

have frequently been used in almost all PFSP papers to compare heuristics [21], for example by Reza 

Hejazi and Saghafian [27], Reisman et al. [26], Ruiz and Maroto [28], Pan and Ruiz [22], and Fernandez-

Viagas and Framinan [5]. 

It is common practice in the literature to measure an algorithms’ effectiveness by the average relative 

percentage deviation (ARPD) of the obtained results. The relative percentage deviation for a problem 

instance 𝜌 is calculated as 𝑅𝑃𝐷𝜌 = (
𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝜌−𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝜌

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝜌
∗ 100), where  𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝜌 denotes the 

value of the objective function obtained by a heuristic, and 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝜌 is a benchmark value for the 

objective function of the same problem instance.  

In a study of the literature, we found that ARPDs reported for identical heuristics applied on the same 

data set vary, e.g. in Pan and Ruiz [22] vs. Laha and Sarin [17] and Dong et al. [3] vs. Semančo and 

Modrák [29]. Concluding from our literature study, these variations have been caused by the following 

differences: 

1. Employing different benchmarks: The selection of benchmarks in the calculation of the ARPD 

can be made in several ways. As in Pan and Ruiz [21] and Jarboui et al. [15], taking the best-

known objective values from the literature is one alternative (in the following denoted as 

𝐴𝑅𝑃𝐷𝐿). 𝐴𝑅𝑃𝐷𝐿 denotes the average relative percentage deviation for a set of large-size prob-

lems, where we usually do not have access to the optimum solution. 𝐴𝑅𝑃𝐷𝐿 compares the so-

lutions for each problem with the best known value of this problem from the literature, and uses 

the expression 𝐴𝑅𝑃𝐷𝐿 =
1

Ω
∑ (

𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝜌−𝐵𝐾𝜌

𝐵𝐾𝜌
∗ 100)Ω

𝜌=1 , where 𝐵𝐾𝜌  denotes the best known 

value of the considered objective of problem instance 𝜌, and Ω stands for the total number of 

problem instances. Another alternative (in the following denoted as 𝐴𝑅𝑃𝐷𝑃) is that the authors 

pick the best solution obtained during their own investigations as the benchmark. Pan and Ruiz 

[22] and Fernandez-Viagas and Framinan [5] used this option in their computational experi-

ment. 𝐴𝑅𝑃𝐷𝑃 is also commonly used in the literature and calculated as 𝐴𝑅𝑃𝐷𝑃 =
1

Ω
∑ (

𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝜌−𝐵𝑂𝐶𝜌

𝐵𝑂𝐶𝜌
∗ 100)Ω

𝜌=1 , where  𝐵𝑂𝐶𝜌  stands for the best objective value obtained by 
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the considered heuristics for problem instance 𝜌. The last option, which is not as frequently used 

as the first two alternatives, is to employ available lower/upper bounds as in Dong et al. [3]. 

Although capturing general information by comparing the reported 𝐴𝑅𝑃𝐷𝑃s of different papers 

is possible, this measure also has some drawbacks. Problems arise, for example, when compar-

ing the relative performance of different heuristics reported in different papers. For example, 

both Pan and Ruiz [22] and Fernandez-Viagas and Framinan [5]  considered some common 

heuristics in their computational analyses (i.e. Raj, LR(1), LR-NEH(5,10), ICi(i =1,2,3) and 

PR(1,10,15)). The reported 𝐴𝑅𝑃𝐷𝑃-values for all common heuristics are higher in the paper of 

Pan and Ruiz [22]. This reveals that the best obtained solutions by the heuristics considered in 

Pan and Ruiz [22] are better than the best obtained by the heuristics of the other paper. This 

general information is the only thing that we can conclude by comparing these two papers.  

For the above-mentioned reasons, we think that using 𝐴𝑅𝑃𝐷𝐿 can ease the tractability and the 

comparison of the results of different papers and facilitate comparing the obtained solutions 

with the best-known of the literature. It is worth to note, that 𝐴𝑅𝑃𝐷𝐿 is applicable for those 

optimization problems in which using a common data-set is commonplace and the best-known 

solutions are being updated time to time. As this is the case for the PFSP with total flow-time 

objective, we suggest 𝐴𝑅𝑃𝐷𝐿 as the comparison measure for the literature. 

 

2. Different tie-breaking rules: Ties that may occur in the sorting phase (Step 2) or in the insertion 

phase (Steps 3, 4.2 and 4.4) can be handled differently. The tie-breaking mechanism applied in 

Step 2 depends on the employed sorting algorithm, in particular on the algorithm’s stability 

properties in the coding of the heuristic. Vasiljevic and Danilovic [31] stated that imprecise 

definition of the employed tie-breaking rules may lead to different implications of the same 

algorithms. Fernandez-Viagas and Framinan [4] also underlined the significant influence of tie-

breaking rules in the insertion phase on the performance of NEH and its modifications. 

In our computational experiment, NEH//A, LS and the heuristics proposed in this paper were coded in 

Java and run on a 2.88 GHz Intel Core processor with 8.00 GB RAM. A stable sorting algorithm was 

applied in Step 2. In the insertion phase, the first-obtained best 𝑘-job partial sequence was taken as the 

current partial sequence. This is not identical, but similar to one of the tie-breaking rules proposed by 

Kalczynski and Kamburowski [16]. Following the performance evaluation of Laha and Sarin [17], we 

carried out experiments on different types of problems. We considered small-size problems with a num-

ber of jobs equal to 6, 7 and 8 and a number of machines equal to 5, 10, 15 and 20. 100 instances were 

generated for each combination of jobs and machines. The processing times were generated randomly 

using a U(1,99) distribution. To evaluate the performance of the algorithms for large-size problems, we 

considered the benchmark problems of Taillard [30]. To measure the performance of the algorithms, the 

ARPD and the percentage of optimal solutions for small-size problems were reported. The optimum 

total flow-time was obtained by a full enumeration of all possible job sequences. The average relative 

percentage deviation for a set of small-size problems is hence calculated as 𝐴𝑃𝑅𝐷 =
1

100
∗

∑ (
𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝜌−𝑂𝑝𝑡𝑖𝑚𝑢𝑚𝜌

𝑂𝑝𝑡𝑖𝑚𝑢𝑚𝜌
∗ 100)100

𝜌=1 , where  𝑂𝑝𝑡𝑖𝑚𝑢𝑚𝜌 denotes the optimum solution for the problem 

instance 𝜌. Table 1 compares, LS and AGB for small-size problems, and Table 2 reports the performance 

on large-size problems. The average computation times (in seconds) for solving the related problem 
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instances are also reported in these tables. In addition we report 𝐴𝑅𝑃𝐷𝐿 and 𝐴𝑅𝑃𝐷𝑝 to compare our 

best-obtained solutions with the ones of Pan and Ruiz [22] and those obtained with other heuristics. 

4.1. Comparing AGB and LS for the general case 

This section compares the performance of AGB and LS. As mentioned before, both algorithms have the 

same complexity. Tables 1 and 2 show that using AGB leads to better results than using the LS heuristic; 

Table 1 summarizes the results for small-size problems and Table 2 the performance for large size-

problems. Considering that CPU times for small-size problems are negligible, we refrained from report-

ing the same.  In our experiments, AGB showed a better performance than LS in terms of the quality of 

the solutions, with an average increase of 2.2% in CPU time for large-size problems. This means that 

without losing a significant amount of efficiency, AGB outperforms LS. The average value of all per-

formance figures is also presented in Tables 1 and 2. 

According to Table 1, for small-size problems, AGB leads to the optimal solution in 78% of the cases. 

LS shows a similar performance in this respect by finding the optimal solution in 76.2% of the cases. 

The average error of AGB for small-size problems is 0.16%, which is an improvement of almost 15% 

as compared to LS, whose average error is 0.19%. Table 2 shows that the proposed algorithm outper-

forms LS for large-size problems as well. The average error (𝐴𝑅𝑃𝐷𝐿) of AGB is 2.219% for large-size 

problems, whereas LS led to an average error of 2.396%. Thus, our heuristic led to an average of 7.38% 

improvement as compared to LS with almost identical CPU time. 

n m No. of 

Problems 

LS  AGB 

ARPD % Opt.  ARPD % Opt. 

5 5 100 0.096 88.0  0.086 90.0 

 10 100 0.039 96.0  0.039 96.0 

 15 100 0.053 90.0  0.051 91.0 

 20 100 0.074 90.0  0.072 92.0 

  Ave 0.066 91.0  0.062 92.3 

        

6 5 100 0.316 76.0  0.225 79.0 

 10 100 0.134 83.0  0.093 85.0 

 15 100 0.127 81.0  0.117 85.0 

 20 100 0.087 86.0  0.079 87.0 

  Ave 0.166 81.5  0.129 84.0 

        

7 5 100 0.235 73.0  0.223 73.0 

 10 100 0.329 64.0  0.291 65.0 

 15 100 0.168 76.0  0.132 75.0 

 20 100 0.169 70.0  0.162 72.0 

  Ave 0.225 70.8  0.202 71.3 

        

8 5 100 0.381 62.0  0.342 63.0 

 10 100 0.326 60.0  0.265 65.0 

 15 100 0.292 54.0  0.213 62.0 

 20 100 0.201 70.0  0.187 68.0 
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  Ave 0.300 61.5  0.252 64.5 

        

  
Total 

Ave 
0.189 76.2 

 
0.161 78.0 

Table 1: Comparing AGB and LS for the general case: Summary of results for small-size problems 

4.2. Evaluating the effect of the improvement options for field α on the NEH//A, LS and AGB heuris-

tics 

This section analyzes the effect of the indicator variables proposed in Section 3.2 on the performance of 

the NEH//A, LS and AGB heuristics. Table 3 shows the ARPD and the percentage of optimal solutions 

obtained for the 105 considered algorithms for small-size problems. Similarly than in the previous chap-

ter, we restrain from reporting CPU times for small-size problems due to their negligibility. As the ob-

jective here is to evaluate the effect of different sorting mechanisms, we focus only on the results of 

algorithms with TFT as decision criterion. 

We conclude from Table 3 that the original NEH//A sorting criterion, 𝑃𝑖, is in most cases amongst the 

best choices for small size problems. For NEH//A, the best-performing indicator values are 𝑆𝐼𝑃𝑖 and 

𝐴𝐵𝑆(𝑆𝐼𝑃𝑖). The best ARPD has the value 0.758 and was achieved with the 𝐴𝐵𝑆(𝑆𝐼𝑃𝑖) indicator variable 

and shows an improvement of 14.5% as compared to the original NEH. For LS, the best results were 

obtained with the 𝑀𝑇𝑊𝑃𝑇𝑖 method and led to an ARPD-value of 0.175, which is a 7.4% improvement 

as compared to the original LS. The best-performing indicator variables for AGB are 𝑃𝑖 and 𝑀𝑇𝑊𝑃𝑇𝑖. 

The best-performing algorithm with respect to ARPD employs 𝑀𝑇𝑊𝑃𝑇𝑖 as indicator variable and re-

sults in an ARPD-value of 0.151. This is a 6.2% improvement as compared to the basic version of AGB 

with 𝑃𝑖 as indicator. 

n m No. of 

Prob-

lems 

LS  AGB 

𝑨𝑹𝑷𝑫𝑳 𝑨𝑹𝑷𝑫𝑷 CPU 

time [s] 

 𝑨𝑹𝑷𝑫𝑳 𝑨𝑹𝑷𝑫𝑷 CPU 

time [s] 

20 5 10 1.927 1.357 0.014  1.969 1.486 0.014 

 10 10 1.384 0.941 0.012  1.259 1.02 0.011 

 20 10 1.429 1.231 0.013  1.273 1.12 0.014 

  Ave 1.580 1.177 0.014  1.500 1.209 0.013 

          

50 5 10 2.238 1.031 0.325  1.923 0.737 0.327 

 10 10 3.334 1.666 0.363  3.318 1.65 0.388 

 20 10 2.821 1.256 0.430  2.679 1.225 0.417 

  Ave 2.798 1.318 0.373  2.64 1.204 0.377 

          

100 5 10 2.356 1.117 5.013  2.293 1.09 4.975 

 10 10 3.273 1.480 5.138  3.07 1.291 5.147 

 20 10 3.730 1.634 6.072  3.388 1.326 5.941 

  Ave 3.12 1.411 5.408  2.917 1.236 5.354 

          

200 10 10 2.356 1.236 86.927  2.053 0.954 85.026 

 20 10 2.805 1.413 91.709  2.314 0.931 91.427 
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  Ave  2.761 1.354 61.348  2.184 0.943 88.227 

          

500 20 10 1.099 0.706 3484.262  1.096 0.703 3474.173 

          

  
Total 

Ave  
2.396 1.256 306.690 

 
2.219 1.127 305.655 

Table 2: Comparing AGB and LS for the general case: Summary of results for large-size problems. 

Table 4 shows the 𝐴𝑅𝑃𝐷𝐿- and 𝐴𝑅𝑃𝐷𝑃-values as well as the CPU times for the 105 different combina-

tions of the α- and γ-parameters used in NEH//A, LS and AGB for large-size problems. The first con-

clusion we draw from Table 4 is that employing different indicator values or decision criteria does not 

affect the complexity of each individual heuristic; it can, however, dramatically influence the quality of 

the results. By focusing on the results of the algorithms with the TFT decision criterion in Table 4, we 

conclude for NEH//A that 𝑃𝑖, 𝐴𝐵𝑆(𝑆𝐼𝑃𝑖), 𝑀𝑇𝑊𝑃𝑇𝑖 and 𝑀𝐽𝑇𝑊𝑃𝑇𝑖 perform better than the other meth-

ods introduced above. The best 𝐴𝑅𝑃𝐷𝐿 is of value 4.238 and was achieved with the 𝐴𝐵𝑆(𝑆𝐼𝑃𝑖) indicator 

for NEH//A. This is an improvement of 15.5% as compared to the original 𝑃𝑖 indicator. For LS, 𝑃𝑖, 

𝐴𝐵𝑆(𝑆𝐼𝑃𝑖), 𝑆𝐼𝑅𝑖  and 𝑀𝑇𝑊𝑃𝑇𝑖 showed the best performance, and the best 𝐴𝑅𝑃𝐷𝐿 is of value 2.251 

obtained by the 𝑀𝑇𝑊𝑃𝑇𝑖 indicator, which is a 6% improvement as compared to the original LS. The 

most promising indicators for AGB are 𝑃𝑖, 𝑆𝐼𝑅𝑖 , and 𝑀𝑇𝑊𝑃𝑇𝑖. The best performing algorithm with 

respect to 𝐴𝑅𝑃𝐷𝐿 employs 𝑆𝐼𝑅𝑖  as indicator variable and leads to a 2.098% average error, which is a 

5.5% improvement as compared to original AGB. 

  𝑷𝒊 𝑺𝑰𝑷𝒊 𝑨𝑩𝑺(𝑺𝑰𝑷𝒊)  𝑺𝑰𝑮𝒊 𝑺𝑰𝑹𝒊 𝑴𝑻𝑾𝑷𝑻𝒊 𝑴𝑱𝑻𝑾𝑷𝑻𝒊 

NEH//A         

𝑇𝐹𝑇 
ARPD 0.887 0.764 0.758 0.797 0.896 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 38.8 39.8 39.2 

𝑇𝑊𝐹𝑇 
ARPD 1.154 1.070 1.119 1.243 2.490 1.155 1.172 

%Opt 31.4 31.7 31.8 28.7 17.2 32.2 31.1 

𝑇𝑊𝐹𝑇8 
ARPD 0.887 0.764 0.758 0.797 1.559 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 25.8 39.8 39.2 

𝑇𝑊𝐹𝑇16 
ARPD 0.887 0.764 0.758 0.797 1.559 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 25.8 39.8 39.2 

𝑇𝑊𝐹𝑇24 
ARPD 0.887 0.764 0.758 0.797 1.559 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 25.8 39.8 39.2 
         

LS         

𝑇𝐹𝑇 
ARPD 0.887 0.764 0.758 0.797 0.896 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 38.8 39.8 39.2 

𝑇𝑊𝐹𝑇 
ARPD 1.154 1.070 1.119 1.243 2.490 1.155 1.172 

%Opt 31.4 31.7 31.8 28.7 17.2 32.2 31.1 

𝑇𝑊𝐹𝑇8 
ARPD 0.887 0.764 0.758 0.797 1.559 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 25.8 39.8 39.2 

𝑇𝑊𝐹𝑇16 
ARPD 0.887 0.764 0.758 0.797 1.559 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 25.8 39.8 39.2 

ARPD 0.887 0.764 0.758 0.797 1.559 0.879 0.885 
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𝑇𝑊𝐹𝑇24 %Opt 39.0 42.9 42.3 40.8 25.8 39.8 39.2 
         

AGB         

𝑇𝐹𝑇 
ARPD 0.887 0.764 0.758 0.797 0.896 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 38.8 39.8 39.2 

𝑇𝑊𝐹𝑇 
ARPD 1.154 1.070 1.119 1.243 2.490 1.155 1.172 

%Opt 31.4 31.7 31.8 28.7 17.2 32.2 31.1 

𝑇𝑊𝐹𝑇8 
ARPD 0.887 0.764 0.758 0.797 1.559 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 25.8 39.8 39.2 

𝑇𝑊𝐹𝑇16 
ARPD 0.887 0.764 0.758 0.797 1.559 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 25.8 39.8 39.2 

𝑇𝑊𝐹𝑇24 
ARPD 0.887 0.764 0.758 0.797 1.559 0.879 0.885 

%Opt 39.0 42.9 42.3 40.8 25.8 39.8 39.2 

Table 3: Summary of results for different α- and γ-values for small-size problems. 

It can further be seen in Table 3 and Table 4 that there is no universally best-performing indicator vari-

able; thus, for each heuristic, the individually best indicator variable needs to be chosen. Our results 

indicate that in most cases, using Gupta’s indices - 𝑆𝐼𝐺𝑖 - as indicators results in worse solutions with 

an average loss of 39% and 14% in the quality of solutions for large- and small-size problems, respec-

tively, as compared to the original indicator 𝑃𝑖. On the other hand, applying 𝑀𝑇𝑊𝑃𝑇𝑖 or 𝐴𝐵𝑆(𝑆𝐼𝑃𝑖) 

indicators leads to better solutions in most cases. The average errors of all heuristics using 𝑀𝑇𝑊𝑃𝑇𝑖 

indicators were improved by 4.1% and 4.8% for large- and small-size problems, respectively. This im-

provement was 5.5% and 8.1% for 𝐴𝐵𝑆(𝑆𝐼𝑃𝑖). 𝑆𝐼𝑃𝑖 performed well on LS- and AGB-based algorithms, 

while it did not perform well on NEH-based heuristics. 

4.3. Evaluating the effect of the improvement options for the field γ on the NEH//A, LS and AGB heu-

ristics 

This section analyzes the effect of the new decision criteria γ proposed in Section 3.3 on the performance 

of the NEH//A, LS and AGB heuristics. We conclude from Table 3 that for NEH//A, LS and AGB, the 

original 𝑇𝐹𝑇 decision criterion leads to the best results for small-size problems. This is not surprising, 

as the effect of using TWFT is expected to increase as the number of jobs in the sequence gets larger. 

When the number of jobs in the sequence is small (i.e., smaller than 10), the effect of assigning higher 

weights to the jobs at the end of the sequence does not make a significant difference. As the maximum 

number of jobs in our small-size problems is 8, it is evident that the results for 𝑇𝐹𝑇 and all varieties of 

𝑇𝑊𝐹𝑇𝑘 are identical.  

This section evaluates the effect of the different decision criteria (i.e., the different options for the γ 

parameter), which is why we focus only on the results of algorithms with 𝑃𝑖 as indicator variable. It can 

be seen in Table 4 that the effect of applying different γ-parameters on different heuristics depends on 

the employed sorting indicator, the α-parameter, and the utilized heuristic. Although almost none of the 

γ-parameters performs well when they are applied on heuristics using 𝑆𝐼𝑃𝑖, 𝑆𝐼𝐺𝑖, or 𝑀𝐽𝑇𝑊𝑃𝑇𝑖 as their 

α-parameter, they all outperform their respective original heuristics when the α-parameter of the heuris-

tics is 𝑃𝑖, 𝑆𝐼𝑅𝑖  or 𝑀𝑇𝑊𝑃𝑇𝑖. For the NEH//A heuristic, the best 𝐴𝑅𝑃𝐷𝐿 is of value 4.423 and was 

achieved with the 𝑇𝑊𝐹𝑇 method. This is an improvement of 11.6% as compared to the original NEH//A. 

The best 𝐴𝑅𝑃𝐷𝐿 for LS is of value 1.962 and was obtained by the 𝑇𝑊𝐹𝑇24 approach, which shows an 

18.11% improvement as compared to the original LS. The best-performing algorithm with respect to 
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AGB employs 𝑇𝑊𝐹𝑇16 as decision criterion and has a 17.7% improvement in 𝐴𝑅𝑃𝐷𝐿 as compared to 

the basic AGB, which leads to a value of 1.826.  

According to Tables 3 and 4, combining the improvement options for the α-indicator and the γ decision 

criteria leads to a higher performance improvement than using isolated improvement options. For ex-

ample, combining all improvement options can enhance the 𝐴𝑅𝑃𝐷𝐿of NEH//A to 4.09, which is a 18.4% 

improvement. The best LS-based heuristic is 𝐿𝑆/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇24 with an average error of 1.941, 

which is a 19% improvement as compared to LS. 

The results presented in this section and Section 4.2 indicate that 𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇8 is the best-

performing algorithm for both small- and large-size problems. In order to analyze the performance of 

𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇8 in detail, we compare this heuristic to LS analogue to the analysis in Section 

4.1. Tables 5 and 6 illustrate that using 𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇8 leads to better results than LS. While 

CPU times have not been reported in Table 5 due to their negligibility for small-size problems, it can be 

seen from Table 6 that 𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴𝑆𝐶/𝑇𝑊𝐹𝑇8 consumes on average 4.04% less CPU time than 

LS. According to Table 5, 𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇8 leads to the optimal solution in 79.25% of the 

cases for small-size problems, which is an improvement of more than 3%. The average error of 

𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇8 for small-size problems is 0.151%, which is an improvement of more than 

20% as compared to LS. Table 6 shows that the proposed algorithm outperforms LS for all categories 

of large-size problems as well. The 𝐴𝑅𝑃𝐷𝐿-value for 𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇8 in this case is 1.813%, 

which is a 24.33% improvement as compared to LS. This algorithm shows a 42% improvement as com-

pared to LS on the 𝐴𝑅𝑃𝐷𝑃 metrics. 
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𝑷𝒊 𝑺𝑰𝑷𝒊 

𝑨𝑩𝑺 

(𝑺𝑰𝑷𝒊) 
 𝑺𝑰𝑮𝒊 𝑺𝑰𝑹𝒊 𝑴𝑻𝑾𝑷𝑻𝒊 𝑴𝑱𝑻𝑾𝑷𝑻𝒊 

 
𝑷𝒊 𝑺𝑰𝑷𝒊 

𝑨𝑩𝑺 

(𝑺𝑰𝑷𝒊) 
 𝑺𝑰𝑮𝒊 𝑺𝑰𝑹𝒊 𝑴𝑻𝑾𝑷𝑻𝒊 𝑴𝑱𝑻𝑾𝑷𝑻𝒊 

 NEH//A         LS       

𝑻𝑭𝑻 

𝐴𝑅𝑃𝐷𝐿  5.013 5.521 4.283 5.944 5.390 4.865 5.013  2.396 3.249 2.334 3.627 2.330 2.251 2.765 

𝐴𝑅𝑃𝐷𝑃  3.890 4.393 3.168 4.811 4.262 3.743 3.907  1.256 2.100 1.195 2.473 1.191 1.113 1.622 

CPU time [s] 7.784 7.690 7.820 7.749 7.707 7.785 7.653  306.690 319.704 305.170 320.408 323.295 300.178 296.015 

𝑻𝑾𝑭𝑻 

𝐴𝑅𝑃𝐷𝐿  4.423 7.499 4.090 7.560 4.824 4.500 4.423  1.962 4.115 2.098 4.783 2.032 2.012 2.775 

𝐴𝑅𝑃𝐷𝑃  3.309 6.349 2.979 6.409 3.70 3.384 3.836  0.828 2.956 0.962 3.616 0.896 0.877 1.632 

CPU time [s] 1.000 1.006 0.996 1.006 1.001 0.991 0.987  299.230 308.742 297.168 306.365 306.422 298.981 295.371 

𝑻𝑾𝑭𝑻𝟖 

𝐴𝑅𝑃𝐷𝐿  4.537 7.221 4.249 7.379 5.069 4.456 4.537  2.017 4.017 2.171 4.811 2.057 1.955 2.776 

𝐴𝑅𝑃𝐷𝑃  3.421 6.073 3.136 6.230 3.946 3.340 3.958  0.882 2.858 1.035 3.644 0.921 0.820 1.633 

CPU time [s] 0.990 1.000 0.994 1.001 0.902 0.995 0.983  298.948 307.392 296.891 307.713 307.840 305.823 302.725 

𝑻𝑾𝑭𝑻𝟏𝟔 

𝐴𝑅𝑃𝐷𝐿  4.720 6.862 4.357 7.203 5.172 4.677 4.720  2.097 3.965 2.171 4.567 2.174 1.974 2.868 

𝐴𝑅𝑃𝐷𝑃  3.603 5.718 3.243 6.054 4.049 3.559 4.197  0.962 2.807 1.035 3.402 1.037 0.839 1.724 

CPU time [s] 0.993 1.000 0.994 0.997 0.899 0.989 0.988  306.721 307.201 309.331 307.188 310.067 302.651 294.648 

𝑻𝑾𝑭𝑻𝟐𝟒 

𝐴𝑅𝑃𝐷𝐿  4.880 6.493 4.334 6.975 5.295 4.658 4.880  2.018 3.7727 2.162 4.389 2.107 1.941 2.800 

𝐴𝑅𝑃𝐷𝑃  3.760 5.352 3.220 5.829 4.169 3.539 4.120  0.883 2.616 1.026 3.225 0.971 0.807 1.657 

CPU time [s] 0.991 1.009 0.998 1.005 1.007 0.991 0.988  302.811 317.690 305.643 317.651 319.841 304.754 302.154 

 AGB                

𝑻𝑭𝑻 

𝐴𝑅𝑃𝐷𝐿  2.219 2.872 2.232 3.300 2.098 2.141 2.666         
𝐴𝑅𝑃𝐷𝑃  1.127 1.774 1.141 2.197 1.008 1.050 1.570         

CPU time [s] 305.655 320.171 306.764 321.969 319.646 302.774 307.892         

𝑻𝑾𝑭𝑻 

𝐴𝑅𝑃𝐷𝐿  1.917 3.563 2.069 4.262 1.912 1.831 2.708         
𝐴𝑅𝑃𝐷𝑃  0.829 2.457 0.981 3.148 0.825 0.744 1.612         

CPU time [s] 311.826 309.214 310.495 307.300 307.311 308.244 306.895         

𝑻𝑾𝑭𝑻𝟖 

𝐴𝑅𝑃𝐷𝐿  1.890 3.539 2.059 4.238 1.868 1.813 2.764         
𝐴𝑅𝑃𝐷𝑃  0.802 2.433 0.970 3.125 0.781 0.727 1.668         

CPU time [s] 308.450 307.670 299.829 307.763 307.972 294.448 291.386         

𝑻𝑾𝑭𝑻𝟏𝟔 

𝐴𝑅𝑃𝐷𝐿  1.826 3.415 2.012 4.130 1.884 1.836 2.726         
𝐴𝑅𝑃𝐷𝑃  0.740 2.311 0.923 3.017 0.797 0.750 1.631         

CPU time [s] 292.754 307.794 291.924 307.770 310.866 292.918 292.065         

𝑻𝑾𝑭𝑻𝟐𝟒 

𝐴𝑅𝑃𝐷𝐿  1.908 3.357 1.973 3.967 1.941 1.830 2.685         
𝐴𝑅𝑃𝐷𝑃  0.821 2.252 0.885 2.855 0.852 0.744 1.590         

CPU time [s] 293.394 320.925 291.949 317.383 320.386 299.351 300.854         

Table 4: Summary of results for different α- and γ-values for large-size problems. 
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n m 
No. of 

Problems 

LS  𝐀𝐆𝐁/𝐌𝐓𝐖𝐏𝐓𝐢/𝐀/𝐓𝐖𝐅𝐓𝟖 

ARPD % Opt.  ARPD % Opt. 

5 

5 100 0.096 88.0  0.087 91.0 

10 100 0.039 96.0  0.039 96.0 

15 100 0.053 90.0  0.052 89.0 

20 100 0.074 90.0  0.056 94.0 

  Ave 0.066 91.0  0.059 92.5 
        

6 

5 100 0.316 76.0  0.206 83.0 

10 100 0.134 83.0  0.110 85.0 

15 100 0.127 81.0  0.117 85.0 

20 100 0.087 86.0  0.071 88.0 

  Ave 0.166 81.5  0.126 85.25 
        

7 

5 100 0.235 73.0  0.170 76.0 

10 100 0.329 64.0  0.233 68.0 

15 100 0.168 76.0  0.101 78.0 

20 100 0.169 70.0  0.132 77.0 

  Ave 0.225 70.8  0.159 74.75 
        

8 

5 100 0.381 62.0  0.352 65.0 

10 100 0.326 60.0  0.253 64.0 

15 100 0.292 54.0  0.243 60.0 

20 100 0.201 70.0  0.190 69.0 

  Ave 0.300 61.5  0.259 64.5 
        

  Total Ave 0.189 76.2  0.151 79.25 

Table 5: Comparing LS and 𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇8: Summary of results for small-size problems. 

 

n m 
No. of 

Problems 

LS  𝐀𝐆𝐁/𝐌𝐓𝐖𝐏𝐓𝐢/𝐀/𝐓𝐖𝐅𝐓𝟖 

𝑨𝑹𝑷𝑫𝑳 𝑨𝑹𝑷𝑫𝑷 
CPU time 

[s] 
 𝑨𝑹𝑷𝑫𝑳 𝑨𝑹𝑷𝑫𝑷 CPU time [s] 

20 

5 10 1.927 1.357 0.014  1.604 1.123 0.010 

10 10 1.384 0.941 0.012  1.322 1.083 0.012 

20 10 1.429 1.231 0.013  0.979 0.826 0.013 

  Ave 1.580 1.177 0.014  1.302 1.011 0.012 

          

50 

5 10 2.238 1.031 0.325  1.729 0.546 0.316 

10 10 3.334 1.666 0.363  2.513 0.859 0.362 

20 10 2.821 1.256 0.430  2.276 0.829 0.433 

  Ave 2.798 1.318 0.373  2.173 0.745 0.37 

          

100 

5 10 2.356 1.117 5.013  1.721 0.526 4.887 

10 10 3.273 1.480 5.138  2.214 0.450 5.101 

20 10 3.730 1.634 6.072  3.018 0.963 5.898 

  Ave 3.12 1.411 5.408  2.318 0.646 5.295 

          

200 

10 10 2.356 1.236 86.927  1.698 0.603 85.021 

20 10 2.805 1.413 91.709  1.813 0.437 91.587 

 Ave  2.761 1.354 61.348  1.756 0.521 58.869 

          

500 20 10 1.099 0.706 3484.262  0.870 0.478 3339.737 

          

  
Total 

Ave  
2.396 1.256 306.690  1.813 0.7273 252.384 

Table 6: Comparing LS and 𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇8: Summary of results for small-size problems. 

