2,682 research outputs found

    The Potential of Synergistic Static, Dynamic and Speculative Loop Nest Optimizations for Automatic Parallelization

    Get PDF
    Research in automatic parallelization of loop-centric programs started with static analysis, then broadened its arsenal to include dynamic inspection-execution and speculative execution, the best results involving hybrid static-dynamic schemes. Beyond the detection of parallelism in a sequential program, scalable parallelization on many-core processors involves hard and interesting parallelism adaptation and mapping challenges. These challenges include tailoring data locality to the memory hierarchy, structuring independent tasks hierarchically to exploit multiple levels of parallelism, tuning the synchronization grain, balancing the execution load, decoupling the execution into thread-level pipelines, and leveraging heterogeneous hardware with specialized accelerators. The polyhedral framework allows to model, construct and apply very complex loop nest transformations addressing most of the parallelism adaptation and mapping challenges. But apart from hardware-specific, back-end oriented transformations (if-conversion, trace scheduling, value prediction), loop nest optimization has essentially ignored dynamic and speculative techniques. Research in polyhedral compilation recently reached a significant milestone towards the support of dynamic, data-dependent control flow. This opens a large avenue for blending dynamic analyses and speculative techniques with advanced loop nest optimizations. Selecting real-world examples from SPEC benchmarks and numerical kernels, we make a case for the design of synergistic static, dynamic and speculative loop transformation techniques. We also sketch the embedding of dynamic information, including speculative assumptions, in the heart of affine transformation search spaces

    Analyzing large-scale DNA Sequences on Multi-core Architectures

    Full text link
    Rapid analysis of DNA sequences is important in preventing the evolution of different viruses and bacteria during an early phase, early diagnosis of genetic predispositions to certain diseases (cancer, cardiovascular diseases), and in DNA forensics. However, real-world DNA sequences may comprise several Gigabytes and the process of DNA analysis demands adequate computational resources to be completed within a reasonable time. In this paper we present a scalable approach for parallel DNA analysis that is based on Finite Automata, and which is suitable for analyzing very large DNA segments. We evaluate our approach for real-world DNA segments of mouse (2.7GB), cat (2.4GB), dog (2.4GB), chicken (1GB), human (3.2GB) and turkey (0.2GB). Experimental results on a dual-socket shared-memory system with 24 physical cores show speed-ups of up to 17.6x. Our approach is up to 3x faster than a pattern-based parallel approach that uses the RE2 library.Comment: The 18th IEEE International Conference on Computational Science and Engineering (CSE 2015), Porto, Portugal, 20 - 23 October 201

    Improving the Performance and Endurance of Persistent Memory with Loose-Ordering Consistency

    Full text link
    Persistent memory provides high-performance data persistence at main memory. Memory writes need to be performed in strict order to satisfy storage consistency requirements and enable correct recovery from system crashes. Unfortunately, adhering to such a strict order significantly degrades system performance and persistent memory endurance. This paper introduces a new mechanism, Loose-Ordering Consistency (LOC), that satisfies the ordering requirements at significantly lower performance and endurance loss. LOC consists of two key techniques. First, Eager Commit eliminates the need to perform a persistent commit record write within a transaction. We do so by ensuring that we can determine the status of all committed transactions during recovery by storing necessary metadata information statically with blocks of data written to memory. Second, Speculative Persistence relaxes the write ordering between transactions by allowing writes to be speculatively written to persistent memory. A speculative write is made visible to software only after its associated transaction commits. To enable this, our mechanism supports the tracking of committed transaction ID and multi-versioning in the CPU cache. Our evaluations show that LOC reduces the average performance overhead of memory persistence from 66.9% to 34.9% and the memory write traffic overhead from 17.1% to 3.4% on a variety of workloads.Comment: This paper has been accepted by IEEE Transactions on Parallel and Distributed System

    Analysis of the overheads incurred due to speculation in a task based programming model

