7,330 research outputs found

    A Distributed Epigenetic Shape Formation and Regeneration Algorithm for a Swarm of Robots

    Full text link
    Living cells exhibit both growth and regeneration of body tissues. Epigenetic Tracking (ET), models this growth and regenerative qualities of living cells and has been used to generate complex 2D and 3D shapes. In this paper, we present an ET based algorithm that aids a swarm of identically-programmed robots to form arbitrary shapes and regenerate them when cut. The algorithm works in a distributed manner using only local interactions and computations without any central control and aids the robots to form the shape in a triangular lattice structure. In case of damage or splitting of the shape, it helps each set of the remaining robots to regenerate and position themselves to build scaled down versions of the original shape. The paper presents the shapes formed and regenerated by the algorithm using the Kilombo simulator.Comment: 8 pages, 9 figures, GECCO-18 conferenc

    Intelligent manipulation technique for multi-branch robotic systems

    Get PDF
    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system

    Multirobot heterogeneous control considering secondary objectives

    Full text link
    Cooperative robotics has considered tasks that are executed frequently, maintaining the shape and orientation of robotic systems when they fulfill a common objective, without taking advantage of the redundancy that the robotic group could present. This paper presents a proposal for controlling a group of terrestrial robots with heterogeneous characteristics, considering primary and secondary tasks thus that the group complies with the following of a path while modifying its shape and orientation at any time. The development of the proposal is achieved through the use of controllers based on linear algebra, propounding a low computational cost and high scalability algorithm. Likewise, the stability of the controller is analyzed to know the required features that have to be met by the control constants, that is, the correct values. Finally, experimental results are shown with di erent configurations and heterogeneous robots, where the graphics corroborate the expected operation of the proposalThis research was funded by Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDI

    A framework for proving the self-organization of dynamic systems

    Get PDF
    This paper aims at providing a rigorous definition of self- organization, one of the most desired properties for dynamic systems (e.g., peer-to-peer systems, sensor networks, cooperative robotics, or ad-hoc networks). We characterize different classes of self-organization through liveness and safety properties that both capture information re- garding the system entropy. We illustrate these classes through study cases. The first ones are two representative P2P overlays (CAN and Pas- try) and the others are specific implementations of \Omega (the leader oracle) and one-shot query abstractions for dynamic settings. Our study aims at understanding the limits and respective power of existing self-organized protocols and lays the basis of designing robust algorithm for dynamic systems
    • …
    corecore