297 research outputs found

    Robust Data Center Network Design using Space Division Multiplexing

    Get PDF
    With the ever-increasing demand for data transmission in our generation where Internet and cloud concepts play a vital role, it has become essential that we handle data in a most efficient way. A possible solution to overcome the capacity crunch problem which is so evident in future, is applications of Space Division Multiplexing, where we explore the remaining unused domain that is the spatial domain. Space Division Multiplexing using multi-core fibers (MCFs), and few-mode fibers (FMFs) has been studied in our work to enhance the data-carrying capacity of optical fibers while minimizing the transmission cost per bit. The objective of our work is to develop a path protection scheme to handle communication requests in data center (DC) networks using elastic optical networking and space division multiplexing (SDM). Our approach to this problem is to 1) determine a dedicated primary and backup path, 2) possible allocation of spectrum using the flex-grid fixed-SDM model, 3) choose the best possible modulation format to minimize the number of subcarriers needed for data transfer, 4) measure the cost of the resources required to handle the new requests. We propose to evaluate the developed Integer Linear Programming (ILP) formulation based on this scheme, considering the possibility of disasters. We study the impact of the design on the cost of the solution, hence explore whether it promotes significant resource savings

    High-Performance and Wavelength-Reused Optical Network on Chip (ONoC) Architectures and Communication Schemes for Manycore Processor

    Get PDF
    Optical Network on Chip (ONoC) is an emerging chip-scale optical interconnection technology to realize the high-performance and power-efficient inter-core communication for many-core processors. By utilizing the silicon photonic interconnects to transmit data packets with optical signals, it can achieve ultra low communication delay, high bandwidth capacity, and low power dissipation. With the benefits of Wavelength Division Multiplexing (WDM), multiple optical signals can simultaneously be transmitted in the same optical interconnect through different wavelengths. Thus, the WDM-based ONoC is becoming a hot research topic recently. However, the maximal number of available wavelengths is restricted for the reliable and power-efficient optical communication in ONoC. Hence, with a limited number of wavelengths, the design of high-performance and power-efficient ONoC architecture is an important and challenging problem. In this thesis, the design methodology of wavelength-reused ONoC architecture is explored. With the wavelength reuse scheme in optical routing paths, high-performance and power-efficient communication is realized for many-core processors only using a small number of available wavelengths. Three wavelength-reused ONoC architectures and communication schemes are proposed to fulfil different communication requirements, i.e., network scalability, multicast communication, and dark silicon. Firstly, WRH-ONoC, a wavelength-reused hierarchical Optical Network on Chip architecture, is proposed to achieve high network scalability, namely obtaining low communication delay and high throughput capacity for hundreds of thousands of cores by reusing the limited number of available wavelengths with the modest hardware cost and energy overhead. WRH-ONoC combines the advantages of non-blocking communication in each lambda-router and wavelength reuse in all lambda-routers through the hierarchical networking. Both theoretical analysis and simulation results indicate that WRH-ONoC can achieve prominent improvement on the communication performance and scalability (e.g., 46.0% of reduction on the zero-load packet delay and 72.7% of improvement on the network throughput for 400 cores with small hardware cost and energy overhead) in comparison with existing schemes. Secondly, DWRMR, a dynamical wavelength-reused multicast scheme based on the optical multicast ring, is proposed for widely existing multicast communications in many-core processors. In DWRMR, an optical multicast ring is dynamically constructed for each multicast group and the multicast packets are transmitted in a single-send-multi-receive manner requiring only one wavelength. All the cores in the same multicast group can reuse the established multicast ring through an optical token arbitration scheme for the interactive multicast communications, thereby avoiding the frequent construction of multicast routing paths dedicatedly for each core. Simulation results indicate that DWRMR can reduce more than 50% of end-to-end packet delay with slight hardware cost, or require only half number of wavelengths to achieve the same performance compared with existing schemes. Thirdly, Dark-ONoC, a dynamically configurable ONoC architecture, is proposed for the many-core processor with dark silicon. Dark silicon is an inevitable phenomenon that only a small number of cores can be activated simultaneously while the other cores must stay in dark state (power-gated) due to the restricted power budget. Dark-ONoC periodically allocates non-blocking optical routing paths only between the active cores with as less wavelengths as possible. Thus, it can obtain high-performance communication and low power consumption at the same time. Extensive simulations are conducted with the dark silicon patterns from both synthetic distribution and real data traces. The simulation results indicate that the number of wavelengths is reduced by around 15% and the overall power consumption is reduced by 23.4% compared to existing schemes. Finally, this thesis concludes several important principles on the design of wavelength-reused ONoC architecture, and summarizes some perspective issues for the future research

