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Abstract. In order to efficiently utilize the ever increasing processing
power of multi-cores, a programmer must extract as much parallelism
as possible from a given application. However with every such attempt
there is an associated overhead of its implementation. A parallelization
technique is beneficial only if its respective overhead is less than the per-
formance gains realized. In this paper we analyze the overhead of one such
endeavor where, in SMPSs, speculation is used to execute tasks ahead
in time. Speculation is used to overcome the synchronization pragmas in
SMPSs which block the generation of work and lead to the underutiliza-
tion of the available resources. TinySTM, a Software Transactional Mem-
ory library is used to maintain correctness in case of mis-speculation. In
this paper, we analyze the affect of TinySTM on a set of SMPSs ap-
plications which employ speculation to improve the performance. We
show that for the chosen set of benchmarks, no performance gains are
achieved if the application spends more than 1% of its execution time in
TinySTM.

1 Introduction

Currently eight-core chips are highly prevalent in the market and this trend is on
a rise. To effectively use such hardware processing power an application should
be as parallel as possible. But parallel programming is laborious due to the lack
of standardization and portability issues. SMPSs [1] is a task-based programming
model which allows a programmer to write high-level parallel code for Symmetric
Multiprocessors (SMPs). It consists of a source-to-source compiler and a run-
time that comprises of a main-thread and a pool of worker-threads. The compiler
processes the directives which are used to annotate parts of a sequential code as
individual units of computation (tasks). The main-thread builds a task depen-
dency graph (TDG) based on the data-flow between the tasks and independent
nodes from this graph are scheduled to the worker-threads. The separation of
the generation and the execution of a task makes it necessary to use the syn-
chronization directives such as barrier and wait-on to maintain control between
the main-thread and the worker-threads. The use of such directives, however
block the main-thread until the synchronization-predicate has been evaluated



which leads to underutilization of the available resources. Such inabilities to ef-
fectively use the available resources become more prominent as the number of
cores on a chip keep increasing. To overcome this problem, the SMPSs framework
provides a speculate directive which avoids the synchronization pragma and gen-
erates tasks speculatively. The speculatively generated (speculative) tasks posses
a transaction-like property, where their updates are committed or undone based
on the success of the speculation.

To achieve the commit or abort type of behavior for the speculative tasks, a
lightweight STM [5] library, TinySTM [4] is integrated into the SMPSs frame-
work. SMPSs executes a speculative task as a transaction and commits its results
only if the speculation has been successful, else the transaction is aborted. Spec-
ulation increases the parallelism that can be extracted from a given application.
But its impact on the overall execution time of an application is also dependent
on the overhead associated with its implementation. We measure the time spent
in the TinySTM library to evaluate the overhead incurred due to speculation in
SMPSs. For this we use Paraver [3], a performance analysis tool. We add paraver
specific events to measure the time spent in the TinySTM library calls. We com-
pare the execution times of the speculative and non-speculative versions of a set
of benchmarks chosen from the domain of linear algebra and graph algorithms.
We analyze the overhead of executing TinySTM library calls in the applications
and their effects on the overall performance. We also present the behavior of the
speculative versions of the benchmarks in the presence of weak and strong scal-
ing. The analysis provides us with an upper-bound for the acceptable overhead
with speculation. The contributions of this paper are:

— An empirical proof to show that the benefits of speculation improve with
higher number of threads.

— An experimental demonstration that shows the negative effects of unopti-
mized number of calls to the TinySTM library.

— The effect of invalid tasks on the performance of speculation.

The rest of the paper is organized as follows: in section 2 we discuss the SMPSs
framework and the need for speculation in SMPSs and its implementation. We
also explain the speculate pragma and its usage. In section 3 we present our
evaluation on the various aspects that effect the efficiency of speculation. In
section 5 we present our conclusions.