4.4. Statistical analysis 

This section compares the results of AGB and the best-performing heuristic identified in Section 4.3, 

AGB/MTWPTi/A/TWFT8, to those obtained by the LS heuristics by calculating 𝑡-statistics. The pur-

pose of this statistical analysis is to ensure that the proposed heuristics outperform LS in the general 
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case, and not only for the generated random small-size problems and Taillard’s benchmark set. For each 

group of problems, characterized by the number of jobs, 𝑛, and the number of machines, 𝑚, the mean 

and the standard deviation were calculated. The difference in total flow-times for each problem was 

obtained by subtracting the result obtained by the proposed algorithms from the total flow-time obtained 

by LS. For testing the null hypothesis 𝐻𝑜:  𝜇 = 0, we computed the 𝑡-statistic as follows: 𝑡 = √𝑁
�̅�−𝜇0

𝑆
 

with the sample size 𝑁, the sample mean �̅�, the standard deviation 𝑆, 𝜇 = 0 and 𝑁 − 1 degrees of free-

dom. If the null hypothesis holds, the difference between the two methods is statistically insignificant. 

We obtained the critical value, 𝑐, from the relation: 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡 > 𝑐) = 𝛼 = 5%. Using the standard 

tables of the 𝑡-distribution, we obtain 𝑐 = 1.66 for 99 degrees of freedom (for small-size problems) and 

𝑐 = 1.833 for 9 degrees of freedom (for large-size problems). Table 7 reports the results for the test of 

statistical significance. As can be seen, AGB performs statistically better than LS in 8 out of 28 cases, 

and 𝐴𝐺𝐵/𝑀𝑇𝑊𝑃𝑇𝑖/𝐴/𝑇𝑊𝐹𝑇8 performs better in 22 out of 28 cases. It is therefore evident that the 

latter heuristic outperforms LS. 

n m 
No. of 

Problems 

LS  vs. AGB  LS  vs. AGB/MTWPTi/A/TWFT8 

Total flow time differ-

ence t 

 Total flow time differ-

ence t 

Mean St. Dev.  Mean St. Dev. 

5 

 

5 100 0.18 1.445 1.246  1.06 5.312 1.996 

10 100 0.00 0.000 0.000  0.00 0.00 0.000 

15 100 0.09 1.001 0.899  1.24 5.726 2.166 

20 100 0.17 11.362 0.150  0.50 2.707 1.847 

6 

 

 

5 100 2.11 9.041 2.334  2.61 10.727 2.433 

10 100 1.58 10.462 1.510  1.67 9.010 1.853 

15 100 0.46 5.326 0.864  1.19 6.792 1.752 

20 100 0.59 5.400 1.093  2.58 12.727 2.027 

7 

 

 

5 100 0.46 7.231 0.636  1.82 8.767 2.076 

10 100 1.78 8.964 1.986  4.44 22.210 1.999 

15 100 2.37 18.726 1.266  4.32 22.260 1.941 

20 100 0.56 9.883 0.567  3.18 14.278 2.227 

 

8 

5 100 1.19 9.228 1.290  2.11 9.041 2.334 

10 100 3.54 15.082 2.347  4.33 23.417 1.849 

15 100 6.32 24.925 2.536  4.01 18.092 2.216 

20 100 1.47 17.309 0.849  2.77 16.527 1.676 
          

20 

5 10 -7.50 77.386 -0.306  45.90 173.308 0.838 

10 10 31.8 157.205 0.640  17.40 132.571 0.415 

20 10 50.70 104.875 1.529  147.60 262.315 1.779 

50 

5 10 212.00 266.751 2.513  341.30 638.151 1.691 

10 10 1.30 951.114 0.004  688.80 829.202 2.627 

20 10 165.10 702.177 0.744  660.00 864.324 2.415 

100 

5 10 134.00 1143.042 0.371  1510.10 1983.277 2.408 

10 10 587.50 1453.332 1.278  3078.20 1362.411 7.145 

20 10 1258.80 1730.372 2.300  2646.50 2630.821 3.181 

200 

10 10 3130.00 4665.167 2.122  6771.30 6693.018 3.199 

20 10 6060.70 8177.792 2.344  12283.80 5478.073 7.091 

500 20 10 298.10 18732.177 0.050  15424.00 34203.407 1.426 

Table 7: Results of the statistical test. 

5 Summary and conclusion 

The best known simple constructive heuristics algorithm for optimizing the permutation flowshop 

scheduling problem with total flow-time as objective, developed by Laha and Sarin (2009), was modi-

fied in this paper by employing different improvement options, which led to 103 new heuristics. A 

comprehensive computational experiment was conducted to examine the effects of each modification in 

detail. One of our metrics for comparing the performance of algorithms showed that our modifications 
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result in a 24% improvement in 𝐴𝑅𝑃𝐷𝐿 as compared to the LS heuristic. Another metric, the 𝐴𝑅𝑃𝐷𝑃, 

showed a 42% improvement. Our statistical analyses demonstrate that the modification proposed and 

evaluated in this paper lead to a superior simple constructive heuristic, which outperforms the LS heu-

ristic in the general case. None of the improvements discussed in this paper affected the time-efficiency 

of the LS heuristic. 

Besides modifying the LS algorithm to improve its performance, we also developed new ideas for 

weighting jobs to be scheduled and indexing them. Our numerical studies indicated that using alternative 

sorting methods (i.e. the indicator variables) for weighting jobs can improve/worsen the performance of 

the algorithm. Another contribution of the paper is the utilization of newly-defined decision criteria for 

selecting the best partial sequence in each iteration of the NEH heuristic. Our numerical studies showed 

that using decision criteria different from the objective of the problem can lead to better results. Besides 

these contributions, this paper addressed the problem of imprecise reporting practices in the computa-

tional experiments of the published work and proposed the indicator 𝐴𝑅𝑃𝐷𝐿 for evaluating the effec-

tiveness of heuristics. 

Future research could aim on developing more effective sorting approaches and decision criteria, and 

examine the effects of different indicator variables on the performance of the decision criteria. The ap-

plication of the proposed heuristics in developing new composite heuristics could also be interesting. A 

modified version of the AGB and the ideas proposed here to improve it could also be employed for other 

objectives, such as minimizing makespan. 
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Abstract 

Battery-operated electric vehicles are frequently used in in-plant logistics systems to 

feed parts from a central depot to workcells on the shopfloor. These vehicles, often so-

called tow trains, make many milk-run trips during a typical day, with the delivery time-

table depending on the production schedule. To operate such a milk-run delivery system 

efficiently, not only do the timetabled trips need to be assigned to vehicles, it is also 

important to take the limited battery capacity into consideration. Moreover, since most 

tow trains in use today are still operated by human drivers, fairness aspects with respect 

to the division of the workload also need to be considered. In this context, we tackle the 

following problem we encountered at a large manufacturer of engines for trucks and 

busses in Germany. Given a fixed schedule of milk-runs (round trips) to be performed 

during a planning horizon and a fleet of homogeneous electric vehicles stationed at a 

depot, which vehicle should set out on which milk-run and when should recharging 

breaks be scheduled, such that all runs can be completed with the minimum number of 

vehicles and all vehicles are about equally busy? We investigate the computational com-

plexity of this problem and develop suitable heuristics, which are shown to solve in-

stances of realistic size to near-optimality in a matter of a few minutes. We also offer 

some insight into how battery technology influences vehicle utilization. 

Keywords: Production logistics, Electric vehicles, Vehicle scheduling, Tow trains, Fairness  
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1 Introduction 

Tow train delivery systems have become increasingly popular in a number of manufacturing industries 

to ensure a steady and reliable in-plant part supply (e.g., Faccio et al., 2013). In this context, tow trains, 

i.e., small electric tow trucks connected to a handful of waggons, are used to make periodic deliveries 

of parts and subassemblies from a depot (often a so-called supermarket, Battini et al. (2013)) to nearby 

workcells, often in the form of milk-runs (round trips). Tow trains, or more generally small electric 

delivery vehicles, have become particularly popular in final assembly of automobiles, where they are 

used on a large scale (e.g., Emde et al., 2012, Emde and Boysen, 2012). Further practical examples are 

discussed, e.g., by Vaidyanathan et al. (1999), who report on such vehicles being used in a factory pro-

ducing exhaust systems, and Akillioğlu et al. (2006), who describe a case from a company making diesel 

injectors. 

The paper at hand, however, is specifically motivated by a case we observed at a large manufacturer of 

engines for trucks and busses in Germany. The OEM stores engine parts in a warehouse with different 

workplaces, where each workplace in the warehouse is assigned to a single workcell at the assembly 

lines in the production facility of the company. Upon arrival of an order at the production facility, the 

production department issues orders to the warehouse for retrieving the parts required for assembling 

the respective engine. The warehouse workers then collect the required parts in the warehouse and place 

them in a pre-specified sequence in a stillage at their respective workplaces. Electric tow trains are used 

for transporting the filled stillages from the warehouse to the workplaces of the production department. 

Due to limited storage space at the assembly line, it is not possible to store parts for more than two 

engines at the workplaces of this facility. As a consequence, parts are transported from the warehouse 

to the production department on an order-by-order basis. At the end of each tour, the tow trains return 

to the depot, where they are either recharged or sent on the next tour. As different workplaces may need 

to be visited both in the warehouse and in the production facility depending on the engine to be produced, 

the OEM faces a set of different tours that differ in their length and the weight of items that need to be 

transported. The scenario observed at the OEM is illustrated schematically in Figure 1.  

 

Figure 1: Part feeding with electric vehicles at our OEM partner. 
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While electric vehicles have proven to be an efficient means of in-plant part feeding, where engines 

burning fossil fuels are not an attractive (and in many scenarios not even legal) option due to exhaust 

fumes, they do have the drawback of limited battery capacity. Battery powered tuggers have to return 

to the depot periodically for recharging, which complicates the process of planning and executing timely 

deliveries. Apart from performing scheduled trips, i.e., carrying parts to points of consumption on the 

shopfloor and returning to the depot, recharging intervals also need to be carefully planned lest the 

vehicle fleet grow excessively large. 

A second aspect that should be taken into consideration in this context is the notion of fairness. Tow 

trains are occasionally fully automated guided vehicles, but in most cases they still require a human 

operator (Emde and Gendreau, 2015). Merely keeping the vehicle fleet small may lead to an uneven 

workload, where some tuggers and their operators have a significantly higher workload than their col-

leagues. This situation is often perceived as unfair, and can be remedied by load balancing (e.g., Lee 

and Ueng, 1999). Apart from this driver-centric perspective, load balancing among electric vehicles can 

also be desirable to ensure longevity of the batteries. The expected lifetime of lead acid batteries, for 

example, drops if they are used while the state of charge is low (e.g., Sauer and Wenzl, 2008, Dufo-

López et al., 2014). Balancing the load among vehicles makes it easier to afford every battery sfficient 

time to recharge. 

In this context, we consider the following electric vehicle scheduling problem. Given are a fixed sched-

ule of milk-runs (round trips) to be performed during the planning horizon and a fleet of homogeneous 

electric vehicles (typically tow trains) stationed at a depot. Each milk-run must be performed by exactly 

one vehicle. The vehicles are electrically powered, and each milk-run requires a certain, known amount 

of charge from the battery. Therefore, a vehicle can only be assigned to a run if it has sufficient charge 

left. The battery can be recharged at the depot, which will take the more time the more depleted the 

battery already is. The question asked is: Which vehicle should set out on which milk-run, and when 

should recharging breaks be scheduled, such that all runs can be completed with the minimum number 

of vehicles and all vehicles are about equally busy? 

The contribution of this paper is threefold. First, we present and model the new problem of planning 

milk-run deliveries with electric vehicles. Second, we develop a powerful heuristic solution method 

based on tabu search for this problem, which is shown to solve instances of realistic size to (near-) 

optimality in a matter of a few minutes. Finally, in a comprehensive computational study, we explore 

the inherent tradeoff between battery capacity and fleet size, deriving some managerial insight into the 

ideal composition of the vehicle fleet. 

The remainder of this paper is structured as follows. In Section 2, we will review the pertinent literature. 

In Section 3, we will formally define the problem and investigate its computational complexity in Sec-

tion 4. In Section 5, we propose a MIP model as well as several heuristic algorithms, which are tested 

in a computational study in Section 6, where we will also analyze the connection between battery tech-

nology and vehicle utilization. We also investigate how balancing the load among vehicles may improve 

fairness among drivers. Finally, Section 7 concludes the paper. 

2 Literature review 

The problem of scheduling electric vehicles obviously bears some resemblance to classic vehicle sched-

uling problems. The problem is mostly considered in the context of bus scheduling and defined as as-

signing a set of timetabled trips to busses such that the total number of vehicles or the total deadheading 
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time (or a combination thereof) is minimal. Since the seminal paper by Saha (1970), this topic has re-

ceived substantial attention from the scientific community, with many realistic aspects of bus scheduling 

integrated into the base model (such as multiple depots and heterogeneous vehicles). Surveys are pro-

vided by Bodin and Golden (1981), Bunte and Kliewer (2009). 

Since these models almost exclusively focus on public transportation scheduling, they are only of limited 

use for scheduling electrically powered tow trains in a just-in-time production setting. For one, when 

scheduling busses, the so-called deadheading time that occurs when the bus moves from the end point 

of one trip to the start point of the next, plays a major role, making models and solution methods more 

complicated. Deadheading, however, is a negligible issue in production logistics, where all vehicles start 

from and return to the depot after each trip anyways. Moreover, there are very few vehicle scheduling 

models that specifically deal with electric vehicles. While some publications consider time constraints 

(e.g., Freling and Paixao, 1995, Haghani and Banihashemi, 2002), forcing the busses to return to the 

depot before they run out of fuel, this is a far cry from actually scheduling recharging intervals, the 

length of which depends on the current state of the battery level. 

To the best of the authors' knowledge, there are only three papers dealing with single-depot electric 

vehicle scheduling. Li (2014) consider both conventional as well as electrically powered transit busses; 

for the latter, they assume that the vehicles are recharged via battery swapping or fast charging in con-

stant time (i.e., irrespective of the current charge of the battery). Similarly, Reuer et al. (2015) also 

consider the case of electric busses which can be charged in constant time. Finally, Chao and Xiaohong 

(2013) present a case study from Chinese metropolitan areas, where several different aspects of operat-

ing a fleet of electric busses is taken into account, like, e.g., the adequate power supply at the recharging 

stations. None of these papers are suitable for in-plant logistics, however, as the main issue in the sched-

uling of public busses in light of the limited battery capacity is to ensure that they return to the depot (or 

a battery swap station) on time before the battery runs dry. This is not an issue for tow trains because 

they return to the depot after each trip anyways. Unlike busses, on the other hand, tow trains are usually 

not recharged by battery swapping but by connecting them to a recharging station, making the problem 

more complicated as recharging times cannot be assumed to be constant. 

The problem of assigning trips (jobs) that have to be executed at given fixed times to vehicles (machines) 

also bears some similarity to interval scheduling. In interval scheduling, not only the processing times 

of the jobs but also their start times are given. Recent surveys were written by Kolen et al. (2007) and 

Kovalyov et al. (2007). Interval scheduling, however, is not concerned with scheduling recharging 

events. 

In the machine scheduling context, jobs that take longer the later they are executed (like recharging a 

battery) are somewhat reminiscent of so-called deteriorating jobs; a survey of related papers is provided 

by Cheng et al. (2004). However, most models relating to deteriorating jobs proposed so far assume that 

the deterioration is some function of the scheduled starting time of a job. In our case, on the other hand, 

the recharging time depends on the current battery level, not necessarily the time. While there have been 

a few publications in recent years dealing with position-dependent deteriorating jobs (e.g., Yang et al., 

2013, Yin et al., 2015), none of these are from the field of vehicle or interval scheduling. 
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Finally, there are a few papers specifically dealing with the scheduling of tow trains in assembly plants 

(Emde and Boysen, 2012, Emde and Gendreau, 2015). However, these papers only deal with the super-

ordinate problem of drawing up a timetable for the vehicles given a production sequence. They do not 

explicitly assign vehicles to trips or take into account battery recharging. 

3 Problem description 

The electric vehicle milk-run scheduling problem (EVMSP) consists of assigning timetabled trips to a 

fleet of vehicles such that the energy consumption of each trip does not exceed the remaining charge. 

The energy consumption of a trip may depend on such things as its length, the weight of the cargo to be 

carried, the terrain (e.g., there might be steep ramps to be traversed on some trips) etc. Each trip starts 

and ends at the depot. In addition to the given fixed trips, recharging intervals can also be scheduled for 

each vehicle at the depot, where the amount of charge regained depends on the length of time spent at 

the recharger at the depot. Vehicles as well as operators can be a significant cost driver for assembly 

plants (e.g., Golz et al., 2012), therefore trips and recharge events should be assigned such that the total 

number of used vehicles is minimal. As a secondary objective, plant managers are often concerned about 

fairness issues: operators perceive a schedule that assigns many lengthy tasks to one vehicle while an-

other one is almost completely idle as unfair. Moreover, such schedules may also be undesirable due to 

the strain they put on batteries. Unbalanced schedules should therefore be avoided. We investigate this 

fairness aspect further in our computational study (Section 6). 

To model EVMSP concisely, we make the following assumptions. 

• EVMSP is an operational problem, with a planning horizon of one day or one shift. Therefore, 

we assume that all parameters, especially the timetables of the trips as well as their length and 

energy consumption, are static and deterministic. Excepting unforeseen disturbances, which are 

hard to model at any rate, this is certainly a realistic assumption in many assembly plants, where 

the production sequence is fixed several days in advance and the exact demand as well as routes 

and timetables are determined with some lead time (Emde and Boysen, 2012, Golz et al., 2012). 

• The battery recharge rate is linear. This is a slight simplification because in reality, charging 

times somewhat increase for the last 10-20% of capacity. It is common practice in the literature, 

however, to abstract from this (e.g., Schneider et al., 2014). 

• All trips start and end at the depot, which is also the location of the recharging station, that is, 

there is no deadheading. At the OEM we visited, electric tow trains are used to ferry parts from 

a storage area to the assembly line, always departing from and returning to the depot after each 

trip. 

• All vehicles are identical. 

• The recharging station has sufficient capacity to service all calling vehicles at all times. 

• At the beginning of the planning horizon, all vehicles have fully charged batteries. 

• All parameters are integer. This is not a very strong assumption as any real-valued EVMSP 

instances can be converted to integer with arbitrary precision. 
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3.1. Formal description 

Let 𝐽 = {1, … , 𝑛} be a set of n trips (transport tasks). With each trip 𝑗 ∈ 𝐽 is associated a given start time 

𝑠𝑗  (the time when the tow train departs from the depot), a given end time 𝑒𝑗 (the time when the tow train 

returns to the depot), where 𝑒𝑗 > 𝑠𝑗 , and an amount 𝑐𝑗  of energy that is consumed when the trip is 

executed. Without loss of generality, we assume that the trips are sorted in ascending order of their start 

time 𝑠𝑗 , i.e., 𝑗 < 𝑗′ if 𝑠𝑗 < 𝑠𝑗′. Furthermore, there is a variable number of vehicles m, each of which has 

the same limited battery capacity C. The battery of a vehicle can be recharged with a rate of r; i.e., it 

takes 𝐶 𝑟⁄  time units to fully recharge an empty battery. 

To define a schedule in a concise manner, we make the following observation. 

Observation 3.1. For each vehicle, the set of trips to perform implies its recharging intervals. 

This is because we can assume that the vehicle will recharge in-between any two successive trips be-

cause each trip starts and ends at the depot in any case. The vehicle is hence either on a trip, or recharg-

ing. Of course, it may not actually be necessary for a vehicle to recharge its battery in any given interval 

between trips; however, it would be theoretically possible for it to do so. 

Consequently, we can define a schedule  𝑆 = {𝜋1, … , 𝜋𝑚} as a set of m sequences. Each sequence 𝜋𝑖 of 

length |𝜋𝑖| defines the order in which the trips assigned to vehicle i are processed. Let 𝜋𝑖(𝑘) ∊ 𝐽, ∀𝑘 =

1, … , |𝜋𝑖|, be the k-th trip executed by vehicle i. We say that a schedule S is feasible if it satisfies the 

following conditions. 

1. Each trip is executed exactly once, i.e., ⋃ ⋃ {𝜋𝑖(𝑘)}|𝜋𝑖|
𝑘=1 = 𝐽𝑚

𝑖=1  and ⋃ {𝜋𝑖(𝑘)}|𝜋𝑖|
𝑘=1  ∩

 ⋃ {𝜋𝑖′(𝑘)} = ∅
|𝜋𝑖′|
𝑘=1 , ∀𝑖, 𝑖′ ∈ {1, … , 𝑚}, 𝑖 ≠ 𝑖′. 

2. No vehicle executes two distinct trips at the same time, 𝑠𝜋𝑖(𝑘) ≥ 𝑒𝜋𝑖(𝑘−1), ∀𝑖 = 1, … , 𝑚; 𝑘 =

2, … , |𝜋𝑖|. 

3. The remaining charge of the vehicle executing a trip is sufficient to complete that trip. Let �̄�𝑖(𝑘) be 

the remaining charge of the battery of vehicle i after its k-th trip has been executed, which is calcu-

lated recursively as 

�̄�𝑖(𝑘) = {
min{𝐶; �̄�𝑖(𝑘 − 1) + 𝑟. (𝑠𝜋𝑖(𝑘) − 𝑒𝜋𝑖(𝑘−1))} − 𝑐𝜋𝑖(𝑘) if k ≥ 2 

𝐶 − 𝑐𝜋𝑖(1)if k = 2
.  (1) 

Then it must hold that �̄�𝑖(𝑘) ≥ 0, ∀𝑖 = 1, … , 𝑚; 𝑘 = 1, … , |𝜋𝑖|. 

Note that Eq. (1) follows from Observation 3.1. At any time, the remaining charge is given recursively 

by the charge left after the last trip, plus the recharged energy in-between the two consecutive trips, 

minus the energy consumed on the current trip. 

Among all feasible schedules S, we seek one that minimizes the number of vehicles. As a secondary 

objective, the schedule with the minimum number of vehicles should also be fair, i.e., the difference 

between the busiest vehicle and the idlest vehicle (as determined by the time they spend on trips) should 

be minimal. Consequently, our objective function is 
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𝑓(𝑆) = 𝛾. 𝑚 + max
𝑖=1,…,𝑚

{∑ (𝑒𝜋𝑖(𝑗) − 𝑠𝜋𝑖(𝑗))
 |𝜋𝑖|
𝑗=1 } − min

𝑖=1,…,𝑚
{∑ (𝑒𝜋𝑖(𝑗) − 𝑠𝜋𝑖(𝑗))

 |𝜋𝑖|
𝑗=1 }.  (2) 

To obtain a lexicographic ordering of objectives, weighting factor 𝛾 needs to be set to a sufficiently 

great value, e.g., 𝛾 = ∑ (𝑒𝑗 − 𝑠𝑗)𝑗∈𝐽 , the total processing time of all jobs. 

Example: Consider an example problem with 4 trips. The start and end times as well as the energy 

consumption of the trips is given in Table 1. Let the battery capacity be 𝐶 =  10 and the recharge rate 

𝑟 =  1. Then a feasible and optimal (for a sufficiently great weight 𝛾) solution is 𝑆 = {⟨1,3];  ⟨2,4]}, 

indicating that one vehicle performs trips 1 and 3 (total time spent on trips: 3), and another vehicle takes 

care of trips 2 and 4 (total time spent on trips: 5), yielding a minimum number of vehicles of 𝑚 =  2 

and a difference between the busiest and the least busy vehicles of 5 − 3 = 2. Note that although trips 

2 and 4 consume a total of 𝑐2 + 𝑐4 = 12 units of energy, which is more than the battery capacity of 𝐶 =

10, the solution is nonetheless feasible because the vehicle can recover two units of charge in-between 

the trips. 

j 1 2 3 4 

𝑠𝑗  0 1 4 6 

𝑒𝑗 2 4 5 8 

𝑐𝑗  4 7 6 5 

Table 1: An example problem. 

4 Computational complexity 

Disregarding the fairness objective and limited battery capacity, EVMSP can be solved in polynomial 

time (Saha, 1970) by constructing an acyclic network where each node represents one trip 𝑗 ∈ 𝐽 and an 

arc between two nodes (𝑗, 𝑗′) is inserted if trips j and 𝑗′ can be performed by the same vehicle in suc-

cession, i.e., if 𝑒𝑗 ≤ 𝑠𝑗′. The problem then reduces to finding the minimum number of paths through the 

network, such that each node lies on exactly one path. Each path can be interpreted as a vehicle schedule. 

The problem can be solved efficiently using a maximum flow or minimum cost flow algorithm (Bodin 

and Golden, 1981, Bertossi et al., 1987). Hence, we get the following proposition. 

Proposition 4.1. EVMSP with infinite battery capacity (𝐶 = ∞) and without fairness objective, denoted 

as EVMSP-∞, is in P. 

Of course, it is unrealistic to assume that vehicles never need to be recharged. However, if battery ca-

pacities are very generous and rarely constitute a bottleneck, this may be a viable simplification. More-

over, an optimal solution to EVMSP-∞ constitutes a lower bound on the number of vehicles, m. 

Note that calculating a lower bound does not necessarily require solving a maximum flow problem. It 

is also possible to get this value by checking for each point in time t which jobs are active at that time. 

The maximum number of jobs active at any time constitutes a lower bound on m, where only the times 

t where a job starts or ends need to be considered. This can be done in 𝑂(𝑛2) time. Specifically, 



Scheduling electric vehicles making milk-runs for just-in-time delivery 

 
 

 

 

 

 
 

 

 
  100 

    

𝑚𝐿𝐵 = max
𝑡∈{𝑠1,…,𝑠𝑛,𝑒1,…,𝑒𝑛}

{|{𝑗|𝑠𝑗 ≤ 𝑡 < 𝑒𝑗; 𝑗 ∈ 𝐽}|}.     (3) 

However, even if the battery capacity is relaxed, finding an optimal solution without ignoring fairness 

is strongly NP-hard as we will show in the following. 

Proposition 4.2. EVMSP with infinite battery capacity (C = 1) is NP-hard in the strong sense. 

Proof. To show that EVMSP-1 with fairness objective is NP-hard, we will present a reduction from 3-

PARTITION, which is well known to be strongly NP-hard (Garey and Johnson, 1979). 

3-PARTITION: Given 3q positive integers 𝑎𝑝, 𝑝 = 1, … ,3𝑞, and a positive integer B, where 

∑ 𝑎𝑝 = 𝑞𝐵
3𝑞
𝑝=1  and 𝐵 4 < 𝑎𝑝 < 𝐵 2⁄⁄ , ∀𝑝 = 1, … ,3𝑞, does a partition of the set {1,2, … ,3𝑞} into q sets 

𝐴1, 𝐴2, … , 𝐴𝑞 exist such that ∑ 𝑎𝑝 = 𝐵𝑝∈𝐴𝑖
, ∀𝑖 = 1, … , 𝑞? 

Consider the following transformation from a 3-PARTITION instance to an EVMSP instance. For each 

of the 3q integers in 3-PARTITION, we introduce one trip j in EVMSP. The trips take place sequentially 

starting from time 2, such that no two trips overlap, i.e., 𝑠𝑗 = 2 + ∑ 𝑎𝑝
𝑗−1
𝑝=1 , 𝑒𝑗 = 2 + ∑ 𝑎𝑝

𝑗
𝑝=1 , ∀𝑗 =

1, … ,3𝑞. Moreover, we introduce q trips 3𝑞 + 1, 3𝑞 + 2, … , 4𝑞, each with the same start and end time 

𝑠𝑗 = 1 and 𝑒𝑗 = 2, 𝑗 = 3𝑞 + 1, … ,4𝑞. Let 𝛾 = ∑ (𝑒𝑗 − 𝑠𝑗)4𝑞
𝑗=1 . The question asked is: Is there an EVMSP 

schedule S which uses exactly q vehicles and is perfectly fair, i.e., with 𝑓(𝑆) ≤ 𝑞𝛾? 

A solution to 3-PARTITION is also a solution to the corresponding EVMSP instance: All jobs in set 

𝐴𝑖 ∪ {3𝑞 + 𝑖} are executed by one distinct vehicle (∀𝑖 = 1, … , 𝑞). Since the only overlapping jobs 3𝑞 +

𝑖 are assigned to diffrent vehicles, the schedule is feasible. Seeing that each vehicle has the exact same 

total load of ∑ 𝑎𝑝 + 1 = ∑ (𝑒𝑝 − 𝑠𝑝) + 1 = 𝐵 + 1𝑝∈𝐴𝑖𝑝∈𝐴𝑖
, the solution must be perfectly fair (i.e., all 

q vehicles are exactly equally busy), leading to an objective value of 𝑓(𝑆) = 𝑞𝛾. 

The transformation also works in the opposite direction: A solution to EVMSP with 𝑓(𝑆) ≤ 𝑞𝛾 must 

also be a solution to the corresponding 3-PARTITION instance. Since minimizing the vehicle count is 

the primary objective, m must be exactly q in the optimal solution because only jobs 3𝑞 + 𝑖, 𝑖 = 1, … , 𝑞, 

cannot be executed by the same vehicle. The other jobs will be divided among the vehicles as equally 

as possible to maximize fairness, which is only possible if each vehicle performs exactly 3 trips corre-

sponding to the 3-PARTITION integers totalling B. The proposition follows.   □ 

Proposition 4.2 obviously implies that the general EVMSP (without relaxed battery capacity constraint 

but with fairness objective) is also NP-hard in the strong sense. Note that if the battery capacity is limited 

but the fairness objective is neglected, the problem is still NP-hard in the strong sense, as per the fol-

lowing proposition. 