    On-Chip Optical Interconnection Networks for Multi/Manycore Architectures

    Get PDF
    The rapid development of multi/manycore technologies offers the opportunity for highly parallel architectures implemented on a single chip. While the first, low-parallelism multicore products have been based on simple interconnection structures (single bus, very simple crossbar), the emerging highly parallel architectures will require complex, limited-degree interconnection networks. This thesis studies this trend according to the general theory of interconnection structures for parallel machines, and investigates some solutions in terms of performance, cost, fault-tolerance, and run-time support to shared-memory and/or message passing programming mechanisms

    Towards Compelling Cases for the Viability of Silicon-Nanophotonic Technology in Future Many-core Systems

    Get PDF
    Many crossbenchmarking results reported in the open literature raise optimistic expectations on the use of optical networks-on-chip (ONoCs) for high-performance and low-power on-chip communications in future Manycore Systems. However, these works ultimately fail to make a compelling case for the viability of silicon-nanophotonic technology for two fundamental reasons: (1)Lack of aggressive electrical baselines (ENoCs). (2) Inaccuracy in physical- and architecture-layer analysis of the ONoC. This thesis aims at providing the guidelines and minimum requirements so that nanophotonic emerging technology may become of practical relevance. The key enabler for this study is a cross-layer design methodology of the optical transport medium, ranging from the consideration of the predictability gap between ONoC logic schemes and their physical implementations, up to architecture-level design issues such as the network interface and its co-design requirements with the memory hierarchy. In order to increase the practical relevance of the study, we consider a consolidated electrical NoC counterpart with an optimized architecture from a performance and power viewpoint. The quality metrics of this latter are derived from synthesis and place&route on an industrial 40nm low-power technology library. Building on this methodology, we are able to provide a realistic energy efficiency comparison between ONoC and ENoC both at the level of the system interconnect and of the system as a whole, pointing out the sensitivity of the results to the maturity of the underlying silicon nanophotonic technology, and at the same time paving the way towards compelling cases for the viability of such technology in next generation many-cores systems

