82 research outputs found

    Human to robot hand motion mapping methods: review and classification

    Get PDF
    In this article, the variety of approaches proposed in literature to address the problem of mapping human to robot hand motions are summarized and discussed. We particularly attempt to organize under macro-categories the great quantity of presented methods, that are often difficult to be seen from a general point of view due to different fields of application, specific use of algorithms, terminology and declared goals of the mappings. Firstly, a brief historical overview is reported, in order to provide a look on the emergence of the human to robot hand mapping problem as a both conceptual and analytical challenge that is still open nowadays. Thereafter, the survey mainly focuses on a classification of modern mapping methods under six categories: direct joint, direct Cartesian, taskoriented, dimensionality reduction based, pose recognition based and hybrid mappings. For each of these categories, the general view that associates the related reported studies is provided, and representative references are highlighted. Finally, a concluding discussion along with the authors’ point of view regarding future desirable trends are reported.This work was supported in part by the European Commission’s Horizon 2020 Framework Programme with the project REMODEL under Grant 870133 and in part by the Spanish Government under Grant PID2020-114819GB-I00.Peer ReviewedPostprint (published version

    Kinesthetic Haptics Sensing and Discovery with Bilateral Teleoperation Systems

    Get PDF
    In the mechanical engineering field of robotics, bilateral teleoperation is a classic but still increasing research topic. In bilateral teleoperation, a human operator moves the master manipulator, and a slave manipulator is controlled to follow the motion of the master in a remote, potentially hostile environment. This dissertation focuses on kinesthetic perception analysis in teleoperation systems. Design of the controllers of the systems is studied as the influential factor of this issue. The controllers that can provide different force tracking capability are compared using the same experimental protocol. A 6 DOF teleoperation system is configured as the system testbed. An innovative master manipulator is developed and a 7 DOF redundant manipulator is used as the slave robot. A singularity avoidance inverse kinematics algorithm is developed to resolve the redundancy of the slave manipulator. An experimental protocol is addressed and three dynamics attributes related to kineshtetic feedback are investigated: weight, center of gravity and inertia. The results support our hypothesis: the controller that can bring a better force feedback can improve the performance in the experiments

    Expert-in-the-Loop Multilateral Telerobotics for Haptics-Enabled Motor Function and Skills Development

    Get PDF
    Among medical robotics applications are Robotics-Assisted Mirror Rehabilitation Therapy (RAMRT) and Minimally-Invasive Surgical Training (RAMIST) that extensively rely on motor function development. Haptics-enabled expert-in-the-loop motor function development for such applications is made possible through multilateral telerobotic frameworks. While several studies have validated the benefits of haptic interaction with an expert in motor learning, contradictory results have also been reported. This emphasizes the need for further in-depth studies on the nature of human motor learning through haptic guidance and interaction. The objective of this study was to design and evaluate expert-in-the-loop multilateral telerobotic frameworks with stable and human-safe control loops that enable adaptive “hand-over-hand” haptic guidance for RAMRT and RAMIST. The first prerequisite for such frameworks is active involvement of the patient or trainee, which requires the closed-loop system to remain stable in the presence of an adaptable time-varying dominance factor. To this end, a wave-variable controller is proposed in this study for conventional trilateral teleoperation systems such that system stability is guaranteed in the presence of a time-varying dominance factor and communication delay. Similar to other wave-variable approaches, the controller is initially developed for the Velocity-force Domain (VD) based on the well-known passivity assumption on the human arm in VD. The controller can be applied straightforwardly to the Position-force Domain (PD), eliminating position-error accumulation and position drift, provided that passivity of the human arm in PD is addressed. However, the latter has been ignored in the literature. Therefore, in this study, passivity of the human arm in PD is investigated using mathematical analysis, experimentation as well as user studies involving 12 participants and 48 trials. The results, in conjunction with the proposed wave-variables, can be used to guarantee closed-loop PD stability of the supervised trilateral teleoperation system in its classical format. The classic dual-user teleoperation architecture does not, however, fully satisfy the requirements for properly imparting motor function (skills) in RAMRT (RAMIST). Consequently, the next part of this study focuses on designing novel supervised trilateral frameworks for providing motor learning in RAMRT and RAMIST, each customized according to the requirements of the application. The framework proposed for RAMRT includes the following features: a) therapist-in-the-loop mirror therapy; b) haptic feedback to the therapist from the patient side; c) assist-as-needed therapy realized through an adaptive Guidance Virtual Fixture (GVF); and d) real-time task-independent and patient-specific motor-function assessment. Closed-loop stability of the proposed framework is investigated using a combination of the Circle Criterion and the Small-Gain Theorem. The stability analysis addresses the instabilities caused by: a) communication delays between the therapist and the patient, facilitating haptics-enabled tele- or in-home rehabilitation; and b) the integration of the time-varying nonlinear GVF element into the delayed system. The platform is experimentally evaluated on a trilateral rehabilitation setup consisting of two Quanser rehabilitation robots and one Quanser HD2 robot. The framework proposed for RAMIST includes the following features: a) haptics-enabled expert-in-the-loop surgical training; b) adaptive expertise-oriented training, realized through a Fuzzy Interface System, which actively engages the trainees while providing them with appropriate skills-oriented levels of training; and c) task-independent skills assessment. Closed-loop stability of the architecture is analyzed using the Circle Criterion in the presence and absence of haptic feedback of tool-tissue interactions. In addition to the time-varying elements of the system, the stability analysis approach also addresses communication delays, facilitating tele-surgical training. The platform is implemented on a dual-console surgical setup consisting of the classic da Vinci surgical system (Intuitive Surgical, Inc., Sunnyvale, CA), integrated with the da Vinci Research Kit (dVRK) motor controllers, and the dV-Trainer master console (Mimic Technology Inc., Seattle, WA). In order to save on the expert\u27s (therapist\u27s) time, dual-console architectures can also be expanded to accommodate simultaneous training (rehabilitation) for multiple trainees (patients). As the first step in doing this, the last part of this thesis focuses on the development of a multi-master/single-slave telerobotic framework, along with controller design and closed-loop stability analysis in the presence of communication delays. Various parts of this study are supported with a number of experimental implementations and evaluations. The outcomes of this research include multilateral telerobotic testbeds for further studies on the nature of human motor learning and retention through haptic guidance and interaction. They also enable investigation of the impact of communication time delays on supervised haptics-enabled motor function improvement through tele-rehabilitation and mentoring