Proposition 4.3. EVMSP without fairness objective but with given finite battery capacity is NP-hard in 

the strong sense. 
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Proof. We prove this proposition by reduction from BIN PACKING, which is well known to be strongly 

NP-hard (Garey and Johnson, 1979). 

BIN PACKING: Given q positive integers 𝑎𝑝, 𝑝 = 1, … . , 𝑞, and two positive integers ∊ and B, does a 

partition of the set {1,2, … , 𝑞} into ∊ sets 𝐴1, 𝐴2,…, 𝐴∊ exist such that ∑ 𝑎𝑝 ≤ 𝐵𝑝∈𝐴𝑖
, ∀𝑖 = 1, … , ∈? 

Consider the following transformation from a BIN PACKING instance to an EVMSP instance. For each 

of the q integers in BIN PACKING, we introduce one trip j in EVMSP. The trips can have arbitrary start 

and end times so long as no two trips overlap, i.e., 𝑒𝑗 ≤ 𝑠𝑗′  ∨  𝑒𝑗′ ≤ 𝑠𝑗  must hold ∀𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′. The 

energy consumption of each trip is set to correspond to the integers from BIN PACKING, i.e., 𝑐𝑗 = 𝑎𝑗, 

∀𝑗 = 1, … , 𝑞. The battery capacity of the vehicles is 𝐶 = 𝐵, and the recharge rate is very slow, i.e., 𝑟 <

( max
𝑗=1,…,𝑞

{𝑒𝑗})
−1

. The question asked is: Is there an EVMSP schedule S which uses no more than ∊ vehi-

cles? 

Given that the processing intervals of no two trips overlap, trips can be arbitrarily assigned to any vehi-

cle. Since it is impossible to recover any significant charge during the planning horizon due to the slow 

recharge rate r, the sum of the energy consumption of all trips assigned to one vehicle must not be greater 

than 𝐶 = 𝐵, however. Seeing that the energy consumption of each trip corresponds to the integers in 

BIN PACKING, the equivalence of an EVMSP solution with no more than ∊ vehicles and a BIN PACK-

ING solution with no more than ∊ bins is hence apparent. 

There is, however, one special case that is solvable in pseudo-polynomial time. We will make use of 

this later to generate solutions heuristically. 

Proposition 4.4. Given an instance of EVMSP, the problem of assigning as many trips as possible to a 

single vehicle, i.e., maximizing |𝜋𝑖| for one single vehicle i, denoted as EVMSP-1, can be solved in 

pseudo-polynomial time. 

Proof. Consider an acyclic digraph consisting of nodes (𝑗, 𝑏𝑗), where 𝑗 ∈ 𝐽 and 𝑏𝑗 ∈ {0,1, … , 𝐶}, indi-

cating that a charge of 𝑏𝑗 units remains after trip j has been executed. Moreover, consider an arc from 

node (𝑗, 𝑏𝑗) to (𝑗′, 𝑏𝑗′), indicating that the vehicle executes trip 𝑗′ immediately after trip j, if 

• the times do not overlap, i.e., 𝑒𝑗 ≤ 𝑠𝑗′  (note that this implies that 𝑗′ > 𝑗 because we assume that 

the trips are sorted according to 𝑠𝑗), 

• the remaining charge after executing trip 𝑗′ is 𝑏𝑗′ = 𝑚𝑖𝑛{𝐶; 𝑏𝑗 + 𝑟. (𝑠𝑗′ − 𝑒𝑗)} − 𝑐𝑗′, and 

• the charge is actually sufficient to complete trip 𝑗′, i.e., 𝑏𝑗 + 𝑟. (𝑠𝑗′ − 𝑒𝑗) − 𝑐𝑗′ ≥ 0. 

Finally, let (0, 𝐶) be a dummy source node, connected to nodes (𝑗, 𝐶 − 𝑐𝑗), ∀𝑗 ∈ 𝐽, and (𝑛 + 1, 0) be a 

dummy sink node, receiving an inbound arc from every other node that would otherwise have an outde-

gree of 0. Assigning the maximum number of trips to the vehicle is then equivalent to finding a longest 

path (that is, a path with the maximum number of edges) from source to sink in this graph. Note that 
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nodes with an indegree of 0 need not be considered and can be deleted from the graph (excepting the 

source node) as they can obviously not lie on any longest path. 

Concerning the asymptotic runtime, the graph consists of no more than 𝑂(𝑛𝐶) vertices. Even if each 

vertex were connected to every other, the total number of edges would be no more than 𝑂(𝑛2𝐶2). Find-

ing the longest path in an acyclic directed graph can be done in 𝑂(𝑉 + 𝐸) time, where V is the number 

of vertices and E the number of edges (Lawler, 1976). Hence EVMSP-1 can be solved in 𝑂(𝑛2𝐶2) time, 

which completes the proof.         □ 

Example (cont.): Consider the example from Section 3.1. The corresponding EVMSP-1 graph is de-

picted in Figure 2; one longest path is bold-faced, indicating that trips 1 and 4 get assigned to one vehicle. 

 

Figure 2: Example graph for EVMSP-1. 

5 Algorithms 

Given the strongly NP-hard nature of EVMSP, it is unlikely that the problem can be solved to optimality 

by an exact algorithm for realistic instances in acceptable time (see Section 6 for our computational 

results). Still, for smaller instances and to have a benchmark, we propose a MIP model that enables the 

use of a default solver. For larger instances, we propose an opening heuristic as well as a neighborhood 

search-based metaheuristic, tabu search. 

5.1. MIP model 

Using the notation summarized in Table 2, we propose the following mixed-integer program. 

sets 

J set of trips (indices 𝑗, 𝑗′ ∈ 𝐽 = {1, … , 𝑛}) 

V set of vehicles (index 𝑖 ∈ 𝑉 = {1, … , 𝑚})) 

𝐸𝑗 set of potential successors of trip j, i.e., 𝐸𝑗 = {𝑗′|𝑗′ ∈ 𝐽; 𝑠𝑗′ ≥ 𝑒𝑗}, ∀𝑗 ∈ 𝐽 

parameters 

𝛾 weighting factor of the number of vehicles in the objective function 

M big integer 

C battery capacity of the vehicles 

r battery recharge rate (units of charge per time unit) 
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𝑠𝑗  start time of trip j 

𝑒𝑗 end time of trip j 

𝑐 energy consumption of trip j 

decision variables 

𝑥𝑖𝑗 binary variable: 1, if trip j is assigned to vehicle i; 0, otherwise 

𝑦𝑖 binary variable: 1, if vehicle i is used; 0, otherwise 

𝑏𝑗 continuous variable: battery charge remaining after trip j has been completed 

𝛼 continuous variable: total trip time of the busiest vehicle 

𝛽 continuous variable: total trip time of the least busy vehicle 

Table 2: Notation for the MIP model 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥, 𝑏, 𝑦, 𝛼, 𝛽) = 𝛾. ∑ 𝑦𝑖 + 𝛼 − 𝛽𝑖∈𝑉     (4) 

subject to 

∑ 𝑥𝑖𝑗 = 1𝑖∈𝑉       ∀𝑗 ∈ 𝐽     (5) 

𝑥𝑖𝑗 < 𝑦𝑖      ∀𝑖 ∈ 𝑉; 𝑗 ∈ 𝐽    (6) 

∑ 𝑥𝑖𝑗 . (𝑒𝑗 − 𝑠𝑗) ≤ 𝛼𝑗∈𝐽      ∀𝑖 ∈ 𝑉     (7) 

∑ 𝑥𝑖𝑗 . (𝑒𝑗 − 𝑠𝑗) + (1 − 𝑦𝑖). 𝑀 ≥ 𝛽 ≥ 0𝑗∈𝐽   ∀𝑖 ∈ 𝑉     (8) 

𝑏𝑗′ − 𝑏𝑗 + 𝑐𝑗′ − 2𝐶. (2 − 𝑥𝑖𝑗 − 𝑥𝑖𝑗′) ≤ 𝑟. (𝑠𝑗′ − 𝑒𝑗) ∀𝑖 ∈ 𝑉; 𝑗 ∈ 𝐽; 𝑗′ ∈ 𝐸𝑗   (9) 

𝑥𝑖𝑗 + 𝑥𝑖𝑗′ ≤ 1      ∀𝑖 ∈ 𝑉; 𝑗, 𝑗′ ∈ 𝐽; 𝑗′ ∉ 𝐸𝑗; 𝑗 < 𝑗′  (10) 

0 ≤ 𝑏𝑗 ≤ 𝐶 − 𝑐𝑗     ∀𝑗 ∈ 𝐽     (11) 

𝑥𝑖𝑗 ∈ {0,1}      ∀𝑖 ∈ 𝑉; 𝑗 ∈ 𝐽    (12) 

𝑦𝑖 ∈ {0,1}      ∀𝑖 ∈ 𝑉     (13) 

Objective function (4) minimizes the weighted sum of the number of vehicles and the difference between 

the workload of the busiest (α) and the least busy (β) vehicle. Constraints (5) ensure that each trip is 

executed exactly once. Inequalities (6) force 𝑦𝑖 to 1 if vehicle i performs any job. Constraints (7) and 

(8) set α and β, respectively. Constraints (9) enforce that the battery can only be recharged in-between 

trips: the charge 𝑏𝑗′ after finishing trip 𝑗′ cannot be greater than the charge 𝑏𝑗 after completing the pre-

vious trip j, minus the energy 𝑐𝑗′ consumed on trip 𝑗′, plus the energy recharged in-between trips, 𝑟. (𝑠𝑗′ −

𝑒𝑗). Inequalities (10) make it impossible for two overlapping trips to be assigned to the same vehicle. 

Finally, (11) make sure that no vehicle runs out of power, and (12) and (13) are the binary constraints. 

Note that since the optimal number of vehicles m is not known in advance, this value has to be initialized 

to an upper bound, e.g., trivially, 𝑚: = 𝑛 or, alternatively, a value obtained from one of the heuristics 
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described in the following. The big integer M need not be greater than ∑ (𝑒𝑗 − 𝑠𝑗)𝑗∈𝐽  as β can never be 

greater than this value at any rate. 

5.2. Opening heuristic 

To construct a first feasible solution, we propose to use the procedure from Proposition 4.4 to assign 

trips to one vehicle after another. It is outlined in Algorithm 1. In each iteration, as many of the trips in 

set J̄, which initially equals the set of all trips J, as possible are assigned to vehicle i by solving EVMSP-

1. The trips thus assigned are then removed from J̄, and the next vehicle is assigned (a subset of) these 

trips, until all trips have been assigned, i.e., 𝐽 = ∅. Note that, in each iteration, if there is more than one 

possible EVMSP-1 solution (i.e., more than one longest path through the graph as described in Propo-

sition 4.4), we select one at random. 

 input: an instance of EVMSP 
1 𝐽 ≔ 𝐽; 
2 𝑖 ≔ 1; 
3 while 𝐽 ≠ ∅ do 
4  𝜋𝑖 ≔assignment of a subset of trips in J̄ to vehicle i via EVMSP-1; 
5  𝐽 ≔ 𝐽\ ⋃ {𝜋𝑖(𝑘)}

|𝜋𝑖|

𝑘=1 ; 

6  𝑖 ≔ 𝑖 + 1; 
7 return EVMSP solution 𝑆 = {𝜋1, … , 𝜋𝑖−1}; 

Algorithm 1: Openning heuristic. 

5.3. Neighborhood search 

While it stands to reason that the opening heuristic will output reasonably good solutions, they can 

probably be improved by neighborhood search. We consider two different neighborhood moves. 

Push A trip is pushed from one vehicle to another, i.e., some trip 𝑗 ∈ 𝐽 is removed from its current 

vehicle's sequence 𝜋𝑖 and inserted into some other vehicles sequence 𝜋𝑖′, 𝑖 ≠ 𝑖′. To minimize overlap, 

trips are inserted into the target sequence at position argmin
𝑘=1,…,|𝜋𝑖′|

{𝑠𝜋𝑖′(𝑘) > 𝑠𝑗}. Note that it is also possible 

that 𝑖′ is a new vehicle that was not part of the solution before. Analogously, if this move removes the 

last trip from vehicle i, 𝜋𝑖 is removed from the solution. 

Swap For two distinct trips, 𝑗 ∈ 𝐽 and 𝑗′ ∈ 𝐽, 𝑗′ ≠ 𝐽 and from different vehicles, switch vehicles. 

To evaluate the “fitness” of a solution S, we could use objective function (2). However, that would create 

a problem as we would be unable to handle infeasible solutions. Consequently, given a solution S with 

m vehicles in use, we propose the following generalized cost function to evaluate solutions. 

𝑔(𝑆) = 𝑓(𝑆) + ∑ (𝜌𝑇. ∑ 𝑚𝑎𝑥{0; 𝑒𝜋𝑖(𝑘) − 𝑠𝜋𝑖(𝑘+1)}
|𝜋𝑖|−1
𝑘=1 + 𝜌𝐶 . ∑ 𝑚𝑎𝑥{0; −�̄�𝑖(𝑘)}

|𝜋𝑖|
𝑘=1 )𝑚

𝑖=1 , (14) 

where �̄�𝑖(𝑘) is the charge remaining after executing trip 𝜋𝑖(𝑘), as calculated by Eq. (1), and 𝜌𝑇 (𝜌𝐶) is 

the penalty factor associated with overlapping trips (exceeded battery capacity). These factors are varied 
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during the course of the search: if the last 5 accepted neighbors were infeasible with regard to overlap-

ping trips (exceeded battery capacity), set 𝜌𝑇 ≔ 2. 𝜌𝑇 (𝜌𝐶 ≔ 2. 𝜌𝐶); analogously, if the last 5 accepted 

neighbors were all feasible, set 𝜌𝑇 ≔ 𝜌𝑇/2 (𝜌𝐶 ≔ 𝜌𝐶/2). 

Given two feasible solutions, g will be lower for the solution using fewer vehicles (provided is great 

enough). If the number of vehicles is identical, g will give preference to the one that is fairer. 

Inserting a trip into a vehicle's trip sequence takes 𝑂(𝑙𝑜𝑔 𝑛) time using binary search. Calculating the 

change in overlap penalty for a neighborhood solution can thus be done in logarithmic time if only the 

overlap with the immediate predecessor and immediate successor of the inserted job is computed. How-

ever, calculating the violation of the battery capacity still takes 𝑂(𝑛) time in the worst case, because 

inserting a job into a sequence may well change the available capacities for all following jobs, too. 

Finally, the change in the fairness objective can be calculated in constant time if the total workload of 

each vehicle, i.e., 𝜂𝑖 ≔ ∑ (𝑒𝜋𝑖(𝑗) − 𝑠𝜋𝑖(𝑗)), ∀𝑖 = 1, … , 𝑚
|𝜋𝑖|
𝑗=1 , is stored. If some job j is added to (removed 

from) some vehicle i then 𝜂𝑖 ≔ 𝜂𝑖 + 𝑒𝜋𝑖(𝑗) − 𝑠𝜋𝑖(𝑗) (𝜂𝑖 ≔ 𝜂𝑖 − 𝑒𝜋𝑖(𝑗) + 𝑠𝜋𝑖(𝑗)). Assuming that all 𝜂𝑖 are 

sorted, it can be checked in constant time if the new 𝜂𝑖 is the new busiest or least busy vehicle, and 

modify the objective value accordingly. Consequently, calculating a neighbor's objective value takes 

𝑂(𝑛) time in total in the worst case. 

We embed this neighborhood search strategy into a tabu search framework (Glover and Laguna, 1997). 

Tabu search is a powerful metaheuristic that has often been applied successfully to complex scheduling 

problems with difficult feasibility constraints (e.g., Gendreau et al., 1994, Gendreau and Potvin, 2010). 

The procedure is outlined in Algorithm 2. 

Starting from an initial solution generated by Algorithm 1, the entire neighborhood that can be reached 

by either a push or swap move as described above is investigated, and the best nontabu solution from 

that neighborhood becomes the new incumbent solution. After some job j has been removed from some 

vehicle 𝜋𝑖 (be it through a push or a swap), it cannot be reassigned to 𝜋𝑖 again for 10 iterations, i.e., job 

j is tabu for vehicle i for 10 iterations (tabu tenure). 

 input: an instance of EVMSP 
1 𝛩𝑚𝑎𝑥 ≔ 500; // max number of iterations before diversification 
2 𝛩 ≔ 0; // number of iterations since new best solution has been found 
3 𝑖 ≔ 1; // iteration counter 
4 𝑆 ≔ 𝑆∗ ≔ solution obtained via Algorithm 1; 
5 while 𝑖 ≤ 10000 and 𝑓(𝑆∗) > 𝛾. 𝑚𝐿𝐵 do 
6  𝑆 ≔ best non-tabu neighbor of S; 
7  Update tabu list; 
8  Update penalty parameters if necessary; 
9  if S is feasible and 𝑓(𝑆) < 𝑓(𝑆∗) then 
10   𝛩 ≔ 0; 
11   𝑆∗ ≔ 𝑆; 
12  else 
13   𝛩 ≔ 𝛩 + 1; 
14  if 𝛩 ≥ 𝛩𝑚𝑎𝑥 then 
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15   if first diversification phase then 
16    𝑆 ≔ solution where all jobs are assigned to one single vehicle; 
17    𝛩𝑚𝑎𝑥 ≔ 500; 
18   else 
19    if 𝑟𝑛𝑑(0,1) < 0.5 then // rnd returns a uniformly distributed random number in [0,1] 
20     𝑆 ≔ random feasible solution via Algorithm 3; 
21     𝛩𝑚𝑎𝑥 ≔ 250; 
22    else 
23     𝑆 ≔ random infeasible solution; 
24     𝛩𝑚𝑎𝑥 ≔ 350; 
25   reset tabu list; 
26   𝛩 ≔ 0; 
27  𝑖 ≔ 1 + 1; 
28 return best found EVMSP solution 𝑆∗; 

Algorithm 2: Tabu search for EVMSP. 

 input: an instance of EVMSP 

1 𝐽 ≔ 𝐽; 

2 𝑚 ≔ 0; 
3 while 𝐽 ≠ ∅; do 

4  𝑗 ≔ one random job from 𝐽; 

5  𝐽 ≔ 𝐽\{j}; 
6  while j is unassigned do 
7   𝜌 ≔ rnd(1, … , m + 1); 
8   if 𝜌 = m + 1 then 
9    Open a new vehicle and assign j to it as the first job; 
10    m ≔ m + 1; 
11   else 
12    Assign j to vehicle ρ if that is possible in terms of battery capacity and overlap; 
13 return feasible EVMSP solution; 

Algorithm 3: Generate a random feasible solution. 

If the best solution 𝑆∗ has not been updated in the past 𝛩𝑚𝑎𝑥 iterations, the search is restarted with a new 

initial solution for diversification purposes. New solutions are generated in one of three ways: 

• In the very first diversification phase, a new initial solution is generated by simply assigning all 

jobs to one single vehicle. This solution will usually be severely infeasible, therefore 𝛩𝑚𝑎𝑥 is 

set to 1000, awarding more time to neighborhood search before the next diversification phase 

is triggered. 

• In all further diversification phases (if any), new initial solutions are generated randomly:  

✓ With likelihood 0.5, a random feasible solution is created by employing Algorithm 3. 

✓ Finally, for even more “aggressive” diversification, with likelihood 0.5, a completely 

random, most likely infeasible, solution is generated by setting the number of vehicles 

to the lower bound (obtained via Eq. (3)) and iteratively assigning each job to one ran-

domly chosen vehicle. 

Finally, the optimization ends and the best found solution is returned if either 10000 neighborhoods 

have been investigated or a feasible solution has been found where the number of vehicles is equal to 



Scheduling electric vehicles making milk-runs for just-in-time delivery 

 
 

 

 

 

 
 

 

 
  107 

    

the lower bound (𝑚𝐿𝐵, Eq. (3)) and the fairness is perfect (i.e., max
𝑖=1,…,𝑚

{∑ (𝑒𝜋𝑖(𝑗) − 𝑠𝜋𝑖(𝑗))
|𝜋𝑖|
𝑗=1 } =

min
𝑖=1,…,𝑚

{∑ (𝑒𝜋𝑖(𝑗) − 𝑠𝜋𝑖(𝑗))
|𝜋𝑖|
𝑗=1 }). 

6 Computational study 

To assess the performance of our proposed heuristics, we implemented them in Java 8 and had them 

solve test instances on an x64-PC equipped with an Intel Core i5-3210M CPU, clocked at 2.5 GHz, and 

8 GB of RAM. As a benchmark, we also had a default solver, namely CPLEX 12.6.3, solve the same 

instances. Since there are no established instances of EVMSP, we will first describe how we generated 

our test data. Then, we will test the computational performance, discuss our fairness objective, and, 

finally, derive some insight into the tradeoff between battery capacity and vehicle utilization. 

6.1. Instance generation 

We model our test instances based on our observations at our OEM partner. A typical tow train moves 

at a speed of about 10 to 15 kph. The vehicles have to go from the depot to one of several destinations 

in the final assembly hall and the warehouse. Depending on the distance between depot and destination 

as well as the time it takes to load/unload the train (semi-automated in the assembly hall, mostly manual 

in the warehouse), a typical trip takes somewhere between 10 and 25 minutes of time. Consequently, 

we set the processing time for each trip j to 𝑝𝑗 = 𝑟𝑛𝑑𝑖𝑛𝑡(10, … ,25), where 𝑟𝑛𝑑𝑖𝑛𝑡  is a uniformly dis-

tributed random integer from the range in the argument. 

As the tow trains have to supply the whole assembly plant including dozens of workstations, the tow 

trains are almost constantly in action, i.e., it is rare that more than a very few minutes pass inbetween 

consecutive trips. Therefore, we generate the start times of trips as follows. The first trip starts at time 

𝑠1 = 1. The following trips 𝑗 = 2, … , 𝑛 start at time 𝑠𝑗 = 𝑠𝑗−1 + 𝑟𝑛𝑑𝑖𝑛𝑡(1, … ,3). It follows that 𝑒𝑗 =

𝑠𝑗 + 𝑝, ∀𝑗 ∈ 𝐽. 

A typical tow train as it is used at our OEM partner has a battery capacity of about 𝐶 = 150 Ah, of 

which each trip drains between 25 and 60%, depending mainly on the characteristics of the trip (e.g., a 

trip with many stops drains the battery faster than steady movement, slopes and uneven floors are harder 

on the engine than level shopfloors etc.). Hence, we set the battery consumption to 𝑐𝑗 =

⌊𝑟𝑛𝑑𝑐𝑜𝑛𝑡 (0.25,0.6). 𝐶⌉, where 𝑟𝑛𝑑𝑐𝑜𝑛𝑡  denotes a randomly generated real number from the interval in 

the argument (continuous uniform distribution), and ⌊.⌉ denotes rounding to the next integer. 

The recharge rate depends somewhat on the technical attributes of the tow trains in question. We there-

fore generate two different data sets, one with relatively slow-charging batteries (𝑟 = 1) and one with 

relatively fast-charging batteries (𝑟 = 5). Also, for each recharge rate, we generate small and large in-

stances. Large instances require 𝑛 = 150 trips to be scheduled, small instances consist of either 𝑛 = 15 

(for 𝑟 = 1) or 𝑛 = 25 (for 𝑟 = 5) trips. Note that the size of the small instances was chosen such that a 

default solver can still solve them in acceptable time, while the size of the large instances reflects what 

we observed at our OEM partner. For each tested parameter constellation, we generate 20 instances, 

leading to a total of 2 ∗ 2 ∗ 20 = 80. The instances are available from the authors upon request. 
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6.2. Algorithmic performance 

Tables 3 and 4 show the results for the 20 small instances with 𝑛 = 15 and 𝑛 = 25 jobs, respectively. 

The tables list the lower bound (LB) on the vehicle count as per Eq. (3), as well as the vehicle count 

(labeled m in the table), the fairness objective value (labeled 𝑓𝑓𝑎𝑖𝑟), and the CPU times in seconds for 

CPLEX, the opening heuristic from Algorithm 1, and our tabu search scheme. CPU times were omitted 

for the opening heuristic because it could solve all instances (including the large ones) in negligible time 

(less than 0.1 seconds). 𝑓𝑓𝑎𝑖𝑟  is calculated as per Eq. (2) with 𝛾 ≔ 0. In all tables, proven optimal results 

by the heuristics are in boldface. 

The data indicate that our proposed tabu search (TS) scheme is quite successful at solving EVMSP. For 

the instances where 𝑟 = 1 (Table 3), the optimality gap of TS is 0 without exception, both with regard 

to the vehicle count and the fairness objective. For the instances where 𝑟 = 5 (Table 4), there are two 

instances (nos. 11 and 16) where TS returned a solution that, while optimal with regard to m, is less fair 

(by one minute) than the optimum. Otherwise, the optimality gap is 0. The average runtime of TS over 

all small instances is less than one second, which is in stark contrast to the almost 9 minutes that CPLEX 

took on average to solve the same instances. 

The opening heuristic (OH) also delivers a respectable solution quality, as long as only the fleet size m 

is taken into consideration. In about half of the small instances (17 out of 40), OH found a solution 

that requires only the minimum number of vehicles. In the other cases, the vehicle count is 1 or 2 

above optimal. The real drawback of OH, however, becomes apparent when taking the fairness objec-

tive into consideration. OH is not designed to create fair solutions, and it shows. The workload is very 

unevenly distributed in all cases, the busiest vehicle often doing more than 90 minutes of additional 

work over the least busy vehicle. On the upside, OH is very quick, generating feasible schedules for a 

small vehicle fleet in negligible time. 
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 LB  CPLEX  opening h.  tabu search 

no. m  m 𝑓𝑓𝑎𝑖𝑟  CPU sec.  m 𝑓𝑓𝑎𝑖𝑟   m 𝑓𝑓𝑎𝑖𝑟  CPU sec. 

1 5  6 24 2.86  7 47  6 24 1.11 

2 5  5 10 1.36  5 12  5 10 0.49 

3 4  6 8 43.91  8 31  6 8 0.47 

4 4  7 12 1.01  8 35  7 12 0.52 

5 4  6 9 3.87  7 28  6 9 0.40 

6 3  5 9 24.30  5 53  5 9 0.33 

7 6  6 5 0.80  8 39  6 5 0.43 

8 5  5 8 0.85  5 62  5 8 0.41 

9 4  5 0 1.80  5 62  5 0 0.33 

10 4  6 3 12.35  6 33  6 3 0.33 

11 6  6 18 7.36  7 43  6 18 0.47 

12 4  5 15 1.25  7 39  5 15 0.46 

13 3  6 5 37.00  7 35  6 5 0.30 

14 4  5 3 4.35  7 35  5 3 0.39 

15 3  5 2 33.95  5 42  5 2 0.26 

16 4  6 3 22.79  6 39  6 3 0.31 

17 4  5 19 1.03  6 40  5 19 0.38 

18 5  6 5 2.61  6 33  6 5 0.42 

19 5  6 3 1.72  7 44  6 3 0.41 

20 4  6 4 34.68  7 56  6 4 0.34 

avg. 4.30  5.65 8.25 11.99  6.45 40.40  5.65 8.25 0.43 

Table 3: Results for the small instances with slow recharging (n = 15, r = 1). 
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 LB  CPLEX  opening h.  tabu search 

no. m  m 𝑓𝑓𝑎𝑖𝑟  CPU sec.  m 𝑓𝑓𝑎𝑖𝑟   m 𝑓𝑓𝑎𝑖𝑟  CPU sec. 

1 4  4 1 6.98  5 105  4 1 1.07 

2 6  6 1 14.42  7 111  6 1 1.43 

3 5  5 1 5.28  5 115  5 1 1.29 

4 6  6 1 2.57  6 102  6 1 1.38 

5 5  5 1 4.05  6 115  5 1 1.28 

6 5  5 1 17.30  5 97  5 1 1.39 

7 7  7 1 2.81  7 69  7 1 1.48 

8 4  4 0 2.01  5 139  4 0 0.01 

9 7  7 7 770.59  8 95  7 7 1.46 

10 5  5 1 2.47  6 120  5 1 1.27 

11 4  4 1 5.28  5 120  4 2 1.11 

12 6  6 1 3.75  7 83  6 1 1.43 

13 5  5 1 5.12  5 110  5 1 1.26 

14 4  5 0 28.05  6 96  5 0 1.18 

15 5  5 0 3.37  6 105  5 0 0.07 

16 5  5 1 44.19  6 92  5 2 1.27 

17 5  5 0 3.15  5 78  5 0 0.02 

18 9  9 8 19369.38  9 91  9 8 1.60 

19 5  5 1 4.06  5 95  5 1 1.26 

20 5  5 1 2.87  5 82  5 1 1.36 

avg. 5.35  5.40 1.45 1014.88  5.95 101.00  5.40 1.55 1.13 

Table 4: Results for the small instances with slow recharging (n = 25, r = 5). 

The final piece of information that can be inferred from the small instances is about the quality of the 

lower bound (LB). LB relaxes the battery capacity limitation. We can therefore expect LB to be tighter 

whenever the battery is not a very strong limiting factor to begin with. Our results bear this out, as LB 

is a lot tighter when 𝑟 = 5 as opposed to 𝑟 = 1. In other words, when the battery can be recharged 

quickly, LB is a good indicator of the minimum feasible vehicle fleet size, seeing that, for 𝑟 = 5, only 

in one single instance was there a gap between LB and actual optimal vehicle count as reported by 

CPLEX. 
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 LB  opening h.  tabu search 

no. m  m 𝑓𝑓𝑎𝑖𝑟   m 𝑓𝑓𝑎𝑖𝑟  CPU sec. 

1 6  12 322  11 1 103.493 

2 6  13 306  13 2 102.868 

3 6  15 300  13 2 102.575 

4 7  12 292  12 1 98.89 

5 6  14 294  13 2 99.717 

6 7  16 282  15 1 98.73 

7 6  11 380  10 1 99.293 

8 7  12 327  11 1 98.945 

9 7  13 300  12 1 96.976 

10 7  13 328  12 1 97.829 

11 7  12 328  11 1 112.58 

12 8  12 274  12 2 112.38 

13 6  12 384  11 1 115.869 

14 6  12 316  11 0 109.514 

15 6  14 319  13 1 99.157 

16 7  13 287  13 1 90.851 

17 6  12 333  11 1 93.355 

18 7  13 290  12 1 91.633 

19 8  14 269  14 1 88.988 

20 6  11 287  11 1 93.083 

avg.  6.60  12.80 310.90  12.05 1.15 100.34 

Table 5: Results for the large instances with slow recharging (n=150, r=1). 

Tables 5 and 6 contain the results for the large instances (𝑛 = 150 trips). Note that CPLEX is incapable 

of solving these instances; even after 48 hours of runtime, no even remotely optimal solution was found. 