    Broadcast-oriented wireless network-on-chip : fundamentals and feasibility

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICRecent years have seen the emergence and ubiquitous adoption of Chip Multiprocessors (CMPs), which rely on the coordinated operation of multiple execution units or cores. Successive CMP generations integrate a larger number of cores seeking higher performance with a reasonable cost envelope. For this trend to continue, however, important scalability issues need to be solved at different levels of design. Scaling the interconnect fabric is a grand challenge by itself, as new Network-on-Chip (NoC) proposals need to overcome the performance hurdles found when dealing with the increasingly variable and heterogeneous communication demands of manycore processors. Fast and flexible NoC solutions are needed to prevent communication become a performance bottleneck, situation that would severely limit the design space at the architectural level and eventually lead to the use of software frameworks that are slow, inefficient, or less programmable. The emergence of novel interconnect technologies has opened the door to a plethora of new NoCs promising greater scalability and architectural flexibility. In particular, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. Most of the resulting Wireless Network-on-Chip (WNoC) proposals have set the focus on leveraging the latency advantage of this paradigm by creating multiple wireless channels to interconnect far-apart cores. This strategy is effective as the complement of wired NoCs at moderate scales, but is likely to be overshadowed at larger scales by technologies such as nanophotonics unless bandwidth is unrealistically improved. This dissertation presents the concept of Broadcast-Oriented Wireless Network-on-Chip (BoWNoC), a new approach that attempts to foster the inherent simplicity, flexibility, and broadcast capabilities of the wireless technology by integrating one on-chip antenna and transceiver per processor core. This paradigm is part of a broader hybrid vision where the BoWNoC serves latency-critical and broadcast traffic, tightly coupled to a wired plane oriented to large flows of data. By virtue of its scalable broadcast support, BoWNoC may become the key enabler of a wealth of unconventional hardware architectures and algorithmic approaches, eventually leading to a significant improvement of the performance, energy efficiency, scalability and programmability of manycore chips. The present work aims not only to lay the fundamentals of the BoWNoC paradigm, but also to demonstrate its viability from the electronic implementation, network design, and multiprocessor architecture perspectives. An exploration at the physical level of design validates the feasibility of the approach at millimeter-wave bands in the short term, and then suggests the use of graphene-based antennas in the terahertz band in the long term. At the link level, this thesis provides an insightful context analysis that is used, afterwards, to drive the design of a lightweight protocol that reliably serves broadcast traffic with substantial latency improvements over state-of-the-art NoCs. At the network level, our hybrid vision is evaluated putting emphasis on the flexibility provided at the network interface level, showing outstanding speedups for a wide set of traffic patterns. At the architecture level, the potential impact of the BoWNoC paradigm on the design of manycore chips is not only qualitatively discussed in general, but also quantitatively assessed in a particular architecture for fast synchronization. Results demonstrate that the impact of BoWNoC can go beyond simply improving the network performance, thereby representing a possible game changer in the manycore era.Avenços en el disseny de multiprocessadors han portat a una àmplia adopció dels Chip Multiprocessors (CMPs), que basen el seu potencial en la operació coordinada de múltiples nuclis de procés. Generacions successives han anat integrant més nuclis en la recerca d'alt rendiment amb un cost raonable. Per a que aquesta tendència continuï, però, cal resoldre importants problemes d'escalabilitat a diferents capes de disseny. Escalar la xarxa d'interconnexió és un gran repte en ell mateix, ja que les noves propostes de Networks-on-Chip (NoC) han de servir un tràfic eminentment variable i heterogeni dels processadors amb molts nuclis. Són necessàries solucions ràpides i flexibles per evitar que les comunicacions dins del xip es converteixin en el pròxim coll d'ampolla de rendiment, situació que limitaria en gran mesura l'espai de disseny a nivell d'arquitectura i portaria a l'ús d'arquitectures i models de programació lents, ineficients o poc programables. L'aparició de noves tecnologies d'interconnexió ha possibilitat la creació de NoCs més flexibles i escalables. En particular, la comunicació intra-xip sense fils ha despertat un interès considerable en virtut de les seva baixa latència, simplicitat, i bon rendiment amb tràfic broadcast. La majoria de les Wireless NoC (WNoC) proposades fins ara s'han centrat en aprofitar l'avantatge en termes de latència d'aquest nou paradigma creant múltiples canals sense fils per interconnectar nuclis allunyats entre sí. Aquesta estratègia és efectiva per complementar a NoCs clàssiques en escales mitjanes, però és probable que altres tecnologies com la nanofotònica puguin jugar millor aquest paper a escales més grans. Aquesta tesi presenta el concepte de Broadcast-Oriented WNoC (BoWNoC), un nou enfoc que intenta rendibilitzar al màxim la inherent simplicitat, flexibilitat, i capacitats broadcast de la tecnologia sense fils integrant una antena i transmissor/receptor per cada nucli del processador. Aquest paradigma forma part d'una visió més àmplia on un BoWNoC serviria tràfic broadcast i urgent, mentre que una xarxa convencional serviria fluxos de dades més pesats. En virtut de la escalabilitat i del seu suport broadcast, BoWNoC podria convertir-se en un element clau en una gran varietat d'arquitectures i algoritmes poc convencionals que milloressin considerablement el rendiment, l'eficiència, l'escalabilitat i la programabilitat de processadors amb molts nuclis. El present treball té com a objectius no només estudiar els aspectes fonamentals del paradigma BoWNoC, sinó també demostrar la seva viabilitat des dels punts de vista de la implementació, i del disseny de xarxa i arquitectura. Una exploració a la capa física valida la viabilitat de l'enfoc usant tecnologies longituds d'ona milimètriques en un futur proper, i suggereix l'ús d'antenes de grafè a la banda dels terahertz ja a més llarg termini. A capa d'enllaç, la tesi aporta una anàlisi del context de l'aplicació que és, més tard, utilitzada per al disseny d'un protocol d'accés al medi que permet servir tràfic broadcast a baixa latència i de forma fiable. A capa de xarxa, la nostra visió híbrida és avaluada posant èmfasi en la flexibilitat que aporta el fet de prendre les decisions a nivell de la interfície de xarxa, mostrant grans millores de rendiment per una àmplia selecció de patrons de tràfic. A nivell d'arquitectura, l'impacte que el concepte de BoWNoC pot tenir sobre el disseny de processadors amb molts nuclis no només és debatut de forma qualitativa i genèrica, sinó també avaluat quantitativament per una arquitectura concreta enfocada a la sincronització. Els resultats demostren que l'impacte de BoWNoC pot anar més enllà d'una millora en termes de rendiment de xarxa; representant, possiblement, un canvi radical a l'era dels molts nuclisAward-winningPostprint (published version