    Haptic Device Design and Teleoperation Control Algorithms for Mobile Manipulators

    Get PDF
    The increasing need of teleoperated robotic systems implies more and more often to use, as slave devices, mobile platforms (terrestrial, aerial or underwater) with integrated manipulation capabilities, provided e.g. by robotic arms with proper grasping/manipulation tools. Despite this, the research activity in teleoperation of robotic systems has mainly focused on the control of either fixed-base manipulators or mobile robots, non considering the integration of these two types of systems in a single device. Such a combined robotic devices are usually referred to as mobile manipulators: systems composed by both a robotic manipulator and a mobile platform (on which the arm is mounted) whose purpose is to enlarge the manipulator’s workspace. The combination of a mobile platform and a serial manipulator creates redundancy: a particular point in the space can be reached by moving the manipulator, by moving the mobile platform, or by a combined motion of both. A synchronized motion of both devices need then to be addressed. Although specific haptic devices explicitly oriented to the control of mobile manipulators need to be designed, there are no commercial solution yet. For this reason it is often necessary to control such as combined systems with traditional haptic devices not specifically oriented to the control of mobile manipulators. The research activity presented in this Ph.D. thesis focuses in the first place on the design of a teleoperation control scheme which allows the simultaneous control of both the manipulator and the mobile platform by means of a single haptic device characterized by fixed base and an open kinematic chain. Secondly the design of a novel cable-drive haptic devices has been faced. Investigating the use of twisted strings actuation in force rendering is the most interesting challenge of the latter activity

    Robotics handbook. Version 1: For the interested party and professional

    Get PDF
    This publication covers several categories of information about robotics. The first section provides a brief overview of the field of Robotics. The next section provides a reasonably detailed look at the NASA Robotics program. The third section features a listing of companies and organization engaging in robotics or robotic-related activities; followed by a listing of associations involved in the field; followed by a listing of publications and periodicals which cover elements of robotics or related fields. The final section is an abbreviated abstract of referred journal material and other reference material relevant to the technology and science of robotics, including such allied fields as vision perception; three-space axis orientation and measurement systems and associated inertial reference technology and algorithms; and physical and mechanical science and technology related to robotics