2 Speculation in SMPSs

The SMPSs framework provides compiler directives (pragmas) to annotate code
blocks in a sequential program that can potentially be run in parallel. The an-
notated code blocks are treated as units of computation, tasks. The pragmas are
processed by the SMPSs source-to-source compiler and the transformed code is
passed to the SMPSs runtime. The SMPSs main thread builds a task-dependency
graph (TDG) to honor the data-dependencies between the tasks. Independent



tasks from this graph are scheduled to the various execution resources. The sep-
aration of task generation and its execution makes it impossible for the main-
thread to make any assumptions about its completion. Hence in-order to main-
tain control between the main-thread the framework provides synchronization
pragmas such as:

#pragma css wait on(a)
#pragma css barrier

Listing 1.1: Synchronization pragmas in SMPSs

The first pragma in listing 1.1 halts the main thread until the last task that
updates a has finished execution whereas the second one halts the main thread
until all previously generated tasks have finished execution.

Synchronization pragmas limit the parallelism of a given application as they
block the main thread from task generation. In a while-loop, if the loop-predicate
is updated in a task inside the loop, a synchronization pragma is used at the
end of the loop iteration.

while(residual > threshold)

{
for(int i=0 ; i < x_blocks-1 ; i++)
for(int j = 0 ; j < y_blocks ; j++)
jacobi_task (i, j,parameters [i*np+j*block_y],residual);
#pragma css wait on (residual)
}

Listing 1.2: while loop in the Jacobi application.

Listing 1.2 shows an example where a wait pragma in a while-loop does not allow
the generation of tasks from more than one iteration at a time. The synchroniza-
tion is necessary since the tasks that evaluate the predicates could potentially be
executed on different threads. To overcome this drawback, a speculate directive
[2] has been introduced to the SMPSs framework and is used as follows:

#pragma css speculate values(a,b) wait(x)

Listing 1.3: Speculate Pragma

— values - tasks that update parameters a,b should be protected in case the
speculation fails.

— wait - indicates the predicate that decides the commit or abort of the spec-
ulative tasks.

If the speculate pragma is inserted before a programming construct, then the
tasks inside these constructs will be generated speculatively. In this context we
define “invalid tasks” as tasks where the speculation fails and hence their updates
should be undone, i.e., such tasks should be rolled back. Currently the speculate
pragma can be used with the following programming constructs : while-loop and
if-condition. Figure 1 shows the usage of the speculate pragma. The speculative



if condition while loop

..... Task1(x,y);
Task1l(x,y); #pragma css speculate \
#pragma css speculate \ values (a,b) wait(x)
values (a,b) wait(x) while(x)
{
if(x) for(;;)
{ {
for(;;) Task2(a,b);
{ Task3(c,d);
Task2(a,b); 3
Task3(c,d); #pragma-css-wait on{x)-
} }

}

Fig. 1: Usage of the speculate pragma.

tasks apart from being control dependent on the predicate of the loop may also
be data dependent on the earlier tasks. Hence the use of the speculate pragma
may affect the TDG of the application in one of the following ways:

1) Tasks which are control-dependent on the earlier tasks.

2) Tasks which are data-dependent on the earlier tasks.

In case 1, simultaneous execution of speculative tasks with earlier (speculative
and non-speculative) tasks is possible. In case 2, the SMPSs main thread adds
dependencies between speculative tasks and earlier tasks. This only allows the
overlap of speculative task generation with task execution. We evaluate and an-
alyze the performance of the applications and the behavior of the SMPSs and
TinySTM runtimes when the speculate pragma is used.

3 Performance Analysis.

The performance analysis was done on 4 different applications namely:

1) Lee-routing - generates control-dependent tasks when speculate directive is
used.

2) Gauss-Seidel and Jacobi - iterative solvers which generate speculative tasks
which are data-dependent on the earlier tasks.

3) Kmeans - data-clustering algorithm which also generates data-dependent spec-
ulative tasks.