    Broadcast-oriented wireless network-on-chip : fundamentals and feasibility

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICRecent years have seen the emergence and ubiquitous adoption of Chip Multiprocessors (CMPs), which rely on the coordinated operation of multiple execution units or cores. Successive CMP generations integrate a larger number of cores seeking higher performance with a reasonable cost envelope. For this trend to continue, however, important scalability issues need to be solved at different levels of design. Scaling the interconnect fabric is a grand challenge by itself, as new Network-on-Chip (NoC) proposals need to overcome the performance hurdles found when dealing with the increasingly variable and heterogeneous communication demands of manycore processors. Fast and flexible NoC solutions are needed to prevent communication become a performance bottleneck, situation that would severely limit the design space at the architectural level and eventually lead to the use of software frameworks that are slow, inefficient, or less programmable. The emergence of novel interconnect technologies has opened the door to a plethora of new NoCs promising greater scalability and architectural flexibility. In particular, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. Most of the resulting Wireless Network-on-Chip (WNoC) proposals have set the focus on leveraging the latency advantage of this paradigm by creating multiple wireless channels to interconnect far-apart cores. This strategy is effective as the complement of wired NoCs at moderate scales, but is likely to be overshadowed at larger scales by technologies such as nanophotonics unless bandwidth is unrealistically improved. This dissertation presents the concept of Broadcast-Oriented Wireless Network-on-Chip (BoWNoC), a new approach that attempts to foster the inherent simplicity, flexibility, and broadcast capabilities of the wireless technology by integrating one on-chip antenna and transceiver per processor core. This paradigm is part of a broader hybrid vision where the BoWNoC serves latency-critical and broadcast traffic, tightly coupled to a wired plane oriented to large flows of data. By virtue of its scalable broadcast support, BoWNoC may become the key enabler of a wealth of unconventional hardware architectures and algorithmic approaches, eventually leading to a significant improvement of the performance, energy efficiency, scalability and programmability of manycore chips. The present work aims not only to lay the fundamentals of the BoWNoC paradigm, but also to demonstrate its viability from the electronic implementation, network design, and multiprocessor architecture perspectives. An exploration at the physical level of design validates the feasibility of the approach at millimeter-wave bands in the short term, and then suggests the use of graphene-based antennas in the terahertz band in the long term. At the link level, this thesis provides an insightful context analysis that is used, afterwards, to drive the design of a lightweight protocol that reliably serves broadcast traffic with substantial latency improvements over state-of-the-art NoCs. At the network level, our hybrid vision is evaluated putting emphasis on the flexibility provided at the network interface level, showing outstanding speedups for a wide set of traffic patterns. At the architecture level, the potential impact of the BoWNoC paradigm on the design of manycore chips is not only qualitatively discussed in general, but also quantitatively assessed in a particular architecture for fast synchronization. Results demonstrate that the impact of BoWNoC can go beyond simply improving the network performance, thereby representing a possible game changer in the manycore era.Avenços en el disseny de multiprocessadors han portat a una àmplia adopció dels Chip Multiprocessors (CMPs), que basen el seu potencial en la operació coordinada de múltiples nuclis de procés. Generacions successives han anat integrant més nuclis en la recerca d'alt rendiment amb un cost raonable. Per a que aquesta tendència continuï, però, cal resoldre importants problemes d'escalabilitat a diferents capes de disseny. Escalar la xarxa d'interconnexió és un gran repte en ell mateix, ja que les noves propostes de Networks-on-Chip (NoC) han de servir un tràfic eminentment variable i heterogeni dels processadors amb molts nuclis. Són necessàries solucions ràpides i flexibles per evitar que les comunicacions dins del xip es converteixin en el pròxim coll d'ampolla de rendiment, situació que limitaria en gran mesura l'espai de disseny a nivell d'arquitectura i portaria a l'ús d'arquitectures i models de programació lents, ineficients o poc programables. L'aparició de noves tecnologies d'interconnexió ha possibilitat la creació de NoCs més flexibles i escalables. En particular, la comunicació intra-xip sense fils ha despertat un interès considerable en virtut de les seva baixa latència, simplicitat, i bon rendiment amb tràfic broadcast. La majoria de les Wireless NoC (WNoC) proposades fins ara s'han centrat en aprofitar l'avantatge en termes de latència d'aquest nou paradigma creant múltiples canals sense fils per interconnectar nuclis allunyats entre sí. Aquesta estratègia és efectiva per complementar a NoCs clàssiques en escales mitjanes, però és probable que altres tecnologies com la nanofotònica puguin jugar millor aquest paper a escales més grans. Aquesta tesi presenta el concepte de Broadcast-Oriented WNoC (BoWNoC), un nou enfoc que intenta rendibilitzar al màxim la inherent simplicitat, flexibilitat, i capacitats broadcast de la tecnologia sense fils integrant una antena i transmissor/receptor per cada nucli del processador. Aquest paradigma forma part d'una visió més àmplia on un BoWNoC serviria tràfic broadcast i urgent, mentre que una xarxa convencional serviria fluxos de dades més pesats. En virtut de la escalabilitat i del seu suport broadcast, BoWNoC podria convertir-se en un element clau en una gran varietat d'arquitectures i algoritmes poc convencionals que milloressin considerablement el rendiment, l'eficiència, l'escalabilitat i la programabilitat de processadors amb molts nuclis. El present treball té com a objectius no només estudiar els aspectes fonamentals del paradigma BoWNoC, sinó també demostrar la seva viabilitat des dels punts de vista de la implementació, i del disseny de xarxa i arquitectura. Una exploració a la capa física valida la viabilitat de l'enfoc usant tecnologies longituds d'ona milimètriques en un futur proper, i suggereix l'ús d'antenes de grafè a la banda dels terahertz ja a més llarg termini. A capa d'enllaç, la tesi aporta una anàlisi del context de l'aplicació que és, més tard, utilitzada per al disseny d'un protocol d'accés al medi que permet servir tràfic broadcast a baixa latència i de forma fiable. A capa de xarxa, la nostra visió híbrida és avaluada posant èmfasi en la flexibilitat que aporta el fet de prendre les decisions a nivell de la interfície de xarxa, mostrant grans millores de rendiment per una àmplia selecció de patrons de tràfic. A nivell d'arquitectura, l'impacte que el concepte de BoWNoC pot tenir sobre el disseny de processadors amb molts nuclis no només és debatut de forma qualitativa i genèrica, sinó també avaluat quantitativament per una arquitectura concreta enfocada a la sincronització. Els resultats demostren que l'impacte de BoWNoC pot anar més enllà d'una millora en termes de rendiment de xarxa; representant, possiblement, un canvi radical a l'era dels molts nuclisAward-winningPostprint (published version