We can, however, use LB to assess the quality of our heuristics, at least in the case of 𝑟 = 5 (Table 6). 

The results essentially corroborate our findings from the small instances: OH is very quick (negligible 

CPU times even when 𝑛 = 150) and finds passable solutions with regard to fleet size. Fairness, how-

ever, is very far from optimal    ̶in all cases the busiest vehicle's workload is several hours over the least 

busy one's. TS, on the other hand, matches LB for 𝑟 = 5 in all but two instances, while also balancing 

the workload almost perfectly. We can hence draw the conclusion that TS is indeed capable of solving 

EVMSP adequately for realistic problem sizes in less than two minutes of CPU time, which should be 

acceptable for most practical applications. 
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 LB  opening h.  tabu search 

no. m  m 𝑓𝑓𝑎𝑖𝑟   m 𝑓𝑓𝑎𝑖𝑟  CPU sec. 

1 6  6 600  6 0 0.847 

2 8  8 628  8 1 83.1 

3 6  7 647  7 1 95.892 

4 6  7 696  6 1 95.311 

5 6  7 673  6 1 86.487 

6 6  8 622  6 1 94.647 

7 9  9 653  9 1 81.66 

8 6  7 645  6 1 94.179 

9 9  9 644  9 1 81.229 

10 8  8 644  8 1 91.645 

11 7  8 674  7 1 93.618 

12 6  7 684  6 1 94.807 

13 7  7 665  7 1 93.298 

14 6  7 665  6 1 93.946 

15 6  8 585  8 1 96.149 

16 5  6 633  5 1 98.37 

17 7  9 608  7 1 94.638 

18 6  7 673  6 1 95.142 

19 8  8 701  8 1 83.673 

20 6  7 675  6 1 96.022 

avg.  6.70  7.50 650.75  6.85 0.95 87.23 

Table 6: Results for the large instances with slow recharging (n=150, r=5). 

6.3. Fairness considerations 

Objective function (2) seeks to minimize the number of vehicles and to balance the workload among 

vehicles. As discussed in Section 1, a balanced schedule may help to improve the expected lifetime of 

batteries because many batteries age more quickly if they are under heavy use while at a low state of 

charge. Moreover, it stands to reason that such balanced schedules also improve the perceived fairness 

for the drivers. This latter aspect is not entirely obvious, however. Drivers need not necessarily be as-

signed to one specific vehicle for the whole day (or shift) but may switch with other drivers at the depot. 

Therefore, it may be possible to arrive at a fair schedule (from the drivers' perspective) even if the vehicle 

schedule is anything but balanced. 

To test if it is indeed easy to generate a fair driver assignment, we implement the following simple rule-

of-thumb that is uncomplicated to apply in practice: Let all drivers queue up at the depot. Whoever is at 

the head of the queue takes the next trip. After returning from a trip, the driver joins the queue again at 

the end. We call this priority rule first-come-first-to-operate. 

We implement this rule in our computational study as follows. 
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1. Optimize vehicle schedule via tabu search. 

2. Set the number of available drivers to the minimal number of vehicles returned by tabu search. 

3. Assign drivers to trips one after another using the first-come-first-to-operate rule. 

Given this, it is easy to calculate the difference in workload between the busiest and the least busy driver. 

Table 7 compares the vehicle-based fairness (vehicle fairness in the table) as obtained by tabu search 

using objective function (2) to the driver-based fairness (driver fairness in the table) as obtained by 

using the first-come-first-to-operate rule. Clearly, schedules generated by tabu search are significantly 

more balanced, not only in terms of vehicle workload but also in terms of driver fairness. Indeed, a 

fairness value of only 1.15 (𝑟 = 1) and 0.95 (𝑟 = 5) on average is hard to beat for any driver assignment 

rule, not just first-come-first-to-operate. 

 r=1  r=5 

no. driver fairness vehicle fairness  driver fairness vehicle fairness 

1 40 1  61.00 0.00 

2 45 2  90.00 1.00 

3 69 2  72.00 1.00 
4 65 1  66.00 1.00 

5 64 2  42.00 1.00 

6 44 1  58.00 1.00 
7 67 1  45.00 1.00 

8 60 1  39.00 1.00 

9 59 1  65.00 1.00 

10 93 1  74.00 1.00 
11 79 1  65.00 1.00 

12 66 2  101.00 1.00 

13 39 1  58.00 1.00 
14 86 0  82.00 1.00 

15 49 1  82.00 1.00 

16 51 1  50.00 1.00 
17 47 1  52.00 1.00 

18 75 1  70.00 1.00 

19 59 1  80.00 1.00 

20 50 1  64.00 1.00 

avg.  60.35 1.15  65.80 0.95 

Table 7: Comparison of fairness as obtained by tabu search and fairness as obtained by the first-come-

first-to-operate rule (n=150). 

Given that EVMSP is strongly NP-hard even without the fairness objective (Proposition 4.3), there is 

little computational benefit in not integrating fairness into the objective during the vehicle scheduling 

phase. In light of the additional benefits of potentially improved battery life expectancy and easier com-

munication and coordination if drivers do not need to switch vehicles frequently, it may be expedient to 

simply use the best tabu search schedule and have a fixed one-to-one assignment of drivers to vehicles. 
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To gain a better intuitive understanding about what such an optimized vehicle schedule looks like, Fig-

ure 3 may be helpful. It shows the number of vehicles at the depot for each minute during the planning 

horizon for the schedule generated by tabu search for instance no. 1 (𝑛 = 150, 𝑟 = 5). 

 

Figure 3: Number of vehicles at the depot as a function of time for large instance no. 1 (n=150, r=5). 

6.4. Effect of battery capacity 

In the second part of our computational study, we investigate the effect of the battery capacity on the 

performance of an electric vehicle-based part feeding system. We expect the following tradeoff: If high-

capacity batteries are used and recharge times are short, vehicles spend less time recharging and more 

time actually doing productive work. Hence, the same workload can probably be handled by a smaller 

vehicle fleet, which is not only advantageous with regard to investment cost but also alleviates shopfloor 

congestion. On the other hand, batteries are one of the most expensive parts of an electric tugger and 

also drive cost by adding weight and insurance premium (e.g., Delucchi and Lipman, 2001). 

To investigate this tradeoff, we reuse the large instances (𝑛 = 150 trips) as described in Section 6.1, but 

instead of just testing the default battery capacity of 𝐶 = 150 Ah, we vary this capacity between 90 and 

270, such that 𝐶 ∈ {90, 120, 150, 180, 210, 240, 270}. For each value of C, we minimize the number 

of vehicles via TS and then average this value over the 20 large instances. 

Figure 4 shows the average size of the vehicle fleet depending on the battery capacity. First off, the plots 

clearly indicate that battery size and/or recharging technology have a very significant effect on vehicle 

utilization. In the worst case, when batteries are small (𝐶 = 90 Ah) and recharging is slow (𝑟 = 1), the 

average number of required vehicles is more than double that of the best case scenario (𝐶 = 270, 𝑟 =

5). Shopfloor managers are therefore well advised to consider battery issues when purchasing and in-

stalling electric supply vehicles. 
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As expected, vehicle utilization is better when batteries are large. However, this effect is particularly 

pronounced when recharge times are slow (Figure 4a). In this case, there is almost a linear decrease of 

fleet size with rising battery capacity. If batteries can be recharged quickly (Figure 4b), on the other 

hand, the result is different. Only in case the capacity is very tight (𝐶 ≤ 150) do upgrades make sense. 

Increasing the size of the battery past a certain point yields basically zero marginal utility. This is be-

cause with a fully charged capacious battery, the “naturally occurring” charging breaks in-between reg-

ularly scheduled trips are apparently enough to last to the end of the day. Where exactly this point lies 

is dependent on the recharge rate, but the figures clearly suggest that making large investments to obtain 

vehicles with excessively capacious batteries may not be advisable. 

 

Figure 4: Fleet size vs. battery capacity (n=150). 

7 Conclusion 

In this paper, we modeled the problem of assigning a set of timetabled milk-run trips to a fleet of electric 

vehicles such that battery capacities are not exceeded, the fleet size is minimal and fairness is maximal. 

We analyzed the computational complexity of this problem and some important subproblems, proving 

that even if the battery restriction is relaxed, the problem remains NP-hard in the strong sense. We also 

presented two heuristic solution procedures. The main results of this work are as follows. 

• The proposed opening heuristic, making use of a subproblem that is solvable in pseudopolyno-

mial time, is very fast, solving even large instances in split seconds. However, the solution qual-

ity, especially with regard to fairness, is suboptimal. 

• The tabu search scheme proposed in this paper, on the other hand, is capable of solving realistic 

instances to near-optimality in less than two minutes. 

• The battery technology (both capacity as well as recharge rate) has a substantial impact on tow 

train utilization. Our tests revealed that, in the worst case, the vehicle fleet is more than double 

the size as compared to the case where capacious, fast-charging batteries are used. However, 
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improving batteries past a certain point, the exact location of which depends on the recharge 

rate, is essentially pointless, suggesting that resources might be better spent elsewhere. 

Future research should focus on including nonlinear recharging rates and alternative charging technol-

ogies such as battery swapping. Moreover, considering robustness objectives when scheduling trips may 

also be a valuable avenue of research as timetables may occasionally have to be changed on short notice 

in industrial practice. Another extension of EVMSP could be the case of multiple depots / charging 

stations. In such scenarios, the vehicles, once they have completed a trip, need not necessarily return to 

the same depot from which they set off. Finally, the vehicle scheduling decision may also be integrated 

into a more holistic planning approach that encompasses the timetabling of trips, driver scheduling, as 

well as the assignment of trips to vehicles. 
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Abstract 

This paper addresses the preparation of unit load devices (ULD) at an air cargo terminal. 

This process is difficult to plan for many airlines, which face the challenge of assigning 

a limited number of workers to a limited number of workspaces available for preparing 

the ULD, while respecting the requirements imposed by an existing flight schedule. 

While preparing ULD, the objectives are to comply with the flight schedule, not to ex-

ceed the available space at the terminal, and to minimize the maximum workforce em-

ployed over time. To support airlines in realizing efficient ULD preparation processes, 

this paper proposes a mixed-integer programming model as well as a generalized set 

partitioning reformulation of this problem. Based on the latter formulation, we develop 

different heuristic strategies, some of which are shown to solve this NP-hard problem 

to near-optimality in a matter of merely 10 seconds, decisively outperforming the simple 

rule of thumb frequently used in practice. We also investigate the inherent tradeoff be-

tween labor and space utilization as well as the effect of uncertainty about the volume 

of the cargo to be shipped. 

Keywords: scheduling; air cargo terminal; workforce scheduling; generalized set partitioning; unit 
load device 
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1. Introduction 

Air cargo plays a crucial role in modern supply chains. It allows connecting worldwide dispersed supply 

and demand for products in very short time. As such, air cargo is particularly relevant for time-critical, 

high-value, and perishable goods. IATA [12] estimates that in 2014, more than 35% of the global trade 

by value has been transported via air. Air cargo capacity is provided by integrated and non-integrated 

air carriers. Integrated air cargo providers organize the entire transport, including the air carriage, door-

to-door for their customers. UPS, TNT, FedEx and DHL are well-known integrated air cargo providers. 

The majority of providers are, however, non-integrated. The core function of non-integrated providers 

are the air carriage and closely related processes. In particular, one differentiates all-cargo airlines from 

combination carriers. All-cargo airlines operate a fleet of freighter aircraft to transport air cargo. Com-

bination carriers, in contrast, combine passenger and cargo business and make use of the belly-hold 

capacities of their passenger aircraft for roughly around 50% of the required capacity. Furthermore, 

some freighter aircraft are operated to provide additional capacity and fill capacity voids in the passenger 

transportation networks [9, 13]. 

Air carriers operate air cargo terminals at their major hubs. Operations at the terminals include the re-

ceiving of shipments, checking of accompanying documentation and temporary storage. Prior to depar-

ture, most shipments are consolidated onto unit load devices (ULD), which may be air cargo pallets or 

air cargo containers. This allows airfreight to be bundled, making it easier for ground crews to handle 

and secure cargo onboard the plane. Once the ULD have been built up, they can be transported to the 

apron for aircraft loading. Upon arrival at the destination airport, the ULD are de-consolidated and 

handed over to customers. 

The focus of our work is on the build-up of ULD. In this context, we tackle the following problem: 

Given a set of outbound flights for which ULD need to be built up, a warehouse with a limited number 

of workspaces on which ULD may be placed and a limited workforce which may be flexibly deployed 

to work on different flights, when should the ULD for each flight be processed such that the available 

space and workforce is not exceeded at any time and the maximum employed workforce is minimal? 

We encountered this problem at the cargo terminal of a major German airfreight carrier. Currently, the 

shipment consolidation starts at a specific time before the aircraft is scheduled to depart. Thus, ULD 

build-up follows roughly similar peak patterns to aircraft departures, leading to very unevenly distrib-

uted work schedules, where a large number of workers is required at peak times, who are then idle during 

off-peak hours. Our industry partner is therefore interested in improving schedules such that the work-

force requirements are evened out over the day, reducing idle time and hence labor cost. 

Workers position ULD on specific workspaces in the terminal and retrieve the shipments to be loaded 

on the aircraft from a short-term buffer storage facility. There are several ULD per aircraft, depending 

on its capacity. Workers work on preparing all ULD for that aircraft before moving to the next task (i.e., 

the next aircraft). Working on several ULD in parallel provides the workers with some degree of free-

dom as to the order of stacking the shipments, which is important because the exact dimensions of the 
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shipments to be loaded are often not known in advance. Hence, workers tend to open many ULD work-

spaces in parallel. At the same time, space in the warehouse is limited and the more ULD workspaces 

are blocked, the fewer aircraft may be handled concurrently. Consequently, choosing when to build up 

the cargo for what flight is critical for smooth operations. The entire flow of cargo through an airport is 

schematically depicted in Figure 1. 

The main contributions of this paper are as follows. First, we model the novel operational problem of 

scheduling the build-up of ULD for a specific set of outbound flights as a special type of multi-mode 

resource-constrained project scheduling problem. Second, we propose a heuristic procedure based on a 

reformulation of the problem as a generalized set partitioning model, which is shown to perform very 

well on realistic instances and clearly outperforms simple rules of thumb that we encountered in practice. 

Third, we derive some managerial insight into the tradeoff between space (i.e., number of workspaces) 

and size of the workforce as well as the effect of uncertainty about the exact composition of the outbound 

shipments. 

 

Figure 1: Flow of cargo through an airport. 

The remainder of this paper is structured as follows. In Section 2, we review the pertinent literature. In 

Section 3, we formally define the problem of scheduling the build-up of ULD and propose a mixed-

integer linear program. We reformulate the model in Section 4 and propose methods to solve it heuris-

tically, which are tested in a computational study in Section 5. We also compare our optimized schedules 

to the current status-quo rule-of-thumb we observed at our industry partner and derive some managerial 

insight into the effect of uncertainty about the exact number of ULD required for some flights and the 

tradeoff between size of the workforce and space in the warehouse. Finally, Section 6 concludes the 

paper with an outlook on future research opportunities. 

2. Literature review 

Regarding air cargo operations in general, Yeung and He [30] review some planning problems with 

regard to specific applications to the air cargo industry. Feng et al. [9] provide a broader review of the 

literature. The authors distinguish mainly between problems from the perspective of the airline, the 
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freight forwarder, and the service supply chain. They identify the most important problems from the 

airlines’ perspective – which is also the perspective of this paper – as revenue management [recent 

contributions, e.g., by 11, 24], fleet routing and flight scheduling [e.g., 1, 15], aircraft loading [e.g., 28, 

27], and terminal operations, which we will review in more detail below. By contrasting current business 

practices and existing literature, the authors identify literature gaps. For the aspect of air cargo terminal 

operations, the authors highlight the necessity of more integrated models as the decisions taken (such as 

personnel scheduling and cargo handling process) are tightly interconnected. 

Scheduling personnel for break-down and build-up of cargo is a common problem at many airports, and 

as such it is not surprising that it has received some attention in the literature. A general survey on 

personnel scheduling problems can be found in Van den Bergh et al. [25]. Recent publications dealing 

specifically with such scheduling problems in the context of cargo handling at an airport are those of 

Nobert and Roy [19], Yan et al. [29], and Rong and Grunow [22]. All of these studies, however, take a 

somewhat aggregate view on the problem, deciding on how many workers should work in what shift. 

They do not assign workers to individual flights. Consequently, they also do not consider space con-

straints regarding ULD workspaces which might make it impossible to build up certain flights in paral-

lel. 

To include both time and space constraints, the problem can be seen as a kind of resource-constrained 

project scheduling problem (RCPSP): flights correspond to activities, which take a certain processing 

time and consume a certain amount of two renewable resources, namely space for ULD on the one hand 

and workers on the other. Surveys on RCPSP are provided by Brucker et al. [6] and Hartmann and 

Briskorn [10]. In our problem, it is possible to assign multiple workers to one job to speed up processing, 

which roughly corresponds to “multi-mode” processing in RCPSP, which is surveyed by Weglarz et al. 

[26]. Typically, RCPSP aims to minimize the makespan of the schedule, whereas we seek to minimize 

labor demand fluctuations, which corresponds to “resource leveling” in RCPSP parlance. Publications 

dealing with the resource leveling problem are comparatively rare. Bandelloni et al. [2], Nudtasomboon 

and Randhawa [20], and Neumann and Zimmermann [18] are among the few exceptions, none of which 

deal with multi-mode scheduling, however. Moreover, RCPSP models consider precedence relations 

between activities, which are immaterial for personnel scheduling. Instead, jobs are constrained by time 

windows, which is not a feature of classic RCPSP. 

Jobs whose processing can be sped up by assigning additional resources to them are also the subject of 

machine scheduling with malleable tasks [e.g., 16, 3]. Machine scheduling models are also not immedi-

ately applicable to our problem, however, as they do not consider the limited space for ULD. 

Finally, the problem also bears some resemblance to scheduling problems at other types of transship-

ment hubs, e.g., at cross docks [surveyed by 5]. However, truck scheduling problems from the literature 

typically ignore the workforce scheduling aspect. To the best of the authors’ knowledge, the only ex-

ception is Tadumadze et al. [23], who only consider time-related objectives, however, focusing on syn-

chronizing trucks between inbound and outbound side of a cross dock such that shipments do not miss 

their designated outbound trucks. 
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3. Problem description 

The problem of scheduling the build-up of unit load devices at an air cargo terminal under space and 

personnel constraints (ULDSP in the following) can be summarized as follows. Given a set of jobs to 

perform over a short planning horizon (e.g., one shift or day), where each job consists of the build-up of 

a given number of unit load devices for a specific outbound flight, how many workers should start at 

what time to process each job? At all times, there is a given theoretical maximum number of workers 

available (typically determined by more long-term personnel shift schedules), which the schedule is not 

allowed to exceed. Moreover, the number of ULD workspaces where a unit load device may be built up 

is limited. Furthermore, each job has a given release date (e.g., the time when all cargo destined for a 

specific flight is available) and a given due date (e.g., the latest time before departure when the com-

pleted ULD must be transported to the apron). The goal is to keep the demand for workers just about 

level at all times, i.e., if possible, there should not be peaks of labor demand at certain times of the day. 

This should allow shrinking the size of the workforce at least in the medium term and hence lowering 

labor cost. 

To model this problem in a concise fashion, we make the following assumptions. 

• All parameters are known with certainty at the time when ULDSP is solved. ULDSP is a short-

term problem (typically one shift or day), therefore most information, especially regarding 

available workers and flight schedules, are indeed quite certain. However, in reality, the exact 

volume of the shipments to be packed onto ULD can only be estimated. It is therefore possible 

that a given flight might require a few ULD more or less than originally planned. Note that if 

not all shipments fit into the allotted number of ULD, that usually means the shipments will be 

left at the airport for a later flight since aircraft must not be overloaded. These fluctuations are 

usually not very strong, however, and tend to cancel each other out. We investigate this further 

in Section 5. 

• Once a job is started, space in the warehouse for all ULD associated with that job must be 

allocated until the job is complete. This is a requirement because of the aforementioned uncer-

tainty regarding the exact volume of individual shipments to be packed. At our industry partner, 

it is impossible to tell in advance which shipment will fit on which ULD for a given flight, 

therefore all ULD must be built up in parallel. 

• Similarly, a job, once started, must be finished without interruption, i.e., no preemption is al-

lowed. Moreover, a workforce, once assigned to a job, cannot be reassigned before the job is 

finished. 

• All parameters are integer. This is not a very strong assumption because any real-valued param-

eters can be scaled to integer values to arbitrary precision. 

• The number of ULD workspaces in the warehouse constitute the only bottleneck in terms of 

space. Once all ULD for a flight have been built up, they can always be stored until the flight’s 

departure (without occupying ULD workspaces). 

• Once the release date of a job is past, all cargo for the corresponding flight is available. This is 

not always exactly true in practice, as often cargo trickles in continuously as inbound flights 

arrive over time. In such cases, the release date can be set to such a time when a sufficient 
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amount of cargo has arrived to start building up ULD, e.g., when the final shipment will arrive 

within the processing time. 

3.1. Mathematical formulation 

Let 𝑗 = {1, … , 𝑛} be a set of n jobs, where each job corresponds to the build-up of all ULD for one 

outbound flight. Each job 𝑗 ∊ 𝐽 is associated with a release date 𝑎𝑗, i.e., the earliest time when job j can 

be started, and a due date 𝑑𝑗, the latest time when job j can be finished. Each job requires 𝑠𝑗 ∊ ℕ≠0 

workspaces for ULD, of which there is a total of S available. Moreover, each job j takes a processing 

time of 𝑝𝑗𝑘, which depends on the number 𝑘 ∊ 𝐾𝑗 of workers assigned to that job. The set 𝐾𝑗 ⊂ ℕ≠0 

contains the potential numbers of workers that can be assigned to a job. Note that, typically, we would 

expect a job to be performed more quickly the more workers are assigned to it, i.e., 𝑝𝑗𝑘 < 𝑝𝑗𝑘′ if  𝑘′ <

𝑘. The planning horizon is T periods long; in each period there is a theoretical maximum number of Ḵ𝑡 

workers available. 

A schedule Σ for ULDSP is a set of 3-tuples (𝑗, 𝑡, 𝑘) ∊ 𝛴, indicating that job 𝑗 ∊ 𝐽 starts processing by 

𝑘 ∊ 𝐾𝑗  workers at time 𝑡 ∊ {𝑎𝑗, … , 𝑑𝑗 − 𝑝𝑗𝑘}. We say that a schedule is feasible if it meets the following 

conditions. 

• Each job is executed exactly once, i.e., for each job 𝑗 ∊ 𝐽, there is exactly one 3-tuple (𝑗, 𝑡, 𝑘) ∊

𝛴. 

• At no time the total number of assigned workers exceeds the theoretically available workforce, 

i.e., for all 𝑡 = 1, … , 𝑇, it must hold that ∑ 𝑘 ≤ Ḵ𝑡(𝑗,𝑡′,𝑘)∊𝛴:

𝑡≥𝑡′≥𝑡−𝑝𝑗𝑘+1

. 

• At no time the total number of ULD of all active jobs exceeds the available workspace, i.e., for 

all 𝑡 = 1, … , 𝑇, it must hold that ∑ 𝑠𝑗 ≤ 𝑆(𝑗,𝑡′,𝑘)∊𝛴:

𝑡≥𝑡′≥𝑡−𝑝𝑗𝑘+1

. 

As for the goal of the optimization, one of the major problems with the status quo scheduling of ULD 

build-up at the air cargo terminal we visited is poor labor utilization due to large demand peaks at certain 

times of day. Demand levelling is also often seen as a desirable goal in the personnel scheduling litera-

ture [e.g., 19]. Among all feasible schedules we therefore seek one where the number of workers in the 

busiest period is minimal, i.e., 

Minimize 𝑓(𝛴) = max
𝑡=1,…,𝑇

{ ∑ 𝑘(𝑗,𝑡′,𝑘)∊𝛴:

𝑡≥𝑡′≥𝑡−𝑝𝑗𝑘+1

}         (1) 

Note that minimizing Objective (1) does not automatically ensure that the given maximum number of 

workers Ḵ𝑡 is never exceeded or vice versa. Some Ḵ𝑡 may be lower than the optimal 𝑓(𝛴) (e.g., during 

lunch breaks or other off-periods) because 𝑓(𝛴) only measures the number of workers in the very busiest 

period. 
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Table 1 summarizes the introduced notation, which we use to present the following mixed-integer linear 

program, which permits the use of default solvers. 

T number of periods, index 𝑡 ∊ {1, … , 𝑇} 

J set of jobs, index 𝑗 ∊ {1, … , 𝑛} 

S number of workspaces in the warehouse 

𝐾𝑗  set of processing modes for job j 

Ḵ𝑡 maximum number of workers available in period t 

𝑠𝑗  space required by job j 

𝑎𝑗 release date of job j 

𝑑𝑗 due date of job j 

𝑝𝑗𝑘 processing time of job j if k workers are assigned to it 

𝑥𝑗𝑡𝑘 binary variable: 1, if job j is started in period t by k workers; 0, otherwise 

𝛼𝑡 continuous variable: number of workers busy in period t 

Table 1: Notation for the MILP model. 

[ULDSP] Minimize 𝐹(𝑥, 𝛼) = max
𝑡=1,…,𝑇

{𝛼𝑡}       (2) 

subject to 

∑ ∑ ∑ 𝑠𝑗. 𝑥𝑗𝑡′𝑘
𝑡
𝑡′=𝑚𝑎𝑥{1;𝑡−𝑝𝑗𝑘+1}𝑘∊𝐾𝑗

≤ 𝑆𝑗∊𝐽   ∀𝑡 ∊ {1, … , 𝑇}    (3) 

∑ ∑ ∑ 𝑘. 𝑥𝑗𝑡′𝑘
𝑡
𝑡′=𝑚𝑎𝑥{1;𝑡−𝑝𝑗𝑘+1}𝑘∊𝐾𝑗

≤ 𝛼𝑡𝑗∊𝐽   ∀𝑡 ∊ {1, … , 𝑇}    (4) 

𝛼𝑡 ≤ Ḵ𝑡      ∀𝑡 ∊ {1, … , 𝑇}    (5) 

∑ ∑ 𝑥𝑗𝑡𝑘𝑘∊𝐾𝑗
= 1𝑇

𝑡=1      ∀𝑗 ∊ J     (6) 

∑ ∑ 𝑡. 𝑥𝑗𝑡𝑘𝑘∊𝐾𝑗
≥ 𝑎𝑗

𝑇
𝑡=1      ∀𝑗 ∊ J     (7) 

∑ ∑ (𝑡 + 𝑝𝑗𝑘). 𝑥𝑗𝑡𝑘𝑘∊𝐾𝑗
≤ 𝑑𝑗

𝑇
𝑡=1     ∀𝑗 ∊ J     (8) 

𝑥𝑗𝑡𝑘 ∊ {0,1}      ∀𝑗 ∊ J, ∀𝑘 ∊ 𝐾𝑗, ∀𝑡 ∊ {1, … , 𝑇} (9) 

 

Objective function (2) minimizes the number of workers active in the busiest period. Constraints (3) 

ensure that the available space is never exceeded. Constraints (4) in conjunction with (5) limit the num-

ber of workers used per period to Ḵ𝑡. Constraints (6) enforce that each job is executed exactly once, 

while (7) and (8) render violating any time window impossible. Finally, (9) define the domain of the 

variables.  

Note that it is easy to see that even finding a feasible solution to ULDSP is already strongly NP-hard as 

it is a generalization of single machine scheduling with time windows, which is well-known to be NP-

complete in the strong sense [14]. This leads us to the following proposition. 

Proposition 3.1. Solving ULDSP to feasibility is NP-hard in the strong sense. 

3.2. Example of a ULDSP solution 

Consider the example data from Table 2a, consisting of 𝑛 =  4 jobs and 𝑇 =  8 periods in the planning 

horizon. Each of the 4 jobs can be performed by either 1, 2, or 3 workers (i.e., 𝐾1 = 𝐾2 = 𝐾3 = 𝐾4 =

{1, 2, 3}), and in each period, there are at most 3 workers available (i.e, Ḵ𝑡 = 3, ∀𝑡 = 1, … ,6), except in 
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the last two periods, where there are only 2 workers, i.e., Ḵ7 = Ḵ8 = 2. Moreover, let the maximum 

number of ULD that can be built up in parallel be 𝑆 =  4. 

A feasible and optimal solution is depicted in Figure 2b as a Gantt chart. Formally, this corresponds to 

schedule 𝛴 = {(1,6,2), (2,1,1), (3,4,2), (4,1,1)}. The maximum number of workers ever used at any one 

time is 2, hence 𝑓(𝛴) = 2. 

 

Figure 2: Example data and solution. 

4. Algorithm for the ULDSP 

4.1. Reformulation of the problem 

While the model from Section 3.1 can be tackled by default solvers, Proposition 3.1 suggests that large 

instances of realistic size cannot be solved in acceptable time, which is indeed what our computational 

experiments confirm (see Section 5). To make the problem more tractable, we propose to reformulate it 

as a type of generalized set partitioning problem. Such models have been used to great success to solve, 

for instance, discrete berth allocation problems [7] or the train driver recovery problem [21]. Similar 

procedures have also been proposed to tackle truck scheduling problems that would otherwise be outside 

the reach of default solvers [4, 23]. Moreover, this approach can also be used as a heuristic, permitting 

the solution of significantly larger instances at the cost of some solution quality. 

In the set partitioning model, each variable corresponds to one feasible assignment of a job j to a number 

of workers 𝑘 ∊ 𝐾𝑗 and a starting time 𝑡 ∊ {𝑎𝑗, … , 𝑑𝑗 − 𝑝𝑗𝑘}. For brevity of notation, we denote such an 

assignment by a 3-tuple 𝜔 = (𝑗, 𝑡, 𝑘), the set of all such assignments as 𝛺 = {(𝑗, 𝑡, 𝑘)|𝑗 ∊ 𝐽, 𝑘 ∊ 𝐾𝑗 , 𝑡 ∊

{𝑎𝑗, … , 𝑑𝑗 − 𝑝𝑗𝑘}}, and the subset containing only assignments specifically for job 𝑗 ∊ 𝐽 as 𝛺𝑗 =

{(𝑗′, 𝑡, 𝑘) ∊ 𝛺|𝑗′ = 𝑗}. Consequently, once set Ω is given, the scheduling decision consists merely of 

choosing one 𝜔 ∊ 𝛺𝑗  for each 𝑗 ∊ 𝐽. For each 𝜔 ∊ 𝛺, we therefore define binary variable 𝑦𝜔, which is 1 
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if and only if assignment 𝜔 = (𝑗, 𝑡, 𝑘) is in the solution, i.e., job j will be processed in the interval [𝑡; 𝑡 +

𝑝𝑗𝑘] by k workers, requiring 𝑠𝑗  ULD workspaces. 