The above mentioned applications are executed on an IBM dx360 M4 node.
It contains 2x E5-2670 SandyBridge-EP 2.6GHz cache 20MB 8-cores. Thread
affinity was controlled by assigning one thread to each core. The applications
which generate data-dependent speculative tasks were executed with three dif-
ferent problem sizes which are shown in table 1.



Problem-sizes

Gauss-Seidel

Kmeans

Jacobi

Small

2048 unknowns

100 thousand

2048 unknowns

Medium

4096 unknowns

500 thousand

4096 unknowns

Large

8192 unknowns

1 million

8192 unknowns

Table 1: Problem sizes of the benchmarks chosen.

We concentrate more on applications where the speculate pragma generates
tasks that are data-dependent on earlier tasks, since they occur with more fre-
quency in programming. The use of an external library effects the performance of
SMPSs since it now requires to execute function calls outside of its framework.
Hence we focus our investigation of STM-based speculation on the following
points:

— We compare the performances of speculative and non-speculative versions of

the applications.

Effect of varying the task granularities on the performance of applications.

— Relative time spent in the TinySTM library compared to the total execution
time.

— Overhead of invalid tasks.

We study the case of lee-routing application separately since this is the only
application that adds speculative tasks which are independent of the tasks gen-
erated earlier. Figure 2 shows the performance comparison of the phase of Lee-
routing where the tasks are blocked due to a synchronization pragma that en-
forces a control dependency.

Performance of Lee-Routing
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Fig. 2: Lee Routing.

The parallelism extracted from the simultaneous execution of the speculative
tasks and the tasks generated earlier is evident from the gain in the performance.
In this phase, the non-speculative version does not improve the performance
after 4 threads. Instead the performance worsens due to the extra resources
that are unnecessarily used and the overhead of the SMPSs framework wasted



when there is no parallelism. The speculative version, however steadily improves
in the performance timings until 8 threads. Even after that when scaled, the
performance does not degrade but remains similar without much improvement
either.

Performance Comparisons

Figures 3, 4 and 5 show that the speculative version of the Gauss-Seidel, Jacobi
and Kmeans never perform better compared to their non-speculative counter-
parts. Irrespective of the number of threads used and the problem size, the reg-

Gauss-Seidel performance comparison

Gauss-Seidel performance comparison

Gauss-Seidel performance comparison

no-speculation
speculation s

no-speculation
speculation s

350

200
bl

2
=150

no-speculation
speculation s

2

8
Nnmﬁwor of threads

(a) Small data size

4 8 12 16
Number of threads

(b) Medium data size

2 12 16

3 g
Number of threads

(c¢) Large data size

Fig. 3: Performance comparisons of Gauss-Seidel for all three problem sizes.
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Fig. 4: Performance comparisons of Jacobi for all three problem sizes.
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Fig.5: Performance comparisons of Kmeans for all three problem sizes.

ular SMPSs versions consistently performs better. The TinySTM library calls



that are used to maintain correctness is an overhead absent in the regular SMPSs
application. The execution of transaction calls within every speculative task de-
grades the overall performance of the application. Figures 3, 4 and 5 show that
although the speculative version scales similar to its non-speculative counter-
part, it never benefits in the absolute performance. The increase in the number
of tasks generated does not provide enough boost to the execution timings of
the applications in-order to overshadow the TinySTM overheads. However, with
an increase in the number of threads the absolute difference in the performances
between the speculative and non-speculative version reduces. With higher num-
ber of threads, more resources are available to avail the parallelism extracted
from the speculate clause. This is a positive result, since it proves that the idea
is scalable. And if the overhead is reduced, performance gains can be achieved
by the idea of speculation.