    Resilient optical multicasting utilizing cycles in WDM optical networks

    Get PDF
    High capacity telecommunications of today is possible only because of the presence of optical networks. At the heart of an optical network is an optical fiber whose data carrying capabilities are unparalleled. Multicasting is a form of communication in wavelength division multiplexed (WDM) networks that involves one source and multiple destinations. Light trees, which employ light splitting at various nodes, are used to deliver data to multiple destinations. A fiber cut has been estimated to occur, on an average, once every four days by TEN, a pan-European carrier network. This thesis presents algorithms to make multicast sessions survivable against component failures. We consider multiple link failures and node failures in this work. The two algorithms presented in this thesis use a hybrid approach which is a combination of proactive and reactive approaches to recover from failures. We introduce the novel concept of minimal-hop cycles to tolerate simultaneous multiple link failures in a multicast session. While the first algorithm deals only with multiple link failures, the second algorithm considers the case of node failure and a link failure. Two different versions of the first algorithm have been implemented to thoroughly understand its behavior. Both algorithms were studied through simulators on two different networks, the USA Longhaul network and the NSF network. The input multicast sessions to all our algorithms were generated from power efficient multicast algorithms that make sure the power in the receiving nodes are at acceptable levels. The parameters used to evaluate the performance of our algorithms include computation times, network usage and power efficiency. Two new parameters, namely, recovery times and recovery success probability, have been introduced in this work. To our knowledge, this work is the first to introduce the concept of minimal hop cycles to recover from simultaneous multiple link failures in a multicast session in optical networks
    • …
    corecore