𝛺𝑗  set of possible start time and worker assignments for job j 

𝜎𝜔𝑡 number ULD workspaces taken up at time t by assignment 𝜔 ∊ 𝛺 

𝜅𝜔𝑡 number of workers required at time t by assignment 𝜔 ∊ 𝛺 

𝑦𝜔 binary variable: 1, if assignment 𝜔 is in the solution; 0, otherwise 

Table 2: Additional notation for the generalized set partitioning model. 

Given set Ω, we can preprocess parameters 𝜅𝜔𝑡 and 𝜎𝜔𝑡. 𝜅𝜔𝑡 denotes the number of workers required 

at time t by assignment 𝜔 ∊ 𝛺. 𝜎𝜔𝑡 stands for the number ULD workspaces taken up at time t by assign-

ment 𝜔. Given these parameters, we can reformulate ULDSP as a generalized set partitioning problem, 

which we refer to as ULDSP-GSP. 

[ULDSP-GSP] Minimize 𝐹(𝑦, 𝛼) = max
𝑡=1,…,𝑇

{𝛼𝑡}       (10) 

subject to Constraints (5) and 

∑ 𝜎𝜔𝑡 .𝜔∊𝛺 𝑦𝜔 ≤ 𝑆     ∀𝑡 ∊ {1, … , 𝑇}    (11) 

∑ 𝜅𝜔𝑡.𝜔∊𝛺 𝑦𝜔 ≤ 𝛼𝑡     ∀𝑡 ∊ {1, … , 𝑇}    (12) 

∑ 𝑦𝜔𝜔∊𝛺𝑗
= 1      ∀𝑗 ∊ 𝐽      (13) 

𝑦𝜔 = {0,1}      ∀𝜔 ∊ 𝛺     (14) 

 

Objective (10) still minimizes the maximum number of workers in any one period. Constraints (11) and 

(12) replace Constraints (3) and (4) to make sure that neither the available workforce nor space is over-

extended. Constraints (13) enforce that each job must be processed according to exactly one 3-tuple 

from 𝛺𝑗 , and (14) are the binary constraints. 

Example (cont.): Consider the example from Section 3.2. Figure 3 shows all possible assignments (9 in 

total) for job 𝑗 =  3 in the example. 
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Figure 3: All possible assignments 𝛺3 for job 𝑗 =  3 in the example 

Model [ULDSP-GSP] is somewhat simpler than the original model [ULDSP]. The number of variables 

necessary may still be extremely large, however, depending on the number of potential assignments |𝛺|. 

We will investigate the computational performance in Section 5. Regardless, ULDSP-GSP is clearly a 

difficult problem, as we show in the following. 

Proposition 4.1. ULDSP-GSP is NP-hard in the strong sense even if 𝑆 = ∞ and Ḵ𝑡 = ∞, ∀𝑡 ∊

{1, … , 𝑇}, |𝛺| = 3. 𝑛, and the processing time of each job is 2. 

Proof. To show that ULDSP-GSP is NP-hard, we will present a reduction from an interval scheduling 

problem which has been proven NP-hard in the strong sense by Nakajima and Hakimi [17] (dubbed 

DST(1) by the authors). Crama and Spieksma [8] tightened this result further by showing strong NP-

hardness holds even if the number of intervals is restricted to 3 and the processing time to 2 for each 

job. 

DST(1): Given is a set 𝑄 of independent tasks to be scheduled without preemption on a single machine. 

Each task 𝑞 ∊ 𝑄 requires a given handling time of 2 and it may be started at any one of its 3 prescribed 

starting times 𝑐𝑞,1, 𝑐𝑞,2, 𝑐𝑞,3. Is there a conflict-free schedule where all jobs are processed? 

We transform any instance of DST(1) to an instance of ULDSP-GSP by considering a problem with a 

planning horizon of 𝑇 = max
𝑞∊𝑄,𝑙∊{1,2,3} 

{𝑐𝑞,𝑙 + 2} and introducing a job j for each task q. With each job j, 

we associate a set of assignments Ω𝑗 = {(𝑗, 𝑐𝑞,2, 1), (𝑗, 𝑐𝑞,2, 1), (𝑗, 𝑐𝑞,3, 1)}, making the overall set of 

assignments 𝛺 = ⋃ Ωj𝑗∊𝐽 . Moreover, the processing time of each job j is 2. Note that every assignment 
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only employs one single worker. The question asked is: Is there a feasible schedule where 

max
𝑡=1,…,𝑇

{𝛼𝑡} ≤ 1? 

Clearly, a solution where max
𝑡=1,…,𝑇

{𝛼𝑡} ≤ 1 is one where no two jobs are ever concurrently active. Seeing 

that start and processing times in the transformed ULDSP-GSP correspond exactly to those in the 

DST(1) instance, the equivalence of an DST(1) and ULDSP-GSP solution is hence obvious. 

4.2. Selecting assignments heuristically 

Regarding the generation of sets Ω𝑗 , it would of course be possible to include every possible combination 

of workers and start times for each job. However, to cut down on computation time, it may be more 

expedient to only generate a subset 𝛺′𝑗 ⊂ 𝛺𝑗  of all potential assignments. Specifically, we restrict the 

number of assignments for each job by setting a parameter ι. The number of assignments per job is then 

limited to |𝛺′𝑗| = ⌈
|𝛺𝑗|

𝜄⁄ ⌉. Obviously, if 𝜄 = 1, then model ULDSP-GSP is equivalent to model ULDSP 

because all possible assignments are taken into consideration. If 𝜄 > 1, only a true subset of assignments 

is considered, and there is no guarantee that the search space contains the optimal solution. In this case, 

a subset of assignments needs to be selected heuristically for each job. We propose three different ways 

to do so. 

random  For each job j, we create an assignment by drawing a random number k of workers from  

𝐾𝑗  (discrete uniform distribution) and then a random start time t from {𝑎𝑗, … , 𝑑𝑗 − 𝑝𝑗𝑘} (also 

discrete uniform distribution). We add assignment (𝑗, 𝑡, 𝑘) to set 𝛺′𝑗  and repeat these steps until 

we have generate⌈
|𝛺𝑗|

𝜄⁄ ⌉d  distinct assignments for each job. 

semi-random  Let 𝛺𝑗𝑘 = {(𝑗, 𝑡, 𝑘′) ∊ 𝛺𝑗|𝑘′ ≠ 𝑘} be the set of assignments for job j with exactly 𝑘 ∊

𝐾𝑗 workers. For each job, we select from each set 𝛺𝑗𝑘  a number of ⌈
|𝛺𝑗𝑘|

𝜄⁄ ⌉ distinct assignments 

randomly, ∀𝑘 ∊ 𝐾𝑗 . The rationale behind this strategy is to make the assignment selection some-

what less random by making sure that each potential number of workers is represented in 𝛺′𝑗 . 

smooth  Similar to the semi-random strategy, we consider sets 𝛺𝑗𝑘 . For all 𝑗 ∊ 𝐽 and 𝑘 ∊ 𝐾𝑗 , 

from each set 𝛺𝑗𝑘 , we select a number of ⌈
|𝛺𝑗𝑘|

𝜄⁄ ⌉ assignments such that their start times are as 

evenly spaced out as possible. That is, for a given job j and number of workers k, we select start 

times 𝑎𝑗, 𝑎𝑗 + ⌈
𝑑𝑗−𝑝𝑗𝑘−𝑎𝑗+1

⌈
|𝛺𝑗𝑘|

𝜄⁄ ⌉
⌉, 𝑎𝑗 + 2. ⌈

𝑑𝑗−𝑝𝑗𝑘−𝑎𝑗+1

⌈
|𝛺𝑗𝑘|

𝜄⁄ ⌉
⌉, …, 𝑎𝑗 + (⌈

|𝛺𝑗𝑘|
𝜄⁄ ⌉ − 1) . ⌈

𝑑𝑗−𝑝𝑗𝑘−𝑎𝑗+1

⌈
|𝛺𝑗𝑘|

𝜄⁄ ⌉
⌉. 

Regardless of the selection strategy, by varying parameter ι, we can trade off solution quality for com-

putational effort to a lesser or greater degree. We will investigate this in our computational study (Sec-

tion 5). 



Scheduling personnel for the build-up of unit load devices at an air cargo terminal with limited space 

 
  

 

 

 

 
 

 

 
  129 

    

Example (cont.): Consider the assignments given in Figure 3 for job 𝑗 =  3. Assume 𝜄 =  2. The set of 

all possible assignments is 

𝛺3 = {(3,4,1), (3,5,1), (3,4,2), (3,5,2), (3,6,2), (3,4,3), (3,5,3), (3,6,3), (3,7,3)} 

• Using the random strategy, we pick ⌈
|𝛺𝑗|

𝜄⁄ ⌉ = 5 tuples from 𝛺3 at random, e.g., 

𝛺′3 = {(3,5,1), (3,5,2), (3,6,2), (3,5,3), (3,7,3)} 

• Using the semi-random strategy, we first divide set 𝛺3 into |𝐾𝑗| subsets, i.e., 𝛺3,1 =

{((3,4,1), (3,5,1)}, 𝛺3,2 = {(3,4,2), (3,5,2), (3,6,2)}, 𝛺3,3 =

{(3,4,3), (3,5,3), (3,6,3), (3,7,3)}. Then, we select from each set 𝛺3,𝑘  ⌈
|𝛺𝑗𝑘|

𝜄⁄ ⌉ elements at ran-

dom, e.g.,  

𝛺′3 = {(3,5,1), (3,4,2), (3,6,2), (3,5,3), (3,6,3)} 

• Using the smooth strategy, we pick from each set 𝛺3,𝑘 the ⌈
|𝛺𝑗𝑘|

𝜄⁄ ⌉ elements whose start times 

are evenly spaced out, i.e., 

𝛺′3 = {(3,4,1), (3,4,2), (3,6,2), (3,4,3), (3,6,3)} 

5. Computational study 

5.1. Benchmark instances and computational environment 

As no benchmark instances for ULDSP exist in the literature, we first explain how we generated test 

data. To obtain realistic instances, we collaborated with a major German airfreight carrier. 

We assume a planning horizon of one day. One period corresponds to 10 minutes of real time, conse-

quently we consider a total of 𝑇 =  144 periods. Space and handling time requirements can vary wildly 

depending on the flights for which the ULD are to be built up. By Proposition 3.1, even finding a feasible 

solution for ULDSP is already NP-hard. To ensure that a feasible solution exists at all, we generate 

workforce and space requirements as well as release and due dates and processing times via the proce-

dure outlined in Algorithm 1. 
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Algorithm 1: Generating workforce and space requirements as well as release and due dates and pro-

cessing times. 

The basic idea is that, for each job j, we randomly generate a release date 𝑎𝑗 (rnd() stands for a uniformly 

distributed random integer from the interval in the argument), space requirement 𝑠𝑗 , and a “reference” 

processing time 𝑝𝑗 when using 𝑘𝑗  workers. If it is possible to schedule job j sometime in the interval 

between 𝑎𝑗 and the end of the planning horizon, given that the previous jobs 1, … , 𝑗 − 1 have already 

been scheduled and may thus block workers and space, we accept the generated parameters, set the due 

date and calculate the processing times 𝑝𝑗𝑘. To get the processing time depending on the number of 

workers, we first set a baseline processing time 𝜌𝑗  , which is modified according to the number of work-

ers k as ⌈
𝜌𝑗

√𝑘𝑗
𝛽 ⌉. The rationale behind this formula is that we expect the processing time to drop if addi-

tional workers are employed. However, the decrease is unlikely to be linear because the labor is rarely 

perfectly divisible and at some point additional workers will start interfering with each other. The rate 

of decrease is adjusted through parameter β: the greater β, the more quickly the marginal speedup 

through additional workers diminishes. Note especially that if 𝛽 = 1, the speedup is indeed linear, i.e., 

doubling the number of workers halves the processing time. 

Using this method, we create two data sets, each containing 20 individual instances. One set contains 

small problems, where 𝑆 =  72, 𝑛 =  20, and Ḵ𝑡 = 100, ∀𝑡 = 1, … , 𝑇, and one set contains large prob-

lems, where 𝑆 =  180, 𝑛 =  100, and Ḵ𝑡 = 200, ∀𝑡 = 1, … , 𝑇. Moreover we set 𝛽 = 2. All instances 

are available from the authors upon request. 



Scheduling personnel for the build-up of unit load devices at an air cargo terminal with limited space 

 
  

 

 

 

 
 

 

 
  131 

    

5.2. Computational results 

5.2.1. Algorithmic performance 

In the first part of our computational study, we investigate the performance of our proposed solution 

methods. For this purpose, we implemented them in Java 8 and had them solve our test instances on an 

x64-PC with 12 GB of RAM and an Intel Core i5-7200U 2.5 GHz CPU. To solve models ULDSP and 

ULDSP-GSP, we used a default solver, namely CPLEX 12.7. 

  avg. saved time avg. opt. gap max. opt. gap min. opt. gap 

 ULDSP-GSP -16.86% 0.00% 0.00% 0.00% 

random 

𝜄 = 2 -83.23% 3.88% 10.00% 0.00% 

𝜄 = 3 -88.66% 8.30% 23.33% 3.23% 

𝜄 = 4 -98.07% 11.50% 23.33% 0.00% 

𝜄 = 5 -98.29% 14.40% 33.33% 6.52% 

semi-random 

𝜄 = 2 -71.34% 0.78% 4.00% 0.00% 

𝜄 = 3 -95.86% 1.30% 4.00% 0.00% 

𝜄 = 4 -99.73% 2.05% 7.41% 0.00% 

𝜄 = 5 -100.00% 1.80% 6.25% 0.00% 

smooth 

𝜄 = 2 -84.11% 0.63% 4.00% 0.00% 

𝜄 = 3 -97.27% 0.48% 4.00% 0.00% 

𝜄 = 4 -99.49% 1.60% 5.00% 0.00% 

𝜄 = 5 -100.00% 2.07% 9.38% 0.00% 

Table 3: Comparison of the assignment selection strategies (small instances). 

The 20 small instances could all be solved to (proven) optimality by CPLEX. Table 3 lists the average, 

minimum and maximum optimality gaps of the generalized set partitioning-based methods, calculated 

as (𝑓∗ − 𝑓𝑜𝑝𝑡)/𝑓∗, where 𝑓𝑜𝑝𝑡  denotes the optimal objective value and 𝑓∗ denotes the best objective 

value of the solution method under investigation. ULDSP-GSP stands for the generalized set partitioning 

model which includes all possible assignments and thus is guaranteed to return an optimal solution. 

Rows random, semi-random, and smooth denote the heuristic assignment selection strategies discussed 

in Section 4.2. Moreover, we distinguish between different settings of parameter ι, which influences the 

size of the subset of assignments taken into consideration when solving [ULDSPGSP]. Finally, column 

avg. saved time shows the average relative reduction in CPU time over CPLEX solving model [ULDSP]. 

Note that all CPU times for the generalized set partitioning-based methods include the preprocessing 

time necessary to generate the set of assignments Ω in the first place. 

Expectedly, the optimality gap for CPLEX solving model ULDSP-GSP is 0% because this model is 

equivalent to the original model ULDSP. Interestingly, however, ULDSP-GSP could be solved a little 

more quickly on average than the original model. To really cut down on CPU times, however, the heu-

ristic assignment selection strategies need to be used. The greater ι, the fewer assignments are added to 

model ULDSP-GSP, which on the one hand results in shorter runtimes, but on the other hand makes it 

more likely that the optimal (or even a good) solution is no longer part of the search space. The results 

clearly show that the former is definitely true: especially with 𝜄 = 5, the CPU times become essentially 

negligible for the small instances, being barely measurable. On the downside, the solution quality suffers 
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somewhat, although the average optimality gaps are still quite low, at least for the semi-random and 

smooth selection strategies. 

All things considered, the smooth selection strategy at 𝜄 = 3 presents itself as the most convincing com-

promise between runtime and solution quality. The optimality gaps are among the best, well below 1% 

on average, while at the same time reducing CPU times by more than 97% over CPLEX solving the 

default model. This indicates that it is advantageous to forego the random element in the assignment 

selection and systematically choose assignments that are spread out over the search space. Note that this 

is not necessarily true for every single instance – regardless of the selection strategy, if 𝜄 > 1, the choice 

of subsets is always heuristic. For this reason, it is possible in some instances that selection strategies 

that are poorer on average nonetheless happen to include better assignments and thus yield lower objec-

tive values. Seeing that the very maximum optimality gap of the smooth strategy with 𝜄 = 3 is merely 

4%, the performance of this strategy seems quite stable, however. In the following tests, we will there-

fore only focus on this heuristic. 

 

 ULDSP  ULDSP-GSP  smooth (𝜄 = 3) 

ID f (opt.) CPU sec.  CPU sec.  rel. opt. gap CPU sec. 

1 20 7  7  0.00% 0 

2 60 1  0  0.00% 0 
3 22 1  1  0.00% 0 

4 27 2  2  3.70% 0 

5 55 1  0  1.82% 0 

6 26 1  1  0.00% 0 
7 19 4  3  0.00% 0 

8 30 20  18  0.00% 1 

9 32 3  4  0.00% 0 
10 45 1  0  0.00% 0 

11 35 1  1  0.00% 0 

12 22 245  731  0.00% 2 
13 29 21  8  0.00% 1 

14 25 7  6  4.00% 2 

15 30 1  0  0.00% 0 

16 31 2  1  0.00% 0 
17 12 6  6  0.00% 0 

18 46 6  6  0.00% 0 

19 20 1  1  0.00% 0 
20 25 13  12  0.00% 2 

 avg. 17.2  40.4  0.48% 0.4 

Table 4: Comparison of solution methods (small instances). 

Table 4 lists the test results for each of the 20 small instances in more detail. CPLEX managed to solve 

model ULDSP-GSP at least as fast as model ULDSP in all but two instances. In one case (instance 12), 

the picture is reversed, however, and solving the generalized set partitioning model actually took several 
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additional minutes. The real advantage of model ULDSP-GSP is that it can easily be turned into a heu-

ristic. Using the smooth selection strategy at 𝜄 = 3, the optimality gap is 0 in most instances. 

Finally, Table 5 takes a look at the results for the large instances. For these instances, no proven optimal 

solution is available as CPLEX turned out to be incapable of finishing within a one hour time limit. 

Instead, we print the best found objective value after one hour of computation in column f and use this 

value as a benchmark. All solution methods are capable of finding a solution whose objective value 

comes at the very least close to f if given one hour of CPU time. However, in light of ULDSP being an 

operational problem that has to be solved frequently, hour-long computations are most likely not ac-

ceptable for practitioners. Therefore, we compare the solution methods by the best found solution within 

a 10 second time limit. 10 seconds of CPU time should be adequate even for the most demanding appli-

cations. Given a 10 second time limit, CPLEX does not find a feasible – let alone optimal – solution 

when solving the original model ULDSP in most instances. In those few cases where it did find a solu-

tion, it is far worse than the best known one. Solving model ULDSP-GSP in 10 seconds, the default 

solver turns out to be somewhat more successful, at least in finding feasible solutions. The gap is still 

quite significant in many cases, however. Our best heuristic strategy (smooth at 𝜄 = 3), on the other 

hand, is clearly superior at finding good solutions with limited time. The very worst gap to the best 

known solution is below 4%, indicating a favorable tradeoff of CPU time and solution quality. 

 best known 

solution 

 ULDSP  ULDSP-GSP  smooth (𝜄 = 3) 

ID f  gap  gap gap 

1 94  112.77%  112.77%  2.13% 

2 130  -  7.69%  1.54% 

3 90  -  122.22%  2.22% 
4 89  123.60%  79.78%  3.37% 

5 110  -  2.73%  1.82% 

6 103  -  -  0.97% 
7 100  -  1.00%  1.00% 

8 118  -  2.54%  1.69% 

9 89  -  11.24%  1.12% 

10 108  80.56%  7.41%  1.85% 
11 112  76.79%  77.68%  0.89% 

12 107  -  8.41%  1.87% 

13 86  132.56%  6.98%  1.16% 
14 128  -  56.25%  1.56% 

15 117  -  43.59%  1.71% 

16 119  68.07%  2.52%  0.84% 

17 101  -  1.98%  3.96% 
18 117  -  11.97%  1.71% 

19 100  -  69.00%  0.00% 

20 122  -  4.10%  2.46% 

 avg.  99.05%  33.15%  1.69% 

Table 5: Comparison of solution methods given a 10 second time limit (large instances); a dash (-) de-

notes that no feasible solution was found within the time limit. 
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5.3. Practical implications 

In the second part of our computational study, we investigate the practical effects of (near-)optimal 

schedules on day-to-day operations and aim to derive managerial insights. As mentioned in the intro-

duction (Section 1), the current practice at the cargo terminal we visited is to start building up cargo at 

a predefined time before each flight departs. To analyse to what extent optimized schedules as proposed 

in this paper can improve on this rule of thumb, we perform the following series of tests. 

We implement the rule of thumb we observed in practice as follows, assuming that all jobs start pro-

cessing at most 6 hours before departure of the corresponding flight. 

1. Sort all jobs according to non-decreasing due date. 

2. For each job j in sorted order: 

a. Start job j as early as possible within the interval [max{0; 𝑑𝑗 − 36} ; 𝑑𝑗 − min
𝑘∈𝐾𝑗

{𝑝𝑗𝑘}], 

taking into account previously scheduled jobs, which may block resources (space and 

workers). 

b. Assign the minimum number 𝑘 ∈ 𝐾𝑗  of workers to job j such that it finishes not later 

than its due date 𝑑𝑗. 

c. Block space 𝑠𝑗  and workers k during the time the job is active. 

Note that when executing step 2, in some cases it might not be possible to schedule a job within its six-

hour time window because the previously scheduled jobs do not leave enough available ULD space. In 

this case, we schedule the job within its interval such that it exceeds the available space as little as 

possible. Moreover, we relax the bound on the number of workers Ḵ𝑡, that is, the number of workers 

assigned to a job is always such that it can be finished by its deadline, even if the total exceeds Ḵ𝑡. 

Table 6 compares the results of the rule of thumb to those of our best heuristic (smooth at 𝜄 = 3), where 

f denotes the objective value (maximum number of workers) and max. S stands for the maximum number 

of ULD workspaces used at any one time. Gap lists the reduction in f and S, respectively, if the smooth 

heuristic is used, calculated as (𝑓𝑟𝑜𝑡 − 𝑓𝑠𝑚𝑜𝑜𝑡ℎ) 𝑓𝑟𝑜𝑡⁄ , where 𝑓𝑟𝑜𝑡  (𝑓𝑠𝑚𝑜𝑜𝑡ℎ) is the objective value 

returned by the rule of thumb (smooth heuristic); analogous for gap S. 

Quite remarkably, optimized schedules can substantially cut down on the required workforce. Smartly 

scheduling jobs to avoid extreme peak hours makes more than half the labor force redundant. More than 

that, intelligent schedules also reduce the space requirements by more than 20% on average as a side-

effect, which may be good news for tight warehouses. 
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 rule of thumb  smooth (𝜄 = 3) 

ID f  max. S  gap f gap S 

1 166 193  58.43% 7.25% 
2 200 205  47.00% 20.00% 

3 240 212  56.67% 20.28% 

4 198 199  43.43% 30.15% 
5 247 214  55.06% 19.63% 

6 204 210  61.27% 15.24% 

7 204 192  48.04% 7.29% 
8 271 221  50.55% 31.22% 

9 292 240  65.07% 25.42% 

10 263 232   56.27% 30.17% 

11 263 245  58.94% 26.53% 
12 200 191  60.00% 5.76% 

13 206 210  51.46% 38.10% 

14 226 196  47.35% 21.94% 
15 211 225  57.82% 27.56% 

16 250 219  49.60% 24.20% 

17 238 217  63.03% 17.51% 
18 249 225  51.41% 27.11% 

19 294 253  54.76% 28.85% 

20 247 197  53.04% 12.69% 

  avg.  54.46% 21.85% 

Table 6: Comparison of optimized schedules and a rule-of-thumb (large instances). 

To analyse the tradeoff between size of the workforce and space requirements in more detail, we solve 

large instances generated as above with the smooth heuristic at 𝜄 = 3, except that we vary the available 

space S for each instance. The expectation is that the fewer ULD workspaces there are (i.e., the lower 

S), the more workers need to be hired to quickly build up ULD and release space sooner (i.e., the greater 

f). Table 7 shows the efficient frontier: the best number of workers for a given warehouse size for each 

of the 20 large instances. The data confirm our intuition: less space implies additional workers; however, 

the effect is not always very major. If space is very tight (𝑆 =  90), it is sometimes not possible to find 

any feasible solution at all, no matter how many workers are employed. Once space is sufficiently large, 

however, further increasing it has little effect on f. In our instances this point of diminishing return is 

reached when 𝑆 =  144. The exact number may vary depending on the setting but our tests clearly 

indicate that – given good schedules – increasing the size of the warehouse beyond a certain point is 

almost pointless. 

In the final part of our computational study, we consider the effect of uncertainty. As pointed out in 

Section 3, one assumption of our model is that it is already known with certainty how many ULD will 

be necessary for a given flight. This is, however, not necessarily true in practice. Since shipment sizes 

can vary considerably and the exact measurements are usually not known in advance, it is entirely pos-

sible that either more or fewer ULD may be required than originally planned. Note that extra shipments 

that cannot be loaded onto the originally allotted ULD are usually left at the airport because aircraft 
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cannot be overloaded. How these “surplus” ULD are handled is, however, immaterial for our following 

computational tests. 

ID S=90 S=126 S=144 S=162 S=180 S=225 

1 - 129 128 127 127 127 

2 134 105 100 96 95 95 

3 125 103 100 99 99 100 

4 114 108 108 108 108 106 

5 200 116 108 105 105 103 

6 146 125 122 121 121 121 

7 - 129 123 120 119 121 

8 200 199 107 106 106 105 

9 - 200 136 135 135 135 

10 102 95 93 93 94 93 

11 118 115 115 115 115 115 

12 118 103 101 101 101 101 

13 145 101 99 97 98 97 

14 - 140 126 121 119 118 

15 136 114 112 112 112 112 

16 135 105 101 101 102 101 

17 120 104 104 104 104 104 

18 129 106 106 105 106 105 

19 114 104 104 104 103 103 

20 199 120 115 104 101 100 

avg. 139,69 121,05 110,40 108,70 108,50 108,10 

Table 7: Size of workforce required depending on the available space in the warehouse (large in-

stances); dashes (-) denote that no feasible solution could be found. 

To test whether these stochastic fluctuations have any effect on the feasibility of a schedule, we solve 

large instances generated as before using smooth at 𝜄 = 3, and then modify them ex-post by randomly 

selecting γ percent of jobs and randomly varying (increasing or decreasing) their space requirement 𝑠𝑗  

by up to ζ percent. Table 8 contains the total capacity violation for varying levels of uncertainty (i.e., 

varying γ and ζ). Violations are calculated as the total number of ULD workspaces in excess of the 

available S workspaces over the entire planning horizon. Obviously, lower values are better. 

As can be expected, the more uncertainty there is, the more problematic the feasibility. All things con-

sidered, however, schedules generated by our smooth heuristic seem to be at least moderately robust. 

Some few instances (especially no. 19) are apparently sensitive to fluctuations, but in most cases the 

total violations are 0 even in the worst case, where 𝛾 = 𝜁 = 30%. Apparently, positive and negative 

fluctuations tend to cancel each other out in many cases. This allows drawing the conclusion that our 

solution methods can be used with a degree of reliability even in cases of uncertainty. 
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γ 10%  20%  30% 

ζ 10% 20% 30%  10% 20% 30%  10% 20% 30% 

ID 1 0 0 0  0 0 0  0 0 0 

ID 2 0 0 0  0 0 0  0 0 0 

ID 3 0 0 0  0 0 0  0 0 0 

ID 4 0 2 0  0 0 11  0 0 0 

ID 5 0 0 0  0 0 0  0 0 0 

ID 6 0 0 3  0 0 0  0 0 0 

ID 7 0 0 0  1 3 0  0 3 67 

ID 8 8 4 1  22 0 0  0 22 39 

ID 9 0 0 0  0 10 0  12 1 32 

ID 10 0 0 0  0 8 0  0 1 34 

ID 11 0 0 0  0 0 0  0 0 0 

ID 12 0 0 0  0 0 0  0 0 0 

ID 13 0 0 0  0 10 55  0 0 24 

ID 14 19 48 73  41 11 210  14 17 168 

ID 15 0 0 0  0 0 0  0 0 0 

ID 16 0 1 123  5 75 87  120 5 238 

ID 17 0 0 0  0 0 0  0 0 0 

ID 18 0 0 0  0 0 0  0 0 0 

ID 19 1 1 4  0 0 10  6 12 3 

ID 20 0 6 0  0 8 2  12 0 0 

avg. 1,4 3,1 10,2  3,45 6,25 18,75  8,2 3,05 30,25 

Table 8: Violation of the space constraint if the number of ULD per flight is uncertain (large in-

stances); γ denotes the percentage of flights affected, ζ is the maximum percentage by which ULD re-

quirements can fluctuate. 

6. Conclusion 

In this paper, we investigated a problem we encountered at a terminal of a major German airfreight 

carrier. It consists of scheduling the build-up of unit load devices and assigning a number of workers to 

each job. The problem is made more complicated by the fact that space for building up ULD is limited. 

The goal is to keep the peak labor force as small as possible. We proposed two mixed-integer program-

ming models for this novel problem, one of which formed the basis of a heuristic method. In a compu-

tational study we showed that, using the right parameter settings, our heuristic performs very well, de-

livering optimality gaps well below 1% on average. 

Regarding managerial insights, we derived the following take-home messages. 

• (Near-)optimal schedules as obtained by our heuristics are significantly better at avoiding large 

peak workloads than the simple rule of thumb we encountered in practice. On average, the re-

quired peak workforce could be more than halved. 
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• It is possible to trade off ULD space in the warehouse for workers. However, there are limits, 

as too low a number of ULD workspaces may make it impossible to find a feasible solution at 

all, while increasing the warehouse size hardly diminishes the required workforce after a certain 

point. 

• In reality, the exact number of ULD required for each flight is not always known with certainty. 

