774 research outputs found

    Evolutionary Computation Applied to Urban Traffic Optimization

    Get PDF
    At the present time, many sings seem to indicate that we live a global energy and environmental crisis. The scientific community argues that the global warming process is, at least in some degree, a consequence of modern societies unsustainable development. A key area in that situation is the citizens mobility. World economies seem to require fast and efficient transportation infrastructures for a significant fraction of the population. The non-stopping overload process that traffic networks are suffering calls for new solutions. In the vast majority of cases it is not viable to extend that infrastructures due to costs, lack of available space, and environmental impacts. Thus, traffic departments all around the world are very interested in optimizing the existing infrastructures to obtain the very best service they can provide. In the last decade many initiatives have been developed to give the traffic network new management facilities for its better exploitation. They are grouped in the so called Intelligent Transportation Systems. Examples of these approaches are the Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS). Most of them provide drivers or traffic engineers the current traffic real/simulated situation or traffic forecasts. They may even suggest actions to improve the traffic flow. To do so, researchers have done a lot of work improving traffic simulations, specially through the development of accurate microscopic simulators. In the last decades the application of that family of simulators was restricted to small test cases due to its high computing requirements. Currently, the availability of cheap faster computers has changed this situation. Some famous microsimulators are MITSIM(Yang, Q., 1997), INTEGRATION (Rakha, H., et al., 1998), AIMSUN2 (Barcelo, J., et al., 1996), TRANSIMS (Nagel, K. & Barrett, C., 1997), etc. They will be briefly explained in the following section. Although traffic research is mainly targeted at obtaining accurate simulations there are few groups focused at the optimization or improvement of traffic in an automatic manner Ăą not dependent on traffic engineers experience and ĂąartĂą. O pe n A cc es s D at ab as e w w w .ite ch on lin e. co

    Modelling drug coatings: A parallel cellular automata model of ethylcellulose-coated microspheres

    Get PDF
    Pharmaceutical companies today face a growing demand for more complex drug designs. In the past few decades, a number of probabilistic models have been developed, with the aim of improving insight on microscopic features of these complex designs. Of particular interest are models of controlled release systems, which can provide tools to study targeted dose delivery. Controlled release is achieved by using polymers with different dissolution characteristics. We present here an approach for parallelising a large-scale model of a drug delivery system based on Monte Carlo methods, as a framework for Cellular Automata mobility. The model simulates drug release in the gastro-intestinal tract, from coated ethylcellulose microspheres. The objective is high performance simulation of coated drugs for targeted delivery. The overall aim is to understand the importance of various molecular effects with respect to system evolution over time. Important underlying mechanisms of the process, such as erosion and diffusion, are described

    Simulasi Arus Lalulintas Menggunakan Automata Seluler

    Full text link
    Simulasi Arus Lalulintas Menggunakan Autoata Seluluer bertujuan Algoritma fortune untuk sistem pembangkit peta poligon bertujuan Penerapan kerangka kerja algoritma otomata selular untuk simulasi arus lalu lintas. Dan Menganalisis pengaruh hubungan antara kepadatan dan kecepatan kendaraan terhadap arus kendaraan.Jenis penelitian ini adalah simulasi menggunakan model otomata selular yang diawali dengan Perumusan masalah, studi kepustakaan, desain model otomata selular dan perancangan sistem simulasi arus kendaraan berdasarkan tngkat kepadatan dan kecepatan kendaraan. Implementasi algoritma akan disusun menggunakan bahasa pemrograman JavaScript. Program arus lalu lintas ini dengan menggunakan Cellular Automata dikerjakan dalam javascript yang telah dikembangkan oleh Artem Volkhin. Program ini sendiri menggambarkan tentang arus lalu lintas dua arah dengan pengaturan jalur masing-masing kendaraan dilakukan sistem acak (random. Kecepatan, perlambatan, dan pindah jalur pada masing-masing kendaraan berdasarkan algoritma yang telah dibahas sebelumnya. Program ini dibentuk dengan menggunakan JavaScript yang awalnya dikembangkan oleh blablabla. Kemudian, dengan mempertimbangkan faktor kecepatan dan kepadatan, diperoleh model arus lalu lintas yang dirasa relatif baik. Hal ini didasarkan pada grafik hubungan antara kecepatan, kepadatan dan arus yang diperoleh berdasarkan hasil pengamatan pada model yang ada pada progra

    Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

    Get PDF
    Modeling pedestrian dynamics and their implementation in a computer are challenging and important issues in the knowledge areas of transportation and computer simulation. The aim of this article is to provide a bibliographic outlook so that the reader may have quick access to the most relevant works related to this problem. We have used three main axes to organize the article's contents: pedestrian models, validation techniques, and multiscale approaches. The backbone of this work is the classification of existing pedestrian models; we have organized the works in the literature under five categories, according to the techniques used for implementing the operational level in each pedestrian model. Then the main existing validation methods, oriented to evaluate the behavioral quality of the simulation systems, are reviewed. Furthermore, we review the key issues that arise when facing multiscale pedestrian modeling, where we first focus on the behavioral scale (combinations of micro and macro pedestrian models) and second on the scale size (from individuals to crowds). The article begins by introducing the main characteristics of walking dynamics and its analysis tools and concludes with a discussion about the contributions that different knowledge fields can make in the near future to this exciting area

    GPGPU Computing for Microscopic Simulations of Crowd Dynamics

    Get PDF
    We compare GPGPU implementations of two popular models of crowd dynamics. Specifically, we consider a continuous social force model, based on differential equations (molecular dynamics) and a discrete social distances model based on non-homogeneous cellular automata. For comparative purposes both models have been implemented in two versions: on the one hand using GPGPU technology, on the other hand using CPU only. We compare some significant characteristics of each model, for example: performance, memory consumption and issues of visualization. We also propose and test some possibilities for tuning the proposed algorithms for efficient GPU computations

    The design and simulation of traffic networks in virtual environments

    Get PDF
    For over half a century, researchers from a diverse set of disciplines have been studying the behaviour of traffic flow to better understand the causes of traffic congestion, accidents, and related phenomena. As the global population continues to rise, there is an increasing demand for more efficient and effective transportation infrastructures that are able to accommodate a greater number of civilians without compromising travel times, journey quality, cost, or accessibility. With recent advances in computing technology, transportation infrastructures are now typically developed using design and simulation packages that enable engineers to accurately model large-scale road networks and evaluate their designs through visual simulation. However, as these projects increase in scale and complexity, methodologies to intuitively design more complex and realistic simulations are highly desirable. The need of such technology translates across to the entertainment industry, where traffic simulations are integrated into computer games, television, film, and virtual tourism applications to enhance the realism and believability of the simulated scenario. In this thesis two significant challenges related to the design and simulation of traffic networks for use in virtual environments are presented. The first challenge is the development of intuitive techniques to assist the design and construction of high-fidelity three-dimensional road networks for use in both urban and rural virtual environments. The second challenge considers the implementation of computational models to accurately simulate the behaviour of drivers and pedestrians in transportation networks, in real time. An overview of the literature in the field is presented in this work with novel contributions relating to the challenges defined above

    Pedestrian–vehicle interaction at unsignalized crosswalks: a systematic review

    Get PDF
    A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), to generate a document that supports the development of future research, compiling the various studies focused on the analysis of the pedestrian-vehicle interaction at unsignalized crosswalks. Firstly, 381 studies were identified by applying the search protocol in the database sources; however, only nine studies were included in this review because most of the studies are not focused on this type of crosswalks or have not considered the micro-simulation perspective. For each study, an analysis of the used methodology for data collection was carried out, in addition to what type of model it was applied, including the variables that represent the PVI (Pedestrian-Vehicle Interaction). The outcomes obtained by this systematic review show that although the video camera observation technique is the most used, it is possible to complement them with other tools to add specific field information. Additionally, variables such as the adjacent yields, speed variables vehicles, pedestrian attitude, and the number of pedestrians waiting at the crossing were those most used in the cellular automata model or micro-simulation, which are the commonly developed models to simulate this interaction.This research was funded by “Fundação para a CiĂȘncia e a Tecnologia”, through the project AnPeB–Pedestrian behavior analysis based on simulated environments and their incorporation into risk modeling (PTDC/ECMTRA/3568/2014)
    • 

    corecore