    User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction

    Get PDF
    The robotic technologies have been well developed recently in various fields, such as medical services, industrial manufacture and aerospace. Despite their rapid development, how to deal with the uncertain envi-ronment during human-robot interactions effectively still remains un-resolved. The current artificial intelligence (AI) technology does not support robots to fulfil complex tasks without human’s guidance. Thus, teleoperation, which means remotely controlling a robot by a human op-erator, is indispensable in many scenarios. It is an important and useful tool in research fields. This thesis focuses on the study of designing a user experience (UX) enhanced robot controller, and human-robot in-teraction interfaces that try providing human operators an immersion perception of teleoperation. Several works have been done to achieve the goal.First, to control a telerobot smoothly, a customised variable gain con-trol method is proposed where the stiffness of the telerobot varies with the muscle activation level extracted from signals collected by the surface electromyograph(sEMG) devices. Second, two main works are conducted to improve the user-friendliness of the interaction interfaces. One is that force feedback is incorporated into the framework providing operators with haptic feedback to remotely manipulate target objects. Given the high cost of force sensor, in this part of work, a haptic force estimation algorithm is proposed where force sensor is no longer needed. The other main work is developing a visual servo control system, where a stereo camera is mounted on the head of a dual arm robots offering operators real-time working situations. In order to compensate the internal and ex-ternal uncertainties and accurately track the stereo camera’s view angles along planned trajectories, a deterministic learning techniques is utilised, which enables reusing the learnt knowledge before current dynamics changes and thus features increasing the learning efficiency. Third, in-stead of sending commands to the telerobts by joy-sticks, keyboards or demonstrations, the telerobts are controlled directly by the upper limb motion of the human operator in this thesis. Algorithm that utilised the motion signals from inertial measurement unit (IMU) sensor to captures humans’ upper limb motion is designed. The skeleton of the operator is detected by Kinect V2 and then transformed and mapped into the joint positions of the controlled robot arm. In this way, the upper limb mo-tion signals from the operator is able to act as reference trajectories to the telerobts. A more superior neural networks (NN) based trajectory controller is also designed to track the generated reference trajectory. Fourth, to further enhance the human immersion perception of teleop-eration, the virtual reality (VR) technique is incorporated such that the operator can make interaction and adjustment of robots easier and more accurate from a robot’s perspective.Comparative experiments have been performed to demonstrate the effectiveness of the proposed design scheme. Tests with human subjects were also carried out for evaluating the interface design

    Progress and Prospects of the Human-Robot Collaboration

    Get PDF
    International audienceRecent technological advances in hardware designof the robotic platforms enabled the implementationof various control modalities for improved interactions withhumans and unstructured environments. An important applicationarea for the integration of robots with such advancedinteraction capabilities is human-robot collaboration. Thisaspect represents high socio-economic impacts and maintainsthe sense of purpose of the involved people, as the robotsdo not completely replace the humans from the workprocess. The research community’s recent surge of interestin this area has been devoted to the implementation of variousmethodologies to achieve intuitive and seamless humanrobot-environment interactions by incorporating the collaborativepartners’ superior capabilities, e.g. human’s cognitiveand robot’s physical power generation capacity. In fact,the main purpose of this paper is to review the state-of-thearton intermediate human-robot interfaces (bi-directional),robot control modalities, system stability, benchmarking andrelevant use cases, and to extend views on the required futuredevelopments in the realm of human-robot collaboration

    Robotic manipulators for single access surgery

    Get PDF
    This thesis explores the development of cooperative robotic manipulators for enhancing surgical precision and patient outcomes in single-access surgery and, specifically, Transanal Endoscopic Microsurgery (TEM). During these procedures, surgeons manipulate a heavy set of instruments via a mechanical clamp inserted in the patient’s body through a surgical port, resulting in imprecise movements, increased patient risks, and increased operating time. Therefore, an articulated robotic manipulator with passive joints is initially introduced, featuring built-in position and force sensors in each joint and electronic joint brakes for instant lock/release capability. The articulated manipulator concept is further improved with motorised joints, evolving into an active tool holder. The joints allow the incorporation of advanced robotic capabilities such as ultra-lightweight gravity compensation and hands-on kinematic reconfiguration, which can optimise the placement of the tool holder in the operating theatre. Due to the enhanced sensing capabilities, the application of the active robotic manipulator was further explored in conjunction with advanced image guidance approaches such as endomicroscopy. Recent advances in probe-based optical imaging such as confocal endomicroscopy is making inroads in clinical uses. However, the challenging manipulation of imaging probes hinders their practical adoption. Therefore, a combination of the fully cooperative robotic manipulator with a high-speed scanning endomicroscopy instrument is presented, simplifying the incorporation of optical biopsy techniques in routine surgical workflows. Finally, another embodiment of a cooperative robotic manipulator is presented as an input interface to control a highly-articulated robotic instrument for TEM. This master-slave interface alleviates the drawbacks of traditional master-slave devices, e.g., using clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of intuitive manipulation feedback, e.g. joint limits, to the user. To address those drawbacks a joint-space robotic manipulator is proposed emulating the kinematic structure of the flexible robotic instrument under control.Open Acces
    corecore