Our tests indicate that schedules generated by our heuristics are fairly robust in the face of un-

foreseen fluctuations, although in some (few) cases, significant violations of the spatial con-

straint may occur. 

To make the schedules more robust, future research could focus on incorporating the decision of which 

individual shipments to pack onto which ULD into the problem. At the moment, this seems to be tech-

nically impossible, at least with our industry partner, as detailed information on the exact measurements 

of the shipments is simply not available accurately for sufficient cases. However, it may be possible 

(and worthwhile) to obtain this data in the future. Another assumption that is currently made in practice 

but may be relaxed in the future is non-preemption, i.e., it may be unnecessary to reserve space for all 

ULD during the entire processing time of a job, which would require new algorithms. 
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Abstract 

This paper studies manual order picking activities in a warehouse where items are stored 

on pallets in two rows one above the other. Items stored on the pallets may be heavy, 

and manually picking the items may require excessive bending and stretching, which 

results in high spinal loads on the order picker associated with high injury risks. For this 

scenario that can frequently be observed in practice, this paper proposes an integrated 

model that supports the planning of order picking operations and pallet rotations taking 

account both of the time required for completing a set of orders as well as the spinal 

load on the order picker and the consequent injury risks. The results of a numerical 

experiment indicate that selectively rotating pallets may both reduce order picking time 

as well as the load on the order picker, leading to a quicker and less risky order picking 

process. The model proposed in this paper supports the decision of which pallet to rotate 

(and which not to rotate) against the company’s cost objectives and its strive for worker 

well-being. 

Keywords: 

Order picking; pallet management; human factors; warehousing; ergonomics; injury risks; spinal load. 
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1 Introduction 

The management of warehousing operations has enjoyed a high popularity in academic research for 

many years. The attention this research stream has received in the past originates from the high cost 

impact of warehousing, where order picking accounts for over 55 % of the operating costs (Frazelle 

2002; Tompkins et al. 2010; Richards 2014). To support efficient warehousing operations, researchers 

have developed mathematical models that assist warehouse managers in finding efficient warehouse 

layouts or storage assignments or in managing retrieval and replenishment processes (see Section 2). 

The primary objective of prior research on warehousing operations has been the reduction of travel time 

or travel distance. In manual order picking, for example, short travel distances can be achieved by cal-

culating short routes for the order picker and/or by assigning products to the storage locations of the 

warehouse in such a way that frequently requested products are stored close to the depot or in aisles the 

order picker anyway needs to visit (e.g., Petersen and Aase 2004; Muppani and Adil 2008). In automated 

order picking (e.g., in AS/RS systems), short travel distances (which correspond to quick item access 

times) can be achieved by storing products close to the input/output point of the system and by re-sorting 

products during idle times if changes in the demand patterns occurred (Roodbergen and Vis 2009). 

Especially in manual warehousing operations, an exclusive focus on time- and distance-based objectives 

does not necessarily match the requirements human workers directly or indirectly impose on the system 

(Grosse et al. 2017a). If items are assigned to storage locations solely with the objective to minimize 

travel distances, heavy and difficult to handle items may be stored in locations of the warehouse that are 

hard to access. This, in turn, may necessitate excessive bending and stretching on the part of the operator 

when retrieving these items from the warehouse, resulting in high loads on the operator’s spine (Grosse 

et al. 2015). It is obvious that the latter may lead to fatigue and high injury risks for warehouse workers 

(Battini et al. 2016a), and in particular to risks of developing low back disorders. Low back disorders, 

which are the most common type of musculoskeletal disorders, have been shown to occur especially in 

risk environments where human workers have to move heavy and difficult to handle items in awkward 

body postures (Garg 2000; Baldwin 2004; Lavender et al. 2012). Clearly, order picking occurs in such 

a risk environment. 

Injury risks as the ones just referred to are reflected in national statistics on occupational injuries. In the 

United States, for example, 356,910 cases of musculoskeletal disorders (such as strains or sprains re-

sulting from overexertion in lifting) were reported in 2015, with warehousing being the sector with the 

highest rate of injuries in private sector industries (BLS 2016). In fact, the incidence rate in warehousing 

has even increased from 2014 to 2015 to 56,550 days-away-from-work cases, with a high number of 

musculoskeletal disorders cases (BLS 2016). The economic burden of musculoskeletal disorders is sub-

stantial (e.g., with an approximate share of 2.5% of the GDP in Europe and a GDP share of up to 5.7% 

in the US) and is likely to grow with an advancing demographic change (Coyte et al. 1998; Dagenais et 

al. 2008; Bevan 2015; HHS 2015).  

Even though the manual handling of materials and its impact on human operators is an established and 

much-noticed stream of research in human factors engineering, it has surprisingly not received much 

attention in the management-oriented warehousing literature so far (Grosse et al. 2017a; 2017b). Just 

recently, researchers have started to integrate human factors aspects into mathematical decision support 

models of warehousing operations to balance the impact of warehousing on the cost objectives of the 

company and on the well-being of the human operator (e.g., Grosse and Glock 2015; Battini et al. 2016; 
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Larco et al. 2016; Glock et al. 2017). It is worth noting that prior research has shown that an improve-

ment in the ergonomic conditions of a workplace may also improve worker performance (Neumann and 

Village 2012; Rose et al. 2013), such that there is not necessarily a trade-off between economic and 

social objectives. 

The paper at hand addresses the manual picking of items from pallets in an order picking warehouse, 

which is one type of picking operations that very frequently occurs in practice. The scenario considered 

here assumes that pallets are stored in racks, with two levels of pallets stored above each other. Espe-

cially in case the warehouse worker has to pick items from the back part of the pallet, excessive bending 

and stretching become necessary, which may result in high peak and/or cumulative spinal loads on the 

order picker. Against this background, this paper investigates the effect that a simple rotation of pallets 

may have on the warehouse worker. Assuming that the front part of the pallet is more easily accessible 

to the order picker than the pallet’s back part, rotating pallets by 180° after their front part has been 

emptied helps to reduce bending and stretching on the part of the order picker, which may lower cumu-

lative and peak loads on the low back. Clearly, reduced loads on the order picker may lead to lower 

levels of fatigue and a lower injury risk for the worker (cf. Ma et al. 2009). Two important questions 

that arise in this context are, however, how the rotation of pallets interferes with the time- and/or travel 

distance-based objectives of the company, and whether rotating pallets leads to a positive net effect on 

the load level of the order picker, given that (manually) rotating the pallet may lead to an additional 

load. A third question that ultimately follows is which pallets should be rotated to facilitate picking 

items, and which pallets should be kept in their original position until they have been depleted. The 

paper at hand contributes to answering these research questions. 

The remainder of the paper is structured as follows. The next section reviews the related literature, and 

Section 3 introduces a practical case that motivated this research. Section 4 describes the problem in-

vestigated in this paper in more detail, and Section 5 proposes a mathematical model that optimizes both 

the routing of order pickers, the sequencing of orders, and the scheduling of pallet rotations in a ware-

house. Section 6 presents the results of a comprehensive numerical experiment, and Section 7 concludes 

the paper. 

2 Literature review  

To ensure efficient operations in manual order picking, several planning problems need to be solved. 

These planning problems can roughly be categorized into layout design, routing, storage assignment, 

and order batching (de Koster et al. 2007; van Gils et al. 2018). To support solving these planning 

problems in practice, researchers have developed mathematical models in the past whose main objective 

was the reduction of travel time or space cost. We give a brief overview of these planning problems in 

the following and then describe the role of human factors in order picking. 

 

Layout design determines the size and shape of the order picking warehouse as well as the number and 

configuration of aisles and shelves (Roodbergen et al. 2008; Mowrey and Parikh 2014; Roodbergen et 

al. 2015). Although most researchers focused on rectangular warehouses – either with one (e.g., Petersen 
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and Aase 2004; Thomas and Meller 2014) or more cross aisles (Vaughan and Petersen1999; Roodbergen 

and de Koster 2001) –, other layouts, such as U-shaped ones, have recently been discussed as well (e.g., 

Glock and Grosse 2012; Henn et al. 2013). 

Routing methods determine the order picker’s way through the warehouse and the sequence in which 

items are retrieved from the shelves. In the one-block rectangular warehouse, the order picker routing 

problem can be solved optimally in polynomial time as a special case of the Traveling Salesman Problem 

(Ratliff and Rosenthal 1983; Scholz et al. 2016). Other routing algorithms exist for the case of two or 

more cross aisles (Roodbergen and de Koster 2001; Theys et al. 2010). In practice, routing heuristics 

are frequently used that are in many cases more intuitive to the order picker than optimal routing, such 

as the well-known S-shape strategy, for example (de Koster and van der Poort 1998; Petersen and Aase 

2004). 

Storage assignment determines how items should be assigned to storage locations. The assignment can 

either be random or follow item characteristics such as the demand frequency, for example. In practice, 

items with a high demand frequency are often assigned to storage locations near the depot to reduce 

travel time (Petersen and Schmenner 1999). Another popular storage assignment method is class-based 

storage, where items with similar characteristics are assigned to different storage classes, which are then 

allocated to certain zones of the warehouse. Within each class area, items are assigned randomly to 

storage locations. The advantages of class-based storage have been highlighted in several studies (e.g., 

Muppani and Adil 2008; Chackelson et al. 2013; Rao and Adil 2013). In addition, correlated storage 

assignment, where items that are frequently demanded together are stored next to each other, can save 

travel time (Glock and Grosse 2012). Apart from that, Petersen et al. (2005) introduced the idea of 

verticality in manual order picking by considering the extra time it takes to pick items located on the top 

and lower shelf in a bin-shelving pick operation, which the authors denoted ‘golden-zone storage’. 

Order batching refers to the consolidation of several customer orders into a single picking order to 

reduce travel time. Although the order batching problem is NP hard, several algorithms exist that solve 

the problem in polynomial time under certain assumptions (Gademann and van de Velde 2005). Re-

cently, various heuristic approaches for solving the problem have been developed (Henn and Wäscher 

2012; Matusiak et al. 2014; Grosse et al. 2014). Closely related to order batching is zoning, where the 

warehouse is divided into several zones with an order picker being responsible for a specific zone (e.g., 

Yu and de Koster 2009). 

Apart from the planning problems described above, several other problems that frequently occur in 

manual order picking warehouses have started to attract the attention of researchers. For example, some 

researchers have studied congestion in warehouses and the impact of the warehouse system design on 

the occurrence of blocking (Hong et al. 2012; Hong 2014; Franzke et al. 2017). The intention of works 

in this area is to develop policies that help to increase the robustness of the warehouse towards picker 

blocking.  

Recently, researchers have started to investigate human factors and ergonomics aspects in warehousing 

(Grosse et al. 2015; 2017b), which is also the subject of the paper at hand. Interestingly enough, although 
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the negative health impact of manual handling tasks in order picking is undisputed in the ergonomics 

literature, integrated approaches that take account both of the economic and the ergonomic performance 

of the warehouse are still rare (Grosse et al. 2017a). Besides considering health and safety issues in 

planning models, researchers have also called for integrating human factors into order picking models 

to improve performance and quality (Boysen et al. 2015; Grosse et al. 2015). This call has been ad-

dressed by a few works so far. For example, Grosse et al. (2013) and Grosse and Glock (2015) investi-

gated the effect of human learning and forgetting on the performance and quality of order picking. Bat-

tini et al. (2016) integrated the concept of energy expenditure into storage assignment models to take 

into account physical effort, fatigue and discomfort as ergonomic indicators. A similar work is the one 

of Larco et al. (2016), who used Borg’s scale to measure the ergonomic performance of the warehouse. 

Battini et al. (2017) used the concept of rest allowance to consider ergonomic conditions during order 

picking and their cost impact. Calzavara et al. (2017) developed mathematical models to evaluate dif-

ferent design options for pallet racks in an order picking zone using both economic (order picking time) 

and ergonomic (energy expenditure) performance measures. Finally, recent studies experimentally in-

vestigated behavioral issues in order picking and their effects on performance (de Vries et al. 2016a; de 

Vries et al. 2016b; Glock et al. 2017). 

3 Case Study 

This section presents a practical case that motivated the research at hand. Prior to developing the math-

ematical model proposed in this paper, we observed order picking operations at a large manufacturer of 

paint and enamels. The company operates an order picking warehouse with a physical size of 2500 m² 

and 1800 stock keeping units. The warehouse supplies products mainly to hardware stores, specialized 

retailers and customers ordering via the company’s webshop. Items (mainly buckets, cans and boxes of 

different sizes and shapes) are stored on pallets in the company’s warehouse, and the pick zone includes 

two layers of pallets stored above each other. Above the pick zone, additional pallets are kept to replen-

ish the lower level pick zone. Items are picked directly from pallets. The order picker can access the 

lower pallet from the floor of the aisle; the upper pallet is stored approximately 1.60 meters above the 

floor of the aisle, such that a manlift (integrated in the pick truck in the case warehouse) is required to 

access this pallet. Figure 1 illustrates the order picking process in the case warehouse. 

As can be seen in Figure 1, the order picker has to bend and stretch during the picking of items due to 

the dimensions of the shelf locations. When picking items from the back part of the pallets, the order 

picker has to adopt an even more critical body posture than during the picking of items from the pallet’s 

front part. Especially when picking heavy and difficult to handle items, as is the case for some pick 

positions in the considered warehouse, picking from the back part of the pallets causes a serious injury 

risk to the order picker. Note that the paint buckets displayed in Figure 1 can weight up to 40 kg and 

only have a thin wire handle to allow the worker to pick the bucket in this particular application. In the 

case company described here, as well as in many other order picking warehouses in practice, the load 

on the order picker could be reduced by removing pallets whose front part has been depleted from the 

shelf, rotating them by 180°, and pushing them back into the shelf. The rotation of the pallet could be 

accomplished using a forklift truck, a hand pallet truck, or a specialized device such as the tool for 

rotating pallets described in Grosse et al. (2015). The impact of a rotation of pallets on the performance 
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of the order picking warehouse and on the load on the order picker is analyzed in the following sections 

of this paper. 

 

Figure 1: Order picking operations in the case warehouse 

4 Problem description 

In many order picking warehouses, products are directly picked from pallets or out of containers (e.g., 

Kadefors and Forsman 2000; Neumann and Medbo 2010; Calzavara et al. 2017). If the suppliers or the 

manufacturing department of the company deliver products on pallets to the warehouse, for example, 

then picking products directly from these pallets reduces the handling effort in the warehouse, as it is 

not necessary to move products from the pallets to the shelves of the warehouse first before they can be 

picked. In addition, picking products directly from pallets or out of containers may help to reduce in-

vestments in warehousing equipment, as fewer and less expensive shelves may be necessary to store the 

products in the order picking zone. Glock and Grosse (2012), for example, reported the case of a com-

pany that used two rows of stillages to form the shelves of the order picking zone, where the upper 

stillage was directly placed on top of the lower one. In this case, no shelves were necessary in the ware-

house, and products could easily be replenished by exchanging stillages. In addition, the layout of the 

order picking zone could easily be changed if required, as no shelves that are usually fixed to the ground 

and dedicated to a certain layout were employed. The major disadvantage of this type of warehouse 

organization is low space utilization, which is usually higher in warehouses where classical racks are 

used. 
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If products are directly picked from pallets, then the challenge is to organize the picking process in such 

a way that no excessive bending, stretching and lifting is required from the order picker, and that sim-

ultaneously the costs of picking orders are minimized. This challenge obviously arises since pallets are 

designed to facilitate transporting the product, and not picking it. If pallets are placed directly on the 

floor of the warehouse or on a low platform, then the order picker has to bend to pick up items. In 

addition, the dimensions of the pallet and the storage location may require bending and stretching from 

the order picker especially to reach products stored on the back part of the pallet. Continuous bending, 

stretching and lifting of products, however, may lead to a high load on the order picker’s musculoskeletal 

system, which may result in fatigue and/or injuries over time. In particular in the warehousing and stor-

age sector, national statistics report that musculoskeletal disorders account for a high share of all work-

related health problems, which renders order picking a high-risk environment (Eurostat 2009; BLS 

2016). 

In practice, several tools are available today that facilitate picking products from pallets. For example, 

some companies offer tools that gradually lift pallets as products are picked (and as the pallet’s weight 

reduces) or that rotate pallets once their front part has been emptied (see for example Grosse et al. 2015). 

The problem associated with using such tools is that they can often only handle a single pallet and that 

one tool would be required for each pallet. For most applications, and especially for small and medium-

sized companies, the associated investment cost is prohibitive. 

The paper at hand adopts a different perspective and analyzes the case where pallets can be rotated 

manually or using a forklift truck once their front part has been emptied. The focus of this paper is on 

the ergonomic and economic performance impact of rotating pallets. If pallets are rotated after their 

front part has been emptied, products do not have to be picked from the back part of the pallet anymore, 

which reduces the load on the order picker and may also help to shorten the actual pick time. The primary 

research question of our paper is whether the additional time that is required for rotating the pallet, and 

the possible additional load on the order picker that may result from rotating the pallet, is offset by the 

positive effects that exclusively picking from the front parts of pallets brings about. Even though the 

focus of this paper is on the case where products are picked from pallets, the model developed below is 

also applicable to the case where products are picked out of stillages or containers, provided that the 

order picker can access products both from the front and back side of the stillage/container. 

The model developed in this paper is inspired by the practical case presented in Section 3 and assumes 

a U-shaped order picking zone as described in Glock and Grosse (2012), Grosse and Glock (2013), and 

Henn et al. (2013), for example. The order picking zone is illustrated in Figure 2. As can be seen, we 

assume that the zone consists of two racks with 𝑛 pallets each, and one rack with 𝑚 pallets perpendicular 

to the other two racks. Each of the three segments of the U consists of two pallets, one on the upper and 

one on the lower level of the rack. We first number the pallets in the lower level of the rack clockwise 

as shown in Figure 2 and then continue with the upper level in the same manner. The depot, where each 

order picking tour starts and ends, is located at the open end of the U-zone. Note that Figure 1 shows 

one possible practical implementation of a U-shaped zone in practice; in the example, the pictures show 

the open end of the U-zone of a narrow, long U-zone. 
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Figure 2: U-shaped zone studied in this paper with n=8 and m=3 

Order picking in this zone works as follows: The order picker receives a customer order at the depot 

(denoted as “0” in Figure 2) and then starts retrieving items from the pallets until the order has been 

completed. If one of the pallets has been emptied, it is removed and replaced by a full pallet; the refill 

process, however, is not studied in this paper, as it is often done independently of the actual order picking 

process in practice (and in the case company studied in Section 3). The order picker travels along the 

aisle, possibly afoot pushing or pulling a cart or riding an electric vehicle as illustrated in Figure 1. 

In the following, we consider two alternatives for rotating pallets. The first alternative is to use a forklift 

truck equipped with a special device for rotating pallets, e.g. the device described in Schäfer et al. (2009). 

This device enables the order picker to rotate the pallet without incurring an additional load; however, 

it would be necessary to purchase the pallet rotation device in this case. The second alternative consid-

ered here is the case where the order picker uses a simple hand pallet truck to rotate the pallet, and it is 

illustrated in Figure 3. In this case, the order picker pulls out the pallet from the shelf (Steps 1 and 2), 

moves the pallet truck to the opposite side of the pallet (Step 3) and pushes it back into the shelf again 

(Steps 4 to 6). Clearly, the second alternative requires a broader aisle than the first one to permit these 

operations, and it creates an additional load on the order picker. The following section proposes a formal 

model that optimizes both the sequencing of orders, the routing of the order picker as well as the sched-

uling of pallet rotation tours. As an economic performance measure, we use the time required to com-

plete all orders, while as an ergonomic performance measure, we use the total peak load on the spine of 

the order picker. Both performance measures are described in detail in the next section. 
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Figure 3: Graphical illustration of the pallet rotation process 

5 The Model 

5.1. Biomechanical modelling 

For the assessment of spinal loading during order picking, a quasi-dynamic two-dimensional biome-

chanical model (4DWATBAK) was used. 4DWATBAK has been used by ergonomists in various field 

studies to assess risk factors of manual handling tasks, such as spinal shear, torso angle, or spine com-

pression related to low back injuries (e.g., Daynard et al. 2001; Village et al. 2005; Neumann and Medbo 

2010). In particular, the model allows estimating peak and cumulative loads on the lumbar spine, which 

are important risk indicators that have been validated in epidemiological studies (Norman et al. 1998; 

Neumann et al. 1999; Kerr et al. 2001; Cole and Grimshaw 2005). During field observations in the case 

company, data about body postures, pick time and item weight were collected, and the biomechanical 

model was set up for a male worker with standard measures (178 cm tall, 75 kg mass). Postures observed 

during picking items from pallets were entered into the biomechanical model (see also Neumann et al. 

1999). Figure 4 exemplifies the mannequin from the biomechanical model for a) picking from the back 

part of the lower level pallet and b) picking from the back part of the upper level pallet (see also Garg 

1986). 

In our model, the peak L4/L5 spinal compression, which represents the compressive force acting upon 

the L4/L5 intervertebral joint, was recorded as biomechanical output and calculated as a risk indicator 

(Schultz and Andersson 1981; Kerr et al. 2001; Neumann and Medbo 2010; Daynard et al. 2001). This 

measure has been validated in the literature as a suitable indicator for risk of low-back injuries (NIOSH 

1981; Norman et al. 1998; Daynard et al. 2001). To take account of item heterogeneity and the different 

positions of items on the pallet, the biomechanical analysis of peak L4/L5 spinal compression during 

picking was performed for different positions. The pallet was divided into two halves, front and back, 

as displayed in Figure 5 (see also Neumann and Medbo 2010). Spinal compression was recorded for 

1
2

3

4

5

6
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each posture observed during the picking of items from the front and back part of the pallet. Depending 

on how many items are stored above each other, the spinal compression was calculated for the different 

item layers stored on the front and back part of the lower level pallet. The number of items that can be 

stored above each other is determined by the item weight and type. For the upper level pallet, only one 

posture analysis for the front and back part of the pallet was performed as the order picker is able to 

adjust the height from which the pick is performed with the help of the manlift. As a result, the order 

picker is able to bring the manlift into a position that allows picking items in upright body posture. 

Without loss of generality, we considered four different types of items (1 kg, 5 kg, 10 kg and 25 kg 

buckets) in our analysis to simplify computation. Tables 1 and 2 illustrate the different item character-

istics and the biomechanical output for both lower and upper level pallets. 

 

Figure 4: Mannequin from the biomechanical model illustrating example body postures during pick 

tasks 

According to the literature, workers are at increased risk of low back injury if spinal compression ex-

ceeds 3400 N (Daynard et al. 2001; NIOSH 1981). The WATBAK model also reports a low back pain 

index, which represents the likelihood that the worker performing the task under analysis is a low back 

pain case (Norman et al. 1998). For example, picking the bottommost 25 kg bucket from the lower level 

pallet at the back leads to a peak spinal compression of 5469 N and a low back pain index of 0.72, which 

indicates that there is a probability of 72% that this worker would be rated as a low back pain case based 
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solely upon the peak L4/L5 spinal compression (Norman et al. 1998). As can be seen in Tables 1 and 2, 

the biomechanical analysis revealed a higher peak L4/L5 spinal compression for picking from the lower 

level pallet than for picking from the upper level pallet. This is due to the fact that bending and stooping 

is necessary for picking from the ground floor, whereas the manlift allows picking in an almost upright 

posture on the first floor. In addition, picking from the back part of the pallet is more strenuous than 

picking from the front part due to the required stretching and straining in awkward postures. Note that 

solely the peak L4/L5 spinal compression was recorded as risk indicator. Other risk factors, such as 

potential slips or falls from the first floor pallet, were not considered. 

 

Figure 5: Example of a pallet with three buckets stored above each other (25 kg) 

 Bucket weight 1 kg 

peak L4/L5  

compression (N) 

 Bucket weight 5 kg 

peak L4/L5  

compression (N) 

 Bucket weight 10 kg 

peak L4/L5  

compression (N) 

 Bucket weight 25 kg 

peak L4/L5  

compression (N) 

Bucket front back  front back  front back  front back 

1 1992 2288  2511 2809  2604 3368  3787 5649 

2 2193 2404  2457 2875  2651 3650  3211 5320 

3 2154 2493  2218 2998  2531 3468  2652 5245 

4 1347 2487  1675 2679  2221 3334  - - 
5 1222 2542  1452 2742  - -  - - 

6 1102 2439  - -  - -  - - 

Table 1: Item characteristics and biomechanical output for lower level pallets 

item weight (kg) 
Peak L4/L5 compression (N) 

front back 

1 792 1899 

5 899 2030 

10 1032 2194 

25 1432 2687 

Table 2: Item characteristics and biomechanical output for upper level pallets 

frontback

front of 
pallet

bucket 1

bucket 2

bucket 3

bucket 1

bucket 2

bucket 3
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The peak load on the order picker when rotating a pallet was calculated based on the weight of the pallet 

that needs to be rotated also using a biomechanical model developed in 4DWATBAK, and it is summa-

rized in Table 3. Peak L4/L5 spinal compression was calculated for the task of pulling out the pallet 

from the rack using a hand pallet truck (Step 2 in Figure 3), where the load was observed the highest for 

the pallet rotation process. Note that due to the mechanical advantage of the pallet truck used1, the actual 

weight acting on the order picker is lower than the combined weight of the pallet and the pallet’s load. 

The reduction in the required movement force resulting from the pallet truck’s mechanical advantage 

depends on the type of device used. 

Bucket 
weight (kg) 

# items per 

pallet (𝐻𝑖) 

Weight of pallet (20 kg) 

and load of  

half-full pallet (kg) 

Mechanical  

advantage: 0.0466 

(kg) 

Peak L4/L5 total 

compression 

(N) 

25 24 (12) 320 14.9 1989 

10 32 (16) 180 8.4 1538 

5 60 (30) 170 7.9 1503 

1 120 (60) 80 3.7 1187 

Table 3: Peak load on the order picker for rotating pallets with different types of items 

As an ergonomic performance measure, we calculate the total peak load on the spine of the order picker. 

The total peak load that results from picking item i, 𝑓𝑜𝑖, depends on the number of times that the corre-

sponding pallet i is rotated (|𝑅𝑜𝑡𝑖|), the number of item layers stored on the pallet (|𝑙𝑖|), as well as the 

number of picks from the front (𝑠 = 𝑓) and the back side (𝑠 = 𝑏) of layer l of pallet i (|𝑃𝑠𝑙𝑖|). The total 

peak load for picking items (𝐹𝑜) can then be calculated as follows: 

𝐹𝑜 = ∑ 𝑓𝑜𝑖
𝑁
𝑖=1 = ∑ (𝑓𝑜𝑅𝑖 ∗ |𝑅𝑜𝑡𝑖| + ∑ ∑ 𝑓𝑜𝑃𝑠𝑙𝑖𝑙=1,…,|𝑙𝑖|𝑠=𝑓,𝑏 ∗ |𝑃𝑠𝑙𝑖|)𝑁

𝑖=1   (1) 

here, 𝑓𝑜𝑅𝑖 is the compressive force on the L4/L5 intervertebral joint of the order picker for rotating 

pallet i (see Table 3), and 𝑓𝑜𝑃𝑠𝑙𝑖 is the compressive force on the L4/L5 intervertebral joint of the order 

picker that results from picking a single item from layer level l of pallet i from the front (s=f) or the back 

(s=b) part of the pallet (see Tables 1 and 2). 

5.2. The model of the order picking zone 

In developing the proposed model, we assume the following: 

1. Pallet locations are numbered as shown in Figure 1, where 0 denotes the depot. Each shelf has an 

upper (up) and a lower (lo) level, and one pallet is stored in each location. 
2. We use Euclidean distances to estimate the travel distance between the depot and a pallet or between 

any two pallets, as we assume that this is the most intuitive way for the order picker to travel through 

the order picking zone: 

𝑑𝑖𝑖′ = √(𝑥𝑖 − 𝑥𝑖′)2 + (𝑦𝑖 − 𝑦𝑖′)2 (2) 

where 𝑑𝑖𝑖′ is the distance between pallet 𝑖 and 𝑖′. 

                                                   
1 We use the term mechanical advantage here to refer to the fraction of the actual weight acting on the warehouse 

worker due to the technical attributes of the hand pallet truck. 
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Since Goetschalckx and Ratliff (1988a) have shown that the metric used for calculating travel dis-

tances in order picking only slightly influences system performance, rectangular distances, for ex-

ample, could be used as well. This also implies that the triangle inequality holds. 

3. Distances are measured from/to the centre of the depot and from/to the centre of the front side of 

the pallets. 

4. There is a gap of width 𝑧 between each two adjacent pallets to facilitate picking up the pallet, for 

example with a forklift truck. A part of the gap, or the entire gap, may be filled by vertical compo-
nents of the racks. 

5. The company follows a pick-by-order policy. The order picker uses some type of device, e.g. a hand 

cart or trolley, to transport items from the shelves of the U-zone to the depot. The device has a 
transport capacity that is always sufficient to complete the current picklist. 

6. The problem of assigning pallets optimally to storage locations is not studied in this paper. We 

assume that pallets (product types) have been assigned randomly to available storage locations. We 

will relax this assumption later in the paper and study a weight-based assignment as well. For other 
policies for assigning products to storage locations, the reader is referred to Petersen and Schmenner 

(1999) or Petersen et al. (2005). 

7. To rotate a pallet, the order picker uses a special device. As described in Section 4, this device can 
be, e.g., a forklift truck equipped for rotating pallets or a hand pallet truck. The device is only used 

after the picker has returned to the depot after finishing an order. 

8. When setting off from the depot to rotate pallets, the picker rotates all pallets whose front part is 
empty. 

9. When the pallet is emptied completely, the picker (or someone else) swaps it for a new one. There 

are always enough items in total in the warehouse to satisfy all orders, i.e., there are no stockouts. 