Varying task granularities

The task granularity, i.e., the size of the memory block that is updated by a
single task is chosen as 512KB of data. The choice of task granularity plays an
important factor in the performance of an application. Smaller task granular-
ities will lead to an increase in the overhead of task creation and destruction,
whereas larger tasks will not be able to make the best use of the concurrency
available in the application. The results shown in the previous section used the
task granularities that gave the best performance with the non-speculative ver-
sion of the applications. We now show the effect of modifying task granularities
on the application performances. The effects of higher task granularities on the
TDG of an application and correspondingly on the calls made to the TinySTM
library when the speculate clause is used are:

1) Decrease in the number of speculative tasks and consequently the number of
transactions generated for a given problem size.

2) Increase in the size of the transactional copy performed by a single speculative
task.

Figures 6, 7 and 8 show the changes in the performances of the Jacobi, Gauss-
Seidel and Kmeans with different task granularities. The legend in the figures
shows the task granularity. The performance of the non-speculative versions of
the application with their optimal task granularities is shown for comparison. In
all the three applications for all the three problem sizes, the best performance of
the speculative version is achieved with the task-granularity of 2MB. This is the
largest among the granularities chosen. Bigger task-granularities decrease the
number of tasks generated but increase the amount of data processed within a
single task. In case of speculative tasks, this leads to a decrease in the number of
transactions created and destroyed but an increase in the data processed within a
single load/store operation. This leads us to the conclusion that, with TinySTM
the overhead of generating more number of smaller transactions is higher than
creating less number of bigger transactions. The conclusion is valid since we com-
pare the performance with the optimal task granularity of the non-speculative
version of the applications. Although with larger transactions more time is spent
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Fig. 6: Performance of Jacobi with different task granularities.
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Fig. 7: Performance of Gauss-Seidel with different task granularities.
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Fig. 8: Performance of Kmeans with different task granularities.

in rollbacks when the speculation fails, the granularities of the speculative tasks
should be higher than the regular SMPSs tasks. This is in direct conflict with the
purpose of speculation, i.e., to increase the parallelism from a given application,
which in the case of SMPSs translates to increasing the number of tasks in the
TDG for the worker-threads to choose from.

Time spent in TinySTM

The use of TinySTM to maintain correctness of a speculative task, hampers the
overall performance of the application. Hence to inspect the effect of TinySTM,
we analyze the time spent in different phases of a transaction during the exe-
cution of a speculative task. In this section, we present the relative time spent
by the benchmarks in TinySTM while executing their speculative versions. Our



aim is to obtain an upper bound for the acceptable overhead associated with
TinySTM based implementation of speculation. The minimum performance that
can be achieved in speculation is the overlap of task generation with task execu-
tion. Hence finding an acceptable overhead for applications with cross-iteration
dependencies can be safely generalized to all cases.

To calculate the amount of time spent in the TinySTM library during the
execution of a speculative task, we trace the execution of the following TinySTM
library calls:

Start a transaction (stm_start).

Load/store memory blocks into the transactional context (stm_load_bytes/
stm_store_bytes).

— Abort the transaction in case of mis-speculation (stm_abort).

Commit the transaction (stm_commit).

We use paraver [3] to perform this analysis and visually analyze the character-
istics of the TinySTM library in SMPSs. Trace-events have been added to the
SMPSs framework, which track the execution of the above mentioned TinySTM
library calls. These events contain the information that represent the cumulative
amount of time spent in the respective library calls. Paraver later analyzes these
events to deduce the information in a readable visual format.

Figure 9 presents the relative time spent in the TinySTM library while exe-
cuting speculative versions of the applications. The y-axis shows the relative time
spent in TinySTM compared to the total execution time of the application. The
legend in the figure represents the problem sizes of the application. The task-
granularity chosen gives the best performance results for the speculative versions
of the applications. An increase in the number of resources increases the number
of speculative tasks scheduled in parallel (which also include invalid tasks). This
will decrease the time taken to execute an application which will consequently
increase the relative time spent in TinySTM. Hence longer histograms can mean
one or both of the following:

— An increase in the number of invalid tasks due to increase in the number of
threads and/or problem sizes of the application.

— Faster execution of the applications, which increases the relative time spent
in TinySTM.