    Get PDF
    In order to efficiently utilize the ever increasing processing power of multi-cores, a programmer must extract as much parallelism as possible from a given application. However with every such attempt there is an associated overhead of its implementation. A parallelization technique is beneficial only if its respective overhead is less than the performance gains realized. In this paper we analyze the overhead of one such endeavor where, in SMPSs, speculation is used to execute tasks ahead in time. Speculation is used to overcome the synchronization pragmas in SMPSs which block the generation of work and lead to the underutilization of the available resources. TinySTM, a Software Transactional Memory library is used to maintain correctness in case of mis-speculation. In this paper, we analyze the affect of TinySTM on a set of SMPSs applications which employ speculation to improve the performance. We show that for the chosen set of benchmarks, no performance gains are achieved if the application spends more than 1% of its execution time in TinySTM.Peer ReviewedPostprint (published version

    GPU-TLS: an efficient runtime for speculative loop parallelization on GPUs

    Get PDF
    Recently GPUs have risen as one important parallel platform for general purpose applications, both in HPC and cloud environments. Due to the special execution model, developing programs for GPUs is difficult even with the recent introduction of high-level languages like CUDA and OpenCL. To ease the programming efforts, some research has proposed automatically generating parallel GPU codes by complex compile-time techniques. However, this approach can only parallelize loops 100% free of inter-iteration dependencies (i.e., DOALL loops). To exploit runtime parallelism, which cannot be proven by static analysis, in this work, we propose GPU-TLS, a runtime system to speculatively parallelize possibly-parallel loops in sequential programs on GPUs. GPU-TLS parallelizes a possibly-parallel loop by chopping it into smaller sub-loops, each of which is executed in parallel by a GPU kernel, speculating that no inter-iteration dependencies exist. After dependency checking, the buffered writes of iterations without mis-speculations are copied to the master memory while iterations encountering mis-speculations are re-executed. GPU-TLS addresses several key problems of speculative loop parallelization on GPUs: (1) The larger mis-speculation rate caused by larger number of threads is reduced by three approaches: the loop chopping parallelization approach, the deferred memory update scheme and intra-warp value forwarding method. (2) The larger overhead of dependency checking is reduced by a hybrid scheme: eager intra-warp dependency checking combined with lazy inter-warp dependency checking. (3) The bottleneck of serial commit is alleviated by a parallel commit scheme, which allows different iterations to enter the commit phase out of order but still guarantees sequential semantics. Extensive evaluations using both microbenchmarks and reallife applications on two recent NVIDIA GPU cards show that speculative loop parallelization using GPU-TLS can achieve speedups ranging from 5 to 160 for sequential programs with possibly-parallel loops. © 2013 IEEE.published_or_final_versio

    Performance Characterization of Multi-threaded Graph Processing Applications on Intel Many-Integrated-Core Architecture

    Full text link
    Intel Xeon Phi many-integrated-core (MIC) architectures usher in a new era of terascale integration. Among emerging killer applications, parallel graph processing has been a critical technique to analyze connected data. In this paper, we empirically evaluate various computing platforms including an Intel Xeon E5 CPU, a Nvidia Geforce GTX1070 GPU and an Xeon Phi 7210 processor codenamed Knights Landing (KNL) in the domain of parallel graph processing. We show that the KNL gains encouraging performance when processing graphs, so that it can become a promising solution to accelerating multi-threaded graph applications. We further characterize the impact of KNL architectural enhancements on the performance of a state-of-the art graph framework.We have four key observations: 1 Different graph applications require distinctive numbers of threads to reach the peak performance. For the same application, various datasets need even different numbers of threads to achieve the best performance. 2 Only a few graph applications benefit from the high bandwidth MCDRAM, while others favor the low latency DDR4 DRAM. 3 Vector processing units executing AVX512 SIMD instructions on KNLs are underutilized when running the state-of-the-art graph framework. 4 The sub-NUMA cache clustering mode offering the lowest local memory access latency hurts the performance of graph benchmarks that are lack of NUMA awareness. At last, We suggest future works including system auto-tuning tools and graph framework optimizations to fully exploit the potential of KNL for parallel graph processing.Comment: published as L. Jiang, L. Chen and J. Qiu, "Performance Characterization of Multi-threaded Graph Processing Applications on Many-Integrated-Core Architecture," 2018 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Belfast, United Kingdom, 2018, pp. 199-20
    corecore