 

The following terminology is used throughout the paper: 

n number of pallets in one of the two parallel shelves of the U-zone [#] 

m  number of pallets in the shelve perpendicular to the two parallel shelves [#] 

N total number of pallets in the U-zone (i.e., pallets on the upper and lower level), with N 

= 2(2n+m) [#] 

  set of pallets with  = {1,...,N} 

𝐽 = {1, … , 𝑟} set of orders that need to be processed during the planning horizon 

Ω𝑗 ⊆ Ψ  set of pallets that need to be visited for order 𝑗 ∈ 𝐽 

Σ  schedule defining the sequence of jobs and the sequence of pallet rotation tours 

w  width of a pallet [cm] 

z  gap between two pallets [cm] 

xi coordinate that measures the position of the depot or pallet i along the centre line of the 

U-zone [cm] 

yi coordinate that measures the distance of the depot or pallet i from the centre line of the 

U-zone [cm] 

Hi capacity of the front and back part of pallet i [#]. The total capacity of the pallet is 2Hi 

[#] 

𝑡𝑓
𝑃(𝑖) time required to pick an item from the front part of pallet 𝑖 [sec] 

𝑡𝑏
𝑃(𝑖) time required to pick an item from the back part of pallet 𝑖 [sec] 
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𝑡𝑗
𝑅(𝑖) time required to rotate pallet 𝑖 on the lower (𝑗 = 𝑙𝑜𝑤) or upper level (𝑗 = 𝑢𝑝) of the 

shelves [sec] 

dii’  distance between pallets i and i’ [cm] 

u  time required to travel one centimetre in the warehouse [cm/sec] 

𝑓𝐷 (Ω𝑗)  travel time of the order picker for each order 

𝑅𝑘 ⊆ 𝐽  set of orders that are processed without any rotation of pallets in-between orders 

𝑓𝑃(𝑅𝑘)  total pick time for orders 𝑗 ∈ 𝑅𝑘  

𝑓𝑅(𝑅𝑘)  total rotation time for orders 𝑗 ∈ 𝑅𝑘  

𝑓𝑜𝑅𝑖 compressive force on the L4/L5 intervertebral joint of the order picker for rotating pallet 

i 

𝑓𝑜𝑃𝑠𝑙𝑖 compressive force on the L4/L5 intervertebral joint of the order picker for picking a 

single item from layer level l of pallet i from the front (s=f) or the back (s=b) part of the 

pallet 

𝑓𝑜𝑖  total peak load for picking item i for all picklists 

𝐹𝑜  total peak load for the order picker for processing all orders  

𝐹(Σ) total throughput time for a given set of orders 𝐽 and a schedule Σ 

|𝑃𝑠𝑙𝑖| number of picks from the front (𝑠 = 𝑓) and the back side (𝑠 = 𝑏) of layer l of pallet i 

|𝑅𝑜𝑡𝑖|  number of times that pallet i is rotated 

s(i)  weight of one unit of an item on pallet i [kg] 

5.3. Minimizing the total picking effort – model 

The optimization problem consists of the following decisions. Given a set of orders to be processed one 

after another (pick-by-order), 

1. in what sequence should the orders be processed, 

2. when should which pallet be rotated, and 

3. what route should the picker take to travel from the depot to the pallets and back for each 

order? 

Formally, let 𝐽 = {1, … , 𝑟} be the set of orders that need to be processed during the planning horizon, 

and let Ω𝑗 ⊆ Ψ be the set of pallets that need to be visited for order 𝑗 ∈ 𝐽. Each pallet 𝑖 ∈ Ω𝑗  is associated 

with a demand 𝑞𝑖𝑗, which is the number of items that need to be picked for order 𝑗 from pallet 𝑖, and a 

capacity 𝐻𝑖, which is the number of items that can be picked from the front part of the pallet before it 

has to be either rotated or accessed from the back. The back part of a pallet also has a capacity of 𝐻𝑖  

items, meaning that a pallet holds 2𝐻𝑖  items in total. Moreover, let 𝑑𝑖𝑖′  be the distance from pallet 𝑖 to 

pallet 𝑖′
 (or to/from the depot in case of 𝑑𝑖0/𝑑0𝑖) as defined by Eq. (2). Each pick takes either 𝑡𝑓

𝑃(𝑖) or 

𝑡𝑏
𝑃(𝑖), depending on whether the item can be picked from the front (𝑓) or the back (𝑏) part of the pallet. 

Note that the pick time also depends on the pallet 𝑖 per se, specifically on whether it is on the lower or 

upper level. 
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After completing an order and returning to the depot, the picker has a choice of either starting on the 

next order from set 𝐽, or alternatively setting off on a tour through the warehouse to rotate pallets. A 

“rotation tour” starts and ends at the depot just like a “pick tour”, hence the distances 𝑑𝑖𝑖′ are calculated 

the same way. However, the time to rotate a pallet is given by 𝑡𝑅(𝑖). Note again that the rotation time 

can vary depending on pallet 𝑖. 

When a pallet is completely empty, it is (immediately) swapped for a full one. Note that the time it takes 

to swap empty pallets for full ones is immaterial for our optimization problem as it can be assumed 

constant over the planning horizon: the number of times each pallet needs to be swapped depends solely 

on the total amount of items to be picked, regardless of the order sequence. 

A schedule Σ is defined by a partition {𝑅1, … , 𝑅𝐾} of set 𝐽, and a permutation 𝜋𝑘  of 𝑅𝑘, ∀𝑘 = 1, … , 𝐾, 

signifying that the picker processes the orders in set 𝑅1  in sequence 𝜋1 first, then orders 𝑅2  in sequence 

𝜋2, and so on. Every time the orders in one of the sets 𝑅𝑘  are completed, the picker performs a rotation 

tour to rotate all pallets whose front part is empty. Note that a schedule Σ also implicitly determines 

when empty pallets are swapped. We say that such a schedule is optimal if it minimizes the overall 

throughput time, i.e., the last order should be finished as soon as possible. The objective value of a 

schedule Σ consists of three parts. 

• The travel time of the picker for each order, which we denote as 𝑓𝐷 (Ω𝑗), 

• the pick time for the orders, which we denote as 𝑓𝑃 (𝑅𝑘), and 

• the time it takes to rotate pallets, which we denote as 𝑓𝑅(𝑅𝑘). 

We only consider solutions feasible if 𝑓𝑅 (𝑅𝑘) > 0, ∀𝑘 = 1, … , 𝐾, i.e., there are no “empty” rotation 

rounds, where no pallet is actually rotated. Consequently, we minimize 

𝐹(Σ) = ∑ 𝑓𝐷 (Ω𝑗)𝑗∈𝐽 + ∑ (𝑓𝑃(𝑅𝑘) + 𝑓𝑅(𝑅𝑘))𝐾
𝑘=1  (3) 

We now describe how to calculate the individual parts of the objective function for a given schedule Σ. 

First off, under the assumptions laid out above, the travel time 𝑓𝐷
 of the picker can easily be determined 

for each order without solving any kind of optimization problem by considering the following proposi-

tion. 

Proposition 1. For a given order 𝑗 ∈ 𝐽, an optimal route of the picker is to visit the pallets in  𝛺𝑗  in 

clockwise order from the depot. Let 〈0, 𝜔1
𝑗 , … , 𝜔

|𝛺𝑗|

𝑗 , 0〉 be the clockwise sequence of visits starting and 

ending at the depot. Then the optimal travel time of the picker is 𝑓𝐷(𝛺𝑗) = ∑ 𝑑
𝜔𝑖

𝑗
,𝜔𝑖+1

𝑗
|𝛺𝑗|

𝑖=0
. 

Proof. Considering the layout of the picking area as illustrated in Figure 2, the set of points 

{(𝑥𝑗, 𝑦𝑗)|𝑗 ∈ Ω𝑗} to be visited by the picker for any order 𝑗 always makes up a convex polygon. Barachet 

(1957, Theorem 3) showed that a route that corresponds to this convex polygon is of minimal length. 

Clearly, cycling in clockwise order through {(𝑥𝑗, 𝑦𝑗)|𝑗 ∈ Ω𝑗} is equivalent to following a route along the 

convex polygon and thus optimal.         
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Proposition 1 implies that the travel time ∑ 𝑓𝐷 (Ω𝑗)𝑗∈𝐽  in the objective is independent of the schedule Σ 

and can be calculated in polynomial time. The same is not true for the picking effort 𝑓𝑃(𝑅𝑘), which 

may vary between schedules because, depending on if and when pallets are rotated, the picker may have 

to either pick from the front or the back part of a pallet. Note, however, that the exact sequence of orders 

in 𝑅𝑘  (i.e., 𝜋𝑘) is immaterial for the total pick time. Only the total number of items to be picked between 

refill events is important. 

First off, in order to keep track of when pallets need to be swapped, we define 𝜂𝑖
𝑘

 as the total number of 

items remaining on pallet 𝑖 (both on the front and back parts) after orders 𝑅𝑘  have been picked, i.e., 

ɳ𝑖
𝑘 = ɳ𝑖

𝑘−1 + 2 ∗ 𝐻𝑖 ∗ 𝜇𝑖
𝑘 − ∑ 𝑞𝑖𝑗𝑗∈𝑅𝑘

;  ∀𝑖 ∈ 𝛹, ∀𝑘 ∈ {1, … , 𝑟}  (4) 

For convenience, we define 𝜂𝑖
0 ≔ 2𝐻𝑖 , ∀𝑖 ∈ Ψ. The number of times 𝜇𝑖

𝑘
 that pallet 𝑖 needs to be swapped 

while processing order set 𝑅𝑘  is defined as 

𝜇𝑖
𝑘 = {1 + ⌊

∑ 𝑞𝑖𝑗−ɳ𝑖
𝑘−1

𝑗∈𝑅𝑘

2∗𝐻𝑖
⌋ , if ∑ 𝑞𝑖𝑗 > ɳ𝑖

𝑘−1
𝑗∈𝑅𝑘

 

0, otherwise
       (5) 

Now, recall that our assumption is that if the picker makes a rotation tour, all pallets whose front part is 

empty must be rotated. Let 𝛾𝑖
𝑘

 be the number of items on the front part of pallet 𝑖 after the orders from 

set 𝑅𝑘  have been processed, i.e., 

𝛾𝑖
𝑘 = {

ɳ𝑖
𝑘−1 − ∑ 𝑞𝑖𝑗, if 𝛾𝑖

𝑘−1 = 𝜇𝑖
𝑘 = 0𝑗∈𝑅𝑘

max {0; 𝛾𝑖
𝑘−1 − ∑ 𝑞𝑖𝑗}, if 𝛾𝑖

𝑘−1 > 0 ⋀ 𝜇𝑖
𝑘 = 0𝑗∈𝑅𝑘

max{0; ɳ𝑖
𝑘 − 𝐻𝑖} , otherwise

     (6) 

where 𝛾𝑖
0 ≔ 𝐻𝑖 , ∀𝑖 ∈ Ψ. Moreover, let 

Ῠ𝑖
𝑘 = {

ɳ𝑖
𝑘−1, if 𝛾𝑖

𝑘−1 = 0

𝛾𝑖
𝑘−1, otherwise

         (7) 

be the number of items on the front part of pallet 𝑖 after the rotation tour between order sets 𝑘 − 1 and 

𝑘. We can then define the number of items picked from the front part of pallet 𝑖 for order set 𝑘 as 

𝜁𝑖
𝑘 = {

min {∑ 𝑞𝑖𝑗; Ῠ𝑖
𝑘}, if 𝜇𝑖

𝑘 = 0  𝑗∈𝑅𝑘

Ῠ𝑖
𝑘 + min {𝜇𝑖

𝑘 ∗ 𝐻𝑖; ∑ 𝑞𝑖𝑗 − ɳ𝑖
𝑘−1

𝑗∈𝑅𝑘
− (𝜇𝑖

𝑘 − 1) ∗ 𝐻𝑖} otherwise
    (8) 

The number of items picked from the back part of the same pallet is then ∑ 𝑞𝑖𝑗 − 𝜁𝑖
𝑘

𝑗∈𝑅𝑘
. The picking 

effort for one block of orders thus equals 

𝑓𝑃(𝑅𝑘) = ∑ (𝜁𝑖
𝑘 ∗ 𝑡𝑓

𝑃(𝑖) + (∑ 𝑞𝑖𝑗 − 𝜁𝑖
𝑘

𝑗∈𝑅𝑘
) ∗ 𝑡𝑏

𝑃(𝑖))𝑖∈Ψ       (9) 
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This leaves the last term of the objective function, minimizing the time it takes to rotate pallets. Let Γ(𝑘) 

be the set of pallets to be rotated in-between the processing of orders 𝑅𝑘  and 𝑅𝑘+1, i.e., 

Γ(𝑘) = {𝑖 ∈ Ψ|𝛾𝑖
𝑘 = 0}          (10) 

Note here again that we only consider solutions feasible where Γ(𝑘) ≠ ∅, ∀𝑘 = 1, … 𝐾, i.e., each rota-

tion tour must have at least one rotated pallet. Then the total rotation effort for the rotation tour between 

order set 𝑅𝑘  and order set 𝑅𝑘+1 is 

𝑓𝑅(𝑅𝑘) = ∑ 𝑡𝑅(𝑖) + 𝑓𝐷 (Γ(𝑘))𝑖∈Γ(𝑘)         (11) 

where 𝑓𝐷 (Γ(𝑘)) denotes the travel time for visiting the pallets to be rotated on the optimal route as per 

Proposition 1. 

To illustrate the calculation of the objective function, consider the following small-sized example with 

𝑚 = 𝑛 = 1 and 𝑁 = 6. Table 4 introduces the details of the items stored on these six pallets. 

Pallet (i) 𝐻𝑖  𝑡𝑓
𝑃(𝑖)  𝑡𝑏

𝑃(𝑖)  𝑡𝑅(𝑖) 

1 4  6  10  4 

2 6  4  8  4 
3 2  10  20  4 

4 3  8  15  4 

5 4  6  10  4 

6 2  10  20  4 

Table 4: Sample item data used for the illustrative example 

We further assume that the order picker needs to collect items according to the three pick lists introduced 

in Table 5. 

Pick lists (j) 𝑞1𝑗   𝑞2𝑗   𝑞3𝑗   𝑞4𝑗   𝑞5𝑗   𝑞6𝑗  

1 5  -  3  -  2  - 

2 3  4  2  6  2  3 

3 1  4  -  -  1  - 

Table 5: Sample pick lists used for the illustrative example 

We now calculate the total pick and pallet rotation time for the following solutions: Σ1 = {{1,3}, {2}} 

and Σ2 = {{1,2,3}}. Obviously, solution Σ2 does not consider pallet rotations in-between orders. Tables 

6 to 8 summarize calculations according to Eqs. (3) to (11). To simplify computing and displaying re-

sults, we neglect the travel time for rotation tours and for picking items. First, as explained before, the 

actual travel time for picking items plays no role in the proposed optimization model. Secondly, the 

effect of the total travel time for rotating pallets in a small-sized example with only three orders and six 

items is minimal. Therefore, this simplification does not have a big effect on the final result. The total 
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time required for picking items and rotating the pallets for Σ1 is 325 (with pallet rotation) and 345 for 

Σ2 (no pallet rotation). 

Σ1 𝑘 = 1 

Pallets (i) ∑ 𝑞𝑖𝑗

𝑗∈𝑅𝑘

 ɳ𝑖
𝑘 𝜇𝑖

𝑘 𝛾𝑖
𝑘  Ῠ𝑖

𝑘 𝜁𝑖
𝑘 ∑ 𝑞𝑖𝑗

𝑗∈𝑅𝑘

− 𝜁𝑖
𝑘 𝑓𝑃(𝑅𝑘) 𝑡𝑅(𝑖) 

Total 
time 

1 6 2 0 0 4 4 2 44 4 48 

2 4 8 0 2 6 4 0 16 0 16 
3 3 1 0 0 2 2 1 40 4 44 

4 0 6 0 3 3 0 0 0 0 0 

5 3 5 0 1 4 3 0 18 0 18 
6 0 4 0 2 2 0 0 0 0 0 

total 118 8 126 

Table 6: Results for 𝚺𝟏 and k=1 for the illustrative example 

Σ1 𝑘 = 2 

Pallets (i) ∑ 𝑞𝑖𝑗

𝑗∈𝑅𝑘

 ɳ𝑖
𝑘 𝜇𝑖

𝑘 𝛾𝑖
𝑘  Ῠ𝑖

𝑘 𝜁𝑖
𝑘 ∑ 𝑞𝑖𝑗

𝑗∈𝑅𝑘

− 𝜁𝑖
𝑘 𝑓𝑃(𝑅𝑘) 𝑡𝑅(𝑖) 

Total 

time 

1 3 7 1 3 2 3 0 18 0 18 

2 4 4 0 0 2 2 2 24 4 28 

3 2 3 1 1 1 2 0 20 0 20 

4 6 6 1 3 3 3 3 69 0 69 
5 2 3 0 0 1 1 1 16 4 20 

6 3 1 0 0 2 2 1 40 4 44 

total 187 12 199 

Table 7: Results for 𝚺𝟏 and k=2 for the illustrative example 

Σ2 𝑘 = 1 

Pallets (i) ∑ 𝑞𝑖𝑗

𝑗∈𝑅𝑘

 ɳ𝑖
𝑘 𝜇𝑖

𝑘 𝛾𝑖
𝑘  Ῠ𝑖

𝑘 𝜁𝑖
𝑘 ∑ 𝑞𝑖𝑗

𝑗∈𝑅𝑘

− 𝜁𝑖
𝑘 𝑓𝑃(𝑅𝑘) 𝑡𝑅(𝑖) 

Total 
time 

1 9 7 1 3 4 5 4 70 0 70 

2 8 4 0 0 6 6 2 40 4 44 
3 5 3 1 1 2 3 2 70 0 70 

4 6 12 1 6 3 3 3 69 0 69 

5 5 3 0 0 4 4 1 34 4 38 
6 3 1 0 0 2 2 1 40 4 44 

total 333 12 345 

Table 8: Results for 𝚺𝟐 for the illustrative example 

Figure 6 illustrates the inventory level on the front and back part of the pallets for the example illustrated 

in Tables 6 and 7 (solution Σ1). In Figure 6, “a” is the inventory level at the beginning of the planning 

horizon, “b” the inventory level after finishing first order set, “c” the inventory level after the rotation 

tour in-between the two order sets has been concluded, and finally, “d” the inventory level after the 

second order set has been completed. 
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Figure 6: Inventory level of front and back part of the items for a given solution over time 

By Proposition 1, the picker routing problem is not computationally hard under our assumptions. How-

ever, this is not true for the problem of determining the optimal pallet rotation schedule, as we show in 

the following. 

Proposition 2. Determining an optimal schedule Σ is NP-hard even if there is only one pallet location, 

i.e., |Ψ| = 1. 

Proof. We show NP-hardness by reduction from PARTITION, which is well-known to be NP-hard 

(Garey and Johnson, 1979). An instance of PARTITION is defined as follows. Given 𝑒 positive integers 

𝑎𝑔(𝑔 = 1, … , 𝑒), does there exist a partition {𝐴1, 𝐴2} of the set {1, … , 𝑒} such that ∑ 𝑎𝑔𝑔∈𝐴1
=

∑ 𝑎𝑔𝑔∈𝐴2
? 

We transform an instance of PARTITION to an instance of our problem by considering 𝑟 = 𝑒 orders 

and only one pallet, i.e., |Ψ| = 1. Each order requires that 𝑞1,𝑔 = 𝑎𝑔, ∀𝑔 = 1, … , 𝑒, items be picked 

from this pallet. The front part of the pallet contains 𝐻1 = ∑ 𝑎𝑔 2⁄𝑒
𝑔=1  items. We set the picking time 

from the back part of the pallet to a prohibitively high value, e.g., 𝑡𝑏
𝑃(1) = ∞, and the picking speed 
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from the front part of the pallet to a low value, e.g., 𝑡𝑓
𝑃(1) = 0. Moreover, the pallet rotation time can 

assume any value greater than 0, i.e., 𝑡𝑅(1) > 0. The travel speed can be any arbitrary value; for sim-

plicity’s sake assume that 𝑑0,1 = 𝑑1,0 = 0. The corresponding instance of PARTITION is a YES-in-

stance if and only if there exists a schedule with 𝐹(Σ) ≤ 𝑡𝑅(1). 

Since picking from the back part of the pallet is prohibitively time consuming, the pallet must be rotated 

before the picker would need to access the back part. In other words, the total demand ∑ 𝑞1,𝑗𝑗∈𝑅1
 before 

the first (and only) rotation round must be exactly 𝐻1 – otherwise, there would either be no rotation 

(because only pallets with an empty front part are rotated), or the picker would have to pick from the 

back part. Moreover, there cannot be more than 𝐾 = 2 order sets 𝑅𝑘  in total because the total effort for 

rotation rounds must be not greater than 𝑡𝑅(1), i.e., there can be only one single rotation tour. It is thus 

clear that set 𝑅1  must contain orders whose demand ∑ 𝑞1,𝑗𝑗∈𝑅1
 sums up to exactly 𝐻1 = ∑ 𝑎𝑔 2⁄𝑒

𝑔=1 . The 

correspondence with PARTITION is thus obvious.  

5.4. Minimizing the total picking effort – algorithm 

By Proposition 2, it is unlikely that a default solver will be able to solve instances of realistic size in 

acceptable time, which is confirmed by our computational experiments (see Appendix; in our experi-

ments, the default solver was not able to find a solution in one day for problems with 9 or more picklists). 

To solve large problem instances in reasonable time, we therefore propose a simulated annealing (SA) 

approach. Simulated annealing, originally proposed by Kirkpatrick et al. (1983), is a metaheuristic mod-

elled after the physical process of cooling a material that has previously been heated above its recrystal-

lization temperature. It has often proven successful in solving difficult scheduling problems (e.g., Van 

Laarhoven et al., 1992; Bouleimen and Lecocq, 2003; Kim and Moon, 2003). 

A solution in our SA is encoded as a vector 𝜌 = [𝑅1 , … , 𝑅𝐾] of order sets. All orders in a set 𝑅𝑘  are 

processed without interruption (i.e., without any pallet rotation tours in-between); however, each time 

the picker finishes all orders from a set 𝑅𝑘, he/she inserts a pallet rotation tour to rotate all pallets in the 

set 𝑅𝑘 whose front part is empty. This information is sufficient to evaluate the objective function (3) for 

any given vector 𝜌. To decode 𝜌 to an implementable solution Σ, orders within each set 𝑅𝑘  can simply 

be processed in any arbitrary sequence; this does not influence the overall throughput time. We define 

ℱ(𝜌) as the objective value as calculated by Eq. (3) for a given 𝜌. Note that the travel time 𝑓𝐷 (Ω𝑗), 

∀𝑗 ∈ 𝐽, can be calculated and stored in preprocessing and is then available for all evaluations of ℱ. 

We initialize 𝜌 ≔ [𝑅1] such that it contains only a single order set 𝑅1 ≔ 𝐽 containing all orders, with 

no pallet rotation scheduled. A neighbor 𝜌′
 of the current incumbent solution 𝜌 is reached by either 

randomly pushing one order from one set 𝑅𝑘  to another set 𝑅𝑘′, 𝑘 ≠ 𝑘′, or by swapping one randomly 

selected order from set 𝑅𝑘 with another order from set 𝑅𝑘′ , 𝑘 ≠ 𝑘′. Note that for the push neighborhood 

search, the target set 𝑅𝑘′  may also be a new set that has not previously existed, inserted into vector 𝜌 at 

some random position 𝑘′ ∈ {1, … , 𝐾 + 1}. Similarly, if the last order is pushed from some set 𝑅𝑘, 𝑅𝑘  is 

removed from 𝜌′. Among the push- and swap-based neighbors, we set 𝜌′ equal to the one that leads to 

lower ℱ(𝜌′). If exp((ℱ(𝜌) − ℱ(𝜌′)) 𝑇⁄ ) > rnd(0,1), 𝜌′ is accepted as the new incumbent for the next 
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iteration, i.e., 𝜌 ≔ 𝜌′, where rnd(0,1) is a uniformly distributed random number from the interval in 

the argument and 𝑇 is the current temperature. Initially set to 𝑇 ≔ 𝑓𝐷 (Ψ), the temperature is lowered 

every 50 iterations to 𝑇 ≔ 0.995𝑇. Once 𝑇 drops below 0.01, the search stops, and the best found solu-

tion is returned. As shown in the Appendix, the SA algorithm found the optimal solution for all small-

sized problem instances we investigated, at a 60% lower run-time as compared to the default solver. 

These results indicate that the SA approach may lead to good solutions. 

6 Numerical experiments 

This section analyses the influence of a rotation of pallets on the economic and ergonomic performance 

of an order picking warehouse using the objectives defined in Section 5. In our numerical experiments, 

we consider a U-zone with 60 pallets in total, where half of the pallets are stored in the lower level of 

the shelves and the other half in the upper level with 𝑛 = 11 and 𝑚 = 8 determining the layout of the 

U-zone. We assume standard EURO pallets with 𝑤 = 120 cm. Some data describing the rotation of 

pallets were taken from Schäfer et al.’s (2009) field study of a pallet rotation device attached to a forklift 

truck. The authors found that rotating a pallet using this device takes approximately one minute. Our 

own observations in the case company described in Section 3 showed that approximately the same time 

is required to rotate pallets on the lower level using a hand pallet truck. Since rotating pallets on the 

upper level leads to an additional vertical travel of the order picker, we considered an extra 15 sec for 

rotating pallets on upper shelves, i.e., we assume 𝑡𝑢𝑝
𝑅 (𝑖) = 75 and 𝑡𝑙𝑜𝑤

𝑅 (𝑖) = 60 for both devices. 

Schäfer et al. (2009) further observed that the time required to empty the front half of a pallet consumes 

approximately 70% of the time required to empty the back part (see Neumann and Medbo (2010) for 

similar results). Based on our observation of pick times, the time needed to pick up an item depends on 

the weight of the item, the level of the pallet (upper vs. lower level) and the part of the pallet the item is 

stored on (front vs. back). Table 9 summarizes the parameters used for the computational experiment. 

Weight of 

items (kg) 
𝐻𝑖 𝑡𝑓−𝑙𝑜𝑤

𝑃 (𝑖) 𝑡𝑓−𝑢𝑝
𝑃 (𝑖) 𝑡𝑏−𝑙𝑜𝑤

𝑃 (𝑖) 𝑡𝑏−𝑢𝑝
𝑃 (𝑖) 𝑡𝑙𝑜𝑤

𝑅 (𝑖) 𝑡𝑢𝑝
𝑅 (𝑖) 

1 60 2 17 4 19 60 75 
5 30 5 20 8 23 60 75 

10 16 10 25 15 30 60 75 

25 12 20 35 30 45 60 75 

Table 9: Parameters used for the computational experiment 

The remaining parameters are based on our observations in the case company, and they are assumed as 

follows: 𝑧 = 30 cm, 𝑢 = 80 cm/sec. To simulate demand, 1000 picklists were generated randomly 

based on our observations at an industry partner. The weight of the items on each pallet were selected 

randomly from the set {1, 5, 10, 25}. The number of items contained on a picklist was generated using 

U~(1,10). The required quantity per picklist for the different items was generated using U~(1,8) (1 kg), 

U~(1,6) (5 kg), U~(1,4) (10 kg) and U~(1,2) (25 kg). 

The model proposed in this paper aims on optimizing the total time needed to finish all 1000 picklists 

(economic objective) as calculated in Eq. (3). In addition, we evaluate the effect of the obtained solution 

on the total peak load acting on the order picker (ergonomic objective) as calculated in Eq. (1). Figure 
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7 illustrates the total order completion time per picklist for alternative pallet rotation strategies. In Fig-

ures 7 to 12, the abscissa displays the minimum item weight for pallet rotation. For each of the pallet 

rotation strategies, items that weigh at least the indicated weight are rotated, (e.g., “10 kg” means that 

all pallets with items weighting 10 kg or more are rotated), with “n.R.” indicating the case of “no rota-

tion”. Figure 7 demonstrates that rotating all pallets would improve the economic objective by 2.05% 

compared to the n.R. strategy. The average time needed for rotating pallets is identical for both auto-

mated and manual pallet rotation cases, as the time needed to rotate a pallet was assumed identical in 

both cases. Figure 7 also shows that including 25 kg and 1 kg items in the rotation tours leads to a 

stronger reduction in the total order completion time than including 10 kg and 5 kg items, with 10 kg 

impacting the total order completion time the least. This result is due to the different net improvement 

that can be obtained from rotating the different pallets (total pick time saved minus pallet rotation time, 

see Table 9). The net improvement is 30 sec for 5 kg and 10 kg items in our example, while it is 60 sec 

for 1 kg and 25 kg items. In addition, the average demand for the different items influences this result, 

which was assumed higher for 5 kg items than for 10 kg items. 

 

Figure 7: Average time needed to process one pick list for different pallet rotation strategies 

To evaluate the effect of an eventual rotation of pallets on the ergonomic objective, we first study the 

case where rotating pallets does not lead to an additional load on the order picker (i.e., the case where 

an automated pallet rotation device is used). Figure 8 shows the average load per picklist and the average 

load per unit of time for different pallet rotation strategies. Note that these two load measures were 

selected as the different pallet rotation strategies can lead to different order processing times, which 

would distribute the cumulative peak load over different time intervals. The average load per picklist 

was calculated by computing the total load on the order picker according to Eq. (1) and by then dividing 

it by the number of pick lists (1000 in this example). The average load per unit of time, in contrast, was 

calculated by dividing the total load on the order picker according to Eq. (1) by the total time required 

to complete all picklists using Eq. (3). As expected, if rotating pallets does not lead to an additional load 

on the worker, rotating pallets always reduces the load on the order picker and thus improves the ergo-

nomic assessment of the workplace. As can be seen, rotating all pallets once their front part has been 
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depleted leads to a reduction of the average load per picklist on the order picker of 24.54%, and to a 

reduction of the average load on the order picker per unit of time of 22.95% as compared to the situation 

where pallets are not rotated at all. 

 

Figure 8: Average load on the order picker for different pallet rotation strategies and automated pallet 

rotation 

Figure 9 illustrates the average time per picklist for different pallet rotation strategies and alternative 

time differences for picking from the front and the back part of a pallet (referred to as ∆𝑖= 𝑡𝑓
𝑃(𝑖) − 𝑡𝑏

𝑃(𝑖) 

hereafter). Clearly, the quicker the order picker can pick items from the front part of a pallet as compared 

to items from the pallet’s back part, the lower is the average time per picklist for any of the pallet rotation 

strategies. As expected, for small values of ∆𝑖, rotating pallets would not be beneficial from a short-term 

(time-based) economic point of view, as it would lead to an increase in throughput time. Starting from 

∆𝑖= 4, rotating pallets improves the economic objective for the 1 kg pallet rotation strategy. A further 

increase in ∆𝑖 would also make the other rotation strategies profitable. 
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Figure 9: Average time per picklist for different values of ∆𝑖 

We next study the case where rotating pallets leads to an additional load on the order picker (i.e., the 

case of a manual rotation of pallets). As can be seen in Figure 10, the behavior of the pallet rotation 

strategies is similar as in the case where rotating pallets does not lead to an additional load on the order 

picker. Nevertheless, moving from the case where pallets are not rotated (“n.R.”) to the case where all 

pallets are rotated once their front part has been depleted (“ 1 kg”) still reduces the load on the order 

picker by 22.65% per pick list and by 21.02% per unit of time. 