All three applications spend different amounts of time in the TinySTM library.
The pattern of relative time is similar in Jacobi and Gauss-Seidel, but the amount
of time is different. The difference in the iterative solvers allows Gauss-Seidel
to converge faster but generates more tasks in every iteration of Jacobi. This
implies that the time spent in TinySTM by Gauss-Seidel is influenced by its
faster convergence whereas in the case of Jacobi, higher number of invalid tasks
is more dominant. Since Jacobi spends more time in TinySTM, it implies that the
presence of invalid tasks has more impact on the performance of the speculative
versions of the applications. In the results presented the least overhead occurs
when the Kmeans application is executed with smaller data size. Even here the
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Fig. 9: Relative time spent in the TinySTM library.

performance of speculative version is less than the regular SMPSs version. This
shows that no performance benefits are gained when the overhead of TinySTM
is more than 1% of the total execution time of the application.

An STM library tracks the memory locations that are accessed and updated
inside a transaction. If a parallel transaction updates the same memory location
then a conflict is detected and one of the transactions is aborted. The data anal-
ysis performed by the TinySTM library is unnecessary in the case of SMPSs due
to the presence of a TDG for every application. This makes the use of TinySTM
or any other STM library to implement speculation unnecessary since its major
feature will be redundant. If a regular data-version based implementation is used
instead of an STM based one, we obtain performance benefits from the idea of
speculation as shown in figure 10. A detailed description about this implemen-
tation is presented in [10].

Speedup of speculative execution
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Fig. 10: data-version based speculation implementation.

Invalid tasks

One of the major overheads in speculative task execution is the rollback of invalid
tasks. Figure 11 shows the relative time spent by applications in rollbacks, which
is shown in the y-axis of the figure. In the figure we observe that with increasing
number of threads the relative time spent in aborts increases. Increasing the

10
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Fig. 11: Abort times relative to the execution time of the applications.

number of threads is advantageous for speculative execution since it provides
more resources to benefit from the increased parallelism. This implies that the
applications will execute faster which will increase the relative time spent in
rollback. Figure 11 also shows an increase in the problem size also increases the
relative time in abort. Increase in the number of tasks generated in every iteration
consequently increases the number of invalid tasks in case of mis-speculation.
Hence the time spent in rollbacks increase with increasing problem size and the
number of threads. The differences in the Gauss-Seidel and Jacobi algorithms
can be observed in the abort times too. Jacobi spends more time in aborting
invalid tasks compared to Gauss-Seidel. Compared to Jacobi and Gauss-Seidel,
the relative time spent in aborting invalid tasks is higher with increasing threads
in Kmeans. A comparison with the performance of Kmeans shows that it has
least amount of absolute difference with its non-speculative counterpart. It faster
execution has increased the relative time spent in aborting invalid tasks.

4 Related Work

Task-wait is a synchronization directive used from OpenMP 3.1 [11] which is
similar to wait of the SMPSs. It blocks the progress of the current task until
all its children tasks have completed its execution. The idea of speculative loop
execution is a widely researched topic, where different techniques have been
proposed like [13], [14], [15]. But we believe that ours is the first work which
implements and analyzes speculative task execution in a programming model
and uses STM to maintain correctness.

5 Conclusion

To overcome the problems arising from the use of synchronization directives,
SMPSs-framework provides a speculate pragma. When used, this pragma gener-
ates and executes tasks ahead in time. To maintain correctness, speculative tasks
are executed as transactions using the TinySTM library calls. To gain perfor-
mance benefits from this idea the overhead incurred due to TinySTM should be

11



less than the performance gains achieved by speculation. In this paper we com-
pare the performances of speculative and non-speculative versions of a chosen
set of benchmarks and the effect of TinySTM in SMPSs. We conclude that in
loops with loop-carried dependencies, no performance benefits can be achieved
if the overhead of TinySTM is more than 1% of the total execution time.
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