 

Figure 10: Average load on the order picker for different pallet rotation strategies and manual pal-let 

rotation 

A further aspect we analyze is the number of dangerous picks that have to be performed by the order 

picker. As explained in Section 5, a pick may be considered dangerous for the order picker if the spinal 

compression associated with the pick exceeds 3400 N. Figure 11 illustrates that for the pick lists con-

sidered in the computational experiment, rotating only the heaviest items (this corresponds to the “≥ 25 
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kg” strategy) reduces the number of dangerous picks by 29.33% as compared to the case where pallets 

are not rotated at all (“n.R.” strategy). If we rotate both 25 kg and 10 kg items (this corresponds to the 

“≥ 10 kg” strategy), the number of dangerous picks would be reduced by 70.58%. As illustrated in 

Tables 1 and 2, picking from different levels and from the back or front part of the pallet does not lead 

to a load that exceeds 3400 N for 1 kg and 5 kg items. Thus, rotating them would not reduce the number 

of dangerous picks as compared to the other two types of items. 

 

Figure 11: Number of dangerous picks for different pallet rotation strategies 

To reduce the load on the order picker, the company could also decide to assign heavy items to storage 

locations that facilitate picking the products. In the example studied in this paper, items on the upper 

level can be picked in an upright standing position by the worker, which leads to lower loads on the 

order picker (see Tables 1 and 2). In the following, we therefore assume that heavy items are assigned 

to the upper level of the rack (denoted as “hi up” in Figure 12 and 13), while light items are assigned to 

the lower rack level. In the present example, the assignment procedure starts with assigning 25 kg items 

to the upper rack level starting with the position closest to the depot and then continues with 10 kg items 

etc. In the following, this new weight-based assignment method is compared to the “standard” assign-

ment in which the items are assigned randomly to the storage positions. 
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Figure 12: Load and time per picklist for the standard and the weight-based assignment 

By storing heavy items in upper shelves, we expect to reduce the overall load on the order picker. How-

ever, as Figure 12 illustrates, our numerical experiment revealed that, for the considered problem pa-

rameters and for almost all pallet rotation strategies, the hi-up storage assignment increased the load on 

the order picker as compared to the standard assignment. The highest increase in average load per pick-

list was realized for the “≥ 1 kg” pallet rotation strategy. Figure 12 also illustrates that changing the 

storage assignment would consistently lead to a considerable decrease in the average time per picklist 

for all pallet rotation strategies. The reduction in average time ranged between 15.03% and 15.53%. The 

highest reduction in the average time per picklist was realized for the “≥ 1 kg” pallet rotation strategy. 

These counterintuitive results can be explained by the problem parameters used for generating test in-

stances in the numerical experiment. As explained above, it was assumed that light items are demanded 

more frequently than heavy item, with the demand for 1 kg items being, on average, four times higher 

than the demand for 25 kg item. Even though the hi-up storage assignment reduces the load on the order 

picker for heavy items, it increases the load on the order picker for light items that are required much 

more often than the heavy ones. The net effect on the load the order picker is exposed to is negative in 

the present example. The same effect explains the difference in average pick times.  

The results obtained for the weight-based storage assignment consequently change if the demand struc-

ture for the items is adjusted. Figure 13 illustrates the average load on the order picker as well as the 

average time required for completing a pick list for the case where the demand for all items was gener-

ated randomly from U~(1,4). The weight-based storage assignment now consistently outperformed the 

standard assignment, with reductions in average load ranging between 5.3% and 8.56%. Figure 11 also 

shows that in this example, the change in the storage assignment entailed a reduction in the average time 

per picklist that ranged between 1.56% and 1.68%. 
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Figure 13: Load and time per picklist for the standard and the weight-based assignment for an ad-

justed item demand structure 

The question of whether rotating a particular pallet improves the time objective of order picking solely 

depends on ∆𝑖= 𝑡𝑓
𝑃(𝑖) − 𝑡𝑏

𝑃(𝑖), the time to rotate a pallet 𝑡𝑅(𝑖), and the number of items stored on the 

pallet, 2𝐻𝑖 . If the time difference for picking items from the front and the back part of the pallet is ∆𝑖=

2 seconds, for example, and if the pallet fill quantities assumed in Table 8 are given with 𝑡𝑙𝑜𝑤
𝑅 (𝑖) = 60 

and 𝑡𝑢𝑝
𝑅 (𝑖) = 75, then rotating 10 kg and 25 kg pallets would result in an increase in order picking time. 

Considering the problem’s parameters displayed in Table 9, which are all based on our observations in 

practice, we have ∆𝑖 ∗ 𝐻𝑖>𝑡𝑢𝑝/𝑙𝑜𝑤
𝑅 (𝑖) for all items, and therefore rotating all pallets can potentially im-

prove the economic objective.  

We now assume that 𝑡𝑙𝑜𝑤
𝑅 (𝑖) = 100 and 𝑡𝑢𝑝

𝑅 (𝑖) = 115, which results in a situation where only rotating 

1 kg and 25 kg items can potentially reduce order picking time. A straightforward strategy for the com-

pany in this new problem setting could be to only rotate pallets whose rotation leads to a direct improve-

ment of the time objective of order picking, i.e. 1 kg and 25 kg items. This strategy is referred to in the 

following as “rot. 1&25 kg”. 

To gain insights into how the new problem setting influences the pallet rotation strategies, we first com-

pare the average number of rotations for the different items in both scenarios. As Figure 14 illustrates, 

forcing the system to rotate pallets that worsen the time objective, i.e. 5 kg and 10 kg items in this 

example, would dramatically reduce the total number of pallet rotations for all items. Excluding these 

items from pallet rotation tours (cf. the “≥ 25 kg” and “rot. 1&25 kg” pallet rotation strategies) leads to 

a high number of pallet rotations again. 
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Figure 14: Average number of rotations for different items considering different rotation strategies and 

under different pallet rotation times 

As Figure 15 illustrates, with the new parameter setting, all rotation strategies would slightly increase 

the time objective, making pallet rotations not worthwhile from an economic point of view. Note that 

we assumed that for all pallet rotation strategies excluding “n.R.”, at least one pallet rotation tour needs 

to be scheduled, which is why the “≥25 kg” and “rot. 1&25 kg” strategies led to a slightly higher through-

put time than the “n.R.” strategy that does not include any pallet rotations (the increase is less than 

0.1%). As a result, for the new parameter settings, a company that is only interested in shortening the 

throughput time of its order picking operations would select the “n.R.” strategy. 

 

Figure 15: Average time needed to process one pick list for different pallet rotation strategies with the 

new problem setting 

Figure 16, in turn, shows that rotating only pallets with 1 kg and 25 kg items significantly reduces the 

load on order picker as compared to the other pallet rotation strategies in the new scenario, as the total 
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number of pallet rotations is highest in this case (cf. the grey bars in Figure 14). The highest reduction 

in the load per picklist with about 9% results, as expected, when comparing this strategy to the case of 

no rotations. The load per picklist is higher in this example if all pallets are rotated (cf. the “≥ 1 kg” 

pallet rotation strategy in Figure 16). This result that may seem counterintuitive at first glance can be 

explained using the results shown in Figure 14, which illustrate that including all items in the pallet 

rotation tours leads to a significantly lower total number of rotations due to the negative impact a rotation 

of 5 kg and 10 kg items would have on the total throughput time. 

 

Figure 16: Average load on the order picker for different pallet rotation strategies and automated pallet 

rotation with the new problem setting 

As in the case where the company aims on rotating only pallets whose rotation leads to a direct improve-

ment in order picking time, the objective in the case where rotating pallets leads to an additional load 

on the order picker could be to rotate only those pallets whose rotation has a positive net effect on the 

load of the order picker. In the example studied here, the rotation of all pallets has a positive net effect 

on the load of the order picker as, due to the mechanical advantage of the hand pallet truck studied, a 

relatively low weight acts on the order picker. The additional load that is caused by rotating the pallet is 

then directly offset after a single or a few picks. However, in case the company should use a hand pallet 

truck with a different (less efficient) mechanical advantage than the one studied here, excluding pallets 

with a negative net effect on the load of the order picker from rotations would make sense from an 

ergonomics point of view (even though rotating such pallets may still be beneficial from an economic 

perspective). 

7 Discussion and conclusion 

This paper studied order picking in a warehouse where products are stored on pallets in two rows one 

above each other, and it was inspired by a situation observed in practice. Picking products directly from 

pallets renders order picking a high-risk environment for developing musculoskeletal disorders due to 

the required handling of heavy loads and continuous bending, stretching and lifting during materials 

handling. The challenge that arises for warehouse managers in this case is to organize the order picking 

process as efficiently as possible, simultaneously keeping in mind health and safety issues. The first 
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aspect can be addressed by planning short order picking routes and implementing storage assignment 

methods that allocate frequently required items close to the depot of the warehouse. Worker well-being, 

in turn, can be improved by searching for opportunities to reduce the load on the warehouse worker. The 

paper at hand investigated the case where the company has the opportunity to rotate pallets once their 

front part has been depleted, which helps to reduce the extent of bending and stretching required on the 

part of the order picker, and therewith the load on the worker’s spine. The load on the spine of a worker 

is a frequently-used indicator for injury risks in manual materials handling. 

After describing the practical case that motivated the research at hand, a biomechanical model was de-

veloped to measure the peak L4/L5 spinal compression that acts on the order picker during the picking 

of items. This approach is common in the human factors engineering literature and well documented as 

a suitable indicator for risks of low-back injuries. In addition, an economic measure of total order pick-

ing time was developed, and a mathematical model was proposed for sequencing orders, routing the 

order picker through the warehouse, and scheduling pallet rotation tours. The developed model allows 

studying the impact of rotating pallets on two different measures, order picking time and peak spinal 

load on the order picker, which has not been addressed in the literature so far.  

From a managerial point of view, our analysis revealed that rotating pallets can reduce both order pick-

ing time and the spinal load on the order picker. Especially when rotating pallets is associated with no 

or a low additional load on the order picker, our results indicate that rotating pallets always reduces the 

load on the order picker and thus improves the ergonomic assessment of the workplace. In particular 

when picking heavy items from pallets, picking items from the pallet’s front part causes a significantly 

lower load on the order picker, such that a potential additional load that results from rotating pallets is 

offset already after a few picks. Apart from a reduction in the load on the order picker, our analysis 

indicated that rotating pallets may also lead to an improvement in the time-objective of order picking. 

Although rotating pallets consumes a certain amount of time, picking from the front part of a pallet is 

often quicker than picking from the pallet’s back part, such that the time required for rotating pallets can 

be compensated by the quicker picking activity especially for products where a larger number of items 

are stored on the pallet. 

These results have important managerial implications: First, it could be shown that there is not neces-

sarily a trade-off between economic and ergonomic objectives, as some measures that aim on improving 

worker well-being also improve the worker’s performance. Secondly, companies under strong cost pres-

sure that only aim on improving their economic objectives may still improve worker well-being by 

rotating only those pallets that lead to a direct reduction of order picking time. Even though such a pallet 

rotation strategy might exclude pallets with heavy items from being rotated, the selective rotation of 

pallets still reduces the load on the order picker and improves the ergonomic assessment of the work-

place. 

Our results further showed that alternative storage assignment methods could be another interesting 

alternative to reduce the load on the warehouse workers. As our biomechanical analysis indicated that 

picking from the upper pallet level produces a lower load on the order picker than picking from the 

lower level, we developed a weight-based storage assignment that assigns heavy items to the upper rack 
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level. Our results indicate that this storage assignment has the potential to reduce the load on the order 

picker if the demand for these items is high enough; otherwise, it may lead to an increase in the load on 

the warehouse worker, as items with a lower weight (but a higher demand) are moved to storage posi-

tions that enhance the load on the worker. Consequently, alternative storage assignment methods need 

to be carefully evaluated in light of item and demand characteristics.  

This work has limitations. First, the spinal load on the order picker depends on specific worker and 

workplace attributes, such that the load values obtained from our biomechanical model and the results 

obtained in the numerical analysis cannot necessarily by generalized. We note, however, that the method 

proposed in this paper can be applied to any workplace setting where items are picked from pallets, such 

that our model is well suited to support decisions on the rotation of pallets in practice. Similarly, only 

two general types of pallet rotation devices were studied in this paper, and a practical application of our 

model may make it necessary to re-estimate the performance figures of the devices. Thirdly, direct in-

terdependencies between the load level and the performance of the order picker were not considered in 

this paper. There is, however, evidence that higher load levels increase worker fatigue (e.g., Granata and 

Marras 1996), leading to a slower order picking process and more pick errors over time. If such a rela-

tionship is assumed, rotating pallets becomes even more interesting, as it may help to reduce the fatigue 

levels of the warehouse workers. In this line of thought, future research could focus on procedures that 

determine the sequences of heavy picks and work breaks to avoid that several heavy items have to be 

picked consecutively. This could, for example, be modelled using a fatigue-recovery measure coupled 

with a maximum endurance time during which a worker is able to complete a certain task (or set of 

heavy picks) without an increased injury risk. Finally, also the long-term cost impact of high spine loads 

on the workforce was not considered in this paper. Several studies have shown that high spinal loads 

may lead to lower back pain resulting in high long-term direct and indirect costs for the company (e.g., 

Baldwin 2004). Clearly, considering such costs would again increase the economic benefit of rotating 

pallets in order picking. 

Considering the limited number of works that study human factors in order picking from an interdisci-

plinary perspective, this paper contributes to the development of the research stream of sustainable ware-

house management. Future work could study other planning problems in order picking, such as routing 

or order batching, and integrate ergonomics measures (such as peak spinal load used in this paper) into 

related decision support models. This could facilitate managerial decision making and help to highlight 

that considering ergonomics objectives during the planning process does not solely induce costs, but 

that it can instead contribute to long-term sustainable processes. In case of order picking, this could 

simultaneously lead to reduced costs of picking as well as reduced injury risks. 
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Appendix (the default solver) 

This section first presents a MILP model for solving the problem under consideration and then we com-

pares its results with the results obtained by our SA approach described in Section 5.4. Table A1 sum-

marizes the notations used in developing the proposed MILP model. 

Decision variables 

𝑥𝑗𝑘  1 𝐢𝐟 𝑜𝑟𝑑𝑒𝑟 𝑗 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑠𝑒𝑡 𝑘, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 0 𝑘, 𝑗 = 1, … , 𝑟 

𝑦𝑖𝑖′𝑘 

1 𝐢𝐟 𝑖𝑡𝑒𝑚𝑠 𝑖 & 𝑖′ > 𝑖  
𝑏𝑜𝑡ℎ 𝑛𝑒𝑒𝑑𝑒𝑑 𝑖𝑛 𝑠𝑒𝑡 𝑘 (𝑖. 𝑒. , 𝑄𝑖𝑘 > 0 & 𝑄𝑖′𝑘 > 0),  

𝑚𝑒𝑎𝑛𝑠 ℎ𝑎𝑠 𝛾𝑖
𝑘 = 0, 𝛾𝑖′

𝑘 = 0 

𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑜𝑡ℎ𝑒𝑟 𝑖𝑡𝑒𝑚 𝑖 > 𝑖′′ > 𝑖 𝑤𝑖𝑡ℎ 𝛾𝑖′′
𝑘 = 0;  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 0 

𝑖 = 0. . 𝑛 − 1 

𝑖′ = 𝑖 + 1. . 𝑛 

𝑘 = 1, … , 𝑟 

Integer variables 

𝑄𝑖𝑘 ∑ 𝑥𝑗𝑘 ∗ 𝑞𝑖𝑗; 

𝑟

𝑗=1

 
∀𝑖 ∈ 𝛹 

∀𝑘 ∈ {1, … , 𝑟} 

Binary variables 

𝑎𝑖
𝑘 

If 𝛾𝑖
𝑘−1 > 0 →  𝑎𝑖

𝑘 = 0 

If 𝛾𝑖
𝑘−1 = 0 →  𝑎𝑖

𝑘 = 1  

∀𝑖 ∈ 𝛹 

∀𝑘 ∈ {1, … , 𝑟, 𝑟 + 1} 

𝑏𝑖
𝑘 

If 𝛾𝑖
𝑘−1 − 𝑄𝑖𝑘 > 0 → 𝑏𝑖

𝑘 = 0 

If 𝛾𝑖
𝑘−1 − 𝑄𝑖𝑘 ≤ 0 → 𝑏𝑖

𝑘 = 1 

∀𝑖 ∈ 𝛹 

∀𝑘 ∈ {1, … , 𝑟} 
𝑐𝑖

𝑘 
If 𝜇𝑖

𝑘 > 0 →  𝑐𝑖
𝑘 = 0 

If 𝜇𝑖
𝑘 = 0 →  𝑐𝑖

𝑘 = 1 

𝑑𝑖
𝑘 

If ɳ𝑖
𝑘 − 𝐻𝑖 > 0 →  𝑑𝑖

𝑘 = 0 

If ɳ𝑖
𝑘 − 𝐻𝑖 ≤ 0 →  𝑑𝑖

𝑘 = 1 

𝑔𝑘  
If ∑ 𝑥𝑗𝑘

𝑟
𝑗=1 > 0 →  𝑔𝑘 = 0 

If ∑ 𝑥𝑗𝑘
𝑟
𝑗=1 = 0 →  𝑔𝑘 = 1 

∀𝑘 ∈ {1, … , 𝑟} 

Table A 1: The notations (variables) used in MILP model 

Objective: 

min ∑ 𝑓(𝑅𝑘)

𝑟

𝑘=1

= ∑(𝑓𝑅(𝑘)

𝑟

𝑘=1

+ 𝑓𝑃(𝑅𝑘)) 

=  (∑ (∑ 𝑎𝑖
𝑘+1 ∗ 𝑡𝑅(𝑖) + ∑ ∑ 𝑦𝑖𝑖′𝑘 ∗

𝑑𝑖𝑖′

𝑠𝑝𝑒𝑒𝑑
+ ∑ 𝑦𝑖0𝑘 ∗

𝑑𝑖0

𝑝𝑒𝑒𝑑

𝑁

𝑖=1

𝑁

𝑖′=𝑖+1

𝑁−1

𝑖=0

𝑁

𝑖=1

)

𝑟

𝑘=1

)

+ ∑(∑(𝜁𝑖
𝑘 ∗ 𝑡𝑓

𝑃(𝑖) + (

𝑖∈𝛹

𝑄𝑖𝑘 − 𝜁𝑖
𝑘) ∗ 𝑡𝑏

𝑃(𝑖)))

𝑟

𝑘=1

 

Constraints: 

1) ∑ 𝑥𝑗𝑘 = 1 𝑟
𝑘=1 ∀𝑗 ∈ {1, … , 𝑟};      r constraints; 
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2) 𝑄𝑖𝑘 = ∑ 𝑥𝑗𝑘 ∗ 𝑞𝑖𝑗; 𝑟
𝑗=1 ∀𝑖 ∈ {1, … , 𝑁}, ∀𝑘 ∈ {1, … , 𝑟}    r*n constraints; 

3) ɳ𝑖
0 = 2 ∗ 𝐻𝑖 ;  𝛾𝑖

0 = 𝐻𝑖 ; ∀𝑖 ∈ {1, … , 𝑁}      n+n constraints; 

4) 
𝑄𝑖𝑘−ɳ𝑖

𝑘−1

2∗𝐻𝑖
+ 1 ≥ 𝜇𝑖

𝑘 >
𝑄𝑖𝑘−ɳ𝑖

𝑘−1

2∗𝐻𝑖
 ∀𝑖 ∈ {1, … , 𝑁}, ∀𝑘 ∈ {1, … , 𝑟}   2*(n*r) constraints; 

5) ɳ𝑖
𝑘 = ɳ𝑖

𝑘−1 + 2 ∗ 𝐻𝑖 ∗ 𝜇𝑖
𝑘 − 𝑄𝑖𝑘; ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}  r*n constraints; 

6) constraints for 𝛾𝑖
𝑘 :  

The following two constraints will be active when 𝛾𝑖
𝑘−1 = 𝜇𝑖

𝑘 = 0 

6.1. 𝛾𝑖
𝑘 ≤ 𝑀 ∗ (𝛾𝑖

𝑘−1 + 𝜇𝑖
𝑘) + ɳ𝑖

𝑘−1 − 𝑄𝑖𝑘; ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟} r*n constraints; 

6.2 𝛾𝑖
𝑘 ≥ −𝑀 ∗ (𝛾𝑖

𝑘−1 + 𝜇𝑖
𝑘) + ɳ𝑖

𝑘−1 − 𝑄𝑖𝑘; ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟} r*n constraints; 

The following three constraints will be active when 𝛾𝑖
𝑘−1 > 0 & 𝜇𝑖

𝑘 = 0 

6.3. 𝛾𝑖
𝑘 ≥ 𝛾𝑖

𝑘−1 − 𝑄𝑖𝑘 − 𝑀 ∗ (𝑎𝑖
𝑘 + µ𝑖

𝑘); ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟} r*n constraints 

6.4. 𝛾𝑖
𝑘 ≤ 𝛾𝑖

𝑘−1 − 𝑄𝑖𝑘 + 𝑀 ∗ (𝑎𝑖
𝑘 + µ𝑖

𝑘 + 𝑏𝑖
𝑘); ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟} r*n constraints 

6.5. 𝛾𝑖
𝑘 ≤ 0 + 𝑀 ∗ (𝑎𝑖

𝑘 + µ𝑖
𝑘 + (1 − 𝑏𝑖

𝑘)); ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟} r*n constraints 

The following three constraints will be active when 𝛾𝑖
𝑘−1 > 0 & 𝜇𝑖

𝑘 > 0 

6.6. 𝛾𝑖
𝑘 ≥ ɳ𝑖

𝑘 − 𝐻𝑖 − 𝑀 ∗ (𝑎𝑖
𝑘 + 𝑐𝑖

𝑘); ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}  r*n constraints 

6.7. 𝛾𝑖
𝑘 ≤ ɳ𝑖

𝑘 − 𝐻𝑖 + 𝑀 ∗ (𝑎𝑖
𝑘 + 𝑐𝑖

𝑘 + 𝑑𝑖
𝑘); ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟} r*n constraints 

6.8. 𝛾𝑖
𝑘 ≤ 0 + 𝑀 ∗ (𝑎𝑖

𝑘 + 𝑐𝑖
𝑘 + (1 − 𝑑𝑖

𝑘)); ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟} r*n constraints 

The following three constraints will be active when 𝛾𝑖
𝑘−1 = 0 & 𝜇𝑖

𝑘 > 0 

6.9. 𝛾𝑖
𝑘 ≥ ɳ𝑖

𝑘 − 𝐻𝑖 − 𝑀 ∗ (𝛾𝑖
𝑘−1 + 𝑐𝑖

𝑘); ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}  r*n constraints 

6.10. 𝛾𝑖
𝑘 ≤ ɳ𝑖

𝑘 − 𝐻𝑖 + 𝑀 ∗ (𝛾𝑖
𝑘−1 + 𝑐𝑖

𝑘 + 𝑑𝑖
𝑘); ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟} r*n constraints 

6.11. 𝛾𝑖
𝑘 ≤ 0 + 𝑀 ∗ (𝛾𝑖

𝑘−1 + 𝑐𝑖
𝑘 + (1 − 𝑑𝑖

𝑘)); ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟} r*n constraints 

7) constraints for Ῠ𝑖
𝑘:  



An integrated model to improve ergonomic and economic performance in order picking by rotating 
pallets

 
  

 

 

 

 
 

 

 
  173 

    

7.1. Ῠ𝑖
𝑘 ≤ 𝑀 ∗ 𝛾𝑖

𝑘−1 + ɳ𝑖
𝑘−1; ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}   r*n constraints 

7.2. Ῠ𝑖
𝑘 ≥ −𝑀 ∗ 𝛾𝑖

𝑘−1 + ɳ𝑖
𝑘−1;  ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}   r*n constraints 

7.3. Ῠ𝑖
𝑘 ≤ 𝑀 ∗ 𝑎𝑖

𝑘 + 𝛾𝑖
𝑘−1;  ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}   r*n constraints 

7.4. Ῠ𝑖
𝑘 ≥ −𝑀 ∗ 𝑎𝑖

𝑘 + 𝛾𝑖
𝑘−1;  ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}   r*n constraints 

8) Constraints for 𝜁𝑖
𝑘(front picks) 

8.1. 𝜁𝑖
𝑘 ≤ 𝑄𝑖𝑘 + 𝑀 ∗ 𝜇𝑖

𝑘 ; ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}   r*n constraints 

8.2. 𝜁𝑖
𝑘 ≤ Ῠ𝑖

𝑘 + 𝑀 ∗ 𝜇𝑖
𝑘;  ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}    r*n constraints 

8.3. 𝜁𝑖
𝑘 ≤ Ῠ𝑖

𝑘 + 𝐻𝑖 ∗ 𝜇𝑖
𝑘 + 𝑐𝑖

𝑘 ∗ 𝑀; ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}  r*n constraint 

8.4. 𝜁𝑖
𝑘 ≤ Ῠ𝑖

𝑘 + 𝑄𝑖𝑘 − ɳ𝑖
𝑘−1 − (𝜇𝑖

𝑘 − 1) ∗ 𝐻𝑖+𝑐𝑖
𝑘 ∗ 𝑀; ∀𝑖 ∈ {1, … , 𝑁}𝛹, ∀𝑘 ∈ {1, … , 𝑟}  

          r*n constraints 

9) Constraints for 𝑦𝑖𝑖′𝑘(which determines the rotation tours) 

9.1. 𝑦𝑖𝑖′𝑘 ≥ −((−𝑎𝑖
𝑘+1 + 1) + (−𝑎𝑖′

𝑘+1 + 1) + ∑ 𝑎𝑖′′
𝑘+1𝑖′−1

𝑖′′=𝑖+1 ) ∗ 𝑀 + 1; ∀𝑖 ∈ {1, … , 𝑁 − 1}, 𝑖′ ∈ {𝑖 +

1, … . , 𝑁}, 𝑘 ∈ {1, … , 𝑟}       r*n*(n-1)/2 constraints 

9.2. 𝑦𝑖0𝑘 ≥ −((−𝑎𝑖
𝑘+1 + 1) + ∑ 𝑎𝑖′′

𝑘+1𝑁
𝑖′′=𝑖+1 ) ∗ 𝑀 + 1; ∀𝑖 ∈ {1, … , 𝑁}, 𝑘 ∈ {1, … , 𝑟} 

          r*n constraints 

9.3. 𝑦0𝑖𝑘 ≥ −((−𝑎𝑖
𝑘+1 + 1) + ∑ 𝑎𝑖′′

𝑘+1𝑖−1
𝑖′′=1 ) ∗ 𝑀 + 1; ∀𝑖 ∈ {1, … , 𝑁}, 𝑘 ∈ {1, … , 𝑟} 

          r*n constraints 

10) feasibility condition: 

 𝑔𝑘 ∗ 𝑀 + ∑ 𝑎𝑖
𝑘+1 ≥ 1𝑁

𝑖=1 ;  ∀𝑘 ∈ {1, … , 𝑟}     r constraints 

11) auxiliary variables 

a: 
−𝛾𝑖

𝑘−1+0.1

𝑀
+ 1 ≥ 𝑎𝑖

𝑘 ≥
−𝛾𝑖

𝑘−1+0.1

𝑀
;  ∀𝑖 ∈ {1, … , 𝑁}, 𝑘 ∈ {1, … , 𝑟 + 1} 2*(r+1)*n constraints 

b: 
−(𝛾𝑖

𝑘−1−𝑄𝑖𝑘)+0.1

𝑀
+ 1 ≥ 𝑏𝑖

𝑘 ≥
−(𝛾𝑖

𝑘−1−𝑄𝑖𝑘)+0.1

𝑀
      2*r*n constraints 
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c: 
−𝜇𝑖

𝑘+0.1

𝑀
+ 1 ≥ 𝑐𝑖

𝑘 ≥
−𝜇𝑖

𝑘+0.1

𝑀
;  ∀𝑖 ∈ {1, … , 𝑁}, 𝑘 ∈ {1, … , 𝑟}   2*r*n constraints 

d: 
−(ɳ𝑖

𝑘−𝐻𝑖)+0.1

𝑀
+ 1 ≥ 𝑑𝑖

𝑘 ≥
−(ɳ𝑖

𝑘−𝐻𝑖)+0.1

𝑀
;  ∀𝑖 ∈ {1, … , 𝑁}, 𝑘 ∈ {1, … , 𝑟}  2*r*n constraints 

g: 
− ∑ 𝑥𝑗𝑘

𝑟
𝑗=1 +0.1

𝑀
+ 1 ≥ 𝑔𝑘 ≥

− ∑ 𝑥𝑗𝑘
𝑟
𝑗=1 +0.1

𝑀
;  ∀𝑘 ∈ {1, … , 𝑟}   2*r constraints 

Boundaries:  

𝑦𝑖𝑖′𝑘 & 𝑥𝑗𝑘 𝑎𝑖
𝑘 , 𝑐𝑖

𝑘 , 𝑑′𝑖
𝑘 , 𝑔𝑘𝑏𝑖𝑛𝑎𝑟𝑦 

𝛾𝑖
𝑘 , Ῠ𝑖

𝑘 , 𝜁𝑖
𝑘 , 𝜇𝑖

𝑘 , 𝑑𝑖
𝑘 , 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

As expected, the default solver was unable to solve even medium-sized problems. For problems with 9 

or more than 9 picklists, the solver was unable to find an optimal solution in one day. Therefore, we 

limited the number of picklists considered in small-sized problems to 8. Furthermore, to have a fair 

comparison, we changed some other parameters introduced in Section 6 for small-sized problems to 

ensure that the front side of pallets is also depleted for this low number of picklists from time to time 

For small-sized problems, we first set new values for 𝐻𝑖 as 6, 5, 4, and 3, respectively, for items with 1 

kg, 5kg, 10kg, and 25 kg weight. The number of items needed in each picklist was generated by U~(1,6). 

Finally, we also set 𝑚 = 2 and 𝑛 = 1 (i.e., in total, small-sized problems only consider 10 items). The 

other problem parameters are the same as the ones introduced in Section 6. 

20 small-sized problems were generated according to this procedure to compare the performance of the 

MILP model and SA optimization algorithm introduced in Section 5.4. Both algorithms were imple-

mented in Java 8. We solved the test instances on a x64-PC with 12 GB of RAM and an Intel Core i5-

7200U 2.5 GHz CPU. To solve the MILP model, we used CPLEX 12.7. The average run-time for the 

default solver was 577 seconds, which was 60.5% higher than the runtime of the SA. As expected, since 

the size of the problem instances was very small, the default solver was able to find optimal solutions 

for all problem instances. 
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